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ABSTRACT 

Quantity and quality of pastures are significantly impacted by irregular weather patterns 

in the Southeastern US. Predominate forage types observed in Kentucky and Tennessee are cool 

season (CS) species which grow best in atmospheric temperatures ranging from 8-24°C. 

However, in this area, temperatures can reach above 32°C during the summer months. With 

average temperatures higher than required for CS species, growth and quality decline during the 

summer. Therefore, an increase in summer forage performance would benefit pasture-based 

organic dairies to help sustain milk production. Warm season (WS) forages flourish in 

atmospheric temperatures from 25 to 35°C, which reflect summer temperatures observed in the 

Southeast. This led to our first hypothesis that incorporation of WS forages would increase 

forage yield and quality in summer. To test this, four forage mixtures were designed with one 

mixture containing only CS species, while the remaining three contained CS and WS species: 

Mixtures contained a combination CS legumes and grasses, WS legumes and grasses, and/or 

brassicas. Compared with the CS mixture, mixtures containing WS species did not increase 

yields of DM in summer. Yields of legume were significantly greater in the CS mixture, with this 

mixture also maintaining the highest quality. First-year results indicated that the inclusion of WS 

forages might not increase pasture quality and yield and CS forages may be best for pasture-

based organic dairy farms in Tennessee and Kentucky.  

The second hypothesis of this work was that the forage mixtures used to test the first 

hypothesis would affect predictions of milk production. Using observed forage yield and quality 

from the previous hypothesis, a whole-farm model (FARMAX, New Zealand) predicted milk 

production of pasture-based dairy farm systems. Inputted forage content of crude protein and 

energy was the highest for the CS mixture throughout the simulated grazing season and these 
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levels affected predictions of milk and milk component yields. Therefore, the CS mixture 

predicted the highest average milk and milk component yields. With results from conditions 

experienced in this study, incorporation of WS forages with CS forages did not help promote 

increased forage yield and quality, or average milk production during the summer season.   
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INTRODUCTION 

 High pasture quality and quantity are essential in maximizing the amount of nutrients 

cattle can receive while grazing pasture. Nutrient intake is paramount for grazing based systems 

to ensure cattle production. For ruminant livestock producers who aim to take advantage of 

pasture as a primary feed resource, it is essential to produce high quality pastures, which remain 

consistent qualitatively and quantitatively throughout the entire grazing season. Organic dairy 

producers must graze their cattle for at least 120 days per year and 30% of their dry matter intake 

must come from consuming fresh pasture (USDA-AMS, 2015). A multitude of factors are 

considered when analyzing both the quality and quantity of pasture, including but not limited to 

the amount of fiber, protein levels, and total dry matter yields.  

 In organic agriculture, pasture quality and production can be impacted by a variety of 

factors, but forages are particularly impacted by the irregular weather patterns of Kentucky and 

Tennessee, especially during hot summer months. From late June to August, during increased 

ambient temperatures, the drop in forage production is referred to as the “summer slump”. 

During this time pastures are exposed to periods of drought and high temperatures that can have 

a significant impact on many perennial and annual cool season forages. This is augmented by the 

changes in soil temperature and moisture levels which affect plant nutrient uptake, therefore 

limiting plant growth (Collins et al., 1990 and Lobet et al., 2014). This is further amplified for 

organic producers who are limited in pasture management techniques they may use to maintain 

forage productivity. For example, organic producers must only utilize organic fertilizers and may 

not use herbicides or pesticides (USDA, AMS- 2015). 

 Warm season plants are well adapted to increased ambient temperatures and are more 

drought resistant than many cool season plants that dominate Kentucky and Tennessee (Salisbury 
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and Ross, 1985). Therefore, to work against the forage slump, different species such as warm 

season C4 plants may be sowed into pastures to increase forage mass yield and quality during hot 

summer months and the grazing season of organic pasture-based dairy producers.  

 

Literature Review 

 Quality and quantity are key factors in maximizing the amount of nutrients obtained from 

pasture (Muller, 1990). Nutritional quality and quantity can differ by area and location, 

environment, species of forage, and management (Rojas-Downing et al., 2017). Location and 

geographical area of pasture can greatly affect the quality and quantity of pasture performance. 

Factors such as length of growing season, temperature, and precipitation have great effects on 

nutritive quality of pastures. Length of growing season affects the forage availability for 

ruminants grazing, while soil moisture is key in nutrient absorption. Therefore decreased soil 

moisture can inhibit both growth and quality (Rojas-Downing et al., 2017; Lobet et al., 2014). 

Kentucky and Tennessee are prone to periods of draught throughout the year, especially in the 

summer season, which causes a significant decrease in soil moisture. For example in July 2015 

in Hopkinsville, Kentucky where four of the five organic farms enrolled on this study are 

located, total precipitation in July was 0mm with maximum temperatures reaching 34°C (U.S. 

Climate Data; 2015-2018), proving draught a problem for producers in this area with grazing 

pastures.  

Organic certified dairy cattle must graze at least 120 days out of the year and consume at 

least 30% of their dry matter intake on pasture (USDA – AMS, 2015). In order to meet this 

requirement, producers must graze through all three grazing seasons (spring, summer, and fall) 

where the quality and yield of pasture can be variable due to changes in weather and other 
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environmental factors. In addition to changing weather, producers are limited in ways they can 

increase pasture yield and quality. Organic producers may not utilize herbicides, pesticides, and 

are limited in the types of fertilizers they may use. These restrictions challenge producers in 

ways to maintain quality soil and crops, especially maintenance of nitrogen (N) in the soil. There 

are different approaches used by organic producers to increase N, however, one effective way 

that can be utilized to increase N in the soil is by the addition of the legumes into pastures. 

Legumes help to maintain N levels in the soil by reducing N2 to NH3 through their symbiotic 

relationship with Rhisobium bacteria (Phillips, 1980) With limited resources and the significant 

effects of environmental variation, changes in pasture quality can have significant effects on 

dairy cow performance, health, and ergo producer profits. Therefore, it is useful to identify 

forage mixtures with consistent quality and sufficient yields throughout the entire grazing 

season.  

Cool Season Forage in Kentucky and Tennessee  

Cool season forages are known for naturally higher amounts of crude protein and lower 

amounts of indigestible fiber leading to their common use amongst producers. However, many 

common cool season forages, such as Tall Fescue, have an optimum growth rate between 10-

20°C (Butler et al., 2017). In Kentucky and Tennessee, average monthly high temperatures 

during the grazing season (March-November) range from 16-31°C with variable weather patterns 

and inconsistent rainfall, especially during the summer season. Increased temperatures and dry 

patterns are observed during this time with temperatures reaching above 34°C 

(weatherunderground.com, 2018). Cool season species predominate in many pasture systems are 

known as Carbon 3 (C3) plants based upon the carbon molecules (two 3-carbon molecules) that 
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are produced when CO2 reacts with ribulose 1, 5-biphosphate (RuBP) in the first step of the 

Calvin Cycle. 

Plants identified as C3 only utilize the C3 pathway, which is known as the Calvin Cycle 

or the dark reaction of photosynthesis. Photosynthesis in C3 plants uses the Calvin cycle to fix 

carbon dioxide and water into glucose and oxygen. This process takes place inside the 

chloroplast in the mesophyll cell in C3 plants (Wang et al., 2012) and is extremely efficient in 

creating energy for the plant in the correct conditions. Conditions for optimal growth of C3 

plants include: atmospheric temperatures ranging from 18-24°C and soil temperatures greater 

than 4°C (Butler et al., 2017).  

Increased temperatures affect C3 plants by increasing the need for photorespiration, an 

inefficient side reaction that wastes carbon and energy. Photorespiration is the process in which 

RuBP oxygenase-carboxylase (Rubisco) binds to oxygen instead of carbon dioxide during the 

carbon fixation step at the beginning of the Calvin cycle. This binding creates phosphoglycolate 

(3-PGA), which cannot enter the Calvin cycle at this step, thus removing two carbons from the 

cycle. In order to retake the lost carbons and proceed with the Calvin cycle, plants will then use 

the photorespiration pathway to recover approximately three-fourths of the lost carbon, which 

can then enter the Calvin cycle in the chloroplast at the appropriate stage. The net effect of 

photorespiration is a 3 fixed-carbon loss, while under normal Calvin cycle conditions, the plant 

gains 6-fixed carbons. Increased photorespiration is observed in warmer areas due to the lack of 

time the stomata can stay open to take up carbon dioxide into the plant. When the stomata are 

open, carbon dioxide and oxygen enter while water diffuses out. When water is not plentiful and 

temperature is high, the plant will conserve water by keeping the stomata closed and preventing 

water evaporation. When the stomata are closed, an increase of oxygen and decrease in carbon 
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dioxide concentrations are observed, allowing more oxygen to bind rather than carbon dioxide to 

RuBP, carbon loss ensues, and plant growth is stunted (Kaiser and Bassham, 1979; Salisbury and 

Ross, 1985).  

Incorporation of Warm Season Species  

Warm season plants do not use photorespiration. They have higher optimum growth 

temperatures (25-35°C) and are more tolerant of dry soil conditions. This is due to the advanced 

anatomy of warm season species, in particularly the advancement of the chloroplast. Warm 

season plants, in addition to using the Calvin cycle, also utilize the Carbon 4 (C4) cycle, or the 

Hatch-Slack pathway. C4 plants have developed two types of photosynthetic cells, mesophyll 

and bundle sheath cells. These cells are arranged in a wreath like manner (Kranz wreath) with 

the bundle sheath cells surrounding the mesophyll cells. The cells are attached using 

plasmodesmata and cytoplasmic bridges. This arrangement keeps the light and dark reactions 

separate, allowing the release of oxygen, which takes place in the light reaction, to be separate 

from carbon fixation in the dark reaction, preventing oxygen from binding to Rubisco and 

photorespiration from occurring (Wang et al., 2012; Salisbury and Ross, 1985).   

With C4 plants having adapted to limit photorespiration, it allows them to be more 

productive in warmer temperatures and when soil moisture is low. Conditions for optimal growth 

of C4 plants includes: atmospheric temperatures ranging from 25-35°C and soil temperatures 

greater than 16°C (Salisbury and Ross, 1985). With temperatures in Tennessee and Kentucky 

reaching 35°C or higher (U.S. Climate Data, 2015-2018) the addition of warm season forages 

into pastures may be beneficial to potentially increase both pasture yield and quality.  

In general, C4 plants are not considered as high a quality grazing forage as C3 plants due 

to naturally lower levels of crude protein and higher levels of fiber, which is linked to their 
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higher growth rates. However, when calculating the amount of nutrients per acre on a yield basis, 

nutrients such as crude protein, have the potential to be supplied in higher amounts with warm 

season forages during the summer months due to the high yields of the C4 plants and the low 

yields of the C3 plants. For example in a study conducted by Ruh et al. (2018), the warm season 

species of brown mid-rib (BMR) sorghum sudangrass and teff grass were incorporated into 

grazing systems and compared to forage quality and production of cool season pasture mixtures 

in the upper Mid-West. The cool season mixtures included a mixture of cool season perennial 

grasses and legumes such as orchard grass and alfalfa, and warm season mixture included cool 

season perennials with the incorporation of the warm season annuals BMR sorghum sudangrass 

and teff grass. Results from this study indicated forage quality was similar between the cool and 

warm season pasture systems. However, the cool season mixture had both higher levels of 

production and crude protein than the warm season mixture (Ruh et al., 2018).  

Though incorporation of warm season species did not have a significant effect in the 

upper Mid-West, incorporation of warm season species has been observed to have positive 

effects in other areas, especially in climates warmer than Minnesota. In Minnesota, average 

summer temperatures reach only 26.8°C (U.S. Climate Data, 2015-2018). In a study conducted in 

Camden, Australia by Clark et al. (2018) looking at the use of warm and cool season grasses, the 

summer average maximum temperatures ranged from 22.2-32.9°C. In this study a type of turf 

grass, kikuyugrass (Pennisetum clandestinum) was used in the summer season and compared to 

the use of annual ryegrass (Lolium multiflorum L.) in the spring season which had average 

maximum temperatures ranging from 21.5-36°C. When calculating the yields of crude protein 

(CP) and organic matter (OM) as well as in vitro dry matter digestibility (IVDMD); kikuyugrass 
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had a greater yield of CP compared to annual ryegrass. However, the annual ryegrass did yield 

less OM and IVDMD.  

Effects of Pasture on Animal Production  

Though research in other areas have shown a variety of results with the incorporation of 

warm season forage species, little research has been conducted in Kentucky and Tennessee, US 

on the incorporation of warm season species into pasture systems. In addition to this, little 

research has been conducted to analyze the effects of pasture quality and production of dairies in 

this area, in particularly organic dairy milk production. For ruminants out on pasture, nutrient 

requirements can be variable depending on environment and terrain, for instance variable activity 

requirements. Energy required for maintenance for dairy cows in confinement has a 10% 

allowance for activity (NRC, 2001). Cows out on pasture, however, have a much higher activity 

rate due to greater distance needed to travel from feed source (pasture) to the parlor, changing 

elevation on pasture, and more time spent eating (grazing). This is calculated by taking into 

account distance, topography, and cow body weight (BW) to calculate additional energy needed. 

On average, according to the dairy NRC (2001), the net energy for lactation (NEL) required for 

excessive walking was an additional 0.00045 Mcal/kg per kilometer walked on a flat surface, 

with additional energy needed for hilly topography.  

Therefore, it is key for producers to provide high quality pastures for cows to consume 

enough nutrients to meet the increased demands grazing cows have in comparison to 

confinement cows with equivalent production. In addition to having high quality and high 

yielding pastures, it is key for cows to not only consume enough energy and nutrients, but also to 

minimize energy spent while grazing. The time cows spend grazing is dependent on its relative 

availability and the amount of forage consumed (NRC, 2001). The less forage there is available, 
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the more time and energy cows spend moving and grazing to consume the same amount of 

forage.  

Forage Effects on Dairy Production  

With additional energy being needed for grazing cows, one of the first limiting nutrients 

for cows on pasture is energy. For lactating dairy cows, the net energy needed for milk 

production is defined as the energy contained within the milk the cow produced (NEL; NRC, 

2001). This is calculated by determining the energy of combustion produced from the milk 

components. To calculate the NEL of the forage a cow is grazing the following equation is 

utilized:  Where NELp represents NEL at production levels of intake, and MEp represents 

metabolizable energy at production levels of intake: 

NELp (Mcal/kg) = [0.703 x MEp (Mcal/kg)] -0.19 

 In non-pasture based systems, energy requirements are met predominantly by supplying 

concentrated carbohydrate rich feedstuffs such as corn silage, sorghum silage, barley, and other 

high energy feeds. However, organic dairy producers are limited in the amount of concentrates 

and stored feeds they may supply their cows. No more than 70% of cow total DMI may come 

from stored feeds (USDA-AMS, 2015). Therefore, it is key to provide pastures with ample 

energy levels. The amount of energy available in forage depends on the concentrations of two 

main carbohydrate components: non-structural carbohydrates (NSC) and structural 

carbohydrates. Nonstructural carbohydrates consist of sugars, starches, organic acids, and other 

carbohydrates (NRC, 2001). These fractions are highly digestible and energy dense. In forages, 

the major components of the NSC fraction are fructans and sucrose.  

 The three major components of structural fiber include: hemicellulose, cellulose, and 

lignin. The concentration of these components within a forage are expressed most commonly in 
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two measurements: neutral detergent fiber (NDF) and acid detergent fiber (ADF). Neutral 

detergent fiber measures the amount of all three components: hemicellulose, cellulose, and 

lignin. This measurement is the best representation of the available fiber to the cow. Neutral 

detergent fiber is utilized to predict cow dry matter intake (DMI). The higher the amount of fiber 

in the diet, the less feed the cow can consume. The chemical composition, or the digestibility of 

the fiber, is also related to the amount of energy a cow can consume. Fiber digestibility, or the 

amount of energy supplied by the fiber, is directly related to the chemical composition of the 

feed, or the amount of hemicellulose, cellulose, and lignin. A negative correlation exists between 

the amount of fiber and energy available in the forage (NRC, 2001). This correlation relates to 

the rate at which cellulose is utilized by ruminal microorganisms, which is limited by association 

with lignin (Van Soest, 1973).  

Hemicellulose is the most digestible of the fiber components, followed by cellulose. 

These fractions can eventually be broken down by the rumen microbiota and used by the cow in 

the form of energy. Lignin, however, is not digestible and therefore not available to the cow. 

Acid detergent fiber measures only cellulose and lignin, or the less digestible fiber fractions. 

Therefore, ADF is generally utilized as a measurement of energy available in the forage due to 

lignin being a determining factor in fiber digestion (NRC, 2001).  

 Fiber, energy, and yield are all important qualities that affect the nutrient intake of dairy 

cows on pasture. For organic dairy producers utilizing an intensive grazing system, these 

changes in pasture quality can have significant effects on milk yield. Maintaining similar quality 

and quantity throughout the grazing season may help producers to identify what mixture of 

species best supports maintenance of cow health and goal milk production. 
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Estimating Effects of Forage on Milk Production  

 Whole farm modeling has been used to estimate performance of dairy, beef, and 

other farm operations (Crosson et al., 2011). Certain whole farm modeling systems have been 

designed specifically designed for grazing dairy operations. Farmax Dairy Pro is a whole-farm 

decision support model that utilizes weekly estimates of different farm aspects including: pasture 

growth and quality, herd production, health, and other factors to determine production and 

economic outcomes to use in decision making on farm. It was developed using DelphiⓇ. 

Farmax Dairy Pro is a combination of pasture model originally called Stockpol (Marshall et al., 

1991; Webby et al., 1995) with the animal components of MOOSIM (Bryant et al., 2008). The 

model also includes mechanistic and empirical representations of animals that come together to 

create different models: two short-term and one long-term model to make different types of 

managerial decisions (Bryant et al, 2010; Smith & Foran 1988). To predict pasture growth, 

historical data of monthly growth rates are utilized and described in Marshall et al. (1991). The 

program utilizes past information from different feeds and pastures such as regrowth rates, 

decay, pasture cover, and pasture thresholds in predicting pasture growth rates throughout each 

month and season. (Bryant et al., 2010).  

Farmax, therefore, can be utilized to estimate the performance of grazing dairy herds 

consuming a variety of different feedstuffs and different quality pastures. It can potentially help 

producers identify mixtures of forages that will help to maintain similar quality and quantity 

pastures throughout the grazing season. This may help producers to balance their feeding and 

grazing regimes, identify what mixture of species best supports milk production, and how to 

balance feed inputs to maintain goal milk production with the inclusion of the effects or pasture 

performance.   
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CHAPTER I 
PASTURE PRODUCTION AND QUALITY OF FOUR DIFFERENT 

ORGANIC FORAGE MIXTURES DESIGNED FOR TENNESSEE AND 
KENTUCKY, US DAIRY PRODUCTION 
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Abstract 

In summer months, elevated ambient temperatures and decreased rainfall have negative 

effects on cool season grasses and legumes. This leads to a drop in forage quality and quantity 

known as the summer slump period. In order to increase sward yield and quality, warm season 

and cool season grasses and legumes have been incorporated in organic pasture-based dairy 

farms in northern regions of North America. However, studies have not been conducted in 

organic pasture-based dairy farms in the Southeast where a number of dairy operations are 

located. Therefore, this study was conducted to evaluate the mass yield and quality of four forage 

mixtures on organic dairy farms. Our hypothesis was that incorporation of warm season grasses 

and legumes would increase forage yield and quality in summer. To test this hypothesis, warm 

and cool season forages were incorporated into four forage mixtures. The mixtures contained the 

following species in each: Cool Season mixture (CS; cool season species of orchard grass, tall 

fescue, red clover, and alfalfa), Warm Red Clover mixture (WRC, warm season species of crab 

grass and annual lespedeza mixed with the cool season species of annual ryegrass and red clover, 

Warm Crimson Clover mixture (WCC, warm season species of sorghum-X sudan-grass hybrid 

(sudex) and cowpea mixed with the cool season species of annual ryegrass and crimson clover, 

and Warm Turnip and Rape mixture (WTR, warm season species of sudex and cowpea mixed 

with the cool season species of oats, annual ryegrass, turnip, and rape). Mixtures were planted in 

0.1 to 0.2 ha plots at five locations on organic dairy farms in Kentucky and Tennessee. Forage 

mass yield (dry matter, DM) was determined from March-November and forage samples were 

collected and analyzed using near infrared spectroscopy (NIRS; Foss-DS2500) to determine 

crude protein (CP) and fiber contents. Near infrared spectroscopy and DM yield records were 

analyzed in SAS 9.4 using the GLIMMIX procedure. Data were averaged and analyzed by 
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season including spring (March – May) and summer (June – August). Results indicated that 

atmospheric temperature highs from from June-August were up to 6°C lower (2017 average ± 

SD = 27.2 ± 2.67) than that registered (historical average ± SD = 31.5 ± 1.2°C) for Kentucky and 

Tennessee. June-August, had 35 mm/month (2017 average ± SD = 133 ± 31mm/month) more 

precipitation than the area historical average 98 ± 11 mm/month for Kentucky and Tennessee. 

Compared with the CS mixture, mixtures including warm season species did not increase yields 

of DM in spring and summer. When analyzing the effect of location on yields of DM, significant 

differences were observed based upon plot location (P = 0.01), while trends were observed on 

percent of legumes based upon location (P ≤ 0.08). Proportion of legumes were significantly 

greater in the CS mixture, compared with mixtures including warm season species. However, 

mixtures including warm season species had a significantly higher proportion of grasses than the 

CS mixture (P < 0.05). The CS mixture maintained the highest quality in spring and summer 

when compared to the warm season mixtures. Under the conditions of this study, results 

indicated that the incorporation of warm season grasses and legumes did not increase forage 

yield and quality during summer in Kentucky and Tennessee. 

Introduction 

Organic dairy cows must graze at least 120 days out of the year and over 30% of their dry 

matter intake (DMI) must come from grazing pasture (USDA-AMS, 2015). In the southeast US, 

particularly in Tennessee and Kentucky, forage quality and quantity can have significant impacts 

on dairy cow productivity. For dairy cows grazing pasture, major macronutrients consumed are 

carbohydrates and protein (NRC, 2001). The predominant forages utilized in the southeast to 

supply these macronutrients are cool season grasses and legumes (Scaglia et al., 2008). 
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 Cool season forages flourish in the cool and rain filled spring and fall seasons in the 

southeast US. In Hopkinsville, Kentucky yearly atmospheric temperature highs average 21°C 

and rainfall average 109 mm/month (U.S. Climate Data, 2015-2018). Kentucky and Tennessee 

lie within the transition belt between the subtropical and temperate regions. In this region both 

cool and warmer temperatures are observed. For example, summer temperatures in this area 

reach above 35°C and rainfall decreases on average 27 ± 19 mm/month in comparison to spring 

(spring average ± SD =125 ± 17 mm/month). Extreme weather conditions during summer can 

have detrimental effects on cool season species growth and quality (U.S. Climate Data, 2015-

2018). The decrease in forage yield and quality is known as the “summer slump”. 

During the summer slump, cool season pastures are characterized by lowered protein 

content and increased fiber (Fales, 1986; Ford et al., 1979). For example, in a study by Ford et al. 

(1979) trends of increased hemicellulose content in temperate grasses were observed as 

temperature increased from 21-32°C during the day. Cool season forage fiber content increased 

greater than 10% in some temperate species. This decrease in both quality and production can 

have significant negative impacts on dairy cow production. For example, when fiber increases 

above 44%, intake of dairy cows will decrease, potentially decreasing production of those cows 

(NRC, 2001). In contrast, tropical (warm season grasses) do not increase in hemicellulose 

content, with 2.5% reported as the largest increase in warm season grasses. Warm season species 

are well adapted to increased temperatures, resist drought, and flourish in the summer months 

with optimum growth ambient temperatures ranging from 30-35°C (Collins et al., 2017). 

Therefore, if both warm and cool season forages were combined, warm season could 

combat the summer slump by maintaining forage yield and quality during the hot summer month 

between the peak growth seasons of cool season forges. Sanderson et al. (2005) reported pastures 
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containing a high diversity of different functional forage groups were more productive during the 

summer dry season and also decreased weed presence. However, this study was conducted in 

Pennsylvania, which is located in the temperate zone and will potentially yield different results.  

Therefore in the Southeast, production and quality could be maintained by combining the 

use of both warm and cool season forage species (grasses and legumes) on pasture-based organic 

dairy farms throughout the spring and summer months. Therefore, the objective of this study was 

to determine the effect of four different forage mixtures (i.e. cool season and warm season 

annual and perennial species) containing multiple functional groups (i.e. grasses, legumes) 

designed for organic dairy farms in the Kentucky and Tennessee. We hypothesize that the 

incorporation of warm season grasses and legumes would increase forage yield and quality in 

summer. 

Materials and Methods 

Experimental Design and Treatment 

To study the effect of mixing functional forage groups, four mixtures were created 

containing cool and warm season grasses, legumes, and brassicas. Species mixtures were 

selected based upon performance in the transition climate and nutritive quality. The three warm 

season mixtures created included both warm season grass and legume species and differed in 

other included species, most notably which cool season species or legume/brassica that was 

included. One mixture contained only cool season species (CS; orchard grass, tall fescue, red 

clover, and alfalfa) and three mixtures contained cool and warm season species. The first 

included the warm season species of crab grass and annual lespedeza mixed with the cool season 

species of annual ryegrass and red clover (WRC), the second included the warm season species 

of sorghum-X sudan-grass hybrid (sudex) and cowpea mixed with the cool season species of 
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annual ryegrass and crimson clover (WCC), and the third contained the warm season species 

sudex and cowpea mixed with cool season species oats and annual ryegrass, and cold tolerant 

forage brassicas turnip and rape (WTR). 

Planting and Sampling  

Cool season species and brassicas were planted between August 16 and September 10, 

2016. Cool season annuals were planted using a no-till drill to a depth of approximately 7 mm at 

variable seeding rates, while perennials were broadcasted and rolled (seeding rates shown in 

Table 1.2). Warm season grasses and legumes were planted between May 20 - June 10, 2017 

using a no-till drill with the exception of Sudex and Cowpea species, which were drilled into 

pastures during the same time frame. Mixtures contained 4-6 of species shown in Table 1.2.  

Each forage mixture was planted in 0.1 to 0.2 ha plots on USDA-certified organic dairy farms 

(n=5) located in the southwest region of Kentucky (altitude: 161 M above sea level) and the 

southeast region of Tennessee (altitude: 303 M above sea level). Farms were grouped based upon 

distance from each other into 3 different locations. The Kentucky locations contained silt loam 

soil with an average rainfall of 1,299 mm/year (U.S. Climate Data, 2015-2018; WebSoilSurvey, 

NRCS, USDA). The Tennessee location also contained silt loam soil with a mean annual rainfall 

of 1,224 mm/year throughout the grazing season (U.S. Climate Data, 2015-2018; 

WebSoilSurvey, NRCS, USDA). An average of 167 and 523 kg/ha of phosphorus and potassium 

respectively were applied to plots. Mean monthly temperature, soil moisture, and rainfall across 

all farms are shown in Table 1.1. Soil moisture, atmospheric temperature, and rainfall data from 

June to November were collected using Onset U30-NRC HOBO loggers (HOBO ware, Bourne, 

MA) on each farm. However, data from March-May were collected from the Hopkinsville, 
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Kentucky Woolridge Road Station and the Madisonville, Tennessee Hiwa S See Station 

(weatherunderground.com, 2018) due to inability to set up loggers until this time.  

Forage mixtures were sampled throughout the grazing season before being grazed by 

organic dairy herds (March-November 2017). Herds grazed these plots based upon forage 

availability and grazing management was dependent upon individual farmer. Grab samples of 

each mixture were collected from March 21, 2017 to November 11, 2017 within 5.9 ± 5.6 days 

prior to herds grazing the plots. Forage samples were collected using a 0.3 m × 0.3 m square and 

cut 2.5 cm from the ground, with the exception of the sudex plants which were cut to 15cm 

above the ground, then stored at 4°C before processing.  

Forage Processing and NIRS Analysis 

Botanical composition and DM content were determined and used to estimate total DM 

yield and species yields. After samples were collected, the samples were pooled, weighed, and 

recorded before being split into two equal parts. The first part of the samples were weighed and 

then immediately placed in a 55°C forced air oven for 72 + h then weighed again to determine 

percent DM. Dried samples were ground through a 1-mm screen (Wiley mill, Arthur H. Thomas, 

Philadelphia, PA) and analyzed by near-infrared spectroscopy (NIRS) using a Foss-DS2500 to 

determine in vitro digestibility- 48 hr (IVD48), crude protein (CP), acid detergent fiber (ADF), 

neutral detergent fiber (NDF), lignin, crude fat, digestibility of NDF at 48 h (dNDF48), and ash 

content. Forage nutritive values were determined by using near-infrared spectroscopy (NIRS) 

technology provided by a Unity Scientific SpectraStar 2500XL-R (Milford, MA) using the 2017 

Mixed Hay calibration for provided by the NIRS forage and feed testing consortium (Hillsboro, 

WI). From these values relative feed quality (RFQ), relative feed value (RFV), and net energy of 

lactation (NEL) were calculated using the following equations:  
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RFQ = (DMI x TDN) / 1.23 

RFV = (DMI x DDM) / 1.29 

NEL = (0.703 x ME) – 0.19 

 
Where DDM = digestible dry matter, the percent in vitro digestibility at 48h (NIRS output), DMI 

= estimated dry matter intake (Roseler et al., 1997); TDN = total digestible nutrients (calculated 

by inputting the NIRS outputs for percent: NDF, crude fat, CP, and ash into the equation from 

Rohweder et al. 1978), and ME = metabolizable energy (Mcal/kg) calculated using the ME from 

the Agrifood Laboratories (Guelph, ON, Canada). The second part of the samples were separated 

based on species. Any species not planted in the plot were considered weeds. Species separation 

samples were then placed into a 55°C forced air oven for 72 + h.  

After samples were dried, the dry weights for both the DM samples and species samples 

were added together to determine total dry weight to calculate DM per Ha when sample was 

collected. Dry weights of the species separations were added together based upon forage type 

(legume, grass, and weeds) to compare botanical composition across mixtures. Brassicas were 

not compared across mixtures due to the functional forage group only being planted in mixture 

WTR, however, brassica yields were included in total DM yields.  

Statistical Analysis  

 This study was set up as a complete randomized block design. In this study, 228 forage 

samples were collected and analyzed during the course of 34 weeks with 154 samples from 

Kentucky and 74 from Tennessee. Sample results were analyzed in SAS 9.4 using a MIXED 

ANOVA procedure. The locations used in this analysis were based upon farm area and position, 

with one farm being its own pair (location) by planting replicates of the mixtures on the same 

farm. Therefore, there were two replicates of each forage mixture within each of the three 
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locations. Forage quality samples were analyzed using grazing seasons (spring, summer, and 

fall) as the unit of time to analyze the effects of treatment on forage quality and yield. The model 

analyzed the effects of treatments by spring (March-May), summer (June-August), and fall 

(September-November). The model included:  

Yijkn  = µ + Mi + Sj  + Lk + (Mi × S)ij  +  R(L × M)ikn  + eijkn 

Where Yijkn = the dependent variable; µ = the overall mean; Mi = the fixed effect of the ith mix; Sj 

= the fixed effect of the jth season; (M × S)ij = the fixed effect of the ith mixture and the jth season; 

Lk = the random effect of the kth location; R(L × M)ikn = the random effect of the kth location and 

the ith mixture nested within the nth replication; and eijkn= the random error. 

For mixtures, composition of species and total pasture yield results were analyzed in SAS 

9.4 using a MIXED ANOVA procedure. Species composition results in each mixture were 

combined into groups based on forage type: grass, legume, or weed. Due to lack of rainfall, 

producers began to transition cows from pasture to stored feeds in September 2017 which limited 

grazing and the collection of forage samples. Thus, the fall season was not included in the 

analysis for yield or composition. As a result of uncontrollable variables such as distance 

between farms (up to 335 km), grazing management styles (heavier or lighter use of grazing), 

and fertilization rates (amounts of chicken scratch or other compost used); significant differences 

were observed between farm locations in total pasture yields and forage group yields. Therefore, 

the analysis was conducted with location as a fixed effect instead of as a random effect to 

analyze the effect of location. The model with location set as a fixed effect included:   

Yijk = µ + Mi +Sj + (S × M)ij + Lk+ (L × S × M)ijk+ eijk 

Where Yijklm = the dependent variable; µ = the overall mean; Mi = the fixed effect of the ith mix; 

Sj= the fixed effect of the jth season; Lk = the fixed effect of the kth location; (S × M)ij = the 
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random effect of the jth season and the ith mixture; ( L × S × M)ijk = the fixed effect of the jth 

season, the ith mixture, and the kth
 location ; and eijk= the random error.  

Significant results were declared at a P-Value ≤ 0.05 and trends were declared at a P-Value ≤ 

0.10.   

Results  

Weather  
 
 Air temperatures ranged from 9.0-26.4 °C throughout the grazing season. The spring, 

summer, and fall temperatures ± SD were 15.8 ± 5.3 °C, 25.2 ± 1.1 °C, and 16.9 ± 7.3°C 

respectively across all farms involved in this study. Average ± SD of rainfall was 123.7 ± 13.4 

mm/month in the spring, 208.3 ± 92.6 mm/month in the summer, and 82.3 ± 30.3 mm/month in 

the fall (Table 1.1).  

Forage Yield  
 
 Forage yields were compared between spring and summer only. Fall results were not 

included due to changes in grazing management in response to draught like conditions in fall, 

which limited the number of plot samples taken. When comparing spring and summer yields, 

results were not different between mixtures with an average of 10,008 ± 2361 kg DM/ Ha 

between mixtures (P > 0.10; Table 1.3). However, season and location both had effects on forage 

yield (P ≤ 0.01) where spring had a significantly higher yield than summer (12,470 kg DM/Ha 

vs. 7547 kg DM/Ha; Table 1.3). No interactions were observed between mixture and season, 

location and mixture, or season by location by mixture (P > 0.10).  

Botanical Composition  

 A difference was observed between proportions of grasses and legumes amongst 

mixtures (P ≤ 0.05). Mixture CS contained the highest percentage of legumes with 38.3 ± 9.5% 
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while mixture WTR contained the lowest amount of legumes with 0% in spring (Table 1.3). 

Significant differences were observed in percent composition of grass (P ≤ 0.05). Mixture WCC 

contained the highest percentage of grass in spring (68 ± 2.7%) and second highest percentage in 

summer (81.8 ± 6.1%). Mixture CS contained the lowest with an average of 36.8% (Table 1.3). 

However, no differences were observed between mixtures in weed percent (P > 0.10). Due to 

uncontrollable variables such as distance and management styles such as height of forage at 

grazing, significant differences were observed between farm locations. When analyzing the 

effect of location on yields of total dry matter and legumes, significant effects were observed on 

dry matter yields (P = 0.01), while trends were observed on percent of legumes (P ≤ 0.08).  

Forage Quality   

When analyzing forage quality in relation to season (spring, summer, and fall), 

differences in percent CP were observed between the different mixtures as well as season (P < 

0.01; Figure 1.1). Crude protein ranged from 14.8 to 26.5% across mixtures and on average 

protein concentrations were highest within the fall season and lowest within the summer season. 

Mixtures WRC and CS had greater CP concentrations averaging 20.2% and 20.4 % CP 

respectively in each mixture across the spring, summer, and fall seasons. Mixtures CS and WTR 

remained steady across seasons in CP percent with an average of 18.3% and 16.6% CP, 

respectively, across all three seasons (P=0.003; Figure 1.1). 

Concentrations of ADF between mixtures did not differ (P = 0.25), however, ADF 

concentrations differed among seasons (P < 0.01; Figure 1.1). When examining the 

concentrations of ADF relative to season, mixtures did not differ between season with the 

exception of mixture CS. Mixture CS had lower ADF during the summer grazing season with 

over 4% less ADF than the other summer mixtures (P < 0.05). However, in spring and fall when 



25 
 

ADF values were lower, no differences were observed between mixtures and season when ADF 

values were lower. Concentrations of ADF were highest in the summer with an average of 35.41 

± 1.23 % ADF and lowest in fall with an average of 27.0 ± 1.23 % ADF, which is almost a 10% 

difference between the two seasons.  

Concentrations of NDF followed a similar trend to ADF. No differences were observed 

between mixtures (P = 0.37), but there was a difference between seasons (P < 0.01; Figure 1.1). 

Mixture CS did not have lower NDF values than the other mixtures and within mixture remained 

at similar NDF concentrations the entire length of the grazing season with an average of 45.0% 

NDF. Mixtures WRC and WTR had lower NDF (P < 0.01) during the fall season, with 36.6 and 

37.8% NDF respectively. In contrast, Mixture WCC varied across all seasons, with the highest 

concentration in summer with 58.5 ± 1.8. % NDF and lowest in fall with 34.8 ± 3.03 % NDF 

(Figure 1.1).  

Results for net energy of lactation (NEL) were similar across mixtures with no differences 

observed (P > 0.05). However, when analyzing the interaction between mixture and season, 

significant differences were observed in both summer and fall with no significant differences in 

spring. In the summer, mixture CS had a significantly higher energy content than that of all the 

warm season mixtures averaging an NEL value of 1.1, which was 10% greater than the warm 

season mixtures. Once shifted into fall, however, the warm season mixture WTR was higher in 

energy than the CS mixture with 1.3 and 1.2 Mcal/kg DM respectively (P < 0.01). Mixtures 

WRC and WCC were similar to both WTR and CS in fall.  

When analyzing both the RFV and RFQ, values did not differ across mixture; however, 

season had a significant effect on feed values (P < 0.01).Both RFV and RFQ were highest in fall 

with an average of 18.3 and 14.4 RFV and RFQ respectively. When analyzing the interaction 
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between mixture and season, a significant effect was observed for both RFV and RFQ. For 

mixture CS, there were no significant differences between all three seasons, with an average 

RFV value of 17.8 and a RFQ value of 13.3 (Figure 1.1). For mixtures WRC, WCC and WTR; 

RFV values were significantly lower in summer compared to fall with fall RFV values for WRC, 

WCC, and WTR mixtures averaging 18.4% RFV collectively. However, mixture WCC had a 

significantly lower RFQ (P = 0.05) in summer compared to both spring and fall (Figure 1.1).  

Discussion 
 

Warm season forage mixtures produced equivalent DM yields to cool season mixtures in 

the summer months, suggesting that inclusion of warm season species did not help increase 

summer yields. This may be due to lower than average summer temperatures and greater than 

average summer rainfall observed in the area during the first year of this study. Summer weather 

conditions were milder than previous years and may have led mixture CS to maintain the highest 

quality throughout the grazing season (March-November). Therefore, results from 2017 suggest 

that inclusion of warm season forages did not increase summer yield or quality of mixtures and 

did not help to increase mass yield during this year.  

Forage Yield  

In our study, total DM yields did not differ between the CS mixture and the warm season 

mixtures in spring or summer, however, all mixtures significantly decreased in mass yield in 

summer compared to spring. The perennial cool season mixture, CS, did not differ in yields from 

those mixtures containing warm season species; therefore suggesting seasonal effects were not 

extreme enough to have a significant impact on forage growth of cool season species. Average 

temperature highs in 2017 in Hopkinsville, Kentucky from June-August ranged from 24.1-29°C. 

However, temperatures from the past 30 years indicated average high temperatures ranged from 
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30.1-32.2 °C. This is more than 6°C higher than observed temperatures in 2017. In addition, 

rainfall was greater in 2017 than it had been in previous years. In 2017 average rainfall from 

June – August was 133 mm/month, while in 1981-2010; an average of 98 mm monthly rainfall 

was observed (U.S. Climate Data, 2015-2018). Increased rainfall and lower temperatures may 

have led to an increased yield in temperate grasses and decreased yield in warm season forages 

due to optimal temperatures for growth. Cool season forages flourish at 8-24°C while warm 

season forages optimal growth temperatures range between 25-35°C (Butler et al., 2017; 

Salisbury and Ross, 1985). With average high temperatures remaining within or close to optimal 

growth temperatures for cool season species and increased rainfall, this may have led to the cool 

season forage’s ability to maintain yields throughout the summer season and benefit them more 

than the warm season forages. In addition, the effect location on yields of total dry matter was 

significant. This may be due to the differences in grazing management observed on each farm, 

for example grazing rate and grazing height which effect yield of forage on pasture at time of 

grazing.  

Botanical Composition and Forage Quality 

The significantly lower percent of legumes in mixture WTR was due to both a lack cool 

season legumes being planted within the mixture (brassicas replaced cool season legumes in 

WTR mix), but also the cool summer conditions were not ideal for WTR’s warm season 

legume’s optimum growth rate. Mixture WTR’s only legumes species was a warm season 

legume, cow pea, which grew during the summer season. All other mixtures contained at least 

two different legume species. The CS mixture contained two cool season legume species, red 

clover and alfalfa. The CS mixture supported the highest percent of legumes of all the mixtures 

throughout the year and had a significantly higher legume content when compared to the WTR 
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mixture (P ≤ 0.05). However, no significant interactions were observed between mixtures and 

seasons in legume yields. The CS mixture maintained legume percentages. This may be due to 

the cool season species red clover can be very productive in warmer temperatures due to its 

draught tolerance (Peterson et al., 1991), therefore, leading to the consistent legume content 

observed from spring to summer in mixture CS as well as the overall cooler temperatures 

observed during this time. 

Increased legume concentrations could have led to the high CP concentration in mixture 

CS (Table 1.3) as well as quality of the main legume species in the mixture, alfalfa. Alfalfa is 

known to have CP concentrations averaging 20.6% CP (Hall et al.  2000 and Cassida et al.  

2000), which is 2% higher than other mixtures’ cool season legume species including: red clover, 

which has an 18.6 average % CP content, and red clover that averages 17.9% CP (Cassida et al., 

2000; Broderick et al., 2001). When analyzing CP content in spring, all mixtures were similar in 

CP concentration no matter the legume species or lack of in spring. This may be due to the 

addition of turnips and rape to WTR, which average 12% CP (Griffin et al., 1984). As mixtures 

transitioned into summer and fall, no significant differences were observed in CP content 

between mixtures within season. However, mixtures WRC and WCC contained higher CP 

concentrations in fall than in both spring and summer. In conclusion increased legumes 

concentrations as well as quality of individual legumes species may have led to the increased 

concentrations of CP within the CS mixture.  

Mixtures produced similar energy levels (NEL) in spring; however, the CS mixture had 

significantly higher values in summer compared to the warm season mixtures. As seasons moved 

into fall, the brassica mixture, WTR, increased and became significantly higher in energy than 

the CS mixture and similar to the other warm season mixtures in energy. This may be due to the 
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high energy content in brassicas that began to reestablish during this time. Limited composition 

collections from fall indicated that brassicas reestablished during this time. Turnips and rape 

average 1.4 MJ/kg (Griffin et al., 1984), which is significantly higher than the other values 

observed on this study. In conclusion, cool season species provided more energy on average than 

that of the warm season mixtures during the course of the grazing season. 

Although brassica composition was not evaluated during this study, the percentage of 

grasses in each mixture was. The warm season mixtures had significantly higher percentages of 

grasses than that of the CS mixture. Mixture CS was the only mixture in which the legumes 

planted were both cool season species, which flourished due to mild temperatures during the 

grazing season. The extremely high percentage of legumes in spring may have led to decreased 

grass yields in both spring and summer in the CS mixture. When analyzing the grass content in 

the warm season mixtures, mixtures included either the warm species sudex or crab grass. Sudex 

is known for its high DM yields during the summer months, however, yield of grass in WCC and 

WTR, which contain sudex, were not significantly different from WRC which contains crabgrass 

(a warm season grass; Jahanzad et al., 2013). This may have been due to the very strong stands 

of crabgrass observed during this time.  

Within grasses, fiber concentrations are higher when compared to many legume species. 

Concentrations of fiber, ADF and NDF, followed similar trends from spring – fall in mixtures. 

For both NDF and ADF, no significant differences were observed between mixtures within 

season; however, differences within mixtures were observed across seasons. In general, fiber was 

lowest in fall followed closely by spring. Highest concentrations of fiber were observed in 

summer, which could be due to a multitude of factors from species to environmental. Warm 

season species, which are present in the summer season, naturally have higher concentrations of 
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fiber (Ford et al., 1979). For example, Sudex, a warm season grass, which was planted in 

mixtures WTR and WCC, averages 57% NDF and 26% ADF when harvested in summer months 

(Jahanzad et al., 2012). Orchard grass, a cool season species planted in the CS mixture averages 

14.4% NDF in optimal growth temperatures which is 40% lower than Sudex (Collins and Casler, 

1990). However, fiber concentrations in the CS mixture did not increase in summer and were 

lower than typically observed summer averages for Orchard grass species, and in this study fiber 

concentrations remained consistent from spring – fall. This suggests that the weather and 

environment did not have a significant effect on quality of the cool season species planted in this 

mixture.  

 The ADF and NDF contents were lower in fall than spring. Maturity has a significant 

effect on fiber levels and the availability of structural carbohydrates because lignification of 

forages increases with maturity (Elgersma and Søegaard, 2018). Fiber (ADF) is important in 

intake of cows on pasture, and is negatively correlated to energy content (NRC, 2001). The 

higher the indigestible fiber yields, the lower the potential energy of the forage. Therefore, lower 

yields of both ADF and NDF in forage should help to increase DMI and potential energy intake. 

It is possible that grazing forages at an earlier stage due to fall regrowth of cool season forages 

may have helped to decrease fiber levels.  

Total weed percentage (or unsown species yields) remained similar from spring to 

summer in 2017, with percentage of weeds decreasing in both the CS and WTR mixture from 

spring in to summer. There was no significant effect of mixture on weed percentage; however, 

numerically the CS mixture produced the highest average percentage of weeds with 22.9%. This 

may be due to the decreased numerical yield in pasture, or the decreased amount of species 

diversity. When pasture cover is low, and open ground is available this allows for weeds to 
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permeate the area. Therefore by incorporating forages with different growth patterns into the 

warm season mixtures, this may have helped to keep weed yields down in mixtures with higher 

diversity, for example the WCC mixture. This mixture contained a high diversity of plants with 

warm and cool season legumes and grasses and had numerically lower weeds. Similar results 

have been observed in other studies. For example in a study by Sanderson et al. (2005) it was 

found that increasing diversity of pasture helped to decrease weed yield throughout the grazing 

season. Therefore diversity within mixtures may have led to numerically less weeds within 

mixture.  

Conclusion 

Pastures across all mixtures yielded greater DM in spring than summer. The effect of 

location on yields of total dry matter and legumes was significant, however when averaged 

across locations warm season forage mixtures produced equivalent yields of pasture to cool 

season mixtures in the summer months, suggesting inclusion of warm season species did not help 

increase summer yields. This may be due to decreased summer temperatures and increased 

rainfall observed in the area where 80% of the farms were located (U.S. Climate Data, 2015-

2018). These weather conditions were milder than previous years and may have led to the 

maintenance of quality and yield in the CS mixture. Mixture CS maintained the highest quality 

throughout the grazing season (March-November) with its consistent high CP and energy values. 

Therefore, results from 2017 suggest that inclusion of warm season forages did not increase 

summer yield or quality of pastures and did not help to maintain pasture production from March 

– November. Ergo, inclusion of warm season forages into pastures in the 2017 grazing season in 

Kentucky and Tennessee did not help producers to maintain consistent producing pastures.  

 



32 
 

References 
 
Butler, T. J., A. E. Celen, S. L. Webb, D. B. Krstic, and S. M. Interrante. 2017. Germination in 

cool-season forage grasses under a range of temperatures. Crop Sci. 57(3):1725-1731. 

Broderick, G.A., R.P. Walgenbach, S. Maignan. 2001. Production of lactating dairy cows fed 

alfalfa or red clover silage at equal dry matter or crude protein contents in the diet1. J. 

Dairy Sci. 84:1728-1737.  

Cassida, K. A., T. S. Griffin, J. Rodriguez, S. C. Patching, O. B. Hesterman, and S. R. Rust. 

2000. Protein degradability and forage quality in maturing alfalfa, red clover, and 

birdsfoot trefoil. Research conducted in cooperation with the Michigan State Univ. Agric. 

Exp. Stn. Crop Sci. 40:209-215. 

Coleman, S. W. and J. E. Moore. 2003. Feed quality and animal performance. Field Crops 

Research 84(1): 17-29. 

Collins, M. and M. D. Casler. 1990. Forage quality of five cool-season grasses. II. Species 

effects. An. Feed Sci. and Tech. 27(3):209-218. 

Elgersma, A., and Søegaard, K. (2018). Changes in nutritive value and herbage yield during 

extended growth intervals in grass-legume mixtures: effects of species, maturity at 

harvest, and relationships between productivity and components of feed quality. Grass 

Forage Sci. 73(1): 78-93. 

Fales, S. L. 1986. Effects of temperature on fiber concentration, composition, and in vitro 

digestion kinetics of tall fescue 1. Agron. J. 78:963-966. 

Ford, C. W., I. M. Morrison, and J. R. Wilson. 1979. Temperature effects on lignin, 

hemicellulose, and cellulose in tropical and temperate grasses. Aust. J. Agric. Res. 

30(4):621-633. 



33 
 

Griffin, J. L., G. A. Jung, and N. L. Hartwig. 1984. Forage yield and quality of brassica sp. 

established using preemergence herbicides1. Agron. J. 76:114-116.  

Hall, M. H., W. S. Smiles, and R. A. Dickerson. 2000. Morphological development of alfalfa 

cultivars selected for higher quality. Agron. J. 92:1077-1080. 

Hoveland CS. 1993. Importance and economic significance of the Acremonium endophytes to 

performance of animals and grass plant. Agriculture, Ecosystems & Environment 44:3-

12. 

Jahanzad, E., M. Jorat, H. Moghadam, A. Sadeghpour, M.R. Chaichi, M. Dashtaki. 2013. 

Response of a new and a commonly grown forage sorghum cultivar to limited irrigation 

and planting density. Ag. Water Management 117:62-69. 

Kephart, K. D., D. R. Buxton, and E. S. Taylor. 1992. Growth of C3 and C4 perennial grasses 

under reduced irradiance. Crop Sci. 32:1033-1038. 

NRC. 2001. Nutrient requirements of dairy cattle. 7th rev. Ed. Natl. Acad. Press, Washington, 

DC. 

Peterson, P. R., C. C. Sheaffer, and M. H. Hall. 1992. Drought effects on perennial forage 

legume yield and quality. Agron. J. 84:774-779.  

Reid, R. L., G. A. Jung, and W. V. Thayne. 1988. Relationships between nutritive quality and 

fiber components of cool season and warm season forages: a retrospective study. J Ani. 

Sci. 66(5):1275-1291. 

Rohweder, D. A., R. F. Barnes, and N. Jorgensen. 1978. Proposed hay grading standards based 

on laboratory analyses for evaluating quality. J Anim. Sci. 47(3):747-759. 



34 
 

Roseler, D. K., D. G. Fox, L. E. Chase, A. N. Pell, and W. C. Stone.1997. Development and 

evaluation of equations for the prediction of feed intake for lactating Holstein dairy cows. 

J. Dairy Sci. 80:878– 893. 

Sanderson, M. A., D. Archer, J. Hendrickson, S. Kronberg, M. Liebig, K. Nichols, M. Schmer, 

D. Tanaka, and J. Aguilar. 2013. Diversification and ecosystem services for conservation 

agriculture: Outcomes from pastures and integrated crop–livestock systems. Renew. Agr. 

Food Syst. 28(2):129-144. 

Sanderson, M. A., K. J. Soder, L. D. Muller, K. D. Klement, R. H. Skinner, and S. C. Goslee. 

2005. Forage mixture productivity and botanical composition in pastures grazed by dairy 

cattle. Agronomy J. 97(5):1465-1471. 

Scaglia, G., J. W. Swecker, J. P. Fontenot, D. Fiske, J. H. Fike, A. O. Abaye, W. Clapham, and J. 

B. Hall. 2008. Forage systems for cow-calf production in the Appalachian region1. J. of 

Anim Sci. 86(8):2032-2042. 

Schmidt, S.P., C.S. Hoveland, E.M. Clark, N.D. Davis, L.A. Smith, H.W. Grimes, J.L. Holliman. 

1982. Association of an endophytic fungus with fescue toxicity in steers fed Kentucky 31 

tall fescue seed or hay. J Anim. Sci. 55:1259-1263. 

U.S. Climate Data. 2015-2018. Accessed November, 18, 2018. 

https://www.usclimatedata.com/climate/knoxville/tennessee/united-states/ustn0268 



35 
 

Appendix 

Table 1.1 Average monthly atmospheric temperature, rainfall, and soil moisture among all five 
experimental farms during the 2017-grazing season using both HOBO loggers (HOBO ware, 
Bourne, MA) and information from the Hopkinsville, KY Woolridge Road Station and the 
Madisonville, TN Hiwa S See Station (weatherunderground.com, 2018).  

Month Air Temperature, � Rainfall, mm Soil Moisture (0-13 cm), m3m-3 

March  9.8 114.8 - 

April  17.8 117.2 - 

May  19.8 139.2 - 

June  24.2 215.21 0.29 

July 26.4 112.4 0.26 

August 25.0 297.3 0.24 

September  23.4 94.6 0.26 

October 18.2 104.5 0.26 

November 9.0 47.7 0.34 
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Table 1.2 Species and seeding rates (kg seed Ha -1) used in planting forage mixtures 

 1Mixture Seeding Rates (kg seed 
Ha -1)  

Species  CS WRC WCC WTR 

Cool Season Grasses      

     Tall Fescue (Schedonorus arundinaceus; cv. 
BarOptima Plus E34)  

9.0 - - - 

     Orchard Grass (Dactylis glomerata; cv. Persist) 5.6 - - - 

     Annual Rye-Grass (Dactylis glomerata; cv. Persist) - 22.4 22.4 13.5 

     Oats (Avena sativa; cv. Proleaf 234) - - - 35.9 

Cool Season Legumes     

     Red Clover (Trifolium pratense; cv. Freedom!) 5.6 9.0 - - 

     Crimson Clover (T. incarnatum; cv. Dixie) - - 17.9 - 

     Alfalfa (Medicago sativa; cv. Anerustabd 403T) 11.2 - - - 

Warm Season Grasses      

     Sorghum-X Sudan-Grass Hybrid(Sorghum bicolor x 
S. bicolor var. sudanense; cv. Sweet Six BMR) 

- - 33.6 33.6 

     Crab Grass(Digitaria ciliaris; cv. Red river) - 4 - - 

Warm Season Legumes      

     Cowpea (Vigna unguiculata; cv. Iron &  Clay) - - 28.0 28.0 

     Annual Lespedeza (Kummerowia spp.; cv. Kobe) - 16.8 - - 

Brassicas      

     Turnip (Brassica campestris var. rapa; BarKant) - - - 3.4 

     Rape (Brassica napus; cv. Barsica).  - - - 4.5 

1CS (Alfalfa, Red Clover, Orchard Grass, and Tall Fescue), WRC (Annual Ryegrass, Red 
Clover, Crab Grass, and Annual Lespedeza), WCC (Annual Ryegrass, Crimson Clover, 
Sorghum-X Sudan-grass Hybrid, and Cowpea), and WTR (Turnip, Rape, Oats, Annual Ryegrass, 
Sorghum-X Sudan-grass Hybrid, and Cowpea 
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Table 1.3 Forage mixture spring, summer, and total yields (DM kg/ha) and spring (March-June) 
and summer (July-August) composition (%) 

 Forage Mixtures1,2 

 Spring 
 CS WRC WCC WTR SEM  

Percent, %3      
    Legume 38.3a 12.2b  16.1 bc 0.0 c 2.7 
    Grasses 33.3 a 66.6 a   68.0 b 56.5 a 6.1 
    Weeds 28.4 21.2 16.0 25.4 5.9 
    Brassica 0.0 0.0 0.0 20.2 1.8 
Total Pasture 
Yield*, kg DM/ha 8496 14635 13525 13225 2361 

 Summer 
 CS WRC WCC WTR SEM  
Percent, %      
    Legume 35.2a 22.0 b  1.8 bc 2.1 c 4.8 
    Grasses 45.8a 55.1 a 81.8 b 83.8 a 8.0 
    Weeds 17.4 21.8 16.4 14.1 7.7 
Total Pasture 
Yield*, kg DM/ha 7506 6619 7354 8710 2163 
1CS (Alfalfa, Red Clover, Orchard Grass, and Tall Fescue), WRC (Annual Ryegrass, Red Clover, Crab 
Grass, and Annual Lespedeza), WCC (Annual Ryegrass, Crimson Clover, Sorghum-X Sudan-grass 
Hybrid, and Cowpea), and WTR (Turnip, Rape, Oats, Annual Ryegrass, Sorghum-X Sudan-grass Hybrid, 
and Cowpea) 
2Missing percentage due to absence of inclusion of dead matter percent in table 
2Brassica percent was not included in statistical analysis due to brassicas only being present in spring in 
mixture WTR.  
abc Mixtures were significantly different in percent yield of legume and grasses (P ≤ 0.05) 
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a) 

 

Figure 1.1 (a – g). Forage mixture1 quality across the three grazing seasons: Spring (March-
June), Summer (July-August), and Fall (September-November) measuring a) Acid Detergent 
Fiber (ADF), b) Neutral Detergent Fiber (NDF), c) Crude Protein (CP), d). ADF to NDF Ratio, 
e) Net Energy of Lactation (NEL), f) Relative Feed Value (RFV), and g) Relative Feed Quality 
(RFQ) 
1Mixtures: CS (Alfalfa, Red Clover, Orchard Grass, and Tall Fescue), WRC (Annual Ryegrass, 
Red Clover, Crab Grass, and Annual Lespedeza), WCC (Annual Ryegrass, Crimson Clover, 
Sorghum-X Sudan-grass Hybrid, and Cowpea), and WTR (Turnip, Rape, Oats, Annual Ryegrass, 
Sorghum-X Sudan-grass Hybrid, and Cowpea) 
abcdMixtures significantly across season (P ≤ 0.05)  
 

 

 

 

 

 

 

 

0 

5 

10 

15 

20 

25 

30 

35 

40 

45 

Spring  Summer  Fall  

Pe
rc

en
t A

D
F 

on
 a

 D
M

 b
as

is
 

WRC 

	

bc 
c 

bc 

a 
ab 

a 

bc 
bc 

bc 
bc bc bc 



39 
 

b) 

 

 

c) 

 

 

Figure 1.1 Continued 
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d) 

 

 

e) 

 

 

Figure 1.1 Continued 
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f) 

 

 

g) 

 

 

Figure 1.1 Continued 
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CHAPTER II 
PREDICTING THE EFFECTS OF FOUR DIFFERENT FORAGE 

MIXTURES ON ORGANIC MILK PRODUCTION IN KENTUCKY AND 
TENNESSEE, US 
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Abstract 
 

There is an interest for some US southeast organic dairy producers to increase forage 

utilization in order to decrease feed costs. Therefore, it is essential to identify productive and 

nutritious forage mixtures for organic pasture-based dairy farms that will maintain forage 

production and quality as well as help organic farmers meet dairy production goals. In a previous 

study conducted in Kentucky and Tennessee, the performance of four different forage mixtures 

containing either cool season forages or a mixture of warm and cool season forages were tested 

during the spring and summer months in 2017 using ¼ to ½ ha plots. However, the impact of 

these forage mixtures on cow productivity was not assessed due to the small plot size. Therefore, 

the objective of this study was to predict the effect of the four tested forage mixtures on dairy 

cow productivity. We hypothesized that incorporation of warm season forages would increase 

forage quality and quality and therefore help to maintain predicted organic dairy milk production 

through the grazing season. To test this hypothesis, actual mass yield and quality of the four 

mixtures used in the previous study were imported into a whole-farm modeling system 

(FARMAX, New Zealand). Settings in FARMAX Dairy Pro were developed using Jersey or 

Holstein Friesian cows with either a low or high corn silage supplementation level. Predictions 

of milk production were then obtained using the following settings: Holstein Friesian High-Input 

(HF-HI), Holstein Friesian Low-Input (HF-LI), Jersey High-Input (J-HI), and Jersey Low-Input 

(J-LI). Each scenario included 50 cows with calving in the fall season. Forage data of mass yield 

and quality from mixtures Cool Season (CS), Warm Red Clover (WRC), Warm Crimson Clover 

(WCC), and Warm Turnip and Rape (WTR) from study one were entered into the model, and a 

one-year analysis was conducted. Compared with warm season forage mixtures, Mixture CS 

predicted the greatest milk yields in HF-LI, J-HI, and J-LI, particularly during the summer. The 
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CS mixture also had the highest average milk yield across all system. Therefore, with 

information inputted from only 2017 forage results in FARMAX, incorporation of warm season 

forages did not help to increase predicted milk production throughout the grazing season in farm 

systems.  

Introduction 

Pasture production and quality are essential components of grazing operations, especially 

for certified organic dairy grazing operations where cows must consume more than 30% of their 

total dry matter intake (DMI) from pasture each year (USDA-AMS, 2015). Changing 

temperatures, as well as other elements including rain fall, pasture management, and soil quality 

can have significantly effects on pasture development and therefore cow DMI (Butler et al., 

2017; Lobet et al., 2014). The grazing season in Tennessee and Kentucky, as well as other areas 

in the southeast US states runs from March into November. Typical forages utilized in this area 

are cool season forages, such as tall fescue. These cool season forages have optimal growth rates 

at atmospheric temperatures ranging from 18-24°C and soil temperatures greater than 4°C (Butler 

et al., 2017). However, during the grazing season weather can fluctuate significantly. Average 

temperatures in Hopkinsville, KY (where the majority of farms in this study were located) over 

the past 30 years from March-November ranged from 8.7-26.0°C during the grazing season with 

average highs reaching well above 35°C. This increase in temperature can lead to a sharp 

decrease in forage production of cool season forages, or the “summer slump”.  

Decrease in the productivity of these forages can have effects on dairy cow production 

due to not only decreased forage yields, but also decreased nutrient availability in those forages. 

In order to combat this slump, previous researchers in other areas of the US have incorporated 

warm season forages in with cool season ones to fill this slump (Ruh et al., 2018). Warm season 
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forages flourish in warmer temperatures with higher optimum growth rates at atmospheric 

temperatures ranging from 25-35°C and soil temperatures greater than 16°C. These warm season 

forages are more productive during the hot summer season, and utilization of warm season 

forages with cool season forages may potentially increase both quality and yield of forage 

mixtures during the summer season therefore filling the summer slump (Salisbury and Ross, 

1985). 

 In Chapter 1, the effect of four different forage mixtures containing both warm and cool 

season forages on organic pasture production was analyzed. The mixtures included: the cool 

season mixture (CS) which contained only cool season species: orchard grass, tall fescue, red 

clover, and alfalfa. The warm season mixtures included the: Warm Red Clover mixture (WRC) 

which contained the warm season species of crab grass and annual lespedeza with the cool 

season species of annual ryegrass and red clover, the Warm Crimson Clover mixture (WCC) 

contained the warm season species of sorghum-X sudan-grass hybrid (sudex) and cowpea with 

the cool season species of annual ryegrass and crimson clover, and lastly the Warm Turnip and 

Rape mixture (WTR) which contained warm season species: sudex and cowpea, cool season 

grasses: oats and annual ryegrass, and cold tolerant forage brassicas: turnip and rape. This study 

found that in atypical mild summer conditions, when incorporating warm season forages in with 

cool season ones, pasture quantity of mixtures containing warm season species remained the 

same as the cool season mixtures in summer, however, numerically all warm season mixtures 

produced more kg DM/ha than the cool season mixture. During the trial the pasture containing 

all cool season species had the highest forage quality (highest concentrations or crude protein 

and lowest fiber levels) across the whole year. However, in this study the impact of pasture 

mixtures on milk production per season was not able to be analyzed due to the small size of the 
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forage mixtures planted on farm and the size of the herds grazing them (0.1-0.2 ha plots, 40 + 

milking cows). Therefore, in order to answer this question, a whole farm modeling system was 

utilized to predict the effects of the different forage mixtures on dairy cow production.  

FARMAX (New Zealand) is a whole farm system mathematical model designed for dairy 

producers who utilize pasture to make managerial decisions based upon certain farm factors. 

FARMAX Dairy Pro was developed using DelphiⓇ. FARMAX Dairy Pro is a combination of 

pasture model originally called Stockpol (Marshall et al., 1991; Webby et al., 1995) with the 

animal components of MOOSIM (Bryant et al., 2008). The program utilizes past information 

from different feeds and pastures such as regrowth rates, decay, pasture cover, and pasture 

thresholds in predicting pasture growth rates throughout each month and season (Bryant et al., 

2010).  

This system also analyzes the effects of forage production on a monthly to bi-weekly 

basis, allowing detailed analysis on the effect of forage mixtures on each of the different farm 

systems created (Bryant et al., 2010). Therefore in order to estimate the impact of four different 

forage mixtures from Chapter 1, Farmax was utilized to predict farm system milk responses to 

each forage mixture. The goal of this study was to predict the effects of four different forage 

mixtures on milk production in pasture-based dairy systems in Tennessee and Kentucky, US. It 

was hypothesized that as forage quality and production increase, organic dairy farm systems will 

increase in production.  

Materials and Methods 

Farm Collections and Forage Inputs 

Forage mixture production results in Chapter 1 from March-November, 2017 were 

entered into Farmax Dairy (New Zealand) to replicate forage quality and growth of the four 
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mixtures tested (Table 2.2). The effects of changing quality and quantity of forages on milk 

production were then predicted using Farmax (New Zealand). Forage samples were collected 5.9 

± 5.6 days prior to grazing from all four different forage mixtures (Table 2.1) to determine forage 

yield, composition, and quality. Quality measurements including: acid detergent fiber (ADF), 

neutral detergent fiber (NDF), and digestibility of each plot were analyzed using near infrared 

spectroscopy (NIRS). Forage nutritive values were determined by using near-infrared 

spectroscopy (NIRS) technology provided by a Unity Scientific SpectraStar 2500XL-R (Milford, 

MA) using the 2017 Mixed Hay calibration for provided by the NIRS Consortium (Hillsboro, 

WI). Metabolizable energy (ME) was calculated using the equation adapted from the equation 

for forage TDN from SGS Agrifood Laboratories (Guelph, ON) and the equation for ME for 

lactating cows from NRC, 2001:   

ME (MJ/kg) = (1.01 × (0.04409 × TDN) – 0.45) × 4.184 

Nutritive values from these mixtures were plugged into the whole farm model (Farmax Dairy 

Base, New Zealand; Table 2.2). Simulations in model included nutrient quality measures of 

spring mixtures from March – May, summer mixtures from June – August, and a fall mixtures 

from September – November.  Fall yields were estimated by averaging the yields from spring 

and fall for each mix. Estimations for each season’s yields were then used to calculate the growth 

rate of each mixture:  

 

Growth rate (kg DM/cow/d) = Seasonal yield (kg DM/ha) / number of months / 30 days 

 

The growth rate calculations for each forage mixture were then plugged in for each forage 

mixtures in each season accordingly to accurately simulate forage performance in the model.  
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Farm System Assumptions 

Four farms systems were created and included Jersey (J), Holstein Friesian (HF), high-

input, and low-input systems (Holstein Friesian High-Input [HF-HI], Holstein Friesian Low-

Input [HF-LI], Jersey High-Input [J-HI], and Jersey Low-Input [J-LI]; Table 2.3). All farms have 

50 lactating cows throughout the year grazing at a rate of 2 cows/ha (25 ha of grazing pasture), 

an initial mating date of September 15, a 60 day dry period, and a calving rage of ~10 weeks 

from June 21 - August 31. Breeding worth (BW; a New Zealand based calculation which ranks 

cows on their expected ability to breed profitable and efficient replacements) for HF herds was 

BW= 241, while the breeding worth for J systems was BW = 243. These numbers were derived 

from the top 5% of herds from Dairy NZ (www.dairynz.co.nz). Average BCS for all herds was 5 

on the New Zealand scale, which when converted to the US scale is approximately a BCS of 3. 

In order to convert to the United States BCS score (BCSUS; 1-5) from the New Zealand score 

(BCSNZ; 1-9) used in Farmax, the equation from Roche et al. (2004) was utilized:   

BCSNZ = (BCSUS × 2) + 0.5 

Body weight inputted for HF (498kg) and J (369kg) represented the average of each breed on 

pasture-based systems (Prendiville et al., 2009). Farms were set up in the Northland area of New 

Zealand, where temperatures were closet to those found in the Southeast area. Simulations of 

high-input systems consumed forage mixtures throughout the grazing season, annual ryegrass 

hay, corn grain, and corn silage. Simulations of low-input systems consumed forage mixtures 

throughout the grazing season and corn grain with offered amounts varying by breed and system 

(Table 2.4). These values were then plugged into the performance tab for dairy cows in Farmax 

and milking performance was predicted.   
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Whole Farm Analysis (FARMAX) Description   

Farmax Dairy Pro was developed using DelphiⓇ. Farmax Dairy Pro is a combination of 

pasture model originally called Stockpol (Marshall et al., 1991; Webby et al., 1995) with the 

animal components of MOOSIM (Bryant et al., 2008). To predict pasture growth, historical data 

of monthly growth rates are utilized and described in Marshall et al. (1991). The program utilizes 

past information from different feeds and pastures such as regrowth rates, decay, pasture cover, 

and pasture thresholds in predicting pasture growth rates throughout each month and season 

(Bryant et al., 2010).  

Model Simulations 

Simulations were conducted using Northland, NZ with hilly terrain. The Farmax model 

system accounts for weather patterns in the South Pacific region. To account for this, when 

inputting information into the model, months were flipped for season to reflect months and 

seasons of the northern hemisphere. Results in this study were reported as the months mimicked 

in the US. Systems were fed test mixtures from March-November; with cows consuming forage 

mixtures from March- November (Table 2.4). Systems were feed hay, corn grain, and corn silage 

if a HI system in the winter months (December – February). Monthly estimations for herd milk 

yield; milk protein, and milk fat (kg/cow/d) were analyzed throughout the entire year. Results are 

conferred in terms of average monthly production from December 2016 - November 2017.  

Results 

Predicted Milk Yields  
 
 Simulations predicted that milk yields across all systems and forage mixtures would peak 

in March and decline until August. As expected, the high input systems estimated higher milk 

production than their low input counterparts. However, after peak production, the model 
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predicted similar milk yields for both high-input and low-input systems within breed until 

August (simulated mid to late stage lactation). After August when farm systems transitioned into 

fall grazing, in farm systems that consumed the CS mixture, milk yields plateaued across all 

systems creating a parabola shaped lactation curve instead of a wave. However, in predictions for 

farm systems consuming warm season mixtures in fall, all but the J-HI increased milk yields and 

observed a wave shaped lactation curve. In spring, however, the Jersey and Holstein Friesian low 

input systems reacted differently to the introduction of forage mixtures in March (Figure 2.1). 

Predictions of the HF-LI system indicated that estimated milk yield increased an average of 8.8 

kg/cow/d across mixtures when introduced to forage mixtures in March. Although the J-LI 

system predicted increases from February to March as well, the average increase across mixtures 

was 4.5 kg/d, which is approximately half the increase estimated for the HF-LI system (Figure 

2.1).  

 When average daily milk yields were calculated, the HF-HI system averaged the highest 

milk yields with 23.6 kg/cow/d across all forage mixtures. The average milk yields across all 

mixtures were estimated to be the highest in the CS mixture, which averaged 19.8 kg/cow/d milk 

yields across all systems. All warm season mixture predictions averaged from 18.7-18.9 

kg/cow/d milk yields with the lowest average (18.6 kg/cow/d) in the WTR mixture (Table 2.5).  

Milk Components  

 Both milk fat and milk protein followed similar trends across systems. Milk fat yield 

estimations peaked in spring (March – May) with the exception of the HF-HI system while 

grazing the turnip mixture. When introduced to the WTR mixture in March, yield estimations 

decreased slightly (Figure 2.2). Across all mixtures and systems, average milk fat was estimated 

to increase in spring, decrease through summer, and then increase slightly in fall with the 
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exception of a select few farm systems on different forage mixtures (Figure 2.2). The J-HI 

system did not predict increases in fall in all warm season mixtures. While J-HI consumed the 

CS mixture, yield predictions increased more drastically in fall. In warm season mixtures, milk 

fat yield predictions increased less than 0.1 kg/cow/d in fat yield compared to the 0.23 kg/cow/d 

increase in milk fat yield estimated while consuming the CS mixture from September – 

November (Figure 2.2).  

Average daily milk fat yields were highest in the in the J-HI system when consuming the 

CS mixture with an average of 1.13 kg/cow/d of milk fat. The CS mixture averaged the highest 

quality, leading to not only the J-HI producing the highest amount of milk fat out of all systems, 

but the mixtures producing the highest average on a whole across all systems with an average 

milk fat/cow/d of 0.99 kg. The warm season mixtures of WCC and WTR averaged 0.90kg/d milk 

fat yields across all systems. However, the WRC mixture averaged slightly higher estimations 

with an average of 0.91kg/cow/d milk yield.  

 Milk protein yields followed the same trends: increasing protein yield during the spring, 

decreasing as the systems moved into summer, and then increasing yields of protein or plateaued 

yields in fall depending on system and forage mixture (Figure 2.3). Milk protein yields were 

greatest in the HF-HI system with the highest yields observed while grazing the WRC mixture 

with 1.19 kg/d milk protein (Figure 2.3). Similar to the milk fat yields, the HF-LI was 

significantly affected by the introduction to forage mixtures, with spikes in milk protein yields 

increasing up to an additional 0.19 kg/d. All other systems also increased during this time, 

however, not to the same extent (Figure 2.3).  

Average milk protein yields were highest in the CS mixture, or the highest quality 

mixture, which averaged 0.80 kg/d predicted milk protein yields across all systems. All warm 
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season mixtures ranged from 0.72-0.74 kg/d milk protein yields, with the WRC mixture yielding 

0.74kg/cow/d milk protein yield. The other mixtures, WCC and WTR, which had lower average 

energy levels in summer, averaged 0.73 and 0.72 kg/cow/d milk protein respectively.   

Discussion 
 
 When analyzing the milk curves predicted by FARMAX, many of the predictions did not 

follow a typical lactation curve that is experienced by a cow in confinement, or a curve that 

increases until ~ 90 days and then slowly declines until dry off (Garcia and Holmes, 2001). This 

was expected for the HI systems in this study who are not as dependent on forage quality, 

however, this was not the case. This is due to the fact that cows who are pasture based can 

exhibit different lactation curves depending on a multitude of factors, including not only forage 

quality but also calving season. In a study conducted by Garcia and Holmes (2001), spring and 

fall calving lactation curves were analyzed. Spring- calved cows exhibited lactation curves 

similar to those of cows fed a TMR in a confinement system, or the curve that peaks at ~90 days 

and then drops off. However, fall-calved cows exhibited a different shaped lactation curve. Fall 

calved cows exhibited lower yields at peak lactation, but higher yields in mid and late lactation. 

This caused a curve more similar to a wave rather than a parabola. In this study, calving was 

inputted to be in fall to mimic organic operations utilized in the study from Chapter 1. Lactation 

curves for the low-input farm systems estimated similar lactation curves to those calculated in 

the study by Garcia and Holmes with a wave shaped lactation curve (2001). However, this did 

not hold true for all systems.  

Milk yield predictions across all systems and forage mixtures increased from winter 

(December – February) into spring (March-May) and then declined into summer (June-August). 

However, depending on inputted forage mixture performance, cow breed, and concentrate input 
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level, fall trends in milk yield varied. When performance was predicted for systems consuming 

the CS mixture, all farm systems did not predict an increase in fall milk production as expected. 

This was not expected due to the calving inputs, however, the lack of increase in milk yield in 

fall across all farms could be due to the consistency of the high energy and low fiber levels the 

CS mixture exhibited in 2017 from spring – fall. When analyzing the quality of the CS mixture, 

it maintained similar energy, fiber, and protein from spring-fall. Therefore, without the increased 

nutrient content in fall, milk production may have been predicted to continue to decrease rather 

than increase again during this time.  

The sustained high quality of the CS mixture also lead to the highest average yields of 

milk/cow/d. Although some mixtures may have had higher milk yields varying from system to 

system, when all of the systems were averaged within each mixture, the CS had the highest 

average milk yield/cow/d with 1kg/cow/d more than the next highest forage mixture (the WRC 

mixture). All warm season forages averaged to be very similar in ilk yields, although predictions 

for each system within mixtures varied depending on whether the systems were HI or LI.  

However, significant changes in quality were observed in the warm season mixtures, 

which all increased in quality in the fall season compared to summer season. Warm season 

forage mixtures decreased in fiber and increased in energy from summer to fall, and many 

increased in CP as well (Table 2.2). These changes did have an effect on milk production 

estimates. Decreased fiber levels lead to increased predicted intake, which was observed across 

farms from summer into fall. For example in the WTR mixture, estimated intakes averaged 15.2 

kg DMI in summer and 16.0 kg DMI in fall across farm systems while grazing the warm season 

forage mixtures. In addition to increased DMI, fiber is also inversely correlated to energy (NRC, 

2001). Therefore, not only were the cows predicted to consume more forage, but also consume a 
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more energy dense forage mixture. For example, the average energy for warm season forage 

mixtures in summer was 9.38 MJ/ kg DM. However, once forages transitioned into fall, energy 

increased to 10.8 MJ/ kg DM on average across mixtures. This increase in forage quality 

(energy) in fall in the warm season mixtures may have led to the increased predictions across 

farm systems in milk yield in the fall season (September – November).  

Increases in milk yield held true for all but the J-HI farm system, whose estimations 

consistently plateaued in milk yield in fall across all mixtures. This was first believed to be due 

to the effects of increased supplementation, however, when analyzing the estimates for milk 

yield in the HF-HI system, milk yield increased in fall when cows were grazing the warm season 

forage mixtures. Therefore, this lack of increase may be due to differences in HF and J feed 

energy conversion and efficiency. Jersey cattle are more efficient at converting energy into milk 

than HF cattle, and therefore are predicted to not be as effected by changes in forage quality. 

Ergo, milk production in J systems may not increase as much in fall when forage quality 

increases (Prendiville et al., 2009).  

Forage mixture quality also appeared to have greater predicted effects on HF than J cows 

when looking at the lactation curves in spring. In the spring season, when low input cows are 

first transitioned from hay to forage mixtures, a significantly higher increase in milk production 

was observed in HF cows than J cows, with +8.9 and +4 kg/cow/d milk yield increase on average 

respectively. Like-wise in both the HF-HI and HF-LI systems, milk yield increased in the fall 

season when forage quality increased while the J-HI did not, suggesting again that HF are more 

effected by forage quality in this model system for milk yields (Bryant et al., 2010).  

Estimates for yields of both milk protein and milk fat followed similar trends. Yields of 

components increased into the spring and declined into summer. However, unlike milk yields, 
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yields of both protein and fat for many of the farm systems in fall increased instead of plateauing 

off or continuing to decline. For milk fat, the J LI farm system predicted increased fat yields the 

end of lactation on the CS and WRC mixtures; however, the J-HI system did not increase in milk 

fat yields in fall while grazing these forage mixtures. This again, may be due to the consistency 

of the CS mixture. Across all warm season mixtures, the HF-HI system predicted the highest 

yields of milk fat in spring, however, once entering summer and fall, both high-input groups 

produced similar fat yields. In the CS mixture, however, the HF-HI estimated the largest yields 

of milk fat in the winter, but during the summer and fall, the J-HI group produced more milk fat. 

This may be due to genetics and the Jersey cow’s increased heat tolerance as well as the average 

higher amount of energy allowing them to produce more fat (Bryant et al., 2010) 

Milk protein yield predictions were greatest in the HF-HI system. Holstein Friesians are 

genetically predispositioned to produce more milk protein than jerseys due to higher milk yields. 

Although Jersey cows produce higher protein percent protein and fat, in yield of protein, 

Holstein Friesians have greater yields (Prendiville et al., 2009). Therefore, both the HF-HI and 

HF-LI systems predicted highest yields of milk protein in the spring grazing season on warm 

season mixtures when forage quality and yields were high. However, once the season switched to 

summer, all farm systems dropped in milk protein production with HF-LI yielding lower milk 

protein than the J-HI system. This may be due to the higher efficiency of Jerseys on pasture 

(Prendiville et al., 2009). When analyzing the predicted effects of mixture on milk protein yields, 

again the CS mixture which had the highest quality averaged the highest yield of milk protein 

(Table 2.5). The CS mixture estimated 0.6kg/cow/d more on average compared to the next 

highest mixture (the WRC mixture, which was also very similar to the other warm season 
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mixtures with the WRC mixture being only 0.1-0.2kg./cow/d more than that of the WCC and 

WTR mixtures respectively.   

These predictions, however, were limited due to the fact that a southern hemisphere 

model was utilized to predict to milk production of northern hemisphere grazing dairy systems. 

The weather patterns in New Zealand are more mild and do not reach neither the low or high 

temperatures observed throughout the year. Average temperatures in Northland, NZ (where the 

farm models were set to be located) ranged from 11°C to 20°C throughout the grazing season 

(worldweatheronline.com) while temperatures averaged in western Kentucky and eastern 

Tennessee (locations of farms utilized in Chapter 1) ranged from 9.8 to 26.4°C throughout the 

grazing season (Chapter 1, Table 1.1). Rainfall was also different, with average rainfall/month 

totally from 47.7-297.3 mm in Kentucky and Tennessee (Chapter 1, Table 1.1), while rainfall in 

Northland, NZ averaged from 25-160 mm/month.  

In addition, the FARMAX Dairy Pro model utilizes cattle based out of New Zealand, 

which may have genetics different than those many producers utilize in the US. Therefore, it 

may be on interest to compare the grazing performance under similar conditions of dairy cattle of 

similar breeds with different genetics to analyze the potential differences in production on 

similar conditions.    

Conclusion  

 Mixture quality, breed, and input type had predicted effects on milk, milk protein, and 

milk fat yields. Predicted lactation curves for all systems were similar to those of pasture based 

dairy systems. However, the high-input systems, especially the J-HI system, were estimated to 

plateau off in many of the parameters instead creating a parabola shaped lactation curve instead 

of increasing in the fall similar to other systems. When analyzing across all farms, the mixture 
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that predicted the highest yields pf milk, milk fat, and milk protein was the CS mixture. This may 

be due to the consistent high quality observed in this mixture from spring into fall. While the 

warm season mixtures may have exceeded the CS mixture in certain quality parameters 

randomly throughout the year, the consistency of the CS mixture helped to maintain the milk and 

milk component yield estimates of farms in this simulation. Therefore, when analyzing the 

estimations made by this model, mixture CS was the forage mixtures that allowed the highest 

predicted milk production. Although mixture CS was the lowest yielding in DM, its increased 

quality throughout the season helped this mixture to maintain higher estimated yearly production 

totals.   
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Appendix 

Table 2.1 Species composition of brassicas and cool and warm season legumes and/or grasses of 
four forage mixtures entered in model to predict forage mass and nutrient production used in 
inputs for 2017 FARMAX simulation  

Mixture Species  

CS Alfalfa, Red Clover, Orchard Grass, and Tall Fescue 

WRC Annual Ryegrass, Red Clover, Crab Grass, and Annual Lespedeza 

WCC Annual Ryegrass, Crimson Clover, Sorghum-X Sudan-grass Hybrid, and 
Cowpea 

WTR Turnip, Rape, Oats, Annual Ryegrass, Sorghum-X Sudan-grass Hybrid, 
and Cowpea 
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Table 2.2 Inputs for yields of dry matter (metric ton DM/ha) and metabolizable energy (ME, 
MJ/kg DM), as well as percent neutral detergent fiber (NDF) and digestibility (in vitro 
digestibility at 48h; IVTD48H) of mixtures grazed in 2017 FARMAX simulation  

Mixture1  Dry Matter ME NDF CP 

Spring      

    WRC 16.1 10.12 47.39 16.5 

    WCC 14.9 10.22 47.02 16.2 

    CS 9.4 10.42 43.93 20.2 

    WTR 14.6 10.24 46.83 15.9 

Summer     

    WRC 7.3 9.44 52.58 17.7 

    WCC 8.1 9.06 58.51 14.9 

    CS 8.3 10.07 46.54 18.9 

    WTR 9.6 9.00 58.03 14.8 

Fall      

    WRC - 10.80 36.6 26.5 

    WCC - 11.04 34.81 23.8 

    CS - 10.59 44.41 22.0 

    WTR - 10.78 37.83 19.2 
1Mixtures A (Annual Ryegrass, Red Clover, Crab Grass, and Annual Lespedeza), B (Annual 
Ryegrass, Crimson Clover, Sorghum-X Sudan-grass Hybrid, and Cowpea), C (Alfalfa, Red 
Clover, Orchard Grass, and Tall Fescue), and D (Turnip, Rape, Oats, Annual Ryegrass, 
Sorghum-X Sudan-grass Hybrid, and Cowpea). 
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Table 2.3 Inputs for farm simulations in 2017 FARMAX simulation 

Farm 
System  

Breed Breeding 
Worth  

Body Weight, 
kg  

BCS Average Stocking 
Rate (Cows/ha) 

HF-HI Holstein Friesian 241 498 3 2 

HF-LI Holstein Friesian 241 498 3 2 

J-HI Jersey 243 369 3 2 

J-LI Jersey 243 369 3 2 
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Table 2.4 Inputs of dry matter (DM) intake implemented to conduct 2017 FARMAX simulations 
(kg DM/d)  
 

Farm System HF-HI HF-LI J-HI  J-LI 

Test Mixture Pasture 12 16 9 12 

Corn Grain 2.7 2.7 2.7 2.7 

Annual Ryegrass Hay- Winter 9 2.7 12 0.5 

Annual Ryegrass Hay- 
Grazing Season 

0.5 0 0.5 0 

Corn Silage 7 0 4 0 
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Table 2.5 Average daily milk, milk protein, and milk fat yields on each farm system: Holstein 
Friesian High-Input (HF-HI), Holstein Friesian Low-Input (HI-LI), Jersey High-Input (J-HI), and 
Jersey Low-Input (J-LI) consuming 4 test plot forages mixtures1 in 2017 FARMAX simulations  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 CS (Alfalfa, Red Clover, Orchard Grass, and Tall Fescue), WRC (Annual Ryegrass, Red 
Clover, Crab Grass, and Annual Lespedeza), WCC (Annual Ryegrass, Crimson Clover, 
Sorghum-X Sudan-grass Hybrid, and Cowpea), and WTR (Turnip, Rape, Oats, Annual 
Ryegrass, Sorghum-X Sudan-grass Hybrid, and Cowpea).  
 
  

 FARM SYSTEM  

Predicted Yields, kg/cow/d 
for each forage mixture 

HF-HI HF-LI J-HI  J-LI AVERAGE 

Milk       

     CS 23.7 20.0 18.9 16.7 19.8 

     WRC 24.1 20.0 18.1 13.5 18.9 

     WCC 23.3 19.2 17.4 14.7 18.7 

     WTR 23.3 19.3 17.1 14.5 18.6 

Milk Protein       

     CS 1.04 0.89 1.13 0.91 0.99 

     WRC 1.06 0.89 0.98 0.73 0.91 

     WCC 0.88 0.71 0.72 0.60 0.90 

     WTR 1.04 0.86 0.92 0.79 0.90 

Milk Fat       

     CS 0.89 0.74 0.88 0.70 0.80 

     WRC 0.91 0.74 0.76 0.55 0.74 

     WCC 0.88 0.71 0.72 0.60 0.73 

     WTR 0.87 0.72 0.71 0.60 0.72 
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a) 

 
 

b) 

 
Figure 2.1 (a – d). Predicted milk yields (kg/cow/d) on Holstein Friesian High-Input (HF-HI), 
Holstein Friesian Low-Input (HI-LI), Jersey High-Input (J-HI), and Jersey Low-Input (J-LI) of 
cows on pasture consuming 4 test plot forages mixtures 1  
1a) CS (Alfalfa, Red Clover, Orchard Grass, and Tall Fescue), b) WRC (Annual Ryegrass, Red 
Clover, Crab Grass, and Annual Lespedeza), c) WCC (Annual Ryegrass, Crimson Clover, 
Sorghum-X Sudan-grass Hybrid, and Cowpea), and d) WTR (Turnip, Rape, Oats, Annual 
Ryegrass, Sorghum-X Sudan-grass Hybrid, and Cowpea).  
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c)  

 
 

d)  

 
 
Figure 2.1 continued 
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a) 

 
b) 

 
 

Figure 2.2 (a – d). Predicted milk fat yields (kg/cow/d) on each farm system: Holstein Friesian 
High-Input (HF-HI), Holstein Friesian Low-Input (HI-LI), Jersey High-Input (J-HI), and Jersey 
Low-Input (J-LI) of cows on pasture consuming 4 test plot forages mixtures1 

1 a) CS (Alfalfa, Red Clover, Orchard Grass, and Tall Fescue), b)WRC (Annual Ryegrass, Red 
Clover, Crab Grass, and Annual Lespedeza), c)WCC (Annual Ryegrass, Crimson Clover, 
Sorghum-X Sudan-grass Hybrid, and Cowpea), and d) WTR (Turnip, Rape, Oats, Annual 
Ryegrass, Sorghum-X Sudan-grass Hybrid, and Cowpea).  
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c) 

 
d) 

 
 
Figure 2.2 continued 
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a) 

 
b) 

 
 

Figure 2.3 (a – d). Predicted milk protein yields (kg/cow/d) on each farm system: Holstein 
Friesian High-Input (HF-HI), Holstein Friesian Low-Input (HI-LI), Jersey High-Input (J-HI), and 
Jersey Low-Input (J-LI) of cows on pasture consuming 4 test plot forages mixtures1 

1 a) CS (Alfalfa, Red Clover, Orchard Grass, and Tall Fescue), b)WRC (Annual Ryegrass, Red 
Clover, Crab Grass, and Annual Lespedeza), c)WCC (Annual Ryegrass, Crimson Clover, 
Sorghum-X Sudan-grass Hybrid, and Cowpea), and d) WTR (Turnip, Rape, Oats, Annual 
Ryegrass, Sorghum-X Sudan-grass Hybrid, and Cowpea).  
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c)  

 
d) 

 
 
Figure 2.3 continued 
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CONCLUSION 

By incorporating warm season forages in with cool season ones, differences were 

observed across mixtures. Spring yielded greater DM than summer across all mixtures, however, 

the incorporation of warm season species did not increase summer yields as predicted. This may 

be due to decreased summer temperatures. Mixture C, which was composed solely of cool 

season perennial forages, maintained the highest quality throughout the grazing season (March-

November). Therefore results should be repeated again to observe the effects of a summer season 

with an increased average temperature on forage mixtures. 

Farmax predictions were most similar to observed results in summer, however, a large 

difference was observed in fall and spring. When analyzing the effects of mixtures on each farm, 

farms with Jersey as the predominate breed did not see a significant difference in production 

between mixtures, however, Holstein Friesian farms saw decreased milk yield and decreased 

milk component yields when grazing mixture D. This may be due to the increased fiber found in 

mixture D and lower digestibly, particularly in spring and summer. Mixture C increased 

estimated BCS, milk yields, and milk component yields in the summer months for over half of 

the farms. In conclusion, production of farms on mixtures did not differ greatly across different 

mixtures. However, levels of fiber did potentially affect DMI and energy intake of cows on 

pasture, leading to differences in estimated production, particularly in the summer season. 

These results are only from one year of data, during an abnormal grazing season. 

Unseasonably cool and rainy summer months were observed during this time, potentially leading 

to increased quantity and yield of cool season perennial forages in the summer months. With 

this, it would be valuable to repeat both studies again to collect more data points. During this 

time it may also be beneficial to plant larger test plots and to more closely monitor cows on 
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pasture while grazing each plot to assess actual cow production while on each pasture to better 

understand potential production gains/losses could be observed in each forage mixture. 
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