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ABSTRACT 

 

The hydrodynamic motion of warm dense matter produced by intense electrons is being 

experimentally studied on the Dual-Axis Radiographic Hydrodynamic Test Facility 

(DARHT).  Experimental results are compared to hydrodynamic simulation codes for 

verification.  Copper and titanium foils of varying thickness are heated in two stages, the 

first being isochoric, by an electron bunch with ~100 ns pulse length, energy of 19.8 MeV, 

current of 1.7 kA, and beam spot size of 2 mm.  Aluminum, nickel, and carbon are heated 

in a similar fashion, but with a current of ~1.44 kA and beam spot size of 1 mm.  The 

corresponding hydrodynamic motion of the foils during energy deposition is measured 

instantaneously with photonic Doppler velocimetry (PDV). The PDV diagnostic provides 

time-resolved measurement of the foil velocity, inferred pressure in the foil, and 

hydrodynamic disassembly time. The 1-D hydrodynamic HELIOS-CR code models the 

electron energy deposition on these foils.  Calculated results of foil velocity and plasma 

pressure profiles are then compared to experimental results and 2-D hydrodynamics 

simulations with LASNEX. These parametric studies are crucial in understanding the 

evolution of warm dense matter during energy deposition, and optimizing electron-target 

interactions that improve the Bremsstrahlung targets and radiographic spot size capabilities 

on DARHT. 
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CHAPTER ONE – INTRODUCTION 

1.1 Background Information  

As the nation’s stockpile ages, a greater chance of weapon failure and unpredictability 

becomes more apparent with each passing year. Fissile material used in the stockpile 

decays over time, and electronic components suffer from the long-term radiation exposure. 

With full-scale tests banned in 1992, it has become a crucial mission to ensure the 

effectiveness and reliability of the nation’s stockpile. The nation accomplishes stockpile 

maintenance through reliance on scaled experiments and simulations that support the 

Stockpile Stewardship Program. A particular tool critical to this mission is the Dual-Axis 

Radiographic Hydrodynamic Test Facility (DARHT) that conducts scaled hydrotests.  

 DARHT consists of two linear-induction electron accelerators orthogonal to one 

another, which are Axis-1 and Axis-2. The main difference between the two axes is that 

Axis-1 is a single pulsed device, and Axis-2 is a multi-pulsed device that allows for time-

resolved radiography. The two axes can fire simultaneously during a hydrotest to allow for 

3-D reconstruction during one time slice, or they may fire individually. The work and 

acquired data entailed in this document comes from experiments conducted on Axis-1 only, 

and thus the remaining text will focus on DARHT Axis-1.  

 A 100-ns-long electron bunch on Axis-1 is accelerated and focused onto a 1-mm-

thick Ta target converting the particle beam energy into Bremsstrahlung radiation. The 

high-energy Bremsstrahlung tail penetrates thick, dense hydrotests occurring at the 

convergence of the two accelerators. The accelerator radiographic times are synchronized 

with at least 4 events in the hydro tests in order to produce time-resolved radiographs, or 

cross-sectional images of the hydro test. These radiographs are then compared extensively 

to hydrodynamic codes to cross-reference and validate the simulations. These codes, 

essential in validating the effectiveness of the stockpile, are being developed to simulate 

full-scale tests.  

 At DARHT, there is a need to continually improve the radiographic quality.  The 

spot size and the intensity (dose) of the radiation governs the quality of the radiograph. In 

order to improve the radiographic quality, one must fully understand the interactions 
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between the Bremsstrahlung target and the relativistic electrons. To fully understand the 

evolution of the target during energy deposition, the equation of state (EOS) of the material 

must be known. The equation of state for a material relates the functions of state under 

certain physical conditions to one another. To describe the EOS, one needs three 

thermodynamic values such as the pressure, temperature, and density. In this document, it 

will be shown the photonic Doppler velocimetry (PDV) diagnostic provides temporal 

measurements of pressure in the foil targets during energy deposition. Further UV and X-

ray spectroscopy diagnostics will be fielded on DARHT to obtain the needed 

measurements of temperature and density during the warm dense phase to describe the 

target EOS. This will lead to the optimization of the energy deposition process, and 

increase the radiographic capability of DARHT. 

1.2 Project Objectives 

The hydrodynamic motion of the foils during energy deposition is being studied with PDV 

measurements and concurrent simulations with the 1-D hydrodynamic code HELIOS-CR.  

In order to surmount the task, key objectives were identified to drive the motivation and 

success of this study. The objectives of this study include:  

1. Accurately extract time-resolved values of foil velocity, pressure, temperature, and 

hydrodynamic disassembly time from the PDV data. 

2. Simulate the foil motion with DARHT beam parameters using a 1-D hydrodynamics 

code and extract key values mentioned in objective 1. 

3. Compare experimental and simulation results to check the validity of the 

hydrodynamic codes for future applications.  

Completing each of these tasks allowed the project to be fully realized, and laid the 

groundwork for future experiments and simulations.  
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CHAPTER TWO – LITERATURE REVIEW 

2.1 The Warm Dense Matter Regime 

2.1.1 The Coupling and Degeneracy Parameters 

Warm dense matter (WDM), an interesting regime in temperature and density space, covers 

a range of 0.1 < 𝑇(𝑒𝑉) < 10 and 0.1𝜌𝑜 < 𝜌(𝑐𝑚−3) < 10𝜌𝑜 for most metals where 𝜌𝑜 is 

solid density. An example of this range in phase space is illustrated in figure 2.1 where the 

degeneracy and coupling parameters are shown [1]. Figure 2.1 illustrates that the 

degeneracy parameter varies by 2 orders of magnitude, and the coupling parameter varies 

by approximately 10x in this regime. WDM is not described well with normal condensed 

matter physics nor weakly-coupled plasma physics because it is too energetic and dense. It 

is essentially a state of matter where the ions strongly couple to one another, and partially 

degenerate electrons may exist. The WDM regime has gained considerable interest because 

there exist many astrophysical systems, brown dwarfs and the interior of gas giants, that 

fall into the regime. Additionally, many inertial fusion plasmas that traverse through the 

stages of compression go through the warm dense phase [2]. There exists an opportunity 

to develop experiments and models that will aid in our improved understanding of the 

WDM regime where data is currently limited or non-existent [3]. 

 The strong coupling parameter relates the interatomic potentials between particles 

and thermal energies of these particles denoted by equation 2.1. 

𝛤 =
𝑞2(

4𝜋𝑛𝑒
3

)

1
3

4𝜋𝜀𝑜(𝑇𝑒+𝐸𝐹)
 ,                                   Equation 2.1 

where 𝑞 is the elementary charge, and 𝐸𝐹 is the Fermi energy calculated by 𝐸𝐹 =

ħ2

2𝑚𝑒
(3𝜋2𝑛𝑒)

2

3. When Γ << 1, the system is weakly coupled which indicates that the 

particles have large amounts of kinetic energy. When Γ >> 1, the system is strongly coupled 

and the interparticle potentials largely affect the behavior of the individual particles. In the 

WDM regime, Γ ~ 1, meaning that the interatomic potentials and kinetic energy are similar 

to one another. 
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 The degeneracy factor, 𝛩, describes the ratio of the thermal energy to the Fermi 

energy, and ranges from 10-3 for high density, low temperature plasma to 10 for low 

density, high temperature plasma. The degeneracy factor is outlined by equation 2.2. 

𝛩 =
𝑇𝑒

𝐸𝐹
 ,                               Equation 2.2 

For Θ >> 1, the system is considered non-degenerate and the quantum effects associated 

with electrons can be neglected. For Θ << 1, the system is degenerate, and the quantum 

effects associated with electrons must be considered [4]. With both of these factors 

describing the WDM regime, it has become particularly difficult to model theoretically and 

computationally since the methods used in conventional plasma physics are no longer 

valid.  

2.1.2 Methods of Producing WDM 

There are many methods of producing WDM through photon heating, laser-accelerated ion 

sources, and particle beam driven experiments. In experiments that look to produce WDM, 

uniformity of heating in an isochoric process is crucial to study the regime’s properties 

efficiently. Isochoric heating occurs when the target does not expand hydrodynamically 

during energy deposition, and thus considered a constant volume process. The isochoric 

heating process on DARHT is explained more thoroughly in Section 2.3.2. 

Figure 2.1: Phase diagram with labeled degeneracy and strong coupling 

parameters. The WDM region for most metals is shown. 

WDM 



 

5 

The goal of facilities that produce WDM is to offer a flexible range of abilities [3]: 

• Precisely control energy deposition with uniformity. 

• Produce large sample sizes of considerable volume of WDM. 

• Offer a low-debris and background radiation environment. 

• Offer high shot rates with access to multiple target chambers. 

• Be accessible to university students and scientists; and have technical 

support for experimental endeavors.  

Facilities that can meet one or more of these goals offer a pathway for researchers to gain 

valuable knowledge into WDM production and its evolution in time. These facilities will 

also offer the ability to look into the EOS of materials that are of vital importance in the 

inertial fusion and stockpile community. 

 The majority of WDM experiments are laser-driven, and involve a short (ps to tens 

of fs) laser pulse to rapidly heat matter. The interaction is fast and strong enough to ionize 

the target atoms, and the ions and electrons gain large amounts of kinetic energy. However, 

in direct laser heating experiments most of the laser pulse energy couples to the surface 

electrons and is nonuniform in its heating ability. The rest of the target is heated by the hot 

electrons that are produced and the return currents of cold electrons. In previous 

experiments, a 70-nm-thick Cu foil was irradiated with a fs Ti:Saph laser, and Cu L-shell 

photons were used to probe the resulting plasma to quantify the electron-ion relaxation and 

temperature of ~0.1 eV [5, 6].  

 In laser-driven ion experiments, ions are accelerated to sufficiently high kinetic 

energies (> 1 MeV) with the use of lasers, and directed towards targets for heating [7]. The 

ions transfer most of their energy to the target atoms through collisional stopping power. 

This heating is rapid enough that the target does not hydrodynamically expand, and is thus 

considered to be isochoric. However, this heating method lacks uniformity since typical 

laser-accelerated ion beams possess an exponential energy spread. A large number of low-

energy ions are usually present in these beams, and thus result in additional heating to the 

front surface of the target. Previous experiments have shown laser-accelerated ion heating 

of carbon, gold, and diamond samples [8, 9]. 
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 The unique heating method used on DARHT is a particle beam driven approach. 

DARHT achieves isochoric heating through its monochromatic intense relativistic electron 

bunch with the ability to generate large, homogenous volumes of WDM that is both long-

lasting and stable [10]. It has been shown previously that production of a large volume (3 

x 10-4 cm3) and mass (2.8 mg) of warm dense copper was achieved with the relativistic 

electron beam heating method on DARHT. This is accomplished by accelerating and 

transporting a 100-ns-long electron bunch through Axis-1 to 19.8 MeV. The electron bunch 

is then focused onto range-thin foils of approximately 100 μm thickness to a spot size of 

~1 mm FWHM. Range-thin foils have been chosen to optimize isochoric heating, 

uniformity of heating, and to minimize resulting Bremsstrahlung production. Considering 

the goals outlined above, DARHT provides the ability to obtain precise control of energy 

deposition and uniformity of heating, produce large samples of WDM, and offer high shot 

rates that are repeatable.  

2.1.3 Measuring the Equation of State 

The purpose of WDM experiments on DARHT is two-fold: the first is to quantify the EOS 

of the DARHT target materials during the beam pulse and second demonstrate a capability 

to measure the EOS for a range of experimental conditions and materials.  The goal of the 

first purpose is to provide insight to improve radiographic quality in the future.  In order to 

quantify the EOS of a material in the warm dense regime, the plasma properties of electron 

temperature (𝑇𝑒), electron density (𝑛𝑒), and the pressure (𝑃) must be measured. Ideally, a 

suite of diagnostics would be fielded on DARHT that would provide temporal information 

for all three quantities, and an EOS model could be evaluated for the relevant target 

material. Ultraviolet (UV) and X-ray Thomson Scattering (XRTS) diagnostics are being 

explored to provide time- and spatially-resolved measurements of the electron density, 

temperature, as well as the charge state. XRTS is a powerful, yet complicated diagnostic 

and has been implemented on many high-energy density plasma (HEDP) experiments [11]. 

The difficulties in implementing the XRTS diagnostic are attributed to the experimental 

setup, production of keV class X-rays to probe the target region, as well as obtaining 

sufficient photons on the detector for usable S/N ratios. If correctly fielded, though, it can 
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provide accurate measurements of the aforementioned quantities as a function of time.  The 

effectiveness of the UV diagnostic would depend on the opacity of the plasma produced, 

and the opacity will vary with 𝑛𝑒 and 𝑇𝑒.  Spatial and temporal measurements of the emitted 

UV spectra may be possible, but this will be determined by proof-of-principle 

measurements of the UV radiation and opacity.  

 Many diagnostics are implemented on DARHT that include fast visible imaging, 

visible spectroscopy, PDV, and rough measurements of the scattered electron and 

Bremsstrahlung distribution.  Plume velocity and expansion has been characterized 

previously with single gated images utilizing a PI-Max and multiple fast-frame images 

utilizing a Simacon camera with gates from 20 ns to 1 μs [12]. Here, visible spectroscopy 

measurements, modeled with the ATOMIC code, for Ti yielded the measurement for the 

electron temperature and density. PDV, as shown in this document, provides a wealth of 

information that includes the foil velocity, hydrodynamic disassembly time, and the 

inferred plasma pressure – one of the necessary quantities for the EOS.  

2.2 The Dual-Axis Radiographic Hydrodynamic Test Facility 

2.2.1 The Radiographic Mission 

The objective of DARHT is to provide time resolved radiographs of hydro tests for the 

U.S. government, which validates the simulation accuracy of the nuclear stockpile. 

DARHT is a Bremsstrahlung device, consisting of two linear induction accelerators that 

are orthogonal to one another. An intense pulse of relativistic electrons is transported down 

each beamline to high-Z targets, and through the interactions of the electrons and target 

nuclei, produce high-doses of Bremsstrahlung radiation. The Bremsstrahlung continuum 

on Axis-1, shown in figure 2.2, has energies up to the operating energy of the machine, 

which is 19.8 MeV. An electron bunch with 1014 𝑒− will typically yield ~1011 𝛾 at the 

Bremsstrahlung target with a 10−3 conversion efficiency. This braking radiation penetrates 

dense, scaled hydrotests that occur at the convergence of the two accelerators, and 

radiographic images are produced of the implosions. The two axes allow for reconstruction 

of 3-D radiographic images, as well as time-resolved radiographic capabilities.  
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It is currently the world’s leading pulsed Bremsstrahlung device for its radiographic 

quality, high dose, and shot rate.  

 Figure 2.3 is an example of a false radiographic image produced on DARHT.  These 

radiographs capture the hydrodynamic behavior of the hydrotest, and validate the physics 

models incorporated into weapons codes. The radiographic quality on DARHT will 

ultimately depend on the spot size of the focused electron bunch on the target, similar to 

the properties of a pinhole camera. Los Alamos characterizes the radiographic spot size by 

comparing the modulation transfer function (MTF) of the spot with the MTF of a disk that 

is illuminated uniformly [13].  The spot size is then defined as the diameter of the disk that 

has the same MTF half width as the spot of the source. The temporal resolution of the 

image will be governed by the motion blur of the hydrotest, and the spatial resolution will 

be governed by the radiographic spot size on the Bremsstrahlung target [14]. The temporal 

resolution of the radiograph can be improved by providing additional dose, or charge, at 

different time slices. This change in beam parameters will have to abide by the limits of 

space charge effects. As mentioned previously, the spatial resolution of the radiograph is 

improved by decreasing the spot size of the electron beam at the target. However, this spot 

size reduction will be limited by the factors such as emittance growth, beam instabilities, 

and electron interactions with the WDM produced at the targets. Understanding the  

Figure 2.2: Characteristic Bremsstrahlung continuum produced at the Axis-1 

conversion target. 
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production and evolution of the WDM at the targets during energy deposition allows 

optimization of radiographic quality and repeatability. Further discussion about the 

electron beam interactions with WDM is outlined in section 2.2.3.  

 A secondary goal of DARHT is to maximize the dose with a minimal spot generated 

during the beam-target interaction. To meet the mission of producing a quality radiograph, 

a dose of ~500 Rad, 1 m from the target in ~60 ns is sufficient enough to image most 

objects [15]. This is achieved by focusing the intense relativistic electron bunch to a source 

size of < 1 mm FWHM on Axis-1. With a 19.8 MeV energy limit of the device, high dose 

is achieved through a high beam current of kA range since dose is related to the total charge 

on the target and electron beam. It should be noted that the dose produced during the pulse 

varies in time, and peaks during the flat top region of the characteristic DARHT pulse [16]. 

2.2.2 DARHT Axis-1 Accelerator Layout 

 The Dual-Axis Radiographic Hydrodynamic Test Facility was conceived and 

planned in the early 1980’s [17]. An aerial view of the completed DARHT facility is shown 

in figure 2.4 located at Los Alamos National Laboratory. DARHT Axis-1 is a linear 

induction accelerator that utilizes ferrite-loaded, non-resonant magnetic induction cavities 

to inductively couple power into a 100-ns-long, ~1.7 kA relativistic electron bunch to 

accelerate the charged particles to 19.8 MeV. This single-pulsed accelerator has been 

operational since 1999, and produces a single high-resolution radiograph per shot. The 

accelerator consists of a 4-MV injector [18, 19] composed of a single Blumlein and a 

Figure 2.3: A false example of a DARHT radiographic image produced during a hydrotest. 



 

10 

graded transmission line, 64 ferrite induction cells distributed into 8 cell blocks, and the 

WDM experimental region shown in figure 2.5 [20] that will be explained briefly.  

 The diode region (fig. 2.5) is where the initial electron beam is generated from a 

velvet cathode [17, 21]. Ordinary velvet is used for the cathode surface due to its low 

threshold for electron emission (~30 kV/cm), and is typically driven by a diode voltage to 

produce a strong electric field (~150 kV/cm). Electrons are liberated from the surface of 

the cathode that leads to an electron avalanche which ionizes the hydrogen monolayers 

within the tufts of velvet.  Only a small fraction of these electrons is extracted from the 

plasma sheath and accelerated across the 17.8 cm A-K gap.  The current extracted through 

the diode is dependent on the diode voltage, diameter of the cathode, and A-K gap [22]. 

The electrons accelerated through the 4 MV diode are transported into the induction 

accelerator.  

 The induction accelerator consists of 8 cell blocks with 8 accelerating cells each for 

a total of 64 accelerating cells. Each induction cell operates at ~250 kV/cell, and contains 

11 oil-insulated ferrite cores, an acceleration gap, a solenoid magnet and dipole pair to 

transport the electron bunch [23]. There were concerns for high-voltage breakdown when 

designing the cells, thus the acceleration gap was made to have a minimum width of 19 

mm. The bore of the cell is approximately 146 mm to limit the transverse impedance which 

directly contributes to the growth rate of the beam breakup (BBU) instability [24], and to 

provide enough room for the solenoid magnet with reduced costs. The growth in the BBU 

instability depends on the cell transverse impedance, beam current, and number of 

acceleration gaps.  An offset electron beam interacting with the transverse mode of the cell 

cavity induces an RF oscillation in the beam envelope that leads to degradation in the time-

integrated beam spot size. Degradation in the beam will lead to increased radiographic spot 

size and decrease the quality of the radiograph.  

 The electrons accelerate to 19.8 MeV after transport through the induction 

accelerator, and then finally focus onto a 1-mm-thick Ta X-ray conversion target.  The 

source spot for the Bremsstrahlung production is < 1 mm in diameter (50% MTF). There 

are beam position monitors (BPMs) that are used throughout the accelerator to align the  

beam, measure current, and minimize instabilities.  
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Figure 2.4: Aerial view of the DARHT Facility at Los Alamos National Laboratory. 

Injector/
Diode 

Figure 2.5: Accelerator layout of DARHT Axis-1 showing the injector, acceleration, and WDM 

measurement region. This excludes the downstream transport to the radiographic region. 
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The BPMs are discussed more thoroughly in Section 3.1. 

2.2.3 The Impact of WDM on Radiographic Spot Size 

The DARHT radiographic mission is to reduce the source spot size, and therefore increase 

radiographic quality. However, WDM produced at the targets will have unfavorable effects 

on the electron pulse. It should be noted that WDM is produced near the onset of the 

hydrodynamic disassembly time of the range-thin foils, but the 100-ns-long electron beam 

still deposits energy into the targets and the resulting plasma. The energy deposition during 

the electron pulse is dynamic, and becomes more complex with the formation of warm 

dense plasma. The effect of WDM on radiographic spot size is not well known, and leaves 

great motivation for this research. Ions generated at the target can neutralize the space 

charge of the beam as 𝑛𝑖 approaches 𝑛𝑒, but density gradients complicate the problem. The 

production and transition into the warm dense phase and subsequent expansion must be 

understood to optimize the radiographic capability. 

2.3 Heating with Relativistic Electrons 

2.3.1 Collisional Stopping Power 

Electrons lose their energy through collisions with matter. Electrons lose energy by 

collisional and radiative stopping powers (dE/dx) which are dependent on material and 

entrance energy; these can be found in the ESTAR database from NIST [25]. The energy 

deposited in DARHT target foils is calculated using the collisional stopping power since 

the radiative energy losses are carried away in the form of Bremsstrahlung radiation. The 

collisional heating process involves the relativistic electrons interacting with the material 

lattice, and stripping electrons from the atoms.  

 The relativistic electrons are near the minimum of the collisional stopping power 

curve at 19.8 MeV for all materials which is shown in figure 2.6, and thus the coupling of 

the relativistic electrons and the target is not optimized for thin foils.  This inefficiency in 

energy transfer is true for all materials used, but cannot be avoided since high-energy 

Bremsstrahlung radiation is needed to penetrate dense hydrotests. Typically, less than 1% 

of the available particle beam energy deposits into 100-μm-thick foils.   
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 However, it is unfavorable to increase the thickness of the targets for WDM 

experiments because the electron energy deposits linearly with thickness. Increasing the 

target’s thickness will result in the increased production of Bremsstrahlung radiation that 

will scatter into our diagnostics, and reduce S/N ratios. It will also increase debris 

production, and prolong isochoric heating. In figure 2.7 (a), the current of the electron beam 

(shot 25916) is integrated to quantify the deposited charge onto the target foils. For 

example, the deposited charge over 100 ns for a 1.7 kA beam is ~130 μC. As the electron 

energy deposits through collisional stopping power, the foils will experience phase changes 

through melting, evaporation, and ionization if r < 2 mm as shown by figure 2.7 (b) for 

copper. 

 The approximate energy deposited, ∆𝐸(𝑡), into the target is estimated by equation 

2.3. For copper the collisional stopping power, dE/dx, is 1.513 MeV-cm2/g for a 20 MeV 

electron beam.  

               𝛥𝐸(𝑡) = 𝑞(𝑡)
𝑑𝐸

𝑑𝑥
𝜌𝑜𝛥𝑧 =

𝑞(𝑡)
𝑑𝐸

𝑑𝑥
𝑚

𝜋𝑟2  ,               Equation 2.3 

where ∆𝑧 is the foil thickness, 𝑞(𝑡) is the time dependent electron charge at the target, 𝑟 is 

the radius of the beam, and 𝑚 is the heated mass.  

 The energy required to melt, vaporize, or ionize the target material is estimated by 

equation 2.4. 

 

 

 

 

 

 

 

 

 

 

 

𝐾𝐸𝑒−  

Figure 2.6: Collisional stopping curve for electrons through copper. 
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Figure 2.7: (a) The incident electron current (black) and the charge (blue) on target foils. 

Shown is shot number 25916. (b) The deposited energy and heating profile for 100-μm-

thick copper assuming r = 0.5 mm. 

(b) 

(a) 

Melt 

Vaporize 

Ionize 



 

15 

𝐸 = 𝐿𝑚 ,                                            Equation 2.4 

where 𝐿 is the latent heat of fusion or vaporization of the material [26].  

 Consider a 100-μm-thick foil of copper with latent heat of fusion of ~13.1 kJ/mol, 

latent heat of vaporization of ~300 kJ/mol, and first ionization energy of ~744 kJ/mol [27]. 

It would take approximately 0.13 J of deposited energy in ~4 ns to melt the copper foil, 

and 3 J to vaporize the copper foil in ~20 ns as indicated by figure 2.7 (b). Furthermore, it 

would take a deposited energy of 7.5 J to ionize the copper target in ~41 ns assuming a 

spot size of ~1 mm. It should be reiterated that >99% of the available particle beam energy 

(~2.5 kJ) passes through the foil. This is due to the range of the 20 MeV electrons in copper 

(1.17 cm), which is >100x the thickness of this foil. The purpose of using thin foils is to 

minimize Bremsstrahlung production, optimize isochoric heating, and to minimize target 

debris production.  

2.3.2 Isochoric Heating 

Isochoric heating, a constant volume process, is necessary for production of large, 

homogenous samples of WDM. DARHT Axis-1 provides a method to heat range-thin foils 

in a two-stage process with a monochromatic 20 MeV, multi-kA bunch of electrons. The 

isochoric heating method used with DARHT is a slower heating method compared to the 

isochoric photon heating method used in laser shock-compression experiments [20].  

 As mentioned, the heating occurs in two stages. The first stage is early in the 

electron pulse before the material hydrodynamically disassembles, 𝑡 < 𝑡ℎ𝑦𝑑𝑟𝑜. This first 

stage is considered isochoric since the material does not expand considerably, and >50% 

of solid density of the material remains constant. As it will be shown, the hydrodynamic 

disassembly time is the point when pressure release occurs in the foil as measured by the 

PDV diagnostic. Before this disassembly occurs, the foil experiences pressure and 

temperature buildup during the electron pulse. As the foil experiences phase changes of 

melting, vaporization, and ionization, the material disassembles and the heating is no 

longer isochoric.  However, it will be shown that measurements are still taken after 

hydrodynamic disassembly while the electron pulse deposits energy into the resulting 

plasma plume. 
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CHAPTER THREE – DATA ACQUISITION 

3.1 Beam Distribution and Current Density Measurements 

3.1.1 Beam Position Monitors 

Beam position monitors (BPMs), used throughout the length of DARHT Axis-1, are non-

invasive diagnostics commonly found in linear accelerators, cyclotrons, and synchrotrons 

[28]. Invasive diagnostics used in Axis-1 include intercepting foils and Cerenkov emitters 

for measuring beam current density profiles, or magnetic spectrometers for measuring the 

beam kinetic energy and longitudinal phase space. BPMs are located at the exit of the 

injector, after every four cells in the accelerator, and in the downstream transport section 

of Axis-1 [17]. The BPMs measure beam position, current, and RF oscillations on the 

beam, which provides scientists the necessary information to properly tune and align the 

accelerator for optimal transport. BBU and centroid oscillations can reduce the beam 

quality and lead to emittance growth that degrades the radiographic spot size.  

 BPMs are an array of B-dots, or inductors, which measure the current induced by 

the passing electron pulse in the B-dot. The BPMs are calibrated with known offsets for 

each B-dot relative to the mechanical and magnetic centerlines of the accelerator. The 

measured current can vary spatially and temporally depending on the beam alignment and 

distribution. We implement the BPM21 current profile measurement, shot 25916, in 

HELIOS-CR and LASNEX. This BPM measurement gives a characteristic current profile 

of Axis-1 as shown in figure 2.7 (a).  

3.1.2 Optical Transition Radiation 

An optical transition radiation (OTR) measurement provides the current density, 𝐽(𝑥, 𝑦), 

of the electron beam in the near-field (Fresnel zone) shown in figure 3.1 [12]. As a charged 

particle approaches and moves across a boundary of two different media with different 

dielectric constants, a perturbation in the particles associated electromagnetic field occurs 

[29]. This perturbation, or reorganizing of the electromagnetic field as the particle 

transitions to a new medium, releases transition radiation. An ICCD camera captures this 

near-field visible transition radiation measurement, and figure 3.1 illustrates an example 
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Figure 3.1: (a) A near-field OTR measurement for shot 28891 with appropriate scale length 
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for shot 28891 (4 mil Al). The ICCD camera, mounted upstream of the vacuum vessel, 

captures the forward-scattered OTR on the back side of the foil with a 20º offset. The 

measurement is taken 20 ns after the beginning of the electron pulse, ~30 ns before plasma 

formation. 

 An extracted gaussian profile from the OTR measurement yields the approximate 

spot size of the focused electron beam. For the copper and titanium foil experiments 

described in section 4.1.1, the gaussian profile yields a spot size of ~2 mm FWHM. A spot 

size of ~1 mm FWHM is measured for the Al, Ni, and C foils outlined in section 4.1.2. The 

hydrodynamic codes utilize these spot size values to replicate the experiments as best as 

possible.  

3.2 Foil Motion Measurements with PDV 

The two techniques typically used in the plasma physics and shock physics communities 

that measure velocity on shock-compressed materials include a velocity interferometer 

system for any reflector (VISAR) [30], and photonic Doppler velocimetry (PDV) [31]. The 

hydrodynamic motion of the foils heated by an intense electron beam using PDV will be 

discussed. This worked is largely based off of the recently published work on copper [32].  

 The PDV probe, implemented on Axis-1, instantaneously measures foil motion, 

displacement at the edge, and inferred plasma pressure in the elastic limit. The probe, a 

single collimated laser (λ = 1550 nm), is directed at the foil surface with a working distance 

of ~36 cm. Figure 3.2 best illustrates the process of heating the target foil, and measuring 

the hydrodynamic motion with the PDV probe. The probe, offset by 20º relative to the foil 

surface, avoids any interactions with the electron beam. Due to this offset, it measures the 

motion of the foil with a factor of 𝑣𝑧cos (20º). Since the probe wavelength is on the order 

of the surface roughness (~2 μm), it measures the nonspecular backscattering from the foil. 

It should be noted that the probe only measures along the probe axis, and does not provide 

complete information on the spherical plume expansion. However, multiple PDV probes 

positioned at various angular offsets would yield plume expansion measurements.  

 In figure 3.2, an optical fiber transports the laser light to a probe directed at the foil 

surface. This laser light illuminates the foil surface and reflects back into the same probe 
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[fig. 3.2 (1)]. As the surface expands during energy deposition [fig. 3.2 (2-3)], the reflected 

light becomes Doppler-shifted with some Doppler-shifted frequency, 𝑓𝐷. This Doppler-

shifted light interferes with the original laser light with a non-Doppler-shifted frequency, 

𝑓𝑜. The operating wavelength of the laser, 1550 nm, corresponds to a frequency of 𝑓𝑜 =

193 𝑇𝐻𝑧. The two sinusoidal wave forms of different frequencies generate a beat 

frequency, 𝑓𝑏𝑒𝑎𝑡 = 𝑓𝐷 − 𝑓𝑜. The wave forms travel to a detector and digitizer with a 

bandwidth high enough to measure 𝑓𝑏𝑒𝑎𝑡. For example, a velocity of 1000 m/s corresponds 

to a beat frequency of ~1.29 GHz, and it will be shown that our PDV measurements 

sometime exceed 4 km/s. Thus, the detector system must have a total bandwidth exceeding 

the multi-GHz range.  

 Figure 3.3 (a) illustrates the measured voltage response with the detector system 

for shot 25901, a 200-μm-thick Cu foil, with a 250 ns snapshot and 13.5 μs window in the 

inset. The voltage response is the beat wave calculated from the interference of the two 

frequencies mentioned above. Figure 3.3 (a) shows a large voltage response at 𝑡 ≈  20 ns 

to ~225 mV. The response exhibits the instantaneous measurement at the beginning of 

energy deposition and foil heating.  

 The signal noise before the initial response is ±25 mV yielding a S/N ratio of 9 at 

𝑡 ≈  20 ns. This S/N ratio decays during the electron pulse and as the foil 

hydrodynamically disassembles. The foil velocity during the pulse is calculated from the 

measured beat frequency and the original probe wavelength. 

                                       𝑣(𝑡) =
1

2
𝑓𝑏𝑒𝑎𝑡𝜆𝑜 ,                             Equation 3.1 

Figure 3.2: Illustration for target heating and PDV measurement.  
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where λo is the probe reference wavelength of 1550 nm. Figure 3.3 (b) shows the calculated 

velocity spectrogram from the voltage response for shot 25901. A velocity spread occurs 

later in time due to the probe penetrating an expanding Cu plume with fast and slow 

particles (ejecta) crossing the probe path. 

 The spectrogram yields the averaged velocity profile by selecting a region-of-

interest within a signal threshold of 10 dB around the velocity spread measured from the 

beat response. This averaged velocity profile is overlaid on the spectrogram in figure 3.3 

(b). Integrating the averaged velocity profile yields the averaged displacement of the foil 

at the edge shown in equation 3.2. 

                  < 𝛿𝑧 >= 𝑧𝑜 + ∫ < 𝑣 > 𝑑𝑡 ,                  Equation 3.2 

 The foil is initially static during the isochoric heating stage of the pulse. As the foil 

hydrodynamically disassembles, and the pressure in the elastic limit is calculated by 

                          𝑃𝐸(𝑡) =
1

2
𝐶0𝑣(𝑡)𝜌(𝑡) ,                        Equation 3.3 

where 𝐶0 is the sound speed of the material, and 𝜌(𝑡) is the calculated density along the 

probe path. This density stems from the expanded volume 𝑉(𝑡) = 𝑉𝑜 + 2𝐴𝛿𝑧 and the 

heated mass of the probed material, where A is the interrogated area of the probe, and 𝑉𝑜 is 

the initial probed volume. The calculation of the elastic pressure provides an approximation 

since we only consider the expanded volume along the probe’s axis. Extracting the pressure 

in the elastic limit before plastic deformation is applied to the foil PDV measurements in 

Figure 3.3: (a) Beat wave response measured with the PDV diagnostic. (b) Velocity 

spectrogram calculated from the voltage response. 

(a) (b) 
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Chapter 4 for Cu, Ti, Ni, Al, and C. The resulting pressure profiles yield the hydrodynamic 

disassembly times, or when the foils experience pressure release during energy deposition.  

3.3 Numerical Simulations 

3.3.1 The HELIOS-CR Code 

The numerical code used for the majority of this project is the 1-D radiation-magneto-

hydrodynamic software HELIOS-CR [33]. This code primarily exists in the inertial 

confinement fusion community for laser-produced plasma and z-pinch plasma simulation 

[34, 35]. However, a new capability that simulates electron energy deposition has been 

implemented and allows simulation of WDM experiments.  

 HELIOS-CR allows user specification of experimental geometries in the initial 

simulation setup.  The user specifies a planar, spherical, or cylindrical geometry that best 

replicates their experiment. The planar geometry suits the WDM experiments and 

simulates the foil targets. The simulated target is specified for thickness, material 

properties, the EOS models, and the optical properties. Initiated material properties include 

density, starting temperature, and thermal conductivity. The Spitzer model substitutes for 

the material thermal conductivity. EOS and optical tables used in the WDM simulations 

are pulled from PROPACEOS tables [36], but the HELIOS program can utilize other EOS 

models such as SESAME [37].  

 HELIOS-CR utilizes Lagrangian methods that solve conservation equations. The 

simulated geometry must be broken into discrete zones for computational purposes, often 

referred to as meshing the structure. The Lagrangian method involves the mesh moving 

with the fluid as it either expands or contracts during simulation which makes solving the 

complex hydrodynamic problems simpler. In the WDM experiments, a user-specified 

number of zones determines the resolution of the meshing structure. Typically, the higher 

number of zones correspond to a higher degree of accuracy, but costs increased 

computational time. For WDM simulations, a 1 zone/μm mesh meets accuracy and 

computational time requirements (i.e. a 100 μm foil would be broken into 100 zones).  

 It is assumed for simplification purposes that the energy transport in the plasma 

exhibits one-temperature (𝑇𝑒 = 𝑇𝑖) behavior, and that the electrons and the ions assume 



 

22 

Maxwellian distributions. Moreover, the user defines an input temperature for when 

materials initiate hydrodynamic motion. Initially, the materials are solid and static, and 

hydrodynamic motion occurs once it reaches the user defined temperature during energy 

deposition. Hydrodynamic motion corresponds with an expansion or contraction of the 

material, and the melting temperature of the material substitutes for this threshold. For 

example, the hydrodynamic motion threshold for copper would be its melting temperature 

of 1356 K, or 0.12 eV. Furthermore, the resulting plasma during energy deposition assumes 

local thermodynamic equilibrium (LTE). HELIOS-CR can model non-LTE kinetics of 

plasmas, but become quite complex and fall outside of this project’s scope.   

3.3.2 The HELIOS-CR Electron Beam Capability 

As mentioned previously, the electron energy deposition capability has been added in 

HELIOS-CR. Electron transport follows the Monte Carlo approach, and the incident 

boundary, electron energy, and the beam power require user specification. Particle 

accounting and transport occurs at every time step, ensuring a spatially smooth particle 

deposition. The code accounts for electronic stopping powers that determine how much 

energy is transferred to the material as the beam travels through each volumetric element. 

The code automatically tabulates the stopping energy curves for each specified element 

from the ESTAR database from NIST [25]. 

 For comparative purposes, the simulation specifications ensured replication of the 

WDM experiments to a feasible extent. Figure 3.4 shows the power density (
𝑇𝑊

𝑐𝑚2) profile 

of the simulated electron beam used for the copper and titanium HELIOS-CR simulations. 

This power density profile assumes a spot size of 2 mm. The simulated electrons are 

monoenergetic at 19.8 MeV, and the current profile is provided by the measurement at 

BPM21 for shot 25916. The copper and titanium simulations utilized a current with flat top 

at approximately 1.7 kA. Similar beam parameters are utilized for Al, C, and Ni foils, but 

with a flat top at approximately 1.44 kA. The HELIOS-CR code provides simulated values 

for density, temperature, velocity of the foil, and the pressure. These simulated 

hydrodynamic values are compared to the experiments for benchmarking purposes.  
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3.3.3 The LASNEX Code 

LASNEX, a 2-D Lagrangian radiation-hydrodynamics code, explores the physical 

processes of inertial confinement fusion and aids in target design [38]. It is used to 

benchmark a wide variety of heating methods such as laser, electron, and ion beam 

experiments. The LASNEX simulation evolves in time a 2-dimensional axially-symmetric 

plasma generated by an electron beam heated geometry in WDM simulations [32]. The 

code solves the Navier-Stokes equations with specified artificial viscosity and electron 

thermal conduction, including multigroup radiation transport. LASNEX utilizes the 

collisional stopping power curves for electrons and ionization cross sections to accurately 

model the experiments, and utilizes SESAME EOS tables. The simulated current density 

in the 2-D hydrocode mimics the measured OTR response for each set of experiments. 

Additionally, user specification of the current pulse and the energy deposition rate 

accurately models the foil experiments. This 2-D hydrodynamic code estimates the 

hydrodynamic quantities of electron temperature, density, velocity of the leading edge of 

the foil, and pressure within the foil utilizing the SESAME EOS tables. This allows direct 

comparison of the advanced LASNEX simulations to the experimental PDV data, and the 

1-D hydrocode, HELIOS-CR. 

Figure 3.4: Beam power input for simulated copper and titanium foils in HELIOS-CR. 
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CHAPTER FOUR – RESULTS AND DISCUSSION 

4.1 Photonic Doppler Velocimetry Results 

4.1.1 The Role of Foil Thickness on thydro 

The role of foil thickness on hydrodynamic disassembly time, 𝑡ℎ𝑦𝑑𝑟𝑜, is explored with the 

PDV diagnostic. Copper and titanium foils of 50, 100, and 200 μm thickness undergo 

energy deposition with the characteristic DARHT pulse of 80 ns FWHM, KE of 19.8 MeV, 

current of 1.7 kA, and beam spot size of 2 mm on each foil. The role of foil thickness on 

𝑡ℎ𝑦𝑑𝑟𝑜 is achieved by holding beam parameters constant from shot to shot. It has been 

hypothesized that the hydrodynamic disassembly time for a rectangular two-dimensional 

foil is found by equation 4.1.  

                                          𝑡ℎ𝑦𝑑𝑟𝑜 =
𝛥𝑧

2𝐶0
 ,                            Equation 4.1 

where Δz is the foil thickness, and 𝐶0 is the sound velocity at ambient pressure. This 

equation assumes expansion on both sides of the target. The sound velocities at ambient 

pressure for copper and titanium are 3.93 km/s and 4.94 km/s. These values are found from 

Hugoniot data tables [39]. Equation 4.1 states that the hydrodynamic disassembly time 

scales linearly with foil thickness, and these set of experiments were conducted to study 

this approximation.  

 Figure 4.1 (a-f) summarizes the PDV results made for copper foils of varying 

thickness (2 mil ≈ 50 μm) where 𝑡 =  0 is the onset of the electron pulse. Figure 4.1 (a), 

(b), and (c) illustrate the spectrograms obtained from the beat wave response for 50, 100, 

and 200-μm-thick copper foils during energy deposition, respectively. The spectrograms 

exhibit no presence of a shock. Figure 4.1 (d) compares the experimental average foil 

velocity, (e) compares the average foil displacement at the edge, and (f) compares the 

average elastic pressure of each copper foil.  

 The average particle velocity exhibits a linear ramp in the first ~30 ns, and then 

begins to flatten after disassembly for each foil. This reduction in acceleration coincides 

with pressure release and the hydrodynamic disassembly of the foil. The achieved particle  

velocity increases as a function of foil thickness as shown by figure 4.1 (d). 
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Figure 4.1: Experimental measurements of copper foils with the PDV probe. (a-c) Spectrograms 

for 50, 100, and 200-μm-thick Cu foils, (d) average particle velocity, (e) average foil 

displacement at the edge, and (f) average elastic pressure in the foil. 

(d) (e) 

(a) (b) (c) 

(f) 

Time (ns) Time (ns) Time (ns) 
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 As a result, the foil displacement at the edge increases with foil thickness as 

indicated by figure 4.1 (e). Thicker foils achieve higher inferred pressures, and later 

hydrodynamic disassembly times indicated by 4.1 (f). The hydrodynamic disassembly time 

is defined as the point where the foils experience a pressure release, or the peaks in the 

pressure profiles. Table 4.1 summarizes the hydrodynamic values obtained from the PDV 

data for copper.  

 In table 4.1, the hydrodynamic disassembly time, 𝑡ℎ𝑦𝑑𝑟𝑜, increases from ~25 ns for 

50-μm-thick Cu to ~40 ns for 200-μm-thick Cu. The heated mass increases with foil 

thickness, and leads to increased energy deposition and later values of 𝑡ℎ𝑦𝑑𝑟𝑜.The heating 

process is isochoric until the hydrodynamic disassembly time since >50% of the density 

remains constant until this point. As indicated in table 4.1, the average particle velocity, 

<𝑣>, increases from 0.9 km/s for 50-μm-thick Cu to 2.0 km/s for 200-μm-thick Cu at 

𝑡ℎ𝑦𝑑𝑟𝑜, more than a 2x increase. The average displacement of the foil edge, <δz> (Eq. 3.2), 

at 𝑡ℎ𝑦𝑑𝑟𝑜 increases from 14 μm for the thinnest foil to 37 μm for the thickest foil, and results 

from increased particle velocity as 𝛥𝑧 increases. Calculated pressures in the elastic limit, 

<𝑃> (Eq. 3.3), at 𝑡ℎ𝑦𝑑𝑟𝑜 of each foil are 11, 18, and 24 GPa for the 50, 100, and 200-μm-

thick Cu foils, respectively. The 24 GPa pressure achieved in the 200-μm-thick foil at 𝑡 =

40 𝑛𝑠 is near the solid-density Fermi pressure, 33 GPa [40]. As the thickness increases, the 

energy deposited in the material from electronic collisions is estimated by equation 4.2 

[10]. 

               𝛥𝐸𝑑𝑒𝑝 = 𝑞
𝑑𝐸

𝑑𝑥
𝜌𝑜𝛥𝑧 ,                      Equation 4.2 

Table 4.1: Summary of hydrodynamic values for copper foils. 

Foil Thickness 

(μm) 

thydro 

(ns) 

<v> @ thydro 

(km/s) 

<δz> @ thydro 

(μm) 

<P> @ thydro 

(GPa) 

50 25 0.9 14 11 

100 31 1.4 21 18 

200 40 2.0 37 24 
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Thicker samples of an identical material will see more electronic collisions and as a result 

an increase in deposited energy and heating time. This will lead to later hydrodynamic 

disassembly times, increased foil pressures, higher particle velocities, and displacements.  

 Titanium foils of varying thickness exhibit similar behavior compared to copper. 

Hydrodynamic values for titanium foils (50, 100, and 200 μm) are summarized in table 4.2.  

The data in table 4.2 indicates the disassembly time for 50 and 100 μm Ti foils are 

approximately equal at 25 ns and 26 ns, respectively. The hydrodynamic disassembly time 

increases, however, for the 200 μm foil to 33 ns. The other hydrodynamic values at 𝑡ℎ𝑦𝑑𝑟𝑜 

differ greatly as a function of Δz indicated by the average velocity, displacement of the 

foil, and inferred pressure.  

 The experimental measurements do not follow the linear relationship exhibited by 

equation 4.1. Figure 4.2 illustrates the hydrodynamic disassembly time as a function of 

material thickness, where Ti data clearly shows a nonlinear relationship. Copper may 

exhibit the linear relationship between hydrodynamic disassembly time and material 

thickness, but similar experiments with thicker foils need to be studied. This would involve 

repeating the experiments with foils of 500, or 1000 μm thickness. However, HELIOS-CR 

indicates a linear relationship between 𝑡ℎ𝑦𝑑𝑟𝑜 and ∆𝑧 as outlined in Section 4.2.  

 The PDV diagnostic yields an additional approximation, the electron and ion 

temperatures after foil disassembly. The electron temperature, 𝑇𝑒, is calculated from the 

average velocity, or sound speed, from the PDV measurements indicated in figure 4.1 (d). 

The particle velocities approach the sound speed after the hydrodynamic disassembly of 

the foil. If we assume that the measured velocity from the PDV data mimics the ion sound 

velocity after disassembly, equation 4.3 yields the electron temperature [41]. 

𝑇𝑒  ≈
𝐶𝑠

2𝑚𝑖

𝛾𝑍𝑘𝐵
 ,                               Equation 4.3 

where 𝑚𝑖  is the mass of the ion, 𝛾 is the adiabatic index or isentropic expansion factor 

which is 5/3 for a monoatomic metallic plasma, 𝑍 is the charge state of the plasma (assumed 

to be 1), and 𝑘𝐵  is the Boltzmann constant.  

 We assume the velocity spread in the PDV data after disassembly mimics the  
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Foil Thickness 

(μm) 

thydro 

(ns) 

<v> @ thydro 

(km/s) 

<δz> @ thydro 

(μm) 

<P> @ thydro 

(GPa) 

50 25 1.5 14 12 

100 26 2.6 44 17 

200 33 2.8 55 21 

 

Table 4.2: Summary of hydrodynamic values for titanium foils. 

Figure 4.2: Hydrodynamic disassembly time as a function of 

foil thickness for Cu and Ti. 
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plasma thermal ion distribution, so an approximation of the ion temperature is found. The 

spread in the PDV data, as described previously, occurs from the range of fast and slow 

particles (ejecta) the PDV probe interrogates. Equation 4.4 yields an approximation in the 

ion temperature. 

𝑇𝑖 ≈
𝑣𝑇𝑖

2 𝑚𝑖

𝑘𝐵
 ,                                          Equation 4.4 

where 𝑣𝑖 is the velocity spread directly in PDV measurements.  

 Figure 4.3 (a) and (b) show the approximate electron and ion temperature of the 

copper PDV measurements. Figure 4.3 (a) shows the electron temperature increases as a 

function of foil thickness. The approximate electron temperature after disassembly is ~0.2-

0.3 eV from 25-120 ns for the 50-μm-thick Cu foil in shot 25850. Te reaches ~0.5 eV from 

30-75 ns for 100-μm-thick Cu foil in shot 25852, and then quickly increases to ~1.2 eV at 

120 ns. Electron temperatures range from 0.7 eV at 45 ns to ~1.5 eV at 120 ns for the 

thickest Cu foil of 200 μm in shot 25901. Fig. 4.3 (b) shows the ion temperatures calculated 

from the PDV data. There is no clear correlation seen in the ion temperature profiles for 

the Cu foils throughout the duration of the electron pulse. However, these approximations 

exhibit the two-temperature assumption, 𝑇𝑒 ≠ 𝑇𝑖, that is expected in WDM experiements.  

 The approximation in electron and ion temperatures from the PDV measurements 

require benchmarking with other diagnostics.  

 

 

 

 

 

 

 

 

 

 

 
Figure 4.3: Calculated Cu (a) electron and (b) ion temperatures from PDV measurements.   

(a) (b) 
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These diagnostics include UV and X-ray spectrocopy diagnostics, which yield time-

resolved measurements of electron and ion temperatures, and charge state. Interferometry 

implemented on Axis-1 would yield electron density measurements.   

4.1.2 The Role of Target Material on thydro 

The role of foil material on foil hydrodynamic behavior is explored. Metallic foils of Al 

1100 and Ni, as well as a nonmetallic foil of pyrolytic carbon are heated with a 100-ns-

long relativistic electron bunch with 1.44 kA of beam current, and a spot size of ~1 mm 

FWHM. The 1.44 kA of beam current corresponds to ~113 μC of deposited charge on the 

Al, Ni, and C foils. The thickness of the foils is held constant at 100 μm, as well as the 

beam parameters from shot to shot to study the role of the target material on the 

hydrodynamic behavior. The PDV diagnostic obtains the hydrodynamic quantities of 

particle velocity, foil displacement, pressure in the elastic limit, and the hydrodynamic 

disassembly time.  

 It is important to quantify the deposited energy into each foil using equation 4.2. 

The deposited energy is based off of the electronic collisional stopping power in each 

material at ~20 MeV, the solid density of the material, and the deposited charge. As stated 

previously, the beam current of 1.44 kA corresponds to ~113 μC of charge, while the 1.7 

kA beam current used for the Cu and Ti foils provided ~130 μC of deposited charge. We 

cannot directly compare the Ni, Al, and C data to the Cu and Ti data since the total charge, 

spot size and envelope were different in the two experiments. However, two experiments 

with different beam parameters offers the ability to benchmark more scenarios in HELIOS-

CR. Furthermore, no conclusions can be drawn yet of these experiments, but provide 

further benchmarking capability for the hydrocodes.  

 Table 4.3 lists the deposited energy in each foil based off of the stopping power, 

deposited charge, and material properties for Al, Ni, and C. These values are based off of 

a beam current of 1.44 kA, and spot size of ~1 mm. Table 4.4 lists the deposited energy for 

Cu and Ti foils with a beam current of 1.7 kA, and a spot size of ~2 mm. These tables 

illustrate that only a small portion of the available beam energy (multi-kJ) deposits into 

each foil. A 100-ns-long, 1.7 kA beam at 19.8 MeV will have a total available energy of  
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Element 𝜌0 (𝑔/𝑐𝑚3) (
𝑑𝐸

𝑑𝑥
)

𝑐𝑜𝑙
 @ 20 MeV 

(MeV/cm) 

𝐸𝑑𝑒𝑝 (J) 

Pyrolytic C 2.2 3.97 4.49 

Al 1100 2.7 4.60 5.20 

Ni 8.91 14.1 15.9 

 

Table 4.3: Values of stopping power, deposited charge, and deposited energy for 

100 μm foils of C, Al, and Ni. Assumes a beam spot size of 1 mm. 

Table 4.4: Values of stopping power, deposited charge, and deposited energy for 

100 μm foils of Cu and Ti. Assumes a beam spot size of 2 mm. 

 
 

Element 𝜌0 (𝑔/𝑐𝑚3) (
𝑑𝐸

𝑑𝑥
)

𝑐𝑜𝑙
 @ 20 MeV 

(MeV/cm) 

𝐸𝑑𝑒𝑝 (J) 

Ti 4.51 7.14 10.0 

Cu 8.96 13.6 19.0 
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~3.4 kJ, which is roughly two orders of magnitude greater than the deposited amounts. The 

estimated deposited energy into pyrolytic carbon, similar to Al, is approximately 5 J, and 

about three times less than the estimated energy in Ni foils at 15.9 J. The energy deposited 

and material properties (phase diagram) play a role in the hydrodynamic behavior of the 

foils. 

 We apply the same PDV analysis to Al, C, and Ni foils to obtain hydrodynamic 

values. These include the average particle velocity, foil displacement at the edge, and 

inferred pressure in the elastic limit. Figure 4.4 (a-b) illustrates the inferred pressures of 

each foil material at 100 μm thickness. Recall the separate beam parameters for each 

experiment. 

 It is clear that the material has a significant effect on the hydrodynamic behavior, 

especially the hydrodynamic disassembly time and the inferred pressure as exhibited in 

figure 4.4 (a). Shot 28901, a Ni foil, achieves an inferred pressure of ~31 GPa at 𝑡ℎ𝑦𝑑𝑟𝑜  of 

~19 ns, while the carbon target reaches an inferred pressure of ~3.6 GPa at 𝑡ℎ𝑦𝑑𝑟𝑜 ~42 ns. 

The carbon hydrodynamic disassembly occurs much later compared to foils of Ni or Al, 

and results from multiple factors.  The optical and specific latent heat properties, deposited 

energy, and sound speed of the material will play a role in the hydrodynamic behavior.  

 Table 4.5 lists the sound speed, S/N ratio from each beat wave response, 

hydrodynamic disassembly time, and the inferred plasma pressure at 𝑡ℎ𝑦𝑑𝑟𝑜 to summarize 

the hydrodynamic results based on material effect. These values, as well as the values 

obtained for the thickness experiments, are compared to the LASNEX and HELIOS-CR 

simulations in section 4.2. 
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Figure 4.4: Inferred plasma pressures for targets of (a) Al, Ni, C, and (b) Ti, and Cu. 

All foils are 100-μm-thick.  

(a) (b) 

Element 𝐶0 (km/s) V Response S/N thydro (ns) <P> @ thydro (GPa) 

Pyrolytic C 5.11* 2.5 42 3.6 

Al 1100 5.23 19 21 8.0 

Ni 4.52 2.9 19 30.5 

Ti 4.94 1.8 26 17.6 

Cu 3.93 14 31 18.3 

 

Table 4.5: Summary of hydrodynamic values for Al, Ni, C, Cu, and Ti foils. Included are 

the S/N ratios from the beat waves. *Not at ambient pressure. 
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4.2 HELIOS-CR Results 

4.2.1 The Role of Simulated Foil Thickness on thydro 

HELIOS-CR, a 1-D hydrodynamic code, simulates the WDM foils studied with the PDV 

diagnostic. The copper and titanium simulations are conducted with a current of 1.7 kA, 

and spot size of 2 mm based off of the OTR measurements in Section 3.1.2. Additionally, 

the Al, Ni, and C foils are simulated with a beam current at 1.44 kA, and spot size of 1 mm 

based off of experimental beam parameters. The code simulates the thickness effect and 

the material effect on 𝑡ℎ𝑦𝑑𝑟𝑜 with these user specifications.  

 Figure 4.5 shows the thickness effect on the foil pressure, and hydrodynamic 

disassembly time for simulated copper foils with 1 ns resolution. The disassembly time, as 

well as the centerline pressure, increases with ∆𝑧 as seen in the experiments. During the 

initial heating stage, 𝑡 < 𝑡ℎ𝑦𝑑𝑟𝑜, the pressure builds up linearly across the foils until a point 

of hydrodynamic disassembly. The foils experience pressure release at 𝑡ℎ𝑦𝑑𝑟𝑜, and a 

significant drop in pressure is observed. There is a second peak present in the pressure 

profiles due to the electron beam depositing energy up until ~100 ns into the simulation. 

Thus, the foil disassembles and an increase in pressure later in time, 𝑡 > 𝑡ℎ𝑦𝑑𝑟𝑜, is observed 

around ~100 ns.  After the electron pulse, the foil pressure decays gradually as the 

simulated plasma expands in time and space.  

 Similar simulations are conducted with titanium foils of varying thickness, and a 

summary of the hydrodynamic values for copper and titanium are shown in table 4.6. The 

HELIOS-CR simulations show comparable thickness effects on the hydrodynamic motion 

to the PDV measurements in Section 4.1. The thinnest Cu foil, 50-μm-thick, achieves a 

centerline pressure of 10.6 GPa at 𝑡ℎ𝑦𝑑𝑟𝑜 = 21 𝑛𝑠, and increases to 24.8 GPa at 𝑡ℎ𝑦𝑑𝑟𝑜 =

38 𝑛𝑠 for the 200-μm-thick Cu foil. Similarly, the 50-μm-thick titanium foil reaches a 

centerline pressure of 7 GPa at 𝑡ℎ𝑦𝑑𝑟𝑜 = 24 𝑛𝑠, and the 200-μm-thick foil reaches 12.3 

GPa at 𝑡ℎ𝑦𝑑𝑟𝑜 = 36 𝑛𝑠. The simulated hydrodynamic values show a clear thickness effect 

in that a later 𝑡ℎ𝑦𝑑𝑟𝑜 and centerline pressure is achieved with increased thickness.  

 Figure 4.6 (a) illustrates the calculated relationship between foil thickness and the 

hydrodynamic disassembly time.  
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Figure 4.5: Simulated pressure profiles of 50, 100, and 200-μm-thick copper foils in 

HELIOS-CR. The beam current is 1.7 kA, and spot size of 2 mm.  

Element Foil Thickness 

(μm) 

Simulated # 

of Zones 

thydro (ns) <P> @ thydro 

(GPa) 

Copper 50 50 21 10.6 

100 100 27 15.8 

200 200 38 24.8 

Titanium 50 50 24 7.0 

100 100 28 8.9 

200 200 36 12.3 

 

Table 4.6: Simulated Ti and Cu hydrodynamic values in HELIOS-CR. 
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Unlike the experimental PDV measurements, the simulated disassembly times clearly 

follow a linear relationship with thickness for copper and titanium foils. The hydrodynamic 

disassembly times for titanium and copper are fairly consistent with each other. Additional 

simulations of 500 μm and 1000 μm are plotted to confirm the linear relationship described 

by equation 4.1. 500-μm-thick copper reaches a centerline pressure of 44 GPa at 𝑡ℎ𝑦𝑑𝑟𝑜 =

68 𝑛𝑠, while the 1000-μm-thick foil achieves a pressure of 67 GPa at 𝑡ℎ𝑦𝑑𝑟𝑜 = 107 𝑛𝑠. 

This result suggests that a copper foil of ~1 mm will disassemble ~10 ns after the electron 

pulse. In DARHT hydrotests, a 1-mm-thick Ta conversion target will also disassemble near 

the end of the electron pulse.  

 The simulated electron temperatures of the three copper foils, shown in figure 4.6 

(b), are largely similar to one another. At early time, 𝑇𝑒 increases ~linearly with time as the 

beam deposits energy into the foil up until the end of the pulse. The simulated temperature 

then decays in time after energy deposition occurs. The HELIOS-CR simulations suggest 

the foil thickness has little effect on the electron temperature as compared to the PDV 

calculations in Section 4.1. The simulated ion temperatures follow the same trends since 

the hydrodynamic simulations are set up to follow a one-temperature model (𝑇𝑒 = 𝑇𝑖). 

Future simulations will explore the two-temperature regime as observed in the PDV 

measurements.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.6: (a) Simulated relationship between the thickness and hydrodynamic 

disassembly time for titanium and copper foils. (b) Simulated electron temperature 

for copper foils 

(b) 

(a) 
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4.2.2 The Role of Simulated Target Material on thydro 

The preliminary data on the material effect on 𝑡ℎ𝑦𝑑𝑟𝑜 is simulated with HELIOS-CR. 

Simulated foils of Al, Ni, and C of 100 μm thickness are irradiated with a 100-ns-long 

relativistic electron beam with current of 1.44 kA, and spot size of 1 mm. The 

hydrodynamic values of centerline pressure and 𝑡ℎ𝑦𝑑𝑟𝑜 are extracted at the point of pressure 

release. These simulations mainly serve to benchmark the PDV values obtained in Section 

4.1.  

 Table 4.7 summarizes the simulated hydrodynamic values obtained for Al, Ni, and 

C foils. Disassembly times vary widely across the materials, comparative to the PDV 

measurements.  Pyrolytic carbon achieves a centerline pressure of 3.6 GPa at 𝑡ℎ𝑦𝑑𝑟𝑜 =

42 𝑛𝑠, much later in time compared to other foils of similar thickness. Al 1100 reaches a 

centerline pressure of 8.0 GPa at 𝑡ℎ𝑦𝑑𝑟𝑜 = 21 𝑛𝑠, and Ni reaches 30.5 GPa at 𝑡ℎ𝑦𝑑𝑟𝑜 =

19 𝑛𝑠. A Ni foil of the same thickness achieves a pressure nearly 4x Al, or 8.5x pyrolytic 

carbon. This wide range of hydrodynamic values results from a multitude of factors 

including the density of the material, energy deposited, thermal conductivity, optical and 

EOS models, and latent heat properties.  

 

 

 

 

 

 

 

 

 

 

 

4.3 Numerical and Experimental Comparison 

The purpose of this section is to benchmark the hydrodynamic codes with the experimental 

results. As it will be shown, the hydrodynamic codes simulate the WDM experiments with 

accuracy, and lay the groundwork for further experimental development. We compare the 

simulated hydrodynamic values to the values obtained through PDV measurements. PDV 

Element thydro (ns) <P> @ thydro (GPa) 

C 42 3.6 

Al 21 8.0 

Ni 19 30.5 

 

Table 4.7: Summary of hydrodynamic values for simulated Al, Ni, and C foils. Each foil is 

100-μm-thick  
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and HELIOS-CR results are compared to LASNEX simulations for 100 and 200-μm-thick 

copper and titanium.  

 Table 4.8 (a-b) summarize the results for Cu and Ti PDV measurements, and their 

respective hydrodynamic simulations. It is shown in Table 4.8 (a) that HELIOS-CR 

simulates the warm dense foils with great accuracy. In the PDV measurement for 200-μm-

thick Cu, a pressure of 24 GPa at 𝑡ℎ𝑦𝑑𝑟𝑜 = 40 𝑛𝑠 is achieved. HELIOS-CR, with relevant 

beam parameters, achieves a simulated pressure of 24.8 GPa at 𝑡ℎ𝑦𝑑𝑟𝑜 = 38 𝑛𝑠. The 1-D 

HELIOS-CR simulations agree well with the PDV results for these particular data points 

in comparison to LASNEX that simulated a centerline pressure of 32 GPa at 𝑡ℎ𝑦𝑑𝑟𝑜 =

31 𝑛𝑠 for 200-μm-thick copper foils. At the time of writing this thesis, there were no 

LASNEX simulations for 50-μm-thick copper or titanium foils, and thus are omitted. 

 Titanium simulations differ somewhat from PDV measurements. For 200-μm-thick 

titanium, PDV measured a pressure of 21 GPa at 𝑡ℎ𝑦𝑑𝑟𝑜 = 33 𝑛𝑠, while HELIOS-CR 

simulated a pressure of 12.3 GPa at 𝑡ℎ𝑦𝑑𝑟𝑜 = 36 𝑛𝑠. The hydrodynamic disassembly times 

across the titanium foils agree fairly well between the simulation and experiment. 

However, simulated pressures differ greatly than what is calculated from the PDV 

measurements. This could be due to an inaccurate Ti EOS model used in HELIOS-CR, and 

leaves further exploration with updated EOS models. 

 Table 4.9 summarizes the hydrodynamic values for Al, Ni, and C from PDV and 

HELIOS-CR. This preliminary data does not have LASNEX simulations included. Overall, 

the HELIOS-CR simulations are comparable to the PDV measurements for 100-μm-thick 

foils of Al and Ni. The PDV measured an inferred pressure of 8 GPa at 𝑡ℎ𝑦𝑑𝑟𝑜 = 21 𝑛𝑠, 

while the simulated pressure reached 9.8 GPa at 𝑡ℎ𝑦𝑑𝑟𝑜 = 17 𝑛𝑠 for Al. Ni reached an 

inferred PDV pressure of 30.5 GPa at 𝑡ℎ𝑦𝑑𝑟𝑜 = 19 𝑛𝑠, while simulated Ni reached a 

pressure of 28.9 GPa at 𝑡ℎ𝑦𝑑𝑟𝑜 = 18 𝑛𝑠. However, carbon hydrodynamic values differed 

greatly between simulation and the experiment. The pyrolytic C PDV inferred pressure 

reached 3.6 GPa at 𝑡ℎ𝑦𝑑𝑟𝑜 = 42 𝑛𝑠, but the simulation resulted in a pressure of 11 GPa at 

𝑡ℎ𝑦𝑑𝑟𝑜 = 19 𝑛𝑠. This could result from a multitude of effects including the low deposited 

energy, or the EOS model used in HELIOS-CR. 



 

39 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Data 

Acquisition 

Thickness 

(μm) 

thydro (ns) <P> @ thydro 

(GPa) 

PDV 50 25 11 

100 31 18 

200 40 24 

HELIOS-CR 50 21 10.6 

100 27 15.8 

200 38 24.8 

LASNEX 50 - - 

100 22 16.2 

200 31 32 

 

Table 4.8 (a): Summary of the hydrodynamic values from PDV and simulations for 

Cu.   

Data 

Acquisition 

Thickness 

(μm) 

thydro (ns) <P> @ thydro 

(GPa) 

PDV 50 25 12 

100 26 17 

200 33 21 

HELIOS-CR 50 24 7 

100 28 8.9 

200 36 12.3 

LASNEX 50 - - 

100 20 7.6 

200 30 15.8 

 

 

Table 4.8 (b): Summary of the hydrodynamic values from PDV and simulations for 

Ti.   
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 PDV HELIOS-CR 

Element thydro (ns) <P> @ thydro 

(GPa) 

thydro (ns) <P> @ thydro 

(GPa) 

Pyrolytic C 42 3.6 19 11 

Al 1100 21 8 17 9.8 

Ni 19 30.5 18 28.9 

 

Table 4.9: Summary of the hydrodynamic values from PDV and simulations for 100-

μm-thick C, Al, and Ni.   
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CHAPTER FIVE – CONCLUSIONS AND RECOMMENDATIONS 

The following document outlines the process of characterizing warm dense foils during 

energy deposition with the PDV diagnostic and hydrodynamic simulation. The PDV probe 

provides instantaneous measurements of particle velocity, foil displacement at the edge, 

and is used to infer the pressure in the elastic limit for a variety of foil materials. The 

hydrodynamic quantity of pressure, along with temperature and density, describe the EOS 

of materials that relate the functions of state under a given set of physical conditions. These 

hydrodynamic studies support the mission of DARHT, and provides insight into beam-

target interactions to optimize Bremsstrahlung production and radiographic quality. 

DARHT Axis-1 produces large homogenous volumes of long-lasting (~100’s of ns) WDM, 

and provides the ability to benchmark hydrodynamic codes and equation of state 

measurements.  

 In conclusion, the particle velocity, inferred pressure, and the hydrodynamic 

disassembly time are proportional to the target thickness for copper and titanium. However, 

the relationship between 𝑡ℎ𝑦𝑑𝑟𝑜 and the foil thickness does not vary linearly as described 

by equation 4.1, and PDV measurements with thicker foils (>500 μm) would aid in 

describing the relationship. The PDV diagnostic yields the approximate electron and ion 

temperature of copper plasma after it hydrodynamically disassembles. It is also shown that 

Te increases as energy deposition continues and with foil thickness. Measurements also 

suggest that the WDM experiments operate in a two-temperature regime (𝑇𝑖 ≠ 𝑇𝑒). 

Additionally, the material of the target plays a significant role on the hydrodynamic 

behavior during energy deposition. This preliminary data on the material effect provides 

further benchmarking scenarios in the hydrodynamic simulations.  

 The 1-D hydrodynamic code HELIOS-CR models the foil targets during energy 

deposition with the recently added electron beam capability. HELIOS-CR and LASNEX 

codes simulate the beam-target interactions, and the resulting hydrodynamic values are 

extracted and compared to the experimental PDV values with reasonable agreements. 

HELIOS-CR explores the thickness and material effect on 𝑡ℎ𝑦𝑑𝑟𝑜, yielding a linear 

relationship as described in equation 4.1 for copper and titanium. Simulations in HELIOS 
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suggest the electron temperature in Cu foils varies by a small amount as a function of foil 

thickness. The initial heating stage in HELIOS-CR is valid, but simulation of the targets 

after disassembly needs further exploration. 

 The project objectives in section 1.2 includes the extraction of hydrodynamic 

values during energy deposition of the target foils, simulation of the results in the 

hydrodynamic codes, and benchmarking the simulations for future applications. Each of 

these objectives are met with confidence, and the groundwork for future studies has been 

established.  

 It is recommended that further parametric studies on the thickness effect on 𝑡ℎ𝑦𝑑𝑟𝑜 

should include foils of greater thickness (>500 μm) in order to better understand the 

relationship between ∆𝑧 and 𝑡ℎ𝑦𝑑𝑟𝑜. Furthermore, the hydrodynamic simulations in 

HELIOS-CR should be explored with updated EOS and optical property tables. This may 

bridge the gap in understanding the foil simulations after disassembly. Quantification of 

𝑛𝑒 and 𝑇𝑒 during the warm dense phase would provide the ability to benchmark existing 

EOS models. Diagnostics currently being tested and fielded on DARHT Axis-1 include 

interferometry, UV and X-ray spectroscopy for the measurement of these hydrodynamic 

values. 
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