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Abstract 

This thesis is mainly focused on studying molecular magnetism by inelastic neutron 

scattering (INS) and nuclear magnetic resonance (NMR) spectroscopy. Other techniques 

such as high-frequency electron paramagnetic resonance (HF-EPR) and DC magnetic 

susceptibility are also utilized to provide more comprehensive understanding. The sign 

and magnitude of axial zero-field splitting parameter D of Mn(TPP)X (H2TPP = 

tetraphenylporphyrin; X = Br and I) have been directly determined by INS and are 

consistent with the measurement of HF-EPR. Mn(TPP)F is EPR silent in both solid (5-

290 K) and frozen solution (10 K in chloroform) state, making it different from its Br and I 

analogies. Studies of Mn(TPP)F suggest that molecules form a 1-D chain structure in 

solid-state through F- bridges, but extended research is needed to support this hypothesis. 

Ligand effect of a series of pseudo-tetrahedral CoII [positive two cobalt ion] complexes 

Co(EPh3)2X2 [cobalt triphenylphosphine chlorine] (E = P, X = CI, Br, I; E = As, X = I) was 

studied by variable-temperature and variable-magnetic-field INS. In this pseudo-

tetrahedral CoII system, the anisotropy barriers do not change notably when the 

coordinating halide ligands change from lighter Cl to heaver Br and I. However, a 

significant increase of the axial anisotropy 2D value appears when substituting the 

phosphine with the arsine ligand. This work demonstrated that INS can provide 

opportunities to precisely probe the anisotropy barrier when it exceeds the range of HF-

EPR. In addition, dynamics of group 10 metal complexes with macrocyclic amine N-

heterocyclic carbene (NHC) ligands was studied by NMR. 
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1. Introduction 

 

 

 

 

  



 

2 

 

1.1 Molecular magnetism 

Magnets have been known for over 2000 years and are still playing an extraordinary 

role in countless technological applications that pass through daily life. Traditionally, 

magnets are strongly correlated to metals, intermetallic alloy, and their oxides.1 

Neodymium magnets (Nd2Fe14B), which were discovered in 1980s by Sumitomo Special 

Metals and General Motors, are one of the strongest and most widely used permanent 

rare-earth magnets.2 The flourish of miniaturization technologies requires molecular 

magnetic materials with sophisticated properties for information storage, molecular 

sensor, and spintronics devices. Single-molecule magnets (SMMs), a class of 

superparamagnetic molecules exhibiting magnetic bistability behaviors individually under 

the critical temperature, have the potential to meet these requirements.3 Usually an SMM 

contains one or more transition- or lanthanide-metal ions surrounded by organic ligands. 

The ligands separate and prevent metals from interacting with each other. No long-range 

interaction is needed to retain the magnetic properties, making SMMs likely the upper 

limit of the high-density information storage materials. SMMs have been actively studied 

over the past two decades by both chemists and physicists. The first SMM reported in 

early 1990s is a cluster containing 12 Mn ions that exhibits slow relaxation under 4 K.4-5 

About 3 decades later, the blocking temperature of SMMs was reported to be above 77 

K for the first time.6-7 These achievements are a milestone of the SMM field and have 

opened doors to the future development of practical data storage devices and 

microprocessors in quantum computers.  
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1.1.1 Magnetic anisotropy 

To make a molecule function as a magnet, a large magnetic anisotropy barrier is 

needed to prevent the magnetic moment to re-orientate between “up” and “down” after 

being removed from the magnetic field.8 The efficiency of molecules to maintain their 

magnetization is denoted by effective spin-reversal magnetic anisotropy energy barrier 

(Ueff). Ueff of the central ion is closely related to the molecule’s individual intrinsic electronic 

structure (coordination environment) and originates differently for transition and 

lanthanide metals.  

For transition metal-based SMMs, the electronic structure of the central ion is 

determined by Coulombic interaction, crystal-field (CF) interaction, and spin-orbit 

coupling (SOC) (Figure 1.1 (Left)). The strong interaction between d-orbitals and the 

ligand field could lead to the quenching of the ground-state orbital angular momentum, 

which results in the invalidation of the first-order SOC. In this case, the magnetic 

anisotropy arises from the second-order SOC, which also known as zero-field splitting 

(ZFS). ZFS is the interaction of energy levels of a metal ion with more than one unpaired 

electron and quenched orbital motions. Second-order SOC introduces small amount of 

orbital angular momentum by mixing the ground state with the excited states. Thus, ZFS 

is sensitive to both electronic spin and the coordination environment.9 The ZFS interaction 

Hamiltonian is expressed in Eq. 1.1. 

 

𝐻̂ =  𝐷 [𝑆̂𝑧
2 −

𝑆(𝑆+1)

3
] + 𝐸(𝑆̂𝑥

2 −  𝑆̂𝑦
2)    (Eq. 1.1) 
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 

 

Figure 1.1 Energy splitting schematic diagrams of examples of in high-spin, 4-coordinated, C2v, d7 transition-

metal complexes (Left) and lanthanide (Right) metal-based SMMs. 
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D and E are axial and rhombic zero-field splitting parameters respectively, they describe 

the extent of ZFS splitting in axial and rhombic directions. 𝑆̂ is the spin projection in a 

given direction and S is the total spin. The effective energy barrier is denoted as Ueff, 

which is given by:  

 

For integer spin system: 

𝑈𝑒𝑓𝑓 =  |𝐷| ∙  𝑆2                            (Eq. 1.2a) 

For half-integer spin system: 

𝑈𝑒𝑓𝑓 =  |𝐷| ∙  (𝑆2 − 1/4)               (Eq. 1.2b) 

 

For lanthanide metal-based SMMs, f-orbitals are deeply buried and experience 

weaker influence from CF. The near degenerate f-orbitals make SOC more important 

than CF in describing its electronic structure (Figure 1.1 (Right))10. As a consequence, 

the energy levels of lanthanide metal-based SMMs are less sensitive to the environment. 

The ground state term symbols (2S+1LJ) of Ln ions can be determined by Russell-Saunders 

coupling scheme and Hund’s Rule. Take one of the most extensively studied Ln ions 

Dy(III) as an example, its free ion ground state term 6H15/2 has sixteen-fold degenerate 

MJ states and these MJ states can be affected differently by the symmetry and strength 

of the CF and eventually split into eight Kramers doublets. In order to obtain a larger Ueff, 

the ground state MJ should be doubly degenerate and have a large energy gap between 

this ground state and its first excited state.11 These properties could be achieved through 

engineering its coordination environment. 
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1.1.2 Magnetic relaxations 

Having a large magnetic anisotropy barrier is critical to SMMs, but relaxation 

mechanisms could shortcut this barrier and reverse the magnetization even when the 

thermal energy (KBT) of the environment is less than the magnetic energy level separation 

(U). Two factors that are related to the magnetic moment re-orientation are: spin-lattice 

relaxation and quantum tunneling magnetization (QTM).  

Four relaxation processes are described in Eq. 1.3. The first three terms are spin-

phonon coupling mechanism and the last term is QTM. Spin-phonon coupling is the 

process where the magnetic ion (spin) interacts with the lattice vibration (phonons) by 

exchanging energies. As expressed in Figure 1.2, these four mechanisms are: (1) Direct 

relaxation is a single-phonon process that changes MJ from excited to ground states. This 

mechanism mainly occurs at low temperature. (2) Orbach relaxation is a double-phonon 

process where the energy difference of two phonons matches the energy gap between 

MJ states. In contrast to direct relaxation, this process is dominant at higher temperature. 

(3) Raman relaxation is another double-phonon process which is similar to the Orbach 

relaxation, but the superposed phonons in the Raman process are at virtual states 

instead.11-12 The last term in Eq. 1.3. describes QTM. A strong QTM effect can be 

observed if the rhombic anisotropy of the system is large. The QTM effect between two 

superposed MJ states greatly weaken the effective anisotropy barrier. Typically, a weak 

static magnetic field could break the superposition of MJ states and suppress the QTM. 

However, we do see exceptions where QTM is enhanced by the static magnetic field.13 

Its detailed mechanism is yet to be fully understood. The contributions of these 

mechanisms are defined from the AC magnetic susceptibility fitting of Eq. 1.3.  
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𝜏−1 = 𝐴𝐻𝑛1𝑇 + C𝑇𝑛2 +  𝜏0
−1 exp (−

∆𝐶𝐹

𝑘𝐵𝑇
) +  

𝐵1

(1+ 𝐵2𝐻2)
        (Eq. 1.3) 

where 𝜏  is the relaxation time; H is the applied field; ∆𝐶𝐹  represents the energy gap 

between the ground and excited state; A–C and 𝜏0 are free fit parameters; 𝑛1 and 𝑛2 are 

values that can be found in the literature.14 

 

1.2 Inelastic neutron scattering 

As mentioned before, the fitting of AC susceptibility data has been extensively used 

to determine the effective magnetic anisotropy energy barrier. However, this indirect 

method could lead to errors in D and E values due to the presence of multiple fitting 

parameters. The precise determination of the magnetic energy level separation that 

exceed the range of HF-EPR is a challenge in SMM research. Inelastic neutron scattering 

(INS) is one of the few techniques that can measure this separation directly. 

Figure 1.2 Schematic overview of the different relaxation mechanisms. Yellow lines 

indicate phonon levels, while blue lines indicate ±𝑀𝐽 (±𝑀𝑆) states.  
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1.2.1 Inelastic Neutron Scattering to probe molecular magnetism 

Neutrons are neutral particles that carry magnetic moments (spin = 1/2). Typically, 

when shooting neutron beams through samples, neutrons can be scattered by nuclei of 

atoms through strong nuclear force interaction. If the sample has unpaired electrons, the 

magnetic field of unpaired electrons can interact with the magnetic moment of neutrons 

and lead to magnetic scattering. This process provides an opportunity to measure the 

transitions between different magnetic levels directly. The kinetic information of incident 

and scattered neutron is described as initial wave vector ki and finial wave vector kf. As 

shown in Figure 1.3, in the inelastic scattering process, an incident neutron will change 

its energy and direction during the interaction with the target. Momentum transfer Q can 

be calculated by Q = ki – kf.  

 

 

 

Figure 1.3 Neutron interacts with unpaired electron through magnetic dipole-dipole 

interaction (Left). Scattering triangle of inelastic neutron scattering (Right). 
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Based on the magnetic form factor, the intensity of magnetic scattering falls off with 

the increase of momentum transfer (Q) while the intensity of vibrational originated peaks 

decreases.15 Therefore, magnetic scattering is typically probed at low Q and phonons are 

measured at high Q. However, incoherent scattering from ligand atoms, especially from 

H atoms, causes strong unconstructed background noises and occasionally overwhelms 

the magnetic signal. Thus, deuteron is often used to substitute hydrogen in INS samples 

to improve the single-to-noise ratio. Magnetic signals can also be overwhelmed by 

phonons when magnetic peaks are in the high energy region where phonon density of 

states is large. It is difficult to distinguish magnetic versus phonon signals in INS.  

There are several methods to reveal magnetic transitions from phonons. Variable-

temperature INS and variable-magnetic field INS are two methods that have been applied 

for this work:  

(1) The intensity of magnetic peaks is based on Boltzmann distribution. Thus, the 

intensity of magnetic peaks should decrease as the temperature increases. The 

temperature dependence of phonon peaks is removed by Bose-correction (Eq. 1.4).  

 

𝑓𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑(𝐸) =  
1−exp (

−2𝐸

𝑘𝑏𝑇
)

1+exp (
−2𝐸

𝑘𝑏𝑇
)

 × 𝑓(𝐸)     (Eq. 1.4) 

where 𝑓𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑(𝐸) is the corrected scattering intensity, E is the incident neutron energy, 

kb is the Boltzmann constant, and 𝑓(𝐸) is the original intensity. As a result, phonon 

intensity should remain the same under different temperatures in the Bose-corrected 

spectra.  

(2) Magnetic energy levels experience Zeeman splitting under the applied magnetic 
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field. Therefore, peaks of magnetic origin shift to higher energy with increased applied 

field while peaks of vibrational origin remain in a fixed position.  

 

1.2.2 Spectrometers for neutron scattering 

INS can be used for probing a variety of properties of the materials with a wide range 

of time and length scales. It offers possibilities to reveal unique physical and chemical 

phenomena. Cold neutron (0–25 meV)16 inelastic scattering is ideal for studying low-lying 

energy levels. Compared to optical spectroscopies like IR and Raman, INS does not have 

symmetry selection rules. All allowed transitions can be revealed by INS. Therefore, it 

can give a more comprehensive spectroscopic characterization of the sample.17 Three 

different spectrometers are used in this work. These spectrometers are recently 

reviewed.18 

Disk Chopper Spectrometer (DCS)19 is a direct geometry TOF chopper spectrometer 

at the NIST Center for Neutron Research (NCNR), National Institute of Standards and 

Technology (NIST). As shown in Figure 1.4 (Top), a white neutron beam from the source 

was filtered by a set of choppers before interacting with the target. The detector bank 

covers a wide range of angles, which gives rich information of Q. DCS provides a flexible 

choice of incident energies and resolutions. The wavelength of the incident beam can be 

tuned from 8 to at least 200 cm-1.20 The 10-T magnet is the largest among the neutron 

sources in the U.S. Both variable-temperature and variable-magnetic field INS are 

feasible with DCS. 

 Cold Neutron Chopper Spectrometer (CNCS)21 is a high-resolution, direct 
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Figure 1.4 Direct geometry (Top). White neutron beam from the source filtered by 

Choppers before hitting the sample. Detector collect information from a wide angle. 

Indirect geometry (Bottom). White neutron beam hit the sample. Analyzers choose 

scattered neutrons with certain frequency for detection. 
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geometry chopper spectrometer at the Spallation Neutron Source (SNS), Oak Ridge 

National Laboratory (ORNL). CNCS covers the energy range from 4 to 645 cm-1, meeting 

the needed requirements to study compounds with larger D values. It also provides a 

variety of extreme sample environments, including T ≤ 0.05 K, pressure P ≥ 2 GPa and 

a 8-T magnet, making it appropriate for studying SMMs under different conditions.22 

Vibrational Spectrometer (VISION) at SNS23 is an inverse geometry INS 

spectrometer with the highest resolution broadband in the world. As shown in Figure 1.4 

(Bottom), a white beam is used to interact with the sample. Scattered neutrons are 

selected by the analyzer to reach the detector. VISION is essentially the neutron analogue 

of IR and Raman spectrometers. It covers the energy range of 8 to 8000 cm-1 with the 

resolution 
∆𝐸

𝐸
 < 1.5% and provides a pressure cell of up to 2 GPa.24 Cooling samples to 

5 K at VISION is much faster than doing so with other instruments, making it easier and 

faster to collect INS data. For SMMs studies, the magnetism under variable temperatures 

is used to identify the magnetic peaks. 

 

1.3 Nuclear Magnetic Resonance spectroscopy  

Nuclear Magnetic Resonance (NMR) spectroscopy is extensively used in chemistry 

for structural and kinetic studies. NMR phenomena are interpreted as nuclei respond to 

an oscillating magnetic field by producing electromagnetic signals that reflect the 

magnetic environment of the nuclei.25 Imbalanced spin population and non-zero spin 

nuclides (I ≠ 0) are necessary in achieving NMR signals. The energy gap of nuclear spin 

state transition is small compared to thermal energy. The population difference of different 

nuclear spin states following Boltzmann distribution is only a few per million. This 
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population difference of the lower spin state is sufficient enough for the sensitivity of the 

instrument. All non-zero spin nuclei carry magnetic moments, but nuclei with integer spin 

also have electric quadrupole moment which leads to more complicated splitting patterns. 

Spin ½ nuclei are openly used in NMR since their spherical charge distribution makes 

spectra easier to interpret (e.g., 1H, 13C, 19F, and 31P).26  

 

1.3.1 Evans method 

Evans method uses NMR chemical shift difference to determine the magnetic 

moment of paramagnetic samples in solution. Many organometallic complexes are 

paramagnetic. Knowing the number of unpaired electrons in the metal ions is essential 

for understanding the oxidation state, geometry, and ligand field strength of the compound. 

If the sample is paramagnetic in solution, the magnetic field generated by unpaired 

electrons will change the magnetic environment of the solvent molecules, which leads to 

a different NMR shift from the same solvent that is not in contact with the paramagnetic 

sample.27 This NMR shift difference can be used to calculate magnetic moment and 

number of unpaired electrons of the sample. The NMR tube contains pure solvent A (50:1 

volume ratio of deuterated and protio-solvent) and a capillary containing paramagnetic 

sample solution (sample dissolved in solvent A). Magnetic shift difference data is obtained 

by collecting 1H NMR of paramagnetic sample solution and pure solvent at the same time. 

Evans method provides a tool to determine the magnetic susceptibility in solution and 

supplement the solid-state SQUID data.28 Details of the calculations will be discussed in 

Section 2.3.2.3. 
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1.3.2 Inversion recovery 

NMR is a powerful tool to study molecular dynamics, such as relaxations. 

Longitudinal relaxation time (T1) describes the rate of energy transfer between nuclear 

spin system and vibration system (lattice). For T1 relaxation to happen, the motion in the 

lattice must cause a fluctuating magnetic field at the site of the involved nuclear. The most 

common source of the local fluctuation field is the direct magnetic and electric dipole 

interaction. In paramagnetic substances, interaction between nuclear spin and unpaired 

electrons can efficiently transfer energy from spin system to lattice system, thus cause a 

fast relaxation. Inversion recovery (IR) is known as one of the standard methods for 

measuring T1. The IR is constructed by adding a 180° pulse ahead of traditional spin echo 

pulse sequence (Figure 1.5).29 The function of the 180° pulse is to flip the vertical 

magnetization to the opposite direction of the external magnetic field (B0). During the 

inversion time, the flipped spins seek to re-establish equilibrium magnetization along 

vertical direction through T1 relaxation. The 90° pulse changes the spins into the 

transverse plane. Then, the inhomogeneities local magnetic field causes spins to 

dephase. Shortly after, the second 180° pulse flips the entire ensemble and refocuses 

the spin into a spin echo. The net longitudinal magnetization is controlled by adjusting 

inversion time, also called delay time, in the pulse sequence. By the time the output signal 

is zero (null-time), T1 can be calculated by Eq. 1.5.30 

 

                                Null-time = T1 * ln2                                   (Eq. 1.5) 
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Figure 1.5 Pulse sequence of inversion recovery and spin echo. Red arrows stand 

for net magnetization. 
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2. Magnetic properties of Mn(III) porphyrin 

halides 
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2.1 Introduction 

Metalloporphyrins have been actively studied due to their special biological and 

chemical properties. Hemoglobin, the most well-known metalloporphyrin, performs its 

biological functions as a paramagnetic compound. The magnetism of this protein plays a 

key role in oxygenation and deoxygenation.31-34 As introduced before, ZFS is an important 

property to characterize the electronic and geometric status of the transition metal 

complexes. It describes various interactions of unpaired electrons that lead to a lifting of 

degenerate spin microstates. However, the origins of the ZFS are not well understood 

microscopically. A simple ligand field theory is not enough to explain how different 

coordination environments correlate to the change of the sign and magnitude of ZFS 

parameters in different molecules. Insights on the effect of metal-ligand interaction on 

ZFS could provide valuable synthetic strategies for making better SMMs.35 

The magnetic properties of compound Mn(TPP)Cl (H2TPP = tetraphenylporphyrin) 

has been studied previously by High-frequency Electron Paramagnetic Resonance (HF-

EPR), magnetic susceptibility and inelastic neutron scattering (INS), yielding D = -2.3(2) 

cm-1.17, 36-38 Duboc and coworkers39 have conducted a systematic theoretical study of the 

zero-field splitting in coordination complexes of mononuclear Mn(III) complexes. The 

CASSCF ab initio calculation of Mn(TPP)Cl gives D = -1.98 cm-1 which is close to the 

experimental value. Magnetic properties of its other halide analogs, Mn(TPP)X (X = Br 

(1), I (2) and F (3); Figure 2.1), have not been reported. Having a comparison of a series 

of different halide analogs is helpful for revealing the ligand effect on ZFS. The currently 

chapter is a discussion of experimental studies of Mn(TPP)X by HF-EPR, INS, magnetic 

susceptibility, and NMR spectroscopy.  
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Figure 2.1 Structures (Left) and d-orbital splitting (Right) of Mn(TPP)X.  
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2.2 Experimental section 

Samples of 1-3 were prepared by the reported method of Powell in 1984.40 The 

reported crystal structure of Mn(TPP)I (monoclinic) and Mn(TPP)Br (monoclinic) were 

crystallized in toluene.41 In our preparation, 1 and 2 were crystallized in chloroform (CDCl3) 

to avoid the large incoherent neutron scattering from hydrogen. The crystal structure of 2 

was solved, but the position of CDCl3 was unknown. The disorder of the lattice cell may 

have been caused by the presence of the solvent molecules. The crystal structure of 1 

could not be solved due to poor crystal quality. Unlike its halide analogs which readily 

form single crystals, 3 did not form single crystals in our repeated attempts. All we were 

able to obtain were most likely polycrystalline samples. The attempts to obtain the 

structure of 3 by powder X-ray diffraction, including using the intense synchrotron-

radiation light source research facility at Argonne National Laboratory, were not 

successful. The elemental analysis of the sample was given by Complete Analysis 

Laboratories. The sample was dried in 90 C oven overnight and packed under nitrogen 

atmosphere. Calculated: C 76.96%, H 4.11%, N 8.16%; Observed: C 75.72%, H 4.39%, 

N 7.77%. The difference of the C analysis is 1.24%, which is larger than the typical error 

of 0.40%. The UV-Vis spectra of 1-3 were taken in CDCl3 (Figure 2.2) and matched with 

the published UV-Vis data.40  
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Figure 2.2 UV-Vis spectra of 1-3 in chloroform. 
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2.3 Results and discussion 

2.3.1 Mn(TPP)X (X = Br, I) 

2.3.1.1 HF-EPR 

Samples of 1-2 prepared in our laboratory were sent to Dr. Jurek Krzystek of National 

High Magnetic Field Laboratory who, working with Prof. Joshua Telser of Roosevelt 

University, collected the HF-EPR spectra discussed below. 

HF-EPR response of 1 represents powder spectra of an S = 2 spin species with 

moderate negative ZFS on the order of −1 cm–1. Figure 2.3 (Top) shows a typical 

spectrum recorded at 10 K, and at the highest end of frequencies used, 322 GHz, along 

with its simulations. Two more spectra, recorded at lower frequencies, are shown in 

Figures S-1 and S-2 (Top) in the Supplementary Information. Although the spectra show 

a presence of more than one species, spin Hamiltonian parameters for the dominant 

species could be well established using tunable-frequency EPR methodology,42 as shown 

in Figure S-3 (Top). Spin Hamiltonian parameters, obtained from fittings and used in the 

simulations, are collected in Table 2.1. From a visual comparison of the single-frequency 

spectra and the two cases of simulations for each of them, one for D < 0, and the other 

D > 0, it is apparent that D is negative in 1. 

HF-EPR response of 2 is different from that of 1. Figure 2.3 (Bottom) shows a typical 

spectrum recorded at 10 K, and at the same frequency as the bromide analog, 322 GHz, 

along with its simulations. Two more spectra, recorded at lower frequencies, are shown 

in Figures S-1 and S-2 (Bottom) in the Supplementary Information. Although the quality 

of the spectra is somewhat lower than that of 1, and there is noticeable presence of a 

minority spin species, it is clear that the sign of D in 2 is positive.    
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Figure 2.3 HF-EPR spectra of 1 (Top) and 2 (Bottom) at 10 K and 321.6 GHz (black 

traces) and their powder-pattern simulations (colored traces). The spin Hamiltonian 

parameters used in simulations were the same as in Table 2.1 for 1 and slightly 

adjusted for 2. Blue traces: D < 0; red traces: D > 0. Two near-zero field resonances in 

the 2 spectrum indicate a minority spin species with ZFS on the order of 4 cm–1, typical 

for octahedrally-coordinated Mn(III). 
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Complex D (cm
-1

) E (cm
-1

) E/D gx gy gz 

Mn(TPP)Cl17,43-45  -2.290(5) 0.00(1) 0.00 2.005(5) 2.005(5) 1.98(2) 

Mn(TPP)Br (1)* -1.091(3) 0.087(2) 0.08 1.996(4) 1.985(5) 1.994(2) 

Mn(TPP)I (2)* +1.30(1) 0.010(5) ~0.01 1.965(5) 1.971(1) 1.930(5) 

 

* Current HF-EPR work. 

 

Table 2.1 Parameters of Mn(TPP)X (X = Cl, Br, I) 
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In addition, both single-frequency spectra and the 2-D field vs. frequency (energy map, 

Figure S-3 (Bottom)) show that the g-values in 2 (1.93–1.97) are markedly lower than 

1.99−2.01 which are the usual numbers found in manganese coordination complexes at 

any oxidation state. 

 

2.3.1.2 Inelastic Neutron Scattering 

The INS spectra were taken at CNCS, Spallation Neutron Source, Oak Ridge 

National Laboratory, between 1.7 and 25 K. Powder samples were sealed in an aluminum 

can and fixed on the end of the sample holder before being placed inside the neutron 

beam. As shown in Figure 2.4, the intense peak at 0 cm-1 is the elastic band. On the right 

and left side of this elastic band are the inelastic scattering peaks of neutron lose and 

gain energy respectively. Sign and magnitude of D in 1 can be easily extracted from the 

temperature dependence of the ZFS peaks. Based on the S = 2 ZFS splitting diagram 

shown in Figure 2.4 (Right), when D < 0, the five MS states split into MS = ±2 (ground 

state), MS = ±1 (first excited), and MS = 0 (second excited states). The energy gaps of the 

first and second excitation are 3D and D, respectively. At 1.7 K, the strong peak centered 

at 3.21 cm-1 (3D) on the neutron energy-losing side is due to the transition from MS = ±2 

to MS = ±1. Transitions from MS = ±1 to MS = ±2 and MS = ±1 to Ms = 0 are also observed 

at -3.21 cm-1 and 1.07 cm-1 (D) positions. They are less intense than the MS = ±2 → MS = 

±1 transition because of the low population of MS = ±1 states at 1.7 K. The MS = 0 → MS 

= ±1 transition is not observed at 1.7 K due to the extremely low population of the MS = 0 

state. With increasing temperature, MS = 0 and MS = ±1 states are getting more populated. 

The transitions originated from these states become stronger than at 1.7 K while  
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Figure 2.4 INS spectra (Left) and ZFS diagram (Right) of 1. 
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the peak at 3.21 cm-1 becomes weaker. This temperature dependent pattern matches well 

with the S = 2, D < 0 ZFS splitting diagram. From the INS data, if E = 0, D = -1.07 cm-1, 

which is close to the D value determined by HF-EPR: D = -1.091(3) cm-1. 

The temperature dependence behavior of 2 (Figure 2.5) is different from that of 1. 

Sign and magnitude of D can be identified from the neutron energy gain side of the 

spectra. Compared to the 1.7 K spectrum of 1, which has only one weak peak at the 

neutron energy gain side, a peak clearly stands out at -0.90 cm-1 position in 2. This implies 

that the first excited state of the 2 has much lower energy than that of 1. As shown in 

Figure 2.5 (Right), the -0.90 cm-1 peak corresponds to the transition from MS = ±1 to MS 

= 0. As temperature increases, the peak centered at -2.68 cm-1 starts to become more 

intense. This peak is assigned to the transition from MS = ±1 to MS = ±2. This temperature-

dependent pattern matches well with the S = 2, D > 0 ZFS splitting diagram. From the 

INS data, E = 0, D = 0.90 cm-1. This is close to the D value determined by HF-EPR: D = 

1.30 cm-1. 

There are more than two peaks on both the neutron energy gain and loss side of the 

spectra because of the presence of traverse anisotropy (E). Although the E parameter is 

small for both compounds (E = 0.087 cm-1 for 1; E = 0.010 cm-1 for 2 based on HF-EPR), 

it causes additional splitting of the D and 3D peaks which further complicates the spectra. 

An effort was made to simulate the INS eigenvalues for the energies of the allowed 

transitions for 1 and 2 with the MAGPACK program. Getting a good fit for all peaks in the 

INS spectra proved to be extremely difficult. Since D and E values were determined by 

HF-EPR, no additional attempts were made to simulate the INS spectra. 
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Figure 2.5 INS spectra (Left) and ZFS diagram (Right) of 2. 
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It should be pointed out that a similar change of the sign of D parameters from a 

bromide to an iodide has been reported for Mn(cyclam)X2 (X = Br and I).46 This change 

is attributed to the interaction between ground state and ligand-to-metal charge transfer 

state. Detailed calculations are needed to support this hypothesis for our system. 

 

2.3.2 Characterization of the magnetic properties of Mn(TPP)F 

2.3.2.1 Inelastic Neutron Scattering and HF-EPR 

There are no ZFS excitations in the INS data of 3 under 1.7 and 10 K. This sample 

for INS, prepared by a former member of the group, was later found contain NaF as shown 

by PXRD. Besides the INS, the rest of the data was collected with NaF-free sample. HF-

EPR of the powders at 5-298 K is silent. No recognizable features from Mn(III) ion could 

be observed. The frozen solution EPR was measured between 5 to 10 K. Only peaks of 

O2 and Mn(II) species (which are impurities) are observed.  

 

2.3.2.2 DC susceptibility  

The DC magnetic susceptibility measurement was performed at temperatures of 2–

300 K using a Quantum Design superconducting interference device magnetometer with 

an applied field of 5000 Oe. The χMT value is 1.522 cm3 K mol-1 at 299.975 K, which is 

lower than the theoretical value for one magnetically isolated high-spin d4 MnIII ion (3.0 

cm3 K mol-1 with S = 2 and g = 2.0). The effective magnetic moment at 299.975 K was 

calculated as μeff = √8 ∗ 1.522 = 3.49 μB, suggesting there are less than 3 unpaired 

electrons. This effective magnetic moment is close to what reported in the literature.47 

The d-electron configuration of 3 cannot be simplify described by high-spin or low-spin 
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only. The χMT-T curve of this compound is different from the typical isolated mononuclear 

Mn(III) complex.48 Therefore, it is possible that 3 form a polymeric structure through the 

bridging F atoms.  
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Figure 2.6 Magnetic susceptibility of 3. 
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2.3.2.3 Evans method  

As mentioned in the first chapter, Evans Method is a convenient way to determine 

the magnetic moment of the paramagnetic sample in solution. Number of unpaired 

electrons of the compound can be calculated based on the magnetic moment and 

concentration of the sample. Apparatus of the experiment is shown in Figure 2.7.  

We prepared the mixed solvent by combining 50:1 (volume) deuterated and protio- 

chloroform. Solution inside the capillary was made by dissolving paramagnetic sample 

into the mixed solvent. Pure mixed solvent and sample solution was transferred into the 

NMR tube and capillary respectively. Then capillary was inserted into the NMR tube. 

Volume of the mixed solvent was adjusted in NMR tube until their meniscus rested at the 

same height. Position of the capillary was fixed by the white cap vertically. By doing so, 

the sample could experience an isotropic magnetic field during the measurement. Data 

was collected by acquiring a standard 1H NMR. The featured NMR is shown in Figure 

2.8 (Left). The lower peak represents the chemical shift of the protio-chloroform inside 

the capillary, while the higher peak suggests the chemical shift of the protio-chloroform in 

the NMR tube. This initial chemical shift difference includes the diamagnetic effect from 

diamagnetic atoms in sample, solution, and apparatus. Diamagnetic effect was corrected 

by applying Evans method to the mixed solvent and H2TPP-mixed solvent solution. 

Figure 2.8 (Middle) is the featured Evans method spectrum taken by placing mixed 

solvent in both NMR tube and capillary. Two peaks are slightly off from perfect 

overlapping suggests the capillary provides a small shielding effect to the sample placed 

inside of it. Figure 2.8 (Right) is the spectrum taken by placing mixed solvent and H2TPP-

mixed solvent solution into NMR tube and capillary respectively. The diamagnetic effect  
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Figure 2.7 Image of the setup by the Evans method. White cap is used to secure 

capillary in the vertical position.  
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Figure 2.8 NMR spectra of 3 (Left); mixed solvent (Middle); H2TPP (Right) by the Evans method. 
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of the H2TPP solution separates two peaks further away from each other. By analyzing 

the diamagnetic effect from these two sources, we can estimate the corrected chemical 

shift difference for 3 at a certain concentration. We also measured the Mn(TPP)Cl by the 

same method for comparison. 

Molar magnetic susceptibility 𝑋𝑀  (cm3/mol) can be calculated by substituting the 

corrected peak difference into Eq. 2.1.27, 49 

 

                                                                       (Eq. 2.1) 

where ∆𝑓 is the frequency difference (Hz) between the shifted solution and the pure 

solvent peak, F is the spectrometer radiofrequency (Hz), c is the concentration of 

paramagnetic species (mol/mL).  

To get the magnetic moment (μ), plug 𝑋𝑀 into Eq. 2.2, 

 

                                   (Eq. 2.2) 

where √8 comes from [(3𝑘𝐵)/𝑁𝛽2], 𝛽 is the Born magneton of the electron 9.3 × 10−20 

𝑒𝑟𝑔∙𝐺−1, kB is known as Boltzmann constant, N is Avogadro’s number, and T is the 

temperature (K).  

The magnetic moment links with number of unpaired electrons through Eq. 2.3.  

 

             (Eq. 2.3) 

 

𝑋𝑀 =  
3∆𝑓

4𝜋𝐹𝑐
 

𝜇 =  √8(𝑋𝑀)𝑇 

𝜇 = 𝑔√𝑆(𝑆 + 1) = √𝑛(𝑛 + 2) 
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In this equation, we assume all of the magnetic moments come from the spin part of 

the unpaired electron. Since the orbital motion is, in general, small in first-row transition 

metals. g is the gyromagnetic ratio which equal to 2.00023 μB for free electrons, S is the 

total spin quantum number, and n is the number of unpaired electrons.  

We studied the standard solution 1H NMR of the 3 in CDCl3. Figure 2.9 shows a 

paramagnetic shifted peak at -19.47 ppm, which is consistent with the reported 

spectrum.50  This implies that in solution, 3 molecules exist as monomers. The results of 

the Evans method experiments are listed in Table 2.2. The magnetic moment μ for both 

3 and Mn(TPP)Cl samples solution at room temperature is close to the standard high-

spin state S = 2 (μ = 4.90) which suggests there is no additional coupling between 3 

molecules in solution.  

Figure 2.9 Standard 1H NMR spectrum of 3 in CDCl3. 
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2.3.2.4 Solid-state 13C cross-polarization and inversion recovery NMR 

spectroscopy 

Solid-state nuclear magnetic resonance spectroscopy (SSNMR) is a technique that 

can provide structural information for non-crystalline materials. Solution NMR spectra 

contains a series of narrow peaks because the anisotropic interactions between 

molecules are averaged by rapid random tumbling. Peaks in SSNMR are relatively 

broader than in solution even under high power proton decoupling and magic-angle 

spinning.51-52 Cross-polarization (CP) is a technique that transfers the energy from the 

abundant proton source to a less abundant nucleus (e.g., 13C) during the contact time. 

The signal of less abundant nucleus is detected when 1H is decoupled. By running 13C 

CP SSNMR and inversion recovery NMR experiment, we can focus on the protons that 

are directly connected to the aromatic carbon and ruled out the signals from impurities.  

We conducted 13C CP SSNMR to 3 (Figure 2.10), H2TPP (Figure 2.11), and 

Mn(TPP)Cl (Figure 2.12) at room temperature under the spin rate of 6500 and 11500 Hz. 

Even though the peaks are broad, we can still estimate that they are all within the typical 

aromatic carbon region (120-150 ppm). Due to its paramagnetic property, the peak of 

Mn(TPP)Cl is the broadest among the three and shifted to higher ppm. No spinning 

sideband was observed for Mn(TPP)Cl even when under the spin rate of 11500 Hz. 

Surprisingly, the peak broadening feature of 3 behaves more like diamagnetic H2TPP 

instead of the other paramagnetic compound Mn(TPP)Cl. Spinning sidebands of both 3 

and H2TPP are clearly showed up at 6500 Hz and pushed further apart when increasing 

spin rate to 11500 Hz. 
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Experiment 
No. 

Peak shift 
Mass (10

-4
 g) Volume (mL) 

Concentration 

(10
-4 mol/L) 

Magnetic 
moment μ 

ppm Hz 

1 0.0335 20.1 9.4 1.5 9.126 4.96 

2 0.0241 14.5 14.1 3.0 6.845 4.95 

3 0.0210 12.6 15.8 3.5 6.574 4.77 

4 0.0379 22.74 23.5 3.0 11.14 4.76 

5 0.0191 11.46 13.2 3.0 6.258 4.70 

 

 

Table 2.2 Experiment details using the Evans method and results of Mn(TPP)F (3; Experimental Nos. 1-3) and 

Mn(TPP)Cl (Experimental Nos. 4-5) 
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Figure 2.10 Solid-state 13C NMR spectra of 3 with a spin rate of 6500 Hz (Left) and 11500 Hz (Right) at 296 K. 
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Figure 2.11 Solid-state 13C NMR spectra of H2TPP with a spin rate of 6500 Hz (Left) and 11500 Hz (Right) at 296 K. 



 

40 

 

 

 

 

Figure 2.12 Solid-state 13C NMR spectra of Mn(TPP)Cl with a spin rate of 6500 Hz (Left) and 11500 Hz (Right) at 296 K. 
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The inversion recovery experiment provides information about spin-lattice relaxation 

time (T1) of the nucleus. Inversion recovery experiment was repeated for different delay 

values. 13C cross-polarization (CP) is applied to measure T1 of H atoms. As shown in 

Figures 2.13 and 2.14, when the delay time is long enough, we can obtain the same 

spectra as a regular solid-state 1H NMR. As decay time decreases, phase of the spectra 

starts to become inversed. By the time the signal completely vanishes, the delay time is 

called null-point. As mentioned in Chapter 1, the rough T1 value can be estimated from 

the null-point as Eq. 2.5. As shown in Figures 2.13 and 2.14, the null-point of 3 and 

H2TPP are found to be 5 ms and 2 s respectively. Thus, T1 of 3 (7.2 ms) is about 400 

times faster than TPP (2.9 s). This strong evidence shows that 3 is paramagnetic under 

this condition. We have also tried to run Mn(TPP)Cl for comparison. However, the CP 

signal of Mn(TPP)Cl was too broad to run inversion recovery.  
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Figure 2.13 13C cross-polarization inversion recovery spectra of 3. Red arrow points to the spectrum at null-point. Red 

dash line shows the featured peaks. 
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Figure 2.14 13C cross-polarization inversion recovery spectra of H2TPP. Red arrow points to the spectrum at null-point. 

Red dash line shows the featured peaks. 
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2.4 Conclusion 

A series of manganese porphyrin complexes with different halides Mn(TPP)X [H2TPP 

= tetraphenylporphyrin; X = Br (1), I (2) and F (3)] were prepared and studied by INS, HF-

EPR, DC susceptibility and NMR spectroscopy. The sign and magnitude of D were 

revealed by INS and HF-EPR. HF-EPR spectra give D = -1.09 cm-1, E = 0.087 cm-1 for 1 

and D = +1.30 cm-1, E = 0.010 cm-1 for 2 at low temperature. 3 is EPR silent in both solid 

(5-290 K) and frozen solution (10 K in chloroform) state, making it different from its Br and 

I analogies. No ZFS transition was observed on INS either. Evans method was applied 

for measuring the magnetic moment of 3 and Mn(TPP)Cl at room temperature. It turns 

out that these two compounds share similar magnetic properties under this condition. It 

is notable that the room temperature solid-state 13C NMR spectrum of 3 behaves more 

like a diamagnetic compound rather than paramagnetic. The DC susceptibility of 3 is 

different from an expected isolated mononuclear Mn(III) complex, which implies the 

molecules may form dimer or 1-D polymer chain through the bridging F atoms. 

Pedersen’s review summarized a couple of low-dimensional F bridged compounds.53 We 

speculate that 3 forms near perfect linear 1-D polymer with F-Mn-F angle close to 180° 

due to the interaction of porphyrin rings, as Birk and Čižmár have reported.54-55 More data 

need to be collected to support this hypothesis.    
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3. Ligands effects on the magnetic anisotropy of 

tetrahedral cobalt SMMs Co(EPh3)2X2 by INS 
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3.1 Introduction 

The field of SMMs has experienced rapid progression in the last few years. Since 

SMM was first discovered in 1993, the record of blocking temperature (TB), which is the 

maximum temperature limit to observe the magnetic hysteresis, has been improved from 

4 to 60 K by 2017.4, 56-58 Recently, Layfield6 reported a Dy-based SMM that exhibits 

magnetic hysteresis at 80 K. This was the first reported SMM with TB above the liquid 

nitrogen boiling temperature, which is a milestone in the development of practical high-

density information storage material.  

Large magnetic anisotropy is desired for SMMs to enhance its performance. 

Attempts have been made to improve the anisotropy. These include tuning spin-orbit 

coupling, zero-field splitting, symmetry and ligand field strength. Some previous 

experimental and theoretical studies have shown that the heavy donor atom of the ligands 

increase magnetic anisotropy of the first-row metals due to their larger spin-orbit coupling 

effect.59-61 For example, Long62 and co-workers reported a study of tetrahedral 

(Ph4P)2[Co(EPh)4]2- (E = O, S and Se) SMMs by magnetic susceptibility and yielded D =  

-11, -62 and -83 cm-1 respectively. A similar trend was also observed in a series of 

octahedral CrIII complexes [Cr(dmpe)2(CN)X]+ (X = Cl, Br, and I) as the magnitude of D 

gradually increases from Cl to I analogous.60 A series of pseudo-tetrahedral CoII 

complexes Co(EPh3)2X2 [E = P, X = CI (4), Br (5), I (6); E = As, X = I (7) Figure 3.1 (Left)] 

with large magnetic anisotropy have been reported recently.63-66 The anisotropy barrier 

(2D) for 6 (-73.8 cm-1) is much larger than those of its lighter halide analogs 4 (-23.2       

cm-1) and 5 (-25.0 cm-1). The values of 2D for 7 (-149.4 cm-1) is much larger than its 

phosphine analog 6. 4 is studied by HF-EPR, while 5, 6, and 7 were measured by  
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Figure 3.1 Molecular structure of 6. Compounds 4-7 share a similar structure (Left). 

Hydrogen atoms are omitted for clarity. Low-lying energy levels in high-spin, 4-

coordinated, C
2v

, d7 complexes (Right). 

 

 
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magnetic susceptibility. It is rare to see halides substitution introduce such dramatic 

changes to the anisotropy barrier. In this work, we probed their anisotropy barrier by 

variable-temperature and variable-magnetic field INS.  

 

3.2 Experimental section 

Samples 4-7 were prepared by the reported method of literature.63-65 In this work, the 

variable temperature INS spectra are collected by Vibrational Spectrometer (VISION) at 

Spallation Neutron Source, Oak Ridge National Laboratory. For each measurement, 

approximately 0.2 g of the powder sample was sealed in an aluminum can. The aluminum 

can was then fixed on the end of the sample holder and placed inside the neutron beam. 

VISION has two detector banks providing data for low Q and high Q scattering. Variable-

field INS data was collected at Dick Chopper Spectrometer (DCS) at NIST Center for 

Neutron Research (NCNR). To determine the magnetic anisotropy barrier of 7, 6 g of the 

powder sample was sealed in the aluminum can and placed into neutron beam. Sample 

was cooled down to 1.5-1.6 K and measured at 0, 5, and 10 T fields. The 0 T data was 

collected with incident neutron energy Ei = 1.81 Å, while the 5 and 10 T data were 

collected with Ei = 2.4 Å. With the presence of magnet inside the sample environment, 

the detector efficiency was reduced by about 30% in comparison to the normal 

environment. Therefore, when the magnetic field is on, we reduce the incident neutron 

energy from 1.81 Å to 2.4 Å in order to obtain a better resolution. Powder sample 4 (2 g) 

was measured at 0 T with Ei = 3 Å and 10 T with Ei = 3.5 Å in order to compare the results 

of variable temperature and variable magnetic field INS. All data were processed on 

DAVE.67 
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3.3 Results and discussion  

3.3.1 Variable-temperature INS  

Variable temperature INS has been used to distinguish magnetic and phonon 

excitations in single ion magnets. For example, Boskovic68 has reported the probing of 

lowest-lying crystal-field splitting of deuterated Ho(III) and Er(III) complexes on PELICAN 

spectrometer, Australian Nuclear Science and Technology Organization (ANSTO). 

Different temperature dependence between magnetic and vibrational originated peaks 

provides direct information of excitations from different energy states. Magnetic excitation 

of Co(II)-Y(III) dimer SMM is measured by Brechin69 group at LET time-of-flight 

spectrometer, ISIS spallation neutron source. A clear transition between two Kramers 

doublets is observed after Bose-correction. 

Based on the magnetic form factor, the magnetic excitation should be more 

pronounced at low Q, which is forward scattering in VISION. The measurements were 

conducted at different temperature between 5 and 100 K. Figure 3.2 are Bose-corrected 

forward scattering spectra for four samples. Base on the S = 3/2 ZFS energy diagram 

shown in Figure 3.1 (Right), the ground state term symbol is 4A2, and the degenerated 

MS states were lifted by ZFS with a gap of 2D. Thus, only one magnetic transition should 

be observed for each compound if we ignore E. As mentioned on Chapter 1, after Bose-

correction, the intensity of magnetic peak should decrease with increasing temperature 

while the intensity of phonon peaks stays the same. Magnetic transition of 4-6 can be 

clearly observed at 29.5 cm-1, 27.5 cm-1 and 27.3 cm-1 respectively because of the 

greatest intensity drop. However, the magnetic peak of 7 is not as apparent as the other  
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Figure 3.2 Bose-corrected forward scattering spectrum for (a) Co(PPh3)2Cl2 (4), (b) 

Co(PPh3)2Br2 (5), (c) Co(PPh3)2I2 (6) and (d) Co(AsPh3)2I2 (7).  
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three. The intensity of all the peaks changes equally. Based on the reported susceptibility 

data, 2D of 7 is much larger than that of 4-6. We suspect that the magnetic peak of 7 falls 

into a region where the vibrational density of states is large. The relatively small intensity 

change of the magnetic peak may be overwhelmed by strong phonon peaks. To address 

this issue, we studied 7 by variable magnetic field INS.  

 

3.3.2 Variable-magnetic-field INS 

The single-to-noise ratio of the peaks are low in the DCS spectra, because the 

magnet blocked a large portion of the detector. Even then, the result is still very convincing. 

As shown in Figure 3.3 (Left), the strong peak at 53.2 cm-1 is caused by the overlapping 

of phonon and magnetic peak. As the magnetic field increased, the magnetic peak shifts 

to higher energy due to the Zeeman effect and phonons remaining at the same position. 

At 5 T, the magnetic peak shows up at 61.5 cm-1 and the intensity of peak at 53.2 cm-1 

was reduced. As the magnetic field increased to 10 T, the magnetic peak shifts further 

left to 67.3 cm-1 and leaves a phonon peak at 61.5 cm-1. The phonon peak at 35.6, 41.7 

and 74.9 cm-1 stayed at the same position with changing magnetic field. This peak shifting 

pattern indicates that the magnetic peak is located at 53.2 cm-1 at 0 T. Similar pattern was 

also observed in sample 4. The magnetic peak at 29.6 cm-1 at 0 T moves away when the 

field was increased to 10 T. Its anisotropy barrier is consistent with what we observed at 

VISON.  
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Figure 3.3 Variable-field INS data for 7 (Left) and 4 (Right). 
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3.4 Conclusion and future work   

A summary of the peaks is given on Table 3.1. As we can see, due to its nature of 

multi-parameter fitting, the magnetic susceptibility data is not always accurate in 

determining D value. Inelastic neutron scattering provides opportunities to directly probe 

the anisotropy barrier. In this pseudo-tetrahedral CoII system, the anisotropy barriers do 

not change notably when the coordinating halide ligands change from lighter Cl to heaver 

Br and I. However, a significant increase in the 2D value happens when substituting 

phosphine with arsine. Some calculation work should be helpful to reveal the reason 

behind this big magnetic anisotropy difference between P and As analogies. I speculate 

that this change is related to the crystal structure. The bond angle of these four complexes 

varies from one to another, but the average Co-E bond length of 7 (2.4982 Å) is 

significantly larger than that of 4 (2.384 Å), 5 (2.385 Å), and 6 (2.401 Å). This could be 

one perspective to consider in the future study. This work shows that INS provides 

accurate determination of magnetic separations in SMMs. 
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Compound 
ZFS (cm-1) 

by Susceptibility 

│ZFS│ (cm-1) 

by INS 

Difference 

Co(PPh3)2Cl2 (4) -23.2 29.5 24% 

Co(PPh3)2Br2 (5) -25.0 27.5 9% 

Co(PPh3)2I2 (6) -73.8 27.3 170% 

Co(AsPh3)2I2 (7) -149.4 53.2 181% 

 

 

 

Table 3.1 Summary of reported (susceptibility fitting) and INS 2D values 
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4. Variable-temperature NMR study of group 10 

metal complexes with macrocyclic amine N-

heterocyclic carbene ligands 

  



 

56 

 

This work was published as: 

Taotao Lu, Zhiming Liu, Carlos A. Steren, Fan Fei, Tabitha M. Cook, Xue-Tai Chen, 

and Zi-Ling Xue, Synthesis, structural characterization and NMR studies of group 10 

metal complexes with macrocyclic amine N-heterocyclic carbene ligands. Dalton Trans. 

2018, 47, 4282. © Royal Society of Chemistry.  

https://pubs.rsc.org/en/content/articlelanding/2018/dt/c7dt04666a#!divAbstract 

 

  

https://pubs.rsc.org/en/content/articlelanding/2018/dt/c7dt04666a#!divAbstract


 

57 

 

4.1 Introduction 

In early 1960s, researchers believed that carbenes were too reactive to be 

separated.70 However, about 30 years later, in 1991, Arduengo71 reported the synthesis 

and isolation of the first stable N-heterocyclic carbene (NHC). Ever since that happened, 

different derivatives of NHCs and their metal complexes have become an active field in 

transition metal coordination chemistry. Due to their tunable steric and electronic 

properties, NHCs have a bright potential in catalysis, material, and medicines fields.72-77 

NHCs can be functionalized with other donor groups to give different types of polydentate 

macrocyclic ligands. Compared to analogous of acyclic ligands, complexes with 

macrocyclic effect show much higher stability.78 Tetradentate macrocyclic NHC ligands, 

which share a similar structure as porphyrins, have drawn considerable research 

attentions. The first silver(I) tetradentate macrocyclic NHC was reported by Youngs79 and 

co-workers in 2001. In this ligand, two pyridines are linked by two NHCs to form a 

macrocycle. Afterwards, the ligand field and magnetic properties of many NHC 

cyclophanes derivatives with other transition metals were studied by different       

groups.80-81 In 2010, Hahn82 reported a platinum(II) complex with macrocycle of two 

phosphines linked by two NHC units. In 2016, Kuhn investigated the reactivity of the 

oxygen molecule with heme analogue iron(II) compound, which contains four NHC 

units.83  

The synthesis and application of saturated polyamine macrocyclic ligands have been 

extensively studied. However, the combination of secondary amine and NHC groups 

might lead to attractive properties. The dynamic of the ring twisting process of macrocyclic 

ligands with ring size over five have been known for a long time.84 The metal complexes 
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with fused  polydentate macrocyclic NHC ligand are expected to have the similar behavior. 

In this work, two ligand precursors [H2L1][PF6]2 and [H2L2][PF6]2 (Figure 4.1) have been 

made and applied to prepare 8-14 (Figure 4.2) different metal complexes. Their dynamic 

properties were examined by NMR spectroscopy. 

 

4.2 Experimental section 

Samples of [ML][PF6]2 [L = L1, M = Ni (8), Pd (9), Pt (10); L = L2, M = Ni (11), Pd (12), 

Pt (13)] and [Pt(L2)(acac)] (14) were prepared by Prof. Xue-Tai Chen’s group at Nanjing 

University. This author helped collect the 2-D and variable-temperature NMR spectra of 

8-14 and analyze the spectra. 

The 1-D and 2-D NMR spectra of 8-14 at 295 K and 8 at 318 K were recorded on a 

Varian VNMRS 600 MHz spectrometer at the University of Tennessee equipped with an 

HCN cold probe. The NMR experiments at 253 K on 8 were performed on a Varian 500 

MHz spectrometer equipped with an OneNMR probe at UT. VT NMR spectra were 

acquired on a Bruker Avance 400 MHz spectrometer equipped with a Broad Band Inverse 

(BBI) probe at UT.  
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Figure 4.1 Ligand precursors [H2L
1
][PF6]2 and [H2L

2
][PF6]2. 
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Figure 4.2 Preparation of complexes 8-14 
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4.3 Results and discussion 

VT 1H NMR spectra of 8-14 were collected from 185 to 295 K in deuterated acetone. 

The ring twisting behavior was observed from two atropisomers of 8-10. However, similar 

behavior was not observed in 11-13, which suggests their dynamics are out of the NMR 

timescale. As shown in the crystal structures of 8-10 (Figure 4.3), the ethylene linkers 

between the secondary amine and benzimidazolium are on the different side of the plane, 

one twisted up and the other one is down. This twist causes the amine proton to be closer 

to one side of the ethylene but far away from the other. Therefore, protons on two ethylene 

linkers are magnetically inequivalent. The VT 1H NMR spectra of 8 is shown in Figure 

4.4. At 295 K, the peak at 6.23 ppm comes from the methylene between 

benzimidazolylidene and pyridine. The peak at 5.28 ppm corresponds to the proton on 

the secondary amine. Peaks at 4.93, 4.62, and 3.54 ppm are assigned to the protons of 

ethylene linkers. The strong peak at 2.92 ppm is due to the residual water. 13C gCOSY 

and 13C gHSQCAD conducted at 253 K were used to help assign the peaks.  

The peak at 6.23 ppm gets broader with decreasing temperature and reaches 

decoalescence at 270 K. When the temperature decreases further, this peak splits into 

two multiplets. This is due to the exchanging of axial and equatorial diastereotopic protons 

of the methylene group. As shown in Figure 4.5, the chemical environment of the 

methylene group protons is not affected by the orientation of amine proton due to the 

distance, which means the chemical shift of H1 is identical with H3 and H2 is identical with 

H4. Therefore, the ring twisting dynamics causes the exchange between H1 and H2 and 

leaves a broadened peak at 6.23 ppm at 295 K. The vibrational barrier of 8 is calculated 

to be G‡ = 12.6 kcal mol-1.85 Similar behavior is also observed on the peak at 4.62 ppm 
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Figure 4.3 Crystal structure of 8-13, hydrogen atoms are omitted for clarity.   
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Figure 4.4 VT 
1
H NMR spectra of 8 in acetone-d6 (400 MHz). 
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Figure 4.5 Ring twisting process of 8-10. The Newman projects are viewed 

along the secondary amine-metal bond. 
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at 295 K. This peak also reaches its decoalescence at 270 K and yields a G‡ = 12.9 kcal 

mol-1, which suggests peaks at 4.62 and 6.23 ppm are originated from the same dynamic 

process.  It is noticed that two sets of singles are observed for the ethylene linker due to 

the effect of the secondary amine proton. Protons 5-12, 6-11, 7-10, 8-9 on the ethylene 

linker form four mutual exchange pairs when the molecule undergoes ring twisting 

process. The exchange of each pair yields one average signal at high temperature and 

two separated peaks at low temperature. Similar dynamics behavior is also observed in 

9 and 10 (Figures 4.6, 4.7). The ring twisting process in 9 and 10 are much faster than 

that of in 8. The averaged peak of 10 reaches its decoalescence at 190 K while the peak 

splitting of 9 is not complete even at 185 K.   

Two sets of signals were observed at 1H NMR spectra of the ethylene linkers in 11–

13, implying there are two conformers for each compound in solution. As proposed in 

Figure 4.8, depending on the different orientations of the secondary amine-hydrogen 

bond relative to the ring plane, the chemical environment of the ethylene linker could be 

different. However, the VT 1H NMR spectra show no temperature-dependent peaks at 

185–295 K, which suggests that the exchange between conformers 11a-13a and 11b-

13b in these conditions are slower than the NMR timescale. VT 1H NMR spectra of 11 in 

deuterated DMSO are collected at 293–403 K. These high temperature spectra did not 

show exchange either, which implies that the exchange of two conformers are still slower 

than the NMR timescale even under 403 K. Single-crystal XRD shows only conformers 

11a-13b exist in solid state. 1H NMR spectra of a series of fresh prepared solution of 11-

13 were collected after different periods of waiting time. It has been observed that 

conformers 11a-13a slowly convert to 11b-13b in solution at room temperature and reach 
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Figure 4.6 VT 
1
H NMR spectra of 9 in acetone-d6 (400 MHz). 
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Figure 4.7 VT 
1
H NMR spectra of 10 in acetone-d6 (400 MHz). 
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Figure 4.8 Proposed two conformers of 11-13. 
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equilibria in a couple of hours (Figures 4.9, 4.10, and 4.11).  

Compound 14 is proofed to have static structure in solution by VT 1H NMR.  

 

4.4 Conclusion 

In summary, seven macrocyclic amine-NHC metal complexes were extensively 

studied by different NMR spectroscopy techniques. The variable temperature 1H NMR 

spectra have revealed an interconverting process between two atropisomers in 8-10 via 

ring twisting mechanism. This dynamic process happens within the timescale of NMR at 

185-295 K. An interconverting between two achiral conformers in 11-13 was proposed for 

the mechanism of N-H bond orientation. This exchange could not be observed on variable 

temperature 1H NMR spectra even at 403 K, indicating that this process is out of the range 

of the NMR timescale. The location of the ethylene linkers and a more planer structure of 

the macrocyclic ring might be the reason behind the slower dynamics of 11-13 compared 

to 8-10.   
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Figure 4.9 Time dependent 

1
H NMR spectra of 11 (acetone-d6, 400 MHz, 298 K). 
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Figure 4.10 Time dependent 
1
H NMR spectra of 12 (acetone-d6, 400 MHz, 298 K). 
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Figure 4.11 Time dependent 

1
H NMR spectra of 13 (acetone-d6, 400 MHz, 298 K). 
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Figure S-1 HF-EPR spectra of 1 (Top) and 2 (Bottom) at 10 K and 108 and 112 GHz, 

respectively (black traces) and their powder-pattern simulations (colored traces). The 

spin Hamiltonian parameters used in simulations were the same as in Table 2.1. Blue 

traces: D < 0; red traces: D > 0. 
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Figure S-2 HF-EPR spectra of 1 (Top) and 2 (Bottom) at 10 K and 216 and 220.8 GHz, 

respectively (black traces) and their powder-pattern simulations (colored traces). The 

spin Hamiltonian parameters used in simulations were the same as in Table 2.1. Blue 

traces: D < 0; red traces: D > 0. 
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Figure S-3 2-D field/frequency (energy) maps of turning points in HF-EPR spectra of 

1 (Top) and 2 (Bottom, black squares in each case). The curves are simulations using 

spin Hamiltonian parameters as in Table 2.1. Red curves: turning points with 

magnetic field parallel to the x axis of the ZFS tensor, blue: B0 || y; black: B0 || z. Off-

axis turning points, of which there are several depending on frequency, are not plotted 

as they were not used in the fits. The vertical dashed lines represent frequencies. 
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