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Abstract

The microstructural design has an essential effect on the fracture response of brittle materials.

We present a stochastic bulk damage formulation to model dynamic brittle fracture. This

model is compared with a similar interfacial model for homogeneous and heterogeneous

materials. The damage models are rate-dependent, and the corresponding damage evolution

includes delay effects. The evolution equation specifies the rate at which damage tends to

its quasi-static limit. The relaxation time of the model introduces an intrinsic length scale

for dynamic fracture and addresses the mesh sensitivity problem of earlier damage models

with much less computational efforts. The ordinary differential form of the damage equation

makes this remedy quite simple and enables capturing the loading rate sensitivity of strain-

stress response. A stochastic field is defined for material cohesion and fracture strength

to involve microstructure effects in the proposed formulations. The statistical fields are

constructed through the Karhunen-Loeve (KL) method.

An advanced asynchronous Spacetime Discontinuous Galerkin (aSDG) method is used to

discretize the final system of coupled equations. Local and asynchronous solution process,

linear complexity of the solution versus the number of elements, local recovery of balance

properties, and high spatial and temporal orders of accuracy are some of the main advantages

of the aSDG method.

Several numerical examples are presented to demonstrate mesh insensitivity of the

method and the effect of boundary conditions on dynamic fracture patterns. It is shown

that inhomogeneity greatly differentiates fracture patterns from those of a homogeneous

rock, including the location of zones with maximum damage. Moreover, as the correlation

length of the random field decreases, fracture patterns resemble angled-cracks observed in
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compressive rock fracture. The final results show that a stochastic bulk damage model

produces more realistic results in comparison with a homogenizes model.
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Chapter 1

Introduction

1.1 Research plan

Brittle materials have a significant role in the various application: glasses, ceramics, concrete,

bone, etc. These materials are susceptible to sudden rupture by cracking as they have

many micro-defects and micro-cracks. One of the challenging problems in understanding

the behavior of brittle materials is predicting the crack path and failure response. The

fracture response of brittle materials are very sensitive to geometry, brittleness, loading, and

microstructure. The lack of resources to address effect of impact loads on brittle materials

with consideration of underlying microstructure conducts us to develop a numerical toolbox

for investigating these effects on failure patterns. The proposed numerical toolbox can be

used in various application from design to analysis of brittle materials in high impact loading

conditions, for example in ceramic industry. Finding the relation between microstructure

randomness and failure patterns helps the efficient design of many engineered composites.

For example in a concrete dam, it is crucial to predict and prevent progressive failures such as

cracks initiation and propagation under impact loads, e.g., earthquake vibration. Therefore,

the primary concern of the following proposal is formulating a microstructure-based damage

model which incorporates all dynamical effects of brittle material fracture response. The

proposed research consist of:

1



• Formulating a hyperbolic continuum damage model: The continuum damage

models are very appropriate for modeling complex fracture patterns of brittle materials

as they reduce difficulties in the numerical representation of moving discontinuous

interfaces. In standard damage models, the effect of crack activation with a time delay

in dynamic loads is not included. The author utilizes Allix’s damage model [19] in a

novel Spacetime Discontinuous Galerkin formulation and modifies this damage model

for brittle material. The final system of damage-solid equations remains hyperbolic

which preserves the nonlocality of softening behavior in brittle materials. This task is

already done, and the corresponding results are published in [20].

• Up-scaling microstructure randomness to a macroscopic continuum model:

Two conventional methods for linking microstructure to macroscale analysis are

numerical homogenization (NH) and computational homogenization (CH) methods.

CH methods construct backward/forward relations between microscale and macroscale,

but in NH methods the information just transfers from micro-level to macro-level.

The numerical difficulties and simulation time of CH methods do not permit their

application to realistic problems. On the other hand, in NH methods the RVE limit

and periodicity conditions restrict the application for modeling random materials.

Therefore, we constructs a basis to characterize the randomness through statistical

volume element (SVE) instead of RVE for generating realizations of the stochastic

partial differential equation. This task is partly done, and a novel homogenization

approach for material property characterization is developed by Voronoi tessellation

and square SVEs [14, 24]. The ongoing part is linking mesoscale informed properties

with the statistical damage model.

1.2 Intellectual merits

Four aspects of the proposed research are: (1) novel use of statistical representative volume

elements to systematically propagate material randomness through the entire analysis length

scales; (2) use of two distinct grids for FEM solution and material properties to accurately

2



render random fields (3) formulate and compare continuum and sharp fracture models to

track complex fracture patterns using advanced mesh adaptive operations.

1.3 Broader Impacts

Brittle materials are increasingly used in hybrid high-strength, lightweight material designs.

Some fracture/contact-related applications are in rock fracture (earthquake, hydraulic

fracturing, geothermal energy, and CO2 sequestration), armor design, and in bone fracture.

Finally, the statistical concepts (SVE and distinct domain grids) and adaptive FEM

formulations can apply to other random media and sharp moving interface problems.

For example, in some applications of chemically activated fracture, the chemical reaction

equation is similar to the damage evolution equation.

1.4 Background

1.4.1 Effect of microstructure on quasi-brittle fracture

1.4.1.1 The effect of spatial inhomogeneity on fracture response

All materials, even if considered macroscopically homogeneous, are in essence heterogeneous

(below certain scales) due to their hierarchical design. One of the most common

assumption in numerical or analytical models is the homogeneity of material properties.

In linear analysis, the homogenous assumption predicts overall responses well although this

assumption is not realistic. In failure analyses, for example fracture of brittle materials,

the homogeneous assumption tends to predict unrealistic results. For instance, consider a

pressurized ring shown in Fig. 1.1 where the uniform internal pressure is gradually increased

to the ultimate load capacity of the ring. There are two scenarios: 1) assuming homogeneous

material properties leads to a sudden rupture at every point in the domain which is obviously

unrealistic; 2) existing some inhomogeneities in material properties which ensures there are

some (not infinite) weaker point that fail first. Therefore, the spatial inhomogeneities have

3



Figure 1.1: Effect of spatial inhomogeneities on failure response
.

significant effects on initiation and propagation of fractures. In addition, considering these

effects in numerical analysis is crucial to predict realistic responses.

As shown by many experimental and numerical investigations, in brittle materials fracture

path can be varied by changing the material properties. One important contribution is the

experimental work done by Al-Ostaz and Jasiuk [15] where they tested several Epoxy sheets

with holes where all of them had similar geometry and loading configurations. The only

difference between the samples came from random properties of their microstructure. In Fig.

1.2, the remarkable fracture pattern variations between samples are reported. While most

cracks follow a critical path, there are some variations due to the randomness at microscale.

Total energy dissipation, as another important macroscopic property of a system, can be

affected by microstructural randomness. However, as it is shown in Fig. 1.3, this effect is

more significant for brittle materials during the nonlinear post-ultimate (softening regime) of

load response. Also, it is vital to indicate that there is no mechanism for brittle materials to

dissipate energy by undergoing plastic deformation. Instead, they dissipate energy by instant

initiation and propagating fracture surfaces around defects and microcracks where the stress

intensities are much higher. Therefore, material randomness has significant influence on

crack initiation and propagation zones, which in turn affect the energy dissipation path of

brittle materials.

4



Figure 1.2: Effect of random material properties on crack patterns for different samples of
Epoxy sheets with same configuration of holes and loadings [15]

.

Figure 1.3: Microstructure effect on fracture toughness randomness and post-ultimate load
response [72].

5



1.4.2 Computational and theoretical models for modeling fracture

There are two main categories to model fracture: : Sharp interface and bulk/continuum

fracture models. In sharp interface methods fracturing process is considered as a localized

zone where the specific physical changes happen in an area with one dimension lower than the

actual domain. On the other hand, in bulk/continuum models the degradation (softening)

process is modeled in the bulk domain, rather than on interfaces.

1.4.2.1 Sharp interface fracture models

In this approach the existence of fracture is distinguished by geometrically defined fractures

in the domain on localized regions. The fracture geometry is explicitly recovered as

a discontinuity in the response field. In addition, special singularities (crack tips) or

nonlinearities (crack tip process zones) can be defined on fracture geometry through three

well-known models: Linear elastic fracture mechanics (LEFM), traction-separation relation

(TSR), and interfacial damage. LEFM introduces special singularities near the crack tip

which is often unrealistic. The unrealistic singular stress can be resolved by TSRs. In reality

the high values of stress near the crack tip produce a zone near the tip where the material

experiences some plastic process to re-balance the proposed stress values with material

strength limit. For quasi-brittle materials, where the zone of nonlinear material response

around the crack tip is small, the process zone can be mapped to the fracture surface near

the tip called fracture process zone (FPZ). The TSR with cohesive models limit stress values

within the FPZ. In addition, all the nonlinear softening process act on FPZ through TSR

models. Therefore, TSR models are more realistic than LEFM. It is noteworthy to indicate

that in most TSRs the surface of fracture process zone (FPZ) is known as an input parameter

for the model which is not a correct assumption. Also, they have several difficulties to capture

transition from bonding to debonding phases of fracturing process in loading-unloading cases.

Interfacial damage models are good candidates for solving the previous problems. In these

models, there is a damage parameter which has a value between zero (fully bonding) to unity

(fully debonding or free surface crack) over the whole crack surface.The connection between
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damage phase and mechanical phase is established through some interfacial constitutive laws

(like TSR) to account for energy part of degradation.

Four commonly-employed crack tracking strategies in finite element methods are

illustrated in Fig. 1.4. In the most simple one, mesh is fixed and non-conformal to the

fracture surface (Fig. 1.4(a)). In the fixed method the true fracture surface (red line) is

roughly approximated by closest element edges (green) to it. Clearly, handling of mixed

mode loadings, where the crack path is not predictable, is challenging and the dynamics

of the moving cracks predicted are not reliable. Adaptive meshing scheme, as illustrated

in Fig. 1.4(b), is another approach for modeling crack patterns. In this approach element

boundaries are aligned with predicted crack paths [13]. In fixed and adaptive methods,

discontinuous features are defined by splitting the internal domain with explicit boundaries

(approximated fracture surfaces). On the other hand, discontinuous features are incorporated

into approximation field by enhancing basis functions with some special functions through

eXtended finite element method (X-FEM). In this method, there are some zones around

fractures (surrounded area with blue lines in Fig. 1.4(c)) called enriched zones where element

basis functions are enriched.

Simulating crack growth using the classical FEM is quite difficult because the topology

of the domain changes continuously. On the other hand, allowing to simulate arbitrary

discontinuity with a fixed mesh, the X-FEM method, follows a crack path within the

elements. In particular the domain does not have to be re-meshed as crack propagates.

Although the X-FEM alleviates the problem of modeling arbitrary cracks and discontinuities

of the finite element mesh, the modeling of more complex fracture topologies such as

Figure 1.4: Discretization schemes for tracking cracks in the Finite Element Method [13].
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microcracking and bifurcation demand the derivation and inclusion of additional enrichment

functions [13].

1.4.2.2 Bulk/continuum fracture models

These approaches model fractures using a continuum set-up based on damage mechanics.

Bulk models drastically reduce computational cost and programming challenges related to

previous models, specifically in the case of mesh adaptive methods and XFEMs. The idea

of damage mechanics comes from a simple reduction of defect surfaces from whole area of

the representative volume element (RVE). As a result, there is a reduction in material load

capacity by introducing the softening behavior in material constitute law. For instance, in

one dimensional set-up the Young’s modulus E is effectively reduced by the factor (1−D),

σ = (1−D)Eε, (1.1)

where 0 ≤ D < 1 is a non decreasing function of strain. The computation of damage value

itself is very crucial and it classifies the damage theory into two major classes: Local and

non-local theories. In the classical (local) theories a nonlinear explicit relation is defined

for damage variable which is based on the state variables of the problem (strain, stress,

damage itself, temperature and so on). Generally, many of constitutive equations for

damage value are empirical and calibrated through experiments. There are some crucial

problems with local models, especially in modeling brittle fractures where the width of

damage area is extremely narrow. In numerical setting, the results will be mesh-dependent

and mathematically the governing equation for a localized form will be ill-posed when the

localize band tends to zero (fracture width). This problem can be resolved in different ways

through considering a non-local zone for damage effect which leads to another class of damage

mechanics called non-local models.

The first idea of using bulk/continuum models for fracture modeling was proposed by

Bažant and Lin [30], as the smeared crack approach. In continuum damage models, the

fracture cannot be represented explicitly by free traction surfaces. Instead, the fracture is
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defined with a narrow band of material degradation in the bulk domain, illustrated in Fig.

1.4(d) with a dark region around the crack.

In the smeared crack method, material nonlinearities from creation of defects and cracks

can be modeled through a generalized bulk constitutive model that represents the process

of material degradation through the nucleation and growth of microscale cracks. In fact,

the smeared crack method is a link between continuum damage mechanics and TSRs.

The smeared crack approach is an innovative idea in progressing new methods based on

continuum damage mechanics. One of the most important drawbacks of these methods is

the overestimation of the localization (fracture) band with wide width instead of representing

a sharp interface for fracture. This is the main reason for developing more advanced models,

such as the phase field model proposed by Miehe et al. [84]. In phase field approaches,

although a continuum damage is introduced, but we still can restrict the damage response

over a localized zone.

Firstly, numerical investigations demonstrate heavy mesh dependency of results obtained

by local damage models. Specifically, the damage evolution is affected by mesh size. For

better clarification of this effect, consider a simple tension test of a plane stress plate with

a hole at its center; cf. Fig. 1.5. It is expected that the results converge to the accurate

response by refining the numerical mesh. However, it is shown in Fig. 1.5 that the results

do not converge and there is a high sensitivity against the mesh size.

Later, it was proved that the main reason of such mesh dependency is not due to numerical

methods but it has a physical and mathematical origin. From a physical perspective, a

damage model should incorporate a material length scale to define a reasonable zone for the

energy dissipation process. In another word, numerically the damage model at failure point

should be integrated with surrounding domain with a non-local radius. To resolve these

issues, several nonlocal damage models are proposed. There are two categories of non-local

theories: Integration-based and gradient-based. In the integration models the damage used in

(1.1) is an averaged value over a region with a specified size. However in the gradient models,

the variation of the damage value is defined to be zero over such a region with specific size as

well. Phase field models are the most recent models which are very close to gradient-based

models. However, they establish a link between non-locality zone and fracture interface
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Figure 1.5: Mesh dependency of local damage models [36].

sharpness through a length scale parameter which is more suitable in fracture modeling.

The effect of length scale value in phase filed models is shown in Fig. 1.6. It is important

to indicate that although decreasing the length scale leads to more realistic representation

of fracture interface, in the limit of the length scale tending to zero, the problem becomes

ill-posed. Particle methods such as Peridynamics [105, 57, 98] are other types of non-local

models which have been successfully used to model highly complex fracture patterns that are

encountered in dynamic (rock) fracture. They model continua as a collection of interacting

particles within a non-local radius.

1.4.2.3 Transient aspect of continuum models

Brittle materials (like concrete) are highly rate-dependent. Experimental investigations show

both of the strength and fracture energy increase for higher loading rate. These effects are

directly related to changes of the fracture (damage) process with rate, as depicted in Fig. 1.7;
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Figure 1.6: Phase field representation of a sharp fracture with different vales of length
scales:(a) 0.1; (b) 0.007 [84].

under quasi-static tensile loading conditions the material undergoes three distinctive crack-

deformation stages up to complete failure. In quasi-static loading, the material response

starts as elastic or visco-elastic deformation with uniform distribution of stresses/strains

across the specimen. During this stage (shown as the point a in the static branch of Fig. 1.7)

stresses concentrate around multiple micro-cracks and other defects in the material. With

increasing deformation, just before and immediately after the peak stress, (b) micro-cracks

start to develop and coalesce degrading the material stiffness and strength i.e., damaging

the material irreversibly. In a later stage (c), while single macro-cracks start to appear

leading to complete material failure, the surrounding material relaxes. Considering the low

deformation rates in static loadings, inertial forces can be neglected and the crack opening

and material relaxation can be considered as instantaneous processes [95]..

The main difference between the responses of the material under quasi-static and dynamic

loading is time. In the dynamic situation, the supplied energy crosses through the structure

at a certain velocity and damage is no longer instantaneous due to inertia [95]. At

high deformation rates crack initiation is retarded (d and e in Fig. 1.7) [95, 103] and

stress concentration is reduced at the crack tip due to inertia contribution in the dynamic

equilibrium (micro inertia effects)[95, 33]. Inertia also contributes to the observed limited

crack propagation velocity. In any case, from a macroscopic point of view, this dynamically

induced retarded crack opening process is seen as a resistance to straining and to damage

evolution. Additionally, with increasing loading rates, more micro-cracks are activated at the

same time and the distribution of micro (and macro) cracks across the fracture process zone
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Figure 1.7: Behavior of concrete when loaded under tension at low and high loading rates:
(a) Stress-displacement curves ; and (b) crack evolution [95].

(FPZ) changes. Thus, the effective fracture surface and consequently the fracture energy

also changes with rate. Therefore, the importance of incorporating the dynamic effects in

damage models is obvious, especially, for dynamic brittle fracture modeling.

1.4.2.4 Dynamic continuum damage

In most of the previous studies, the damage formulation for static and dynamic investigations

has the same characteristic, and the only difference is the value of strain rates. In these

formulations, the strain rate has a contribution in the damage source term. For example, in

a strain-based damage formulation the non-local gradient damage equation is [56]

ε̄− l2s
2 ∇

2ε̄ = εeq(ε, t), (1.2)

where ε̄ is a nonlocal strain, ls is a length scale parameter which introduces a nonlocal

radius (damage diffusivity factor) and εeq is an equivalent measurement of local strain which

incorporates rate effect. There are various functions to link a nonlocal strain value (as

a damage source) to a damage value. Those functions only affect the constitutive laws of

damage-deformation mechanism, and cannot change characteristic behaviors of the equation.

There is no characteristic wave in the PDE to control the speed of failure propagation. This

violation of causality exits even in more sophisticated higher order gradient-based damage
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formulation. For instance, in a fourth order nonlocal damage equation [114],

ε̄− l2s
2 ∇

2ε̄+ l4s
8 ∇

4ε̄ = εeq, (1.3)

there still is no wave speed implied by the equation. It is common to use similar models for

dynamic problems even in phase field methods as the field equation is [86],

gc
ls

(d− l2s∇2d) = 2(1− d)H(ε, t), (1.4)

Where gc is the critical energy release rate, d is the damage (crack) phase field variable,

and H is a history-dependent function of strain. In these new models, there is a better

interpretation of damage phenomenon where they establish a relation between geometry

(sharpness of fracture) and damage value through a modified definition of length scale

parameter. The effect of length scale value in phase filed models is shown in Fig. 1.6. It is

noteworthy to indicate that although decreasing the length scale leads to a more realistic

representation of fracture interface, in the limit of the length scale tending to zero, the

problem becomes ill-posed.

One of the primary effects on the damage response for dynamic problems is changing

fracture energy and failure capacity values with loading rates, as shown in Fig. 1.8. This

phenomenon can be considered in previous models by modifying the damage source function.

However, the main feature of a dynamic problem, the delay effect of damage propagation,

cannot be captured through those models, as the wave speed of information is infinite.

The importance of this delay effect is shown by Allix et al. [19] through a simple ordinary

differential equation (ODE) formulation of damage mechanism for interfacial damage models,

ḋ = 1
τc

{
1−H(ε, d)

}
, (1.5)

where τc is a time scale parameter to ensure that the damage evolution is not instantaneous.

They also have shown that this time scale has a meaning similar to length scale to recover

a non-local response without any mesh dependency problems. A physical justification is

performed by Hüssler-Combe and Kühn [59] with introducing a damper effect in damage
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Figure 1.8: The stress-strain curves for loading at various strain rates[19].

mechanism. They modified nonlocal gradient damage models (1.2) by adding the inertia

effect,

mε
¨̄ε+ ε̄− l2s

2 ∇
2ε̄ = εeq, (1.6)

where mε is a mass-like parameter. This accommodates for the fact that microcracking and

thus damage does not arise arbitrarily fast. A model for this behavior is given in Fig. 1.9 with

a simple string-damper model. This model has a row of springs in parallel, whereby each

spring has a breaking point with stochastically varying strength. This model basically yields

the typical uniaxial stress strain behavior with limited strength and subsequent softening.

The basic model is extended with inertial masses in the breaking point which sustain forces

over a short time period even in case of breaking. Thus, an overall retardation of damage

may arise depending on load distribution and load history [59].

The previous inherently dynamic damage models are more suitable for diffusive fracture

response. On the other hand, phase field models have the less diffusive characteristic, so they

represent sharpness of fracture interfaces more realistically. Recently, a genuinely dynamic

damage model is formulated using the phase-field approach [68].

1.5 Outline and Output

Figure 1.10 shows the outline of the present thesis and general features of our in-

house software for the dynamic fragmentation analysis of brittle material. The author’s

contributions are included in Macroscopic Fracture Modeling and Mesoscale Material
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Figure 1.9: Rehelogical models for damage in [59].

Property Characterization modules. The author has formulated the continuum damage

model in the context of aSDG method and implemented it into Dr. Abedi’s group software

written by C++. This formulation and verification aspects are provided in §2 which is

completely based on a published paper [20]. In §3, the author will extend the standard

formulation to a statistical continuum damage formulation based on the Mohr-Coulomb

criterion which incorporates randomness effect into material cohesion. This chapter brings

all the materials published in [21]. The author will compare continuum and interfacial

damage formulations in §4 where its entire content is borrowed from [22]. The author has

been involved in other topics related to Mesoscale Material Property Characterization which

are not presented in this MS thesis, and interested readers can refer to [14, 24].
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Figure 1.10: Outline of the thesis and major outputs of the author’s research.
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Chapter 2

Asynchronous Spacetime

Discontinuous Galerkin Formulation

for a Hyperbolic Time-Delay Bulk

Damage Model
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This chapter is revised based on the following accepted paper:

B. Bahmani, R. Abedi, “Asynchronous Spacetime Discontinuous Galerkin formulation

for a hyperbolic time-delay bulk damage model”, Journal of Engineering Mechanics,

2019.

My primary contributions can be listed as (i) formulation of continuum damage model

based on the aSDG method, (ii) development of our in-house software by adding damage

field and integration of damage phase with elastodynamics phase, (iii) arrangement and

interpretation of numerical examples, and (iv) preparation of the first paper draft.

2.1 Abstract

A bulk damage formulation is presented for failure analysis of brittle materials under dynamic

loading. A time-delay ordinary differential equation (ODE) is used to model damage

evolution. The evolution is driven by the difference between a target static damage value

and the instantaneous damage value. A damage length scale is introduced from the model’s

intrinsic relaxation time and elastic wave speeds. This length scale addresses the mesh

sensitivity problem of some existing damage formulations for dynamic fracture, with less

computational effort than some other existing remedies. The authors use the asynchronous

spacetime discontinuous Galerkin (aSDG) method for the solution of the resulting hyperbolic

system of equations. Local and asynchronous solution process, linear complexity of the

solution versus the number of elements, local recovery of balance properties, and high spatial

and temporal orders of accuracy are some of the main advantages of the aSDG method.

Several numerical examples are presented to demonstrate mesh insensitivity of the method

and the effect of boundary conditions on dynamic fracture patterns.

2.2 Introduction

Continuum or bulk damage models represent and average the processes of crack nucleation,

growth, and coalescence or other types of failure evolution at microscale. This point of
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view was introduced by Bažant [30] in the context of smeared crack model for concrete. In

contrast, sharp interface models directly represent crack surfaces without averaging their

effect into a bulk damage field. From a computational point of view and in finite element

methods (FEMs), cracks can be inserted on inter-element boundaries, e.g., [37], or propagate

inside elements as in eXtended [32, 85] and generalized [50, 109] FEMs.

The main advantage of bulk damage models is the implicit representation of cracks.

Hence, complex features such as microcracking and crack branching are automatically

captured as a part of the solution; in contrast, in all aforementioned sharp interface

FEMs, accommodating such complex fracture patterns poses serious challenges either on

finite element geometric meshing or on formulating the enriched basis functions; see for

example [45]. However, continuum models can suffer from mesh-dependency and diffusive

response [106, 83]. The mesh dependency of the original damage models originates from

the localization phenomenon and loss of ellipticity / hyperbolicity of the formulated (initial)

boundary value problem [73, 79]. There are three approaches to address mesh-dependency:

gradient-based, integration-based, and time-relaxed or viscous non-local models [47, 94, 65].

In gradient-based models, higher spatial gradients of the damage field are added to the

damage governing equation [92, 42]. The addition of such higher order terms introduces

intrinsic length scales to the model. In integration-based models, the damage variable at

each point is a weighted average of damage value inside a neighborhood defined by a length

scale parameter [94, 95]. The intrinsic length scale of either of these models prevents the

width of the localization region to go to zero in the limit of mesh refinement, thus it addresses

the mesh sensitivity problem. Time-relaxed or viscous damage models are either nonlocal in

time, i.e., involving a temporal convolution, or more simply are represented by an ordinary

differential equation (ODE) in time [18, 80, 60, 67].

In this manuscript, we present a time-delay damage formulation similar to the model

in [19, 111]. Herein, a static damage model is relaxed by the addition of the damage

temporal rate multiplied by a relaxation time τc. For dynamic problems, the interaction

of the relaxation time with the elastodynamic wave speeds indirectly introduces intrinsic

length scale(s) that similar to the aforementioned space-based formulations remedies the

mesh sensitivity problem.
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The majority of damage formulations are implemented by continuous finite element

methods (CFEMs). Moreover, most are limited to quasi-static analysis. Discontinuous

Galerkin (DG) methods are excellent alternatives to CFEMs for the solution of hyperbolic

PDEs. First, their solution space better approximates a variety of discontinuous solution

features encountered in the solution of hyperbolic PDEs. Second, when explicitly integrated

in time, the solution is local with linear complexity in terms of the number of elements.

To accommodate this with CFEMs, mass lumping is required which can negatively impact

the order of accuracy. Finally, DG methods are much more flexible for h and hp adaptive

operations and better lend themselves to parallel computing [61].

The literature on DG formulation of damage models is very limited. For interfacial

models, [115] uses a DG formulation to model fracture on bi-material interphases. The

authors have formulated a sharp interfacial model using Riemann solutions for dynamic

fracture [6] and contact/fracture [5] problems. As for the bulk models, [120] has developed

a low-order DG method for the application of strain-gradient damage models to quasi-static

conditions. In addition, [39] presents a DG formulation for a phase-field model that closely

resembles gradient-based damage models. While this formulation is for elastodynamics, the

PDE of this phase-field model is parabolic. This implies that damage can propagate with

infinite speed, an issue that is discredited by physical grounds in [59]. The authors also

presented a damage model for rock fracture in [23] where damage evolution was stress-

driven and was restricted to shear-dominant fracture under ambient compressive stress. The

strain-based damage evolution model presented herein is more appropriate for tensile and

mixed-mode fracture problems.

The DG bulk damage formulation presented herein addresses several of the aforemen-

tioned issues for modeling dynamic fracture. First, it is a dynamic formulation by being

coupled to the elastodynamic equations. Second, the damage evolution maintains the

hyperbolicity of the elastodynamic problem and does not violate causality. This lends itself

to the asynchronous spacetime Discontinuous Galerkin (aSDG) method [7] used herein,

as it exploits the causality constraint to provide a highly efficient solution scheme for

elastodynamic problem. Third, the ODE form of the governing equation eliminates the

need for additional boundary conditions for the damage field and greatly simplifies the
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implementation of the method. Fourth, in our prior interfacial damage formulation [6, 5],

highly advanced mesh adaptive operations had to be used to exactly track crack paths and

capture complex patterns such as microcracking and crack branching; this bulk damage

formulation greatly simplifies the problem in the expense of only implicitly representing the

effect of microcracks and other features below a certain length scale. Finally, the aSDG

method has several very unique advantages over CFEMs and even other DG methods for

the solution of hyperbolic problems; please see [7, 10] for a detailed discussion of these

advantages.

2.3 Governing equations

In this section, we present separate governing equations for elastodynamics and damage

problems. The authors employ a strain-based damage formulation wherein damage evolution

follows a time-delay rate model. This damage model is appropriate for brittle materials such

as concrete and rock where failure is often tensile dominated and infinitesimal deformation

approximation is acceptable.

2.3.1 Rate-dependent and retarded damage formulation

The authors adopt the time-delay model proposed in [18, 19] for damage evolution. Albeit

its simplicity, it can incorporate several essential characteristics such as rate-dependency and

the delay in damage evolution. In most materials fracture strength and energy are highly

rate-dependent, particularly higher strength and energy are observed at higher loading rates.

Many existing nonlocal damage models involve parabolic equations or elliptic constraints

that imply an infinite speed of wave. In contrast, the evolution equation in [19] preserves

the hyperbolicity of the problem.

The elastic strain energy density, φ(ε), is defined as,

φ(ε) =
√

1
2ε : C : ε, (2.1)
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where C is the forth order elasticity tensor and ε is the infinitesimal strain tensor field

defined as the symmetric part of the displacement gradient, ∇su. For the remainder of the

manuscript only isotropic materials are considered for which C is uniquely defined by Lamé

parameters or the pair of elastic modulus E and Poisson ratio ν.

The authors assume that the bulk damage parameter κ ∈ [0 1] be driven by elastic strain

energy density, but only through the positive part of strain tensor, 〈ε〉+, to ensure that no

damage accumulates under pure compressive stress condition. This assumption is originally

proposed by Mazars [82] for quasi-brittle materials as the damage is mainly driven by tension

in these materials such as rock [66, 92, 87]. Herein, 〈.〉+ is the Macaulay positive operator

and its value for a symmetric second order tensor A is,

〈A〉+ =
d∑
i=1
〈ai〉+ξi ⊗ ξi, (2.2)

where ξi is the ith eigenvector corresponding to the eigenvalue ai, and d is the spatial

dimension. Accordingly, the damage driving energy density, defined as the elastic energy

density of 〈ε〉+ is,

φ+(ε) := φ(〈ε〉+) =
√

1
2〈ε〉+ : C : 〈ε〉+, (2.3)

The damage force-type function, κf (ε), is expressed as,

κf (ε) = φ+(ε)− φi
φc − φi

, (2.4)

where φi and φc are the minimum and maximum damage driving energy density limits.

They correspond to fracture initiation and rupture under quasi-static loading condition,

respectively. These values can be related to minimum and maximum damage driving strain

limits εi and εc through Eq. (2.3). For example, in a 1D tensile experiment, εi and εc are

strains at the start of softening region and full failure, respectively, for a quasi-static loading

condition. For quasi-static monotonically increasing φ+(ε), the damage force is equal to

the damage value, κ = κf . However, as mentioned earlier, the damage progress is not

instantaneous in dynamic conditions. The model from [19] expresses damage evolution by
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the following ordinary differential equation,

dκ
dt = κsrc(κ, ε) = 1

τc
(1− e−a〈κf−κ〉+), (2.5)

where κsrc(κ, ε) is the general form of an evolution law. In this study, we assume that it

takes the particular form on the right hand side, where τc and a are called the relaxation

time and brittleness parameter, respectively. For a larger timescale parameter the damage

evolution process takes longer time to be fully activated, and a higher value of brittleness

parameter corresponds to a more brittle response. The positive operator in 〈κf−κ〉+ ensures

that damage is a nondecreasing function of time, and the form of equation implies that

dκ/dt → 0+ as κ → κf . The latter condition clarifies the interpretation of κf as the quasi-

static damage limit.

Damage model parameters can be obtained through 1D tensile tests. As mentioned

before, εi and εc correspond to the start of softening region and full failure, respectively.

Experimentally, strain versus stress responses for different loading rates can be obtained.

It is expected that higher rates result in higher maximum attainable stress and dissipated

energy. Having the history of stress versus strain, one can calibrate the damage parameter as

a function of strain for different loading rates. The process for calibrating a damage model

can for example be found in [101]. Once the damage evolution for different strain rates is

calibrated, the specific form of κsrc is determined in Eq. (2.5). The evolution function may

not necessarily match the particular form provided with the relaxation time τc. However,

in [19, 111] it is claimed that this evolution law accurately represents damage evolution for

materials considered therein. If this time-delay form of κsrc is chosen, the value of τc can

be obtained by a best fit of damage evolution history for one or multiple strain rate 1D

experiments.

In conjunction with dynamics analysis, the delay model introduces a damage length

scale, lc = cdτc, which is proportional to longitudinal elastic wave speed cd [19, 111]; for

mode II fracture problems, it is more appropriate to use the shear wave speed to determine

lc. Therefore, it is crucial for the present formulation to be employed in genuine dynamic

conditions where elastic wave speeds are relevant and can provide the length scale lc.
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Otherwise, as noted in [78] for very low loading rates, i.e., for quasi-static conditions, this

model may exhibit mesh sensitivity—an issue not relevant to the present study dealing with

elastodynamic problem. Under dynamic conditions, lc provides a scaling for damage process

zone size, i.e., the width of the region where damage localization occurs and κ→ 1.

This damage equation only needs the initial condition κ(x, t = 0) = κ(x) without any

boundary condition, since Eq. (2.5) is a first order ODE. This feature is contrasted with

other non-local methods such as gradient-enhanced and phase-field approaches in that they

require some extra boundary conditions. The initial state is often considered damage-free,

that is κ(x) = 0, an assumption taken for the remainder of the manuscript.

2.3.2 Elastodynamics equations

The conservation of linear momentum reads as,

∇ · σ + ρb = ṗ, (2.6)

where σ, b, and p are the second order Cauchy stress tensor, body force, and linear

momentum density, respectively. The linear momentum density is defined as p = ρu̇, where

ρ is the mass density. Moreover, the compatibility conditions dε/dt = ∇sv and du/dt = v

are added to Eq. (2.6) to form a system of first order differential equations. In the context

of continuum damage mechanics [88], the effect of material degradation is considered by a

modification of the linear elastic constitutive law. There exist many modified constitutive

laws for different applications, and the authors adopt a simple isotropic model advocated by

[92],

σ = (1− κ) C : ε. (2.7)

The governing equations (Eqs. 2.5 and 2.6) set a nonlinear hyperbolic system which are

coupled through the constitute laws relations (Eqs. 2.3 and 2.7) and compatibility conditions.
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2.4 Implementation by the aSDG method

In this section, the authors briefly review main ideas and features of the aSDG method

that will be used as the computational framework for the damage-elastodynamics equations.

Further details are discussed in [7, 9] for elastodynamics and fracture applications.

2.4.1 Causality-based spacetime meshing and solution scheme

In the aSDG method, basis functions are selected as piecewise polynomial functions that

are discontinuous across all element boundaries. Unlike continuous finite element methods

where displacement continuity is satisfied a priori, this continuity is satisfied weakly through

the boundaries of the elements in spacetime. The governing equations are discretized in

spacetime using unstructured elements with a particular causality constraint as described

below. Similar to other discontinuous Galerkin (DG) methods, the aSDG method is very

appropriate for the solution of hyperbolic PDEs due to its better performance in dealing

with high gradient and nonsmooth solution features, more flexible adaptive operations, and

linear solution complexity versus the number of elements.

As shown in Fig. 2.1, a simple unstructured causal spacetime mesh is chosen to describe

basic features of the aSDG framework. The fastest characteristic directions are depicted by

inclined arrows, assuming uniform wave speeds across the domain. The causality constraint

means each facet must be faster (closer to horizontal) than the fastest characteristic direction

traversing the facet. This causality constraint provides a dependency map between the

solution of adjacent elements.

In a causal mesh, the solution on any element depends only on initial and boundary

information and the solutions on its prior immediate neighbors. For example, the solution

on element A depends only on the solutions on the elements B and C as its earlier neighbors.

In Fig. 2.1 the causal inflow and causal outflow boundaries are highlighted by red and

green lines, respectively. Using the causality constraint, the global solution can be computed

locally, one element at a time. For instance in Fig. 2.1, the solutions on elements labeled by 1

depend only on initial conditions (and boundary conditions for elements E and F). Therefore,
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Figure 2.1: SDG Solution scheme on a causal spacetime mesh in 1d×time. Reproduced
from [6].

solutions of the elements on the level-1 can be locally calculated, simultaneously in parallel

or any order. For solving a level-2 element, there is no need to have the entire solution for

all level-1 elements; a level-2 element only needs solutions of its earlier neighbors. Thus, the

element-by-element solution of the aSDG method enables the asynchronous feature, linear

computational complexity with respect to the number of spacetime elements [6]. In 2D and

3D problems, the Tent Pitcher algorithm [1] is used to erect patches of simplicial elements

that fill the spacetime domain by a few element at a time until the final time of the simulation

is reached. Further details about the aSDG method for the solution of elastodynamics can

be found in [1, 7, 8, 6].

2.4.2 aSDG formulation for the damage evolution

For the following discussion, we consider a general form for damage evolution source term

κsrc(κ, ε) in Eq. (2.5). We consider the problem on the spacetime domain D = Dx × [0, T̄ ],

where Dx is the spatial domain and T̄ is the final time. From continuum mechanics

perspective, the satisfaction of a balance law over arbitrary domains is equivalent to a

diffuse equation and a jump condition. The diffuse equation is the differential equation
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corresponding to the balance law. The jump condition holds across any arbitrarily-oriented

manifold in spacetime, particularly across the jump manifold ΓJ where the field κ suffers a

nontrivial jump. For Eq. (2.5) these equations are,

(κ̇− κsrc)|D\ΓJ
= 0 (2.8a)

(κ+ − κ−)?dt|ΓJ
= 0 (2.8b)

where Eq. (2.8a) is the ODE satisfied everywhere except the jump set (D \ ΓJ). The

jump condition for balance laws states that the difference between the traces of the spatial

(spacetime) flux density, denoted by superscripts + and − in Fig. 2.2, times spatial

(spacetime) normal vector is zero for static (dynamic) problems. Since the dynamic problem

considered herein is an ODE, the spatial flux density is zero and the corresponding spacetime

flux density (space followed by time) is F = [0, κ]. Assuming that a spacetime normal can

be defined on ΓJ as shown in Fig. 2.2, the spacetime normal is N = [nx, nt] and the jump

condition reads as (F+ − F−).N = (κ+ − κ−).nt = 0. The problem with aforementioned

argument is the inability to objectively define the normal vectors in spacetime. The effect of

the restriction of the differential form ?dt on ΓJ in Eq. (2.8b) is similar to taking the spatial

projection of surface differential nt dS as shown in the figure. Thus, it effectively enforces

the equation (κ+ − κ−).nt = 0 on ΓJ without the need to define a normal vector.

For discrete formulation of this problem, the spacetime domain D is discretized by

simplicial elements, e.g., triangular elements for d = 1 in Fig. 2.2. Given that the solution

is smooth inside a finite element Q and can suffer jump on its boundary ∂Q, Eq. (2.8a)

and Eq. (2.8b) are used to define interior and boundary residuals of the element in the

context of a weighted residual method. Moreover, instead of expressing the jump condition

Eq. (2.8b) between the traces of κ from the two sides of ∂Q, we specify the jump between

the so-called target flux κ∗ and interior trace of the element κ. The introduction of target

flux is needed for flux-based discontinuous Galerkin formulations. Thus, the interior and

boundary residuals are κ̇ − κsrc and κ∗ − κ, respectively. The integration of the product of
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Figure 2.2: A discrete spacetime domain for a problem in E1 × R.

residuals by weight function κ̂ in Q and ∂Q yields the weighted residual formulation,

∫
Q
κ̂ (κ̇− κsrc) Ω +

∫
∂Q
κ̂ (κ∗ − κ) ?dt = 0, (2.9)

where Ω is the (d+ 1)-volumetric differential form. The expressions of the differential forms

in Eq. (2.9) for d = 2 are ?dt = dx1 ∧ dx2 and Ω = dx1 ∧ dx2 ∧ dt, where “∧” is the

exterior product operator on forms [107, 52]. Ω resembles volumetric differential dV and

as mentioned ?dt resembles spatial projection of the surface differential nt dS; cf. Fig. 2.2.

We refer the reader to [7, 10] for the expression of balance laws, PDEs, and jump conditions

using differential forms for more general problems and the discussion on the advantage of

differential forms to tensorial notation for spacetime problems.

For each point on ∂Q, the numerical fluxes are solved by the solution to a local Riemann

problem. For a simple ODE such as Eq. (2.5) the target value is simply the temporal

upstream, i.e., earlier, value across an interface. The use of ?dt on ∂Q is a result of the

characteristics of this ODE being in the vertical time direction. The second integration can
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be divided into three types of integrations over the element boundary as,

∫
∂Q
κ̂ (κ∗ − κsrc) ?dt =

∫
∂Qti

κ̂ (κ∗ − κsrc) ?dt+
∫
∂Qto

κ̂ (κ∗ − κsrc) ?dt+
∫

Γ
κ̂ (κ∗ − κsrc) ?dt,

(2.10)

where ∂Qti, ∂Qto, and Γ are temporal inflow, temporal outflow, and vertical boundaries

of Q, respectively. A schematic representation of these boundaries for three elements

labeled by α, β, and γ is depicted in Fig. 2.2. The temporal inflow and temporal outflow

boundaries, shown by red and green lines respectively, correspond to parts of ∂Q where the

time direction is entering or exiting ∂Q. The remaining boundaries which are not temporal

inflow and temporal outflow are vertical boundaries and are highlighted by blue color. For

the elastodynamic problem, the two elements Qβ and Qγ are coupled as the elastic waves

traverse Γβγ from both sides. Thus, these two elements should be solved simultaneously in

a patch comprised of them. In the non-adaptive aSDG implementation, which is employed

herein, all faces that are interior to a patch, i.e., Γβγ, are vertical. Thus, given that the

boundary integrals are carried over the vertical projection of boundary, the third term in

Eq. (2.10) is identically zero for all elements.

Following the same argument, since the damage equation is an ODE, there is no boundary

condition to be imposed. That is no κ∗ is specified on Γα for element Qα and similar to

elements Qβ and Qγ, the third integral in Eq. (2.10), corresponding to Γα, vanishes. The

star value for temporal outflow boundaries is equal to the interior trace of the element,

i.e., κ∗ = κ, and so the second term in Eq. (2.10) similarly vanishes. The only remaining

term is the temporal inflow contribution. Since characteristics are along the time direction

for ODEs, the target values are determined by earlier value in time. If there is no adjacent

element on the temporal inflow faces of an element, as for ∂Qti
α and ∂Qti

β for elements Qα and

Qβ respectively, κ∗ is set equal to the initial condition κ. As mentioned before, the analysis

is often starts for an initially intact domain for which κ = 0 for all points on the initial

boundary ∂Dti. On the other hand, for elements with adjacent neighbors to their temporal

inflow faces, κ∗ is the trace of κ from the temporal inflow neighbor. For example, κ∗ for a

point on ∂Qtiγ is set to κ on the corresponding neighbor point on ∂Qtoα , the temporal outflow
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boundary of element Qα. The weak form and numerical treatments for elastodynamics

equation are more complex than the damage ODE and are discussed in detail in [7, 9].

2.4.3 Numerical solution of discrete equations

The authors solve the elastodynamics-damage discrete equations as a nonlinear coupled

system using the Newton-Raphson (NR) method. One of the numerical challenges in damage

mechanics that affects convergence rate of the NR method is the zero stiffness issue when

damage is equal to unity. There are several methods to address this; for example, it is

common to multiply the damage term in Eq. (2.7) by a positive reduction factor less

than unity. Although it seems that this loss of stiffness is a numerical issue, experimental

observations show that brittle materials do not completely lose their stiffness at failure.

This means that there is maximum threshold less than unity for damage value [122, 58, 117].

This specific level depends on many factors such as material property, geometry, and loading

condition. Herein, the maximum admissible damage of κmax = 0.95 is assumed. This

constraint is controlled by limiting the value of damage force in Eq. (2.5); that is, κf is

replaced with min(κf , κmax).

2.5 Numerical examples

To demonstrate the accuracy and robustness of the proposed formulation, the authors present

three problems in this section. First, a 1D benchmark problem is used to demonstrate

that the relaxation time indirectly introduces a length scale and damage localization size is

independent of element size. Second, the bending problem examines different responses of

the model under tensile and compressive stress conditions. Finally, the authors demonstrate

the effect of loading rate in damage evolution of a 2D domain with two circular holes. Plain

strain condition is assumed for the problems considered. Displacement vector and damage

fields are interpolated by third order polynomial functions in spacetime.
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Table 2.1: Material properties for problem 1.

Properties Units Values
E GPa 57
ρ gr/cm3 2.28
τc µs 2
tramp µs 1
σ̄max GPa 0.057
ν - 0
εi - 0.0013
εc - 0.0028
a - 10

2.5.1 Damage localization in a 1D bar

The authors verify the mesh insensitivity of the proposed formulation through a well-known

benchmark problem for dynamic damage localization [28, 31, 106, 18, 94, 111, 116]. In this

problem, two stress waves travel towards each other, and damage instantaneously initiates at

the collision point in the center of the bar. Experimental observations show that the strain-

softening behavior is distributed over a region with a finite length. Therefore, in numerical

methods, it is vital to recover the finite localization area, regardless of the mesh size.

The geometry of the problem is depicted in Fig. 2.3, and the material properties are

listed in Table 2.1. Although this problem is truly one dimensional, the authors solve it

as a two-dimensional problem with a zero Poisson’s ratio, ν = 0, and a large aspect ratio,

H/W = 100. The mesh-dependency is studied by three structured triangular initial meshes

consisting of 1 × 100, 2 × 200, and 4 × 400 divisions along W and H. Normal stresses are

gradually applied at end boundaries and remain constant after the ramp time reported in

Table 2.1. The ramp load is a third-order function with zero slopes at initial and peak points

as shown in Fig. 2.4.

Figure 2.5 shows damage solutions in the bar at time 13.5 µs for all meshes. Due to the

large aspect ratio in this problem and for a better representation of responses, results are

presented for a symmetrical section at the middle of the bar with total length of 43 mm.

As observed, the numerical method is mesh-insensitive, and a fixed finite localization zone
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Figure 2.3: A one-dimensional rod with symmetric tensile loading.

is realized. If a region with full damage defined as the fracture zone, then the fracture zone

length is approximately 4 mm which is in agreement with the results in [18].

Figure 2.6 depicts the elastic strain energy density φ(ε) for each of the meshes used. It

is evident that the field for the coarsest mesh is not symmetric with respect to the center

of the bar and does not have adequate number of initial elements to properly capture the

solution. Given the large errors of these results, the solution obtained by the coarsest mesh

is deemed unsatisfactory. The time sequence of the damage and elastic strain energy density

for the finest mesh is shown in Fig. 2.7 and Fig. 2.8, respectively.

Several points should be clarified regarding mesh insensitivity. First, mesh insensitivity

refers to the convergence of the width of fracture zone (region with full damage) to a finite

value as the element size tends to zero. Clearly, the results in Fig. 2.5 demonstrate such

convergence and do not exhibit the problem of early damage formulations in which fracture

zone converged to zero width in the limit of refinement. Second, given that the wave speed

is c =
√
E/ρ = 5km/s and τc = 2 µs, the intrinsic length scale implied for this choice of

parameters is lc = cτc = 10 mm. The observed fracture zone width of 4 mm is related to the

length scale lc implied by the model and its specific value also depends on particular form of

loading and geometry. Third, if the ramp time was very long, the loading would have been

in quasi-static regime and lc would not have been relevant under such loading condition.
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Figure 2.4: A third-order ramp function with zero slopes at initial and peak points.
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Figure 2.5: Damage profiles at time 13.5 µs for different initial meshes;(a) to (c) from
coarsest to finest.
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0.0020

Figure 2.6: Elastic strain energy density profiles at time 13.5 µs for different initial
meshes;(a) to (c) from coarsest to finest.
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Figure 2.7: Damage profiles for the finest mesh at different times after the collision of two
stress waves until full damage.
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Figure 2.8: Elastic strain energy density profiles for the finest mesh at different times after
the collision of two stress waves until full damage.
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To conclude this section, we run the problem shown in Fig. 2.3 with non-zero Poisson

ratio of ν = 0.15 under plane strain condition for two different side boundary conditions.

Referring to Fig. 2.4, the length of region at which load ramps from zero to σ̄max in direction 1

is lramp = trampcd, where cd is the longitudinal wave speed for 3D and plane strain condition.

For these problems, tramp is chosen such that l′ = lramp/W = 20.55. For the extension

problem, the long (top and bottom) sides are set to be traction free. The relatively large

value of l′ implies that σ12 and σ22 are close to zero compared to σ̄max and σ11 for the duration

of simulation. This corresponds to ε11 > 0 and ε22 ≈ −ε11ν/(1 − ν) < 0. For the tension

problem, symmetric boundary condition is employed for the two sides (zero normal velocity

and shear stress). This problem possesses an ε11 field very close to the extension problem,

but ε22 is identically zero. Since φ+(ε) in Eq. (2.3) is only a function of positive part of the

strain tensor—which is almost identical between the two runs—we expect rather a similar

damage pattern. The comparison of the solutions of these two problems in Fig. 2.9 verifies

that the employed damage model predicts very close responses for extension and tension

problems.

2.5.2 Bending of a rectangular plate

The stress field corresponding to this bending problem examines the performance of the

damage formulation under mixed tensile and compressive loading condition. As shown in

Fig. 2.10, the plate is fixed at the bottom side, and shear stresses are applied over the top

boundary. The domain dimensions are H = 100 mm and W = 40 mm. The same ramp

(a)

(b)

Figure 2.9: Damage response at time 17.5 µs for (a) extension and (b) tension conditions.
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Table 2.2: Material properties for problem 2.

Properties Units Values
τc µs 10
tramp µs 10
σ̄max GPa 0.015
ν - 0.3
εi - 0.0011
εc - 0.0034
a - 1

loading profile shown in Fig. 2.4 is employed for this problem with the sustained load and

ramp time shown in Table 2.2. The material properties not listed in this table are similar

to those from the previous problem. Three structured triangular initial meshes consisting of

8 × 20, 16 × 40, and 32 × 80 side divisions are depicted in Fig. 2.11. Figure 2.12 presents

damage maps corresponding to each of the initial meshes. The convergence between results

is acceptable. Besides, the damage zone is not shrunk into the smallest element as the mesh

size is decreased.

Figure 2.13 and Fig. 2.14 show damage and elastic strain energy density evolutions at

different times. In Fig. 2.13(a), before the stress wave reaches to the support, damage

initiates from the point at the middle right side of the plate where the instantaneous

maximum tensile stress is experienced. Subsequently, in Fig. 2.13(b) damage propagates

toward the support, where the maximum static moment and high stress concentrations are

expected due to the use of fixed boundary condition. There is a region with maximum

elastic strain energy density along with the left side of the plate where the damage value is

zero. The reason why no damage is accumulated in this region of high compressive stress

is the inclusion of only the positive part of strain tensor in the definition of damage driving

energy density; cf. Eq. (2.3). However, the presence of damage at the left corner is due

to its complex two dimensional stress field. The observed damage pattern matches what is

expected for brittle materials, as their tensile strength is lower than the compressive strength.
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Figure 2.10: A bending plate with shear loading.

a b c

Figure 2.11: Different initial meshes used for the bending problem.

a b c

0

0.95

Figure 2.12: Damage profile at time 130 µs for different meshes used for the bending
problem; (a) coarsest to (c) finest.
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Figure 2.13: Damage evolution for the bending problem at different times [µs]; (a) 50; (b)
70; (c) 90; (d) 110; (e)130.
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Figure 2.14: Elastic strain energy density evolution for the bending problem at different
times [µs]; (a) 50; (b) 70; (c) 90; (d) 110; (e)130.
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Table 2.3: Material properties for problem 3.

Properties Units Values
E GPa 65
ρ kg/m3 2600
τc µs 30
tramp µs 10
ν - 0.27
εi - 0.000082
εc - 0.0003
a - 10

2.5.3 A plate with two holes under tension loading

The last problem studies the robustness of the formulation in complex geometries with

initial holes and different loading conditions. As shown in Fig. 2.15(a), the domain is a

80× 160 mm2 rectangle with two circles with centers c and radii r: cL = (20 mm, 50 mm),

cR = (60 mm, 110 mm), rL = 15 mm, rR = 10 mm, where L and R subscripts correspond

to left and right circles, respectively. The authors use the unstructured mesh shown in Fig.

2.15(b). The material properties for a rock taken from [23] are listed in Table. 2.3. Uniform

tensile stress is applied over the top boundary while the opposite boundary is kept fixed.

While the ramp time for this problem is fixed, shown in the table, different maximum stress

loads of σ̄max = 6.75 MPa and σ̄max = 3.375 MPa are studied for the ramp profile shown in

Fig. 2.4.

Figure 2.16 shows the damage evolution at different times for σ̄max = 6.75 MPa. As

shown, damage initiates from early stages from the two ends of the plate. Then, dominant

failure zones initiate from the stress concentration regions. At each stress concentration

point in the middle of the plate, damage propagates toward the other stress concentration

zone and also toward the corners of the plate. The final failure is an inclined shear-band

that shows a mixed-mode failure pattern.

There are also two other damaged zones between the circles and free vertical boundaries.

The left circle is bigger than the right one, and there is less material between this circle and

the free surface boundary. This implies that it has a higher static stress concentration factor

than the right circle. However, the failure zone close to the right circle is larger. This is due
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Figure 2.15: Geometry, boundary conditions, and the initial mesh for the last problem.

to further closeness of the right circle to the top loaded edge, hence the longer duration that

the region between this circle and the side vertical boundary experiences high stresses before

the full development of the shear-band. In contrast, under quasi-static loading condition, a

more spread damaged zone to the side of the left circle would have been expected.

Figure 2.17 shows the damage evolution at different times for σ̄max = 3.375 MPa.

The damage pattern is entirely different for this low amplitude loading case. Unlike the

former condition, the primary damage is generated in the region close to the left circle.

This observation confirms the expectation for a more quasi-static loading condition as the

larger hole introduces greater maximum stresses for a rectangle plate with constant width.

The dominant failure zones initiate from stress concentration points and propagate in the

direction normal to the boundary loads. Similar drastic changes in damage patterns, due to

relatively small changes in the boundary condition, have been reported in literature, see for

example [27].

As discussed before, the aSDG method advances the solution by an asynchronous patch-

by-patch solution procedure. The time increment of a pitched vertex is calculated based on
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the wave speed, spatial geometry, and sizes of elements around it. Thus, vertices surrounded

by smaller elements typically have smaller local time advances. Another main difference

from a conventional time marching scheme is that the direct discretization of spacetime

eliminates the need for a separate time marching. To clarify these points and study the

sensitivity of damage response to elements’ local time advance size, we artificially decrease

the time increment limit by factors of two and four for the problem presented in Fig. 2.16.

The corresponding spacetime meshes for the three solutions are shown in Fig. 2.18. As can be

seen, all spacetime meshes are unstructured and the instantaneous fronts are asynchronous.

The damage solutions for these meshes are compared in Fig. 2.19. The damage contours

are very close for the three time advance set-ups considered. While all meshes have the same

spatial resolution, the local time advances of the last solution are one fourth of those from the

first solution; thus, the very minor differences observed are attributed to increased accuracy

of solution from Fig. 2.19(a) to Fig. 2.19(c). Overall, the results suggest a mild dependency to

local element (stable) time advances. It is noted that if the damage formulation did not imply

an intrinsic length scale, we would expect damage patterns to be time advance-dependent

similar to mesh-dependency implied by spatial mesh refinement.

2.6 Conclusion

The authors presented a time-delay damage formulation for elastodynamics. The weak

statement and spacetime discontinuous Galerkin formulation of the damage evolution were

presented. Consequently, the corresponding ODEs of the damage equation were coupled with

elastodynamic equations for the solution of some sample problems by the aSDG method.

Some advantages of this damage formulation are: simplicity of the formulation without

requiring any boundary conditions owing to the ODE form of its corresponding evolution

equation; hyperbolicity of the coupled elastodynamic-damage equations; indirect introduc-

tion of a damage length scale from the multiplication of the model’s relaxation time and the

longitudinal or shear wave speed implied by the elastodynamic problem; mesh insensitivity

without the use of high order spatial derivatives or nonlocal spatial averaging operators
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owing to the existence of the damage length scale. However, it is noted that this model is

mainly applicable to dynamic fracture where wave speeds are relevant.

The authors presented several numerical examples to demonstrate the robustness of the

proposed method. Specifically, the mesh insensitivity of the formulation is shown using a 1D

benchmark and a 2D bending problem. The bending problem also demonstrates different

responses of the model under tensile and compressive stress conditions. One interesting

observation from the last problem was the great impact load amplitude had on damage

pattern.

There are several extensions to this work. First, the authors plan to use the h-adaptive

formulation of the aSDG method [8] for more efficient solution of the continuum damage

problem. Second, as demonstrated through the last problem, material defects greatly affect

dynamic fracture response. The authors have used statistical volume elements (SVEs) to

homogenize fracture strength of different materials [14, 24]. The random fields generated

based on the statistics of the SVEs can be used to characterize macroscopic fracture response

of composites without explicit resolution of their microstructure; see for example [41].

The authors believe that bulk damage models have several advantages over the interfacial

ones used in their prior work and plan to formulate a microstructure-informed stochastic

bulk damage model. Finally, the authors plan to implement more advanced and realistic

hyperbolic damage models [110, 59, 60] and recently proposed phase field formulation [68]

for the aSDG method given its numerous advantages for the solution of such PDEs.
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Figure 2.16: Damage evolution for the high amplitude loading case of the problem in Fig.
2.15 at different times [µs]; (a) 15; (b) 32; (c) 38; (d) 43; (e) 49; (f) 100.
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Figure 2.17: Damage evolution for the low amplitude loading case of the problem in Fig.
2.15 at different times [µs]; (a) 30; (b) 72; (c) 114; (d) 156; (e) 198; (f) 240.
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Figure 2.18: Spacetime mesh for the low amplitude loading case at time 10µs. Time
increment limits in (b) and (c) are chosen half and quarter of (a), respectively.

(a) (b) (c)

Figure 2.19: Damage contour for the low amplitude loading case at time 100µs. Time
increment limits in (b) and (c) are chosen half and quarter of (a), respectively.
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Chapter 3

A stochastic bulk damage model

based on Mohr-Coulomb failure

criterion for dynamic rock fracture
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This chapter is revised based on the following published paper:

B. Bahmani, R. Abedi, P.L. Clarke, “A stochastic bulk damage model based on Mohr-

Coulomb failure criterion for dynamic rock fracture”, Applied Sciences, 9(5):830, 2019.

Following the previous chapter, my additional contributions in this paper can be listed

as (i) extension of Allix’s damage model for pressure sensitive materials based on Mohr-

Coulomb failure criterion, (ii) development of stochastic damage model based the random

field realization module built up by P.L. Clarke (iii) arrangement and interpretation of

numerical examples, and (iv) preparation of the first draft.

3.1 Abstract

We present a stochastic bulk damage model for rock fracture. The decomposition of strain

or stress tensor to its negative and positive parts is often used to drive damage and evaluate

the effective stress tensor. However, they typically fail to correctly model rock fracture

in compression. We propose a damage force model based on the Mohr-Coulomb failure

criterion and an effective stress relation that remedy this problem. An evolution equation

specifies the rate at which damage tends to its quasi-static limit. The relaxation time of

the model introduces an intrinsic length scale for dynamic fracture and addresses the mesh

sensitivity problem of earlier damage models. The ordinary differential form of the damage

equation makes this remedy quite simple and enables capturing the loading rate sensitivity

of strain-stress response. The asynchronous Spacetime Discontinuous Galerkin (aSDG)

method is used for macroscopic simulations. To study the effect of rock inhomogeneity,

the Karhunen-Loeve method is used to realize random fields for rock cohesion. It is shown

that inhomogeneity greatly differentiates fracture patterns from those of a homogeneous

rock, including the location of zones with maximum damage. Moreover, as the correlation

length of the random field decreases, fracture patterns resemble angled-cracks observed in

compressive rock fracture.
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3.2 Introduction

Interfacial, particle, and bulk or continuum models form the majority of approaches used

for failure analysis of quasi-brittle materials at continuum level. Interfacial models directly

represent sharp fractures in the computational domain. Some examples are Linear Elastic

Fracture Mechanics (LFEM), cohesive models [51, 25], and interfacial damage models

[19, 16, 90, 89, 5]. Since cracks are explicitly represented, interfacial methods are deemed

accurate when crack propagation is the main mechanism of material failure. However,

external criteria are needed for crack nucleation and propagation (direction and extension).

Moreover, accurate representation of arbitrary crack directions can be cumbersome in

computational settings. Mesh adaptive schemes [108, 99, 13], eXtended Finite Element

Methods (XFEMs) [32, 85, 70], and Generalized Finite Element Methods (GFEMs) [50, 109]

address this problem to some extend. However, for highly dynamic fracture simulations

and fragmentation studies, even these methods have challenges in accurate modeling of the

fracture pattern. Particle methods such as Peridynamics [105, 57, 98] have been successfully

used to model highly complex fracture patterns that are encountered in dynamic (rock)

fracture. They model continua as a collection of interacting particles.

Bulk or continuum damage models approximate the effect of material microstructural

defects and their evolution, e.g., microcrack nucleation, propagation, and coalescence,

through the evolution of a damage parameter. Due to the implicit representation of

microcracks and other defects, bulk damage models are more efficient than interfacial and

especially particle methods. In addition, damage pattern is obtained as a part of the solution

and no external criteria are needed for crack nucleation and propagation. Finally, since

damage is a smooth field interpolated within finite elements, complex fracture patterns can

be easily modeled by damage models, wherein the thickness of cracks is effectively regularized

by the damage field.

Earlier bulk damage models, however, suffered from mesh sensitivity problem where the

width of the localization and damaged region was proportional to element size; as a result,

finer meshes resulted in a more brittle fracture response. This problem is related to the loss of

ellipticity/hyperbolicity of the (initial) boundary value problem for the earlier formulations
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[73, 79], and can be resolved by the introduction of an intrinsic length scale to the damage

evolution formulation. In gradient-based models, this is achieved by adding higher order

derivatives of the damage or strain fields to the damage evolution equation [92, 42]. In

nonlocal approaches, strain or damage field employed in a local damage formulation, is in

turn computed over a neighborhood of finite size [94, 95]. Finally, time-relaxed damage

formulations possess an internal time parameter which through its interaction with elastic

wave speeds introduce a finite length scale for the damage model in transient settings [18,

80, 60, 67]. Related to these remedies is the phase field method which closely resembles a

gradient-based damage model [46]. The sharper approximation of crack width is one of the

main advantages of the phase field methods to gradient-based damage models [81].

We have presented a time-delay damage model for dynamic brittle fracture in [20].

The coupled elastodynamic-damage problem is solved by the asynchronous spacetime

Discontinuous Galerkin (aSDG) method [7, 8]. This damage model addresses the mesh

sensitivity problem of the earlier damage models by the third approach discussed above, in

that, damage evolution is governed by a time-delay model. In addition, the existence of a

maximum damage evolution rate results in an increase in both the maximum attainable stress

and toughness as the loading rate increases. This loading rate dependency of strength and

toughness is experimentally verified; see for example [95, 33]. Finally, the damage evolution

law is an Ordinary Differential Equation in time. This greatly simplifies the damage model

formulation and lends itself to the aSDG method; the aSDG method directly discretizes

spacetime by elements that satisfy the causality constraint of the underlying hyperbolic

problem being solved. The nonlocal damage models violate this causality constraint, whereas

the majority of gradient-based damage models are not hyperbolic. In contrast, the time-delay

damage model maintains the hyperbolicity of the elastodynamic problem. Besides, the ODE

form of the governing equation greatly simplifies the application of initial and boundary

conditions for the coupled problem.

The distribution of material defects at microstructure can have a great effect on

macroscopic fracture response, particularly for quasi-brittle materials. Some examples are

high variability in fracture pattern for samples with the same loading and geometry [15], high

sensitivity of macroscopic strength and fracture toughness to microstructural variations [72],
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and the so-called size effect [26, 102, 29], i.e., the decrease of the mean and variations

of fracture strength for larger samples. Weibull model [118, 119] is one of the popular

approaches for modeling the effect of defects in quasi-brittle fracture, particularly the size

effect. We have used the Weibull model in the context of an interfacial damage model

to capture statistical fracture response of rock, in hydraulic fracturing [11], fracture under

dynamic compressive loading [3], and in fragmentation studies [6, 41]. However, these models

are computationally expensive due to the use of a sharp interfacial damage model.

In this manuscript, we propose a stochastic bulk damage model for rock fracture. There

are two main differences to the damage model presented in [20]. First, in damage mechanics

often only the spectral positive part of either strain or elastic stress tensor is used to drive

damage accumulation. Moreover, upon full damage, only the negative part of the stress

tensor is maintained in forming the effective stress. While these choices are appropriate for

tensile-dominant fracture, they have some shortcomings for rock fracture under compressive

loading. Specifically, using these models damage does not accumulate under compressive

loading; even if it could, it would not have modeled the failure process as the effective stress

remains the same as the elastic stress of the intact rock. Herein, we propose a new damage

model based on the Mohr-Coulomb failure criterion and an effective stress that correctly

represents rock failure in compression. Second, we employ a stochastic damage model

wherein rock cohesion is treated as a random field. This aspect is important for the uniaxial

compression examples considered, as due to the lack of macroscopic stress concentration

points highly unrealistic fracture patterns will be obtained by using a homogeneous rock

mass model. We note that the use of a bulk damage model makes the proposed approach

significantly more efficient than the stochastic fracture problems [11, 3, 6, 41] studies by the

authors using an interfacial damage model.

The outline of the manuscript is as follows. The formulation of the stochastic damage

model, its coupling to elastodynamic problem, and the aSDG method are discussed in

§3.3. We use a dynamic uniaxial compressive example to demonstrate the effect of material

inhomogeneity on fracture response in §3.4. Final conclusions are drawn in §4.5.
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3.3 Formulation

The first three subsections are pertained to the formulation of damage model. In §3.3.1

the formulation of the damage force parameter based on the Mohr-Coulomb (MC) failure

criterion and the damage evolution equation are provided. In §3.3.2 the coupling of elasticity

and damage problems through the effective stress is described. Certain properties of the

damage model are discussed in §3.3.3. A brief description of the aSDG method and the

implementation of the damage model is provided in §3.3.4. Finally, the stochastic aspects of

the damage model are explained in §3.3.5.

3.3.1 Bulk damage problem description

3.3.1.1 Damage driving force

As will be discussed in §3.3.2, the damage parameter D ∈ [0, 1] gradually reduces the

elasticity stiffness in the process of material degradation. Damage evolution if generally

driven by the strain field ε. For the remainder of the manuscript, we assume that the spatial

dimension is two. The symmetric elastic stress tensor σ is defined as,

σ = Cε, where σ =

σxx σxy

σyx σyy

 and ε =

εxx εxy

εyx εyy

 (3.1)

are the expressions of stress and strain tensors in global coordinate system (x, y) and C is

the elasticity tensor. Instead of ε, damage evolution can be expressed in terms of σ. This is

more suitable for rock fracture given that many known failure criteria such asMohr-Coulomb

(MC) or Hoek-Brown [64] are expressed in terms of the stress tensor. Figure 3.1 shows the

Mohr-Coulomb failure criterion in terms of normal σ and shear τ traction components on

a fracture surface. We employ the tensile positive convention for σ. The failure criterion

is determined by the cohesion c and friction angle φ = tan−1(k), where k is the friction

coefficient. In the figure, the Mohr circle for a stress tensor A (red semi-circle) corresponding

to principal stresses σ2 < σ1 is shown. Since only isotropic rocks are considered herein, c

and φ are assumed to be constant with respect to the orientation of principal stresses (with
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Figure 3.1: Mohr-Coulomb failure criterion and scalar stress c for a given stress state.

respect to the global coordinate system axes). We define the scalar stress as,

c(σ, φ) := R

cosφ + σave tanφ (3.2)

where as shown in Fig. 3.1, c is the ordinate of the tangent line on the Mohr-circle with angle

φ, and the radius R and average normal stress σave are given by,

R := σ1 − σ2

2 =
√

(σxx − σyy)2

4 + σxy2, (3.3a)

σave := σ1 + σ2

2 = σxx + σyy
2 , (3.3b)

Figure 3.1 shows two stress states. For the stress state B, the entire Mohr circle is

below the failure criterion curve, thus no degradation is expected. For the stress state A,

the Mohr circle expands beyond the failure criterion curve; in a binary intact and failed

classification, this stress state would be considered failed. These stages correspond to

c(σ, φ) < c and c(σ, φ) ≥ c, respectively. Some specific strengths corresponding to the

51



MC criterion c(σ, φ) = c are shown in Fig. 3.2 and are given by,

sht = c

tanφ Hydrostatic tensile strength (3.4a)

sat = 2c cosφ
1 + sinφ Uniaxial tensile strength (3.4b)

ss = c cosφ Shear strength (3.4c)

sac = 2c cosφ
1− sinφ Uniaxial compressive strength (3.4d)

As will become clear later, the damage model, regularizes the process of failure.

Otherwise, failure for a stress state occurs instantaneously once MC criterion c(σ, φ) = c

is satisfied; for example, when σxx = σyy > 0 reaches sht (σxy = 0). To facilitate this, the

damage force is defined as,

Df (c, c, c̄) :=



0 c ≤ c

c−c
c̄−c c < c < c̄

1 c̄ ≤ c

(3.5)

where c̄ corresponds to the ordinate of the upper MC line shown in dashed line in Fig. 3.1.

The brittleness factor β defines a relation between the two MC lines through c = βc̄. In the

absence of the damage model, complete failure occurs for any positive value of Df as the

Mohr circle expands over the failure criterion. However, in the context of the damage model,

Df corresponds to the quasi-static damage value for a given strain ε, which through (3.1)

and (3.2) defines c. For example, for the strain (elastic stress) state A in Fig. 3.1, Df = 0.5.

3.3.1.2 Damage evolution law

The damage value can be taken to be equal to the damage force. However, this local definition

of D has several shortcomings, as will be discussed below and in §3.3.3.2. We employ the

time-delay model in [18, 19] for damage evolution. The rate of damage evolution, Ḋ, is given
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Figure 3.2: Relation of different fracture strengths.

by,

Ḋ =

 Dsrc(D,Df ) = 1
τc

(1− e−a〈Df−D〉) D < 1

0 D = 1
(3.6)

where Dsrc(D,Df ) is a general source term for the evolution equation Ḋ = Dsrc(D,Df ). This

function can be calibrated from experimental strain-stress results, for example, for uniaxial

tensile/compressive loading. The specific form of Dsrc(D,Df ) is taken from [19, 111] as

it is claimed to accurately model materials’ rate effect; cf. §3.3.3.2. In addition, τc is the

relaxation time, a is the brittleness exponent, and 〈.〉 is the Macaulay positive operator.

Albeit its simplicity, this evolution model incorporates several essential characteristics of

real materials. First, we observe that the damage evolution is governed by the difference

of damage D and damage force Df . The higher the difference, the higher the damage rate.

Moreover, when D = Df , damage evolution terminates. That is, Df is the target damage

value; if D is smaller than the target value, it evolves until it reaches Df . Second, damage

cannot instantaneously reach Df given that Ḋ is bound by the maximum damage rate 1/τc.

As will be discussed in §3.3.3.2, this results in the rate-sensitivity of strain-stress response.

Third, the positive operator ensures that damage is a nondecreasing function in time (no

material healing processes). Finally, Fig. 3.3 shows the effect of a; for higher values of a,

even small differences between Df and D, quickly jumps up the damage rate close to its

maximum value of 1/τc; implying a more brittle response.
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Figure 3.3: The effect of brittleness exponent a on the rate of damage evolution.

3.3.2 Coupling of damage and elastodynamic problems

The equation of motion, corresponding to strong satisfaction of the balance of linear

momentum for elastodynamic problem, reads as,

∇ · σeff + ρb = ṗ, (3.7)

where σeff , b, and p are the effective stress tensor, body force, and linear momentum density,

respectively. The linear momentum density is defined as p = ρu̇, where ρ is the mass density.

This equation is augmented by the compatibility equations between displacement, velocity,

and strain, and initial/boundary conditions to form the elastodynamic initial boundary value

problem.

The coupling between damage and elastodynamic problems is through the effective

stress tensor σeff . In the simplest form, the scalar damage parameter D linearly degrades

the elasticity stiffness tensor, that is σeff = (1 − D)σ = (1 − D)Cε [92]. However, in

more advanced damage-elasticity constitutive equations, only certain parts of the elastic

stress (or elastic strain) are degraded by D [88]. By inspecting Fig. 3.1 and Fig. 3.2, it

is observed that damage is induced by high tensile and shear stresses and no damage is

induced by a hydrostatic compressive stress state (σ1 = σ2 < 0). Accordingly, we define a

consistent damage-elasticity constitutive equation in which the entire elastic stress, except
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its hydrostatic compressive part, are degraded by D. That is,

σeff = (1−D)σd + (1−D)〈σh〉+ 〈σh〉− (3.8)

where σh and σd are hydrostatic and deviatoric parts of σ. The positive and negative

(〈σh〉− = σh − 〈σh〉) parts of σh correspond to the hydrostatic tensile and compressive

stresses of σ. For example, if σ2 ≤ σ1 are the principal values of σ, σd, 〈σh〉, and 〈σh〉−
have the principal values of [(σ2 − σ1)/2, (σ1 − σ2)/2], [〈(σ2 + σ1)/2〉, 〈(σ2 + σ1)/2〉], and

[〈(σ2 + σ1)/2〉−, 〈(σ2 + σ1)/2〉−], respectively, all with the same principal directions. Clearly,

they correspond to the pure shear, tensile, and compressive parts of σ.

3.3.3 Properties of the damage model

We first discuss the properties of the damage force and effective stress models, concerning

the mechanisms that drive damage and lead to the stress state at full damage. Next, we

discuss how the damage evolution law captures material’s stress rate effect and alleviates

the mesh sensitivity problem of local damage models.

3.3.3.1 Damage force and effective stress

Equations (3.5) and (3.8) determine under what strain (elastic stress) conditions damage

initiates and how the effective stress evolves as D tends to unity. A common approach in

continuum damage mechanics is to break the elastic stress tensor into its spectral positive

and negative parts, and to express Df and σeff as,

Df (σ) = Df (σ+) (3.9a)

σeff = (1−D)σ+ + σ− (3.9b)

We note that alternative expressions exist where instead of σ, the spectral decomposition of

strain is considered [82, 66, 92, 87]; however, due to the use of σ in (3.5) and (3.8), the form

(3.9) is preferred for the discussion in this section.
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Rock fracture is often under compressive stress state. The shortcomings of (3.9) can

be illustrated by referring to Fig. 3.1. First, as can be seen a large difference between the

principal stresses σ1 and σ2 corresponds to a large enough shear stress τ that can initiate

damage evolution; see for example the stress state A. However, if (3.9a) is used, Df (and

damage) remain zero, since σ+ = 0. Second, even if damage could evolve by an equation

other than (3.9a), the stress would not degrade using (3.9b); that is, σeff = σ− = σ at

D = 1. In contrast, stress state A induces a Df = 0.5; cf. (3.5). Moreover, Df is sensitive to

the hydrostatic stress. For example, for the same maximum shear τ and higher compressive

σave, no damage occurs for the stress state B. Finally, through damage evolution, σeff tends

to the hydrostatic compressive stress 〈σh〉− as D → 1. This can be seen for stress state A

and D = 0.5. In damage reaches unity, the effective stress state will correspond to the point

σave in the figure.

The two sets of equations for Df and σeff predict a similar response for tensile dominant

loading, i.e., when σave > 0; while there are some differences in the details of damage

evolution, in both cases σeff → 0 as strain (proportionally) increases. There are, however,

some differences in the failure damage state, σeff(D = 1), for pure shear and compressive

dominant mixed loading (σ2 < 0 < σ1 and |σ2| > σ1). In short, the proposed damage model

based on the Mohr-Coulomb failure criterion is more appropriate for rock fracture, especially

when compressive mode failure is concerned.

3.3.3.2 Damage evolution: Rate effects and mesh sensitivity

Figure 3.4 compares strain stress responses for three different model and loading scenarios.

The loading considered can correspond to any of the strengths in (3.4). The nondimensional

scalar elastic stress, strain, and effective stress are defined as σ′ = σ/σ, ε′ = σ′ = Cε/σ,

and σ′eff = σeff/σ, respectively, where σ, ε, and σeff are the scalar elastic stress, strain, and

effective stress. 1 These scalar values, σ, and stiffness C correspond to a particular loading

condition; for example for uniaxial tensile loading σ = σxx, ε = εxx, σ = sat, (cf. (3.4b)). The
1Note that the scalar elastic stress measure σ in this section is different from the normal stress component

in the Mohr-Coulomb criterion; cf. Fig. 3.1.
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Figure 3.4: Sample quasi-static and dynamic strain versus stress responses.

corresponding stiffness is C = E and E/(1−ν2), for plane stress and plane strain conditions,

respectively, where E and ν are the elastic modulus and Poisson ratio.

As loading (ε′) increases, the scalar stress c increases until c = c in Fig. 3.2 for the given

loading condition. This corresponds to ε′ = 1. For the MC model, material is deemed to fail

instantaneously, for σ′eff = σ′ = 1. This sudden failure is shown by the green circle in the

figure. The damage model regularizes the MC failure criterion. For the quasi-static loading

Ḋ ≈ 0, thus D ≈ Df throughout the loading. Given the linear dependence of Df on c in

(3.5), σeff linearly decreases from unity to zero as ε′ increases from unity to c̄/c = 1/β. As,

β → 1 the response of the damage model tends to that of the un-regularized MC model,

clarifying why β is called the brittleness factor. Regardless of the rate of loading for ε′, Ḋ

remains bounded by 1/τc; cf. (3.6). This results in a delayed damage response where D

falls far behind its quasi-static limit Df for higher rates of loading for ε′. This, in turn,

increases the maximum effective stress, max(σeff′), failure strain, ε′(D = 1), and toughness,

i.e., the area under the strain-stress curve. That is, the time-delay evolution law (3.6) can

qualitatively model material’s well-known stress rate effect. The dynamic solution in Fig.

3.4 corresponds to a nondimensional strain rate of 3. For lower and higher nondimensional

57



loading rates, the stress response gets closer to the quasi-static response and further expands,

respectively.

If the quasi-static damage model D = Df where to be used, it would suffer the mesh-

sensitivity problem of the early damage models. The introduction of an intrinsic length

scale addresses this issue. The length scale ld is either used in conjunction of added higher

spatial order derivative terms in a local damage model [92, 42] or by nonlocal integration

of certain fields, e.g., strain, over neighborhoods of size ld. However, both approaches are

computationally expensive. The proposed damage model is much easier to implement, since

it is simply an ODE in time. It also maintains the hyperbolicity of the elastodynamic problem

which is critical for the solution of the coupled problem by the aSDG problem. Finally, the

interaction of elastic wave speeds with the intrinsic time scale τc indirectly introduces a

length scale ld for the damage problem. While this length scale is not relevant for very low

rate loading problems [78], at moderate to high loading rates it is expected to resolve the

mesh sensitivity problem of local damage models.

3.3.4 aSDG method

The asynchronous Spacetime Discontinuous Galerkin (aSDG) method, formulated for

elastodynamic problem in [7], is use for dynamic fracture analysis. The Tent Pitching

algorithm [1] is used to advance the solution in time by continuous erection of patches

of elements whose exterior patch boundaries satisfy a special causality constraint. This

results in a local and asynchronous solution process. In addition, since spacetime is directly

discretized by finite elements, the order of accuracy can be arbitrarily high both in space

and time directions. This is in contrast to conventional finite element plus time marching

algorithms where increasing the order of accuracy in time is not straightforward.

In addition to the displacement field for the elastodynamic problem, the damage field D

is discretized in spacetime. The finite elements solve the weak form of elastodynamic balance

laws, cf. §3.3.2, and the damage evolution equation (3.6), Ḋ − Dsrc(D,Df ) = 0. Since the

damage evolution is simply an ODE and maintains the hyperbolicity of the problem, the

solution of the coupled elastodynamic-damage problem lends itself to the aSDG method. In

addition, the satisfaction of balance laws per element for discontinuous Galerkin methods
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results in a very accurate discrete solution of the damage evolution equation. We refer the

reader to [20] for more details on the aSDG implementation of the problem, including the

specification of jump conditions, and initial/boundary conditions for the damage evolution

equation.

3.3.5 Realization of stochastic damage model parameters

As discussed in §2.2, incorporating material inhomogeneity is quite important to capture

realistic failure response of quasi-brittle materials. The inhomogeneity is both in elastic and

fracture properties. If an isotropic material model is assumed at the mesoscale, often only

the elastic modulus is deemed to be a random field as in [48]. However, in general the entire

elasticity tensor should be considered as a tensorial random field. However, often due to

the higher effect that fracture properties have on macroscopic failure response, only they are

considered to be random and inhomogeneous.

For a general fracture model, strength, energy, and initial damage state are the main

model parameters. For the MC model, the friction angle φ (or friction coefficient k) and

cohesion c are the model parameters used to determine c and Df from (3.2) and (3.5),

respectively. Cohesion is the parameter that is associated with fracture strength. The

relaxation time τc in (3.6) and brittleness factor β determine the area under the strain-stress

curve for different loading rates in Fig. 3.4. That is, they determine the fracture energy of the

damage model. Finally, the initial condition for damage parameter, D(x, t = 0), corresponds

to the initial state of material. In the present work, among strength, energy, and initial

damage parameters, we consider inhomogeneity only in the strength property. This is in

accord with a majority of similar studies in the literature such as [38, 123, 104, 75, 44, 14].

Accordingly, the only random field in the present study is cohesion c. For a

macroscopically homogeneous material, the point-wise and two-point statistics of the random

field are spatially uniform. For the point-wise statistics, the mean and standard deviation

of the random field are the main parameters. For the two-point statistics the form of the

correlation function and the correlation length, i.e., the length scale at which the field

spatially varies are the main parameters. In [48], where the elastic modulus is considered to

a random field, standard deviation and correlation length of the random field are considered
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as the main parameters that impact fracture response. The realization of random fields

for fracture strength and the subsequent fracture analysis becomes more expensive as the

correlation length tends to zero. In [48] it is shown that certain macroscopic fracture

statistics converge as the correlation length tends to zero. That is, by maintaining sufficient

level of material inhomogeneity through using a small enough correlation length, accurate

representation of macroscopic fracture response can be obtained.

We treat cohesion as a stationary random field with certain standard deviation ςc and

correlation length lc. The statistics of this random field can be systematically obtained by

using Statistical Volume Elements (SVEs), as shown in [14, 24]. However, for simplicity

and better control on the effect of these parameters, we artificially manufacture random

fields with certain ςc and lc. The distribution of c is assumed to follow a Lognormal(µc, ςc)

probability structure where µc and ςc are the mean and standard deviation of the normal

field. The corresponding mean and standard deviation of the log normal field for c are

Mc = exp
(
µc + ς2

c /2
)
and Σc = exp(µc + ς2

c /2)
√

exp(ς2
c )− 1.

Once the underlying correlation function form and length, and point-wise Probability

Distribution Function (PDF) are specified, there are a number of statistical methods to

realize consistent random fields. We use the Karhunen-Loéve (KL) method [69, 77] to realize

a random field ξ = ξ(x, ω) by an expansion of its covariance kernel; the field is described by

the series,

ξ(x, ω) = µξ(x) +
∞∑
i=1

√
λibi(x)Yi(ω), (3.10)

where the denumerable set of eigenvalues λi and eigenfunctions bi(x) are obtained as solutions

of the Fredholm equation, i.e., the generalized eigenvalue problem (EVP), as detailed [55].

Since the eigenvalues monotonically decrease, the truncated series with an appropriate value

of the upper limit n instead of ∞ in (3.10), can precisely represent the statics of the

underlying random field. For practical use of the KL method, random variables Yi should be

statistically unrelated. This condition is automatically satisfied for Gaussian fields. Thus,

we sample Gaussian random fields with the mean µc and standard deviation ςc. To obtain

the final random field for c, we need to take the exponent of the realized Gaussian random

field. There are some technical challenges for using two distinct grids for the aSDG finite
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Table 3.1: Material properties for rock sample.

Properties Units Values
E GPa 65
ρ kg/m3 2650
τc µs 30
tramp µs 10
ν - 0.27
c MPa 4.7
φ ◦ 17
a - 10

element solution in spacetime and the realized random field for c in a material grid. For

more discussion on the use of KL method for fracture analysis and aSDG analysis of domains

with random properties, we refer the reader to [40].

3.4 Numerical Results

We consider rock failure under dynamic compressive loading, and study the effect of mesh

size, load amplitude, and material inhomogeneity on damage pattern. The geometry and

loading description are shown in Fig. 3.5, where a rectangular domain of width w = 0.08 mm

and height l = 2w = 0.16 mm is subject to compressive loading P (t) on top and bottom faces.

The traction P (t) ramps up from zero to the sustained value of Ppeak in ramp time tramp.

Zero tangential traction is applied on these faces to model a frictionless loading interface. A

traction free boundary condition is applied on the vertical sides of the domain. We assume

a 2D plain-strain condition with material properties reported in table 3.1.

For this 2D problem, the spacetime mesh corresponds to a 2D× time grid of tetrahedron

elements. The solution is advanced to the final time by an asynchronous patch-by-patch

solution algorithm. The time increment of a pitched vertex is calculated based on the wave

speed, spatial geometry, and sizes of elements around; cf. §3.3.4 and [1, 7] for more details.

We use third order polynomial basis functions for damage and displacement fields in space

and time.

As shown in Fig. 3.6, we use three different structured grids of 8 × 16, 16 × 32, and

32×64 squares, where each square is divided into two triangles. These are labeled as coarse,
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Figure 3.5: Problem description for a rectangle subject to a vertical compressive loading.

medium, and fine meshes, respectively. One of the numerical challenges in damage mechanics

that affects the convergence of the Newton-Raphson method is the zero stiffness issue when

damage is equal to unity. One way to avoid this problem is multiplying the damage value

used in (3.8) by a positive reduction factor less than unity. Herein, we select a reduction

factor of 93%.

3.4.1 Homogeneous material

3.4.1.1 Mesh sensitivity

The dependence of damage response on the resolution of the underlying discrete grid is a

well-known problem for non-regularized continuum damage models. As described in §3.3.3.2,

the proposed time-delay damage model introduces an inherent length scale proportional to

the relaxation time and longitudinal elastic wave speed, i.e., ld ∝ cdτc. To show mesh-

objectivity of the results, we compare the damage evolution for coarse and medium meshes

in Fig. 3.7. For this numerical example, material properties are homogeneous and listed in

table 3.1, and the loading magnitude is Ppeak = 13.5 MPa.
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Figure 3.6: Initial meshes used for the simulations: (a) Coarse; (b) Medium; (c) Fine.

Figure 3.7 shows an excellent agreement between the solutions of the two meshes at early

and evolved stages of damage evolution. We also refer the reader to [20] for a more detailed

study of mesh objectivity for a tensile fracture problem where damage localization zone

converges to a region of finite width. We reiterate that the time-delay formulation addresses

the mesh-objectivity problem with much less computational difficulty than the non-local

integration-based and gradient-based damage models. Moreover, it does not violate the

hyperbolicity of the problem. This facilitates the use of the aSDG method and is consistent

with the physical observation that damage propagates with a finite speed [59].

3.4.1.2 The effect of load amplitude

In the previous example, the stress level was sufficiently high to initiate damage near the

loading edges, from the early stages of the solution. The stress state in the middle of top

and bottom faces is approximately similar to bi-axial compressive condition; material tends

to expand in the horizontal direction because of the Poisson effect while the surrounding

material prevents its deformation. However, the stress state around the corners is close to

an unconfined uni-axial compressive condition because of the stress-free conditions at left

and right boundaries. The higher differences between compressive stresses in the Mohr circle

results in a higher value for c; cf. (3.2). Thus according to the MC failure criterion, the corner

zones are more susceptible to an earlier time for damage initiation and higher damage values.
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Figure 3.7: Damage responses at different times for two different meshes. Figures (a) and
(b) correspond to the coarse mesh and figures (c) and (d) correspond to the medium mesh.
The results are shown on the deformed mesh with a magnification factor of 300.

This is verified by the higher damage values around the corners in Fig. 3.7(a-b). After the

initiation of damage at corners, damage diffuses towards the middle of the domain.

To study the effect of load amplitude, we reduce the peak stress such that damage

initiates in the middle of the domain. The vertical normal stress magnitude roughly doubles

across the entire width when the stress waves collide in the middle of the domain. The

load for this problem is chosen such that it is not large enough to initiate damage when

the stress wave enters from the top and bottom edges, but is sufficient to cause damage in

the middle of domain due to the doubling effect. We call this condition the low amplitude

case, corresponding to Ppeak = 6 MPa, and refer to the previous peak stress problem as the

high amplitude case. As shown in Fig. 3.8(a), the initial damage occurs when the peak stress

reaches the middle of the domain; i.e., at tcollision ≈ tramp + l
2cd
≈ 24µs which is well predicted

by the numerical result. After the collision, the magnified reflected waves are sufficiently high
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to overcome the cohesion of rock. Thereafter, damage diffuses toward boundaries where the

waves are propagating to; see Fig. 3.8 (b-d). This failure mechanism is completely different

from that of the high amplitude case where the damage initiates in a shear dominated regime

at the corners. Therefore, load amplitude has a significant impact on damage pattern and

failure mechanism. For a better comparison, we provide the damage response at various

times for the high amplitude case in Fig. 3.9.

3.4.2 Heterogeneous material

As detailed in §3.3.5, for the analysis of inhomogeneous rock masses, we assume that cohesion

is a random field. This analysis expands our preliminary comparison of the response of

homogeneous and heterogeneous rock in [22]. We construct four random fields using the KL

method with the mean cohesion value of Mc = 4.7 MPa, similar to the spatially uniform

c used in the preceding examples for homogeneous rock. The standard deviation is set to

Σc = 2.35 MPa. The correlation lengths of lc = 5 mm, 10 mm, 20 mm, and 40 mm are

used, where for each correlation length one random field realization is generated by the KL

method. These random fields are shown in Fig. 3.10. A smaller correlation length indicates

faster variations in cohesion from one spatial point to another, so it corresponds to a more

locally heterogeneous field. These random fields are constructed with the first 2000 terms of

the KL series. For the following results, we use the fine mesh to have an adequate resolution

for capturing the underlying inhomogeneity.

( ) 2 7 s4.a t  ( ) 3 1 s6.b t  ( ) 4 2 s2.c t  ( ) 4 2 s8.d t 
0

1

Figure 3.8: Damage evolution at various times for the medium mesh and low amplitude
load. The results are shown on the deformed meshes with a magnification factor of 1000.
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Figure 3.9: Damage evolution at various times for the medium mesh and high amplitude
load. The results are shown on the deformed meshes with a magnification factor of 300.

( )a ( )b ( )c ( )d

Figure 3.10: Random field realizations for cohesion with different correlation lengths, lc,
equal to: (a) 5 mm, (b) 10 mm, (c) 20 mm, and (d) 40 mm.

3.4.2.1 Low amplitude load

In this section, we study the effect of heterogeneity on damage response for the low amplitude

condition. Figure 3.11 shows the damage response for lc = 40 mm at various times. From

the cohesion map in Fig. 3.10(a), we observe that c varies very slowly in space. It takes the

highest values near the top boundary and the lowest ones at three spots close to the left and

right boundaries; weak zones are colored by blue. In Fig. 3.8(a), the initial damage zone

begins when the stress waves collide in the middle of the domain. The particular form of

this realization for c actually favors damage accumulation in the center, given that a higher

strength zone is near the top boundary in Fig. 3.10(a). As shown in 3.11, damage initiates

and accumulates both in this center location and in the three aforementioned weak sites

close to the boundaries. Thus, the form of the failure pattern follows both the weak points
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in the material and locations with higher stress values in general. By comparison of Fig. 3.8

and Fig. 3.11, we also observe that the earlier initiation of damage in weaker sites results

in a response with more concentrated damage zones. Finally, the damage initiation time is

almost the same as that for the homogeneous rock, and in both cases it is right after the

collision of the waves at tcollision ≈ 24.

Figures 3.12-3.14 show the damage evolution for heterogeneous cohesion fields with

correlation lengths equal to 20 mm, 10 mm, and 5 mm, respectively. According to 3.12(a)-

3.14(a), the time for damage initiation decreases as the correlation length gets smaller, i.e.,

when the heterogeneity is increasing.

It is well accepted in the literature that one of the main reasons for localization and

softening behavior in brittle materials is their heterogeneous structure at microscale [28, 27,

121]; the weaker points in material begin to fail earlier. This results in an increased stress

concentration in the damaging zones and the shielding of the surrounding areas. That is,

the inhomogeneity in material properties promotes inhomogeneity and localization in the

stress field. Unlike ductile materials, there are not much energy dissipative reserves, for

example from plasticity, to balance the stress field. Figures 3.11(d)-3.14(d) reveal a crucial

impact of the correlation length on failure mechanism; this is a transition from diffusive

damage propagation to a more localized response as the correlation length gets smaller. This

agrees with the preceding discussion on the promotion of damage localization by material

inhomogeneity. In fact, for the solutions with the lowest correlation length, even the mode

and propagation of failure is significantly different than that of a homogenous material; in

Fig. 3.8(d) and Fig. 3.14(d), the effect of the weakest point of the material is high to an

extent that damage initiates and accumulates in a more distributed sense, as opposed to the

damage accumulation in the central zone in Fig. 3.8.

3.4.2.2 High amplitude load

Figures 3.15-3.18 show the evolution of the damage field for correlation lengths lc = 40 mm

to lc = 5 mm. We observe a very good match between damage localization sites and the

locations of material weak points in Fig. 3.10(b-d). Moreover, as we decrease the correlation

length, the time of damage initiation decreases; cf. figs. 3.15(a)-3.18(a)).
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From the final damage pattern in Fig. 3.9(d) for the homogeneous domain, one observes

that for high amplitude loading extensive damage is experienced almost everywhere,

especially close to the top and bottom boundaries. There is little resemblance between

this solution and those for high correlation random fields in Fig. 3.15(d) and Fig. 3.16(d).

Similarly for the low amplitude load, high differences are observed between the solutions of

homogeneous, Fig. 3.8(d), and inhomogeneous domains with high correlation lengths, Fig.

3.11(d) and Fig. 3.12(d). This is due to the fact that for such large correlation lengths, the

large islands of low strength greatly impact the response.

In contrast, as the correlation length decreases, the overall material properties are almost

the same in all areas, except the inhomogeneities that are observed at smaller length scales.

Consequently, in comparison of damage patterns for the homogeneous rock in Fig. 3.9(d) and

rocks with small correlation length for c in Fig. 3.17(d) and Fig. 3.18(d), a very similar overall

response is observed; in all cases, damage is widespread in the domain, with the top and

bottom sides experiencing the highest damage. In contrast, there is no resemblance between

the damage patterns of homogeneous domain in Fig. 3.8(d) and those for low correlation

length fields in Fig. 3.13(d) and Fig. 3.14(d). The reason is that for this low amplitude of

load, damage can only accumulate in the center of the homogeneous domain, whereas for

inhomogeneous domains damage can accumulate from weak points outside of this zone; this

greatly affect the final damage pattern.

The statistical continuum damage model enhances the accuracy of conventional contin-

uum damage models, and its solutions are more consistent with sharp interface fracture

models. The reason are as follows. First, damage initiation zones from material weak points

are more concentrated and better resemble crack nucleation events. Second, damaged zones

tend to propagate in crack-like features with specific inclined directions rather than the

diffuse response around the initiation points. For example, in Fig. 3.18(d), many localized

zones resemble cracks at 45 degree and steeper relative to the vertical direction. This features

qualitatively match other numerical and experimental observations [112, 113, 76, 49, 100].

Specifically, based on the MC failure criterion, cracks are formed at angles ±(45◦+φ/2) with

respect to the compressive loading direction. This example demonstrates that a damage

model based on uniform material properties not only misses crack-like damage localization
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features, but can also incorrectly predict the location of zones with the maximum overall

damage accumulation (low load example).

3.4.2.3 Mesh sensitivity

The mesh sensitivity of diffusive damage response for the sample with homogeneous

properties was presented in §3.4.1.1. Here, we study the effect of mesh size for domains with

heterogeneous cohesion that result in a localized damage response. Figure 3.19 compares

damage responses for the domain with lc = 40 mm at t = 43 µs. The results are presented

for different load amplitudes and mesh sizes. The same results are presented in Fig. 3.20 for

the smallest correlation length lc = 5 mm at t = 36 µs. While, there is a good agreement

between the results obtained by medium and coarse meshes for both load conditions, the

solutions for the largest correlation length in Fig. 3.19 show a better agreement. This is due

to the fact that the details of the solution are at the scale of the correlation length; thus, as

smaller correlation lengths are used for material properties, finer finite elements should be

used to accurately capture the details of the solution.

3.5 Conclusions

We presented a dynamic bulk damage model, based on the time-delay evolution law in

[19]. The relaxation time τc indirectly introduces an intrinsic length scale for dynamic

fracture problems. This resolves the mesh sensitivity problem of early local damage models.

Moreover, by limiting the maximum damage rate, the model qualitatively captures stress

rate effect, in that, both strength and toughness increase when the loading rate increases.

The ODE form of the evolution model greatly simplifies the implementation of the damage

model and maintains the hyperbolicity of the elastodynamic problem.

The coupled elastodynamic-damage problem was implemented by the aSDG method to

solve a uniaxial compressive fracture problem for rock. The MC model is used to formulate a

damage force model. In the process of damage accumulation, the effective stress tends from

the initial elastic limit at D = 0 to its hydrostatic compressive value at D = 1. The MC

model also captures rock strengthening effect as hydrostatic pressure increases. In contrast,
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damage models that are based on spectral positive and negative decomposition of strain (or

stress) tensor, fail to model failure under compressive response.

To model the effect of material inhomogeneity, cohesion was assumed to be a random

field. Two different macroscopic compressive load amplitudes were used for this study. For a

homogeneous material, the higher load amplitude initiates damage as the compressive wave

enters the domain, whereas for the lower load damage initiates only in the center of the

domain where stress doubling effect occurs upon the intersection of compressive waves. Four

lognormal fields with different correlation lengths lc were generated for c. It was shown that

inhomogeneity could significantly alter the failure response of an otherwise homogeneous

rock. For example, for the higher load amplitude, unlike the homogeneous case, damage

initiates in the center of the domain. This is due to the particular form of the realized

random field where a large zone of low c is sampled in the center of the domain. Moreover,

for the lower load amplitude damage can initiate everywhere in the domain as the waves travel

toward the center of the domain. This is due to the weaker sampled c at these locations,

which does not require the stress wave doubling effect to initiate damage. Moreover, even the

zones that eventually accumulate the highest damage can be significantly different between

models with homogeneous and inhomogeneous properties, even as the correlation length

tends to zero (low load amplitude example).

Another problem of using a homogeneous material model is the inability or difficulty of

bulk damage models to capture sharp localization zones. In contrast, as lower correlation

lengths were used for inhomogeneous domains, the fracture pattern became more realistic

and resembled the results that are obtained by more accurate sharp interface models [3]. In

particular, the MC model predicts fractures at ±(45 + φ/2) degree angles with respect to

the compressive load direction. For the lowest correlation lengths, localized damage zones

with angles roughly in the range ±45 to ±(45+φ/2) are observed. These features are better

resolved with the higher resolution finite element mesh, confirming that finer meshes are

required for the solution of problems with more rapid variation of material properties.

There are several extensions to the present work. First, the form of effective stress

(3.8) implies that friction coefficient is zero at complete damage (D = 1), whereas jointed

(damaged) rock may still possess some residual friction coefficient. This will enhance the
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angle of localized regions in Fig. 3.18(d). Second, MC criterion is not appropriate for rock

tensile fracture analysis and the damage force can be formulated by Hoek-Brown [62] and

other more accurate models. Third, as shown in [2], rock anisotropy, for example induced

by the existence of bedding planes, can affect fracture angle under compressive loading.

Anisotropic failure criteria such as those in [96, 74] can be used to formulate the damage force.

Finally, mesh adaptive operations in spacetime [8] can drastically reduce the computational

cost of the formulated aSDG method for this bulk damage model.
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Figure 3.11: The evolution of damage field for the low amplitude load and cohesion
realization with lc = 40 mm.
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Figure 3.12: The evolution of damage field for the low amplitude load and cohesion
realization with lc = 20 mm.
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Figure 3.13: The evolution of damage field for the low amplitude load and cohesion
realization with lc = 10 mm.
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Figure 3.14: The evolution of damage field for the low amplitude load and cohesion
realization with lc = 5 mm.
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Figure 3.15: The evolution of damage field for the high amplitude load and cohesion
realization with lc = 40 mm. The results are shown on the deformed mesh with a
magnification factor of 100.
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Figure 3.16: The evolution of damage field for the high amplitude load and cohesion
realization with lc = 20 mm. The results are shown on the deformed mesh with a
magnification factor of 100.
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Figure 3.17: The evolution of damage field for the high amplitude load and cohesion
realization with lc = 10 mm. The results are shown on the deformed mesh with a
magnification factor of 100.
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Figure 3.18: The evolution of damage field for the high amplitude load and cohesion
realization with lc = 5 mm. The results are shown on the deformed mesh with a magnification
factor of 100.
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Figure 3.19: Damage responses at t = 43 µs for the domain with lc = 40 mm with different
meshes and load amplitudes: (a) low amplitude-medium mesh, (b) low amplitude-fine mesh,
(c) high amplitude-medium mesh, and (c) high amplitude-fine mesh.
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Figure 3.20: Damage responses at t = 36 µs for the domain with lc = 5 mm with different
meshes and load amplitudes: (a) low amplitude-medium mesh, (b) low amplitude-fine mesh,
(c) high amplitude-medium mesh, and (c) high amplitude-fine mesh.
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Chapter 4

Comparison of interfacial and

continuum models for dynamic

fragmentation analysis
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This chapter is revised based on the following published papers:

B. Bahmani, R. Abedi, P.L. Clarke, “Comparison of interfacial and continuum

models for dynamic fragmentation analysis”, ASME 2018 International Mechanical

Engineering Congress and Exposition (IMECE), Pittsburgh, PA (2018).

B. Bahmani, R. Abedi, P.L. Clarke, “A bulk damage model for modeling dynamic

fracture in rock”, Proceeding 52th U.S. Rock Mechanics/Geomechanics Symposium

(ARMA), Seattle, WA (2018).

Following the previous chapters, my primary contributions in this chapter can be listed

as (i) comparison of a previously developed interfacial damage model with my continuum

damage model for dynamic fragmentation problems, (ii) arrangement and interpretation of

numerical examples, and (iii) preparation of the first draft.

4.1 Abstract

The microstructural design has an essential effect on the fracture response of brittle

materials. We present a stochastic bulk damage formulation to model dynamic brittle

fracture. This model is compared with a similar interfacial model for homogeneous and

heterogeneous materials. The damage models are rate-dependent, and the corresponding

damage evolution includes delay effects. The delay effect provides mesh objectivity with

much less computational efforts. A stochastic field is defined for material cohesion and

fracture strength to involve microstructure effects in the proposed formulations. The

statistical fields are constructed through the Karhunen-Loeve (KL) method. An advanced

asynchronous Spacetime Discontinuous Galerkin (aSDG) method is used to discretize the

final system of coupled equations. Application of the presented formulation is shown through

dynamic fracture simulation of rock under a uniaxial compressive load. The final results show

that a stochastic bulk damage model produces more realistic results in comparison with a

homogenizes model.
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4.2 Introduction

Brittle materials have a wide range of applications in various areas–from the geological

application, such as rock, to biological applications, such as bone. The failure response

of this kind of material is susceptible to a sudden rupture by initiation, propagation, and

fragmentation of many cracks. The main reason of such a brittle rupture derives from

the complex microstructure of these materials which consist of many microdefects and

microcracks. The most challenging task in the numerical analysis of brittle materials is

the modeling of fracture behavior. In the context of conventional continuum mechanics,

there exist two frameworks for fracture modeling; Interfacial and Bulk models.

Interfacial models represent explicit sharp fractures in the computational domain. Three

main models in this context are: the linear elastic fracture mechanics (LEFM) model,

cohesive models [51, 25], and interfacial damage models [19, 16, 90, 89, 6]. Interfacial models

explicitly track the real pattern of fractures, but their implementation is cumbersome and

their computational cost is high. In applications such as multiscale methods, it is hard to

track explicit discontinuities in all scales of interest. If it is even possible, the computation

cost will be extremely high. However, the most important issue of these models is the need

for additional criteria to predict the initiation and propagation direction of fractures.

Bulk models apply continuum damage mechanics to approximate the presence of explicit

fractures with an implicit damage variable indicated the level of failure in an equivalent

continuum domain. One of the earliest studies in this area refers to Smeared Crack approach

in [30] where a continuum model is presented to simulate fractures in concrete. Phase Field

approaches are the enhanced alternatives for bulk models[53, 35, 84, 34, 71]. Bulk models

remedy the issues above in regard to fracture initiation, additional criteria for propagation

direction, and challenges in fragmentation in interfacial models. Also, they provide several

benefits from numerical aspects: Simple integration with other numerical methods, fast

implementation, and straightforward utilization in multiscale analysis. The main drawback

of bulk models is the overestimation of fracture sharpness which is much better handled by

phase field approaches.
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The effect of the microstructure is one of the important aspects of fracture response

in quasi-brittle material. Al-Ostaz and Jasiuk [15] observed different fracture patterns in

different samples with the same set-ups. The reason for this stochastic behavior is the high

sensitivity of quasi-brittle materials to their microstructure defects. Similar observations

are reported in [72], especially for responses after ultimate load capacity of the material

when fractures are initiated and propagated. Another consequence of the high sensitivity

of responses to microstructure is the size effect [102, 54]. One of the widely accepted

models for studying the size effect is the Weibull’s weakest link model. The efficiency of

the Weibull method in capturing the size effect and statistical variation of fracture strength

in interfacial models is shown in [118, 119]. We have used the Weibull model in the context

of an interfacial damage model to capture statistical fracture response of rock, in hydraulic

fracturing [11], fracture under dynamic compressive loading [3], and in fragmentation studies

[6, 41]. However, these models are computationally expensive due to the use of a sharp

interfacial model. In this study, we first use a random field approach, rather than the

Weibull model, to represent material randomness. Second, in addition to a sharp damage

model, we formulate a bulk damage model, where material cohesion is treated as a random

field.

We will incorporate microstructural randomness in dynamic failure of brittle material

through a stochastic approach. In the proposed stochastic approach, model parameters are

constructed based on statistical fields. In the current study, we generate a realization of

the statistical field for the fracture strength and material cohesion based on the well-known

Karhunen-Loève (KL) method [69, 77]. In this regard, a recent study in [12] demonstrates

the motivation of statistical models in high rates of loading in that the entire spatial domain

fails in a short time period for problems that lack macroscopic stress concentration points.

The statistical damage formulation is coupled with elastodynamic equations for both the

bulk and interfacial models. To solve these nonlinear systems of hyperbolic equations, we

employ the asynchronous Spacetime Discontinuous Galerkin (aSDG) method; this method

uses the Tent-Pitcher algorithm [1] to advance the solution by solving one patch (a small

collection of elements) at a time until the computational spacetime domain is completely
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solved. This method results in a highly advanced numerical method with local and linear

solution properties for the elastodynamic problem [7].

In the following sections, we will describe the proposed damage models, interfacial and

bulk, and KL method in §4.3. We will show the effect of randomness and accuracy of

the stochastic bulk model in §4.4 for a compressive sample to indicate the essential role of

randomness in dynamics fracture analysis. Finally, we will discuss the novel contributions

of this study in §4.5.

4.3 Formulation

In this section, we describe two different approaches for the modeling of brittle material

failure. These approaches have the same origin from mathematical and physical aspects, but

one represents the material failure as a localized/sharp phenomenon, and the other considers

the failure mechanism as a bulk process in the material. After the description of the models,

we will discuss a general method based on the KL method to involve stochastic effects into

the introduced damage models.

Interfacial model

The interfacial damage parameter D interpolated between the fully bonded (D = 0) to fully-

debonded (D = 1) state on a contact/fracture interface. The macroscopic traction vector,

s∗, is given by,

s∗ = (1−D)s̆B +Ds̆D (4.1)

where s̆B and s̆D are dynamic Riemann solutions for bonded and debonded (separation,

contact–stick, or contact–slip) modes. The formulas for these four states of Riemann solution

are provided in [4]. The damage value is obtained by the evolution law,

τcḊ = Dsrc, (4.2a)

Dsrc = 1− e−a〈Dfrc−D〉+ , (4.2b)

Dfrc = g(s̆, δ̆), (4.2c)
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where Ḋ is the time derivative ofD, τc is the time-scale or delay parameter, a is the brittleness

factor, and 〈.〉 is the Macaulay positive operator. Similar to [12] we assume the damage

evolution be driven by an effective stress s̆ and an effective separation δ̆. In earlier works,

e.g., [6], damage is only driven by the effective traction, but as described in [12] the inclusion

of δ̆ is not only physically motivated but also improves the response of the model. Their

definitions are motivated by the definition of effective scalar values in [37] and are given by,

s̆ :=
√
〈s̆1

B〉2 + β2
s (s̆2

B)2 (4.3a)

δ̆ :=
√
〈δ1〉2 + β2

δ δ
2
2 (4.3b)

where βs and βδ are traction and displacement mode-mixity coefficients, and (s̆1
B, s̆

2
B) and

(δ1, δ2) are the normal and tangential components of bonded Riemann traction s̆B and

displacement jump (separation) vectors in 2D, respectively. The form of the function g(s̆, δ̆)

in Eqn. (4.2c) and the mode-mixity values for a Mohr-Coulomb model are provided in [12]

and [3], respectively. The reader is also referred to [6] for a general discussion on this class

of interfacial damage models and their comparison with conventional cohesive models.

Bulk model

We use the same damage evolution law for the bulk model to provide a better comparison

between the two models. The bulk model used in the current study is a nonlinear ordinary

differential equation as,

τcκ̇ = κsrc, (4.4a)

κsrc = 1− e−a〈κfrc−κ〉+, (4.4b)

κfrc = σr + σave sinφ
c cosφ , (4.4c)

where κ̇ is the time derivative of the damage variable κ, 0 ≤ κ ≤ 1, c is the material cohesion,

and φ is the friction angle. σave and σr are the center and radius of the Mohr circle in the
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stress space, respectively. We define the damage force function, i.e., κfrc, based on the Mohr-

Coulomb failure envelope. This definition is appropriate for brittle material with dominant

failure modes in shear and tensile modes.

The proposed dynamics damage formulation, which is based on the Allix’s formulation

in [17, 43, 19], introduces a delay behavior into the damage mechanism through the time-

scale parameter. The differences of our model and the Allix’s formulation, particularly

in relation to the definition of damage force Eqn. (4.4c) based on the Mohr-Coulomb

failure criterion are further discussed in [23]. The delay effect of our model accounts for the

non-instantaneous damage mechanism which is more consistent with the physical behavior

of damage response in dynamic conditions. Also, the timescale τc preserves the mesh-

objectivity of the aforementioned damage formulation by providing a non-local behavior

in spacetime domain. This (temporal) non-local behavior and existence of an intrinsic

length scale is required for bulk damage models [93] and is comparable with the spatial

non-local characteristics in conventional gradient-based [91, 114, 73] and integration-based

non-local [97] theories where they use a length-scale parameter. However, the delay method

is preferable to those spatially non-local schemes due to its much less computational and

implementation efforts.

We propose a damage-deformation relation by considering the effect of damage on

deviatoric and hydrostatic tensile components of the elastic stress tensor as,

σeff = (1− κ)(σd + 〈σh〉) + (σh − 〈σh〉), (4.5)

where σd and σh are deviatoric and hydrostatic parts of elastic stress tensor σ.

Stochastic field realization

The uncertainty of a material property ξ is incorporated in the proposed damage models, bulk

and interfacial, by treating a fracture strength parameter ξ as a spatially inhomogeneous

random field ξ(x, ω) governed by probability structure ω. The random field is developed by

the imposition of a desired stationary covariance of γ-exponential form with a prescribed

correlation length which controls the spatial variability of the field. A log-normal
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Lognormal(µ, σ2) probability structure governs the distribution of the random field. This

probability space has the mean exp
(
µ + σ2/2

)
and variance [exp(σ2) − 1] exp(2µ + σ2) of

the log-normal field.

There exist several methods that allow a scalar random field approximation to be

generated wherein the inherent statistics are preserved. One such method is the KL method

which approximates the random field ξ by an expansion of its covariance kernel as the

following series,

ξ(x, ω) = µξ(x) +
n∑
i=1

√
λibi(x)Yi(ω), (4.6)

where the eigenvalues λi and eigenfunctions bi(x) are extracted as solutions of the Fredholm

equation, i.e., the generalized eigenvalue problem (EVP), which is detailed in [55]. The

truncated series with an appropriately chosen n number of terms can precisely represent the

statics of the underlying random field, due to the monotonically decreasing property of the

eigenvalue solutions. The series converges to the exact underlying statistics when n → ∞,

but the computation cost will be another factor to consciously choose the number of terms.

The uncorrelated random variables Yi must also be independent for practical use of the KL

method. This is valid only if the random variables and consequently the random field ξ(x, ω)

are Gaussian. This Gaussian requirement does not restrict the KL method robustness, since

the inverse transform method provides a means of transforming one probability structure

to another; this transformation needs a prior known cumulative density function of both

distributions. Therefore, the KL Gaussian random field approximation is mapped to an

approximation of the originally assumed log-normal distribution. Please refer to [40] for an

overview of the use of KL method in modeling rock fracture strength and [41] for further

elaboration on the KL and eigen-pair solution procedures, particularly for non-Gaussian

fields.

4.4 Numerical Results

We investigate several aspects of the proposed models in fracture modeling of a brittle

rock sample. Uniaxial compression tests in homogeneous and inhomogeneous conditions are

studied. Figure 4.1 shows the geometry and boundary conditions of the studied problem.
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Table 4.1: Material properties for uniaxial sample.

Properties Units Values
E GPa 65
ρ kg/m3 2650
τc µs 30
ν - 0.23
c MPa 4.7
φ ◦ 17
a - 10

w

l

, ,E 

,c

( )P t

( )P t

ramp
t

peak
P

P

t

Figure 4.1: Uniaxial compression test and the load history.

This plain strain specimen has the width and length of w = 0.08 m and l = 2w = 0.16 m,

respectively.

Material properties are The rock material properties, listed in Tab. 4.1, are based on

rock property groups discussed in [63]. The peak load and ramp time are fixed for all the

following simulations which are Ppeak = 13.5 MPa and tramp = 0.01 ms, respectively.

The computational domain in spacetime is discretized by simplicial tetrahedral elements,

and the corresponding field unknowns, damage and displacement, are approximated by third-

order basis functions in spacetime. We define a convergence criterion based on the energy

norm of the coupled system, and the tolerance is 10−8.
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Figure 4.2: Crack distributions at various times in the interfacial model with homogenous
properties. The color field shows the strain energy density on the deformed geometry.

Homogeneous material property

In this section, we study failure mechanisms of the proposed bulk and interfacial models

under the same boundary conditions and almost the same model parameters as listed in

Tab. 4.1. Figures 4.2 and 4.3 show failure patterns for the interfacial and bulk models at

different times, respectively. Although the responses are not well matched, the models have

some similarities in some aspects. First, the initial damage zones are generated at specimen

corners. Second, the fractures or damage zones propagate directionally toward the specimen

center. However, there is a significant difference in the estimation of failure zones.

For both models the stress field is relatively uniform along the width of the domain as the

wave propagates inward. The strength values are also uniform, due to using a homogeneous

material mode. However, as seen in Fig. 4.2 for the interfacial model the fractures are

localized rather than populating the entire width of the domain. This is explained by

the interfacial nature of this model and small discretization errors; although the stress

and strength fields are rather uniform, even small numerical errors cause certain points
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Figure 4.3: Contours of the damage evolution at different times in the non-adaptive bulk
model with homogeneous properties. The deformed meshes are depicted by magnification
factor of 250. Colors from blue to red correspond to bulk damage values from zero to one,
respectively.

to be sites of crack nucleation. Subsequently, the stress field around these nucleation sites

becomes highly nonuniform due to the stress concentration and shielded regions surrounding

a propagating crack. The cracks are mostly along the angle 45◦−φ/2 ≈ 36.6◦ with respect to

the load orientation, which matches the predicted angle from the Mohr-Coulomb model [3].

On the other hand, for the bulk damage model fracture is rather uniform along the width of

the domain, which does not match the localized failure zones observed experimentally.

This investigation has two outcomes: First, it shows the functionality of the adaptive

method in the solution accuracy for tracking crack patterns in the interfacial model; second, it

provides evidence of mesh insensitivity of the damage formulation which is a crucial problem

in damage mechanics. Figure 4.4 depicts the application of the h-adaptive method in the

bulk model. It is obvious there is not any improvement in the approximated failure zones,

and the result is in an excellent agreement the result in Fig. 4.3 where the underlying mesh is

a nonadaptive 32×64 structured grid of triangles. That is, the rather nonphysical distributed
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Figure 4.4: Contours of the damage evolution at different times in the adaptive bulk model
with homogeneous properties. The deformed meshes are depicted by magnification factor of
250. Colors from blue to red correspond to bulk damage values from zero to one, respectively.

response of the bulk model is intrinsic; from its formulation and unlike the interfacial model,

discretization errors and adaptive operations cannot induce localized failure zones.

Inhomogeneous material property

In this section, we show how the consideration of the material randomness results in more

realistic responses of the bulk model. We consider random effects of the cohesion value in

the bulk model and the tensile strength in the interfacial model. These material properties

can significantly affect the failure response of the material as they control the initiation of

the degradation process.

Figure 4.5 presents the KL realization of a random field with the correlation length of

5 mm, unitary mean value, and 25% variance for the standard normal form of the fracture

strength field. This random distribution is used for the cohesion and fracture strength

in the domain with the reported mean values in Tab. 4.1, i.e., 4.7 MPa and 7 MPa,

respectively. Other parameters are assumed homogeneous with the same previous values,

and the boundary conditions are kept the same as before.
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Figures 4.6 and 4.7 show the damage response and fracture propagation at different times

for the interfacial and bulk models, respectively. The response of the bulk model indicates

that weakest zones in the material have a dominant effect on the evolution of damage. This

is concluded by the comparison of the initial damaged zones in Fig. 4.7(a) with weakest

zones of the sample in Fig. 4.5. The randomness effect does not have any considerable

contribution in the response of the interfacial model. This is due to two sources: First,

interfacial models are localized, and so immediately they produce many stress concentration

sites in the domain resulting in a localized response even for the homogeneous material

strength case shown in Fig. 4.2; second, the compressive loading in the example is too high.

Therefore the material does not have enough time to transfer the applied stresses to other

places, and many cracks are generated immediately after the imposition of boundary loads.

This statement is justifiable by the consideration of an infinite load. In such an extreme case

the distribution of material property does not have any effect on the failure response, and the

failure always occurs in the same regions. The other factor that may affect the interaction

of randomness and the load amplitude is the confinement pressure in bi-axial compression

tests which is not studied in this paper. Besides, as the employed damage model is rate-

dependent, another crucial topic for further investigations is the interaction of length scales

implied by the rate-dependent model and the random field for fracture strength. We leave

these questions for future works.

Figure 4.5: A KL realization with unitary mean and 25% variance. The correlation length
for the random field is 5 mm.
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Figure 4.6: Crack distributions at various times in the interfacial model with heterogeneous
fracture strength. The color field shows the strain energy density on the deformed geometry.
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Figure 4.7: Contours of the damage evolution at different times in the bulk model with
heterogeneous cohesion. The deformed meshes are depicted by magnification factor of 250.
Colors from blue to red correspond to bulk damage values from zero to one, respectively.
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The heterogeneity structure of the material cohesion significantly changes the bulk model

response to a more realistic behavior. In Fig. 4.7, the damage initiates from the weakest

points in the material instead of initiation from corners in Fig. 4.3. The most interesting

outcome is the appropriate recovery of the failure zones in the bulk model results. These

failure zones are more aligned with the top and bottom boundary edges which are in a good

agreement with the interfacial model in Fig. 4.6(d); instead of corners in Fig. 4.3(d). Also, we

see more localized behaviors in special directions after the generation of the initial damage

spots which considerably modify the globally diffusive behavior in the previous homogeneous

example. In compressible tests, these specific inclined failure zones are expected by the

Mohr-Coulomb model, and the provided result is comparable with other numerical and

experimental observations [112, 113, 76, 49, 100]. This example shows how the randomness

improves the reality of the solutions and reduces computational cost with the simpler bulk

model.

4.5 Conclusion

In the current study, we formulated a dynamic stochastic damage model for brittle failure.

The introduced time-scale parameter in the damage model incorporates rate effects into this

model and preserves the mesh objectivity. A statistical framework is formulated based on the

KL expansion method to quantify material randomness in the stochastic bulk and interfacial

models. We formulated an advanced numerical technology based on the aSDG method to

solve the highly nonlinear coupled system of hyperbolic equations. The main advantage of

this numerical method is to precisely track wave fronts in highly dynamic impact problems.

The final system of nonlinear equations is solved with the Newton-Raphson method.

We showed the most critical factor to get more realistic responses from bulk models is

the consideration of randomness effects. Although for this high amplitude loading problem

the response of the interfacial model did not change considerably with random fracture

strength, the response of the bulk model was significantly affected by a random cohesion

field. Therefore, a homogeneous fracture strength field is not an appropriate alternative for
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bulk models for certain problems. The mesh objectivity of the proposed damage formulation

is proven by a comparison between a fixed-mesh and h-adaptive refined mesh results.

In this work, we assumed an artificial statistics for corresponding random variables in

the statistical analysis. In future works, we aim to use statistical volume elements (SVEs)

to homogenize random properties of brittle material at different length scales. We will

characterize fracture related parameters as random variables with load angle dependence

similar to [14].
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Chapter 5

Conclusions

In §2, the author presented a time-delay damage formulation for elastodynamics. The weak

statement and spacetime discontinuous Galerkin formulation of the damage evolution were

presented. Some advantages of this damage formulation are: simplicity of the formulation

without requiring any boundary conditions owing to the ODE form of its corresponding

evolution equation; hyperbolicity of the coupled elastodynamic-damage equations; indirect

introduction of a damage length scale from the multiplication of the model’s relaxation

time and the longitudinal or shear wave speed implied by the elastodynamic problem; mesh

insensitivity without the use of high order spatial derivatives or nonlocal spatial averaging

operators owing to the existence of the damage length scale. However, it is noted that this

model is mainly applicable to dynamic fracture where wave speeds are relevant.

In §3,the coupled elastodynamic-damage problem was implemented by the aSDG method

to solve a uniaxial compressive fracture problem for rock. The MC model is used to formulate

a damage force model. In the process of damage accumulation, the effective stress tends from

the initial elastic limit at D = 0 to its hydrostatic compressive value at D = 1. The MC

model also captures rock strengthening effect as hydrostatic pressure increases. In contrast,

damage models that are based on spectral positive and negative decomposition of strain (or

stress) tensor, fail to model failure under compressive response.

To model the effect of material inhomogeneity, cohesion was assumed to be a random

field. Two different macroscopic compressive load amplitudes were used for this study. For a

homogeneous material, the higher load amplitude initiates damage as the compressive wave
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enters the domain, whereas for the lower load damage initiates only in the center of the

domain where stress doubling effect occurs upon the intersection of compressive waves. Four

lognormal fields with different correlation lengths lc were generated for c. It was shown that

inhomogeneity could significantly alter the failure response of an otherwise homogeneous

rock. For example, for the higher load amplitude, unlike the homogeneous case, damage

initiates in the center of the domain. This is due to the particular form of the realized

random field where a large zone of low c is sampled in the center of the domain. Moreover,

for the lower load amplitude damage can initiate everywhere in the domain as the waves travel

toward the center of the domain. This is due to the weaker sampled c at these locations,

which does not require the stress wave doubling effect to initiate damage. Moreover, even the

zones that eventually accumulate the highest damage can be significantly different between

models with homogeneous and inhomogeneous properties, even as the correlation length

tends to zero (low load amplitude example).

Another problem of using a homogeneous material model is the inability or difficulty of

bulk damage models to capture sharp localization zones. In contrast, as lower correlation

lengths were used for inhomogeneous domains, the fracture pattern became more realistic

and resembled the results that are obtained by more accurate sharp interface models [3]. In

particular, the MC model predicts fractures at ±(45 + φ/2) degree angles with respect to

the compressive load direction. For the lowest correlation lengths, localized damage zones

with angles roughly in the range ±45 to ±(45+φ/2) are observed. These features are better

resolved with the higher resolution finite element mesh, confirming that finer meshes are

required for the solution of problems with more rapid variation of material properties.

In §4, the author showed that the most critical factor to get more realistic responses from

bulk models is the consideration of randomness effects. Although for this high amplitude

loading problem the response of the interfacial model did not change considerably with

random fracture strength, the response of the bulk model was significantly affected by a

random cohesion field. Therefore, a homogeneous fracture strength field is not an appropriate

alternative for bulk models for certain problems. The mesh objectivity of the proposed

damage formulation is proven by a comparison between a fixed-mesh and h-adaptive refined

mesh results.
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In this work, similar to §3, we assumed an artificial statistics for corresponding random

variables in the statistical analysis. In future works, our group aims to use statistical volume

elements (SVEs) to homogenize random properties of brittle material at different length

scales. We will characterize fracture related parameters as random variables with load angle

dependence similar to [14].
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