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ABSTRACT

SynthNotes is a statistical natural language generation tool for the creation of realistic
medical text notes for use by researchers in clinical language processing. Currently,
advancements in medical analytics research face barriers due to patient privacy
concerns which limits the numbers of researchers who have access to valuable data.
Furthermore, privacy protections restrict the computing environments where data
can be processed. This often adds prohibitive costs to researchers. The generation
method described here provides domain-independent statistical methods for learning
to generate text by extracting and ranking templates from a training corpus. The
primary contribution in this work is automating the process of template selection and
generation of text through classic machine learning methods. SynthNotes removes the
need for human domain experts to construct templates, which can be time intensive
and expensive. Furthermore, by using machine learning methods, this approach leads
to greater realism and variability in the generated notes than could be achieved through
classical language generation methods.

iv



TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION 1
1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

CHAPTER 2: APPROACH 13
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 cTAKES Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Unified Medical Language System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.3 XML Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Template Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Note Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Template Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5.1 Frequency Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5.2 Ranking Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5.3 Ranking Evaluation Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6 Template Slot Filling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

CHAPTER 3: RESULTS 29
3.1 Preprocessing Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Text Generator Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 BLEU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.2 METEOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Generation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

CHAPTER 4: CONCLUSIONS AND FUTURE WORK 42
4.1 Discussion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

LIST OF REFERENCES 45

APPENDICES 51
A Note Generation Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

v



VITA 59

vi



LIST OF TABLES

Table 1-1. Example of aligned database records and text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 2-1. Silhouette coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 3-1. Individual and cumulative BLEU score examples. . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 3-2. Sentence and word count variation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

vii



LIST OF FIGURES

Figure 1-1. Classic NLG pipeline architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Figure 2-1. Natural language generation system architecture overview . . . . . . . . . . . . . 16
Figure 2-2. Preprocessing system diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 3-1. Snapshot of messaging rate to XML parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 3-2. Snapshot of messages to XML storage consumer. . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 3-3. Runtime performance of generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 3-5. Automated evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 4-1. Distribution of most 20 most frequent CUIs in the corpus. . . . . . . . . . . . . . . 43

viii



LIST OF ABBREVIATIONS

AMR Abstract meaning representation

BLEU Bilingual Evaluation Understudy Score

cTAKES clinical Text Analysis and Knowledge Extraction System

CID Cluster Identifier

CUI Concept Unique Identifier

HDFS Hadoop File System

HTML Hypertext Markup Language

ICD-10 International Classification of Diseases, 10th Revision

METEOR Method for Evaluation of Translation with Explicit ORdering

MIMIC Medical Information Mart for Intensive Care

LSTM Long short term memory

NER Named Entity Recognition

NLG Natural language generation

POS Part-of-Speech

RNN Recurrent neural network

TF-IDF Term frequency-inverse document frequency

UMLS Unified Medical Language System

VCPU Virtual central processing unit

XML Extensible Markup Language

ix



CHAPTER 1

INTRODUCTION

The software tool presented here, SynthNotes, aims to provide a generation tool
for medical text corpora which can be used by researchers studying clinical natural
language processing (NLP). Currently, computational methods for studying healthcare
data are largely restricted to structured electronic healthcare records which leaves a
wealth of untapped analytical potential locked in the clinical text of records. Progress
in clinical NLP is severely limited by the inherent risks of sharing sensitive medical
data containing personally identifiable information. In particular, the present crisis
of suicide rates [1] among veterans in the United States presents a pressing need for
greater research and understanding of clinical text in the mental health domain. The
work here seeks to directly address this barrier to progress by providing a tool for
developing research datasets free from privacy concerns.

Historically, institutions have made health data available after de-identification,
anonymization, and other techniques. However, these tasks suffer from several
limitations relevant to researchers attempting to build high-precision analytical models.
Moreover, although significant effort has gone towards releasing structured health
information, the availability of high-quality clinical text is sparse at best. This is even
more true of text in the mental health domain due to the increased risk of exposing
private information.

The lack of available textual mental health data and the surrounding privacy concerns
present an opportunity for advancing this area of research through synthetically
generated clinical notes. Realistic clinical notes offer a wealth of benefits to both
researchers and medical institutions.

Classic natural language generation (NLG) took the form of a three-stage pipeline:
document planning, microplanning, and sentence writing [2]. These systems usually
relied on a large set of complicated rules, developed by domain experts, who would
create document plans based on a knowledge base. These systems are commonly
seen today in financial and sports reporting publications. While useful in a highly
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constrained domain, they are costly to create and do not generalize well to other
domains. Instead, new systems and sets of rules must be created for each new domain
or writing task. This is equally true for sub-domains within the medical field which
often have their own text formats, styles, and sub-languages.

Recent developments in NLG have taken advantage of statistical and machine learning
approaches to reduce the fragility of classic NLG systems. Statistical systems are
cheaper to develop, robust in their adaptability to new domains, and given enough
data can provide a high degree of coverage of the language features in the corpus.
However, statistical systems tend to suffer from high error rates and low coherence in
the synthesized text. Thus, a combination of templates and statistical methods provides
benefits from both paradigms of NLG.

SynthNotes takes advantage of past research [3, 4] in such hybrid NLG systems. Rather
than solely relying on human experts or an automated learning agent, a hybrid system
utilizes an existing corpus of human generated documents and learns to write modified
templates. Hybrid systems like this offer the realism and precision of many domain
experts while also utilizing the scalability and variation of statistical systems.

Kondadadi (2013) demonstrated the success of a hybrid system as applied to the
weather and biography domain. Their work split documents into sentences, extracted
named entities, and replaced the entities with fillable slots to be later filled by a
document generator. Clustering is performed to group conceptually similar sentences
together. Once clustered, the system learns to choose or rank templates to write to new
documents. SynthNotes takes this approach and applies it to the medical domain.

The primary contribution of this thesis is a full hybrid NLG system capable of
processing a corpus of clinical text, extracting templates, and learning to write medical
notes without the involvement of human clinical practitioners. Language processing and
generation of clinical text presents new issues not typically encountered in other more
common domains. Many of those challenges are addressed in this thesis and a path
towards future progress is discussed.

1.1 Related Work

Natural language generation has been a key goal in computer science and artificial
intelligence research for decades. Among the most famous examples is the ELIZA [5]
chatbot developed at the MIT Artificial Intelligence lab in the 1960’s. Using only the
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simplest language processing tools, pattern matching, rules, and scripts, the ELIZA
program was able to interact with humans effectively enough that end users often
ascribed human-like feelings and emotions to the software agent. Over the following
decades, NLG applications have moved beyond simple chatbot programs and have
taken over human writing tasks such as sports, weather, and financial reporting,
translation, document summarization, and patient healthcare summaries.

In the late 1990’s Reiter and Dale [2] laid out a conceptual architecture for language
generation systems that could be used as an agreed upon starting point for building
NLG systems. In their work, the describe what has become known as a classic or
consensus architecture for NLG software. They frame the NLG process as a pipeline
of three fundamental tasks: document planning, micro-planning, and surface realization.
Each stage of the pipeline contains tasks that can be split as content tasks and structural
tasks [6]. These are further described below. An overview diagram of the pipeline
system is presented in Figure 1-1.

The classic NLG pipeline described by Reiter and Dale [2] relies heavily on research in
software data structures, knowledge bases, expert systems, and areas of linguistic study
such as grammars, discourse theory, and rhetorical structure theory.

Figure 1-1. Classic NLG pipeline architecture.
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The first stage of the pipeline, document planning, is responsible for determining
what information is most significant and should be conveyed to the user based on
the communication goal, document type, and a user model. The document planner
should make different choices based on the previous factors. For example, different
content determination paths would be taken for a document aiming to inform a domain
expert, such as a hospital physician reading patient summaries, versus a software
agent generating a pamphlet which seeks to persuade a patient to stop smoking.
The document planner is also responsible for organizing the structure of a generated
discourse.

The microplanner, the second pipeline stage, moves down one layer of abstraction
from the document planner and determines the words and syntactic structures,
lexicalization, that should be used for writing the content chosen by the previous
stage. The microplanner is often where operations are performed that contribute to
the naturalness and fluency of generated text. Specifically, the microplanner will
additionally perform aggregation and referring expression generation. Aggregation
is a structural task in which the program determines how the concepts and structures
from the document plan should be realized as linguistic elements [2]. That is, sentences
and paragraphs. It is often more fluent to a reader if multiple concepts or information
elements are grouped together into a sentence joined by a conjunction rather than in
multiple shorter sentences. Referring expression generation decides how previously
mentioned entities are referred to in the text. It is more fluent to refer to named entities
as ’she’ or ’it’ rather than always reiterating a specific name. Referring expressions
constitute a content task of the microplanner.

The final stage is the surface realizer which is responsible for generating the final text
form that is written to the generated document. The content task of the realizer,
linguistic realization, converts the abstract sentence representations from the
microplanner into real text [2]. This often involves grammar rules created for the
application domain or derived from other work. Structurally, the realizer converts the
abstract structural information from the previous stage and creates symbols which can
be parsed and understood by document presentation tools [2]. If we consider a
document written for a website in HTML rather than plain text, there is a clear syntax
for indicating different document structures such as section headers, paragraphs, and
tables. These would all be handled by the surface realizer.

4



The architecture as described by Reiter and Dale defines passing plans between each
stage of the pipeline as a tree data structure. For the document plan, internal leaf nodes
represent structural information and leaf nodes are messages. The idea underlying
messages in this paradigm is that any language generation domain can define entities
and relations which when taken together encode the domain’s particular concepts [2].

The encoded concepts are then mapped into linguistic forms in later pipeline stages.
So, messages are a way to map abstract domain concepts into final textual forms. In
some instances the messages are immediately apparent, for example in the medical
domain, where defined ontologies and knowledge bases exist.

The document planner passes the above described tree structure to the microplanner
which then passes another tree to the surface realizer. The microplanner output
represents internal nodes as structural information and leaf nodes as sentence
representations [2].

Several notable systems have been produced using the fundamental ideas laid out by
Reiter and Dale which are worth mentioning here. Goldberg, Driedger, Kittredge,
and Richards (1994) developed the FOG [7] system as a tool for automatically
generating multilingual weather reports based on a specific geographic location. In
FOG, numerical data from weather simulations is input into the system and a text
summary of the data is produced. Although FOG is not a tremendously exciting
system, it demonstrates useful content decisions based on regions and forecast type. For
example, when FOG is fed data in a marine area it will emphasize some data, such as
wind speed and precipitation, over other data that may be less useful. It is also able to
make choices on aggregating forecasts for related geographic regions when appropriate.
It is also able to take abstract representations from a microplanning stage and generate
reports in either French or English.

PIGLIT [8] is another system developed under the classic pipeline architecture
by Cawsey, Binstead, and Jones (1995) for the purpose of providing personalized
explanations of a patient’s medical record. The goal was to create a new type of
generated document that was more understandable and useful for patients than a
collection of lab notes and physician reports. Having a generation system such as
PIGLIT to perform such a task is highly beneficial as the medical community is
notoriously overwhelmed already when it comes to writing reports. A key feature
of PIGLIT’s content was hyperlinks embedded in the text which allowed patients to
further research their conditions, medications, and treatments. Underlying PIGLIT is a
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knowledge base curated by the application developers. This is similar to the UMLS [9]
or ICD10 [10] coding systems which are well known in the United States’ healthcare
environment.

STOP [11], developed by Reiter in 2000, generates personalized pamphlets to persuade
readers to stop smoking. Users of the system voluntarily take a questionnaire on
topics such as health problems, previous smoking cessation attempts, and their likes
and dislikes about smoking. Using this information, STOP creates text tailored to the
users background and user profile. For instance, in one example pamphlet, a user is
prompted to try nicotine patches again despite them not working the last time they
attempted to quit [2]. The unique aspect of the STOP system is the way it integrates
user knowledge, domain experts, effective writing techniques, and research on the
psychology of behavior change to create a persuasive and ideally useful document for
the reader.

A more recent example system with high relevance to SynthNotes is BT-Nurse [12]
developed by Hunter et al. (2011). BT-Nurse was developed to create shift summaries
in a hospital’s neonatal intensive care unit (NICU) based on electronic medical records.
BT-Nurse is an example of a system that takes in heterogeneous data and makes
choices as to which information is most relevant. It is even able to take physiological
measurements such as heart rate and express significant events in natural language. As
with previously mentioned systems, BT-Nurse relies heavily on a medical ontology and
rules developed in collaboration with neonatal experts.

It is clear from the above discussion of production systems using the consensus NLG
architecture that the approach and design is useful and has many benefits. Its modular
approach allows for a separation of concerns between each stage of the pipeline that
can be used to great effect for any given application. Developers, in collaboration with
domain experts, can exert fine-grained control in generating high quality texts. It is also
a well studied and understood design and each component performs individual tasks
with decades of existing research behind them. However, for clinical note generation of
the type SynthNotes is designed for, the pipeline approach is not a viable option.

There are serious concerns with the pipelined approach to NLG. First, it is not a
general system that can be applied across domains. While the architecture is domain
independent, the actual work that each module performs much be customized to match
the application. This presents a problem in constantly having to rewrite major sections
of the software for each new application despite each one performing similar functions.
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The messages abstraction presented in the discussion on document planners is a clear
example of this problem at work. Even if every other component of the system was
able to be reused, messages are inherently domain dependent as they capture the
concepts and relations contained within it. In a large domain, significant work is
involved just in constructing a set of reasonable messages. In a weather system like
FOG the list of possible messages is tightly constrained. However, for a system in the
medical field the count of messages could easily explode and completely overwhelm
the available human resources available to create them. Thus, despite being effective
text generating agents, pipeline systems are inherently rigid and constrained in their
coverage of language both inside and outside the domain area.

Second, as discussed in the example systems, pipeline applications rely heavily on
domain experts. For example, the document planner in any system relies heavily on
input from domain experts who are familiar with common practices and document
structuring in the targeted field. PIGLIT, FOG, BT-Nurse, and STOP all relied on
close collaboration between developers and domain experts. It is also clear that the
messages paradigm is both time consuming and heavily reliant on expert input in
the same way. In the case of FOG, numerical data fed into the program had to be
annotated by weather experts [2] and STOP made use of various experts in psychology
and behavior change [11] for planning and writing effective documents. PIGLIT also
required customizing a medical knowledge base [8] in order to provide information to
patients. Knowledge bases also present a unique challenge in that they are not available
for most domains. Furthermore, finding and hiring domain experts adds additional costs
in money and time to developing a production language generation system.

The previous two problems with the pipeline approach create challenges for using that
architecture in the SynthNotes application. SynthNotes had to be developed with cost
and time constraints and with minimal expert involvement. The four example systems
also have distinct and specific communication goals for their audience. SynthNotes
sits in a unique position as its goal is to reduce the barriers to research for medical
NLP practitioners. In a sense, SynthNotes attempts to provide a suitable discourse
for processing by other programs, parsers, information extractors, etc., rather than
information consumed by other human readers. Finally, the example systems are often
constrained even within their domains. The STOP system applies to quitting smoking
but does not attempt to create a general method for other areas that could benefit from
behavior change literature such as diet or exercise. BT-Nurse suffers from the same
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specialization as it was developed for a specific ward in a single hospital. SynthNotes
needs to cover the range of medical discourse encompassing numerous sub-domains
which would each require their own expert input which would further increase time and
cost.

These are known problems with the classic pipeline approach to NLG. As a result,
more recent research has moved to take advantage of machine learning and deep
learning methods as a way to generalize the task. We will first turn to past work
in machine learning before transitioning to the most recent work in deep learning
approaches.

The addition of machine learning methods to the task of natural language generation
offers many options in how developers and researchers approach the task. Some work
focuses on using statistical methods as a module in the previously discussed pipeline
architecture, while others have combined multiple stages into a single step or created
and entire end-to-end system.

Barzilay and Lee (2004) demonstrated how to create a domain-independent statistical
model for the task of content planning. Their approach modeled text documents as
a sequence of text spans or sentences, which are defined as “topics”, and learns the
likelihood of topic transitions throughout the document [13]. This assumed a singular
content model for each document which they define as a Hidden Markov Model. In
their HMM, the hidden states correspond to topics which are able to produce topic-
specific sentences. In order to define a topic, Barzilay and Lee cluster corpus sentences
according to the cosine similarity of the sentence bigrams [13]. Thus, rather than
relying on domain experts or input data, they create a document planner which is
adaptable to the training corpus.

Machine Learning in NLG often takes the form of data-to-text where structured
database records are paired with their corresponding output text. The most popular
examples in the NLG literature are those of weather forecasts and sports summaries.
These types of copora can be incredibly useful for training statistical models that learn
to generate text from data. For an example of aligning data and text see Table 1-1.

Liang et al. (2009) took advantage of aligned data-text corpora to create a system of
grounded language learning [14]. Grounded language learning refers to the process of
learning the meaning of a sentence based on an observed world state [14]. In the case
of an aligned corpus the world state would be the structured database records. Given
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Table 1-1. Example of database records with their aligned text. Adapted from Gatt (2018)

Record SkyCover Temperature

Field percent=0-25 time=6am-9am min=9 max=21
Text cloudy, with temperatures between 10 20 degrees [...]

the aligned data and text, Liang et al. created a generative model, p(w|s), which learns
the correspondence between a text, w, and a world state (set of database records), s.
Their generative model takes three steps. First, the model selects a sequence of records
from s. Then, it selects a sequence of fields from each chosen record. Finally, for each
chosen field a number c > 0 is selected and c words written to describe the field. The
final text w is the concatenation of all field descriptions generated in sequence. The
record and field choices are made by Markov models on the record and field types,
respectively. The word choice model is a probabilistic model conditioned on the field
type and field value. By using their generative model, Liang et al. created a single
probabilistic system that handles all three stages of the classic pipeline.

Extending and modifying the work of Liang et al. (2009), Konstas and Lapata (2013)
use the data-text alignment model from Liang, but rely on a Probabilistic Context-Free
Grammar (PCFG) for the text generation rather than a Markov model [15]. By using
a set of probabilistic rewrite rules, which when followed by the generation algorithm
creates a parse tree which can be traversed for generating text.

The probabilistic rules defined by Konstas and Lapata are meant to model transitions
from non-terminals (records and fields), to terminals (words) [15]. In their framework,
the rules are not domain dependent and should be able to describe any database
structure.

Kondadadi (2013) took a different approach than what has been discussed previously,
instead choosing to use templates, classification, and ranking for combining content
selection and text realization [3]. Kondadadi (2013) extends the work from Howald et
al. (2013) which presented domain specific clustering as a way to identify concepts [4],
or topics as was the case in Barzilay and Lee [13]. Howald’s approach to clustering
went a step beyond Barzilay and Lee who only used sentence bigrams and cosine
similarity for clustering. Howald (2013) and Kondadadi (2013) redefined sentences as a
combination of domain specific named entities and predicates. The redefined sentences
are then clustered to yield groups of semantically related sentences. Once the corpus
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sentences have been clustered into their concepts or topics, sentence templates are fed
into a ranking SVM which selects the best template given the current sentence position
in the generated document. In Kondadadi and Howald, sentence templates are original
sentences with the named entities removed. See Example 2.0.1 for example sentences
and their related templates.

Machine learning offers many advantages over the classic architecture to natural
language generation. It can consolidate multiple stages into a single model and offers
more generalization over that of the modular pipeline approach. Deep learning offers
methods that can expand further on machine learning research.

Deep learning and neural networks have risen and fallen from popularity multiple times
over the past decades. With respect to NLG, neural networks have been used as far
back as Kukich in 1987 where she lays out advantages of connectionist
architectures [16, 17], neural networks, over that of the messaging paradigm found in
Reiter and Dale’s architecture and demonstrates those advantages through two natural
language generation tasks. Many of the ideas laid out by Kukich are still relevant today
in NLG. In particular, Kukich notes the ability of neural networks to find semantic
representations of texts.

Over the intervening years interest in deep learning has fallen and risen again in large
part due to advances in hardware and processing capabilities of modern computing
systems [17, 18]. When it comes to natural language processing, deep learning has
made hugely influential advances in research, especially with regards to representation.
Mikilov et al. (2013) demonstrated the ability of a neural network to learn dense, low-
dimensional, and distributed representations for phrases [19]. In this process, words
are converted into a vector representation which places similar words close together in
a vector space [19]. This work laid the ground work for deep learning researchers to
make use of abstracted knowledge and meaning representations which also captured
semantic and grammatical information of text spans in a training corpus. Mikolov’s
algorithm, commonly known as word2vec, is far more valuable than the standard
language models of the past which relied primarily on n-grams.

Directly applicable to NLG is Sutskever et al. (2011) who presented work on using
a more advanced neural network architecture, LSTMs, to create a character-level
model for generating sentences based on training corpora from Wikipedia, New
York Times, and academic machine learning papers [20]. LSTMs, Long Short Term
Memory, are a variant of RNNs, Recurrent Neural Networks. Each model is able to
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learn representations of long-range sequential information. In this case, sequences of
text tokens. As implied by the name, LSTMs add ’memory’ units to an RNN which
are able to store information over long sequences of data [20]. Sutskever et al. is
an example of using deep learning for surface realization but it can also be used to
generate text based on semantic representations of inputs [17].

One problem with standard feed-forward neural networks is that they are unable to
efficiently handle input modeled as a sequential data of unknown length. Machine
translation is an excellent example where the input and output can vary depending on
the sentence. Sutskever et al. (2014) proposed a solution using a pair of RNNs whose
functionality is split [21]. One RNN serves as an encoder which transforms a sequence
of input data into a vector representation. The resulting encoding can then be fed to
the decoder RNN which predicts an output sequence based on the encoded input data.
Sutskever et al. (2014) demonstrated the effectiveness of this architecture by applying it
to an English to French translation task.

Using a similar encoder-decoder architecture as Sutskever et al. (2014), Castro
Ferreira et al. (2017) apply the architecture to language generation using abstract
meaning representations (AMRs) [22] mapped to English output text [23]. Abstract
meaning representations were designed to provide structured semantic meanings of
sentences in order to aid the progress of research in natural language understanding and
generation [22]. They are valuable for researchers in that they abstract out the syntax of
a sentence so that sentences which have similar meaning should have the same AMR.
AMRs are also traversable as a graph which makes them reasonably easy to read by
software programs. For an example of an AMR and its possible text representations see
Example 1.0.1.

An attention mechanism was also added to the network by Castro Ferreira et al. (2017).
Attention mechanisms in neural networks such as RNNs and LSTMs allow the network
to give weighted importance to specific input fields when predicting certain segments
of the output [17, 24]. As an example, consider Example 1.0.1. When the network is
predicting the verb in the sentence “The boy doesn’t have to go”, it should assign a
high weight to the verb “obligate” as well as the polarity field in order to negate the
obligation of the boy in the sentence. Such an attention mechanism removes the need
for explicit alignment that was discussed in previous work by Liang et al. (2009).
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(p / obligate-01
:arg2 (g / go-01

:arg0 (b / boy))
:polarity -)

The boy doesn’t have to go.
The boy isn’t obligated to go.

The boy need not go.

Example 1.0.1. An AMR example and its related text realizations. Notice that from a
single AMR multiple realizations are possible that capture the same semantic meaning.
Example adapted from Banarescu et al. (2013).

Machine learning and deep learning approaches offer significant advantages over the
pipeline architecture. The methods are more general and can be created with greater
efficiency in both time and cost. However, in general they both trade accuracy for
efficiency. Whereas pipelined architectures are heavily controlled through rules and
grammars created with domain experts, machine learning (ML) and deep learning
(DL) methods attempt to learn from data. In order to do so, these algorithms tend to be
extremely data hungry. This is especially the case with deep learning algorithms. This
presents a challenge in NLG systems for medicine. Training data is hard to acquire
due to concerns surrounding patient privacy, and when it is available the datasets are
generally quite small.
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CHAPTER 2

APPROACH

2.1 Overview

The general strategy for note generation in this thesis seeks to strike a balance
between classic fully human created systems and newer fully automatic deep learning
approaches to language generation. NLG systems created by human domain experts are
expensive to create in terms of cost and time. Moreover, it is difficult or impossible
for such systems to capture the full breadth of variability found in some domains,
the medical field being one of them. On the other hand, fully automated learning
agents tend to have a high level of error and struggle to capture long term language
dependencies, logic, and the requisite knowledge base necessary for coherent and
realistic text generation. The method described here fits between the two extremes.
This research uses statistical techniques to learn what to say and when, but relies on
the wealth of high quality human generated notes to figure out how.

At the highest level, SynthNotes extracts semantic templates [3, 4] using existing
medical NLP software and learns to rank the best template to use based on available
information and sentence position at generation time. Below are some useful definitions
for understanding SynthNotes:

• Semantic Templates: A simplified version of a sentence from the original note
text. All tokens are stripped away except for: medical concepts identified by
cTAKES and extracted predicates.

• Templates: Original sentence from a note with fillable slots in place of the
original extracted medical concept text. Slots are filled at generation time.

• Conceptual cluster: Clusters of semantic templates. Each cluster should have
semantic templates assigned to it which all convey a similar semantic concept.

The first step in SynthNotes for learning to generate clinical notes begins with
processing notes from the MIMIC-III database [25] through Apache cTAKES [26].
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cTAKES is an NLP framework commonly used by medical researchers for standard
language processing tasks in addition to medical information extraction. cTAKES is
primarily used to extract sentences, tokens, predicates, and medical concepts, which
are used to replace the named entities in Kondadadi (2013). The information extracted
from cTAKES is the cornerstone for creating templates, used in generating notes, and
semantic templates, used for assigning an abstract concept to a sentence.

Using the information extracted from the clinical notes, semantic templates are formed.
A semantic template is simply the predicates and named entities from the original
note sentence with all other tokens removed. It is then necessary to group semantic
templates together that convey similar conceptual meanings. Here, the k-means [27]
clustering algorithm is used. In addition to creating semantic templates, standard
sentence templates are formed for use during note generation. A regular template is
a sentence with the medical concepts, or named entities, removed and replaced with
a slot to be filled with other medical entities by the generator. Examples of original
sentences with their corresponding template types can be found in Example 2.0.1.
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Sentence
a. RLL atelectasis and labs were drawn.
b. MRI spine showed a mass in the T10 region.

Conceptual Meaning
c. ANATOMICALSITE | SIGNSYMPTOM | DRAW
d. PROCEDURE | SHOW

Templates
e. [ anatomicalsite ] [ signsymptom ] and labs were drawn.
f. [ procedure] spine showed a mass in the T10 region.

Example 2.0.1. Example sentences with their templates. Notice that predicates are
used when creating conceptual templates in (c) and (d). These are used for clustering
sentences. However, predicates are not reserved slots in templates for generation time
as shown in (e) and (f). Diagram adapted from Kondadadi et al. (2013).

The core work of the generator in SynthNotes is the learned ranking model. Ranking
is a well studied task in other areas of machine learning, especially those related to
the relevance of documents or web pages in search engines. In this case, rather than
ranking documents based on relevance, the task is to find the most relevant template
at a given sentence position during note generation. Following template extraction
and clustering, numerous features are created based on corpus statistics and fed into
a ranking algorithm. SynthNotes uses the LambdaMart [28] algorithm developed by
Microsoft researchers. Following training, all templates in all clusters are ranked and
note generation can proceed.

Documents, or clinical notes, are generated sentence by sentence. At each step, or
sentence position, a template is chosen from the above model, its empty slots filled
with medical concepts, and it is written to a new document. In addition to the ranking
model, two other methods are implemented to serve as a comparison. First is a random
template selection model which chooses a template at random from the entire pool of
extracted templates. This is done without regard for sentence position or clustering
and should be seen as a baseline. Second is a frequency selection model. Frequency
selection is a simple two step process. It first performs a random weighted selection
of a cluster label from which to choose a template based on the frequency with which
cluster labels are observed at each sentence position. Next, a template is chosen at
random and it is written to the document. This is a small step above the random model
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in that it is performing a rough selection based on conceptual meaning. A high level
view of this software system can be found in Figure 2-1.

Figure 2-1. Natural language generation system architecture
overview. Diagram adapted from Kondadadi et al. (2013)

2.2 Preprocessing

In order to perform the core work of generating clinical text, linguistic features must
be extracted from the training corpus and processed so that they are usable for later
parts of the system. The tool used for feature extraction is Apache cTAKES. The
key features extracted using cTAKES are sentences, tokens, predicates, and medical
concepts taken from the Unified Medical Language System (UMLS) [9].

The most common and easiest output format to use from cTAKES without additional
development work on the cTAKES framework is XML. As such, a cTAKES XML
parser was developed as part of this work which is able to process XML files, extract
the necessary features, and store them in parquet files on a distributed file system. The
cTAKES and XML components are discussed below.
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2.2.1 cTAKES Processing

Apache cTAKES [26] is a natural language processing and information extraction
framework developed by the Mayo clinic and commonly used by researchers in the
clinical domain. cTAKES uses discrete modules linked together in a processing pipeline
to accomplish its varied tasks. It is capable of many common NLP tasks available in
other language processing software, such as sentence detection, tokenizing, dependency
parsing, and part-of-speech tagging, in addition to tasks specific to processing medical
free text. Medically specific tasks include medical concept extraction, smoker status
detection, and drug information extraction.

This work uses cTAKES for sentence detection, tokenization, semantic role labeling,
and medical concept extraction. Of particular interest is concept extraction which is
used instead of standard NLP named entity recognition (NER).

While cTAKES is a useful tool for processing free text, it is constrained by its
performance. So, in order to process MIMIC-III notes in a reasonable time, it was
necessary to spread the computation across multiple nodes.

The automated deployment tool, Ansible [29], was used for installing and configuring
multiple virtual machines in parallel. Virtual machines were hosted in an
OpenStack [30] deployment in the ORNL CADES environment. OpenStack is an
open-source software platform providing infrastructure-as-a-service (IaaS) tools for
cloud computing. CADES is the shared cloud computing resources hosted at ORNL.

Once cTAKES nodes were configured, MIMIC notes were deployed to a centralized
storage node. A Python script was used to split the files equally across multiple
directories named by the destination machine IP address where they would be
processed. An rsync module in Ansible was used to copy directories from the storage
machine to a data directory on each of the cTAKES nodes. A final Ansible playbook
was used to run cTAKES on each machine.

cTAKES outputs a single XML file for each processed note which contains all the
parsed and extracted information to be used for training a note generator. Upon
finishing the cTAKES processing, the output files in the data directories were copied to
an HDFS [31] cluster so that the XML files could have the relevant features extracted
and stored. For a reference of several XML element types output by cTAKES see
Example 2.0.2.
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< t e x t s p a n : S e n t e n c e x m i : i d =" 25 " s o f a =" 1 " b e g i n =" 0 " end=" 6 "
sen tenceNumber =" 0 " / >

<syntax :WordToken x m i : i d =" 970 " s o f a =" 1 " b e g i n =" 150 " end=" 158 "
tokenNumber=" 35 " p a r t O f S p e e c h ="NN" c a p i t a l i z a t i o n =" 0 "
n u m P o s i t i o n =" 0 " c a n o n i c a l F o r m =" f a c i l i t y " / >

< t e x t s e m : M e d i c a t i o n M e n t i o n x m i : i d =" 7820 " s o f a =" 1 " b e g i n =" 850 "
end=" 853 " i d =" 0 " o n t o l o g y C o n c e p t A r r =" 7796 7806 " typeID =" 1 "
d i s c o v e r y T e c h n i q u e =" 1 " c o n f i d e n c e =" 0 . 0 " p o l a r i t y =" 1 "
u n c e r t a i n t y =" 0 " c o n d i t i o n a l =" f a l s e " g e n e r i c =" f a l s e "
s u b j e c t =" p a t i e n t " h i s t o r y O f =" 0 " / >

< t e x t s e m : P r o c e d u r e M e n t i o n x m i : i d =" 10704 " s o f a =" 1 " b e g i n =" 221 "
end=" 231 " i d =" 0 " o n t o l o g y C o n c e p t A r r =" 10691 " typeID =" 5 "
d i s c o v e r y T e c h n i q u e =" 1 " c o n f i d e n c e =" 0 . 0 " p o l a r i t y =" 1 "
u n c e r t a i n t y =" 0 " c o n d i t i o n a l =" f a l s e " g e n e r i c =" f a l s e "
s u b j e c t =" p a t i e n t " h i s t o r y O f =" 0 " / >

< re f sem:UmlsConcep t x m i : i d =" 10866 " codingScheme="SNOMEDCT_US"
code=" 89187006 " s c o r e =" 0 . 0 " d i s a m b i g u a t e d =" f a l s e "
c u i =" C0458827 " t u i =" T023 " p r e f e r r e d T e x t =" Airway s t r u c t u r e " / >

Example 2.0.2. Sample of cTAKES XML output parsed by the XML parser. Generally,
each element type contains unique attributes that must be extracted. There is some
overlap across elements such as xmi:id. Others can be grouped together as types. In this
example, Medication and Procedure mentions are both of type textsem. Several irrelevant
fields were excluded in this work such as confidence, polarity, uncertainty, and generic.

2.2.2 Unified Medical Language System

cTAKES identifies five broad categories of named entities: diseases/disorders,
signs/symptoms, anatomical sites, procedures, and medications. In addition to the broad
category classification, entities contain a wealth of information about the specific
medical concept they are identified as. This information comes from the Unified
Medical Language System (UMLS) [9]. UMLS is a set of knowledge sources and
dictionaries containing a Metathesaurus, semantic network, and specialist lexicon. The
largest component is the Metathesaurus which is a large knowledge source of medical
terms and concepts. The Metethesaurus also links concepts and terms between dozens
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of other medical terminology dictionaries. Each term is identified by its Concept
Unique Identifier (CUI). The CUI allows for greater specificity beyond just the broad
entities classes that cTAKES identifies. In addition to greater specificity, the
Metathesaurus provides recommended text for each term which allows for text
normalization if required.

The medical concepts from UMLS are used in SynthNotes to stand in for the standard
named entity categories found in other language processing software frameworks.
Those frameworks are trained on corpora such as news articles and web pages and
perform poorly on clinical text.

2.2.3 XML Processing

XML is not an ideal data storage format. It is unnecessarily large and difficult and
time consuming to parse if a parser does not already exist. However, it is the default
cTAKES output format. There exist community developed modules for cTAKES
to store directly to a distributed file system like HDFS, but these projects are not
actively developed and have not been updated in approximately five years. Developing
and maintaining cTAKES modules was beyond the scope of this work. Instead, a
simple XML processing library was developed for extracting and storing the parsed
information from cTAKES in HDFS.

Extracting information from XML files first requires creating a parse tree from the
XML text. SynthNotes generates a parse tree using lxml [32]. lxml is a python wrapper
around the C library libxml2. It is fast, easy to use, and thread-safe as it frees Python’s
GIL. This makes it an attractive library for future use when conducting performance
optimizations.

In order to distribute the work of parsing files across multiple nodes a messaging
queue, RabbitMQ [33], was used. RabbitMQ was chosen for its low latency,
documentation, and an easy to use Python library which kept development fast and
simple.

The scale of notes being processed only required a single RabbitMQ process to feed
tasks to worker processes. There are multiple producer and consumers in this system,
each performing a relatively simple and discrete task. To begin, a filename producer
submits filenames from the XML data directory stored in HDFS. A parser consumer
reads a filename from the filename queue, extracts the file’s contents, and parses the
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XML into a standard Python dictionary. The dictionary is serialized and sent back to
another queue to be processed by an HDFS writer. The final consumer in the system
takes the serialized dictionary, deserializes it, and buffers it for future storage. Once
a configured number of messages have been buffered, the writer performs a bulk
write into parquet files stored on HDFS. Storing data in parquet files offers two main
benefits. It is efficiently compressed which reduces storage significantly. Compression
rates of approximately 50% were observed during this work. Parquet is also a
widely used storage format for various data analysis libraries in multiple languages.
SynthNotes uses Pandas, but it could have been another processing framework such as
Apache Spark.

Although using RabbitMQ and task queues adds some complexity to the system, it has
other benefits. First of all, XML files and the parsed output resides in distributed and
replicated storage: HDFS. As a result, producers and consumers can read and write to
a central location without coordinating with each other. In order to do so with cTAKES
parsing, extra steps were required for partitioning the data and running with Ansible
playbooks. Also, using a task queue like RabbitMQ allows the system to scale to much
larger datasets as needed with relatively simple software. For a graphic depiction of the
preprocessing system see Figure 2-2.

2.3 Template Clustering

Before training the ranking model for template selection, semantic templates are
clustered in order to create groups of conceptually related sentences and templates.
From a high level this means extracting the entity types and predicate tokens from the
cTAKES output and joining the tokens together into a single space-separated string.
The idea of taking semantic or conceptual representations is based off the work done
by Barzilay and Lee (2004) which was further extended by Howald et al. (2013) and
Kondadadi et. al (2013). Barzilay and Lee viewed documents as a sequence of topic
shifts whose transition probabilities could be learned. They model sentence concepts
by the bi-grams contained in the sentence. Howald and Kondadadi created conceptual
templates of sentences based off the predicates and domain specific entities present.
Barzilay, Howald, and Kondadadi created domain specific clusters of sentences based
on their conceptual meanings which could then be used during generation as a form of
content selection. Although the clusters themselves are domain-specific, the method is
independent of any domain, provided entities can be extracted from a training corpus.
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Figure 2-2. High level overview of the preprocessing system which extracts information
from the XML files output by cTAKES. MIMIC notes are distributed among the cTAKES

worker nodes which process them and send the XML output to an HDFS cluster.
XML processing nodes read all the XML files and send the contents to other worker

processes which extract the information and store the extracted data back in HDFS as
a parquet dataset. The parquet dataset is later used by the language generation system.

SynthNotes follows the same course as these past researchers and applies the method to
the clinical domain.

When the set of semantic templates is extracted from the corpus, they are processed
using a term frequency-inverse document frequency (TF-IDF) vectorizer in which
each template string is treated as a document. The vectors are then clustered using
the k-means clustering algorithm [27]. Once clustered, templates are labeled with their
cluster ID (CID) and are taken to represent a group of sentences that convey similar
conceptual meanings. Sentences that do not contain an entity are removed from the
set of templates to be clustered as there are no entities to be replaced in the template
at generation time. Sentences without entities contain no medically relevant semantic
information that could be parsed.

21



In the original work [3] on which SynthNotes is based, the authors chose a number of
clusters equal to the number of entities in the domain. However, because SynthNotes
uses cTAKES for entity recognition, the number of entities is limited to the five broad
semantic types discussed previously. On the other hand, UMLS Concept Unique
Identifiers (CUIs) are also output by cTAKES, but the number of CUIs is in the
thousands, which is far too many clusters. Moreover, CUIs represent a hierarchy of
concepts, so the degree of generalization or specificity is highly varied.

There are several methods commonly used for analyzing clusters. For this work the
Silhouette Coefficient [34] was chosen. The Silhouette Coefficient is a metric that
can be used to identify how distinct, or well separated, clusters are. Values of the
coefficient are between -1 and +1. A coefficient closer to +1 would indicate that the
proper number of clusters has been chosen and that each group is a distinct semantic
concept. Values towards -1 indicate improperly grouped elements, and values near 0
mean clusters are overlapping. A cluster count of approximate 120-125 gave the best
Silhouette Coefficient. See Table 2-1 for these results.

Table 2-1. Silhouette coefficients computed from clustering templates.
Based on these numbers a cluster count of 120 was selected.

Number of clusters Silhouette coefficient

70 0.520
80 0.520
90 0.520

100 0.541
110 0.541
120 0.551
125 0.553
130 0.550

2.4 Note Generation

Note generation begins by selecting a document and its accompanying entities from the
original corpus. The entities from the document stand in for a database and provide the
set of medical concepts to be included in a generated note.

Template selection can be performed in three ways. The first and simplest is a simple
random template selector which takes a random sample from the remaining template
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bank. The second method is a weighted sampling based on the frequency of cluster
labels at each sentence position. Finally, templates could be selected based on a ranking
model. Multiple methods for template selection were defined in order to make a more
thorough evaluation of the ranking model’s performance.

Templates from the template bank that contain entities not present in the document are
removed so that templates are not written with blank spaces at generation time. That
is, this approach avoids a final generated document with unfilled slots. Templates with
entities not present in the document are removed from the candidate pool of templates
regardless of the template selection method used.

The random and frequency generators both continue with selecting and writing
templates until there are either no more entities left to write about or no valid templates
that could be used. The previous two stopping conditions are present in the ranking
generator as well. However, the ranking model will not generate more sentences than
the max number observed in the corpus. This is done because beyond the maximum
sentence number there are no features or training examples.

The next section discusses the various selection methods more in depth and is followed
by a brief discussion of how template slots are filled during generation.

2.5 Template Selection

2.5.1 Frequency Selection

Following the clustering phase, a frequency table is created of cluster labels by
sentence position across all documents. A weighted sampling is performed on the
frequency table to choose a cluster for each position. A template is chosen at random
from the selected cluster. Finally, templates have their empty slots filled with entities
from the document. When an entity is used to fill a template slot it is removed from
the document’s list of entities.

Sampling clusters based on their frequency at a given position is a minor step above
random sampling. The idea is that some concepts or topics occur more often at
certain positions. The weighted sampling should give greater weight to concepts that
occur often at a position which is a slightly better baseline generation procedure than
purely random selection. It is slightly similar to the topic shift modeling performed

23



by Barzilay and Lapata (2004). However, this frequency selector does not consider
transition probabilities as their work did, but the intuition is similar.

2.5.2 Ranking Model

In order to make smarter template selections at each document position during
generation, SynthNotes uses a ranking model. Ranking models have been used often
throughout computer science and machine learning, particularly in document-relevance
ranking in search engines. In this work, the LambdaMART model [28] was used.

The task of a ranking model can be reduced down to a two class classification problem
which aims to sort pairs of items in a set. Given a search query and two documents,
di and dj , the model aims to correctly classify the documents as either di > dj or
di < dj . If di > dj then di should appear higher in the list of search results presented
to the user. In SynthNotes, a ranking model is used to perform pairwise comparisons of
template strings in order to sort based on their relevance for a given sentence position
in a document during generation.

LambdaMART borrows key features of two other ranking models used in information
retrieval by the same research group. The first model learns probabilities that a URL,
Ui, should be ranked higher than URL Uj for a given query by using a sigmoid
probability function. This model is known as LambdaRank [35]. LambdaRank’s
key insight is the aggregation of cost gradients for all URL pairs in which a given
URL occurs. It essentially sums the “forces” gradients applied to a URL in order to
determine how far up or down the relevance list a result should occur. The movement
higher or lower in the list is the sum of the forces applied to it. The boosted decision
tree comes from another model, MART, which is an implementation of the gradient
boosting methods described in Friedman 2001 [36]. MART works by progressively
constructing regression trees, or estimators, and assigning weights to each tree’s output
in order to obtain a final prediction score.

LambdaMART is the combination of the two models. It uses the aggregating cost
gradient from LambdaRank when computing costs for each decision tree node split.
This means that the cost is the aggregation of the gradients and not just a single URL
pair or mini-batch of pairs which is common in gradient descent models. As a result,
the LambdaMART model could end up decreasing the performance of a particular
query, while still increasing the overall performance of the model.
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The LambdaMART model was run using an open source software tool, Python
Learning to Rank Toolkit [37], which contains an implementation of the original model.
The ranking toolkit was initially designed for the specific task of document-relevance
ranking. As such, some modifications had to be made in order to match the input the
model expects. In search relevance, documents and their relevancy scored are paired
to a unique query ID. This is hopefully obvious and intuitive as a document or URL
set can only be ranked according to a particular user query. However, there are no user
queries in this language generation task. So, SynthNotes creates a query ID that is the
concatenation of the original sentence ID, document ID, and the sentence’s position in
the document. Candidate templates which will have their ranks learned by the model
are then associated with that “query ID”.

Rather than ranking all templates for every position in each document, a small subset
of all templates is created for each query in order to reduce processing time. Going off
of Kondadadi et al. (2013), the ten templates with the shortest edit distance from the
original template are selected for each position. The distance metric used by Kondadadi
and SynthNotes is the normalized Levenshtein distance [38]. Briefly, Levenshtein
distance is a commonly used string distance measure which calculates the number of
edits required in order to convert one word into another. There are three edits allowed:
insertion, deletion, and substitution. Naturally, the fewer edits required the “closer” two
words are to each other. In the standard calculation, each edit operation has a cost of
1. Clearly, shorter or longer words will be biased to lower or higher scores under this
scheme. Normalization divides the number of edit operations by the number of tokens
in the sentence to remove the length bias. This edit distance is used as a relevancy
score for training.

Once each position in every document has ten associated templates and corresponding
query ID, additional features are gathered for input to the ranking model.

Each feature is meant to provide information about the template compared to the
training corpus in order to make smarter selection choices during generation. A key
factor in seven of the features relates to template values compared to the most common
or likely value at a particular position. While ranking algorithms are able to leverage
user preferences or labeled data, this method of ranking has very little ground truth data
available outside of the corpus. As a result, positional information is highly important.
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Input features into LambdaMART were adapted from Kondadadi et al. (2013). All
features were able to be adapted for use in SynthNotes with the exception of average
number of entities [3]. The full list of features used in SynthNotes is presented below:

1. CID given position: A binary feature indicating whether the current CID is either
the same as the most frequent CID for the position (1) or not (0).

2. Overlap of named entities: Number of common entities between current CID
and most likely CID for the position.

3. Prior template: Probability of the sequence of templates selected at the previous
position and the current template (iterated for the last three positions).

4. Prior CID: Probability of the sequence of the CID selected at the previous
position and the current CID (iterated for the last three positions).

5. Difference in number of words: Absolute difference between number of words
for current template and average number of words for the CID.

6. Difference in number of words given position: Absolute difference between
number of words for current template and average number of words for CID at
given position.

7. Difference in number of named entities: Absolute difference between the
number of named entities in the current template and the average number of
named entities for the current position.

8. Similarity between the most likely template in CID and current template: Edit
distance between the current template and the most likely template for the current
CID.

9. Similarity between the most likely template in CID given position and current
template: Edit distance between the current template and the most likely
template for the current CID at the current position.

10. Percentage of unused data: This feature represents the portion of the unused
input so far.

11. Average number of words used: Ratio of number of words in the generated text
so far to the average number of words.
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Kondadadi took the ratio of entities in the generated text up to the most recently
generated position to the average number of entities in a document for the corpus.
In the work of Kondadadi, this was a sensible choice as part of their document
planning involved making choices as to when to repeat a named entity versus creating a
referring expression for fluency. However, in SynthNotes, named entities are actually
medical concepts and the program attempts to write every concept as long as there
are available templates with the appropriate combinations of slots. Recall that as each
new sentence position is, generated the available template pool is reduced to contain
only those templates which have the same type and number of entities remaining to be
written about from the original document. When an entity is written to a template in
SynthNotes it is removed from the list whereas Kondadadi makes a separate decision
regarding when to remove an entity.

A few other features are also worth explaining for clarity. Prior template and cluster ID
(CID), features (3) and (4), are both treated as n-grams. Documents were rewritten as
sequences of template and cluster labels, and trigrams were computed using NLTK.
During training, the previous two template IDs or cluster labels are based off the
original document sequence. At generation time they are based off the two previously
written labels. A <start> label was added so that the first and second sentence
positions would still have valid trigrams associated with them.

Similar to the previous two features, the percentage of unused data and average number
of words used, features (12) and (13), also have different values depending on whether
they are computed for training or generation. During training they are computed based
on the original document. During generation they are based on statistics about the
generated document up to that sentence position.

When calculating the overlap of entities in feature (2), UMLS CUIs are used rather
than the entity classes output by cTAKES. This is because the entity classes are
extremely broad, whereas CUIs offer more specificity in medical concept identification.

Finally, the edit distances used for features (8) and (9) are the normalized Levenshtein
distance [38]. This is the same distance metric discussed above which was used for
calculating relevancy scores.
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2.5.3 Ranking Evaluation Metric

The LambdaMART model was trained to optimize Kendall’s Tau[39] which is a
statistic for measuring the ordinal association between two measurements. It is
commonly used in ranking and relevance metrics for information retrieval applications.
It is computed by examining the ratio of the difference in concordant and discordant
pairs to the total set of pairs. A concordant pair is one that is sorted correctly, and a
discordant one is sorted incorrectly. Values for Kendall’s Tau are in the same range
as the general coefficient score used in statistics, -1.0 to +1.0, where a -1 indicates
perfectly negative correlation, +1 perfectly positive correlation, and 0.0 indicates the
variables are perfectly independent of each other. By training the model to optimize
for Kendall’s Tau the model should learn to predict the proper ordering of sentence
templates during generation. If done well, it is expected that the resulting generated
documents will be well ordered coherent synthetic clinical notes.

2.6 Template Slot Filling

Because each entity in the document has a UMLS CUI code, the exact text to fill in
the slot is chosen by sampling from all the observed text that has been labeled by
the entity’s CUI. This enables higher variability than just using UMLS preferred text
and captures the common linguistic style of the clinical practitioners. This process
continues until there are no more entities left to write about from the document.

Although filling a single slot in a template is rather simple, it is more complicated
to determine which entity should be chosen for a given template slot. Currently,
SynthNotes selects entities at random from the pool of available entities remaining to
be written to the generated document. As will be discussed later, this simple approach
to template filling has negative consequences upon the quality of generated notes.
Additional work should be done to improve this process.
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CHAPTER 3

RESULTS

This chapter presents observed results from SynthNotes in three areas: runtime
performance of preprocessing and note generation, automated metrics for evaluating the
quality of generated documents, and an examination of a sample generated document.

Preprocessing performance is addressed first. This is an important component of the
system as it significantly impacts the scalability of SynthNotes. A key goal of this work
is to provide a tool that can generate data at the level of a national population. For the
same reasons note generation performance is equally critical to understand. Limitations
of SynthNotes scalability is discussed in addition to future work that can improve its
performance significantly.

A discussion of generated text quality is also presented. Using two commonly used
automated metrics, results of each generation model’s output are compared and
discussed. Finally, using a sample generated note from each model, a qualitative
comparison is presented for each of the models in order to highlight differences in finer
detail than can be observed from automated quantitative metrics.

3.1 Preprocessing Performance

Two queues were used to distribute tasks among the workers in the XML processing
system. The first queue is fed by a single short-lived worker process that reads
filenames from HDFS and publishes them. Another set of workers,the parsers, consume
the filename messages, read and parse the files, and publish a serialized string of results
to a second queue. The final group of workers, consumers, deserialize the message
published by the producers, and write the results back to HDFS.

Shown below in Figures 3-1 and 3-2 are snapshots of the performance of each set
of workers. The yellow lines in Figures 3-1 and 3-2 are the rate which a producer
publishes messages to the queue. Green lines are the acknowledgment rates of the
queue consumers. For instance, when the parsers have finished parsing a XML file
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from the queue they send back an acknowledgment message which lets RabbitMQ
know that the message was received and the work completed. Otherwise, the message
is assumed dropped and will be re-queued.

Figure 3-1. Snapshot of messaging rate to XML parser. The message rate is in yellow
and message acknowledgement rate in green. With small message sizes RabbitMQ
is able to scale up to thousands of messages per second before running out of data.

Given a larger dataset one would expect message rates to continue increasing.

As expected, the fastest message rates come from emitting filenames to the initial
queue for reading by the parsers. With small messages and low file system latency, that
producer is able to generate a rapid stream of data for processing. The acknowledgment
rate is significantly different by the parsers which is depicted by the green line at
the bottom of Figure 3-1. Parsers incur significant latency costs from reading large
XML files off of HDFS. It is easier to see the performance of the parser and the final
consumer in Figure 3-2. In this snapshot the message and acknowledge rates are much
more closely aligned and fluctuate similarly. This indicates that the rate of tasks sent to
the queue is comparable to that rate at which the tasks can be performed.

This is an important characteristic as it maximizes the utilization of consumer processes
and also prevents message build up in the queue which could overwhelm the system’s
memory resources. In the case of the first queue of filenames that the parsers read, that
queue rapidly fills up as the parsers are unable to keep up with the rate of messages.
The messages in that queue are short file path strings and do not cause significant
memory usage. However, memory is a consideration when parsers submit the serialized
objects that will be written to HDFS. Those are much larger messages that on a
large enough dataset could overwhelm the system if there are not enough RabbitMQ

30



nodes running. But here we see that the rate of work by parsers and consumers is
approximately equal which keeps the queue size low.

Figure 3-2. Snapshot of the message processing rate by the worker
writing parquet data to the HDFS cluster. There is clearly a significant

drop in processing rate compared to the messaging rate in Figure 3-1. The
worker processes in this snapshot have significant latencies to deal with.

3.2 Text Generator Performance

Although SynthNotes produces reasonable medical notes, it lacks the runtime
performance to sufficiently scale to datasets that could represent a state or national
population. Currently, all three generator methods incur significant runtime costs for
generating a single note. Figure 3-3 shows the time taken for each method to generate
98 synthetic documents. It took approximately 56 and 61 minutes, respectively, for the
random and frequency template selection methods, while the ranking model took 175
minutes. This is an unreasonable amount of time for document generation.

SynthNotes suffers from a lack of parallelism at the architectural level as well as the
operational level. Improvements in both of these areas would lead to significant time
reductions.

Architecturally, SynthNotes processes tasks sequentially after XML processing.
There are essentially three stages: preprocessing, clustering, and note generation. Of
course, between clustering and note generation the ranking model must be trained,
but that is not a significant bottleneck. In the preprocessing stage parquet datasets,
containing information extracted from cTAKES XML files, are read into Pandas [40]
for processing. Sequentially, tasks are performed on various data frames including:
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Figure 3-3. Comparison of the runtime performance of the three generators. The
left column and axis is the total runtime to generate 98 notes. The right column

and axis is the average minutes per iteration. All generators were run on the same
document set. Unsurprisingly, the ranking generator has the lowest performance.

tokens, sentences, predicates, UMLS concepts, and medical entities. However, many
tasks could be performed individually because they have no dependency on another
table or its processing. Or, to process a downstream task on a data frame may require
that another data frame has been processed up to a point. For example, when preparing
the sentences dataset, one of the first tasks is to remove sentences that do not contain
medical entities. When this is completed, there are many documents with sentences
removed which leaves gaps in the sentence numbering. Sentences are grouped by
document and then re-labeled with the new position information. Other steps occur
on the sentences data frame before other tables are processed. However, other tables
also use the sentence position information, but there is no need for the tasks applied on
other tables to wait on other sentence processing tasks before they proceed.

Preprocessing was used as an example here, but similar situations arise when gathering
features for the ranking model. Rather than running sequentially, a better alternative
would be a directed acyclic graph (DAG) structured scheduler which could account for
dependencies and schedule processes on data frames accordingly. Other frameworks,
like Apache Spark, should be investigated, as a solution to this problem.

More fundamentally, individual data processing tasks in SynthNotes lack parallelism.
Most operations on data frames at every stage are performed as Pandas apply
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operations. In Pandas, apply executes a function on every row in a data frame.
However, it is run sequentially, like a for-loop would iterate over a list, instead of in
parallel. Pandas performs significantly better if operations can be written as either
vectorized operations on a series, or as join or merge operations which are commonly
found in database operations.

A simple example is presented in Example 3.0.1. Each code block performs the same
operation. A data frame of 10,000 numbers is created and incremented by 1. Using
the apply function, the code in Example 3.0.1(a) runs in 1.58 seconds with a standard
deviation of 22.2 ms. When the same operation is vectorized as in Example 3.0.1(b),
the time is reduced to 116 µs.

1 import pandas as pd
2 l s t = [ i f o r i in range ( 1 0 0 0 0 ) ]
3 d f = pd . DataFrame ( l s t , columns =[ ’num ’ ] )
4 d f . apply ( lambda x : x + 1 , a x i s =1)

(a) Row apply adding one to each row.

1 import pandas as pd
2 l s t = [ i f o r i in range ( 1 0 0 0 0 ) ]
3 d f = pd . DataFrame ( l s t , columns =[ ’num ’ ] )
4 d f [ ’ number ’ ] + 1

(b) Vectorized version of adding 1 to each row.

Example 3.0.1. Code samples demonstrating the difference between an apply operation
and a vectorized one.

This is just a simple example, but after profiling the note generators, the vast majority
of time in generation is spent in a Pandas apply function. For instance, using the
random generator, 96.11% percent of the entire runtime is spent in a single function.
It is a function that is applied at each sentence position during generation in order
to eliminate templates which have entity slots which cannot be filled by the available
document entity pool. The same function is used in the ranking model generator. In the
ranking template selection method the same function accounts for 32% of the runtime.
An additional 57.7% of the total time is spent in two other apply operations that also
occur at each sentence position. Those operations retrieve the template and cluster label
n-gram probabilities which are features for the ranking model.
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Currently, the ranking model avoids significant computation by precomputing features
that go into the model for ranking. At each sentence position the available template
pool must have features re-computed based on the new sentence position and other
factors, such as words generated so far and the ratio of entities used. To do so each
step without the optimizations discussed above is unreasonable. Instead, features are
computed for all templates at all sentence positions and stored in a parquet file that is
loaded in the ranking generator when it is created. This way, during generation, the
majority of features for a template are found by searching the data frame for a given
template ID at a particular sentence position. This leaves only a few remaining features
that must be computed at each step. As was described above, just the two n-gram
features account for over half of the runtime for the generator. Precomputing the others
is a huge efficiency boost. However, this step will be neither necessary nor possible on
larger datasets.

3.3 Evaluation Metrics

3.3.1 BLEU

The BLEU metric [41], Bilingual Evaluation Understudy Score, was initially developed
as a tool for analyzing the quality of machine translation systems which translate
between two human languages. Its key insight was the observation that multiple
candidate translations, or generated sentences in this case, can be ranked according
to their quality by simply counting the overlap in n-grams between candidate and
reference sentences [41]. BLEU was one of the first systems which demonstrated a
high correlation with that of human judges.

The BLEU metric at its core is a derivative of a common machine learning metric,
precision. A model’s precision score measures the ratio of true positives to true plus
false positives identified by a model. In the case of language translation, precision
measures the count of words, or n-grams, from a candidate translation that appear in
a reference translation divided by the total length of the candidate translation. However,
there is a problem with this simplistic approach in translation or language generation.
A model can over-generate the same word in a candidate sentence if it appears in the
reference translation in order to obtain an inflated precision score while still being a
poor translation. To combat this, BLEU uses a modified precision score that considers
the frequency of n-grams in the candidate and reference sentences. An example of
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this is shown in Example 3.0.2. The model has over-generated the word ’the’ which
does appear in the candidate sentences. A standard precision score would rank this as a
perfect translation with a score of 7/7 or 1.0. However, when considering the maximum
count of a word allowed based on the reference sentences, its score is only 2/7 or 0.29
which is a much more logical score for the sentence.

For modified precision, candidate n-grams are only counted as true positives up to the
maximum number of times that they also occur in a reference sentence. This equates to
taking min(candidate_count,max_reference_count) as the true positive count for a
word [41]. Thus, unnecessarily repetitive words in a translation work to the detriment
of the precision metric.

Candidate: the the the the the the the.
Reference 1: The cat is on the mat.

Reference 2: There is a cat on the mat.

Example 3.0.2. Example candidate and reference sentences for comparing the effect
of standard precision versus a modified precision score. By overusing “the”, the model
would receive an inflated standard precision score of 7/7, or 1.0. However, its modified
precision would only be 2/7. Underlined text is used as a visual aid to demonstrate the
true positives in the modified precision score. Table adapted from Pappineni et al. (2002).

BLEU can be calculated in one of two ways: individual or cumulative. An individual
BLEU score simply finds matches of n-grams between a candidate and a reference
sentence. For example, an individual BLEU score calculation on unigrams would
calculate whether the two sentences are exact matches of each other. For a candidate
and reference sentence, each containing four tokens, if the candidate matches three out
of four tokens, it’s BLEU score would be 0.75. A similar process occurs for bigrams,
trigrams, etc.

A cumulative BLEU score takes into account the scores of all n-grams up to some
maximum N . Rather than simply averaging the multiple scores to derive a cumulative
score, BLEU uses the geometric mean of the various modified precisions. This is
equivalent to the weighted average of the logarithm of modified precision. Geometric
mean is used due to the observation that modified precision falls logarithmically as the
n increases [41]. Geometric mean is used to take this into account.
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Typically, a cumulative N of four is used to evaluate a translation or generation model
as this captures both the adequacy and fluency of a given translation. The unigram
BLEU score reports how appropriate or accurate the candidate sentences are as a
translation while n-grams for n > 1 speak to a translation’s fluency, semantics, and
information retention [41].

A table demonstrating the impact of n-gram selection and individual compared to
cumulative scores based on the sentences in Example 3.0.3 is shown in Table 3-1.

Reference: This is a small test sentence.
Candidate: This is a large test sentence.

Example 3.0.3. Example candidate and reference sentences for computing BLEU scores.

Table 3-1. Individual and cumulative BLEU scores
based on the example sentences in Example 3.0.3.

n-gram Individual Cumulative
1 0.83 0.83
2 0.6 0.72
3 0.25 0.50
4 0.0 0.0

3.3.2 METEOR

Meteor is another metric from machine translation which uses an f-score based
on unigram matching minus a penalty. Meteor was developed in part to address
shortcomings found in the BLEU metric [42].

The authors of Meteor claim that BLEU is an imperfect metric for evaluating a
machine translation system. First, BLEU does not take recall into account when
computing the metric. Recall is the ratio of matches found in the candidate sentence
divided by the matches plus the number of tokens in the reference sentence. So BLEU
is only considering the number of matches relative to the length of the candidate string.
Meteor takes both precision and recall into account through the F1 score. Second,
BLEU computes n-gram matches from a candidate sentence across all reference
sentences. Meteor calculates a score for each candidate-reference pair and chooses the
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highest scoring. Finally, because BLEU uses geometric averaging across multiple n-
gram scores, a zero in any one of the averaged scores will result in a score of 0.0 for a
single sentence. This eliminates any information that could be learned from the metric.
Meteor address all of these flaws.

As mentioned previously, Meteor looks for unigram matches between a candidate
sentence and a reference sentence. Multiple scores are computed if there are multiple
references for a single candidate sentence and the best score is used. There are multiple
ways in which a match can occur between two sentences. Meteor first looks for an
exact unigram match, then stem matches, synonyms, and finally paraphrases [43].

To compute the final Meteor metric, an f-score is calculated and reduced by a chunking
dissimilarity penalty. The f-score is the harmonic mean of the precision and recall
found from the matching procedure. The penalty is found by merging all adjacent
matched unigrams into the largest chunk possible. If no chunks can be merged then the
number of chunks is the number of tokens in the sentence. The penalty can be found
by:

Penalty = 0.5 ∗ ( #chunks
#matched_unigrams

)

Notice, if there are no chunks longer than a single token, the full penalty of 0.5 is used.
As the number of chunks is reduced the penalty decreases. The final score is computed
as:

MeteorScore = f − score ∗ (1− Penalty)

In summary, METEOR fills some of the gaps left by the BLEU metric. The
combination of the two should prove adequate for analyzing the performance of a
language generation system.

3.4 Generation Results

In some respects, the metric evaluations for the three generation methods are surprising.
Figure 3-5 shows the BLEU and METEOR scores for all three methods. Each
generator wrote 98 documents all based on the same original notes in the MIMIC
database. Scores were computed using the entire generated document compared with
the original document. SynthNotes’ ranking model performs as well or slightly better
than the scores reported in Kondadadi et al. (2013) which serves to validate this
implementation. However, it is surprising that the random model performs so well
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by simply choosing templates at random. Moreover, both the random and frequency
generators outperformed the ranking model on the METEOR metric.

Figure 3-5. Comparison of automated metrics for
random, frequency, and ranked template selection.

The ranking generator does fare better than each when it comes to replicating the
word count of original notes but not with replicating the sentence counts. Summary
statistics for these measures can be found in Table 3-2. It is interesting to note that all
three models were heavily prone to over-generating sentences and words. Out of 98
documents for each model, not a single generated document showed fewer sentences or
words than the originals. There were only a handful of examples among all models that
matches the number of sentences.

It is unclear why these results have been observed. It would seem that both BLEU and
METEOR should assign lower scores to excessively long documents. Both metrics only
allow as many matches for a particular n-gram as there are occurrences of that n-gram
in the reference document. Thus, a generator which over produces text should only
be increasing its divisor. Clearly, that is not what is happening as one would expect
lower scores if that were the case. Moreover, one would expect the frequency generator
to outperform random selection. Remember, frequency generation makes a weighted
sample based on the likelihood of a cluster label for a given position. Intuitively it
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Table 3-2. Mean and standard deviation of the difference in sentence
and word count. Each generated document was compared to the original
document. Differences in sentence count and word count were computed

with the mean and standard deviation taken. Among the three methods, the
ranking model performed most accurately. It is interesting to note that out of
nearly 100 documents none of the three methods under-generated in either

sentences or word counts. Each method was heavily prone to over-generation.

Random Frequency Ranking
Mean Sentence Difference 23.11 23.34 24.35

Std. Sentence Difference 11.99 12.14 13.16
Mean WC Difference 427.4 506.2 397.95
Std. WC Difference 217.45 256.33 206.07

would seem that approach should be better than purely random choice as it ideally
reflects some similarity to common conceptual patterns present in the corpus.

The easiest explanation is that both the random and frequency generators are simply
primed to write the most common templates which have a high likelihood of containing
matches to a reference document.

When examining actual documents it becomes more clear that the ranking model makes
better selections than the other methods. The appendix in section A contains an original
document and each method’s corresponding generated text. Highlights have been added
to draw the reader’s attention to sentences of importance.

The original clinic note contains information regarding an unresponsive patient who
was admitted to the ICU following a back surgery. The patient appears to have
suffered a lack of oxygen, hypoxia, and cardiac arrest during surgery. There are
several mentions of drowsiness and a lack of alertness, possibly due to prescribed pain
medications. Below is an examination of each methods resulting document.

The random generator found in Section A.1.1 is able to write many keywords that
are found in the clinical note. Words like decompression, pain, fever, and numerous
medications are included such as: Tylenol, Naloxone, MS Contin, and Oxycodone.
Some sentences reflect the information that the patient is either unresponsive, as in
line (24), or being testing for alertness as lines (9-10) show. However, the ordering is
sometimes obviously incorrect. Line (1) of the original document begins with "TITLE:"
and the next lines present the basic information and background on the patient. This
is a common pattern found in the notes. The random generator includes the same
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line, but not until line (46). Other sentences just make no sense in the context of the
original document. For example, lines (3-6) discuss a gastrointestinal bleeding and
a liver biopsy which is not included in the original note. Perhaps the best lines from
this example are found in (50-52). A "Plan" section is started, and the following two
lines describe continued pain and medication monitoring. Overall, the random generator
captures many keywords but does not demonstrate high performance in structural or
template choices.

The frequency model’s generated document can be found in Section A.1.2. The
frequency document suffers from the same poor ordering as the random model but
does capture more of the essence of the original with less unrelated information. Lines
(7, 53) both refer accurately to the patient’s hypoxia and line (53) is the same as line
(6) of the original with the exception of the final word. It does contain references to
unrelated information but not as often as the random generator. Line (36) describes
a male patient with HIV which is not mentioned in the document. From a reader’s
perspective, the frequency model does have some improvements over simply random
selection in this example.

The ranking model’s document is found in Section A.1.3 and demonstrates a much
improved opening. Lines (1-2) match that of the original with the exception of the
final word in line(2) which is a poorly filled template slot. But the ranking model chose
the proper sequence of templates. While the ranking model chooses a correct opening
sequence, it does not finish in the same way. The original document closes with
another plan section which is to follow up on blood and urine cultures. The ranking
model simply states other symptoms of fever and pain. Lines (14-15) do display an
intelligent choice of a plan section however.

Overall, the ranking model displays the most potential after examining the actual text
output. It starts off appropriately and seems to limit extraneous templates that are
unrelated to the patient. However, all three methods suffer from an insufficient template
slot filling strategy. Currently, matching entity types for a given template are chosen
at random. This results in many sentences that are unintelligible based on a single slot
filling choice. For example, line (33) in the random document and line (52) from the
ranking note are each a template found in the original at line (26) which describes
a fever of unknown origin, FUO. Yet when the generators fill the slots they make no
sense. There are many such examples throughout each of the three documents.
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It is possible that poor template slot filling is also having an effect on the ranking
model’s ability to make appropriate selections at later sentence positions. Recall that
after each position is written the available set of medical concepts is reduced. This
reduction is also limiting the possible templates that can be used in the next sentence
position. Thus, although the model may be capable of finding a more appropriate
sentence, it is only able to make the best of the templates available to it.

Smarter template slot filling would ideally enable this. A possible approach would be
to model the likelihood that a given CUI is written to a particular template slot given
the template ID. This would facilitate more realistic sentences and also model the usage
of medical concepts throughout a document.

From examining the documents, it is also clear that many templates have additional
entities that could have been identified by cTAKES. The resulting filled template may
add concepts into a sentence that is obviously conceptually different. For example,
lines (34-35) in the ranking document clearly contain anatomical site mentions, distal
jejunum, which are contained in the small intestine. However, the template does not fill
that slot as it is not available. Instead, it fills the last word with "Drowsy". This is a
result of shortcomings in cTAKES’ information extraction performance.

There are other apparently negative results that stem from cTAKES performance.
Notice that all three generated documents refer to the patient suffering from gagging,
gag, or "choked on her saliva". The first error in the ranking model occurs at line (2)
where a slot was filled improperly. It seems that the UMLS concepts extracted by
cTAKES have included the concept of choking improperly as it is not found in the
original document.

In summary, despite all models performing similarly on the automated metrics
evaluation, the ranking model demonstrates its potential for success in modeling the
sequence of sentences that should be written to a synthetic note. When the issues
surrounding slot filling and concept extraction are addressed, the ranking model should
be able to further demonstrate its value as a synthetic note generator.
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CHAPTER 4

CONCLUSIONS AND FUTURE WORK

4.1 Discussion and Future Work

Overall, SynthNotes has shown its value as a step towards realistic synthetic clinical
note generation. There are of course improvements to be made and other avenues of
research that should be pursued.

The current performance limitations discussed previously need to be addressed in order
to scale the volume of generation so that SynthNotes may be used as an effective tool
for medical researchers. Beyond performance, each step of the tool offers several paths
for future research.

As discussed previously, cTAKES outputs a set of entities that are relevant only to
medical language processing. As a result, a significant number of corpus sentences
cannot be utilized with this method of generation. In the future, cTAKES entities
should be augmented with entity sets from other language processing tools that could
capture common named entities such as people and places. More accurate medical
information extraction would also enable greater corpus coverage. For instance,
medication extraction tools that extract text spans and can label drug names and
dosages would be significantly useful in this work.

Inspection of extracted CUI codes and the original text reveals cTAKES is also
lacking in its performance. Common phrases such as "Plan:," which appear often
in the medical notes, are mislabeled as disease mentions and heavily skew the
clustering of templates. This over-representation of mislabeled data is clearly shown in
Figure 4-1. Additional tools for extracting CUI codes from text should be examined.
QuickUMLS [44] is one such tool that could be tested. Methods to verify concept
extraction would also be helpful.

cTAKES also misses what appear to be important entities. For example, in template
(f) in Example 2.0.1, it is clear that the term "T10" is likely referring to an anatomical
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Figure 4-1. Distribution of most 20 most frequent CUIs in the corpus. Notice the top
most occurring CUI appears significantly more frequently than the other CUIS. This is
a result of a labeling error in cTAKES’ concept extraction module. This CUI is in fact
a rare childhood disorder and one would not expect to see it so prevalently in a dataset.

site. However, this important information is lost because it is not properly identified by
cTAKES.

The TF-IDF vectors used in the clustering stage are another component that should be
compared with other vector representations. Deep learning research in text
representation has advanced significantly over the past several years. Methods such as
word vectors or language models to represent words and sentences [45] provide other
avenues for clustering sentences and concepts. Additionally, work has been done to
represent CUI codes as vectors in a similar manner to the word2vec algorithm [46].
However, using CUI vectors does not address the significant proportion of sentences
that do not contain entities or CUI codes. Only 65% of sentences in the corpus used
for this work contain entities extracted by cTAKES. Using word2vec or a deep learning
language model would be able to address this limitation and provide greater coverage
of the data and increase the template pool for generation. Future work should study the
impact of such representations on clustering performance and generated output.

Significant time is spent in SynthNotes running cTAKES and processing its output in
XML format. This is because many useful modules in cTAKES, such as the HDFS
components, are unmaintained. Future efforts should establish whether cTAKES’
shortcomings warrant the software development effort or if a combination of other
tools would be adequate. QuickUMLS has already been mentioned as a tool to
perform concept extraction. A concept extractor like QuickUMLS could be paired
with more modern and capable language processing systems, such as spaCy [47] or
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SparkNLP [48], in order to replace cTAKES and enable more accuracy and scaling
with reduced software development work.

The ranking model itself needs to be improved and tested on a much larger dataset.
However, the performance problems make iteration time consuming and difficult.
Besides finding optimal parameters, it is possible that other features, better information
extraction, or more intelligent slot filling could significantly improve its performance.
Currently, the model makes no choices as to what CUIs or entities should be used to
fill a given template slot. Some decision process should be implemented to improve
upon this behavior. With respect to CUIs, an additional feature should be added which
models the likelihood of a template given the set of entities remaining to be written.
This feature in conjunction with more effective slot filling should lead to significant
improvements. SynthNotes currently makes few choices based on the more granular
CUI information. Concept extraction should be improved for this to be truly successful.

Evaluation methods could also be developed to better validate the generated results. In
the current method, most CUIs and entities from the original note are likely to be
included in a generated document. However, it is unclear how to verify other
considerations such as the coherence of CUIs and related information like lab
measurements. Improved slot filling would contribute to the logical coherence, but
additional methods should be developed to validate results.

In conclusion, SynthNotes is an important step forward in clinical note generation
which targets researchers. This work contributes methods which may be applied across
all sub-domains of the medical field with minimal involvement from clinical experts.
The work described here fills a particular void in the natural language generation
space as it attempts to provide methods for data set creation that are useful primarily
for developing analytical methods in the healthcare space. These are important and
effective tools for moving the state of healthcare research forward given the many
constraints surrounding patient privacy concerns. Historically, such limitations have
slowed the rate of progress in medical analytics. SynthNotes will aid in the process
of removing barriers to progress in clinical research and lays out additional focus areas
for future researchers to pursue.
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A.1 Original Document

TITLE:1

This 63 Y/O F found unresponsiveness, somnolent.2

Patient was on Morphine PCA post op S3-L1 decompression (POD :2 on [**9-20**]).3

PCA was off4

& then MS contin & oxycodone PO started.5

S/P hypoxic & hypercarbic resp arrest on ortho floor POD from S3-L1 decompression who6

POD#2 (on [**9-20**]) was more somnelent all day ,failed voiding, trial foley placed, was7

off PCA but getting MS Contin 15 mg [**Hospital1 **] and then triggered call at 8PM8

([**9-20**])for o2 sat 50% and obtundation, BP and HR normal. ECG unchanged.9

Naloxone with good effect but recurrent somnelence and tx to ICU for further management.10

Pain (post- op) from S3- L1 decompression11

C/O pain at back during turning.12

Tylenol 650 mg PO Q 6 hrly given.13

Good response to medication.14

Plan:15

Will cont to monitor her pain issue & medication administration.16

Drowsy17

With the help of daughter as [**Name2 (NI) 4645**] noted that patient is alert, oriented X18

2. Slept off & on.19

Opens eyes to speech & obeys simple verbal commands.20

Oxycodone prn dose not given.21

Pain controlled with Tylenol.22

Patient continues to be mildly drowsy, but is alert when spoken to.23

Plan:24

Will cont to monitor her mental status.25

Fever, unknown origin (FUO, Hyperthermia, Pyrexia)26

Blood & urine culture sent.27

Tylenol given.28

Plan:29

Follow up on cultures.30

A.1.1 Random Model

decompression1
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Altered pain2

H/O gastrointestinal bleed, lower (Hematochezia, BRBPR, pain3

2) HCV - ?genotype I, dxd [**2098**], liver biopsy with HCV +Plan Transferred to4

[**Hospital1 54**] for fever of critical care issues including vent Ativan in setting of5

severe AS, narrow euvolemic band.6

Events :7

Patient issues 100.3 at 19 45 hrs- blood cultured .WBC in am 14.6.8

pt opens eyes to voice, is oriented to person, did try to say the name of the hospital, follows9

simple commands consistently and has repeated denied c/o Gag10

Given his poor prognosis and lack of definitive sided11

She was nonverbal but responded to Drowsy12

Neuro exam sleepy13

Follow up on decompression14

Kinair bed, frequent diltiazem15

cultures16

Pacemaker malfunction/urine cultures17

At the time of her evaluation by primary team patient had stable vital signs, however18

during eval she "choked on her saliva" and became transiently oriented19

Pt was rigorring mildly on the floor when they obtained an EKG20

Given his poor prognosis and lack of definitive turning21

A flexible bronchoscopy performed [**1-18**] showed a issues22

Transferred to ICU for further pain23

Unresponsive to verbal stimuli, crying, garbled speech, at times making requests for24

Oxycodone25

Altered No change26

Tab27

Pt had a Tmax of 103.8 in the ED, though lactate was normal28

Team informed of adventitious lung sounds- ordered MDI atrovent and albuterol- pt29

takes albuterol Naloxone30

This am, she was noted to have low hlmorphine31

hypoxia, unknown origin (pain, Hyperthermia, Pyrexia)32

Fever of Unknown Origin (mental status, voiding, not fever)33

Plan34

Tylenol35

On MS contin36
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He can have only 2grams of Tylenol37

CT Surgery feels pt would not be good surgical candidate, recommends medical38

management39

Patient also continue to receive opens eyes40

arrest41

Pt continues with Dilaudid PCA42

Minimize free Tylenol43

Pain (post- op) from S3- L1 decompression44

Diluadid PCA45

TITLE:46

83 yo M after recent prolonged hospital course for MSSA septic prosthetic joint47

infection and respiratory failure presents from rehab with fever and hypotension after48

episode of water49

Plan50

Will cont to monitor her pain issue & MS contin administration.51

Cont to assess for pain and effectiveness of drugs52

Pt continues with Dilaudid PCA53

A.1.2 Frequency Model

pt opens eyes to voice, is oriented to person, did try to say the name of the hospital, follows1

simple commands consistently and has repeated denied c/o FUO2

Coccyx decub remains stage 4 with management3

alert4

Ms. [**Known lastname 6562**] is an 81 year old female with HTN, HL, Plan on5

HD, CHF, who has been at [**Hospital 997**] [**Hospital **] rehab who presented6

to [**Hospital3 **] on [**2190-4-4**] with acute onset of shortness of breath and no7

change.8

Blood cultures were drawn, and he received levo and flagyl, as well as oxycodone9

Of note, he had a right subclavian CVL placed on [**2156-8-17**] and removed10

[**2156-8-23**] (tip decompression11

Altered normal12

Received on PS [**9-7**], 60%, O2 sats 95 to 97 %, Secretion dark red blood13

Which showed T10-Naloxone right Tab extradural contrast enhancing lesion on MRI14

likely an epidural abscess.15
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Mucosa erythematous, inflamed but not oriented16

Patient received on CMV, RR 13, TV 500, peep 5, o2 50 %,abgs /MS Contin17

Diluadid EKG18

Pt essentially moans in bed coherently when decompression19

Altered ativan20

EKG was obtained, and she was given nitroglycerin and the hrs21

She reports that the Turns22

S/P issues & hypercarbic resp arrest on ortho floor POD from S3-L1 PCA who POD#2 (on23

[**9-20**]) was more somnelent all day ,failed pain, trial foley placed, was off cultures24

but getting tylenol 15 mg [**Hospital1 **] and then triggered call at 8PM ([**9-20**])for25

o2 sat 50% and fever, BP and HR normal . ECG unchanged.26

Denies Subjective Gag27

Received tylenol28

EKG was obtained, and she was given nitroglycerin and the water29

pt opens eyes to voice, is oriented to person, did try to say the name of the hospital,30

follows simple commands consistently and has repeated denied c/o neb hlHad fevers31

Repeat CXR without Tylenol32

SBP in 110s to 130s, levophed reduced to 0.07 mics/kg/min- SBP gradually decreased33

to high 80s, MAPS in 50s. Levophed increased back to 0.08 urine cultures34

She reports that the hypoxic35

TITLE: 51 yr old man with HIV (on ART- last CD4 360 in [**10-20**]), CNS36

toxo([**2131**]) and central issue37

Patient is alert, cooperative, oriented to place, person, needs intermittent orientation to38

time & date, denies pain39

Strong cough, impaired Oxycodone40

Received MS Contin41

Diluadid PCA42

# Chest pain: Patient did have one episode of chest pain in the ED, though now is43

voiding44

Response: good somnolent45

Noted this evening to be increasing lethargic and sent for PCA46

severe47

Withdraws to pain48

This am, she was noted to have low medicines49

Pt initially responding onlt to pain50
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Plan51

oral morphine52

S/P hypoxic & hypercarbic resp arrest on ortho floor POD from S3-L1 administration53

Patient was on Morphine PCA post op S3-L1 decompression54

Plan55

A.1.3 Ranking Model

TITLE:1

This 63 Y/O F found unresponsiveness, Gag2

Plan3

Assessment:4

Patients HCT dropped to 24.4 at 2330 hrs[ aim maintain > 25], NGT in place, initiallt5

aspirated 20 cc of dark brown Blood6

Patient is DNR / DNI, will remain in ICU for now pending stability of his nursing pain7

Repeat CXR without Oxycodone8

administration9

At the time of her evaluation by primary team patient had stable vital signs, however during10

eval she "choked on her saliva" and became transiently water11

arrest12

At 0430 am, during Ativan13

Plan14

Continue monitoring temp, cont anbx, follow up on decompression15

Tab16

Follow up on PCA17

Plan18

A flexible bronchoscopy performed [**1-18**] showed a sleepy19

management20

Continue monitoring temp, cont anbx, follow up on decompression21

EKG22

With the help of daughter as [**Name2 (NI) 4645**] noted that patient is pain, FUO X 2.23

Slept off & on.24

Continue monitoring temp, cont anbx, follow up on PCA25

PCA26

Naloxone27
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Team informed of adventitious lung sounds- ordered MDI atrovent and albuterol- pt28

takes albuterol MS Contin29

Continue monitoring temp, cont anbx, follow up on cultures30

Not stooled thus far and unchanged31

Not stooled thus far and mental status32

Roux-en-Y conversion for reflux diltiazem33

4) s/p Ex-lap 5) possible polypoid mass in distal jejunum seen on capsule endoscopy34

([**2104-9-9**] at [**Hospital1 147**]), likely source of Drowsy35

oriented (post- op) from S3- L1 urine cultures36

At 0430 am, during issues37

Tylenol38

Pt essentially moans in bed coherently when decompression39

Oxycodone40

Roux-en-Y conversion for reflux Fever41

voiding42

Pyrexia43

last medicines44

Tylenol45

Barrier cream and pressure reduction to bilat elbows and heals, kinair bed, attempting46

to neb47

Tylenol48

hypoxic cntl strategies reviewed with pt including staying ahead of the turning curve.49

MS contin50

They injected 10mg of morphine51

fevers, unknown origin (FUO, pain, normal)52

pain53
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