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ABSTRACT 

 
Smart drug delivery platforms such as designer liposomes can be used to enhance 
medicinal properties by enabling control over the time and location of therapeutic 
cargo release.  This can be achieved by designing liposomes that respond to 
different stimuli by releasing encapsulated contents.  Specifically, this work 
focuses on the synthesis of ion recognition lipid switches.  These lipids are 
designed such that their physical properties are altered upon chelation of a given 
metal ion, in this case Zn2+, becoming membrane destabilizing upon molecular 
recognition.  This contributes to the current state of passively controlled release, 
where pathophysiological conditions associated with a diseased site are used to 
control spatiotemporal release of therapeutic cargo.  The use of molecular 
recognition events to effect conformational change and thus cargo release is a 
newly emerging field of research.  Here, a panel of zinc recognition lipids based 
on known zinc chelating moieties including trispicoylamine (TPA) and N,N,N′,N′-
Tetrakis(2-pyridylmethyl) ethylenediamine (TPEN) were synthesized and their 
release potential analyzed.  With incorporation into a liposome platform, these 
lipids can be used to enhance the selectivity of release at diseased cells exhibiting 
elevated zinc concentrations including ischemic tissues, neurodegenerative 
diseases, and certain cancer types.3-8    
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CHAPTER ONE  

LIPIDS AND LIPOSOMES:  PROPERTIES, STRUCTURES, AND 

GENERAL INFORMATION 

Lipids are unique biomolecular structures, each with a specific set of physical and 

chemical properties.  Via their self-assembly into liposomes, lipids can be 

harnessed for desired applications in molecular recognition and drug delivery.  

Liposomes are advantageous on this front due to their controllable size, potential 

for surface modifications, non-immunogenicity, and ability to solubilize multiple 

drug types.  First, we will discuss the general physical attributes of lipids and 

biologically relevant lipids and their functions.  Then, we will discuss the power of 

the liposome as a drug delivery platform.  Finally, we will dive into synthetic lipids 

and their numerous applications.    

1.1. General Structure and Properties of Lipids  

Lipids are defined by their amphiphilic structures.  When dispersed in aqueous 

media, they spontaneously form aggregates driven by the disparity of polarities 

that exist within the structure.  Each lipid is composed of a polar (hydrophilic) 

headgroup and a nonpolar (hydrophobic) tail region, as depicted in Figure 1.  

Lipids have an overall shape based on the size ratio between these two sections 

of the structure.  Lipids with varying molecular shapes will form different self-

assembled materials to maximize attractive properties when dispersed in 

aqueous media.  The lipid shapes fall into one of three general categories:  

cylinder, cone, or wedge.  These shapes are calculated via the shape parameter 

(S), as defined in equation 1.9  The shape of the lipid will determine its membrane   

forming capabilities.  The different lipid shapes and their resultant aggregate 

formations are shown in Figure 1.  When lipids possess S=1, they exhibit 

cylindrical shapes and are membrane forming with polar headgroups of  

𝑆 =  
 𝑐𝑟𝑜𝑠𝑠−𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑝𝑜𝑙𝑎𝑟 ℎ𝑒𝑎𝑑𝑔𝑟𝑜𝑢𝑝 𝑥 𝑙𝑖𝑝𝑖𝑑 𝑙𝑒𝑛𝑔𝑡ℎ

𝑙𝑖𝑝𝑖𝑑 𝑣𝑜𝑙𝑢𝑚𝑒
         (Equation 1) 
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Figure 1.  Lipid structure and shape properties.  

a) The general structure of a lipid.  Lipids are composed of (A) a hydrophobic tail 

region consisting of alkyl tails with varying degrees of unsaturation (B) a linking 

group between tail and head and (C) a polar head group. b) Lipid shapes and their 

resultant aggregate and macrostructures when dispersed in aqueous media.   
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approximately the same diameter as the lipid tails. When dispersed in aqueous 

media, these lipids preferentially form bilayer materials including spherically 

shaped liposomes.  These lipid bilayers close themselves into vesicles in order to 

maintain separation of their hydrophobic tails from the aqueous media which 

forms an aqueous pocket inside of the lipid bilayer.  Lipid vesicles include 

unilamellar vesicles, also called liposomes, and multilamellar vesicles, which are 

large vesicles containing smaller vesicles within their aqueous core.  The 

advantages and properties of these lipid vesicles will be discussed at length in a 

future section.   

 

When S>1, lipids take on a cone shape.  These lipids have a larger headgroup 

radius as compared to their tail area, and as a result favor assembly into micelles 

in aqueous solution.  Micelles lack the aqueous inner pocket of liposomes with 

instead their inner layer being composed of the hydrophobic tails.  However, they 

operate under the same properties to shield their hydrophobic tails from aqueous 

media.  The final lipid shape is the inverted cone.  These lipids possess a small, 

usually highly charged, headgroup with a comparably large hydrophobic region, 

giving them a shape parameter of S<1.  The lipids in this category induce negative 

curvature in a membrane environment, and preferentially self-assemble into 

inverted micelles.  Here, the hydrophilic headgroups form the inner core with the 

hydrophobic tails extending outward and composing the outer layer.  In the same 

way that bilayers will self-assemble into liposomes to shield their hydrophobic tails 

from aqueous conditions, inverted micelles will aggregate into an inverted 

hexagonal phase structure, where multiple inverted micelles come together tail-

to-tail.  This shields the outer hydrophobic layer of the inverted micelle from 

aqueous conditions.  Of these three macrostructures, liposome, micelle, 

hexagonal phase, the liposome presents the most interesting possibility as a drug 

delivery platform due to the ability to manipulate their membrane properties.  By 

exploiting lipids of different shapes, membrane stability can be controlled and 

utilized as a method of achieving cargo release.  This property is at the core of 
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liposomal controlled release platforms, where switching from membrane forming 

(S=1) to non-bilayer (S>1) lipids is the main method for the release of 

encapsulated cargo.         

1.2. Lipids in the Biological Setting 

Natural lipids, those produced through biological processes, are key cell to viability.  

They compose 50% of the mass of eukaryotic cellular membranes and are 

responsible for the membrane structural integrity.10  It is the unique structure of 

lipids that makes them suitable for membrane formation, as previously discussed.  

Non-membrane supporting lipids, such as inverted cone shaped lipids, are also 

present in the biological milieu, but only at lower percentages that don’t disturb 

bilayer stability.  These serve important and tightly regulated functions within the 

cell as well.  Natural lipids fall into two main categories, glycerophospholipids and 

sphingolipids.  These groups are determined by which molecule the lipids are 

derived from, glycerol or sphingosine, respectively.  Sterols, such as cholesterol, 

are also grouped under the definition of lipids because they are also amphiphilic 

membrane components, though they don’t follow the same general structure of 

other lipids.  Nevertheless, cholesterol is an abundant membrane component and

 
Figure 2.  The structures of some biologically relevant lipids. 
Polar headgroups for DAG, PA, PS, PIPns, PE, and PC are as shown.  
Hydrophobic tail length and degree of saturation vary between each lipid.  In 
the PIPns isomer family, R can equal any combination of H or PO3

-. 
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important to membrane integrity.  Lipids dictate numerous processes in the cell, 

performing structural and functional roles.  The exact structures of natural lipids 

dictate their function within the cell.  The structures of some biologically relevant 

lipids are shown in Figure 2.  The variation in headgroup size and functionality 

determines the function of each lipid.  One of the most notable structural lipids is 

phosphatidylcholine (PC).  PC is the most abundant lipid in eukaryotic cell 

membranes and is the classical example of a cylindrical shaped lipid, favoring 

bilayer formation.  The remainder of the cellular membrane is composed of less 

abundant lipids that exhibit functional roles within the cell, proteins, and other 

membrane stabilizing molecules like cholesterol.  PC is key to liposomal drug 

delivery platforms as well, as it serves as a main bulk lipid for many of the lipid 

formulations used to produce therapeutic liposomes.   

 

Functional lipids, generally termed signaling lipids, represent the other branch of 

lipids within the cell.  Through recruitment of proteins to the membrane surface, 

through either intra- or extra-cellular binding events, these lipids can regulate cell 

activities controlling such processes as cell proliferation, apoptosis, metabolism, 

gene expression, and membrane trafficking.11-13  The specific interactions between 

lipids and proteins that mediate these processes can be as simple as a monovalent 

binding event between a lipid and its target protein, or as complex as a 

microdomain of lipids acting together to bind protein in a  multivalent fashion.14   

These complex interactions recruit proteins to the cell surface and trigger a 

cascade of important processes within the cell.  Thus, aberrations in the interaction 

of these vital signaling lipids with their corresponding peripheral proteins can lead 

to the onset of diseases such as cancer, inflammation, autoimmunity, and 

degenerative diseases.11, 15  These intricate interactions have led to a burgeoning 

field involving the study of the activities of signaling lipids.   

 

Many of the notable signaling lipids are glycerophospholipids including 

diacylglycerol (DAG), phosphatidic acid (PA), phosphatidylserine (PS), 
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phosphatidylethanolamine (PE), and phosphatidylinositol polyphosphates 

(PIPns).11, 15-16  DAG, the simplest of the signaling lipids, controls vital processes 

within the cell.  DAG activates protein kinase Cs (PKCs), enzymes that control the 

cell cycle and exhibit tumor suppressing activity.17-19  PKC is one of the most highly 

misregulated proteins in cancer.  Thus, tightly regulated DAG activity is necessary 

for the maintenance of human health.  PA interacts with Raf-1, a kinase involved 

in cancer.20  In healthy cells, PS is found mainly in the inner leaflet of the cellular 

bilayer and is only translocated to the outer membrane leaflet, where it recruits 

proteins, to signal apoptosis.21  PIPns regulate vesicular trafficking and modulate 

lipid distribution within the cell by their interaction with lipid transfer proteins.22  

Each of these regulatory functions of lipids help maintain a healthy cellular 

environment.  Again, the abilities of these lipids to stabilize, destabilize, and 

perform signaling roles within the cell are due to their specific shape and chemical 

structure.  This highlights the importance of lipid characteristics not only in the 

biological setting, but when considering synthetically designed lipids.   

1.3. The Liposome as a Drug Delivery Platform 

Liposomes represent a key platform for delivery of drugs within a biological system. 

They exhibit tunable properties in size, surface functionalization, cargo type, 

surface charge, and release mechanism that allow for a customizable platform.  

The properties of liposomes will be discussed below as they relate to their use as 

a nanoscale drug delivery platform. 

1.3.1. Liposome Formation 

Lipids will self-assemble into vesicles when dispersed in aqueous media due to 

their amphiphilic nature.  While these arbitrarily formed vesicles are not formed 

with homogeneous and predictable size or lamellarity, they can subsequently be 

manipulated to be of uniform characteristics.  A popular method for obtaining 

liposomes of reliable size is through thin film formation, hydration, and extrusion.23  

In this method, lipids in organic solvent are mixed in a defined ratio based on the 
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desired liposomal content.  This lipid mixture is dried into a film, removing all 

organic solvent from the sample.  The film is then hydrated with water or an 

aqueous buffer and subjected to freeze/thaw cycles to form large mulitilamellar 

vesicles (MLVs) of various sizes.  The solution of MLVs is subjected to extrusion 

through polycarbonate filters with pores of the desired liposome diameter.  Multiple 

passes through the extrusion filter give liposomes of reliable size.  Generally, 

liposomes are composed of PC, the main bulk lipid of cell membranes.  Other lipids 

including synthetic analogs bearing desired properties or functionalities for the 

specific liposomal platform can also be added to the film composition yielding 

vesicles of desired lipid content.      

 

Liposomes are formed in a variety of sizes depending on the desired application.  

Utilizing different pore sizes in the extrusion step, or other less conventional vesicle 

formation techniques24, liposomes of 20-1000 nm in diameter can be formed.  

Small unilamellar vesicles (SUVs) are from 20-100 nm, large unilamellar vesicles 

(LUVs) are greater than 100 nm in diameter, and giant unilamellar vesicles (GUVs) 

are larger than 1000 nm in diameter.  Generally, liposomes of 100-200 nm are 

utilized for drug delivery applications.  Vesicles of this size have a higher 

propensity to fuse with cell membranes due to the strain exerted on the lipids in 

the highly curved liposome surface. They also benefit from an increased circulation 

time by avoiding the reticulo-endothelial system (RES) longer than their larger 

counterparts.24-25  Structures of this size are also able to make use of the enhanced 

permeability and retention (EPR) effect.  This effect arises since the vasculature 

surrounding rapidly expanding cells, such as tumors, as well as other diseased 

tissues like those in inflammatory diseases and ischemia, have loose junctions 

between the endothelial cells of the blood vessel walls. 26-28  These gaps in the 

vessel lining are 0.1-3 μM in size allowing nanosized structures to leak from the 

blood vessel to the diseased area.  A lack of drainage of lymphatic fluids, another 

hallmark of the EPR effect, allows the leaked nanomaterials to remain at the 

diseased site.  However, the EPR effect only increases delivery 2-fold to tumor 
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sites versus other common accumulation organs.28  This makes the EPR effect, 

on its own, not a powerful enough phenomenon to effect efficient drug delivery, 

though it can be coupled with other modifications to increase liposomal delivery 

and efficiency.   

 

The ability of liposomes to encapsulate multiple drug types is also an attractive 

factor in their use as a drug delivery platform.  Liposomes can house hydrophobic 

and hydrophilic cargo within the membrane bilayer or the aqueous core, 

respectively.  Prodrugs can also be incorporated via attachment to a synthetic lipid 

at either the head group or as a hydrophobic tail, depending on the nature of the 

drug.  Further examples of this will be provided in the next section.   

1.3.2. Liposomal Surface Modifications 

Modifications to the surfaces of classical liposomes can drastically enhance their 

power as a drug delivery vehicle.  Surface modifications can act as shielding 

groups to protect liposomes from clearance from the body.  Other surface 

modifications can increase the rate of fusion with target cells, while a very 

important group of surface ligands is comprised of active targeting moieties to 

enhance the selectivity for delivery to diseased cells within a complex biological 

mixture.  The main surface modifications are depicted in Figure 3.  Multiple 

surface modifications can be combined in one liposomal platform to enhance the 

overall efficiency of the drug delivery system.   

1.3.2.1. Surface Modifications for Creation of Stealth Liposomes 

Synthetic modifications to bare liposomes can drastically enhance their power as 

a drug delivery vehicle.  Bare liposomes have a short half-life and are quickly 

cleared from the bloodstream by the RES system.29  Though smaller liposomes 

inherently have longer circulation times than larger vesicles, they still have 

relatively short half-lives from an efficiency of drug delivery standpoint.  Surface   
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Figure 3.  Surface modifications for increased efficiency of liposomal 
drug delivery systems. 
Representative modifications for the creation of stealth liposomes, the increase 
of liposome fusogenicity and cellular uptake, and actively targeted liposomes 
are shown, though multiple modifications to effect each desired outcome are 
available.  Cellular penetrating peptides (CPPs), polyethyleneglycol (PEG), 
monoclonal antibody (mAb) are shown as examples. 
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modifications can shield the liposome from clearance, thus increasing their half-

life.  These surface modifications act as a physical barrier to keep opsin proteins 

from binding to the surface of the liposome, thus marking them for clearance by 

the immune system.30  Initially, groups such as gangliosides and sialic acid 

derivatives were used to decorate liposomes.25  These are common surface 

markers found on red blood cells, so by mimicking the native cell population of the 

administration route, the liposomes were able to evade the immune response.  

Now, the most common stealth coating is polyethylene glycol (PEG).  Incorporation  

of PEG-PE conjugates into PC based liposomes showed an increase of circulation 

half-life from 30 minutes for bare liposomes to 5 hours in the earliest studies in 

PEGylation.31  PEGylation also decreases the leakiness of liposomes, better 

harboring cargo for less off-site drug interactions.29-30  PEG incorporation is 

relatively simple and there are now commercially available versions of lipids with 

PEG of a range of molecular weights appended to the headgroup.32  Advances in 

PEGylation methods can now give circulation half-lives of 5-16 hours dependent 

on PEG polymer length.29  PEG coatings can be purely polymer based or can be 

terminated with a functional group for further synthetic modification to the cloaked 

liposome surface.  The impetus for this will be covered in the next section.  Overall, 

the size control and potential for surface modification of liposomes help to increase 

circulation time and accumulation at diseased sites by evasion of the RES system 

and taking advantage of the EPR effect. 

1.3.2.2. Surface Modifications for Active Targeting with Liposomes 

Liposomes can be decorated with a variety of small molecules to increase their 

efficacy of delivery through active targeting.  When based solely on the EPR effect, 

liposomes only make it to the general vicinity of the target site.  Surface 

modification with targeting groups will pull these liposomes to the surface of target 

cells, increasing the therapeutic index of the delivery platform.  Binding partners 

with high affinity for ligands found overexpressed or solely expressed on the target 

cell surface are ideal for targeting moieties.  These groups can be appended 
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directly to the liposomal surface through functionalized lipids or attached to the 

reactive end of a PEG-lipid conjugate present in the liposome formulation.  

Presentation outside of the PEG shell effects greater targeting ability, while 

shielding of the targeting moiety within the PEG shell protects the ligand from off 

target binding outside of the desired location.  Still dependent on the EPR effect, 

once the small liposomes have leaked into the interstitial space of the diseased 

tissue, recognition of the targeting group by the cell surface will trigger uptake or 

fusion of the liposome.  Induced removal of the PEG shell after arrival at the target 

site can also aid in delivery, methods of which will be explained shortly.  Ideally, 

the liposome will fuse with the cell surface, dumping its molecular cargo into the 

target cell or be taken in by endocytosis and then effect escape from the endosome 

and cargo release.  Specially formulated fusogenic liposomes increase the 

propensity of membrane-to-membrane fusion to effect cargo delivery while 

avoiding the lytic activity of lysosomes.33 

 

Another class of surface modification that instigates higher cellular uptake in a non-

cell-type specific manner are cell penetrating peptides (CPPs).  CPPs are most 

commonly highly cationic short peptides with transactivator of transcription (TAT) 

and octa-arginine (R8) peptides as representative examples.34  These cationic 

peptides function to enhance permeation of liposomal content into target cells.  

Also, due to their ability to attenuate the surface charge of the liposome, drug 

loading efficiencies for hydrophobic or negatively charged cargo such as siRNA 

are increased with CPP decorated liposomes due to the increased electrostatic 

interactions of these cargo with the surface CPP.34  CPPs can be rendered inactive 

by enzyme removable or light cleavable groups.35-38  This allows the CPP to affect 

its function only at the desired spatiotemporal location with application of the 

correct stimulus.  Spatiotemporal control of liposomal content delivery is a research 

field of its own, and the work in this project contributes to that field.  
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Of heightened interest are the utilization of cell specific ligands for targeted 

delivery.  Folate receptors (FR) are over expressed in their functional form on 

countless types of cancer cells, including ovary, breast, colon, lung, prostate, nose, 

throat, and brain cancers.39  Also, metastatic cancers tend to express FRs at a 

higher rate than non-metastatic cells.40  Likewise, FRs are also highly expressed 

on macrophages involved in inflammatory and autoimmune diseases providing 

multiple potential targets for folate mediated liposome therapies.39  Folic acid 

functionalized liposomes have been successfully applied for the co-administration 

of multiple chemotherapeutics to FR expressing breast cancer cells.41  Many folate 

mediated targeting methods have been successful for the preferred delivery of 

drugs and imaging agents to cancerous, inflammatory and autoimmune diseased 

cells.42-44  One interesting study demonstrated delivery of microbial epitopes to 

cancer cells through folate receptor mediated delivery.  Fusion of the tumor cell 

with the therapeutic liposome led to expression of the epitopes on the cell surface, 

activating the immune system causing cytotoxicity via complement mediated cell 

lysis.45  Other surface markers that have been targeted by liposomal recognition 

include CD123.  This surface marker is overexpressed on acute myeloid leukemia 

(AML) cells and increases cell resistance to apoptosis.  Anti-CD123 monoclonal 

antibodies (mAb) were appended to drug loaded PEGylated liposomes for 

targeting.  Specifically, liposomes that are targeted via mAb or antigen binding 

fragments (Fab’) are termed immunoliposomes.46  Anti-CD123 immunoliposomes 

were able to effect higher rates of cellular uptake and cytotoxicity versus 

nontargeted liposomes.47  CD44 is a classic surface marker of cancer stem cells, 

a subset of cancer cells that promote malignancy and therapeutic resistance.48  

mAbs against CD44 have been integrated into immunoliposome platforms to 

increase targeting and cytotoxicity against this potent cell type.49  Human 

epidermal growth factor receptor-2 (HER2) is another surface ligand of certain 

cancer types that has been harnessed for targeted delivery via antibody mediated 

processes.50  Essentially, any overexpressed ligand on a deleterious cell surface 
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has the potential to be targeted for more efficient therapeutic delivery of cargo via 

active targeting liposomes.           

1.3.3. Active vs. Passive Release Mechanisms 

While liposomes are effective vehicles for transporting cargo due to their inherent 

amphiphilic nature, the specific release of cargo at the desired location within the 

body is key to an effective drug delivery vehicle.  PEGylation, targeting ligands, 

and modification with CPPs help to increase local concentration and fusogenicity 

of liposomes, but do not directly effect a quick triggered release of drug.  There 

are, however, various methods to trigger cargo release from therapeutic 

liposomes.  These fall into two categories:  active and passive release.  Active 

release relies on some form of external stimulus to effect release of molecular 

cargo while passive release mechanisms utilize internal physiological stimuli, ie 

conditions within the diseased tissue itself, to effect release.  A schematic 

representation of triggered release mechanisms is shown in Figure 4.  Whether 

active or passive, these release mechanisms rely on one of a handful of methods 

for release.  These are membrane restructuring, deshielding of the liposome, 

prodrug activation, lipid reconstruction, and conformational switching.   

1.3.3.1. Active Release Mechanisms 

Active release mechanisms require an input of some external stimulus.  This is 

advantageous in the fact that it limits off target release of cargo.  However, external 

stimuli can be limited by their ability to penetrate through healthy tissue to the 

diseased area.  External stimuli are mainly reliant on photothermal effects, 

including the application of light, heat, ultrasound, or a magnetic field to induce 

release. 

 

Light triggered release can be effected by a number of liposomal features.  

Liposomes loaded with or appended with photosensitizers, such as porphyrin, can 

increase the production of reactive oxygen species (ROS) upon application of light.  
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Figure 4.  A schematic representation of stimuli responsive release of drug cargo from liposomes.   
Liposomes can be loaded with hydrophilic (green) or hydrophobic (purple) cargo in the aqueous core or lipid bilayer, 
respectively.  Prodrugs can also be bound to synthetic lipids at the headgroup as shown in yellow, or integrated as 
a tail unit (not depicted here).  Stimuli responsive lipids (red) can be incorporated for spatiotemporal control of drug 
delivery.  Upon application of stimuli (light, heat, ultrasound, pH change, enzyme, molecular recognition) the drugs 
are release via membrane destabilization and/or prodrug activation.     
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These ROS will oxidize any unsaturated points in the lipid tails.  This makes the 

lipid tails less hydrophobic, disrupting the membrane bilayer and effecting 

release.51-53  Other methods of light triggered release rely on the light mediated 

degradation of a lipid’s integrity, thereby disrupting the liposome.  Photocleavable 

groups can be incorporated into a synthetic lipid to induce degradation.  In one 

example,an o-nitrobenzyl (ONB) group was incorporated into a synthetic lipid tail.54  

With application of 350 nm light, the ONB group was cleaved, yielding single tailed 

 lipids in the membrane, which are destabilizing to the liposomal integrity. Up to 

80% cargo release of hydrophobic cargo was achieved via this method.  These 

both represent lipid reconstruction methods of drug release.  Photocleavable 

groups can also be used to tether a prodrug to the liposomal surface.  Again, upon 

delivery of the liposome to the desired location a specific wavelength of light can 

be applied locally to stimulate the release and activation of the drug from the 

liposome surface.55  In this way, photochemistry can be utilized to deliver molecular 

cargo from a number of loading sites of the liposome.   

 

Similar to light reactivity, the application of heat itself can cause liposomal release.  

Lipids have a specific phase transition temperature above which they become 

more fluid.  Phase transition temperatures are intrinsic to specific lipids, so required 

temperatures to increase membrane fluidity of a given liposomal formulation can 

be calculated.  Localized heating of the diseased tissue will cause increased 

membrane fluidity, enhancing membrane permeability and effecting release in that 

area.56  Unfortunately, these phase transition temperatures are only a few degrees 

above body temperature.  While higher phase transition temperatures can be 

achieved, the negative side effects associated with the therapeutic application of 

higher temperatures are prohibitive.56  Other examples of thermal effects include 

release through the destabilization of heat sensitive membrane incorporated 

peptides or polymers and the degradation of encapsulated cargo into gaseous 

components forming microbubbles.24, 57  One method to achieve increased 

localized heating via external stimuli is through the addition of magnetic 
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nanoparticles in the liposomal formulation.  Under application of an alternating 

magnetic field (AMF) the magnetic nanoparticles, generally iron based, will heat 

up, giving upconverted localized heating of the liposomes.24  Ultrasound 

application can destabilize air pockets in the liposome, leading to their escape and 

thus destabilization of the liposomal membrane, ie cargo release.24  All of these 

effects function under general membrane destabilization as their method of 

release.  These represent spatiotemporal controlled external stimuli for drug 

release via exogenous methods.  

 

These mechanisms are hindered by the power of their stimulus.  The depth of 

penetration into living tissue for light, laser, heat or ultrasound require that the area 

for treatment be close to the surface.  This limits therapeutic applicability of these 

systems to certain disease states.  Deep tissue tumors, for example, would not be 

treated efficiently through these methods.  These stimuli can also have negative 

effects on healthy cells.  For example, UV light as a stimulus has the potential to 

harm healthy cells peripheral to the target diseased tissue.  For these reasons, 

passive release mechanisms driven by the physiological differences between 

diseased and healthy tissue provide a less invasive method for effecting release 

at a desired point in the system.    

1.3.3.2. Passive Release Mechanisms 

In passive release, the stimulus for cargo release comes from the diseased tissue 

itself.  These stimuli are mainly changes from normal physiological conditions 

associated with the target disease.  Internal stimuli include lowered pH,  increased 

reducing environment, altered enzyme expression, and increased surface or 

soluble molecule concentrations.  By designing a liposome platform that is 

sensitive to these conditions, it will release therapeutic cargo only where these 

altered physiological stimuli are present.  These internal stimuli don’t suffer from 

the tissue penetration and localization issues of active release mechanisms, as the 

stimuli are inherently present at the diseased site.  By spatiotemporal control of 
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cargo release, the dose requirement can be lowered providing a more desirable 

therapeutic index.   

 

Passive release techniques are a powerful method for harnessing the unique 

microenvironment of the targeted diseased tissue.  Specialized synthetic lipids 

have been designed to take advantage of these conditions.  Lowered pH is one 

hallmark of cancer cells.  As tumor cells rapidly grow, blood vessel formation 

throughout the new tissue is poorly controlled.  This causes a hypoxic, or low 

oxygen, environment in the tumor and surrounding tissues.  To maintain their 

growth in absence of sufficient oxygenation, tumor cells will switch to anaerobic 

metabolic pathways causing an increase in the production of acidic metabolites 

like lactic acid.58  This build up of acidic products causes a lower pH in cancerous 

tissues as compared to healthy tissues.  This difference in conditions can be 

utilized as a trigger for selective release of drug cargo at the desired location.  

Liposome formulations can effect cargo release under acidic conditions by a few 

different mechanisms.  The protonation of susceptible groups such as carboxylates 

can change the electrostatic interactions of the polar headgroups of lipids in a 

bilayer.  By decreasing the charge balance in the polar section of the bilayer, there 

is increased repulsion between headgroups and thus destabilization of the 

membrane.59  This allows for the use of more classical lipids to effect release under 

acidic conditions.   Another avenue to acid triggered release is the implementation 

of synthetic lipids that undergo a conformational change upon acidification.  

Various trans-2-aminocyclohexanol based lipids have been prepared so that 

protonation of the amino group causes a chair flip due to increased stabilization 

via hydrogen bonding of the newly protonated amine (Figure 5).1, 60  In the 

unprotonated chair structure, the alkyl tails were ideally arranged to insert into a 

membrane, and after protonation the tails were maximally separated due to the 

change in conformation from diequatorial to diaxial in respect to the tail 

substitutions (Figure 5).  A di(methoxyphenyl)pyridine based lipid operated 

similarly where protonation of the pyridine nitrogen led to hydrogen bonding of the   
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Figure 5.  Examples of pH responsive conformational lipid switches.   
a)  A trans-2-aminocyclohexanol based lipid switch that undergoes a chair flip 
upon protonation.1  b) A di(methoxyphenyl)pyridine based lipid switch that 
undergoes extreme rotation at the headgroup upon protonation.2  c)  A 
schematic depicting cargo release based upon conformational change lipid 
switches. 
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adjacent methoxy groups, which effected maximal separation of the alkyl tails.2  

This changed the orientation of the alkyl tails to one another, increasing the cone 

angle and disrupting the membrane.  Acidic conditions can also be utilized to 

deshield stealth liposomes.  PEGylated liposomes with acid sensitive linkers 

between the PEG polymer chain and the liposomal surface have been developed.  

These lipids were formed into vesicles with DOPE, which forms hexagonal phase 

structures on its own favoring membrane fusion and cargo release.  However, in 

mixtures with PEG-lipid conjugates DOPE can form lamellar structures.61  

Deshielding via the acidic environment revealed the fusogenic, destabilized DOPE 

liposomal surface leading to a phase change from lamellar to hexagonal phase 

and a release of contents.  The induction of non-bilayer lipids, such as with this 

method, is a common route for destabilization of liposomes for cargo release.  

Here, this was achieved through the acid-catalyzed cleavage of vinyl ether, 

diorthoester, and hydrazone linked PEG-PE conjugates.61-63  All of these release 

examples were based on the destabilization of PE based liposomes after the 

removal of the protective and stabilizing factor of the PEG coating.    

 

Reducing conditions can also lead to drug release from liposomes based on 

synthetic modifications to the liposome components such as the incorporation of 

disulfide bonds.  As with the acid sensitive method, disulfide linkages can be added 

between cloaking PEG groups and the liposomal surface.  Upon reduction of the 

disulfide bond, the PEG layer is removed, destabilizing the liposomes and leading 

to liposome aggregation and cargo release.64-66  Various other targeting moieties 

have been coupled with this method, including CPPs such as TAT, whereby the 

removal of the PEG polymer coating in the reductive environment of the diseased 

tissue revealed TAT for increased uptake of the liposomes into cells, rather than 

just destabilization based on the formation of hexagonal phase structures after 

PEG removal.65 

The overexpression of certain enzymes in diseased cell lines has also been 

harnessed for targeted drug delivery.  These enzymes include both intra- and 
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extracellularly expressed enzymes.  Lipids for this drug delivery platform have 

been modified in similar ways to the other passive release techniques.  That is, 

enzymatic activity can effect drug release by a number of methods:  destabilization 

of the membrane through lipid restructuring, enzymatic removal of a polymer 

(PEG) shielding layer, or activation of a prodrug via enzymatic cleavage.67  

Phospholipase sPLA2 can effect cargo delivery through the restructuring of PE.  

Enzymatic cleavage of PE into lysoPE and stearic acid prompted membrane 

destabilization and cargo release from liposomes composed of PE, PC, and 

PEGylated PE.  These were 2.5 times more potent than non-targeted liposomes.68  

sPLA2 is upregulated in prostate, breast, and pancreatic cancers as well as 

infections where the enzyme is excreted by several bacteria types.67  Lipid based 

prodrugs where the enzymatically cleavable tail is replaced with a prodrug have 

also been designed and applied.  Various hydrophobic drugs were successfully 

released via phospholipase cleavage of the prodrug.  This method increases 

encapsulation efficiency of lipophilic drugs as well as local concentration of drug 

upon triggered release.67   

The matrix metalloproteinases (MMPs) compose another family of enzymes 

upregulated in cancer, where they are associated with angiogenesis.  MMPs 

cleave specific peptide sequences, which can be incorporated into PEGylated 

liposomes as a deshielding technique.  MMP sensitive linkers were inserted as a 

linker between PE and PEG as an effective means of dePEGylation at target tissue 

sites.  These specific liposomes also had mAb and CPP functionalities that were 

revealed upon deshielding, providing a multitargeted platform for drug delivery.69  

The ability to combine multiple shielding, deshielding, targeting, and release 

triggers into a single liposomal platform is one of the desirable advantages to 

liposomes as a drug delivery system.   

1.4. Summary and Implications 

Designer liposomes are utilized to control the spatiotemporal release of therapeutic 

cargo by the incorporation of surface modifications and/or synthetic lipid analogs 
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into the liposomal composition.  These modifications serve to increase circulation 

time, provide a targeted accumulation of therapeutic liposomes at diseased cells, 

and trigger release of drug cargo at the desired time and location.  Currently, 

release from liposomes can be controlled via active (external) or passive (internal) 

stimulus as summarized above.  Many of these methods rely on the production of 

non-bilayer lipids as the means of membrane destabilization to effect release.  

Passive release techniques present a unique situation where the characteristics of 

diseased cells can be harnessed to trigger the release of drugs or therapeutic 

cargo.  Current work in this area relies mainly on pH differences between healthy 

and cancerous cells to trigger a membrane change and effect release.  Molecular 

recognition events would hypothetically create a more specific release potential 

based on the concentrations of metabolites, enzymes, ions, or other biomolecules 

that are unique to the target site.  This work seeks to utilize molecular recognition 

of increased ion concentrations to differentiate between healthy and diseased 

cells.  These molecular recognition events will cause the bound lipid analog to 

undergo a conformational change leading to destabilization of the liposome 

membrane and thus leakage of encapsulated cargo.  Currently, no controlled 

release strategies have been approved for clinical use, thus advances in controlled 

release platforms would contribute to the current toolbox of available liposomal 

release tactics expanding the applicability of liposomes to treat various diseases.   
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CHAPTER TWO  

DESIGN AND SYNTHESIS OF ION RESPONSIVE LIPIDS FOR 

CONTROLLED RELEASE APPLICATIONS 

2.1. Project Summary 

The goal of this project is to synthesize a panel of lipid switches for zinc recognition.  

These lipids, upon binding of Zn2+, will undergo a conformational change proposed 

to shift the lipid shape from a membrane supportive structure to a non-bilayer lipid 

leading to the destabilization of the surrounding membrane environment.  By 

including these lipid switches in liposomal formulations, we can control membrane 

stability, and by extension content release, based on the ion concentration of the 

surrounding media.  This platform is of specific interest for delivery of therapeutic 

cargo to diseased tissues in which local zinc concentrations are elevated including 

ischemic tissues, neurodegenerative diseases, and certain cancer types.3-8  

Through this platform, we propose to harness a physiological difference between 

healthy and diseased tissues, creating a new passive release technology.        

2.2. The Biological Role of Zinc 

Zinc is an essential element present at trace amounts in the human body.  The 

bulk of zinc is bound to proteins, with approximately 10% of all human proteins 

containing zinc in its bound state.70  In these proteins it plays structural and 

catalytic roles, being involved in the function of approximately 300 different 

enzymes.71  The remaining minor fraction of zinc exists as its labile ion form.  Free 

zinc is present at very low concentrations within the cytosol of cells, at estimated 

subnanomolar concentrations.  The bulk of free zinc is tightly regulated in storage.  

Zinc importer proteins (ZIP) and zinc transporter proteins (ZnT) act to shuttle zinc 

in and out of the cytosol, respectively.  These proteins are present in the cellular 

membrane as well as vesicular membranes including those of storage vesicles, 

endoplastic recticulum, mitochondira, and the golgi where they shuttle excess zinc 

for storage.3  Zinc that is not stored in these subcellular compartments is buffered 
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by reversible binding to metallothionein (MT), a metal binding protein that will 

release free zinc upon receiving the appropriate signal.72-73  Free zinc 

concentrations are increased in neuronal cells undergoing apoptosis as a 

consequence of ischemia or trauma in the brain.3  Zinc dysregulation is also 

involved in certain cancers.4-6  Chelation therapies have been applied for the 

treatment of Alzheimer’s disease, further providing that zinc is a worthy target for 

a therapeutic platform.7-8  In this work, a lipid switch will be designed so that upon 

recognition of Zn2+ conformational changes will drive cargo release.   

2.3. Molecular Recognition Events as Stimuli for Cargo Release 

via Lipid Switches 

This work specifically focuses on the utilization of lipid switches as a cargo release 

tactic, a newly developing approach based on the molecular recognition of 

upregulated ions or metabolites to effect cargo release from a liposome.  This 

research will serve to expand the current available toolbox of controlled release 

tactics which is currently limited.  Various physiological stimuli for cargo release 

have been discussed thus far, and while ion recognition falls into that category, it 

will be covered in detail now.  Lipid switches, similar to the conformational release 

lipids discussed in the pH responsive section, rely on membrane destabilization to 

effect release.  Recognition of the target molecule by a synthetic lipid switch leads 

to a conformational change of the lipid and thus a change in its membrane support 

characteristics.  This method has been applied for the recognition of 

overexpressed surface markers of cancer cells, altered membrane compositions, 

and upregulated ion concentrations in diseased cells.74-76  A boronic acid lipid was 

synthesized for molecular recognition of carbohydrates, which are overexpressed 

on cancer cell surfaces.  Liposomes containing this molecular recognition lipid 

were shown to bind and enhance cellular delivery.76  Liposomal membrane 

restructuring via multivalent recognition of carbohydrate moieties was the primary 

method of cargo delivery, where increased movement of the recognition lipid within 

the membrane caused increased membrane permeability.   
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Ion recognition events are another interesting method for membrane 

destabilization.  For example, a calcium-responsive lipid switch was designed such 

that upon calcium chelation the lipid underwent a conformational change from 

membrane supportive to membrane destabilizing.  Here, a previously described 

calcium sensor77 was modified to suit the lipid requirement for membrane insertion.  

Alkyl tails were appended to the calcium sensor rather than a fluorescent indicator 

as in the original sensor.   Through chelation with the carboxylate moteifs present 

at the lipid head, binding dependent cargo release was achieved (Figure 6) .74  The 

lipid switches including the pH responsive examples discussed in section 1.3.4.2. 

undergo similar conformational changes where protonation and hydrogen bonding 

can be considered a type of molecular recognition.1-2, 60  Specific to the interest of 

this work, other ion responsive lipids have been seen in literature as well.  These 

include copper and zinc responsive lipid switches.  A bispidinone based lipid was 

utilized to recognize copper via electrostatic interactions between nitrogens and  

Cu2+, effecting a boat-to-chair conformational change at the headgroup causing 

convergence of the alkyl tails.  Even though the tails became less distanced from 

one another via this chelation event, release was still seen with the application of 

Cu2+.  This shows that perturbation of the membrane in general by conformational 

changes may be enough of a driving force for efficient cargo release.  A final 

example on ion chelation operates slightly differently than the previous examples.  

Dimeric zinc chelates of a sugar based lipid preferentially formed liposomes, where 

treatment of liposomes containing the zinc chelate with acid caused removal of the 

zinc from complexation via protonation, which effected cargo release.78  These 

pre-complexed lipids were found to increase delivery of internalized cargo to 

gastric cancer cells, based on the inherent acidity of cancerous tissues.  
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Figure 6.  Calcium triggered lipid switch 
Lipid switch based on a fluorescent calcium sensor, indo-1.  Titration with Ca2+ 
effected 65% release of hydrophobic dye nile red from liposomes containing 10% 
of Indo-lipid with PC comprising the remainder of the membrane. 
  



 

26 
 

2.4. Design Inspiration and Considerations for Zinc Switchable 

Lipids 

In regards to the design of a zinc responsive lipid switch, we drew inspiration from 

previous work with the study of zinc chelating molecules.  Trispicoylamine (TPA) 

and N,N,N′,N′-Tetrakis(2-pyridylmethyl) ethylenediamine (TPEN) are two well-

known zinc chelators (Figure 7).  They bind zinc with high affinity with dissociation 

constants of 10 pM and 0.3 fM, respectively.79  Also, these chelating groups bind 

preferentially to zinc over other biologically available divalent transition metal 

cations such as iron or manganese, as predicted by the Irving-Williams series.79-80  

These nitrogen based chelators vary in the pKa of their central tertiary nitrogens, 

wherein TPA exhibits a pKa of 6.17 and TPEN has a pKa 7.19.  This makes TPA 

less likely to be protonated at physiological pH, resulting in more operational 

chelator available in the biological setting.79  These pyridal core structures have 

been utilized to visualize zinc concentrations in live cells and tissues.81-84  By 

appending a fluorescent molecule to the general TPA structure, a fluorescence 

turn on effect was seen following the chelation of zinc (using Zinpyr-1, Figure 7).  

 
 
 

 
 
Figure 7:  Zinc cheating molecules. 
Structures of pyridal zinc chelating molecules TPA and TEPN.  Zinpyr-1 is a 
flurosecence turn-on probe for the detection of zinc in solution or the biological 
setting.  
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For our purposes, we do not require a fluorescent indicator.  We instead envision 

using the chelator core structure as the polar headgroup of a lipid.  Rigidly attached 

tails will build in the conformational change aspect that is required of the lipid and 

thus effect release of cargo upon binding of zinc to the chelating lipid core (Figure 

8).  In this manner we will be able to control membrane stability and by extension 

cargo delivery based on membrane composition of the given liposome.  In the next 

sections, synthesis of lipids based on these design principles will be discussed. 

2.5. Design and Synthesis of Zinc-Responsive Lipid ZnR1 

2.5.1. ZnR1 Synthesis 

Zinc responsive lipid ZnR1, Figure 9, was the original design for a zinc triggered 

lipid.  In this structure, a TPA core is appended with three alkyl tails attached via 

amide linkages.  These tails are attached at the 4-position of the pyridine subunit, 

allowing the alkyl tails to rest comfortably within a membrane bilayer when in the 

unbound state.    

 

Synthesis of ZnR1 (Figure 9) began with the diesterification of commercially 

available 2,4-pyridinedicarboxylic acid.  This acid catalyzed ester formation 

quantitatively gave intermediate Z1.1.85  This diester intermediate then underwent 

a selective reduction with sodium borohydride to give aldehyde Z1.2.86  The 

aldehyde functionality was utilized to perform successive reductive aminations in 

a one pot approach, yielding the TPA core bearing three pyridine esters in a 49% 

yield as intermediate Z1.3.87  This gave the TPA core in good yield over few steps, 

as compared to previous attempts to form the TPA core via successive SN2 

substitution reactions (see further discussion below).   

 

The addition of the amide tails was approached from a number of synthetic angles.  

The necessity of repeated additions to the trifunctionalized core was a stumbling   
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Figure 8.  Proposed membrane disruption by zinc responsive lipid 
switches 
Lipid targets ZnR2.2 (panel a, TPA based) and ZnR3.1 (panel c, TPEN based) 
are depicted in their unbound state, inserted comfortably into the membrane 
bilayer.  Upon treatment with Zn2+, the lipid switches are proposed to bind zinc in 
a 1:1 ratio to give ZnR2.1-Zn2+ (panel b) and ZnR3.1-Zn2+ (panel d). The lipid 
switches are designed such that they take on non-bilayer lipid shapes upon 
binding with zinc.  e)  A schematic representation of the unbound lipid switches 
(blue) in a stable liposome and membrane destabilization caused by titration with 
zinc forming zinc-bound lipids (red) that have undergone the proposed 
conformational change.  
  



 

29 
 

 

 

 

 

 

 

 

 

 

Figure 9.  Synthesis of zinc lipid switch ZnR1 
Conditions:  i) TsOH, EtOH, reflux ii) DIBAL-H, -78°C, dry THF iii)  NH4OAc, 
NaBH(OAc)3, dry DCM iv) dodecylamine, DIBAL-H, dry THF, 0°C→ R.T.  then 
Z1.3 
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block.  While more traditional methods were originally pursued, ultimately an 

aminolysis of the ester groups was utilized.  This was accomplished by activation 

of the tail precursor dodecylamine with DIBAL-H.  Usually, DIBAL-H is used as a 

reducing agent.  Here, as exemplified in the work by Huang et al where they 

prepared a number of ethylbenzoate derivatives via organometallic complexes of 

various amines with DIBAL-H, it is used to activate an amine for aminolysis of an 

ester.88 This was key to overcoming previous complications with the addition of the 

tails.  Other synthetic approaches involved proceeding through a hydrolyzed 

intermediate of the triester Z1.3.  This intermediate, bearing three carboxylic acid 

functionalities, was very polar causing solubility issues as well as problems in the 

purification of said intermediate (see further discussion below).  By utilizing these 

aminolysis conditions, we were able to bypass that troubled intermediate and 

proceed directly to the desired amide.  This reaction also utilized an excess of a 

very reactive species, the organometallic complex, leading to full conversion of the 

triester to triamide, which was key to completion of this synthesis, as other 

synthetic methods, described below, failed to effect conversion of all three tail 

precursor units to the desired amide bonds.  All of these considerations together 

led to the aminolysis method being an overall better route to pursue for completion 

of the target lipid.     

2.5.2. Alternate Pathways to ZnR1 

In the pursuit of lipid ZnR1, many synthetic routes were taken.  Alternate pathways 

yielding interesting intermediates are given below.  These attempts were focused 

on either first constructing the TPA core and then adding the alkyl tail units, or vice 

versa.    

 

An alternate attempt to synthesize triester compound Z1.3 (Figure 10) was aimed 

at forming the TPA core via successive SN2 substitutions to synthesize the central 

tertiary amine.  This approach was hindered by the instability of intermediates 

containing a leaving group at the pseudo-benzylic position of the pyridine subunits   
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Figure 10.  Alternate synthetic pathway to lipid intermediate Z1.3.   
Conditions: i) NaBH4, CaCl2, 0°C, degassed EtOH ii) PBr3, dry DCM iii) p-TsCl, 
TEA, DMAP, dry DCM iv) NaN3, dry DMF, 85°C v) 10% Pd/C, H2, EtOAc vi) Z1.5 
(or Z1.6), LiCO3, dry DCM 
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which led to no quantifiable conversion of these intermediates to the desired 

tertiary amine core.  These synthetic approaches will be discussed next. 

 

The alternative synthesis of intermediate Z1.3 began with a selective reduction of 

intermediate Z1.1.  The diester was selectively reduced at the 2-position adjacent  

to the pyridine nitrogen through the use of CaCl2 to chelate that specific ester.  This  

allowed for the selective reduction to an alcohol at the 2-position over the other 

available ester at the 4-position.85  This reduction proceeded well to give 

intermediate Z1.4.  The alcohol functionality was then transformed to a leaving 

group as bromine or tosylate in intermediates Z1.5 and Z1.6, respectively.  To 

install the necessary nitrogen into the organic skeleton, a substitution reaction with 

sodium azide quantitatively gave intermediate Z1.7, which was reduced to primary 

amine Z1.8 through palladium catalyzed hydrogenation.  Then, the primary amine 

of compound Z1.8 was reacted with two equivalents of either compound Z1.5 or 

Z1.6 to target triester Z1.3.  This final successive SN2 reaction was not successful 

due to the instability of intermediates with a leaving group at the pseudo benzylic 

position of the pyridine ring.  This led to poor to no conversion to target compound 

Z1.3.  It was then that the reductive amination pathway as described in the previous 

section was designed and pursued successfully, effectively bypassing the unstable 

intermediates and shortening the overall synthesis of Z1.3 from 6 to 3 steps.   

 

With intermediate Z1.3 in hand, a number of methods for incorporating the alkyl 

tails were considered (Figure 11).  The most classical way to construct an amide 

bond is through the activation of a carboxylic acid precursor with carbodiimide 

chemistry and subsequent attack by an amine yielding the desired amide bond.  

The required carboxylic acid precursor, Z1.9, proved difficult to purify and collect 

due to the polarity of the three carboxylic acid moieties within the molecule.  This 

led to a thorough search of the literature to devise a new tactic for the incorporation 

of the three alkyl tail units.  Kim et al published the direct amidation of various 

esters including ethyl isonicotinate with aromatic and aliphatic amines in the 
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Figure 11.  Alternate pathways for the synthesis of lipid ZnR1 from common intermediate Z1.3.   
Conditions:  i) 2 M KOH, THF, 100°C ii) DCC, dodecylamine, DMAP  iii) 1) SOCl2, DCM 2) Dodecylamine, TEA, dry 
THF iv) KOtBu, dodecylamine, THF 



 

34 
 

presence of KOtBu under a proposed peroxide mediated mechanism.89  These 

were achieved in good yields over short time periods, 5-60 minutes in most cases.  

However, the application of these conditions to triester Z1.3 did not yield the 

desired amide bonds.  Next, an acid chloride version of Z1.3 was targeted to 

increase the reactivity of the carbonyl groups.  To this end, intermediate Z1.3 was 

converted to carboxylic acid Z1.9 by refluxing with KOH and used without 

purification beyond an extractive workup.  The triacid chloride was prepared and 

used directly for the next reaction without characterization.  Full conversion of Z1.9 

to acid chloride was monitored by the disappearance of the starting material spot 

(Z1.9) via TLC.  Subsequent reaction with dodecyl amine did not provide the target 

compound ZnR1.  Possible pitfalls of this avenue include the presence of three 

reactive or highly polar carbonyl groups attempting to couple with a long chain 

saturated amine causing solubility issues along with the inability to purify these 

highly polar intermediates.  Ultimately, due to the combination of these issues, a 

new approach was devised to incorporate the three alkyl tail units.  It was here that 

the aminolysis conditions utilizing DIBAL-H described in section 2.5.1 were applied 

successfully.     

 

Concurrent with the previously described syntheses, attempts to construct 

individual pyridine tail units and then trimerize them were also considered (Figure 

12).  Again, the classical approach of carbodiimide coupling was pursued first.  

First, the ester of intermediate Z1.4 was hydrolyzed to give carboxylic acid 

intermediate Z1.10. This was coupled via carbodiimide chemistry with dodecyl 

amine.  However, this was unsuccessful and did not yield intermediate Z1.11.  The 

direct amidation with KOtBu conditions as given in the last section were applied to 

both intermediates Z1.4 and Z1.2.  The reaction with Z1.4 yielded only starting 

materials without conversion to product.  This was most likely due to the potassium 

tertbutoxide deprotonating the alcohol rather than interacting with the ester 

functional group was required for the desired transformation.  Application of the 

same conditions to Z1.2 also did not yield the desired product, however the   
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Figure 12.  Alternative pathways to single pyridal tail units toward ZnR1. 
a)  Formation via classical carbodiimide chemistry.  Conditions: i) 2 M KOH, THF, 
100°C ii) EDCI, dodecylamine, DMAP, dry DMF b) Formation of amide bond via 
direct amidation led to the hemiaminol Z1.14 rather than desired intermediate 
Z1.13.  Conditions: iii) 1) SOCl2, DCM 2) dodecylamine, TEA, dry THF 
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attempted conversion of Z1.2 to an acid chloride and subsequent substitution with 

dodecyl amine gave interesting results (Figure 12).  The desired single tailed 

aldehyde Z1.12 was not formed, instead the hemiaminol Z1.13 was recovered.  

This was due to the conversion of the aldehyde unit to a geminal halohydrin and 

subsequent substitution of the chloride with dodecyl amine.  Attempts to reverse 

the hemiaminol and eliminate the long chain amine were not successful and 

although this was not the desired outcome it did reveal the possibility for reactivity 

through this particular mechanism at the pyridal ethyl ester position, which could 

be useful information for future synthetic endeavors. It also supports the notion 

that previous TPA intermediate Z1.9 was probably the issue with the syntheses 

laid out in Figure 11, as the desired ester hydrolysis reaction was able proceed 

through a single version of the ester intermediate (Z1.4, Figure 12).  Through the 

investigation of parallel synthetic routes, the formation of triester intermediate Z1.3 

and direct conversion to ZnR1 via the aminolysis reaction described above 

provided the shortest and most straightforward route for the synthesis of the 

desired lipid.   

2.5.3. Liposomal Release Studies with ZnR1 

With lipid target ZnR1 successfully synthesized, next began liposomal release 

experiments.  Liposomes containing 0, 10, and 20% of ZnR1 were investigated for 

their triggered release potential. 

 

For all experiments, liposomes were formed via the thin film hydration method.23  

Stock solutions of lipids ZnR1 (5mM), PC (32mM), and hydrophobic dye nile red 

(5mM) were prepared in chloroform, with ZnR1 in a 1:1 mixture of chloroform and 

methanol.  Lipids were aliquoted to clean, dry vials to prepare the desired lipid 

ratios at 2mM total lipid content.  For example, to create liposomes containing 10% 

ZnR1 lipid, 13.3 μL of PC stock, 10 μL of ZnR1 stock, and 5 μL of nile red stock 

were combined in a clean, dry vial.  The resulting solution was dried under a stream 

of nitrogen until all solvent was removed.  The vial containing the lipid film was 
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then dried further under high vacuum to assure complete removal of residual 

solvent.  Then, 250 μL of MilliQ purified water was added to the vial and the film 

was hydrated at 60°C for 45 minutes with vortexing every 15 minutes.  The 

resulting liposome solution was put through ten freeze-thaw cycles with a dry 

ice/acetone bath and 60°C water bath.  This gave a solution of non-uniform size 

or lamellarity vesicles which were then extruded 15 times through a 200 nm 

polycarbonate membrane to yield a solution of 200 nm diameter liposomes 

encapsulating nile red.  These same methods of thin film hydration and extrusion 

were used to prepare all liposomes for this work.   

 

To determine the release profile of ZnR1, prepared liposomes were titrated with 

Zn2+ wherein release would be indicated by a decrease in fluorescence upon 

precipitation of the hydrophobic dye with its release into the aqueous media.  The 

choice of the zinc salt for the titration solution preparation became quite important 

in this case.  In aqueous solutions of ZnCl2, insoluble precipitates of zinc 

compounds are formed, lowering the Zn2+ concentration.  Also, aqueous ZnCl2 

solutions are more acidic (pH ~2) than those formed from other zinc salts.  0.5 and 

0.1 M solutions of zinc acetate in MilliQ water were found to have a pH of ~7, which 

was more desirable for our uses. 

 

Initial fluorescence studies were completed with liposome solutions of 0, 10, and 

20% ZnR1 with PC, hydrated in milliQ water.  In each case, 100μL of liposome 

solution was added to a 50μL well microcuvette.  An initial fluorescence reading 

was taken from 560 – 700 nm with excitation wavelength of 552 nm and the 

liposome solution was then titrated with a 0.1 M aqueous solution of Zn(OAc)2 to 

a total zinc concentration of 10 mM.  No significant release over the control 

liposomes (0% ZnR1) was seen for either the 10 or 20% ZnR1 liposomes.  Dilution 

studies were also conducted where 50 μL of the given liposome solution was 

diluted to a final volume of 3 mL with MilliQ water giving a lipid concentration of 

0.033 mM.  Again, titration from 0 to 10 mM Zn(OAc)2 resulted in no significant 
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release of dye in any case.  Problems with release were attributed to the 

electronegativity of the neighboring carbonyl groups, drawing electron density from 

the TPA nitrogens.  A more electron poor TPA molecule would result in a 

dampened chelation ability and thus hamper release.  To combat this, other lipid 

skeletons were designed, as will be described in the next sections.     

2.6. Design and Synthesis of Zinc-Responsive Lipids of ZnR2 

Type 

Lipids of type ZnR2 were designed with differing tail connections.  In contrast to 

the electron withdrawing amide tails of ZnR1, these lipids exhibit a variety of bond 

types (Figure 13).  The zinc chelating core is the same, with these lipids being 

based on TPA as well.  The synthesis of these lipids proceeds through a common 

intermediate, lending the quick accumulation of target compounds via these 

methods.   

2.6.1. Synthesis of ZnR2 Type Lipids 

Synthesis of lipid ZnR2.1 (Figure 14) began with the formation of common 

intermediate Z2.1.  This is a core-first approach similar to that utilized to synthesize 

lipid analog ZnR1.  Beginning with commercially available 5-bromo-2-

pyridinecarboxaldehyde, the TPA core was constructed by sequential reductive 

aminations forming primary and secondary amine intermediates in situ, giving 

intermediate Z2.1 at a 96% yield.87  Toward ZnR2.1, the bromine functionality was  

utilized to perform a Sonogoshira coupling with 1-dodecyne.  Despite varying 

conditions, full conversion of all three bromide substitutions to alkyne tails was not 

achieved in any appreciable yield, though product was detected by mass 

spectroscopy. Other avenues were explored to increase conversion.  Rather than 

beginning with the fully constructed TPA core, individual pyridine-alkyne tail units 

were synthesized (Figure 14).  This synthesis began with the same 5-bromo-2-

pyridinecarboxaldehyde starting material that was utilized to form intermediate   
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Figure 13.  Structures of lipid targets ZnR2.1 – ZnR2.5.   
These lipids stem from a common TPA core intermediate.  Tails of varying 
saturation and rigidity are designed to test the dependency of release on the 
structure of the lipid tails.    
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Figure 14.  Synthetic steps toward ZnR2.1 
i) NH4OAc, NaBH(OAc)3, dry DCM ii) 1-dodecyne, PdCl2(PPh3)2, CuI, 5:1 
DMF:TEA iii) Z2.2, NaBH(OAc)3, dry DCM iv) 1) Z2.2, TEA, toluene, Dean Stark 
trap, 100°C 2) NaBH4 
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Z2.1.  It was coupled successfully with 1-dodecyne in a palladium catalyzed cross 

coupling reaction to yield intermediate Z2.2.  One pot reductive amination 

conditions toward formation of the TPA core gave primary amine Z2.3 as the sole 

product.  Attempts to perform stepwise reductive aminations were also unable to 

proceed past the primary amine intermediate.  Tested conditions depicted in Figure 

14 include the reaction of aldehyde Z2.2 with primary amine Z2.3 with sodium 

trisacetoxyborohydride as the reducing agent, which gave only recovery of starting 

materials and none of the desired product, ZnR2.1.  Stepwise reductive aminations 

with sodium borohydride as the reducing agent were also attempted, but only the 

starting primary amine Z2.3 and the reduced version of aldehyde Z2.4, where the 

aldehyde was reduced to a primary alcohol, were recovered in any case.  The 

amphiphilic nature of the starting materials may cause solubility issues hampering 

the desired reactions.  It was due to the hinderance of these steps that other lipid 

targets were also pursued.   

 

Lipid ZnR2.2 was targeted next.  Common intermediate Z2.1 was coupled with 

boronic acid precursor trans-octenylboronic acid via a palladium catalyzed Suzuki-

Miyaura coupling reaction, modified from the similar reaction scheme of Bravin et 

al to suit these specific synthetic needs.87  The successful coupling gave lipid 

ZnR2.2 at 34% yield (Figure 15).  Based upon this success, other boronic acid 

derivatives can be utilized for the Suzuki-Miyaura coupling step to target TPA core 

lipids ZnR22.3-ZnR2.5.          

2.6.2. Liposomal Studies with ZnR2 Type Lipids  

With the completion and characterization of ZnR2.2, it was immediately utilized for 

liposomal studies.  Lipid ZnR2.2 was prepared at a 10 mM stock in chloroform and 

liposomes were formed by the same techniques from section 2.5.3.  Liposomes of 

0, 10, and 20% ZnR2.2 hydrated with MilliQ water were prepared at 2 mM and 

0.033 mM dilute liposome samples, as previously described.  Titration with 

aqueous Zn(OAc)2 provided no release in any case, leading to a reevaluation of  
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Figure 15.  Synthesis of ZnR2.2  
Conditions: i) trans-octenylboronic acid, Pd(PPh3)4, K2CO3, DMF/toluene/H2O 
100°C  
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the proposed release method.  The draw of TPA was its selectivity for zinc over 

other divalent metal ions.  This selectivity is attributed to the small binding pocket 

of the TPA core as compared to TPEN along with a more desirable pKa.79  This 

could be negatively impacting the conformational change aspect of this platform.  

The TPA unit would idealy be presented at the aqueous interface of the liposome 

surface where, based on hydrophilicity, the nitrogens of the pyridine rings along 

with the central tertiary nitrogen could be oriented upward, essentially preforming 

a binding pocket for zinc to fall in to (Figure 16).  If this is the case, there would not 

be a large conformational change between bound and unbound states of the 

switch.  This would explain the failure of both ZnR1 and ZnR2.2.  There also exists 

a pH dependency of these lipid analogs.  At low pH, 6.2 or below, a large portion 

of TPA becomes protonated.79  As modeled in Figure 16, protonation of the central 

nitrogen of TPA will facilitate the preformation of the proposed zinc binding pocket, 

further dampening the conformational change aspect of these TPA based lipid 

analogs. 

 

To determine if the lipids were capable of chelating zinc and to rule out a lack of 

binding as the reason for lack of release, UV-Vis studies were performed.  

Solutions of 40 μM of lipids ZnR1 and ZnR2.2 were prepared in pH 7.45 PIPES 

buffer.  An initial scan of UV-Vis absorbance was taken.  Then, a sample that was 

40 μM in lipid and 200 μM in ZnCl2 was prepared and UV-Vis spectra were 

collected at time 0, 10, and 20 minutes.  ZnR1 did not exhibit a specific pattern in 

changes, further strengthening the previous assertion that its more electron 

withdrawn TPA core will not bind zinc strongly.  However, ZnR2.2 showed a steady 

decrease in absorbance at ~283 nm.  This can be attributed to the chelation of zinc 

decreasing the absorption of the TPA core.79 This indicates that lipid ZnR2.2 is 

capable of chelating zinc, adding more weight to the argument that the 

presentation of TPA at the surface is preformed in an ideal conformation for the 

acceptance of zinc.    Taking these results into consideration, a shift was made in  
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Figure 16.  Optimal presentation of TPA core at the aqueous interface of the 
liposomal membrane 
All nitrogen units will be oriented upward to the aqueous interface, preforming a 
binding pocket for incoming Zn2+ ions (structure a).  This may not lead to a large 
conformational change of the core upon chelation (structure b), thus dampening 
release.  Protonation of the central TPA nitrogen may also lead to pre-
organization of the pyridal units (structure c) strengthening the preformed binding 
pocket for zinc.      
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synthetic efforts to also target a different zinc chelator as the lipid core, as will be 

expanded on in the next section.       

 

To further investigate the pH dependence of the binding ability of ZnR2.2, 

liposomes composed of 0, 25, 50 and 75% ZnR2.2 with PC were prepared in pH 

7 PIPES buffer.  Though the same thin film hydration and extrusion methods were 

followed as before, no fluorescence, by extension no encapsulated nile red 

lipophilic dye, was detected via fluorimetry experiments for any of the liposome 

formulations in either concentrated or dilute liposome samples.  This led to the 

determination that PIPES buffer will not be suitable for liposome studies.  Next, 

tris-buffered saline (TBS) at pH 8 was used to hydrate the lipid films.  Liposomes 

of 0, 25, 50, 75, and 95% ZnR2.2 were formed at 2 mM lipid content as previously 

described and 100 μL of the liposome solution was titrated with aqueous 0.1 M 

Zn(OAc)2 to a total concentration of 10 mM Zn2+.  Under these conditions, an 

increase in release was seen for the liposomes composed of 50% or more of lipid 

switch with PC when compared to control liposomes (Figure 17).  While the release 

was not extensive, at only 13, 17, and 29% release for 50, 75, and 95% ZnR2.2, 

respectively with background release at 9% in absence of trigger lipid, these 

results indicated that lipid ZnR2.2 is able to induce membrane destabilization in 

the presence of increased concentrations of zinc ions.  These preliminary results 

are indicative that pH control of the liposomal solution is important to the chelation 

ability of the TPA based lipid switches.  From here, further changes to the liposome 

composition were studied to see the effects on dye release properties. 

 

Phosphatidyl ethanolamine (PE) is a non membrane forming lipid, however, when 

mixed with other lipids it can form stable membranes.  For the following studies, 

the incorporation of ZnR2.2 was held constant at 50% while the amounts of PE 

and PC were varied.  PE was incorporated at 10, 25, and 50% with the remaining 

percentage being made up of PC.  The lipid films were formed by the same protocol 

as the previous studies and hydrated with TBS.  Of the given preparations, that 
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composed of 50% PE and 50% ZnR2.2 did not form liposomes.  Titration data for 

the other liposome preparations is given in Figure 17.  It was seen that 

incorporation of 25% PE was optimal for release with 41 % release seen for these 

liposomes.  This was a large increase over liposomes containing 50% synthetic 

lipid in the absence of PE which saw only 13% release.  It is assumed that the 

incorporation of PE predisposed the liposomes fusion and membrane disruption, 

making the small hypothesized conformational change previously postulated in 

Figure 16 a large enough factor to effect appreciable release.  Still, a more effective 

conformational lipid switch was desired, so other lipid analogs were designed as 

will be discussed in the next section.    
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Figure 17.  Dye release profile of lipid switch ZnR2.2 
TOP:  Liposomes composed of PC and lipid analog ZnR2.2.  Appreciable release 
was only seen at high percentages of ZnR2.2 where liposomes of 95% ZnR2.2 
gave 29% release.  BOTTOM:  Incorporation of PE into the liposomal formulations 
decreased the required synthetic lipid content while increasing dye release.  
Liposomes of 25% PC, 25% PE, 50% ZnR2.2 gave 41% release. 
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2.7.   Design and Synthesis of Zinc-Responsive Lipids of ZnR3 

Type 

With the limited release of the TPA based lipid switches, TPEN was next targeted 

as a lipid core ion chelator.  It was hypothesized that due to the presentation of 

TPA at the surface of the liposomal membrane, there may not be a significant 

conformational change with chelation of zinc.  The use of TPEN, however, could 

change that as it was envisaged that TPEN based lipids, when inserted into the 

membrane, would have greater separation between the pyridal units of the 

chelating core than those in the TPA based lipid analogs.  Upon treatment with 

zinc, it is hypothesized that these units would have to come in closer proximity in 

order to properly chelate an ion (Figure 18).  This should cause a large enough 

conformational change in the lipid skeleton to disturb the membrane thus causing 

release of cargo.  As previously described, TPEN has a higher affinity for zinc (0.3 

fM) as compared to TPA (10 pM) though it is less selective among other divalent 

metal cations.79  This is also advantageous as the increased affinity will potentiate 

greater chelation ability.  These structural and affinity differences will be beneficial 

to our goal of designing an effective lipid switch.  Similar chemistry to that used to 

synthesize lipid ZnR2.2 will be utilized to form the TPEN core and attach a variety 

of alkyl tails to quickly and efficiently build a number of lipid skeletons.  The 

targeted TPEN based lipids are shown in Figure 18.    
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a) 

 

 

 

b) 

 

 
Figure 18.  TPEN chelation of zinc and structures of lipid analogs ZnR3.1 – 
ZnR3.4 
a)  A greater potential for conformational change and membrane disruption is 
hypothesized for TPEN based lipid switches as compared to TPA based lipid 
switches.  R= alkyl tail.  b)  Target structures of TPEN lipid analogs designed 
similarly to ZnR2 type lipids.  These lipids are based on a common TPEN zinc 
chelating core with a variety of possible alkyl tails.    
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2.7.1. Synthesis of ZnR3 Type Lipids 

The synthesis of the TPEN core was pursued by multiple routes (Figure 19).  The 

first route to the TPEN core began with the reduction of common starting material 

5-bromo-2-pyridinecarboxaldehyde to transform the aldehyde functionality to an 

alcohol, Z3.1.  This alcohol intermediate was then chlorinated to give intermediate 

Z3.2.  Coupling of chloride Z3.2 with ethylenediamine was attempted with various 

basic conditions including NaOH90 and K2CO3, neither of which successfully 

yielded the target TPEN unit Z3.3.  Another route to intermediate Z3.3 included the 

stepwise formation of secondary amine Z3.4 through successive reductive 

aminations with ammonium acetate as the nitrogen source and sodium 

borohydride as the reducer.  However, the initial primary amine was not recovered.  

A one pot reductive amination was also pursued utilizing a weaker hydride reducer 

in sodium triacetoxyborohydride which yielded tertiary amine Z2.1 as the main 

product rather than the desired secondary amine Z3.4.  The next plausible route 

that was designed was to synthesize primary amine Z3.7 through an azide 

reduction and then couple that amine with the readily available aldehyde precursor 

through a reductive amination to give secondary amine Z3.4.  This synthetic route 

began with alcohol intermediate Z3.1, synthesized as before, which was then 

activated by transformation into tosylate Z3.5.  Substitution of the tosylate with 

sodium azide was successful in installing the required nitrogen unit.  The azide can 

then be reduced via palladium catalyzed hydrogenation to give primary amine  

Z3.7.  This will then be coupled with the readily available aldehyde to give 

secondary amine Z3.4.  To construct the TPEN core, intermediate Z3.4 will be 

coupled with dibromoethane in a double substitution reaction to give common 

intermediate Z3.3.  When the TEPN core intermediate is successfully synthesized 

it will be coupled with the desired boronic acid alkyl tail precursor to yield the target 

lipid analogs, ZnR3.1 – ZnR3.4.  Lipid analog ZnR3.1 will be targeted first as it is 

analogous to ZnR2.2 which performed well in the TPA based studies.  Facile 

switching of boronic acid functionality will provide quick access to the rest of the 

.     
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Figure 19.  Synthetic routes toward TPEN based lipid analogs 
Various synthetic routes to synthetic intermediate Z3.3 and lipid analog ZnR3.1.  Conditions:  i) NaBH4, EtOH, 0°C ii) 
SOCl2, toluene iii) ethylenediamine, NaOH(aq), DCM90  iv) ethylenediamine, K2CO3, MeCN  v) NH4OAc, NaBH(OAc)3, 
DCM  vi) 1) NH4OAc, DCM, NaBH4 2) 5-bromo-2-pyridinecarboxaldehyde, DCM, NaBH4  vii) 1,2-dibromoethane, K2CO3, 
MeCN  viii) DMAP, TEA, pTsCl, DCM ix) NaN3, DMF x) 10% Pd/C, H2  xi) 5-bromo-2-pyridinecarboxaldehyde, EtOH, 
NaBH4 xii) 1,2-dibromoethane, K2CO3, MeCN  xiii) trans-octenylboronic acid, Pd(PPh3)4, K2CO3, DMF/toluene/H2O 
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target lipid skeletons.  As these targets are successfully synthesized, they will be 

applied in liposomal release studies to determine their release characteristics.   

 

Upon completion of synthesis of the TPEN based lipid analogs the optimized dye 

release conditions as determined in the TPA based studies of section 2.6.2 will be 

applied with formation of 200 nm liposomes composed of trigger lipid, PC, and/or 

PE in TBS.  The difference in pKa of TPEN as compared to TPA may influence the 

release profile and binding ability of the second set of analogs (ZnR3 type), so 

determination of the optimal conditions for each lipid type may be required.  Taking 

all of the experimental optimization into account, the TPEN lipid switches are 

hypothesized to have a greater potential for release than their smaller TPA 

counterparts due to their higher propensity for conformational change upon ion 

chelation.  The exact release profiles will be determined upon successful synthesis 

of each analog 

2.8. Summary and Future Work 

Molecular recognition as stimuli for the release of payload from a therapeutic 

liposome represents a new level of targeted therapeutics.  The ability to harness 

a unique physiological aspect of a disease for treatment allows for less off target 

interactions and a more concise treatment.  Toward this end, this work proposed 

a number of synthetic lipid switches for the recognition of zinc.  Based on well-

known zinc chelators, TPA and TPEN, it was envisioned that upon recognition of 

zinc there would be a conformational change within the lipid causing it to become 

a non-bilayer lipid.  This would ideally destabilize the membrane and potentiate 

cargo release.    

 

Currently, of the available completed lipid switches only ZnR2.2 causes cargo 

release.  This required a significant amount of synthetic lipid which has been 

attributed to the way in which the TPA based lipids present themselves at the 

bilayer aqueous interface.  It is hypothesized that the chelating nitrogens are 
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presented in such a way that they readily bind with zinc without having to rotate 

within the membrane.  This setback was countered with the design of TPEN 

based lipid switches which have the potential for a greater conformational 

change upon chelation of zinc.  Future work with this research will include 

completion of the synthesis of compounds ZnR2.3-ZnR2.5 and further liposomal 

studies of these lipid switches along with the completed lipid ZnR2.2.  

Furthermore, the completion of the synthesis of the panel of TPEN lipids ZnR3.1-

Znr3.4 will provide a large panel of lipid switches for study of their cargo release 

profiles.  Taken together, these lipid conformational switches will provide new 

insights into the possibilities of triggered liposomal release.   

 

2.9. Synthetic Details and Compound Characterization 

2.9.1. General Experimental Information 

Reagents and solvents were generally purchased from Acros, Aldrich, or Fisher 

Scientific and used without further purification.  PC (ʟ-α-phosphatidylcholine, mixed 

isomers from chicken eggs) was purchased from Avanti Polar Lipids, Inc.  Dry 

solvents were obtained from a Pure solvent delivery system purchased from 

Innovative Technology, Inc.  Column chromatography was performed using 230-

300 mesh silica gel purchased from Sorbent Technologies.  NMR spectra were 

obtained using Varian Mercury Vx 300 MHz and Varian 500 MHz spectrometers.  

Mass spectra were obtained with JEOL DART-AccuTOF and Q-Star XL 

quadrupole time-of-flight hybrid mass spectrometers (Applied Biosystems, Foster 

City, CA).  Liposome extruder and polycarbonate membranes were obtained from 

Avestin (Ottawa, Canada).  Ultrapure water was purified via a Millipore water 

system.  Fluorescence studies were performed using a Cary Eclipse Fluorescence 

Spectrophotometer. 
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2.9.2. Synthetic Details:  Z1 Compounds 

 

Diethylpyridine-2,4-dicarboxylate (Z1.1)85 

Commercially available 2,4-pyridine dicarboxylic acid (150.0 mg, 0.90 mmol, 1.0 

equiv) and para-toluenesolufonic acid (pTsOH, 342.6 mg, 1.80 mmol, 2.4 equiv) 

were dissolved in 15 mL EtOH and refluxed for 24 h.  The reaction mixture was 

then subjected to rotary evaporation to remove the solvent.  The residue was 

dissolved in 15 mL of CHCl3 and washed with saturated NaHCO3 (15 mL).  The 

aqueous layer was extracted with 3 x 15 mL CHCl3.  The organics were combined, 

dried with MgSO4, filtered, and the solvent was removed by rotary evaporation.  

Compound Z1.1 was obtained as a clear oil/ white solid (190.3 mg, 95% yield). 1H 

NMR (300 MHz, CDCl3): δ 0.96 (m, 6H), 3.99 (m, 4H), 7.53 (d, 1H, J = 5.29 Hz), 

8.07 (s, 1H), 8.41 (d, 1H, J = 4.77 Hz) 13C NMR (125 MHz, CDCl3): δ 14.17, 14.29, 

62.31, 62.3, 124.32, 126.02, 139.19, 149.14, 150.55, 164.23, 164.45. Molecular 

formula: C12H14O4.  DART-AccuTOF-Mass Spec: [M+1] predicted: 224.09173 

[M+1] found: 224.08598 

 

 

Ethyl 2-formylisonicotinate (Z1.2)86 

Compound Z1.1 (597.5 mg, 2.69 mmol, 1.0 equiv) was dissolved in 20 mL dry THF 

under stirring and nitrogen atmosphere and then cooled to -78°C in a dry ice/ 

acetone bath.  DIBAL-H (10.7 mL of a 1 M solution in hexane, 10.75 mmol, 4.0 
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equiv) was added dropwise to the cold, stirring solution.  The reaction was stirred 

for 2.5 h at -78°C and then poured over ice cold acetic acid:deionized water (2 

mL:10 mL) and stirred for 1 h.  The pH of the solution was next brought to ~8 by 

adding saturated NaHCO3.  The resulting solution was extracted with 3 x 15 mL 

EtOAc and the organic layers were combined, washed with 20 mL saturated 

NaHCO3, dried with MgSO4, filtered, and the solvent was removed by rotary 

evaporation.  The crude reaction mixture was purified via column chromatography 

with 10-25-50% EtOAc in hexane to provide Z1.2 as a white solid.  (300.8 mg, 65% 

yield). 1H NMR (300 MHz, CDCl3): δ 1.39 (t, 3H, J = 7.20), 4.41 (q, 2H, J = 7.22 

Hz), 8.05 (dd, 1H, J = 4.96 Hz, 1.67 Hz), 8.43 (s, 1H), 8.91 (dd, 1H, J = 4.87 Hz, 

0.81 Hz), 10.10 (s,1H)  13C NMR (75 MHz, CDCl3): δ 14.13, 62.23, 120.84, 126.84, 

139.12, 150.95, 153.62, 164.10, 192.52. Molecular formula: C10H10O3. DART-

AccuTOF-Mass Spec: [M+1] predicted: 180.06552  [M+1] found: 180.09109 

 

 

Triethyl 2,2',2''-(nitrilotris(methylene))triisonicotinate (Z1.3)87 

Compound Z1.2 (301.0 mg, 1.70 mmol, 3.0 equiv) and NH4OAc (43.2 mg, 0.48 

mmol, 1.0 equiv) were dissolved in 7 mL dry DCM and the reaction was stirred 

under N2 for 1 h.  NaBH(OAc)3 was added in 3 portions (120.1 mg, 0.57 mmol, 1.0 

equiv per addition)  and the reaction was stirred for 1 h in between each addition.  

After the final hydride addition, the reaction was allowed to stir overnight at rt under 

N2.  The solvent was removed under reduced pressure and the reaction residue 

was dissolved in 15 mL EtOAc and washed with 15 mL of 0.1 M KOH.  The organic 

layer was dried with MgSO4, filtered, and the solvent removed under reduced 
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pressure.  Column chromatography with 0-10% MeOH:CHCl3 gave 140.5 mg of 

the product as a clear oil (49% yield).  1H NMR (300 MHz, CDCl3): δ 1.40 (t, 9H, J 

= 6.66 Hz), 4.03 (s, 6H), 4.41 (q, 6H, J = 7.23 Hz), 7.69 (dd, 3H, J = 5.10 Hz, 1.51 

Hz), 8.07 (s, 3H), 8.67 (dd, 3H, J = 5.05 Hz, 0.73 Hz)  13C NMR (75 MHz, CDCl3): 

δ 14.15, 60.04, 61.69,  121.25, 122.40, 138.25, 149.85, 160.14, 165.18  Molecular 

formula:  C27H30N4O6.  Q-Star XL quadrupole TOF-Mass Spec:  [M+1] predicted:  

507.22381  [M+1] found: 507.2337 

 

 

2,2',2''-(Nitrilotris(methylene))tris(N-dodecylisonicotinamide) (ZnR1)88 

Dodecylamine (82.3 mg, 0.44 mmol, 18.0 equiv) was dissolved in 1 mL dry THF 

and the mixture was cooled to 0°C under N2.  DIBAL-H (422 μL of a 1 M in hexane 

solution, 0.42 mmol, 17.1 equiv) was added to the cooled solution and the mixture 

was stirred for 2 h while warming to rt.  Triester Z1.3 (12.5 mg, 0.02 mmol, 1equiv) 

was dissolved in 0.5 mL THF with stirring under N2.  The previous activated amine 

solution was added dropwise to triester solution via cannula.  The reaction was 

then brought to 50°C and stirred overnight under N2.  The reaction was then cooled 

to 0°C and quenched with 1 mL of 0.5 M KHSO4.  The reaction mixture was then 

extracted with 5mL DCM and the resulting aqueous layer was then extracted with 

5mL of CHCl3.  The combined organic layers were washed with 10 mL saturated 

NaCl, dried with MgSO4, filtered, and dried via rotary evaporation.  Column 

chromatography with 0-60% EtOAc:hexane followed by 10% MeOH:CHCl3 gave 
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ZnR1 as a yellow oil (3.1 mg, 17% yield). 1H NMR (300 MHz, CDCl3): δ 0.71 (t, 

9H, J = 7.07 Hz), 1.10 (s, 54H), 1.49 (m, 6H), 3.25 (m, 6H), 3.88 (s, 6H), 7.47 (d, 

3H, J = 4.38 Hz), 7.79 (s, 3H), 8.23 (bs, 3H), 8.41 (d, 3H, J = 4.97 Hz)  Molecular 

formula: C57H93N7O3. Q-Star XL quadrupole TOF-Mass Spec:  [M+Na] predicted: 

946.72321 [M+Na] found:  946.7208 

 

Ethyl 2-(hydroxymethyl)isonicotinate (Z1.4)85 

Compound Z1.1 (636.0 mg, 2.86 mmol, 1.0 equiv) was dissolved in 10 mL dry, 

degassed EtOH.  The solution was cooled below 0°C in an ice/salt bath with 

stirring.  NaBH4 (64.7 mg, 1.71 mmol, 0.6 equiv) was added in small portions to 

the cooled solution to maintain temperature of -10 to 0°C.  Then, freshly crushed 

anhydrous CaCl2 (310.7 mg, 2.86 mmol, 1.0 equiv) was slowly added to the cold 

reaction.  The reaction was allowed to stir for 3 h at 0°C under N2 after addition of 

all reagents.  After 3 h of reacting, the pH of the solution was adjusted to 6 with 1 

N HCl.  Next the solution was filtered to remove solid salts and condensed under 

reduced pressure.  Column chromatography with 10-100% EtOAc:hexanes 

yielded Z1.4 as a white solid (344.6 mg, 68% yield).  1H NMR (500 MHz, CDCl3): 

δ 1.41 (t, 3H, J = 7.54 Hz), 3.57, (bs, 1H), 4.41, (q, 2H, J = 7.24 Hz), 4.83, (s, 2H), 

7.76 (d, 1H, J = 4.92 Hz), 7.82 (s, 1H), 8.69 (d, 1H, J = 4.99 Hz)  13C NMR (125 

MHz, CDCl3): δ 14.18, 61.88, 64.20, 119.75, 121.58, 138.40, 149.30, 160.20, 

164.96   Molecular formula: C10H12O3. DART-AccuTOF-Mass Spec: [M+1] 

predicted: 182.08117 [M+1] found:182.21761 
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Ethyl 2-(bromomethyl)isonicotinate (Z1.5) 

Compound Z1.4 (181.2 mg, 1.01 mmol, 1.0 equiv) was dissolved in 4mL dry DCM.  

PBr3 (1.4 mL, 14.89 mmol, 14.74 equiv) was added and the reaction was stirred 

for 6 h at rt under nitrogen.  Next, the reaction was cooled in an ice bath and 1.5 

mL methanol was added dropwise to quench any excess PBr3.  The reaction 

mixture was washed three times with water, dried with MgSO4, and the solvent 

was removed via rotary evaporation without the application of heat.  Column 

chromatography with 10-25% EtOAc:hexane yielded Z1.5 as a clear oil (60.2 mg, 

quant).  Compound Z1.5 was found to quickly decompose to a purple oil unless 

stored at -80°C.  1H NMR (300 MHz, CDCl3): δ 1.41 (t, 3H, J = 7.09 Hz), 4.41 (q, 

2H, J = 7.16 Hz), 4.60 (s, 2H), 7.76 (d, 1H, J = 4.49 Hz), 7.98 (s, 1H), 8.72 (s, 1H)  

13C NMR (75 MHz, CDCl3): δ 14.19, 33.18, 61.98, 109.99, 122.24, 138.89, 150.44, 

157.90, 164.62.  Molecular formula: C10H11BrO2.  DART-AccuTOF-Mass Spec: 

[M+1] predicted: 243.99677, 245.99472 [M+1] found: 243.99381, 245.98980 

 

 

Ethyl 2-((tosyloxy)methyl)isonicotinate (Z1.6) 

Compound Z1.4 (20.0 mg, 0.11 mmol, 1.0 equiv), DMAP (2.4 mg, 0.02 mmol, 0.2 

equiv), and TEA (16.5 μL, 0.22 mmol, 2.0 equiv) were dissolved in 5 mL dry DCM.  

pTsCl (41.9 mg, 0.22 mmol, 2.0 equiv) was added and the reaction was stirred 

overnight under N2.  Next, the reaction was diluted with 5 mL DCM and washed 

twice with 10 mL 1 N HCl.  The aqueous layer was extracted with 3 x 10 mL DCM.  
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The organic layers were combined, dried with MgSO4, filtered, and the solvent was 

removed by rotary evaporation.  Purification via column chromatography with 10-

75% EtOAc:hexane gave compound Z1.6 as a white solid (17.9 mg, 49% yield).  

1H NMR (300 MHz, CDCl3): δ 1.42 (t, 3H, J = 7.16 Hz), 2.44 (s,3H), 4.42 (q, 2H, J 

= 7.20 Hz), 5.19 (s, 2H), 7.34 (d, 2H, J = 8.11 Hz), 7.78 (dd, 1H, J = 5.08 Hz, 1.58 

Hz), 7.84 (td, 2H, J = 8.39 Hz, 1.99 Hz), 7.92 (s, 1H), 8.66 (d, 1H, J = 4.91 Hz)  13C 

NMR (125 MHz, CDCl3): δ 14.19, 21.63, 62.09, 70.99, 121.30, 122.76, 128.10, 

129.95, 132.54, 139.13, 145.19, 149.75, 154.69, 164.42 Molecular formula: 

C17H18O5S. 

 

 

Ethyl 2-(azidomethyl)isonicotinate (Z1.7) 

Compound Z1.5 (30.5 mg, 0.13 mmol, 1.0 equiv) and NaN3 (24.4 mg, 0.38 mmol, 

3 equiv) were dissolved in 5 mL of dry DMF.  The reaction was then heated to 85°C 

and allowed to stir overnight.  Next the reaction was diluted with 20 mL of EtOAc 

and the solvent was removed via rotary evaporation.  The reaction residue was 

dissolved in 10 mL EtOAc and washed with 10 mL water.  The aqueous layer was 

then extracted with 3 x 7 mL EtOAc.  The combined organic layers were washed 

with 5 x 10 mL ice cold water, 1 x 20 mL saturated NaCl, and then dried with 

MgSO4.  Then the reaction was filtered and the solvent was removed via rotary 

evaporation.  The target compound was obtained in a quantitative yield as a yellow 

oil (25.8 mg).  The same reaction conditions applied to Z1.6 also gave a 

quantitative transformation to Z1.7.  1H NMR (300 MHz, CDCl3): δ 1.42 (t, 3H, J = 

7.04 Hz), 4.43, (q, 2H, J = 7.11 Hz), 4.57, (s, 2H), 7.81 (dd, 1H, J = 5.03 Hz, 1.44 

Hz), 7.90 (s, 1H), 8.75 (dd, 1H, J = 5.02 Hz, 0.74 Hz).  13C NMR (125 MHz, CDCl3): 

δ 14.18, 55.42, 61.96, 121.15, 121.16, 138.78, 150.43, 156.91, 164.78.  Molecular 
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formula: C10H11N3O2.  DART-AccuTOF-Mass Spec: [M+1] predicted: 207.08765 

[M+1] found:  207.09040 

 

 

Ethyl 2-(aminomethyl)isonicotinate (Z1.8) 

Compound Z1.7 (12.3 mg, 0.06 mmol, 1.0 equiv) was dissolved in 5 mL of EtOAc.  

10% Pd/C (2.5 mg, 20% wt of azide, 0.002 mmol Pd) was added to the reaction 

flask and the atmosphere was replaced with H2.  After 1 hour of stirring, the 

atmosphere was replaced with N2 and a second addition of Pd/C (0.8 mg, 5% wt 

of azide, 0.0008 mmol Pd) was added and the atmosphere replaced with H2.  The 

reaction was allowed to stir overnight under hydrogen atmosphere.  Next, the 

reaction was filtered through celite to remove the palladium catalyst and the 

solvent was removed via rotary evaporation.  The crude reaction mixture was 

purified via column chromatography with 5-25% MeOH:CHCl3 and compound Z1.8 

was collected as a yellow oil (4.7 mg, 40% yield).   The product gave a yellow spot 

by ninhydrin stain on TLC.  1H NMR (500 MHz, MeOD): δ 1.40 (t, 3H, J = 7.09 Hz), 

4.10 (bs, 2H),  4.42 (q, 2H, J = 7.19 Hz), 7.82 (d, 1H, J = 4.48 Hz), 7.96 (s, 1H), 

8.71 (d, 1H, J = 4.65 Hz).  Molecular formula: C10H13NO2. DART-AccuTOF-Mass 

Spec:  [M+1] predicted: 181.09715 [M+1] found: 181.10196 

 

 

2-(Hydroxymethyl)isonicotinic acid (Z1.10) 
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Compound Z1.4 (15.6 mg, 0.09 mmol, 1.0 equiv) was dissolved in 6 mL THF:H2O 

(1:1 v/v).  Freshly ground KOH (14.5 mg, 0.26 mmol, 3.0 equiv) was added to the 

stirring reaction.  Next, the reaction mixture was heated at reflux (100°C) for 20 h.  

The reaction was then allowed to cool to rt and then further cooled in an ice bath.  

The pH of the solution was adjusted to ~4-5 with 3 N HNO3.  The solvent was then 

removed via rotary evaporation.  The solid residue remaining in the flask was 

washed with 3 x 10 mL portions of EtOH.  The ethanol washes were transferred to 

a clean flask and the solvent was removed under reduced pressure.  The resulting 

residue was dissolved in hot isopropanol and filtered.  Removal of solvent under 

reduced pressure gave compound Z1.10 as a white solid (12.2 mg, 93% yield). 1H 

NMR (300 MHz, CDCl3/MeOD):  δ 4.59 (s, 2H), 7.57 (dd, 1H, J = 5.20 Hz, 1.50 

Hz), 7.80 (s, 1H), 8.37 (d, 1H, J = 5.26 Hz).  Molecuar formula:  C8H8O3.  DART-

AccuTOF-Mass Spec:  [M+1] predicted: 154.04987 [M+1] found: 154.04561 

2.9.3. Synthetic Details:  Z2 Compounds   

 

Tris((5-bromopyridin-2-yl)methyl)amine (Z2.1)87 

5-Bromo-2-pyridinecarboxaldehyde (1.50 g, 8.06 mmol, 3.0 equiv) and NH4OAc 

(207.2 mg, 2.69 mmol, 1 equiv) were dissolved in 25 mL of dry DCM and stirred 

for 1 hour.  3 equivalents of NaBH(OAc)3 were added in 1 equiv portions ( 565.2 

mg, 2.69 mmol, per addition) with 1 h of stirring between each addition.  The 

reaction was left to stir overnight and then the solvent was removed under  

vacuum, and the residue was dissolved in 30 mL EtOAc.  The reaction was washed 

with 20 mL 0.1 M KOH three times, dried with MgSO4, filtered, and the solvent 
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removed by rotary evaporation.  Recrystallization twice from 50:50 THF:hexane 

and rinsing with cold hexane gave the product as a white needlelike solid (1.35 g, 

96% yield).  1H NMR (300 MHz, CDCl3): δ 3.81 (s, 6H), 7.40 (d, 3H, J = 8.36 Hz), 

7.76 (dd, 3H, J = 8.22 Hz, 2.25 Hz), 8.59 (d, 3H, J = 2.31 Hz) 13C NMR (75 MHz, 

CDCl3): δ 59.26, 119.17, 124.44, 139.05, 150.22, 157.40.  Molecular formula: 

C18H15Br3N4.  DART-AccuTOF-Mass Spec: [M+1] predicted: 526.88991, 

528.88787   [M+1] found: 526.91788, 528.83407 

 

 

Tris((5-((E)-oct-1-en-1-yl)pyridin-2-yl)methyl)amine (ZnR2.2)87 

Compound Z2.1 (25.0 mg, 0.05 mmol, 1.0 equiv), trans-octenylboronic acid (44.0 

mg, 0.28 mmol, 6.0 equiv), and K2CO3 (45.5 mg, 0.33 mmol, 7.0 equiv) were 

dissolved in a 4:2:1 mixture of DMF:toluene:deionized water under Ar.  Pd(PPh3)4 

(3.8 mg, 7 mol%) was added and the atmosphere of the reaction vessel was 

evacuated and replaced with Ar three times.  Next, the reaction was heated at 

100°C for 48 h, followed by removal of the solvent by rotary evaporation.  The 

reaction residue was dissolved in 15 mL EtOAc and was washed with 3 x 15 mL 

water.  The organic layer was dried with MgSO4, filtered, and the solvent was 

removed by rotary evaporation.  Column chromatography with 0-10% 

MeOH:CHCl3 gave the product as a yellow oil (9.9 mg, 34% yield).  1H NMR (300 

MHz, CDCl3): δ 0.89 (t, 9H, J = 6.79 Hz), 1.30 (s, 18H), 1.45 (quint, 6H, J = 7.26), 
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2.21 (q, 4H, J = 6.80 Hz), 3.83 (s, 6H), 6.28 (m, 6H), 7.46 (d, 3H, J = 8.09 Hz), 

7.62 (dd, 3H, J = 8.04 Hz, 2.28 Hz), 8.45 (d, 3H, J = 1.80 Hz) 13C NMR (75 MHz, 

CDCl3): δ 14.07, 22.59, 28.87, 29.14, 31.69, 33.13, 59.58, 122.86, 126.00, 131.95, 

132.89, 133.27, 147.07.  Molecular formula: C42H60N4.  DART-AccuTOF-Mass 

Spec: [M+1] predicted: 621.48907  [M+1] found: 621.43042 

 

 

5-(Dodec-1-yn-1-yl)picolinaldehyde (Z2.2) 

5-Bromo-2-pyridinecarboxaldehyde (50.0 mg, 0.27 mmol, 1.0 equiv), 1-dodecyne 

(36.3 μL, 0.27 mmol, 1.0 equiv), CuI (0.5 mg, 0.003 mmol, 1 mol% of bromide), 

and PdCl2(PPh3)2 (5.7 mg, 0.008 mmol, 3 mol% of bromide) were dissolved in 2 

mL of a mixture of dry, degassed DMF:TEA (5:1).  The reaction vessel was flushed 

with N2 and stirred overnight at 65°C.  The reaction was then cooled and diluted 

with 15 mL of water.  The mixture was extracted with 15 mL EtOAc and the organic 

layer was washed twice with 10 mL water, once with 10 mL saturated NaCl, was 

dried with MgSO4, filtered, and the solvent was removed under reduced pressure.  

Purification via column chromatography with 0-2% EtOAc:hexane yielded Z2.2 as 

a yellow oil (40.3 mg, 55% yield).  1H NMR (300 MHz, CDCl3): δ 0.86 (t, 3H, J = 

6.87 Hz), 1.26 (s, 12H), 1.44 (quint, 2H, J = 7.28 Hz), 1.62 (quint, 2H, J = 7.13 Hz), 

2.45 (t, 3H, J = 6.99 Hz), 7.80 (dd, 1H, J = 8.16 Hz, 1.72 Hz), 7.87 (d, 1H, J = 8.02 

Hz), 8.73 (s, 1H), 10.04 (s, 1H).  13C NMR (75 MHz, CDCl3): δ 4.08, 19.61, 22.65, 

28.33, 28.91, 29.08, 29.28, 29.48, 29.54, 31.95, 98.55, 120.88, 125.76, 139.25, 

150.43, 152.55, 192.60.  Molecular formula: C18H25NO. DART-AccuTOF-Mass 

Spec: [M+1] predicted: 272.20089  [M+1] found: 272.08493  
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(5-(Dodec-1-yn-1-yl)pyridin-2-yl)methanamine (Z2.3)87 

Compound Z2.2 (21.7 mg, 0.08 mmol, 3.0 equiv) and NH4OAc (2.3 mg, 0.03 mmol, 

1 equiv) were dissolved in 2 mL of dry DCM and stirred for 1 h.  3 equivalents of 

NaBH(OAc)3 were added in 1 equivalent portions (6.4 mg, 0.03 mmol per addition) 

with 1 hour of stirring between each addition.  The reaction was left to stir overnight 

and then the solvent was removed under vacuum, and the residue was dissolved 

in 7 mL EtOAc.  The reaction was washed with 7 mL 0.1 M KOH three times, dried 

with MgSO4, filtered, and the solvent removed by rotary evaporation.  Column 

chromatography with 10-50% EtOAc:hexane gave Z2.3 as the major product 

(though tertiary amine ZnR1 was the desired product) as a white solid (11.7 mg, 

quant).  1H NMR (300 MHz, CDCl3): δ 0.88 (t, 3H, J = 6.81 Hz), 1.27 (s, 12H), 1.44 

(m, 2H, J = 6.96 Hz), 1.61 (quint, 2H, J = 7.13 Hz), 2.42 (t, 2H, J = 6.99 Hz), 4.74 

(s, 2H), 7.18 (d, 1H, J = 8.08 Hz), 7.67 (d, 1H, J = 8.38 Hz), 8.56 (s, 1H).  Molecular 

formula: C18H28N2. 

 

2.9.4. Synthetic Details:  Z3 Compounds 
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5-bromo-2-pyridinecarboxaldehyde (1.0 g, 5.38 mmol, 1.0 equiv) was dissolved in 

20 mL of EtOH and the solution was cooled to 0°C.  NaBH4 (1.1 g, 28.22 mmol, 

5.3 equiv) was added in small portions to the cooled solution to maintain a 

temperature of 0°C and then the reaction was stirred for 4 h at rt.  Next, the solvent 

was removed via rotary evaporation and the resulting residue was dissolved in 20 

mL of DCM and was washed three times with 20 mL of water.  The organic layer 

was then dried with MgSO4, filtered, and the solvent removed under rotary 

evaporation.  Z3.1 was recovered as a white solid without further purification (757.2 

mg, 75% yield)  1H NMR (300 MHz, CDCl3): δ 3.14 (bs, 1H), 4.73 (s, 2H), 7.20 (d, 

1H, J = 8.29 Hz), 7.82 (dd, 1H, J = 8.33 Hz, 2.31 Hz), 8.62 (d, 1H, 2.17 Hz)  13C 

NMR (75 MHz, CDCl3): δ 63.88, 119.07, 121.76, 139.38, 149.59, 157.71  

Molecular formula:  C6H6BrNO 

 

 

Z3.1 (757.2 mg, 4.03 mmol, 1.0 equiv) was dissolved in 20 mL of dry toluene.  

SOCl2 (877.0 μL, 12.09 mmol, 3.0 equiv) was added dropwise to the solution of 

alcohol Z3.1 in toluene and allowed to stir for 3 h at rt then quenched with 20 mL 

of saturated NaHCO3, extracted three times with 20 mL of DCM, and the combined 

organic fractions were dried with MgSO4, filtered, and the solvent was removed via 

rotary evaporation.  Column chromatography with 10-50% acetone:hexane gave 

compound Z3.2 as a pale yellow oil (396.5 mg, 48% yield)  1H NMR (300 MHz, 

CDCl3): δ 4.57 (s, 2H), 7.31 (d, 1H, J = 8.38 Hz), 7.77 (dd, 1H, J = 8.33 Hz, 2.47 

Hz), 8.56 (dd, 1H, J = 2.42 Hz, 0.57 Hz)  13C NMR (75 MHz, CDCl3): δ 45.94, 

120.08, 124.05, 139.56, 150.43, 155.08 Molecular formula:  C6H5BrClN 

 



 

66 
 

 

Z3.1 (565.4 mg, 3.00 mmol, 1.0 equiv), DMAP (73.5 mg, 0.60 mmol, 0.2 equiv),  

and TEA (836.3 uL, 6.00 mmol, 2.0 equiv) were dissolved in 30 mL dry DCM then 

pTsCl (1.1 g, 6.00 mmol, 2.0 equiv) was added and the reaction was stirred under 

N2 overnight.  Then, the reaction was transferred to a separatory funnel, washed 

twice with 20 mL 1N HCl, and the aqueous fractions washed thrice with 20 mL 

DCM.  The organic fractions were combined, dried with MgSO4, filtered, and the 

solvent was removed under reduced pressure.  Column chromatography with 10-

50% EtOAc:hexane gave the desired product as a white solid (5% yield).  1H NMR 

(300 MHz, CDCl3): δ 2.44 (s, 3H), 5.09 (s, 2H), 7.33 (m, 3H), 7.81 (d, 1H, J = 8.33 

Hz), 8.56 (s, 1H)  13C NMR (75 MHz, CDCl3): δ 21.64, 71.00, 120.42, 123.19, 

128.04, 129.94, 132.63, 139.50, 145.19, 150.38, 152.35  Molecular formula:  

C13H12BrNO3S 

 

 

Z3.5 (47.5 mg, 0.14 mmol, 1.0 equiv) and NaN3 (27.1 mg, 0.42 mmol, 3.0 equiv) 

were dissolved in 10 mL of dry DMF and stirred at 85°C under nitrogen overnight.  

Then the reaction was diluted with 60 mL EtOAc and then the solvent was removed 

by rotary evaporation.  The resulting residue was dissolved in 25 mL EtOAc, 

washed with 25 mL of water, then the aqueous layer was extracted three times 

with 20 mL of EtOAc.  The combined EtOAc fractions were washed five times with 

ice water, once with 20 mL of saturated NaCl, dried with MgSO4, filtered, and the 

solvent was removed via rotary evaporation.  Azide product Z3.6 was used as a 
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yellow-orange solid without further purification for the next reaction (quant).  1H 

NMR (300 MHz, CDCl3) δ 4.45 (s, 2H), 7.25 (d, 1H, J = 8.11 Hz, overlaps with 

solvent CDCl3 peak), 7.84 (dd, 1H, J = 8.32 Hz, 2.36 Hz), 8.65 (d, 1H, J = 2.26 Hz)  

13C NMR (75 MHz, CDCl3): δ 29.68, 54.99, 119.98, 123.18, 139.57, 150.73, 154.29  

Molecular formula:  C6H5BrN4  
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Spectrum 1:  1H NMR (300 MHz, CDCl3) Compound Z1.1 
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Spectrum 2: 13C NMR (75 MHz, CDCl3) Compound Z1.1 
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Spectrum 3:  Mass Spectrum (JEOL DART-AccuTOF Mass Spectometer) Compound Z1.1 [M+1] predicted: 
224.09173 [M+1] found: 224.08598 
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Spectrum 4:  1H NMR (300 MHz, CDCl3) Compound Z1.2  
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Spectrum 5: 13C NMR (75 MHz, CDCl3) Compound Z1.2  
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Spectra 6: Mass Spectrum (JEOL DART-AccuTOF Mass Spectometer) Compound Z1.2 [M+1] predicted: 180.06552  
[M+1] found: 180.09109 
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Spectrum 7:  1H NMR (300 MHz, CDCl3) Compound Z1.3  
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Spectra 8: 13C NMR (75 MHz, CDCl3) Compound Z1.



 

85 
 

 
Spectrum 9:  Mass specturm (Q-Star XL quadrupole time-of-flight hybrid mass 
spectrometer) Compound Z1.3 [M+1] predicted:  507.22381  [M+1] found: 
507.233
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Spectrum 10: 1H NMR (300MHz, CDCl3) ZnR1.  The aromatic region is muted in CDCl3 
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Spectrum 11: 1H NMR (300 MHz, CDCl3/MeOD) Compound ZnR1.  The alkyl region integrates higher than the 
aromatic region (polar headgroup) as is common with lipid samples in NMR analysis.
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Spectrum 12:  Mass specturm (Q-Star XL quadrupole time-of-flight hybrid mass 
spectrometer) Compound ZnR1.  [M+Na] predicted: 946.72321 [M+Na] found:  
946.7208 
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Spectrum 13:  1H NMR (300 MHz, CDCl3) Compound Z1.4 
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Spectrum 14: 13C NMR: (75 MHz, CDCl3) Z1.4 
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Spectrum 15: Mass Spectrum (JEOL DART-AccuTOF Mass Spectometer) Compound Z1.4 [M+1] predicted: 
182.08117 [M+1] found:182.21761 
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Spectrum 16: 1H NMR (300 MHz, CDCl3) Compound Z1.5 
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Spectrum 17: 13C NMR (75 MHz, CDCl3) Compound Z1.5 
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Spectrum 18: Mass Spectrum (JEOL DART-AccuTOF Mass Spectometer) Compound Z1.5 [M+1] predicted: 
243.99677, 245.99472 [M+1] found: 243.99381, 245.98980 
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Spectrum 19: 1H NMR (300 MHz, CDCl3) Compound Z1.6 
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Spectrum 20: 13C NMR (75 MHz, CDCl3) Compound Z1.6 
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Spectrum 21: 1H NMR (300 MHz, CDCl3) Compound Z1.7 
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Spectrum 21:  13C NMR (75 MHz, CDCl3) Compound Z1.7 
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Spectrum 23:  Mass Spectrum (JEOL DART-AccuTOF Mass Spectometer) Compound Z1.7 [M+1] predicted: 
207.08765 [M+1] found:  207.09040 
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Spectrum 24:  1H NMR (300 MHz, MeOD) Compound Z1.8 
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Spectrum 25:  Mass Spectrum (JEOL DART-AccuTOF Mass Spectometer) Compound Z1.8 [M+1] predicted: 
181.09715 [M+1] found: 181.10196 



 

102 
 

 
Spectrum 26:  1H NMR (300 MHz, MeOD) Compound Z1.10 
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Spectrum 27:  Mass Spectrum (JEOL DART-AccuTOF Mass Spectometer) Compound Z1.10 [M+1] predicted: 
154.04987 [M+1] found: 154.04561 
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Spectrum 28: 1H NMR (300 MHz, CDCl3) Compound Z2.1  
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Spectrum 29:  13C NMR (300 MHz, CDCl3) Compound Z2.1 
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Spectrum 30:  Mass Spectrum (JEOL DART-AccuTOF Mass Spectometer) Compound Z2.1 [M+1] predicted: 
526.88991, 528.88787   [M+1] found: 526.91788, 528.83407 
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Spectrum 31:  1H NMR (300 MHz, CDCl3) Compund ZnR2.2 
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Spectrum 32:  13C NMR (75 MHz, CDCl3) Compund ZnR2.2 
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Spectrum 33:  Mass Spectrum (JEOL DART-AccuTOF Mass Spectometer) Compund ZnR2.2 [M+1] predicted: 
621.48907  [M+1] found: 621.43042 
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Spectrum 34: 1H NMR (300 MHz, CDCl3) Compound Z2.2 
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Spectrum 35: 13C NMR (75 MHz, CDCl3) Compound Z2.2 
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Spectra 36:  Mass Spectrum (JEOL DART-AccuTOF Mass Spectometer) Compund Z2.2 [M+1] predicted: 272.20089  
[M+1] found: 272.80493 
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Spectrum 37: 1H NMR (300 MHz, CDCl3) Compound Z2.3 
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Spectrum 38: 1H NMR (300 MHz, CDCl3) Compound Z3.1 
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Spectrum 39: 13C NMR (75 MHz, CDCl3) Compound Z3.1  
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Spectrum 40: 1H NMR (300 MHz, CDCl3) Compound Z3.2  
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Spectrum 41: 13C NMR (75 MHz, CDCl3) Compound Z3.2  
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Spectrum 42: 1H NMR (300 MHz, CDCl3) Compound Z3.5 
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Spectrum 43: 13C NMR (75 MHz, CDCl3) Compound Z3.5 
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Spectrum 44: 1H NMR (300 MHz, CDCl3) Compound Z3.6 
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Spectrum 45: 13C NMR (75 MHz, CDCl3) Compound Z3.6 
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