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Abstract 

Food contamination from hepatitis A virus (HAV) is a great concern to food producers 

worldwide. Finding an innovative approach to inactivate HAV on food contact surfaces and on 

different produce remains a challenge. Using chemical disinfectants (e.g. chlorine) is an effective 

way to inactivate HAV on fomites, but it maybe unfavorable for food products. While heat 

inactivation of HAV remains the most efficient way to inactivate HAV when present in foods, 

most foodborne outbreaks of HAV are related to ready-to-eat (RTE) foods including produce 

which do not undergo further heating. Therefore, finding compounds with effective anti-HAV 

activities will be of great benefit to the food sector. In our study, oleanolic acid (OA) and ursolic 

acid (UA) have been investigated for their anti-HAV properties. OA at 600 µg/ml and UA at 360 

µg/ml showed 2.27±0.67 and 1.33±0.35 log PFU/ml reduction after a 1 h treatment, respectively. 

Furthermore, to increase virus inactivation, photodynamic inactivation (PDI) was applied, which 

uses oxygen, light and a photosensitizer to produce reactive oxygen species (ROS). Grape seed 

extract (GSE) and oleanolic acid with known antiviral properties were tested as photosensitizers. 

Conditions using UV light at 254 nm with a distance of 72 cm and doses (energy density) of 

0.012±0.000, 0.020±0.001, 0.040±0.001, 0.061±0.002, 0.081±0.002 and 0.121±0.003 J/cm2 for 

3, 5, 10, 15, 20 and 30 min exposure times, respectively were applied for the PDI experiments. 

However, the acquired viral reductions by GSE and OA mediated PDI were attributed to UV 

light more than ROS production. Future work may include the use of different light sources for 

illumination, and the use of UA as a potential photosensitizer compound. 
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Chapter I: Literature Review 

The Picornaviridae Family: The family Picornaviridae comprises of nine genera, Enterovirus 

(Poliovirus and Coxsackievirus), Rhinovirus represented by Rhinovirus, Cardiovirus, 

Aphthovirus, Erbovirus, Kobuvirus, Teschovirus, Parechovirus and Hepatovirus (Whitton et al., 

2005). Poliovirus is an Enterovirus spread by the oral-fecal route and replicates in the patient 

intestines then attacks the spinal cord motor neuron causing inflammation and necrosis that can 

cause permanent paralysis (poliomyelitis) (Whitton et al., 2005). Poliovirus has a long history in 

the human population, its records going back thousands of years. The paralytic poliomyelitis was 

depicted on an ancient Egyptian stele. Before the advent of the vaccine, the disease affected 

thousands all over the world every year. The Picornavirus life cycle begins with viral binding to 

a specific receptor, entry into the host cell, un-coating and the release of the virus genome. The 

RNA of all Picornaviruses is positive sense with one open reading frame (ORF) flanked by 

extended untranslated regions that contain an internal ribosome entry site (IRES); crucial for 

viral RNA ribosomal translation (Jang et al., 1988), with a fast mutation rate (Whitton et al., 

2005; Ward et al., 1988). Most of the Picornaviruses can shut down the host translation 

machinery by the breakdown of a Eukaryotic translation initiation factor 4 G (eIF-4G) a cellular 

protein crucial for the cap-dependent translation process (Etchison et al., 1982). They do this by 

using protease enzymes which can create specific cleavages to the eIF 4G. These pieces then 

bind to the viral RNA and enhance its translation rate (Ohlmann et al., 1996). These proteases 

are not conserved in the Picornaviruses family; Enterovirus and Rhinovirus use the 2A protease 

and aphthovirus uses the L protein (Whitton et al., 2005). However, hepatitis A virus (HAV) 

does not arrest host cell translation, and it is non-cytopathic (Gauss-Muller et al., 1984). 
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Furthermore, the Picornaviruses are able to interfere with host cell transcription by using a 3C 

protease to cleave several cellular transcription factors of the host cell and reduce the level of 

transcription (Whitton et al., 2005). Some Picornaviruses are able to increase cell membrane 

permeability using the 2B protein, which is classified as a viroporin in the case of poliovirus 

(Doedens et al., 1995) and coxsackievirus (Van Kuppeveld et al., 1997). Interestingly these 

proteins are also able to inhibit the secretory pathway; poliovirus 3A protein can reduce the 

expression of the MHC class 1, thus hindering the immune system T cells’ ability to identify the 

infected cell (Deitz et al., 2000). Vaccines against some Picornavirus are available; for example, 

with poliovirus, foot and mouth virus and hepatitis A virus; however, treatment of the infection 

is based on the transfer of immunoglobulin to the patients.  

 

Hepatitis A Virus 

In 1973 Feinstone and his team were the first to identify hepatitis A virus (HAV) using electron 

microscopy of the feces of an infected individual (Feinstone et al., 1973). Later HAV was 

classified in the order of Picornavirales, in the Picornaviridae family and genus Hepatovirus 

(Lemon et al., 1994). The 27-32 nm non-enveloped icosahedral particles enclose linear and 

positive sense single-stranded RNA, 7500 nucleotides in length (Lemon et al., 1992; Melnick et 

al., 1992; Hollinger et al., 2007). The genome can be divided into three main regions; the first 

region is the 59-nucleotide untranslated region (UTR) containing an extended secondary 

structure that is essential for the cap-independent translation, and that is covalently bonded to 

Vpg the viral protein (Costa-Mattioli et al., 2003). The second region consisting of the segments 

P1, P2, and P3 contains a single open reading frame and is responsible for encoding all the viral 
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proteins (Costa-Mattioli et al., 2003). In this location, all the structural proteins (namely VP1, 

VP2 and VP3 and the putative protein VP4) are encoded by the P1 segment and the nonstructural 

proteins responsible for replication are coded by the P2 and P3 segments, while the third region 

is the 39 UTR ending with a poly (A) tract (Costa-Mattioli et al., 2003). The 5’ UTR has an 

internal ribosome entry segment that regulates the translation process (Brown et al., 1991). The 

coded RNA produces a poly-protein of 2200 amino acids (Cristina and Costa-Mattioli., 2007), 

which will be cleaved by the virus and the host cells proteases to give rise to 11 proteins, 

including the viral RNA dependent polymerase. This is responsible for producing the 

antigenomic negative-strand RNA that acts as the template for the production of the genomic 

positive-strand RNA, which gets packed into the viral capsids (Cuthbert et al., 2001). Moreover, 

the virion capsids are composed of three polypeptides encoded by VP1, VP2, and VP3. Variation 

in HAV isolates is detected by sequencing three specific regions of the viral genome that include 

the VP1/2A junction as well as the VP3 C and, the VP1 amino terminus, (Jansen et al., 1990). 

These regions are responsible for the genetic variation between different HAV strains (Bruisten 

et al., 2001; Byun et al., 2001; Apaire-Marchais et al., 1995; Arauz-Ruiz et al., 2001). HAV has 

only one serotype and six genetic groups (Cristina et al., 2007). The genotypes are labeled as I to 

VI; the genotypes I, II, III, are divided into A and B and are responsible for human disease 

(Cristina et al., 2007). Genotype I is broadly distributed worldwide, and sub genotype IA is more 

frequent in the United States and Western Europe, and IA has more occurrences than IB, and 

IIIA is ubiquitous in central Asia. HAV genotypes IV, V and VI infect simians (Desbois et al., 

2010; Costa-Mattioli et al., 2003). 
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HAV Symptoms 

The average incubation time from HAV exposure to symptoms of HAV illness is reported to be 

approximately 28 days (though can range from 15-50 days) (Krugman et al., 1970). HAV 

symptoms can be severe and include fever, anorexia, low appetite, vomiting, stomach pain, 

nausea, dark-colored urine or light-colored stools (Koff et al., 1992) and yellowish pigmentation 

of the skin and eyes resulting from an elevated level of bilirubin in the blood (jaundice) (Buttaro 

et al., 2012). In most cases, symptoms of HAV persist for several weeks; only 10% of cases have 

symptom relapses showing an increase in the serum aminotransferase levels that can continue for 

up to 6 months (Schiff, 1992). The average lethality rate of HAV infection is 0.3%, however, it 

can reach up to 1.8% for individuals age 50 or over, chronic liver disease patients, and otherwise 

immunocompromised individuals (CDC, 2018). It is common for HAV infected children 

younger than 6 years old to be asymptomatic. In these cases, only 10% develop jaundice 

(Gingrich et al., 1983). Approximately 76%–97% of young adults infected with HAV develop 

symptoms of which 40%–70% show jaundice symptoms (Lednar et al., 1985). 

 

Hepatitis A Virus Diagnosis 

The most often applied diagnostic test for HAV in clinical patient samples is based on the anti-

HAV-IgM antibody detection using a highly sensitive and accurate enzyme-linked 

immunosorbent assay (ELISA) test and other biochemical enzyme tests (Cuthbert et al., 2001). 

However, in some cases of clinical discrepancy, there are other confirmation methods that can be 

used to detect the viral presence. One of these is to detect HAV RNA with the use of the reverse 

transcription (RT)-PCR (De Paula et al., 2004; Musana et al., 2004). Additionally, the liver 
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enzyme alanine transferase (ALT) is used to detect the virus that is present in the blood during 

the acute stage of infection, being produced from the damaged liver cells (Roque et al., 2004). 

However, for food samples, real-time PCR is an effective molecular technique used to detect 

HAV in shellfish, using primers and probes designed from the 5-prime untranslated region (600 

nucleotides approximately), which is reported to be the most conserved region of the viral 

genome (Di Pasquale et al., 2010). 

 

Life Cycle of HAV 

When HAV is transmitted to the body through the fecal-oral or blood routes, the virus enters the 

bloodstream. Through the circulation of the blood, the virus will be carried to the liver, where it 

attaches to the host cell receptors of the hepatocytes (Gupta, 2018). Viral transcription occurs 

solely in hepatocytes, then the viral RNA is released from the capsid and translation of the viral 

proteins occurs by the host cell ribosomes followed by RNA replication and virion assembly, 

though only, when the virions are matured, they are secreted into the bile and then into the stool 

(Gupta, 2018).  

 

HAV Distribution 

There are approximately 1.4 million clinical cases of HAV worldwide each year, making it the 

most infectious hepatitis disease (Keeffe et al., 2006). However, it is anticipated that the actual 

number of infected persons is much higher than this due to cases that are not reported (Keeffe et 

al., 2006). Additionally, some of the exposed individuals may have immunity due to vaccination 

or previous infection and asymptomatic individuals can also spread the disease (Lednar et al., 
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1985). HAV is a foodborne disease that has several routes of infection. It is spread mostly 

through contaminated food and water, close contact with infected persons, homosexual oral-anal 

practices, and to a lesser extent blood transfusion, and its geographical distribution of HAV is 

related to the economic and social conditions of different countries (Roque et al., 2004). The 

developed countries which have high hygiene and food safety standards and a wide application 

of HAV vaccinations and so have a low level of clinical cases. Conversely, the poorer, 

developing countries that lack basic hygiene and food safety have a high infection rate especially 

with children under 6 years old (Roque et al., 2004; Jacobsen et al., 2004). However, in high 

income countries, increasing international trade and travel contribute to the frequent occurrences 

of foodborne HAV outbreaks. Due to globalization, middle income countries are the major 

contributors to such incidents (Jacobsen, 2018). 

 

HAV Transmission 

The most prevalent form of HAV transmission is through infected food handlers (Dalton et al., 

1996). It has been reported that a single HAV infected food handler can be the source of 

infection for hundreds of individuals, causing both sporadic cases and outbreaks (Dalton et al., 

1996; Lucioni et al., 1998). Other than infection caused by food handlers through contamination 

of cooked food, the main source of infection is by the contamination of uncooked food or 

contaminated water. HAV transmission by contaminated food products can happen during any 

stage of food production including cultivation, harvest, distribution, and preparation. The 

detection of the source of the contamination is difficult due to the relatively long onset of the 

virus (2-6 weeks), making food history difficult for many patients to recall (Dalton et al., 1996; 
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Lucioni et al., 1998). In addition, low sensitivity of the current diagnostic tests food samples and 

high cost makes detection and tracking of transmission routes challenging. 

 

HAV Prevention 

In 2002, Purcell and his team used a gastric tube to inoculated tamarins and chimpanzees with a 

standard filtrate of human feces contaminated with HAV strain SD-11, using 0.5 ml of 10-fold 

dilutions of the filtrates (Purcell et al., 2002). After 14 days, it was found that the infectious dose 

for the primates was a viral titer of 104 PFU/ml (Purcell et al., 2002), while in humans the 

minimum infectious dose is still unknown (Acheson & Fiore, 2004). Freezing does not affect the 

HAV, as contaminated strawberries, raspberries, blueberries, parsley and basil with HAV HM-

175 strain, titer of (1.6 × 106 TCID50) were not affected by freezing at -20ºC and storage time of 

90 days as reported (Butot, et al. 2008). A research study indicated that heating at 100ºC for 2 

min in manila clams can cause total deactivation of HAV to ensure safer products (Pascoli et al., 

2016). Also, cooking HAV contaminated turkey deli meat at 80ºC for 107 s was enough to cause 

a 6 log reduction in HAV (Bozkurt et al., 2015). Blanching HAV contaminated spinach at 100°C 

for at least 2 min is enough/sufficient to reduce HAV titer by 6 log PFU/ml (Bozkurt, Ye, et al., 

2015). The undiluted surface disinfectant 2.0% glutaraldehyde with pH 7.5, and the diluted 

(1:11) 6% sodium hypochlorite of (5,000 ppm free chlorine) with pH 11.2, reduces HAV titer by 

> 99.9%, that can be used as contact surface disinfectants (Mbithi et al., 1990). While pre-

exposure prophylaxis is available, vaccination for HAV provides protection against viral 

infection. The two main types of vaccines for HAV including; the inactivated HAV vaccine and 

the live attenuated HAV vaccine (Irving et al., 2012). The inactivated HAV vaccine provides at 



 

8 

 

least two years of protection and is considered to be safer than the live attenuated HAV vaccine, 

whose safety is not guaranteed (Irving et al., 2012). The inactivated vaccine is a preparation of 

an inactivated cell culture-adapted HAV virus which was licensed in 1995. The vaccine injection 

is taken in two doses; the first dose of the vaccine is enough to provide seroconversion in which 

the production of the viral antibodies can be detected after 2 weeks. This is measurable in 54–

62% of the vaccinated individuals and this percentage increases to 90% after 4 months. In this 

time, the vaccine will show protective concentration levels of HAV antibodies, while the second 

dose (booster) taken after 6 months of the first dose can generate a long-term protection up to 20 

years (CDC, 2018). Conversely, the post-exposure prophylaxis uses the immunoglobulin to 

counter HAV infection. The chances of the immunoglobulin to stop HAV is highest during the 

early incubation stage of the virus and are recommended only for those within 2 weeks of 

exposure, while after two weeks of HAV infection the immunoglobulin therapy is reported have 

only 85% efficacy to prevent HAV symptoms and illness (Winokur et al., 1992). 

 

HAV Outbreaks 

There have been several outbreaks reported worldwide due to HAV. An outbreak of HAV from 

raw clams was one of the worst recorded in history that occurred in Shanghai, China in 1988. 

There were 292,301 cases recorded (Halliday et al., 1991), meaning the rate of cases was 4,083 

cases for every 100,000 people. The consumption of HAV contaminated raw clams was the 

reason for the outbreak, as the preparation method of steaming the clams until they open was not 

sufficient to inactivate the virus (Dismukes et al., 1969; Koff et al., 1967). The countermeasures 

taken by the Chinese government included prevention of the sale of clams in Shanghai, banning 
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of clamming in specific areas, and initiating investigations into sterilization methods of the 

shellfish during the time of the outbreak (Halliday et al., 1991). 

 

Another notable HAV outbreak is the multistate outbreak of HAV infections linked to imported 

pomegranate seeds from Turkey. This outbreak occurred in May 2013 and was reported by the 

New Mexico Department of Health (Collier et al., 2014). The department reported to the Centers 

for Disease Control and Prevention (CDC) that the first two patients from the same city shopped 

at the same store. Both had bought fruits from the store and consumed them in smoothies. The 

outbreak included 165 cases in ten US states including “Arizona, California, Colorado, Hawaii, 

New Hampshire, New Jersey, New Mexico, Nevada, Utah, and Wisconsin” (Collier et al., 2014). 

Where 55% of the total number of cases included women aged between 40-64 years; 11 of the 

patients were children under 18 years old. 44% of patients were hospitalized, but no deaths were 

reported. All the patients exposed to HAV purchased the product from Costco markets, though 

this was also. sold at Harris Teeter stores, but no patients reported purchasing the product from 

this location (Collier et al., 2014). In 2016, another multistate outbreak occurred in the US which 

was investigated by the CDC and US Food and Drug Administration (FDA), where traceback 

and epidemiological analyses indicated that the International Company for Agricultural 

Production & Processing (ICAPP) imported frozen strawberries from Egypt which were the 

likely cause the outbreak. Patients mostly reported drinking smoothies that had strawberries at 

Tropical Smoothie Café in the regions of Maryland, North Carolina, Virginia, and West Virginia 

(CDC, 2016). The 143 cases were reported from nine involved states including Arkansas, 

California, Maryland, New York, North Carolina, Oregon, Virginia, West Virginia and 
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Wisconsin, and. since January 1st, 2016 ICAPP had recalled imported frozen strawberries sent to 

the USA (CDC, 2016). A recent HAV outbreak (2016) was caused by raw scallops in Hawaii. In 

January 11th, 2017, the confirmed number of cases of HAV from this outbreak in Hawaii was 

292. The outbreak started with three lots of raw scallops imported by Koha Oriental Foods and 

True World Foods from the Philippines on November 2015; it was then distributed to three states 

including California, Hawaii, and Nevada. Genki Sushi restaurants on the islands of Oahu and 

Kauai in Hawaii, were reported to have served the contaminated scallops that were declared as 

the source of the outbreak by the Hawaii Department of Health (HDOH) (Health.hawaii.gov, 

2018). The company recalled the three lots of the frozen scallops on August 18th, 2016. After 

August 19th, 2016, there were no HAV infection cases linked to the Hawaii outbreak 

(Health.hawaii.gov, 2018). Beginning in March 2017, a multistate HAV outbreak occurred 

affecting homeless people and those who use injection and non-injection drugs in California, 

New Mexico, Missouri, Kansas, Arkansas, Louisiana, Florida, Kentucky, Tennessee, Indiana, 

Ohio, North Carolina, West Virginia, Massachusetts, Michigan and Utah. The CDC and local 

health departments delivered HAV vaccinations to many homeless individuals who were not 

previously immunized (CDC, 2017). 

 

Heat Inactivation of Hepatitis A Virus  

There are many examples of studies using heat to inactivate HAV in food in order to make it safe 

for consumption. Cooking manila clams infected with 5 to 7 log TCID50/ml HAV on a 

conventional stove for 2 min at 100ºC degree was sufficient to inactivate HAV. This was 

determined by extracting the virus from the digestive glands and testing it with real-time PCR 



 

11 

 

(Pascoli et al., 2016). Another study looked at spinach inoculated with HAV strain HM-175 titer 

of 7.34±1.28 log PFU/ml in plastic vacuum bags. The D-value at 50°C was 34.40±4.08 min; at 

56°C was, 8.43±1.72 min; at 60°C was, 4.55±0.82 min; at 65°C was, 2.30±0.82 min and at 72°C 

was, 0.91±0.14 min (Bozkurt et al., 2015). The calculated D-value (50–72°C) was reported to 

range from 34.40±4.08 to 0.91±0.12 min, and the Z-value was reported as 13.92±0.87°C 

(Bozkurt et al., 2015). They reported the minimum energy required to begin inactivation of the 

microbial population (the activation energy) to be 162±11 kJ/mol calculated from the first order 

model. Blanching of spinach (placing in water at 100°C for 120–180s) resulted in a 6 log 

PFU/ml reduction of HAV; this cooking method is recommended to increase the safety of food 

(Bozkurt et al., 2015). When 25 g of mussels (Mytilus edulis) were inoculated with 5 ml HAV 

strain HM-175 at a titer of 7.04±1.34 log PFU/ml D-values of 54.17±4.94 min at 50°C, 

9.32±3.26 min at 56°C, 3.25±0.72 min at 60°C, 2.16±0.17 min at 65°C and 1.07±0.24 min at 

72°C, were reported using  a linear model (Bozkurt et al., 2014). By the Weibull model, similar 

trends were obtained (Bozkurt et al., 2014).  

 

In another study, 50 New Zealand Greenshell Mussels (Perna canaliculus) were inoculated at 

multiple sites in the guts by injection of 5 µL to 10 µL of cytopathic HM-175 strain of HAV at 

5.7 log TCID50.and boiling the mussels at 92ºC for 180 s was found to be sufficient to inactivate 

the virus to non-detectable levels (Hewitt et al., 2006). On the other hand, only a 1.5 log 

reduction of HAV resulted from a mean internal temperature of 63ºC after steaming for 180 s 

(Hewitt et al., 2006). Heating of dissected digestive glands of soft-shell clams (Mya arenaria) 

inoculated with 3×105 PFU/ml HAV strain HM-175 at 90ºC for 90 s resulted in reduction of 2.66 
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log cycles by RT-PCR and was reduced by 5.47 log cycles when similarly heated at 90ºC for 180 

s, indicating the suitability of heat for HAV inactivation (Sow et al., 2011).  

Inoculation with 100 µL of HAV strain HM-175 at a titer of 7.27±1.46 log PFU/ml on the 

surface of 6 g of turkey deli meat placed in vacuum plastic bags, using the first order model, 

showed a D-value of 42.0±5.6 min at 50ºC, 20.6±2.5 min at 56ºC, 5.9±1.3 min at 60ºC, 2.3±0.4 

min at 65ºC and 1.0±0.1 min at 72ºC (Bozkurt et al., 2015). The z-value of HAV using first order 

model was reported to be 12.8±0.7ºC, while the calculated activation energy for the first order 

model for HAV was reported as 167±9 kJ/ mole. A 6 log reduction in HAV could be achieved by 

cooking at 80ºC for 107 s, at 85ºC for 46 s, at 90ºC for 20 s, at 95ºC for 9 s and 100ºC for 4 s 

(Bozkurt et al., 2015). 

 

Chemical Inactivation of HAV 

Chemical disinfectants are the most common method used to inactivate microorganisms during 

cleaning and sanitation. Different disinfectants such as chlorine, chlorine dioxide, 2% 

glutaraldehyde, 6% sodium hypochlorite, alcohols, peracetic acid, and citric acids have different 

modes of action against microorganisms. For example, chlorination is a widely used method for 

inactivation of microorganisms, particularly in aqueous solutions including municipal water, 

wastewater and swimming pools. Chlorine gas has fast and almost complete hydrolysis when 

dissolved in water and gives rise to two more species; hypochlorous acid (HOCl) and 

hypochlorite (OCl-). In an aqueous chlorine solution, the three species Cl2, HOCl, and OCl- exist 

together with relative concentrations depending on the pH of the solution. The three species can 

oxidize organic compounds; however, the HOCl is the most efficient. It has 80 times more 
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germicidal potency than the OCl-. The HOCl is formed at pH 6 and at 25°C where it represents 

about 90% of the chlorine species in the solution (Fukayama et al., 1986). Chlorine dioxide gas 

(ClO2) can dissolve in water without reacting with it. ClO2 has higher oxidation capacity than the 

HOCl but lower oxidizing potential. ClO2 is most reactive in the aqueous solution containing 

phenolic compounds, aromatic and aliphatic tertiary amines aromatic and aliphatic tertiary 

amines (Fukayama et al., 1986). Chlorine affects bacteria by damaging and disrupting several 

cellular functions and organelles, which interrupts its metabolic processes (Shang & Blatchley, 

1999). It also causes damage to the cytoplasmic membrane, altering its permeability 

(Venkobachar et al., 1977). Free chlorine has a strong oxidation stress effect and is used to 

inactivate HAV at 10 mg/L with 30 min of exposure that damages viral nucleic acid (Dennis et 

al., 1979). The 5’ non-translating region (NTR) of HAV nucleic acid is associated with viral 

replication and translation, as it contains an internal ribosome entry site (IRES), and. the 

inactivated virus has a shorter 5՝ NTR, indicating that the chlorine inactivation effect on HAV is 

due to the disruption of nucleic acids at the 5’ NTR of the virus (Li et al., 2002).  

 

Another study in 2008 found that when individual strawberries (with the average weight of 

21.93±4.09 g) were spotted with 2 to 4 μl of HAV strain HM-175 at 6–7 log PFU and exposed to 

10 ppm free chlorine, inactivation of  0.7, 1.4, 1.7, 1.5 and 2.2 log PFU after 0.5, 1, 3, 5 and 10 

min, respectively were reported (Casteel et al., 2008). However, increasing the free chlorine 

concentration dose to 20 ppm and treating the inoculated strawberries (average weight of 

18.95±2.25 g), inactivation of 0.6, 0.7, 1, 1.2, 2.3 log PFU after 0.5, 1, 3, 5 and 10 min was 

obtained, respectively. Moreover, at a higher free chlorine dose of 200 ppm the strawberries 
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(average weight of 22.84±4.37 g) had HAV inactivation of 0.5, 0.6, 1.2 and 2.6 log PFU after 

0.5, 1, 3 and 5 min exposure time, respectively. Similar to the strawberries, cherry tomatoes with 

an average weight of 17.21+2.51 g were exposed to 10 ppm free chlorine resulting in HAV 

inactivation of 0.6, 1.3, 1.1, ≥ 2.3, ≥ 2.3 log PFU after 0.5, 1, 3, 5 and 10 min, respectively. 

When exposed to 20 ppm free chlorine, cherry tomatoes (average weight of 16.57±3.61 g) had 

inactivation of 0.8, 1.4, ≥ 2.4, ≥ 2.4 and ≥ 2.4 log PFU after 0.5, 1, 3, 5 and 10 min respectively. 

Similarly, HAV spots inoculated on a head of lettuce (average weight of 1.33±0.40 g) were 

exposed to 10 ppm free chlorine achieved inactivation level of 0.8, 1.3, 1.4, ≥ 2.2, ≥ 2.2 log PFU 

after 0.5, 1, 3, 5 and 10 min, respectively. At a higher free chlorine concentration of 20 ppm, 

heads of lettuce (average weight of 1.23±0.32 g) achieved an HAV inactivation of 0.8, 1, 0.8, ≥ 

1.7 and ≥ 1.7 log PFU after 0.5, 1, 3, 5 and 10 min, respectively (Casteel et al., 2008).  

 

When 1 ml HAV HM-175 (titer of ~ 4-4.5 log PFU/ml) was, mixed with chlorine dioxide (ClO2) 

solution at neutral pH at a concentration of 0.40 mg/l, reduction of 2, 3 and 4 log PFU/ml after a 

mean exposure time of 2.35, 6.79 and 19.58 min was obtained, respectively (Zoni et al., 2007). 

At a higher concentration of 0.60 mg/l ClO2 solution, a viral reduction of 3 and 4 log PFU/ml 

after a mean exposure time of 0.53, 0.85 and 1.45 min was demonstrated, respectively. 

Furthermore, when the concentration was increased to 0.80 mg/l, a 2, 3 and 4 log PFU/ml viral 

reduction was reported after a mean exposure time of 0.26, 0.35 and 0.43 min respectively (Zoni 

et al., 2007). The results indicate for rapid inactivation of HAV in ClO2 solution, a ≥ 0.6 mg/l 

aqueous ClO2 concentration is required.  
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When individual strawberries with an average weight of 15 g were spotted with 10 spots of 50 μl 

containing 1.6×106 TCID50 of HAV strain HM-175 and exposed to 200 ppm of free chlorine in 

water for 30 s, the HAV titer of the strawberries was reduced by −1.8±0.26 TCID50 (Butot et al., 

2008). The same treatment was applied to other types of produce. In blueberries, the HAV titer 

was reduced by −2.4±0.34 TCID50, in raspberries, the HAV titer was reduced by −0.6±0.21 

TCID50, in basil, the HAV titer was reduced by −2.4±0.21 TCID50, and in parsley the HAV titer 

was reduced by −1.4±0.04 TCID50. Individual raspberries with the same weight and conditions 

were exposed to 5 ppm ClO2 for 10 minutes, in which the HAV titer was reduced by −0.97±0.21 

TCID50.  When exposed to 10 ppm ClO2 for 10 minutes, the HAV titer was reduced by 

−0.79±0.07 TCID50. Similar to the raspberries, parsley exposed to 5 ppm ClO2 for 10 minutes 

resulted in an HAV titer reduction of −1.05±0.14 TCID50 and exposure to 10 ppm ClO2 in water 

for 10 minutes resulted in a reduction of −1.75±0.19 TCID50 (Butot et al., 2008). This research 

indicates that a high concentration of the disinfectant does not necessarily result in a higher virus 

reduction. It is dependent on the pH, produce and virus type; this research provides valuable 

information about the disinfection conditions of HAV in produce.  

 

When 30 ml of 107 PFU/ml of HAV HM-175 was added to 270 ml of a solution of quaternary 

ammonium 10% with glutaraldehyde 5% (disinfectant #1, pH 7), sodium hypochlorite 12% 

(disinfectant #2, pH 13) or stabilized dioxide chlorine 2% (disinfectant #6, pH 8.3) and incubated 

for 5 min at 4 or 22ºC. disinfectant #1 at 1000 ppm and 4 and 22ºC, resulted in a 1.35 and 4.75 

log PFU/ml reduction of HAV count, respectively (Jean et al., 2003). At 3000 ppm and 4 and 

22ºC, a 1.95 and 7.25 log PFU/ml reduction were obtained, respectively. disinfectant #2 at 500, 
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1000 and 3000 ppm at 4 and 22ºC, for 5 min contact time resulted in a 7 log PFU/ml reduction 

for both 4 and 22ºC, independently of the concentration of the active ingredient. disinfectant #6 

at 500 ppm, at 4 and 22ºC resulted in a 0.69 and 2.2 log PFU/ml reduction, respectively (Jean et 

al., 2003). When 20 µL of 106 PFU/ml HAV suspension was inoculated onto the surface of a 

disk (1 cm in diameter) made of polyvinyl chloride, high-density polyethylene, aluminum, 

stainless steel or copper (6.1 kg/m2), 20 µL of disinfectants #1 and #2 were added to the disc for 

5 min at 22ºC. A 3 log PFU/ml reduction resulted from treatment with 3000 ppm of disinfectant 

#1. A 5 log PFU/ml reduction resulted from treatment with 3000 ppm of disinfectant #2. There 

was a significantly higher veridical effect on the copper surface compared to other surfaces (Jean 

et al., 2003). This research proves the high efficacy of both quaternary ammonium 10% with 

glutaraldehyde 5% and sodium hypochlorite 12% to inactivate HAV in solution and on contact 

surfaces. When 50 ml of 105 TCID50/ml HAV strain CF 53 suspension was mixed with 

glutaraldehyde to obtain final 0.50, 0.10, or 0.02% (w/v) concentrations and incubated at 23°C 

for 3 to 30 min using radioimmunoassay to measure antigenicity, 0.02% glutaraldehyde showed, 

a 0% to 57% antigen titer reduction after 3 and 30 min, respectively (Passagot et al., 1987). At 

0.10% glutaraldehyde, a 40% to 68% antigen titer reduction resulted after 3 and 30 min, 

respectively. At 0.5% glutaraldehyde a 79% antigen titer reduction occurred after 3 min. The 

study also measured virus infectivity after treatments with different glutaraldehyde 

concentrations. At 0.02% glutaraldehyde, a 0.2 and 1.0 log TCID50 viral titer reduction resulted 

after 3 and 30 min, respectively. At 0.10% glutaraldehyde a 1.4 and 2.9 log TCID50 viral titer 

reduction after 3 and 30 min was obtained, respectively. At 0.5% glutaraldehyde a 3.5 and 4 log 

TCID50 viral titer reduction occurred after 10 and 30 min respectively (Passagot et al., 1987). 
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The results indicate a significant HAV viral reduction using 0.5% glutaraldehyde for 10 and 30 

min which can be utilized to decontaminate surfaces and tools.  

 

When 20 µL of 2.0% glutaraldehyde with pH 7.5 was placed on stainless-steel disks inoculated 

with 10 µL of fecally suspended HAV for 1 min, the result was > 4 logs PFU reduction of the 

HAV titer (Springthorpe et al., 1990). Similarly, solutions of 6% sodium hypochlorite, 5,000 

ppm free chlorine at a pH of 11.2, 0.4% quaternary ammonium compound (QAC) no. 1 and 

undiluted 23% HCl (toilet bowl cleaner) resulted in > 4 logs reduction of HAV PFU 

(Springthorpe et al., 1990). However, the tested phenolics, iodine-based products, solutions of 

acetic, citric, peracetic, and phosphoric acids, and alcohol, all showed <1 log PFU reduction of 

HAV titer (Springthorpe et al., 1990). This research provides important information about the 

efficacy of different disinfectant compounds against HAV. 

 

When 1 ml of dialyzed HAV HM-175 at 106 - 107 RFU/ml (Relative Fluorescence Unit) was 

applied to 100 ml aliquots of ozone-treated buffer (ODF phosphate-carbonate buffer) at pH 6 

with 0.1 mg/L ozone, a 1 log RFU/ml reduction of the virus was obtained after 120 s (Vaughn et 

al., 1990). At 0.5 mg/L ozone, a 1.5 and 3 log RFU/ml reduction was achieved after 30 s and 180 

s, respectively, at pH 6, 7 and 8. At 1 mg/L ozone at pH 6 and 7, a 5 log RFU/ml reduction of the 

virus was obtained after 30 s and at pH 8 a 5 log RFU/ml reduction of the virus resulted after 60 

s (Vaughn et al., 1990). The data indicates the ability of ozone at low concentrations and short 

times to inactivate HAV, which can be used in the decontamination of tools and surfaces in the 

food and medical sectors. 
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Photodynamic Inactivation 

Photodynamic inactivation (PDI) utilizes a combination of visible light, oxygen and a 

photosensitizing chemical compound in order to produce reactive oxygen species (ROS). The 

mechanism of action depends on the photosensitizers’ ability to absorb the light and transfer 

energy or electrons to the molecular oxygen (Hamblin et al., 2004). Examples of ROS include 

singlet oxygen superoxide anions and hydroxyl radicals, which are capable of destroying a broad 

spectrum of cellular targets like proteins, nucleic acids and lipids. As these targets are critical for 

cell survival, it is very unlikely for the microbes to develop resistance to treatments with ROS 

(Vatansever et al., 2013). A primary advantage of this approach is that there is no need for 

internalization of the drug to ensure cell death or inactivation, which again minimizes the 

microorganisms’ chance to develop resistance (Lauro et al., 2002). Photo-antimicrobial action 

can reduce the expression of virulence factors such as protein toxins, proteases of Pseudomonas 

aeruginosa, α-hemolysin, sphingomyelinase, and lipopolysaccharides of Escherichia coli and 

Staphylococcal aureus by chemical oxidation (Tubby et al., 2009). This ability to degrade 

virulence factors is extremely beneficial, as these agents (i.e. endotoxins) may cause damage to 

the host cell even if there is no active infection (Komerik et al., 2000). Photo-antimicrobial 

action can also damage other phenotypical processes such as biofilm formation which is related 

to multidrug resistance (De Melo et al., 2013; Cieplik et al., 2014). Both chemical photo-

sensitizer compounds, such as phenothiazinium salts, porphyrins, or phthalocyanines and natural 

photo-sensitizer products, such as curcumin (Dahll et al., 1994) (approved as a food additive 

E100), as well as riboflavin (vitamin B2) (Maisch et al., 2014), and hypericin (Yin et al., 2015) 

have a high biocompatibility in host tissues. They can be applied at low concentrations 
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(micromolar range), and without light activation they are harmless to host tissues. It is relatively 

easy to activate the photo-antimicrobial compounds using low powered lasers light emitting 

diodes or halogen lamps which should be enough to initiate the reaction. Moreover, with the 

advent of the fiber optic technology many infections inside the body can be reached 

endoscopically, which permits the application of the photo-antimicrobial agent with light. Even 

if the infection was deep-seated, a transcutaneous needle can potentially deliver both the photo-

antimicrobial agent and light with a fiber (Cochrane et al., 2013).  

 

Glueck et al (2017). Treated the surface of cucumber slices with 250 µL of 8.2 × 107 CFU (7 log 

CFU) E coli ATCC 25922 suspension and treated with 250 µL of the cationic curcumin 

derivative SACUR-3 at 10, 50 and 100 µM concentration, then illuminated from above with an 

LED-array consisting of 432 LEDs at a distance of 15 cm and radiant exposure 33.8 J cm2, a 

reduction of 3, 4 and 4.5 log CFU were obtained, respectively (Glueck et al., 2017). Similarly, 

photodynamic inactivation (PDI) against the same bacteria on lettuce leaves with 10 µM 

SACUR-3 resulted in 3 log CFU reduction, while 50 µM and 100 µM SACUR-3 resulted in 

more than 6 log CFU reduction. In fact, the 50 µM SACUR-3 resulted in a relatively higher 

reduction than the 100 µM SACUR-3 concentration. PDI on tomatoes treated with 10 and 100 

μM SACUR-3 resulted in a 3 log CFU reduction, while treatment with the 50 µM resulted in a 6 

log CFU reduction (Glueck et al., 2017). Furthermore, fenugreek seeds inoculated with 7.3 × 10 5 

CFU E. coli and treated with PDI and 10 µM SACUR-3 resulted in a 3 log CFU reduction, while 

the same conditions with 50 μM SACUR-3 resulted in a 5 log CFU reduction and with 100 µM, 

approximately 5 log CFU reduction (Glueck et al., 2017). Mung beans inoculated with 9.6 × 106 
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CFU E. coli and treated with PDI and 10 µM, 50 µM, and 100 µM SACUR-3 resulted in less 

than 1 log CFU reduction. This work shows that PDI treatments using the cationic curcumin 

derivative SACUR-3 is an effective antimicrobial tool against E. coli and other foodborne 

microorganisms (Glueck et al., 2017).  

 

A bacterial suspension of the Gram-positive bacterium Enterococcus faecalis ATCC 29212 at 

107 CFU/ml was treated with cationic Tri-Py+-Me-PF porphyrins of 0.5 μM, 1.0 μM and 5.0 μM 

and illuminated with white light PAR radiation, 13 OSRAM 21 lamps of 18 W each, wavelength 

of 380–700 nm at 20–25°C (Alves et al., 2009). The light fluence of 14.4 J/cm2 resulted in a 

reduction of 6.80 log CFU/ml for the three tested concentrations. Similarly, 0.5 μM, 1.0 μM and 

5.0 μM concentrations of the Tri-Py+-Me-CO2 Me porphyrins resulted in a 7 log CFU/ml 

reduction under different light fluences, the lowest light fluence being 14.4 J/cm2 with 5.0 μM. 

Moreover, the Tetra-Py+-Me porphyrins at 1.0 μM and 5.0 μM with 65 J cm2 and 14.4 J/cm2 

light fluence respectively, resulted in a 7 log reduction of CFU/ml, while with 0.5 μM and 65 

J/cm2 light fluence 5 log CFU/ml reduction. A concentration of 0.5 μM Di-Py+-Me-Di-CO2 H 

porphyrins and 64.8 J/cm2 of light exposure resulted in a reduction of 7.03 log CFU/ml E. 

faecalis (Alves et al., 2009). Similarly, a bacterial suspension of E. coli ATCC 13706 at 7 log 

CFU/ml treated with 5.0 μM Tri-Py+-Me-PF and Tri-Py+-Me-CO2 Me porphyrins with a light 

fluence of 21.6 J/cm2 resulted in a 7 log reduction (Alves et al., 2009). Tetra-Py+-Me at 5.0 μM 

with 64.8 J/cm2 light fluence resulted in a reduction of 7.50 log of E. faecalis count. Tricationic 

porphyrin Tri-Py+-Me-CO2 H at of 5.0 μM under a light fluence of 64.8 J/cm2 resulted in a 

reduction of 5.18 log (Alves et al., 2009).  



 

21 

 

 

When 10 ml of a 7 log CFU/ml bacterial suspension of Listeria monocytogenes ATCL3C 7644 

was incubated for 2 h with 7.5 mM of 5-aminolevulinic acid (ALA) and illuminated for 20 

minutes with visible light LED-based light source (λ = 400 nm) and energy density of 20 

mWs/cm2 reduction at 4 logs CFU/ml was obtained (Buchovec et al., 2010). When 5.9 log 

CFU/cm2 of biofilm-associated cells of L. monocytogenes (adhered to a plastic coupon) were 

incubated in 10 mM ALA solution illuminated with light (λ = 400 nm) for 15 min with a light 

dose of 18 J/cm2, a 3.1 log reduction was obtained (Buchovec et al., 2010). The results show that 

both vegetative cells and biofilms of L. monocytogenes can be inactivated with PDI, which will 

have a direct application in the food industry and other industrial and medical sectors. When 20 

ml of a 1 × 107 CFU/ml Salmonella enterica serovar Typhimurium strain DS88 [SL5676 SmR 

(pLM32)] was incubated for 60 min with chlorophyllin–chitosan complex (1.5 × 10−5 M Chl–

0.1% CHS) in vitro and illuminated by visible light (λ = 405 nm) at a light dose of 38 J/cm2, a 

reduction of 7 log CFU/ml was obtained (Buchovec et al., 2016). When strawberries were 

soaked in a bacterial suspension of S. enterica (∼1 × 107 CFU/ml) suspension for 30 min and 

soaked in Chl–CHS 1.5 × 10−5 M Chl–0.1% CHS for another 30 min, then illuminated with a 

light dose of 38 J cm2 for 60 min, a 2.2 log CFU/ml reduction was obtained (Buchovec et al., 

2016). When strawberries contaminated with mold and yeast at 4 log were soaked in 

chlorophyllin–chitosan complex Chl–CHS (1.5 × 10−5 M Chl–0.1% CHS) for 30 min, then 

illuminated with visible light (38 J/cm2) for 60 min, a 1.4 log CFU/ml reduction of the mold and 

yeast populations occurred (Buchovec et al., 2016).  
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When 10 ml of four foodborne bacteria, E. coli O157: H7 EDL 933, S. Typhimurium ATCC 

14028, L. monocytogenes BAA-679 and S. aureus ATCC 6538 at 106 CFU/ml in tryptic soy 

broth were illuminated for 7.5 h at 20, 15 and 10°C at a distance of 4.5 cm by blue LED of 461 

nm wavelength, with dosages of 596.7, 431.2, and 688.0 J/cm2 respectively, the blue light 

illumination wavelength 461 nm at 15°C resulted in 4.9, 5.0, 4.3 and 5.2 log CFU/ml reduction 

of E. coli O157:H7, S. Typhimurium, L. monocytogenes and S. aureus, respectively, while the 

green 521 nm was less effective showing 1.7 log CFU/ml reduction for S. Typhimurium and S. 

aureus and 1.0 and 0.9 log CFU/ml reduction of E. coli O157:H7 and L. monocytogenes, 

respectively (Ghate et al., 2013). Similarly, changing the temperature to 10°C and illumination to 

a light at 461 nm wavelength resulted in 5.1, 4.6, 5.2 and 4.7 log CFU/ml reductions of E. coli 

O157:H7, S. Typhimurium, L. monocytogenes and S. aureus, respectively, and 521 nm at the 

same temperature resulted in 1.8, 1.7, 1.5 and 1.5 log CFU/ml reduction of E. coli O157:H7, S. 

typhimurium, L. monocytogenes and S. aureus, respectively. Illumination at 20°C for all 

wavelengths did not show any reduction and 642 nm did not have efficacy against any of the 

tested bacteria (Ghate et al., 2013). 

Light treatment against three strains of E. coli O157:H7 (ATCC 35150, C7927, and F12), three 

serotypes of L. monocytogenes (ATCC BAA-679 [ST 1/2a], ATCC BAA-839 [ST 1/2b], and 

ATCC 13932 [ST 4b]), and five serotypes of Salmonella spp. (S. Agona ATCC BAA-707, S. 

Newport ATCC 6962, S. Saintpaul ATCC 9712, S. Tennessee ATCC 10722, and S. 

Typhimurium ATCC 14028) at 109 CFU/ml using equal culture cocktails of each strain or 

serotype onto ten sites on the surface of a mango, by illumination using high intensity LED light 

(wavelength 405±5 nm) at a distance of 4.5 cm at 4, 10, or 20°C, for 24–48 h, with a total dose 
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of 2.6–3.5 kJ/cm2 caused E. coli O157:H7 and S. spp. populations to be reduced to below 

detection levels of 1.0 log CFU/ml, while the L. monocytogenes strains were reduced to < 1.6 log 

CFU/cm2 (Kim, Tang, Bang & Yuk, 2017). At 20°C, after 24 h, at a dose of 1.7 kJ/cm2, E. coli 

O157: H7 was reduced to < 1.0 log CFU/ml and S. spp. population was reduced to 1.2 log 

CFU/cm2, while on the other hand, L. monocytogenes population were not affected by 

illumination at this dose (Kim, Tang, Bang & Yuk, 2017). These data indicate that the 

illumination using 405±5 nm light at chilling temperatures has antibacterial effects against some 

foodborne bacteria for fruit preservation. When 10 µL of S. enterica serovar S. Agona (BAA-

707), S. Newport (ATCC 6962), S. Saintpaul (ATCC 9712), or S. Typhimurium (ATCC 14028) 

suspensions at 105 CFU/ml were inoculated onto ten spots on cut papaya, illuminated for 24-48 h 

at 4, 10, or 20°C at a distance of 2.3 cm with LED light (wavelength 405±5 nm) at a dose of 0.9-

1.7 kJ/cm2, at 4°C a dose of 1.7 kJ/cm2, after 24 h, caused 1.0-1.2 log CFU/cm2 reduction of all 

Salmonella serovars (Kim, Bang & Yuk, 2017). At 10°C, after 36 h, a dose of 1.3 kJ/cm2, caused 

0.3, 0.6, and 1.3 log CFU/cm2 reduction of S. Newport, S. Saintpaul, and S. Typhimurium, 

respectively. However, the treatment at 20°C was not effective against the bacteria (Kim, Bang 

& Yuk, 2017). These results indicate that the LED light at a wavelength of 405±5 nm together 

with chilling temperatures is a useful antibacterial treatment against several S. enterica serovars.  

 

In another study, a pellet of 1.2 × 1010 CFU/ml E. coli was dissolved and mixed with 1000 µL of 

30 µM photosensitizer Flavin Mononucleotide (FMN), and illuminated for 120 min with blue 

light-diode (wavelength 462 nm) at a dose 7.2 J/cm2 and an illumination intensity of 1 mW/cm2 

(7.2 J/cm2) causing a 96% inactivation rate of E. coli (Liang et al., 2015). Furthermore, 77% 
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inactivation of E. coli using 600 µM FMN for 60 min with the same illumination and light 

intensity was obtained. An 86% inactivation rate of E. coli was obtained with 120 µM FMN 

illumination for 120 min and 1 mW/ cm2 light intensity was used (Liang et al., 2015). These 

results suggest that the combined treatment of the FMN at low concentration with blue light at 

462 nm can efficiently inactivate E. coli. When 10 ml of orange juice inoculated with a cocktail 

of S. enterica serovars [Salmonella Gaminara (BAA 711), Salmonella Montevideo (BAA 710), 

Salmonella Newport (ATCC 6962), Salmonella Saintpaul (ATCC 9712), and Salmonella 

Typhimurium (ATCC 14028)], at an initial concentration 106 CFU/ml was illuminated from 

above by LED with a wavelength of 455 to 465 nm and irradiance of 92.0 mW/cm2 for 13.58 h at 

4 °C, a 3.3 log CFU/ml reduction resulted (Ghate et al., 2016). At 147.7 mW/ cm2 for 8.46 h and 

254.7 mW/ cm2 irradiance for 4.91 h, a 2.2 and 2.1 log CFU/ml reduction resulted, respectively, 

and at 28°C with 92.0 mW/cm2 irradiance for 13.58 h, a 3.6 log CFU/ml reduction was obtained; 

at 147.7 and 254.7 mW/cm2 irradiance for 8.46 and 4.91 h, respectively, a 2.6 and 2.0 log 

CFU/ml reduction was obtained, respectively. Moreover, at 20°C, 92.0 mW/cm2 irradiance for 

13.58 h, a 4.8 log CFU/ml reduction resulted, at 147.7 and 254.7 mW/cm2 irradiance for 8.46 h 

and 4.91 h respectively, a 3 and 2.5 log reduction were obtained, respectively (Ghate et al., 

2016). The data point to the potential use of LED at 455 to 465 nm to preserve fruit juice. 

 

When ten ml of five different foodborne bacterial suspension at 106 CFU/ml were illuminated for 

9h at 10, 4 and 25°, at a distance of 33 mm from above by light-emitting diode (wavelength 405 

nm) at a dose 306 J/cm2, where 1.9, 2.1 and 4 log CFU/ml reduction of S. aureus at 4, 10 and 

25ºC was obtained, respectively (Kumar et al., 2015). At similar treatment conditions, a 0.6 log 
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CFU/ml reduction of S. Typhimurium at 25ºC was obtained, and 2.3 and 1.9 log CFU/ml 

reduction of B. cereus and L. monocytogenes was obtained, respectively. A 1.2, 1.3 and 0.5 log 

CFU/ml reduction of E. coli O157:H7 at 4, 10 and 25ºC was achieved, respectively. While using 

520 nm illumination at 25ºC and dose of 3,060 J/cm2, a 1.2 log CFU/ml reduction of S. aureus 

obtained, while the 10 and 4ºC conditions did not cause reduction. A 0.7, 1.2 and 1.0 log CFU/ml 

reduction of L. monocytogenes at 25, 10 and 4 ºC was achieved, respectively. The 405 nm and 

520 nm LEDs were not effective against P. aeruginosa. Moreover, the 520 nm LED was not 

effective against E.coli O157:H7 or S. Typhimurium (Kumar et al., 2015). The data indicates that 

405 nm LED is the more effective in reducing bacterial population than the 520nm. Also, S. 

aureus had the highest reduction when illuminated with 405 nm and at 25ºC, followed by B. 

cereus.  

 

When 0.1 ml of two foodborne bacteria (S. aureus strain 27853 and P. aeruginosa strain 27853) 

at 108 CFU/ml were mixed with 0.1 ml of 0 to 10 mM 5-Aminolevulinic acid, incubated for 60 

min, and illuminated for 120 min with red light (wavelength 635±5 nm) at a dose of 216 J/cm2, 

the ALA concentration of 1.0 mM with a light dose of 162 J/cm2 achieved a complete reduction 

of S. aureus (Hsieh et al., 2014). At 1.0 mM ALA, a 2.3, 3.3, 4.0 and 4.7 log CFU/ml reduction 

of P. aeruginosa was obtained using 30, 60, 90 and 120 min illumination times, respectively. At 

2.5 mM ALA, a 3.0, 4.1, 5.3 and 6.3 log CFU/ml reduction of P. aeruginosa using 30, 60, 90, 

and 120 minutes was obtained, respectively. A 6.5 log CFU/ml reduction at 5 mM ALA with a 

light dose of 162 J/cm2 for 90 min resulted. At 10 mM ALA no surviving cells were detected 

(Hsieh et al., 2014). The data indicates that the Gram-positive S. aureus was more sensitive to 
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PDI than the Gram-negative P. aeruginosa. The major factor could be the complex outer 

membrane of the Gram-negative bacteria which hampers the photosensitizers’ penetration of the 

bacterial cell membrane. When a 108 CFU/ml suspension of Vibrio parahaemolyticus ATCC 

17802 was incubated for 5 min at 37ºC with 5, 10 and 20 µM curcumin dissolved in alcohol, 

illuminated for 60 s with blue light (wavelength of 470 nm), and a light dose of 3.6 J/cm2, a 2 log 

CFU/ml reduction at 5 µM curcumin was obtained, while 10 and 20 µM curcumin resulted in a 

6.5 log CFU/ml reduction of V. parahaemolyticus from oyster flesh (Wu et al., 2016). Similarly, 

the flesh of six oysters was contaminated with 5 log CFU/g V. parahaemolyticus, incubated for 3 

h at 10ºC in an artificial seawater system with 10 µM curcumin, then illuminated at a wavelength 

of 470 nm and a light dose of 3.6 J/cm2 from the bottom shell for 60 s. The oyster flesh was then 

removed, homogenized, filtered and plated. A 5 log CFU/g oyster flesh reduction of V. 

parahaemolyticus was obtained (Wu et al., 2016). This research indicated that PDI using 

curcumin as a photosensitizer shows improved inactivation effects against V. parahaemolyticus 

in oysters. It can have a direct application in the food sector. 

 

When two ml of 7.6 × 107 CFU/ml S. aureus strain DSMZ 18587 or E. coli strain ATCC 25922 

bacterial suspensions were incubated with 5 μM, 10 μM or 50 μM polyvinylpyrrolidone 

curcumin (PVP-C) at 5, 15 and 25 min followed by illumination from below with blue light 

(wavelength 432 nm) for 60 min at a fluence of 33.8 J cm-2, at 5 μM PVP-C, 6, 5 and 1 log 

CFU/ml reduction of S. aureus were obtained, respectively (Winter et al., 2013). At 10 μM PVP-

C, incubation for 5, 15 and 25 min resulted in 5.6, 5.8 and 4.9 log CFU/ml reduction of S. aureus 

was obtained, respectively. At 50 μM PVP-C, after 5, 15, and 25 min incubation with 
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illumination, a 6.9 log CFU/ml reduction was achieved after 5 min, with total eradication of the 

bacteria after 15 and 25 min. Similarly, preincubation of E. coli with 500 mM CaCl2 for 10 min 

followed by incubation with 50 μM PVP-C for 15 and 25 min with similar illumination showed a 

4 log CFU/ml reduction of E. coli colonies (Winter et al., 2013). This research demonstrates the 

ability of PVP-C to effectively reduce S. aureus and E. coli colonies. Moreover, PVP-C is water-

soluble and does not require the addition of organic solvents such as Dimethyl sulfoxide (DMSO) 

for solubility as with underivatized curcumin. Overcoming curcumin’s solubility problem opens 

the door for future employment of PVP-curcumin mediated PDI in clinical applications and food 

production. 

 

When 250 μL of S. aureus (ATCC 25923) at 107 CFU/ml was mixed with 250 μL of 50 μM or 

100 μM PVP-C, coated on cucumber pieces and illuminated from above with blue light (435±10 

nm wavelength and a fluence of 33.8 J/ cm2), a 2.6 log CFU/ml reduction was obtained (Tortik et 

al., 2014). Similarly, when green, red and yellow pepper pieces coated with S. aureus 

suspensions were incubated with 50 μM PVP-C followed by illumination at 435±10 nm 33.8 J/ 

cm2, a mean reduction of 2.5 log CFU/ml was obtained (Tortik et al., 2014). Chicken pieces 

coated with S. aureus and incubated with 50 μM or 100 μM followed by illumination at 435±10 

nm achieved a 1.7 log CFU/ml reduction of S. aureus (Tortik et al., 2014). The results of this 

research show the ability of curcumin-mediated PDI to decontaminate vegetables and poultry 

from S. aureus. Incubation of 50 µL of 5 × 105 CFU/50 ml methicillin-resistant S. aureus 

(MRSA/JD004, MRSA/L1, L2, and L4) for 10 min with 10 µg/ml indocyanine green (ICG; an 

inexpensive dye with a longer light absorption peak of light in the near infrared [NIR] region), 
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and NIR wavelength irradiation ranging from 700 to 2200 nm (light power of 65.54 mWs/cm2), 

achieved a one log CFU/ml reduction with a light dose of 50 J/cm2 after 25.4 min (Wong et al., 

2018). Increased reduction of 2 and 3 log CFU/ml resulted when using 100 J/cm2 after 25.4 min 

with 12.5 µg/ml and 25 µg/ml ICG, respectively. A reduction of 2 and 5 log CFU/ml after 50.8 

min with a light dose of 200 J/cm2 and 10 mg/ml ICG were also reported (Wong et al., 2018). 

These data indicate that increasing ICG concentration and increasing light doses using NIR 

lamps will give increased reductions suitable for use in medical environments to treat MRSA 

infections.  

 

When two hundred-fifty μL of a 1.7 × 107 CFU/ml S. aureus (ATCC 25923) or a 4.3 × 107 

CFU/ml E. coli (ATCC 25922) coated porcine skin sample was treated with an equal volume of 

50 μM or 100 μM of Polyvinylpyrrolidone- curcumin  (PVP-CUR) and illuminated by blue light 

LED lamp (wavelength 435±10 nm, light fluence 33.8 J cm-2) a 1.7 and 1.3 log CFU/ml 

reduction of S. aureus at 50 μM and 100 μM PVP-CUR was obtained, respectively, and a 0.3 log 

CFU/ml reduction of E. coli with 100 μM PVP-CUR was reported (Tortik et al., 2016). In a 

similar approach, 50 μM and 100 μM of SACUR-3 (a four-fold cationic and water-soluble 

curcumin derivative) was applied to S. aureus, achieving a 2.2 and 1.8 log CFU/ml reduction, 

respectively. The same application to E. coli resulted in a 3.2 and 3.3 log CFU/ml reduction, 

respectively (Tortik et al., 2016). These data prove that the cationic SACUR-3 is a more effective 

photosensitizer against Gram-positive and Gram-negative bacteria than PVP-CUR, which shows 

relative effectiveness only against Gram-positive bacteria. 
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When 10 ml of 8 log CFU/ml S. aureus ATCC 6538 was incubated for 10 min with 5.0 μM 

Tetracationic Porphyrin (Tetra-Py+-Me) in phosphate buffered saline (PBS), and irradiated for 

180 min with white light at wavelength 400–800 nm with a light dose of 43.2 J /cm2, a complete 

8 log CFU/ml reduction was obtained (Branco et al., 2018). Furthermore, these researchers 

showed that when 500 μL of 5 log CFU/ml S. aureus ATCC 6538 was distributed over 10 cm2 

(5×2 cm) of porcine skin coated with 500 μL of 50 μM Tetra-Py+-Me, incubated for 30 min in 

the dark, and illuminated with white light at irradiances of 150 mW/cm2, a reduction of 4 log 

CFU/ml reduction was obtained (Branco et al., 2018). Tetra-Py+-Me is an efficient photo-

inactivator against a wide range of microorganisms, which is readily available in pure form. 

Similarly, other researchers showed that when 50 µL of 7 log CFU/ml of Aeromonas hydrophila 

ATCC 7966 in suspension was mixed with 950 µL of the photosensitizer Erythrosine B (ERY) at 

1 × 10-5 M in the dark for 10 min, and then illuminated with a green LED at a light dose of 78 

J/cm2 for 10 min, a 4.3 log CFU/ml reduction was observed (Yassunaka et al., 2015). A total 

reduction of A. hydrophila after 20 min at light dose of 156 J/cm2 and 30 min at light dose 234 

J/cm2 was obtained.  Using 1 × 10-5 M Erythrosine Methyl Ester (ERYMET)-mediated PDI with 

a light dose of 84 J/cm2 after 30 min, A. hydrophila was reduced by a 4.4 log CFU/ml. Similarly, 

when 107 CFU/ml S. aureus was incubated for 10 min with ERY at 1 × 10-6 M, and illuminated 

with green light wavelength 510 nm, a 2.2 and 4 log CFU/ml reduction was obtained after 20 and 

30 min at light dose of 26 J/cm2 and 40 J/cm2, respectively (Yassunaka et al., 2015). ERYMET 

and Erythrosine Butyl Ester (ERYBUT) at 1 × 10-6 M and a light dose of 4 and 3 J/cm2 after 10 

min resulted in total S. aureus reduction to non-detectable levels (Yassunaka et al., 2015). From 
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these experiments, it appears that the photosensitizer concentration, bacterial type and light dose 

are factors that contribute to and play a role in the overall inactivation effects. 

 

Biofilms of S. aureus strain RN6390 incubated for 30 min with 0.5 mM toluidine blue (without 

light) resulted in a 2 log CFU reduction. Illumination by near-infrared laser technology (NIRT) 

at a wavelength of 980 nm on continuous mode for 15 to 100 s alone without toluidine resulted 

in a 3 log CFU reduction, using a light dose of 454 J/cm2 (Gandara et al., 2017). When the 

biofilms were incubated with 0.5 mM toluidine blue for 30 min and illuminated from below with 

NIRT laser treatment at a 227 J/cm2 light dose, a 3 log CFU reduction was obtained, and with a 

454 J/cm2 light dose a 5 log CFU reduction was obtained. Similarly, these researchers showed 

that when the biofilm was incubated for 30 min with 0.5 mM toluidine blue and illuminated from 

above with a laser light (wavelength of 635 nm) and a fluence of 157 J/cm2 for 10 min, a 3 log 

reduction was obtained. Furthermore, biofilm incubation of toluidine blue combined with 

successive irradiations using the 980-nm laser and 635-nm laser resulted in a total reduction of 

4.5 log (Gandara et al., 2017). This research demonstrated that treatments using lasers and 

toluidine blue efficiently inactivates S. aureus biofilms, which could be applied on a large-scale 

in different scientific and industrial fields. When 0.2 ml of 108 CFU/ml S. aureus ATCC 25923 

suspension was mixed with either 0.1% of the photosensitizer radachlorin gel (a hydrosoluble 

chlorin composed of a set of sodium salts including chlorin e6, chlorin р6, and purpurine-5) 

illuminated by diode laser (wavelength of 662 nm) and energy density of 6 J/cm2 on continuous 

mode or 0.1% of the photosensitizer toluidine blue O (TBO) (composed of phenothiazinium 

salts) illuminated by diode laser (wavelength of 633 nm) and energy density of 6 J/cm2 on 
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continuous mode, reductions of a 6.1 log and log 5.83 CFU/ml were obtained, respectively 

(Fekrazad et al., 2016). This research indicates a similar bactericidal effect of the 

photosensitizers radachlorin and TBO on S. aureus which can be used for the inactivation of the 

bacteria in the industrial and health sectors.  

 

With regards to viral inactivation using PDI human plasma (7 ml) inoculated with 3-4 log 

PFU/ml hepatitis A virus HM-175 clone (p24A) and 0.01 mM porphyrins tetratosylate 

(TMPyP4) followed by illumination with long-wavelength (365 nm) UV at a fluence rate of 2.2 

mW/cm2 from above, at a distance of 3.5 cm showed a reduction of 2.5 log PFU/ml after 1 min 

(Casteel et al., 2004). Increased exposure times of 10, 30, 90 min resulted in a > 4.2 log PFU/ml 

reduction, while exposure with 0.01 mM porphyrins (TPPS4) for 1, 10, 30 and 90 min resulted in 

a 0.2, 0.5, 0.7 and 1 log PFU/ml reduction, respectively. The 0.01 mM porphyrins (TBuPyP4) at 

1, 10, 30 and 90 min of exposure resulted in 0.2, 1.6, 2.8 and > 3.4 log PFU/ml reductions. 

Furthermore, 0.01 mM porphyrins (TOcPyW) illuminated for 1, 10, and 30 and 90 min resulted 

in 0.4, 1.3, 2.2 and 2.5 log PFU/ml reductions, respectively (Casteel et al., 2004).  

 

When murine norovirus 1 (MNV-1) at 8.5 log PFU/ml suspension was mixed with 5 µM and 20 

µM curcumin (95% purity) and illuminated with LED blue light source (wavelength of 470 nm) 

of 3.6 J/cm2 delivered in 60 s, a 1.32 log PFU/ml and a > 3 log PFU/ml reduction in viral titer 

was achieved, respectively (Wu et al., 2015). Similarly, when six oysters were exposed to 

seawater containing 10 µM and 20 µM curcumin (95% purity) for 6 h, allowed to bio-

accumulate MNV-1, and illuminated with the same LED blue light source for 60 s, a 0.76 log 
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PFU/ml and a 1.15 log PFU/ml reduction were obtained, respectively. The data indicates that 

PDI using curcumin can help to inactivate MNV-1 in oysters (Wu et al., 2015).  

 

When a 7 log TCID50/ml FCV-F9 suspension was incubated at room temperature and exposed to 

LED blue light wavelength (464–476 nm) and 50–60 Hz frequency range, at a light dose of 3 

J/cm2 along with 5 µg/ml curcumin from Curcuma longa L. for 30 min, a reduction of 1.75 log 

TCID50/ml was obtained, while similar treatment at 37ºC reduced FCV titer by 4.43 log 

TCID50/ml (Randazzo et al., 2016). These researchers showed that increasing the concentration 

of curcumin to 50 µg/ml together with PDI resulted in a 3.29 log TCID50/ml reduction at room 

temperature, and a 4.62 log TCID50/ml reduction was obtained at 37ºC. When 7 log TCID50/ml 

MNV-1 was exposed to LED blue light for 30 min with 50 µg/ml curcumin at 37 ºC, a 0.40 log 

TCID50/ml reduction was obtained, when the illumination time increased to 120 min, a 0.03 log 

TCID50/ml reduction resulted. A higher concentration of 100 µg/ml curcumin after 30 min 

illumination resulted in a 0.48 log TCID50/ml reduction of MNV-1 and longer exposure of 120 

min resulted in 0.73 log TCID50/ml reduction (Randazzo et al., 2016). When a 6 log PFU/ml 

MNV-1 suspension was incubated for 72 h at 4ºC with 2.5 µL of 1 mg/ml concentration of 

phytochemicals, including curcumin, resveratrol, cinnamic acid, proanthocyanidin, ginsenoside 

Rh1, ginsenoside F2 or ginsenoside Rg3 (the ginsenosides are the active constituents of most 

ginseng species, the selected ginsenosides have different glycosidic moieties which gave 

different antimicrobial effects), a 90.88%, 80.05%, 79.58%, 60.19%, 59.26%, 52.14% and 

48.71% viral neutralization (percentage of inactivated virus) was obtained, respectively (Yang et 

al., 2016). Incubating MNV-1 at  4ºC for 72 h with 0.25, 0.5, 0.75, 1 and 2 mg/ml curcumin 
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resulted in a 52.85%±11.39%, 68.35%±5.42, 68.96%±3.13%, 89.99%±5.88%, and 

90.43%±9.135 viral neutralization, respectively, and 1 mg/ml curcumin for 10, 30, 60 and 120 

min resulted in a 33.33%±3.85%, 36.79%±11.13%, 58.89%±2.94% and 82.50%±1.21% viral 

neutralization, respectively (Yang et al., 2016).  

 

When 20 ml of 10% albumin containing 8.5 log EID50/0.2 ml (50 Percent Embryo Infective 

Dose) of influenza virus A /Puerto Rico/8/34 H1N1, was mixed with 2 mg/ml solid phase 

fullerene-based photosensitizer (SPFPS) and irradiated with 324 J/cm2 for 30 min, by double-

sided panel (maximum wavelength 460 nm), complete inactivation ( to non-detectable levels) 

was obtained (Belousova et al., 2014). The authors concluded that this method could potentially 

be used as an inactivation treatment for H1N1 virus in the plasma of blood donors.  

When 6.5 × 106 focus forming units (FFU/ml) dengue virus type I was incubated with 0.01 µM 

2,6-diiodo-1,3,5,7-tetramethyl-8-(N-methyl-4-pyridyl)-4,4′-difluoroboradiazaindacene 

photosensitizer (DIMPy-BODIPY) dye and illuminated for 30 min by a light source with a 

wavelength of 400–700 nm and fluence of 118 J/cm2, a 2 log FFU/ml reduction was obtained 

(Carpenter et al., 2015). Higher concentrations (0.1 and 1 µM) of the DIMPy-BODIPY resulted 

in a 6 log FFU/ml reduction. Similarly, 7 log PFU/ml vesicular stomatitis virus (VSV) 

suspension incubated with 0.25 μM, 0.5 μM and 1 μM photosensitizer DIMPy-BODIPY and 

treated with light fluence of 118 J/cm2, resulted in 4, 5 and 6 log PFU/ml reductions, 

respectively. Moreover, when 6.5 × 105 FFU/ml of human adenovirus-5 was incubated and 

treated with 1 μM and 5 μM  DIMPy-BODIPY, 1 and 2 log FFU/ml reductions was obtained, 

respectively (Carpenter et al., 2015). These results prove that DIMPy-BODIPY is an effective 
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photosensitizer compound that can be used in PDI of human viruses at a low concentration. 

Based on this literature on HAV outbreaks, disease symptoms and current inactivation methods, 

the objectives of this research were to determine the effectiveness of PDI against HAV using 

grape seed extract solution as a photosensitizer and to find new compounds with anti HAV 

properties that can be used to inactivate HAV on produce and contact surfaces. The hypothesis 

was that these plant derived compounds will have antiviral activity against HAV, and that this 

activity will be enhanced in the presence of light of appropriate wavelengths. 
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Chapter II: Photodynamic Inactivation of Hepatitis A Virus on a Formica Coupons, a 

Model Contact Surface by Grape Seed Extract and UV Light 
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Abstract 

Hepatitis A virus (HAV) outbreaks are a major concern for food producers worldwide as it can 

withstand harsh environments and storage conditions. In this research, photodynamic 

inactivation (PDI) was applied against HAV using grape seed extract (GSE). PDI uses a 

photosensitizer compound, oxygen, and light to generate reactive oxygen species (ROS) to 

inactivate target microorganisms. The effectiveness of GSE alone and photoactivated GSE at two 

different concentrations and contact times to inactivate HAV dried on Formica coupons and the 

surface of tomatoes was investigated. Treatments of HAV on coupons with 0.91 mg/ml GSE 

showed no effects even after 30 min at room temperature, while treating HAV on tomatoes for at 

least 5 min with 10 mg/ml GSE resulted in ~1 log PFU/ml reduction. PDI of HAV treated with 

0.91 mg/ml GSE and UV light at 254 nm for 3, 10, 20 and 30 min with dose (energy density) of 

0.012±0.00, 0.040±0.001, 0.081±0.002  and 0.121±0.003 J/cm2, respectively, caused 1.45±0.39, 

1.74±0.37, 1.48±0.51 and 2.78±0.68 log PFU/ml reduction, respectively. PDI of HAV with GSE 

showed statistically significant reductions (P<0.05) from the control, that was not significant 

(p>0.05) from HAV treated with UV alone for the same time. This indicated that UV light was 

probably responsible for HAV reduction rather than the production of ROS. PDI of HAV with 

GSE on tomatoes for 5, 15 and 20 min, dose (energy density) were 0.020±0.001, 0.06±0.02, 

0.081±0.002 J/cm2, respectively causing1.88±0.38, 1.74±0.37 and 1.98±0.32 log PFU/ml 

reduction, respectively. Reductions of HAV with GSE, HAV with PBS and HAV with GSE 

without UV were statistically significant from the control but not significant from each other 

(P>0.05). This could be due to difficulties in virus recovery from tomatoes. These results showed 
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the antiviral effect of GSE against HAV. The data obtained can be used to optimize 

photodynamic conditions for use against HAV. 
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Introduction 

Hepatitis A virus causes a serious concern for the global food manufacturing sector. An essential 

characteristic of the virus is its ability to survive harsh and severe environmental conditions. 

HAV virions are stable at a pH of 5; at this pH, release of the genomic RNA occurs at 

approximately 76°C and the viral protein melts at approximately 77°C (Wang et al., 2015). The 

empty proteins have similar characteristics of the full virions but can tolerate higher temperatures 

up to 81°C and a much lower pH level (2) (Walter et al., 2012; Wang et al., 2015). Furthermore, 

HAV can remain infectious for 5 h after exposure to a pH of 1 for 2 h at room temperature, while 

the highly purified virus can be infectious at room temperature for up to 8 h at a pH of 1 (Scholz 

et al., 1989). Other enteroviruses such as Poliovirus type 1 (PV l) and coxsackie B viruses are not 

stable under these same conditions (Scholz et al., 1989). Also, when feces contaminated with 

HAV are dried and stored at 25 °C at a relative humidity of 42% for 30 days, the virus remains 

viable and infectious (Mccaustland et al., 1982). This high level of survivability is a significant 

factor in the contamination of a wide variety of food products and the subsequent occurrence of 

several HAV outbreaks.  

 

In 1988 the most massive HAV outbreak known to date occurred in Shanghai, China, due to the 

consumption of contaminated raw clams and approximately 292,301 cases were reported 

(Halliday et al., 1991). In 2003 in Pennsylvania, a large outbreak of HAV occurred among diners 

in a local restaurant, where clinical testing proved all workers to be free from HAV infection 

(Wheeler et al., 2005). The patients recalled eating salsa in the restaurant, which contained green 

onions from Mexico, that onions appeared to be the source of the infection and were 
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contaminated before arrival at the restaurant. There were 601 total cases in this outbreak; of 

these, 3 died and 124 were hospitalized (Wheeler et al., 2005). Another outbreak in 2016 related 

to frozen strawberries led to 143 cases in 9 states, with no fatalities recorded (CDC. 2016). In 

2017, another multistate outbreak of HAV occurred in the U.S.; mainly intravenous drug users 

and the homeless were affected by the disease (CDC, 2018). The existence of HAV is ancient; its 

recorded history goes back to the ancient Greek and Roman times. Hippocrates referred to 

catarrhal jaundice and described it as the fourth kind of jaundice mentioning its etiology and 

frequency in the book De internis affectionibus (Cockayne et al., 1912). However, the most 

accepted reference to the disease in epidemic form was recorded by Cleghorn in Minorca in 

1745. Others have referred to catarrhal jaundice cases during the American civil war, as the 

disease was common among the troops. Furthermore, similar cases were mentioned in the Boer 

war in South Africa, although its mortality rate was limited (Cockayne et al., 1912).  

 

 HAV belongs to the Picornaviridae family with, subtle but significant structural differences 

compared to the other picornaviruses (Wang et al., 2015). The virus capsid has a smooth surface 

with no canyons surrounding the 5-fold axis of symmetry. Canyons are essential to fit the host 

cell receptor as in the case of other enteroviruses (Rossmann et al., 1985). The capsid proteins 

are remarkably negatively charged with some positively charged fringes. A unique feature of 

HAV is that although it is a non-enveloped virus, it conceals itself with a host-derived membrane 

after the virions are released from infected liver cells, hijacking the identity of the host cell to 

escape the immune system, and this enveloped HAV (eHAV) particle size is approximately 50-

100 nm in diameter (Feng et al., 2013). The eHAV circulates the bloodstream of the host using 
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the identity of the exosomes, small vesicles secreted by the cells that have a critical role in 

intracellular communications (Bobrie et al., 2011). Once the eHAV are released across the 

canalicular membrane, it loses its membrane by the effect of the bile acids inside the proximal 

biliary canaliculus (Hirai-Yuki et al., 2016). When HAV is shed in feces it is in the form of a 

non-enveloped virus (Feng et al., 2013). Due to HAV’s ability to move from cell to cell by 

transcytosis (Dotzauer et al., 2000; Dotzauer et al., 2005), it is concluded that the virus enters the 

cell in an intact form. However, the exact mechanism of disassembly of the capsid and release of 

the virus RNA genome inside the host cell is still unclear (Wang et al., 2015). 

 

HAV receptor was found in primates and, the expression cloning and sequence analysis of the c-

DNA of the receptor indicated a mucin-like class I integral membrane glycoprotein comprising 

of 451 amino acids, that was named the HAV cellular receptor 1 (HAVcr-1) (Kaplan et al., 

1996). In humans a homolog receptor was found, named (huHAVcr-1), that contains 13 

hexameric repeats, while in monkeys (HAVcr-1) there are 27 hexameric repeats (Feigelstock et 

al., 1998). Moreover, the human (huHAVcr-1) lacks a 12 C-terminal amino acid in the 

cytoplasmic domain and was found to be expressed in the organs including the liver, small 

intestine, colon, and spleen, but most strongly in the kidney and testis (Feigelstock et al., 1998). 

In 2017, Das and his team concluded that HAVcr-1 cell receptor is not essential for HAV entry 

into the host cell, or for replication in permissive strains of mice, and suggested that HAV cr-1 

may facilitate the early infection stages by the enveloped virus through binding between the 

TIM1 (HAVcr-1) receptor and the phosphatidylserine (PtdSer) residues on the eHAV membrane 

(Das et al., 2017). At present, the mechanism of HAV entry into the host cell for the both the 
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naked and enveloped virus is unknown; more research is required to discover the actual 

mechanism and the cell receptors used by the virus. 

 

The immune response to HAV infection is through the production of serum antibodies IgM 

(Lemon et al., 1980). Usually, the immune response against the virus infection is delayed (Feng 

et al., 2013). However, in chimpanzees it was found that once the symptoms of the infection are 

present, the IgM antibodies are released from the plasmablasts (Hong et al., 2013) and several 

immunoglobulin genes in the B cells will be up-regulated in response to HAV infection that 

includes a CXCL13 gene which transcribes a chemokine, directing the B cells towards the liver 

(Lanford et al., 2011). Finally, the neutralizing IgG antibodies will be prevalent, and will protect 

against the virus infection (Lemon et al., 1983). Furthermore, the neutralizing IgG antibodies 

attach to specific epitopes on the surface of the viral protein capsid located at the highly 

conserved VP1, VP2, and VP3 regions (Wang et al., 2015; Lemon et al., 1983). Jaundice is an 

important symptom of HAV infection caused by the destruction of infected hepatocytes by the 

immune system, possibly when it recognizes the virus-specific CD8+ T cells on the infected cells 

(Kurane et al., 1985). 

 

Spices and natural compounds were used since ancient times as preservatives and anti-microbial 

compounds. The Romans recorded the preservative properties of fermented grape juice (mustard) 

and used it to preserve fruit juice as it can prevent microbial growth in food (Shelef, 1984). In the 

modern era, the scientific community has begun to examine the different activities of natural 

products against a wide range of microbes. Wine and grape seed extracts are among many 
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natural compounds that possess antioxidant and antimicrobial properties, that are rich in 

proanthocyanidins and other phenolic compounds (Lau et al., 2003). These compounds possess 

antibacterial, antioxidant and anti-inflammatory properties (Perumalla et al., 2011). The 

antioxidant properties of GSE are due to the rich flavonoid contents which act as scavengers of 

free radicals and also as chelating agents (Perumalla et al., 2011). Different concentrations of 

GSE (10, 20, 30 and 40 mg/ml which represent 1, 2, 3, or 4%, wt./vol, respectively) showed 

antimicrobial properties against Listeria monocytogenes in tryptic soy broth after incubation for 

24 h at 37°C (Sivarooban et al., 2007). Another team tested a commercially available GSE 

product (ActiVin™) at 1% concentration on cooked beef inoculated with 5 log CFU/g 

Escherichia coli O157:H7, L. monocytogenes, or Salmonella Typhimurium, then refrigerated and 

stored for nine days (Ahn et al., 2007). For E. coli O157:H7, the bacterial population was 

reduced to 3.18±0.37 log CFU/g in the GSE treated sample as compared to the control, which 

was reduced to 4.43±0.33 CFU/g, representing approximately a 1 log difference. Similarly, S. 

Typhimurium was reduced to 3.56±0.22 log CFU/g, while the control was reduced to 4.25±0.18 

log CFU/g. In L. monocytogenes, the bacterial population increased to 6.80±0.30 log CFU/g in 

the GSE treated sample as compared to the control, which increased to 7.77±0 .19 log CFU/g 

(Ahn et al., 2007). The increase in bacterial counts of L. monocytogenes is consistent with the 

pathogen’s ability to grow at refrigeration temperatures (Saldivar et al., 2018). These 

experiments indicate the significant antibacterial properties of GSE (Ahn et al., 2007). 

At 37°C, high titer HAV (~7 log PFU/ml) in suspension treated with 0.25, 0.5, or 1 mg/ml GSE 

resulted in 1.81, 2.66 and 3.20 log PFU/ml reductions, respectively, while similar treatments for 

low titer HAV resulted in 1.86, 2.26, and 2.89 log PFU/ml reductions, respectively (Su & D’ 
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Souza, 2011). Similar treatments of HAV at room temperature resulted in 0.86, 1.22 and 1.90 log 

PFU/ml reductions of high titer HAV, respectively, and 2.4, 2.62 and 3.01 log PFU/ml 

reductions of low titer HAV, respectively, showing dose-dependent effect. Also, increasing GSE 

wash temperature may increase the antiviral properties against gross contamination (Su & D’ 

Souza, 2011). Further studies were conducted with 0.25, 0.5, or 1 mg/ml GSE for 30 s at room 

temperature that resulted in 0.84±0.22, 0.86±0.17 and 1.06±0.24 log PFU/ml reductions 

respectively on lettuce (Su & D’Souza, 2013). Slightly higher HAV reductions of 0.97±0.10, 

1.02±0.16 and 1.12±0.09 log PFU/ml, respectively were obtained after 1 min treatments with 

same GSE concentrations, on lettuce. The lettuce contaminated with the lower HAV titer (~5 

log10 PFU/ml) treated for 30 s with 0.25, 0.5, or 1 mg/ml GSE resulted in 0.98±0.06, 1.17±0.10 

and 1.20±0.12 log PFU/ml reductions, respectively, with 1.14±0.10, 1.19±0.13 and 1.23±0.11 

log PFU/ml reductions after 1 min, respectively (Su & D’Souza , 2013). Jalapeno peppers 

contaminated with high titer HAV showed 0.74±0.28, 0.80±0.17 and 1.03±0.23 log PFU/ml 

reductions after treatment with 0.25, 0.5, and 1 mg/ml GSE for 30 s, respectively, and 0.66±0.12, 

0.93±0.15 and 1.13±0.18 log PFU/ml reductions resulted after 1 min treatment, respectively (Su 

& D’Souza, 2013). For the low titer virus, after 30 s treatment, 1.01±0.20, 1.11±0.12 and 

1.21±0.21 log PFU/ml reduction were obtained, respectively and after 1 min treatment, 

1.07±0.13, 1.15±0.07 and 1.29±0.19 log PFU/ml reductions were obtained, respectively. These 

researchers concluded that the HAV reduction by GSE for 30 s was similar to the reduction 

obtained at 1 min and that the produce type (lettuce or pepper) had no influence in HAV 

reduction by GSE (Su & D’Souza, 2013). Furthermore, GSE at 0.5, 1, or 2 mg/ml in apple juice 

at 37°C reduced 5 log PFU/ml HAV to undetectable level, and in milk reduced HAV by 
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1.12±0.01, 1.15±0.03 and 1.09±0.02 log PFU/ml respectively, after 24 h (Joshi, Su, & D'Souza, 

2015). 

 

A 4 log (99.99%) inactivation of HAV HM-175 in a petri dish (60 ×15 mm) with 10 ml (PBS) 

after exposure to ultraviolet (UV) irradiation at a wavelength of 254nm using four germicidal 

lamp at distance of 38 cm above the sample at 15 mWs/cm2 was reported (Battigeli et al., 1993). 

This research concluded that the HAV was more sensitive to UV inactivation than other animal 

viruses (Coxsackievirus B5 and rotavirus SA-II) due to its relatively high uracil content of 33% 

which is susceptible to the UV light hydration (Battigeli et al., 1993). The ability of UV-C light 

to inactivate HAV (ATCC VR-1402) at titer of 107 to 109 TCID50/ml, from the surfaces produce 

treated using a low-pressure lamp and G36T6 model 4136 germicidal light unit emitting UV-C 

light at 253.7 nm (Fuller Ultraviolet, Frankfort, IL) (Fino & Kniel, 2008), showed that HAV on 

lettuce was reduced by 4.29±0.59, 4.45±0.20 and 4.62±0.00 log TCID50/ml for the 40, 120 and 

240 mWs/cm2 UV doses, respectively, while green onions showed 4.16±0.42, 5.31±0.42 and 

5.58±0.21 log TCID50/ml reduction and strawberries showed a 1.28± 0.32, 1.79±0.05 and 

2.60±0.73 log TCID50/ml, respectively (Fino & Kniel, 2008). The team concluded that UV-C can 

be effective method to inactivate the HAV from the surface of produce. Park and his team 

investigated the effect of UV-C against HAV and murine norovirus (MNV) at titers of 5.85 and 

6.2 log PFU/ml, respectively, that were dried on 810 mm diameter and 5 mm thick stainless-steel 

coupons (Park et al., 2015), using 10, 15- and 30-Watt low pressure UV lamps stationed in a 

bench scale collimated-beam UV reactor, emitting monochromatic radiation at 260 nm 

wavelength with a distance of 15 cm. The team recorded that doses of 180 and 240 mWs/cm2 
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resulted in 3.9±0.0 and 4.4±0.2 log PFU/ml reductions of the MNV, respectively and HAV 

reductions of 2.1±0.0 and 2.6±0.1 log PFU/ml at the same UV-C dosage, respectively, indicating 

that HAV was more resistant to UV-C than MNV (Park et al., 2015). Thus, improved methods 

for the control and inactivation of HAV on produce and on food contact surfaces to prevent HAV 

transmission and foodborne outbreaks are needed. 

 

The hypothesis of this research is that GSE that contains about (5-8%) polyphenols (varies 

dependent on variety) with ring structures have a maximum absorption of light at  

λ max = 264 –280 nm (Shi et al., 2003), upon illumination with UV-C germicidal light wavelength 

(range is between 100-280 nm, Valero et al., 2007) of 254 nm will allow absorption of photon 

energy, generating enough reactive oxygen species to cause a significant reduction of HAV. 

Therefore, the objective of this study was to investigate the effectiveness of UV light and, GSE 

alone, and in combination to inactivate/reduce HAV on Formica coupons and on the surface of 

tomatoes. 

 

Material and Methods 

Viruses and Cell Lines 

Hepatitis A virus (HAV; strain HM-175) and the host cells used for viral propagation, fetal 

rhesus monkey kidney (FRhK4) that were graciously provided by our collaborator, Dr. Kalmia 

Kniel at the University of Delaware were used in this study. Procedures that were described for 

the maintenance of these host FRhK4 cells at 37°C under 5% Co2 were followed using 175 cm2 

flasks and Dulbecco's Modified Eagle's Medium/Ham's F-12 (DMEM-F12; HyClone 
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Laboratories, Logan, UT) that had 2% heat-inactivated Bovine Calf Serum (FBS, HyClone 

Laboratories) and 1×Antibiotic-Antimycotic (Invitrogen-Thermo Fisher Scientific) (Joshi et al., 

2015; Su and D’Souza, 2013). Briefly, confluent FRhK-4 cells from these flasks were treated 

with trypsin, and then 0.5×106 to 1×106 cells/well were added to 6-well plates and maintained in 

DMEM F12 supplemented media as described above at 37°C in an atmosphere with 5% CO2 

(Water-jacketed CO2 Incubator; Fisher Scientific, Waltham, Massachusetts) (Joshi, Su, & 

D'Souza, 2015).  

 

Virus Propagation 

When the FRhK4 cells reached ˃ 90% confluency in 175 cm2 cell culture flasks, washing with 

Dulbecco’s phosphate-buffered saline (DPBS; pH 7.4) twice was carried out infected host cell 

monolayers with HAV stocks as described earlier (Su & D’Souza, 2013; Joshi, Su, & D'Souza, 

2015), and incubated at 37°C in an atmosphere containing 5% CO2 (Water-jacketed CO2 

Incubator) for 3 h, at 37°C and 10 ml of 10% FBS DMEM was added. After seven days of 

incubation, the infected cells were freeze thawed three times to break down the cells and release 

the virus, centrifuged at 5,000 × g for 10 min, then filtration through a 0.2-µm filter was carried 

out, and virus was aliquoted in 2 ml tubes, and stored at -80°C until use (Su & D'Souza, 2011). 

 

Grape Seed Extract (GSE) 

As described in earlier studies from our lab, Gravinol-S GSE in powder form that was kindly 

gifted from OptiPure®, Chemco Industries (Los Angeles, CA) was used in this study and 

previously described protocols were used. Briefly, four hundred mg of the powder was dissolved 
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in 2 ml absolute ethanol with 38 ml warm water and filtered using 0.2-mm filter to prepare a 10 

mg/ml GSE solution containing a final concentration of 5% ethanol (Su & D'Souza, 2011). 

 

Infectious Plaque Assays 

Confluent FRhK4 cells were used HAV infectivity assays using standard plaque assays (Su & 

D’Souza, 2011; Joshi, Su, & D'Souza, 2015), in 6-well plates. After aspiration of the cell culture 

media, serially diluted treated and control (untreated) HAV (0.5 ml) was added to FRhK4 host 

cells and incubated for 3 h. After aspiration of the virus, each well overlaid with 2 ml of the mix 

of complete DMEM media and 1% Noble Agar at a 1:1 ratio. Five days later, another layer was 

added by using 1 ml of overlay media (DMEM 2X powder, bovine calf serum, sodium 

bicarbonate, non-essential amino acids, MgCl2 (4M), hepes [4-(2-Hydroxyethyl)piperazine-1-

ethanesulfonic acid] buffer and gentamycin- kanamycin dissolved in sterile double deionized 

water and filtered through a 0.2-µm filter) to which neutral red (Sigma-Aldrich, St. Louis, MO) 

was added and after 24 h incubation the virus plaques were counted (Joshi, Su, & D'Souza, 2015; 

Su & D’Souza, 2013). The recovered virus was calculated by the multiplication of the plaque 

counts with correlated dilution factors. The reduction of the virus titer was calculated by the 

deduction of the recovered treated virus from the control, the plaque assay was executed in 

duplicates. 

 

Photodynamic Inactivation of HAV Using GSE on Formica Coupons 

A tube containing 700 μl of HAV suspension at 6-log plaque forming units (PFU/ml) mixed with 

70 μl GSE at a concentration of 10 mg/ml for a final GSE concentration of 0.91 mg/ml was 



 

64 

 

prepared. Another tube with 700 μl HAV at the same virus titer mixed with 70 μl phosphate 

buffer saline (PBS) was prepared. The HAV with GSE suspension (100 μl) was applied to the 

surface of Formica coupons (6.5 cm × 4.5 cm), (3.1 ×104 PFU/ cm2 HAV applied) and 

(3.1µg/cm2 GSE applied) on coupons surface in duplicate and another 100 μl of the HAV with 

PBS suspension was applied to the surface of a Formica coupon in duplicate in sterile petri 

dishes. The coupons were left to dry within the LABCONCO class II biosafety cabinet for 10 

minutes. They were then illuminated with UV light at 254 nm wavelength, with exposure times 

of 3, 10, 20 and 30 min at distance of 72 cm, the energy density for the 3, 10, 20 and 30 min 

treatments were 0.012±0.000, 0.040±0.001, 0.081±0.002 and 0.121±0.003 J/cm2, respectively. 

Another two coupons containing the HAV with GSE and HAV with PBS (control) were kept in 

closed petri dishes without illumination for the same time points. For each time point, three 

coupons were prepared (HAV with GSE-UV, HAV with PBS-UV and HAV with GSE only) 

except for the 30 min time point in which four coupons were prepared (HAV with GSE-UV, 

HAV with PBS-UV, HAV with GSE only and HAV with PBS only [control]). After illumination 

at the designated time points, the virus was recovered for each time point from the surface of the 

Formica coupons by repeated pipetting with 1200 µl DMEM with 8% Bovine Calf Serum (BCS) 

into a Petri dish inside the biosafety cabinet, then transferring this solution into a 15 ml tube 

containing 8.7 ml DMEM 8% BCS. The virus was serially diluted with 2% BCS DMEM media 

at a ratio of 1:10 of virus (167 µL) to media (1.5 ml), then the confluent FRhK-4 host cells were 

infected with recovered HAV suspensions in 6-well plates for 3 h, followed by virus aspiration 

and overlay using HAV overlay media and 1% Noble Agar at a 1:1 ratio. After 5 days of 

incubation at 37°C in an atmosphere containing 5% CO2 (Water-jacketed CO2 Incubator), the 
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cells were stained using neutral red and the virus plaques were counted, the recovered virus was 

calculated as mentioned previously. The treatment and control for all time points were repeated 

thrice.  

 

Photodynamic Inactivation of HAV Using GSE on Tomatoes 

Cherry tomatoes were bought from a local retail market (average of 9.2±0.78 gram), (average 

diameter of 2.54 cm). Four tomatoes were washed with distilled water and allowed to dry in the 

LABCONCO class II biosafety cabinet. They were then covered with 750 µL elution buffer (0.1 

M Tris-HCl and 3% beef extract powder, and 0.05 M glycine) (Li et al., 2012) by repeated 

pipetting (30 times), allowed to dry for 10 min, inoculated the surface with 500 µL HAV titer of 

6-7 log PFU/ml by repeated pipetting (30 times) and dried for another 10 min. Two of the 

tomatoes were each inoculated with 500 µL of GSE solution at a concentration of 10 mg/ml, by 

repeated pipetting of the surface (30 times) (maximum GSE concentration of 0.25 mg/cm2), 

while the other two tomatoes were each inoculated with an equal volume of PBS. All tomatoes 

were then allowed to dry for 10 min and illuminated using UV light at 254 nm wavelength, at a 

distance of 72 cm in the biosafety cabinet, UV dose (energy density) of 0.020±0.001, 

0.061±0.002 and 0.081±0.002 J/cm2 for the 5, 15 and 20 min, respectively. The positions of the 

tomatoes receiving UV treatment in the biosafety cabinet were rotated 180° horizontally halfway 

through each time point (5, 15, and 20 min). The tomatoes without UV illumination were treated 

with GSE or buffer, respectively, for the same time points. Next, virus extraction was performed 

as described earlier (Bozkurt et al., 2015) with some modifications. The virus was recovered 

from all tomatoes by aseptically by repeated pipetting each tomato with 15 ml of the elution 



 

66 

 

buffer into glass beakers. The recovered buffer solution was adjusted to a pH of 9.5 (confirmed 

with pH indicator paper) followed by shaking for 20 min at 120 rpm at 4ºC. The samples were 

then centrifuged at 10000 × g for 15 min at 4 ºC, the recovered supernatant was adjusted to pH 

7.2. Then 10% polyethylene glycol (PEG) 8000 and 0.3 M NaCl was added, and the samples 

were shaken overnight at 120 rpm at 4ºC. Following this, the samples were centrifuged at 10000 

× g for 30 min at 4ºC and the pellet was dissolved in 1 ml PBS followed by subsequent dilution 

with 2% BCS DMEM media at a 1:10 ratio of recovered virus (167µL) to media (1.5 ml). 

Finally, the confluent FRhK-4 host cells were infected with the recovered HAV suspensions in 

6-well plates, as reported above. The treatment and control for the 5, 15 and 20 min were 

replicated 4, 6 and three times, respectively.  

 

UV-C Lamp 

The UV illumination applied to the surface of the Formica coupons and tomatoes was conducted 

using a 30-Watt G30T8 fluorescent germicidal UV-C lamp (Philips, Somerset, NJ), emitting 

light at 254 nm wavelength. 

 

Characterization of UV Light Irradiance 

The irradiance of the UV light was measured using ILT5000 Research Lab Radiometer 

(International Light Technology, Peabody, MA) (Figure:  2.5). The irradiance (W/cm2) was 

determined by taking the average of three irradiance measurements of four positions and then 

averaging those values. The received dosage (energy density) in J/cm2 for each exposure time 
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calculated using the equation (E=Pt) where E is the dose and P is the calculated (irradiance 

power density) and t is the exposure time in seconds (Ghate et al., 2013). 

 

Statistical Analysis 

Results from the treatments and controls were statistically analyzed by one-way ANOVA; 

Tukey’s Post Hoc test was used for mean separation; two-way ANOVA were used to analyze 

differences in means between treatments, time, and the treatment by time interaction and the 

means separate by Tukey’s Post Hoc test, similar to those used in previous studies (Turner & 

Thayer, 2001; Iversen et al., 1987). All statistical assumptions regarding normality and equality 

of variances were met (SAS, version 9.4, release TS1M3) and used for all analyses; where P -

value <0.05 was considered significant as reported in literature (Turner & Thayer, 2001; Iversen 

et al., 1987). 

 

Results 

 Inactivation of HAV by Photoactivated Grape Seed Extract Dried on the Surface of 

Formica Coupons  

Treatment of HAV (recovered titer of ~5-6 log PFU/ml) dried on Formica coupons with GSE at 

0.91 mg/ml, did not result in any observable HAV reduction for all tested time points. The UV 

illumination of HAV with PBS at a wavelength 254 nm and a distance of 72 cm, resulted in 

1.08±0.53, 1.23±0.61, 2.2±0.27 and 1.97±0.55 log PFU/ml reduction after treatment for 3, 10, 20 

and 30 min, respectively. PDI of HAV with GSE at 0.91 mg/ml and similar illumination 
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conditions resulted in 1.45±0.39, 1.74±0.37, 1.48±0.51 and 2.78±0.68 log PFU/ml reduction 

after 3, 10, 20 and 30 min, respectively (Table 2.1). 

 

 Inactivation of HAV by Photoactivated Grape Seed Extract Dried on Tomato Surfaces  

The recovered titer of HAV from the control tomatoes surfaces was ~4.69 -5.71 log PFU/ml 

using 15 ml of elution buffer. Since the average diameter of tomatoes was 2.54 cm and 500 µl of 

GSE solution at 10 mg/ml was applied, the maximum concentration of GSE was 0.25 mg/cm2, 

assuming all the GSE solution dried on the surface of the tomatoes. The HAV with GSE without 

illumination showed 1.53±1.04, 1.23±0.99 and 1.24±0.56 log PFU/ml reductions after 5, 15 and 

20 min, respectively. UV illumination of HAV with PBS at a wavelength of 254 nm and a 

distance of 72 cm resulted in 1.71±0.35, 1.24±0.40 and 1.00±0.16 log PFU/ml reductions after 5, 

15 and 20 min, respectively. PDI of HAV with GSE at 10 mg/ml with similar illumination 

conditions resulted in 1.88±0.38, 1.74±0.37 and 1.98±0.32 log PFU/ml reductions after 5, 15 and 

20 min, respectively (Table 2.3). 

 

Characterization of UV Light Irradiance 

The calculated UV light doses (energy density) for the 3, 5, 10, 15, 20 and 30 min exposure 

times were 0.012±0.000, 0.020±0.001, 0.040±0.001, 0.061±0.002, 0.081±0.002 and 0.121±0.003 

J/cm2, respectively. 
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Discussion 

 In this study, PDI against HAV inoculated Formica coupons as an example of a food contact 

surface as well as on tomato surfaces as an example of a produce surface was investigated. 

Treatment of HAV dried on Formica coupons with GSE at 0.91 mg/ml was not effective in 

reducing HAV titers, even after 30 min at room temperature. In contrast Su & D’Souza (2011) 

treated HAV in suspension with 0.25, 0.5 and 1 mg/ml GSE in suspension at room temperature 

for 2 h that resulted in reductions of 3.01 log PFU/ml from initial, 5 log PFU/ml, and 1.90 log 

PFU/ml from initial 7 log PFU/ml. The current study differs by treating dried HAV on Formica 

coupons for shorter time periods. Both factors could account for the lower reductions observed 

compared to those observed in suspension over 2 h as earlier reported by Su & D’Souza (2011). 

 

Therefore, treatment of HAV with GSE for more extended times may have improved antiviral 

effects. Moreover, in the current study, PDI was applied to enhance the activity of GSE against 

HAV for treatment times of 3, 10, 20 and 30 min to determine if treatment time was statistically 

significant. However, illumination times of 3, 20 and 30 min were not statistically significant 

from each other (P> 0.05), yet the 10 min UV treatment time was significant from the 3 and 20 

min but not from the 30 min. This significance for 10 min treatment time was possibly due to 

low mean recovery of the virus on control samples across the 10 min treatment. PDI of HAV 

with GSE for 3, 10, 20 and 30 min showed 1.45 ±0.39, 1.74±0.37, 1.48±0.51 and 2.78±0.68 log 

PFU/ml reduction, respectively and HAV with PBS treated with UV at the same time points 

showed reductions of 1.08±0.53, 1.23±0.61, 2.21±0.27 and 1.97±0.55 log PFU/ml, respectively 

(Table 2.1). PDI of HAV with GSE on Formica coupons for the 3, 10, 20 and 30 min treatments 



 

70 

 

is significantly different from the controls (p<0.05). However, this is not significantly different 

from the reduction of HAV with PBS treated with UV on Formica coupons for the same time 

points. These results suggest that HAV reduction from both treated coupons (with and without) 

is due to the effect of UV, and not the result of GSE absorption of photon energy to produce 

reactive oxygen species.  

Park et al. (2015) conducted an experiment using stainless steel coupons to mimic food facility 

surface with smaller dimensions (diameter of 10 mm and thickness of 5 mm) compared to 

Formica coupons (6.5 × 4.5 cm) used in the current study. Both experiments used HAV titer 

around ⁓ 6 log PFU/ml. Moreover, the Park’s work used UV-C lamps of 10, 15 and 30 W 

emitting light at 260 nm stationed in a bench scale collimated-beam UV reactor. However, Park 

did not report the illumination times, in our work we used UV-C lamp of 30 W emitting light at 

254 nm inside a biosafety cabinet, the sample distance from the light source were 15 cm in Park 

et al, and 72 cm in our work. The virus recovery method used here was different from that used 

in the work of Park et al.(2015); where, 50 µl DMEM with 2% fetal bovine serum (FBS) was 

deposited in the middle of the coupon after the UV-C treatments. The coupons were then soaked 

in 450 µl DMEM with 2% FBS in a 15 ml conical tube, followed by vortexing and serial 

dilution. The virus recovery method used in our work involved rinsing the coupons by repeated 

pipetting (30 times) with 1200 µl DMEM with 8% BCS into a Petri dish inside the biosafety 

cabinet, then transferring this solution into a 15 ml tube containing 8.7 ml DMEM 8% BCS and 

followed by serial dilution. The very low standard deviations reported by Park et al. (2015) may 

be due to his virus recovery method (i.e. using stainless steel coupons and soaking the entire 

coupon in media) as compared to that used in our work. Comparison of the results of both 
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experiments reveals a similar viral reduction for the 30 min treatment time. In our work, a UV 

dose of 0.12 J/cm2, achieved a 1.97±0.55 log PFU/ml (HAV with PBS) reduction in 30 min, 

while Park et al. (2015) using a similar UV dose of 120 mWs/cm2 (0.12 J/ cm2) reported, a 

1.9±0.0 log PFU/ml reduction of infectious HAV (Table 2.1). Similarly, a 10 min treatment of 

HAV with a UV dose of 0.04 J/ cm2 resulted in 1.23±0.61 log PFU/ml virus reduction, while a 

0.7±0.0 log PFU/ml reduction of HAV was recorded by Park et al. (2015) using a similar UV 

dosage of 40 mWs/cm2 (0.04 J/ cm2). However, the current study with 3 min treatment showed 

higher viral reduction, where the UV dose of 0.01 J/cm2 resulted in a 1.08±0.53 log PFU/ml 

virus reduction (Table 2.1) compared to the results of Park et al. (2015) that reported no 

reduction with a similar UV dose of 10 mWs/cm2 (0.01 J/cm2). However, in the current study 

this mean virus recovery for the 3 min treatment was not statistically different from the controls. 

Moreover, the experiments done by Park et al. (2015) also tested a much higher UV dose of 300 

mWs/cm2 (0.3 J/cm2) that resulted in 2.6±0.0 log PFU/ml virus reduction. 

 

The surface of cherry tomatoes (average of 9.6±0.21 grams) (average diameter of 2.54 cm) 

inoculated with HAV at a titer of 6 log PFU/ml and illuminated with UV light at 254 nm 

wavelength, UV dose (energy density) of 0.020±0.001, 0.061±0.002 and 0.081±0.002 J/cm2 for 

the 5, 15 and 20 min treatment time, respectively, at a distance of 72 cm resulted in a 1.71±0.35, 

1.24±0.40, and 1.00±0.16 log PFU/ml reductions of HAV respectively, for the photoactivated 

HAV with PBS (Table 2.3). PDI of HAV with GSE at 10 mg/ml under the same conditions for 5, 

15 and 20 min resulted in a 1.88±0.38, 1.74±0.37 and 1.98±0.32 log PFU/ml reduction, 

respectively. HAV treated with GSE at 10 mg/ml without illumination has resulted in reduction 
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of 1.53±1.04, 1.23±0.98 and 1.24±0.56 log PFU/ml, respectively (Table 2.3). Statistical analysis 

indicated that the 5 min treatment was significantly different from the 15 and 20 min treatment, 

but there was no significant differences between the 15 and 20 min time points. This suggested 

that treatment of at least 15 min is needed for higher HAV reduction. Viral reduction values 

between HAV with GSE no UV illumination HAV with UV, and HAV with GSE and UV across 

the three time points are statistically significant from the control, however they are not 

significant from each other (P> 0.05). This insignificance between the three treatments may be 

explained by difficulties with virus recovery, as three-dimensional objects such as tomato 

surfaces make virus recovery more difficult than from a two-dimensional object such as the 

surface of the Formica coupons. Moreover, in the current work, significant viral reduction was 

only achieved using a high concentration of GSE (10 mg/ml) on the surface of tomatoes. 

 

Earlier studies with lower GSE concentrations of 0.25, 0.5, and 1 mg/ml against HAV on lettuce 

and pepper contaminated with ~7 log PFU/ml HAV for shorter incubation times of 30 s and 1 

min showed about 1 log PFU/ml reduction of HAV. The GSE at higher concentrations of 10 

mg/ml for treatment times of 5, 15 and 20 min on tomatoes in this current study yielded similar 1 

log reductions. However, Su & D’Souza, (2013) used approximately 2 ml of DMEM containing 

10% heat inactivated fetal bovine serum (FBS) for HAV recovery, while the elution buffer (0.1 

M Tris-HCl with 3% beef extract powder and 0.05 M glycine) was used in this study to recover 

the virus from tomatoes. In the current research with HAV inactivation on tomatoes, GSE 

concentration was increased to 10 mg/ml when applied on the tomatoes surface because the GSE 

at 0.91mg/ml on Formica coupons was not effective. Other researchers including Fino & Kniel, 
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(2008) used UV-C from a germicidal UV lamp of 253.7nm to inactivate HAV inoculated on the 

surfaces cut lettuce (square shape of 2.5 ×2.5 cm), green onions (2 cm segments), and 

strawberries (cut longitudinally). They spread 10 µl of HAV (titers of 107 to 109 TCID50), evenly 

on demarcated 1 cm2areas for lettuce and onions, whereas the strawberries were inoculated in 

three areas: the shoulder, midsection and the bottom and dried for 30 min, and treated in an 

enclosed chamber of one meter in length with highly reflective material placed on the interior to 

help minimize the amount of shadowing on irregularly shaped fruit pieces. They reported 

treatments with UV-C doses of 40mWs/cm2 (0.04 J/cm2), 120 mWs/cm2(0.12 J/cm2) and 240 

mWs/cm2 (0.24 J/cm2).showed 4.29±0.59, 4.45±0.20 and 4.62±0.00 log TCID50/ml HAV 

reduction on lettuce, respectively, while green onions showed 4.16±0.42, 5.31±0.42 and 

5.58±0.21 log TCID50/ml reduction, respectively, and strawberries showed 1.28±0.32, 1.79±0.05 

and 2.60±0.73 log TCID50/ml reduction, respectively (Fino & Kniel, 2008). 

 

In the current work, tomatoes were used whole. The entire tomato was inoculated by repeated 

pipetting and spreading of 500 µl of HAV (titer 106 PFU/ml) over the surface of the tomato and 

dried for 10 min in the class II LABCONCO biosafety cabinet. Using positions shown in Fig, 

2.5, the tomatoes treated with UV light in the biosafety cabinet were rotated 180° in horizontal 

plain half way through each time point to treat both sides of the top half of the surface. The 

tomatoes were not inverted to expose the bottom half to the UV. However, this rotation 

decreased the total amount of UV dose received by the HAV on each side of the top portion of 

the tomato. In our work with tomatoes, 1.71±0.35, 1.24±0.40 and 1.00±0.16 log PFU/ml 

reduction of HAV was obtained with UV doses of 0.02 J/cm2, 0.06 J/cm2 and 0.08 J/cm2, 
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respectively (Table 2.3).These lower reductions and differences in reductions of HAV on 

tomatoes compared to lettuce and green onions (Fino & Kniel, 2008) could be due to various 

reasons. Besides, the difference in the surface of lettuce and green onions, different viral 

recovery methods were used that could account for the observed differences in reductions.  

Fino & Kniel, (2008) used a repeated pipetting (>25 times) with a total 1 ml minimal essential 

medium (MEM) with 2% (FBS) to recover HAV over the surface of the strawberries, while 

green onions and lettuce, samples were vortexed in 1 ml MEM with 2% FBS. In contrast, HAV 

was recovered from tomatoes in this study using a 15 ml elution buffer (0.1 M Tris-HCl with 3% 

beef extract powder, and 0.05 M glycine) by repeated pipetting over the surface of tomatoes (30 

times). Besides, (Fino & Kniel, 2008) used 50% tissue culture infective doses (TCID50) as a 

quantification method, while the plaque forming unit (PFU/ml) was used as a quantification 

method in our studies with tomatoes. Fino & Kniel, (2008) indicated that the shape of the 

produce affected the reduction, considering that the lettuce and green onions had higher viral 

reduction than the strawberries for the same UV treatment doses. The strawberries shape of the 

strawberries may have increased the shadowing effect, in that the presence of several grooves on 

the surface may have allowed the virus to be sheltered from the UV light, decreasing reduction. 

Moreover, lettuce has a smoother surface than strawberries which improved the UV light effect 

and increased virus reduction. In this study, the tomatoes share a similar shape with the 

strawberries thus a similar shadowing effect can occur. However, tomatoes are much smoother 

than strawberries. Finally, in the current protocol there was no UV treatment on the bottom half 

of the tomatoes and no reflective material. The rotation of the tomatoes by 180° halfway through 

each time point should also have decreased UV exposure and effectiveness on the top half. 
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Furthermore, perhaps, the UV doses used in this work were not enough to generate strong ROS 

production as the maximum UV dose tested in our work was 0.12 J/cm2 (120 mWs/cm2) against 

HAV dried on Formica coupons, compared to 180, 240 and 300 mWs/cm2 against HAV on 

stainless steel surface tested by Park et al. (2015) and 240 mWs/cm2 UV dose against HAV dried 

on produce by Fino & Kniel. (2008). 

 

Conclusions 

GSE at 0.91 mg/ml did not appear to affect HAV titers when dried on Formica coupons even 

after 30 min treatment. However, the application of a much higher concentration of GSE at 10 

mg/ml, (GSE maximum concentration of 0.25 mg/cm2) to the surface of tomatoes had an anti-

HAV effect after 5 min. PDI of HAV with GSE and UV-C at 254 nm on Formica coupons and 

tomatoes did not show a significant difference compared to treatment with UV alone for all 

tested time points, suggesting that the reduction could be mainly due to the UV-C light effect 

rather than the effect of ROS production. 

 

Therefore, illumination of HAV with GSE using UV at a wavelength of 254 nm and a distance of 

72 cm was not suitable to initiate significant production of ROS. Furthermore, increased GSE 

concentrations could be used to possibly enhance the antiviral effect of GSE against HAV on 

Formica coupons and on the surface of Formica coupons and tomatoes for a longer time than 30 

min can be tested in the future. It should be noted that a concentration of 0.8 mg/ml GSE or more 

on the cells will cause cytotoxic effects on the FRhK4 cell line (Su et al., 2011). Caution must be 
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taken when treating the virus with higher levels of GSE, as only the 10-2 virus dilution can be 

applied on the FRhK4 cell line before cell toxicity occurs. This study also suggests that the use 

of a different UV-C light source with a broader wavelength than the germicidal UV light used in 

our work, (most of its energy concentrated around 254 nm) (Qian, 2002) may be needed in order 

to initiate ROS to cause a significant reduction of infectious of HAV titer. 
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Table 2.1: Effect of photoactivated grape seed extract at 0.91 mg/ml at four time points using UV light with 254 nm wavelength, at a 

distance of 72 cm and dose (energy density) for the 3, 10, 20 and 30 min exposure times that were 0.012±0.000, 0.040±0.001, 

0.081±0.002  and 0.121±0.003  J/cm2, respectively, at room temperature against hepatitis A virus (titer of ~5-6 log PFU/ml) dried on 

Formica coupons. Values are displayed as the average of three replicates ±SD. Different lower case letters across columns denote 

significant differences between treatments of each time point. Different upper case letters across rows denote significant differences 

between treatments regardless of time points as determined by Two-way ANOVA (P < 0.05). 

 

Time 

 

3 min 

0.01 J/cm2 

 

 

10 min 

0.04 J/cm2 

 

 

20 min 

0.08 J/cm2 

 

 

30 min 

0.12 J/cm2 

 

 

TWO  

WAY 

ANOVA Treatment Average 

Recovered 

Reduction Average 

Recovered 

Reduction Average 

Recovered 

Reduction Average 

Recovered 

Reduction 

Control 

 

 

a 

5.93±0.23 

 

 

- 

 

 

a 

5.21±0.56 

 

 

 

- 

 

a 

6.15±0.35 

 

 

- 

 

a 

5.95±0.41 

 

 

- A 

HAV with 

GSE at 0.91 

mg/ml 

 

 

a 

5.98±0.11 

 

 

0 

 

a 

5.48±0.31 

 

 

 

           

          0 

       

 

a 

5.89±0.20 

 

 

 

0.31±0.25 

 

a 

5.83±0.25 

 

 

0.27±0.50 A 

HAV with 

PBS with UV 

 

 

 

ab 

4.73±0.49 

 

 

1.08±0.53 

 

b 

4.20±0.40 

 

 

1.23±0.61 

 

b 

4.10±0.49 

 

 

2.21±0.27 

 

 

b 

4.12±0.24 

 

 

 

1.97±0.55 B 

HAV with 

GSE at 0.91 

mg/ml and 

UV 

 

b 

4.44±0.46 

 

 

1.45±0.39 

 

b 

3.75±0.38 

 

 

1.74±0.37 

 

b 

4.75±0.21 

 

 

1.48±0.51 

 

b 

3.66±0.79 

 

 

2.78±0.68 B 
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Table 2.2:Effect of photoactivated grape seed extract at 0.91 mg/ml at four time points using UV light with 254 nm wavelength, at a 

distance of 72 cm and dose (energy density) for the 3, 10, 20 and 30 min exposure times that were 0.012±0.000, 0.040±0.001, 

0.081±0.002  and 0.121±0.003  J/cm2, respectively, at room temperature against hepatitis A virus (titer of ~5-6 log PFU/ml) dried on 

Formica coupons. Values are displayed as the average of five replicates ± SD for the 3 min time point, the average of 6 replicates ± 

SD for the 20 and 10 min time points, and the average of three replicates ± SD for the 30 min time point.  Different lower case letters 

across columns denote significant differences between treatments of each time point. Different upper case letters across rows denote 

significant differences between treatments regardless of time points as determined by Two-way ANOVA (P < 0.05). 

 

Time 

 

3 min 

0.01 J/cm2 

 

 

10 min 

0.04 J/cm2 

 

 

20 min 

0.08 J/cm2 

 

 

30 min 

0.12 J/cm2 

 

 

TWO  

WAY 

ANOVA Treatment Average 

Recovered 

Reduction Average 

Recovered 

Reduction Average 

Recovered 

Reduction Average 

Recovered 

Reduction 

Control 

 
 

a 

5.77± .33 

 

- 

 

a 

5.21±0.66 

 

- 

a 

5.86±0.43 

 

- 

a 

5.95±0.41 

 

- A 

HAV with 

GSE at 0.91 

mg/ml 

 

 

a 

6.01±0.12 

 

 

 

0 

 

 

a 

5.19±1.02 

 

 

 

0.25±1.06 

 

a 

5.62±0.59 

 

 

0.31±0.37 

 

a 

5.82±0.26 

 

 

 

0.27±0.50 

 

 

A 

HAV with 

PBS with UV 

 

 

 

b 

4.78±0.43 

 

 

 

0.93±0.46 

 

ab 

4.21±0.54 

 

 

1.28±0.45 

 

b 

4.11±0.49 

 

 

1.83±0.61 

 

b 

4.12±0.24 

 

 

 

1.97±0.55 

 

 

B 

HAV with 

GSE at 0.91 

mg/ml and 

UV 

 

b 

4.27±0.50 

 

 

1.51±0.54 

 

b 

3.56±0.48 

 

 

 

1.96±0.71 

 

 

b 

4.57±0.78 

 

 

 

1.46±1.22 

 

b 

3.66±0.79 

 

 

2.78±0.68 B 
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Figure 2.1: Illustration of the average recovered HAV titers in log PFU/ml (Data from table 2.1) 

from the surface of Formica coupons across all time points (3, 10, 20 and 30 min) of the different 

treatments, after UV illumination with 254 nm wavelength, at a distance of 72 cm and dose 

(energy density) for the 3, 10, 20 and 30 min exposure times were 0.012±0.000, 0.040±0.001, 

0.081±0.002  and 0.121±0.003  J/cm2, respectively, at room temperature, GSE at 0.91 mg/ml, 

against hepatitis A virus (titer of ~5-6 log PFU/ml), including HAV with PBS, No UV (Control); 

HAV with GSE 0.91 mg/ml, No UV(GSENUV); HAV with PBS and UV (HAVUV); and HAV 

with GSE at 0.91 mg/ml and UV (GSEUV). Different letters represent significant differences 

between different treatments for all time points. 
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Figure 2.2: Illustration of the average recovered HAV titers in log PFU/ml (Data from table 2.1) 

from the surface of Formica coupons for each time point (3, 10, 20 and 30 min) of the different 

treatments, after UV illumination with 254 nm wavelength, at a distance of 72 cm and dose 

(energy density) for the 3, 10, 20 and 30 min exposure times were 0.012±0.000, 0.040±0.001, 

0.081±0.002  and 0.121±0.003  J/cm2, respectively, at room temperature, GSE at 0.91mg/ml,  

against hepatitis A virus (titer of ~5-6 log PFU/ml), including HAV with PBS, No UV (Control); 

HAV with GSE 0.91 µg/ml, No UV(GSENUV); HAV with PBS and UV (HAVUV); and HAV 

with GSE at 0.91 µg/ml and UV (GSEUV). Different letters represent significant differences 

between different treatments for each time point. 
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Table 2.3: Effect of photoactivated grape seed extract at 10 mg/ml at three time points using UV 

light with 254 nm wavelength, at a distance of 72 cm and dose (energy density) of 0.020±0.001, 

0.061±0.002 and 0.081±0.002  J/cm2 for the 5, 15 and 20 min, respectively, at room temperature 

against hepatitis A virus (titer of ~5-6 log PFU/ml) dried on tomato surfaces. Values are 

displayed as the average of 4, 6 and three replicates for the 5, 15 and 20 min ±S.D respectively. 

Different lower-case letters across columns denote significant differences between treatments of 

each time point. Different upper-case letters across rows denote significant differences between 

treatments regardless of time points as determined by Two-way ANOVA (P < 0.05). 

 

Time  

 

5 min 

0.02 J/cm2 

 

 

 15 min 

0.06 J/cm2 

 

  20 min 

0.08 J/cm2 

 

 

TWO 

WAY 

ANOVA 
 

Treatment 

Average. 

Recovered 

 

Reduction Average. 

Recovered 

 

Reduction Average. 

Recovered 

 

Reduction 

 

Control 

 

 

a 

5.71±0.63 

 

 

 

- 

 

 

a 

4.69±0.40 

 

 

 

- 

 

a 

4.86±0.42 

 

 

 

- 

 

 

 

A 

 

HAV with 

GSE at 10 

mg/mL 

 

 

b 

4.41±0.92 

 

 

 

1.53±1.04 

 

 

b 

3.64±1.07 

 

 

 

1.23±0.99 

 

ab 

3.61±0.45 

 

 

 

1.24±0.56 

 

 

B 

 

HAV with PBS 

with UV  

 

 

b 

4.03±0.36 

 

 

 

1.71±0.35 

 

b 

3.57±0.39 

 

 

 

1.24±0.40 

 

b 

3.84±0.51 

 

 

 

1.00±0.16 

 

 

B 

 

HAV with 

GSE at 10 

mg/mL and 

UV 

 

 

b 

3.84±0.21 

 

 

 

1.88±0.38 

 

 

b 

3.16±0.74 

 

 

 

1.74±0.37 

 

ab 

2.90±0.60 

 

 

 

1.98±0.32 

 

 

B 
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Table 2.4: Effect of photoactivated grape seed extract at 10 mg/ml at three time points using UV 

light with 254 nm wavelength, at a distance of 72 cm and dose (energy density) of 0.020±0.001, 

0.061±0.002 and 0.081±0.002  J/cm2 for the 5, 15 and 20 min, respectively, at room temperature 

against hepatitis A virus (titer of ~5-6 log PFU/ml) dried on tomato surfaces. Values are 

displayed as the average of three replicates ±S.D except for the 15 min treatment was 4 

replicates. Different lower-case letters across columns denote significant differences between 

treatments of each time point. Different upper-case letters across rows denote significant 

differences between treatments regardless of time points as determined by Two-way ANOVA (P 

< 0.05). 

 

Time  

 

5 min 

0.02 J/cm2 

 

 

15 min 

0.06 J/cm2 

 

20 min 

0.08 J/cm2 

 

 

 

TWO 

WAY 

ANOVA 
Treatment Average. 

Recovered 

 

Reduction Average. 

Recovered 

 

Reduction Average. 

Recovered 

 

Reduction 

Control 

 

 

a 

5.73±0.39 

 

 

 

- 

 

 

 

a 

4.69±0.40 

 

 

 

- 

 

a 

4.86±0.42 

 

 

 

- 

 

 

 

A 

HAV with GSE 

at 10 mg/mL 

 

 

b 

3.97±0.61 

 

 

 

2.02±0.42 

 

 

b 

3.00±1.07 

 

 

 

1.59±0.65 

 

ab 

3.61±0.45 

 

 

 

1.24±0.56 

 

 

B 

HAV with PBS 

with UV  

 

 

b 

4.04±0.34 

 

 

 

1.72±0.43 

 

b 

3.45±0.39 

 

 

 

1.35±0.37 

 

b 

3.84±0.51 

 

 

 

1.00±0.16 

 

 

B 

HAV with GSE 

at 10 mg/mL and 

UV 

 

 

b 

3.81±0.22 

 

 

 

1.93±0.45 

 

 

b 

2.94±0.72 
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Figure 2.3: Illustration of the average recovered HAV titers in (log PFU/ml) from the surface of 

tomatoes across all time points (5, 15 and 20 min) of the different treatments (Data from table 

2.3), the values are the average of 4, 6 and three replicates for the 5, 15 and 20 min ±S.D 

respectively, after UV illumination with 254 nm wavelength, at a distance of 72 cm dose (energy 

density) of 0.020±0.0011, 0.061±0.002 and 0.081±0.002 J/cm2 for the 5, 15 and 20 min, 

respectively, at room temperature against hepatitis A virus (titer of ~5-6 log PFU/ml), including 

HAV with PBS, No UV (Control); HAV with GSE 10 mg/ml, No UV(GSENUV); HAV with 

PBS and UV (HAVUV); and HAV with GSE at 10 mg/ml and UV (GSEUV). Different letters 

represent significant differences between different treatments for all time points. 
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Figure 2.4: Illustration of the average recovered HAV titers in (log PFU/ml) from the surface of 

tomatoes for each time point of the different treatments (Data from table 2.3),  the average of 4, 6 

and three replicates for the 5, 15 and 20 min ±S.D respectively, after UV illumination with 254 

nm wavelength, at a distance of 72 cm and dose (energy density) of 0.020±0.001, 0.061±0.002 

and 0.081±0.00 J/cm2 for the 5, 15 and 20 min, respectively, at room temperature against 

hepatitis A virus (titer of ~5-6 log PFU/ml), including HAV with PBS, No UV (Control); HAV 

with GSE 10 mg/ml, No UV(GSENUV); HAV with PBS and UV (HAVUV); and HAV with 

GSE at 10 mg/ml and UV (GSEUV). Different letters represent significant differences between 

different treatments for each time point. 
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Figure 2.5: Illustration of the four positions of the petri dishes containing either coupons or 

tomatoes inside the LABCONCO class II biosafety cabinet. Specifications included UV light 30-

Watt fluorescent light bulb (Philips), emitting at 254 nm, plates distance of 72 cm. the dose 

(energy density) for the 3, 5, 10, 15, 20 and 30 min exposure times were 0.012±0.000, 

0.020±0.001, 0.040±0.001, 0.061±0.002, 0.081±0.002 and 0.121±0.003 J/cm2, respectively. 

Irradiance was determined by taking the average of three irradiance measurements at each 

position and then averaging those values.  
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Chapter Ⅲ: The Antiviral Activity of Oleanolic Acid, Ursolic Acid, and Photoactivated 

Oleanolic Acid Against HAV on Formica Coupons 
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Abstract 

Literature on the anti-viral activity of different plant extracts against a variety of pathogenic 

microorganisms report that oleanolic acid (OA) and ursolic acid (UA) have activity against 

hepatitis C virus (HCV).  Hepatitis A virus outbreaks continue to occur annually worldwide, 

demonstrating the need for improved control measures. In this study, we investigated the 

antiviral activities of OA at 60, 600 and 2000 µg/ml and UA at 180 and 360 µg/ml against HAV 

in a direct contact mode on Formica coupons (a model food contact surface). One-hundred µl of 

OA at 60, 600 and 2000 µg/ml and UA at 180 and 360 µg/ml were treated for various contact 

times directly on 100 µl of HAV dried on Formica coupons. After each treatment (replicated 

thrice), the viruses were eluted, ten-fold serially diluted and plaque assayed using confluent 

FRhK-4 host cells in 6-well plates. Recovered plaques were enumerated and data were 

statistically analyzed. OA at 60 and 600 µg/ml was shown to cause 1.23±0.27 and 2.27±0.67 

PFU/ml reduction of HAV after 1 h, respectively with 1.79±0.61 log PFU/ml reduction after 10 

min with 2000 µg/ml OA. UA at 180 and 360 µg/ml showed 0.66±0.16 and 1.33±0.35 log 

PFU/ml reduction of HAV after 1 h, respectively. Furthermore, photodynamic inactivation (PDI) 

of HAV using OA at 600 µg/ml with UV at 254 nm wavelength at a distance 72 cm for 10 min, 

and UV dose (energy density) of 0.040±0.0011 J/cm2, resulted in 1.75±0.7 log PFU/ml reduction 

of HAV in distilled deionized water and a 2.39±0.31 PFU/ml reduction with OA. The two 

reduction values were statistically significant from the control (P<0.05), but not statistically 

significantly from each other, suggesting that UV rather than reactive oxygen species played a 

major role in HAV reduction. Both, OA and UA at the tested concentrations show possibility for 

use in hurdle approaches to control the spread of HAV from food contact surfaces. 
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Introduction 

Oleanolic acid (3β-hydroxy-olea-12-en-28-oic acid) (OA) and its isomer ursolic acid (UA) (3β-

hydroxy-urs-12-en-28-oic acid) belong to the class of pentacyclic triterpenoid compounds, the 

difference between them being the position of the methyl residue at carbon 19 or 20 of the cyclic 

ring system (Liu et al., 1995). They are secondary metabolites produced by numerous plant 

species that have several biological functions and beneficial properties, such as antifungal, 

antiviral, antibacterial, insecticidal, anti-tumor, anti-human immunodeficiency virus (HIV), 

hypoglycemic, hepatoprotective and anti-inflammatory activity (Fukushima et al., 2011; Guinda 

et al., 2004). OA and UA naturally exist together in plants in the form of free acids or aglycones; 

and are used in health and cosmetic products as they are relatively non-toxic (Liu et al., 1995). 

OA was isolated from approximately 1,620 plant species including several plants used for food 

or medicinal purposes (Pollier et al., 2012). The primary source of OA is from olive leaves (Olea 

europaea) which represents about 3% of the dry leaf weight (Guinda et al., 2004). Moreover, OA 

was used in clinical applications for more than 20 years in China as hepatic drug (Zhao et al., 

2013). 

 

Several studies to chemically modify OA and UA were performed to enhance its beneficial 

properties. In 1997, chemical modifications of both OA and UA were carried out in an attempt to 

obtain anti-ulcer compounds without mineralocorticoid activity (Farina et al., 1998), by the 

removal of ketone groups from 11 locations on the molecules’ structures. They chemically 

modified the carboxylic functional groups at position 30 to include reduction to alcohol or 

changing to a ketone group. They produced carbenoxolone analogues in the ꞵ-amyrin series of 



 

96 

 

OA. These researchers found that the unsaturated compounds 14b and 23b and the one 1-

methylene derivative 18 were less toxic and mineralocorticoids than the reference compound 

carbenoxolone. They found that several UA derivatives, such as dihemisuccinate sodium salt 

35b, showed good separation between anti-ulcer and mineralocorticoid actions, however this 

compound was toxic to the liver and kidneys of monkeys. though, other derivatives such as uvaol 

dihemiphthalate sodium salt and diene analogues 39b and 38b were found to have a high level of 

anti-ulcer activity without being toxic to the kidneys or liver (Farina et al., 1998). In 1998 Suh et 

al. tried to enhance the anti-inflammatory and chemoprotective properties of OA and UA by 

chemically synthesizing more than 80 triterpenoids derived from them with the goal to decrease 

the formation of the inducible enzymes, nitric oxide synthase (iNOS) and the cyclooxygenase 

(COX-2) which are implicated in the inflammatory response and carcinogenesis (Suh et al., 

1998). The research found that two derivatives have the ability to hinder the production of these 

enzymes; the oleananes 3, 12-dioxoolean-l-en-28-oic acid (TP-69) and 3, 11-dioxooleanl,12-

dien-28-oic acid (TP-72) (Suh et al., 1998). OA has poor solubility in water, and when orally 

administered causes erratic pharmacological activity, a problem that hinders its effectiveness and 

its bioavailability. Attempts to overcome this problem included use of solid dispersion, 

cyclodextrin inclusions or nanosuspensions as methods of OA drug delivery (Chen et al., 2005).  

In 2018, Wang and his team explored the molecular mechanisms behind OA’s hepatoprotective 

and anti-inflammatory properties. They used a recognized model to explore liver injury, 

Concanavalin A, (ConA) which is a plant lectin extract that induces liver injury in vivo (Wang et 

al., 2018). When they subcutaneously administered OA at 20, 40, or 80 mg/kg to mice once daily 

for 3 successive days, then injected them intravenously with ConA at 20 mg/kg to induce liver 
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injury, they found that OA inhibited liver damage mediated by ConA. They discovered the 

mechanism behind this is due to an increase in the expression of peroxisome proliferator-

activated receptor alpha (PPAR𝛼), a group of nuclear receptors that act as a transcription factor 

regulating k gene expression, involved in lipid metabolism, regulation of inflammation and 

immunity and the decrease of the phosphorylation of c-Jun NH2-terminal kinase (JNK) proteins, 

which mediate cell apoptosis and autophagy (Wang et al., 2018). 

 

In 2005, Jiménez and his colleague reported antibacterial activity of UA against multi-drug 

resistant Mycobacterium tuberculosis H37Rv strain that had a 99% inhibition of growth with 100 

µg/ml UA (Jiménez et al., 2005). Woldemichael and his research team reported antibacterial 

activities against Mycobacterium tuberculosis with an MIC of 8 μg/ml and 16 μg/ml for the 

triterpene 3-epi-UA and 3-epi-OA, respectively (Woldemichael et al., 2003). In 2011, Kim and 

his team reported antibacterial activity of UA against Streptococcus mutans and S. sobrinus with 

minimum inhibitory concentrations (MIC90) of 2 μg/ml and 4 μg/ml, respectively, with no 

cytotoxic effects on the epithelial oral cells (KB) and subsequently suggested the use of UA in 

oral hygiene products (Kim et al., 2011). In 1998, Kashiwada and his team tested different plant 

extracts against Human Immunodeficiency Virus (HIV), with OA having an EC50 < 20 µg/ml. 

The team also produced different derivatives of OA and tested their activity against the HIV-1 

infected human cell line, H9 that showed an EC50 of 1.7 µg/ml, an H9 cell growth inhibition IC50 

of 21.8 µg/ml, and a therapeutic index (T.I.) of 12.8. An interesting finding is that OA derivative 

number 18 had the highest anti-HIV effect with a reported EC50 of 0.0005 µg/ml and a reported 

T.I. of 22,400 (Kashiwada et al., 1998). Though UA has an anti-HIV effect at EC50 of 2.0 µg/ml 
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and IC50 of 6.5 µg /ml it is reported to have some toxicity at these levels (Kashiwada et al., 

1998). The plant extract of Fructus Ligustri Lucidi (FLL) had to activity against Hepatitis C 

virus (HCV) genotype NS5B through the inhibition of the action of viral RNA-dependent RNA 

polymerase (RdRp) (Kong et al., 2007). In 2013, Kong and his colleagues conducted another 

study that confirmed the ability of Fructus Ligustri Lucidi (FLL) and other reagents to decrease 

the intracellular and replication activities of HCV by 50% (IC50) at concentrations of 33.8, 5.5, 

0.8, and 3.1 µg/ml of fraction 1, fraction 2, OA and UA, respectively, reduced the activity and 

replication of NS5B HCV by 50% (IC50) (Kong et al., 2013). Thus, it has been reported that 

oleanolic acid and ursolic acid possess anti-viral activity against HIV and hepatitis C virus (Kong 

et al., 2013; Kashiwada et al., 1998).  

 

Therefore, the hypothesis of this research was OA and UA will demonstrate antiviral activity 

against HAV dried on Formica coupons. The highest light absorbance of OA is λ max = 259.09 

nm which is within the UV-C wavelength range of (100–280 nm) (Valero et al., 2007). 

Therefore, using germicidal UV light at 254 nm to illuminate the OA will allow absorption of 

photon energy, generating enough reactive oxygen species to cause a significant reduction to the 

HAV count. The objective of this study were to investigate the anti-viral activity of oleanolic 

acid and ursolic acid in the direct contact mode against HAV (HM-175) dried on the surface of 

Formica coupons and to investigate the effectiveness of UV light alone, OA alone, and a 

combination of UV light and OA to inactivate/reduce hepatitis A virus on Formica coupons. 
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Material and Methods 

Viruses and Cell Lines  

Hepatitis A virus (HAV; strain HM-175) and the host fetal rhesus monkey kidney (FRhK4) cells 

that were obtained from Dr. Kalmia Kniel (University of Delaware) were used as described 

earlier, (Joshi, Su, & D'Souza, 2015). As reported earlier, 0.5×106 to 1×106 FRhK-4 cells/well 

were added to 6 well plates and maintained at 37°C in Dulbecco's Modified Eagle's 

Medium/Ham's F-12 (DMEM-F12; HyClone Laboratories, Logan, UT) that was supplemented 

with 2% heat-inactivated Bovine Calf Serum (BCS, HyClone) and 1×Anti-Anti (containing 

Antibiotic and Antimycotic) under 5% CO2 in a CO2  incubator (Fisher Scientific, USA) (Joshi, 

Su & D'Souza, 2015).  

 

Virus Propagation 

Standardized procedures as described earlier were followed for HAV propagation 

(Bozkurt et al., 2014; Joshi, Su, & D'Souza, 2015). Briefly, when the FRhK4 cells reached ˃ 

90% confluency in cell culture flasks, they were washed twice with sterile Dulbecco’s 

phosphate-buffered saline (DPBS; pH 7.4) and then HAV stocks were added to FRhK-4 

monolayer cells These HAV infected host cells were incubated at 37°C for 3 h, and then 10 ml of 

DMEM-F12 containing 10% BCS was added. Flasks were incubated under 5% CO2 (Water-

jacketed CO2 Incubator) until >90% cell lysis at 37°C. After seven days of incubation, the 

infected cells were freeze thawed three times to break down the host FRhK-4 cells and release 

HAV. HAV was recovered by initial centrifugation at 5,000 × g for 10 min, then filtered through 
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a 0.2-µm filter, and finally aliquoted into 2 ml tubes, and stored at -80°C for experiments as 

needed (Su & D'Souza, 2011). 

 

Antiviral Reagents 

Oleanolic acid was purchased from Tokyo Chemical Industry Co., Ltd (Tokyo, Japan), with a ≥ 

98.0% purity. OA stock solution was prepared by dissolving 6 mg of the powder in 1 ml 

dimethyl sulfoxide (DMSO) to reach a final concentration of 6 mg/ml (13 mM) and (100% 

DMSO). Ursolic acid was purchased from Indofine Chemical Company (Hillsborough, NJ), at ≥ 

99% purity. UA stock solution was prepared by dissolving 18 mg powder into 1 ml DMSO to 

reach a final concentration of 18 mg/ml (39.4 mM) and (100% DMSO). 

 

UV-C Lamp 

The UV illumination applied to the surface of the Formica coupons and tomatoes was conducted 

using a 30-Watt G30T8 fluorescent germicidal UV-C lamp (Philips, Holland), emitting light at 

254 nm wavelength within a biosafety cabinet. 

 

Absorbance Spectra 

Solutions of 1 mg OA or UA per 1 ml DMSO were prepared. Light absorbance was measured 

within the range of 200 to 800 nm, using the Evolution 201 UV visible spectrophotometer 

(Thermo scientific). 
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Characterization of UV Light Irradiance 

The irradiance of the UV light was measured using ILT5000 Research Lab Radiometer 

(International Light Technology, Peabody, USA) The irradiance (W/cm2) was determined by 

taking the average of three irradiance measurements of four positions and then averaging those 

values (Figure: 3.1). The calculated dosage (energy density) in J/cm2 received for the 10 min 

exposure time was calculated using the equation (E=Pt) where E is the dose and P is the 

calculated (irradiance power density) and t is the exposure time in s (Ghate et al., 2013). 

 

Cytotoxicity Test 

Cytotoxicity of OA and UA against the FRhK-4 cell line was measured using the MTS (3- [4,5, 

dimethylthiazol-2-yl]-5-[3-carboxymethoxy-phenyl]-2-[4-sulfophenyl]-2H -tetrazolium, inner 

salt), cell proliferation colorimetric assay kit as described by (Dia & Pangloli, 2017). Controls 

used were the untreated cell line with assigned 100% viability. Testing of all treatments and 

controls were replicated thrice. 

 

Determination of Antiviral Activity of Oleanolic Acid and Ursolic Acid Against HAV 

The tested compounds were serially diluted in Dulbecco's Modified Eagle Medium (DMEM) to 

reach the desired concentrations of 30, 60, 120, 600, 1000 and 2000 µg OA ml and 

concentrations of 60, 180, 360 and 600 µg UA per ml. Cleaned and autoclaved Formica coupons 

(6.5 × 4.5 cm) were inoculated with 100 µL HAV (~6 log PFU/ml) (3.41 × 103 PFU/cm2 HAV 

on coupons), then placed in sterile petri dishes with open lid and left to air dry within the 

biosafety cabinet for 10 min. Next, 100 µL of the tested reagents or sterile deionized distilled 
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(dd) water (control) were applied to the surface of the coupons for 1 h or 10 min. The virus was 

recovered for each time point from the surface of the Formica coupons by repeated pipetting 

with 1200 µl DMEM-F12 containing 8% Bovine Calf Serum (BCS), then transferring this 

solution into a 15 ml tube containing 8.7 ml DMEM 8% BCS. The recovered virus was ten-fold 

serially diluted with 2% BCS DMEM media, and then infected on to confluent FRhK-4 host cells 

in 6-well plates for 3 h, followed by virus aspiration and overlay using overlay media (DMEM 

2X powder, bovine calf serum, sodium bicarbonate, non-essential amino acids, MgCl2 (4M), 

hepes buffer and gentamycin- kanamycin dissolved in sterile double deionized water and filtered 

through a 0.2-µm filter) and 1% Noble Agar at a 1:1 ratio. After 5 days of incubation at 37°C in 

an atmosphere containing 5% CO2 (Water-jacketed CO2 Incubator), the plaques were stained 

with a 1 ml of overlay media containing neutral red (Sigma-Aldrich, St. Louis, MO) incubated 

for 24 h and the virus plaques were counted. Each treatment was replicated thrice, and the data 

were statistically analyzed as described before.  

 

Photodynamic Inactivation of HAV Using Oleanolic Acid on Contact Surfaces 

Formica coupons (6.5 × 4.5 cm) were inoculated with 100 µL HAV (~6 log PFU/ml) (3.41 × 103 

PFU/cm2 HAV on coupons), then placed in sterile petri dishes and left to dry within the biosafety 

cabinet for 10 min as described above. Next, 100 µL of OA at 600 µg/ml was applied to the 

surface of the coupons (2µg/cm2 OA on coupons) in duplicate. Similarly, 100 μl of sterile (dd) 

water was applied to the surface of Formica coupons in duplicate. The coupons were then placed 

in sterile petri dishes within the biosafety cabinet. They were illuminated with UV light at 254 

nm wavelength for 10 min, at distance of 72 cm from the UV light source with UV dose of 0.04 
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J/cm2. Another two coupons containing HAV with OA and HAV with sterile (dd) water (control) 

were kept in closed petri dishes without illumination for 10 min. After illumination, the virus 

was recovered from the surface of the Formica coupons by repeated pipetting with 1200 µl 

DMEM with 8% Bovine Calf Serum (BCS) into a Petri dish then transferring this solution into a 

15 ml tube containing 8.7 ml DMEM 8% (BCS). The virus was serially diluted ten fold with 

DMEM-F12 containing 2% BCS and plaque assayed as described above. 

 

Statistical Analysis 

Results from the treatment (Oleanolic acid or Ursolic acid) and control were statistically 

analyzed by independent t-test, and one-way ANOVA was used to analyze PDI experiment; 

Tukey’s Post Hoc test was used for mean separation, similar to those used in previous studies 

(Turner & Thayer, 2001; Iversen et al., 1987). All statistical assumptions regarding normality 

and equality of variances were met (SAS, version 9.4, release TS1M3) and used for all analyses; 

P <0.05 was considered significant. All treatments and controls for the independent t-test were 

replicated thrice, except for OA at 2 mg/ml and PDI experiments, which were replicated five 

times, as reported in literature (Turner & Thayer, 2001; Iversen et al., 1987). 

 

Results 

Absorbance Spectra 

OA showed highest light absorbance (lambda max) at 259.09 nm with 1.04 Absorbance unit 

(Abs) and lowest light absorbance at 256.32 nm with 0.29 Abs. UA showed lambda max at 

216.50 nm with 2.06 Abs and the lowest light absorbance at 280.01 nm with 0.28 Abs. 
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Characterization of UV Light Irradiance 

The irradiance value was determined by taking the average of three irradiance measurements at 

each position of the four used positions and then averaging those values. The calculated UV dose 

(energy density) value for 10 min exposure time was 0.040±0.0011 J/cm2. 

 

Cytotoxicity Test 

The (MTS) assay did not detected cell toxicity of the FRhk-4 cell line using OA at 60 µg/ml and 

UA at 180 µg/ml. 

 

Inactivation of HAV by Oleanolic Acid and Ursolic Acid on Formica Coupons surfaces 

The stocks of OA and UA were dissolved in DMSO. Stocks of OA at 6 mg/ml DMSO were 

further diluted in DMEM to reach the desired concentrations of 30, 60, 120, 600, 1000 and 2000 

µg/ml. UA stock of 18 mg/ml (dissolved in DMSO) was diluted in DMEM to prepare a range of 

tested concentrations (60, 180, 360 and 600 µg UA per ml), used for the treatment of HAV with 

a titer of ~6 log PFU/ml that was dried on Formica coupons for 1 h. The experiment was 

performed using one replicate for each concentration against HAV; those with significant viral 

reduction results were selected and repeated thrice. Kong et al., (2013) used a maximum DMSO 

level of 2%, as it is considered safe at this concentration when used on the HepG2 cell line 

(Kong et al., 2013). In this study, the direct contact treatment mode include an inactivation step, 

the virus and OA were diluted at 100x (10-2) dilution factor in DMEM with 8% BCS, followed 

by serial dilution in DMEM with 2% BCS, at a 10x dilution factor for the next viral dilutions 
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Therefore, after diluting the 6000 µg/ml OA stock (100% DMSO) to 2000 µg/ml OA (33.33% 

DMSO) and when using the second viral dilution of (10-2), the DMSO concentration applied on 

the FRhK-4 cells was 0.33% which is considered a safe level for the cells. Moreover, the OA at 

2000 µg/ml in DMEM has a pH level of 7.3 when measured using pH test strips. The treatment 

of HAV (~6 log PFU/ml) dried on Formica coupons (6.5 × 4.5 cm) with UA at 180 and 360 

µg/ml (applied concentrations of 0.62 and 1.23 µg/ cm2, respectively), for 1 h resulted in 

0.66±0.16 and 1.33±0.35 log PFU/ml reduction, respectively. Treatment with OA at 60 and 600 

µg/ml on the surface of HAV dried on Formica coupons (applied concentrations were 0.21 and 

2.1 µg/ cm2, respectively) for 1 h resulted in reduction of 1.23±0.27 and 2.27±0.67 log PFU/ml, 

respectively. While OA at 2000 µg/ml for 10 min, (applied concentration of 6.84 µg/ cm2) 

showed 1.79±0.61 log PFU/ml reduction of HAV (Table 3.1).  

 

Inactivation of HAV with Photoactivated Oleanolic Acid 

HAV (~6 log PFU/ml) dried on Formica coupons treated with 600 µg/ml oleanolic acid, (applied 

concentration of 2.1 µg/ cm2), for 10 min did not result in any noticeable reduction of HAV. UV 

illumination of the control (HAV with dd water) for 10 min at a wavelength of 254 nm, distance 

of 72 cm, and UV-C dose (energy density) of 0.040±0.0011 J/cm2 resulted in a 1.75±0.7 log 

PFU/ml HAV reduction. Photoactivated oleanolic acid at 600 µg/ml for 10 min and the same 

illumination conditions resulted in a 2.39±0.31 log PFU/ml reduction of HAV (Table 3.2). 
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Discussion 

The treatment of HAV with OA at 30 µg/ml for one hour on Formica coupons did not show any 

viral reduction (using one replicate) compared to untreated control, while increasing the 

concentration to 60 µg/ml (0.13 mM) resulted in a statistically significant virus reduction of 

1.23±0.27 log PFU/ml compared to control (using three replicates; p<0.05). The treatment of 

HAV with an increased OA concentration of 120 µg/ml for one hour did not show any enhanced 

reduction (using one replicate), while treatment of HAV with increased concentration of 600 

µg/ml (1.31 mM) for one hour resulted in a statistically significant HAV reduction of 2.27±0.67 

log PFU/ml (p<0.05) compared to control. However, the OA at 60 µg/ml HAV recovered 

reduction is not statistically significant from the OA at 600 µg/ml recovered HAV reduction for 

the one-hour treatment time (p>0.05). Treatment with a further increased OA concentration of 1 

mg/ml did not show an increase in HAV reduction after one hour (using one replicate). However, 

increasing the OA concentration to 2 mg/ml (4.38 mM) resulted in a statistically significant 

HAV reduction of 1.79±0.61 log PFU/ml compared to control after a shorter treatment time of 

10 min (p<0.05). It should also be noted that longer treatment times of one hour showed signs of 

cell toxicity at 2 mg/ml OA concentration. This cytotoxicity effect was not observed when using 

shorter treatment times of 10 min with 2 mg/ml OA (Table 3.1). 

 

Contrary to treatment of HAV with OA at the same concentration, UA at 60 µg/ml (0.13 mM) 

did not reduce HAV titer (using one replicate), while an increased concentration to 180 µg/ml 

(0.39 mM) caused a reduction of 0.66±0.15 log PFU/ml after one hour. However, this reduction 

was not statistically significant from the control (using the average of three replicates; p>0.05). 
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Treatment of HAV with a higher UA concentration of 360 µg/ml (0.79 mM) for one hour 

resulted in an increased reduction of 1.32±0.35 log PFU/ml (using the average of three 

replicates). However, the UA at 180 µg/ml HAV recovered reduction is not statistically 

significant from the UA 360 µg/ml recovered HAV reduction for the one-hour treatment time 

(p>0.05). A further increase in the UA concentration to 600 µg/ml (1.3 mM) resulted in 

decreased HAV reduction of 0.6 log PFU/ml (using one replicate). Hence, we cannot conclude if 

anti-HAV of UA is dose dependent within this dosage range among the tested concentrations. 

UA at 360 µg/ml seems to be the most effective treatment concentration against HAV for 1 h 

(Table 3.1).  

 

Therefore, OA, possesses the same level of HAV reduction at the lower concentration of 60 µg 

/ml compared to UA at 360 µg/ml. This work found that an increase in OA concentration leads 

to an enhanced HAV viral reduction indicating dose dependent effects; however, for UA, anti-

HAV activity occurs within the range of 180-360 µg/ml with no improvement in antiviral 

activity at higher or lower concentrations. These results are supported by the previous study of 

Kong et al. in 2013, that reported a stronger antiviral activity of OA at lower concentrations than 

UA when applied to host cells after infection with HCV. In this current work, OA displayed a 

higher HAV reduction on Formica coupons compared to UA after a one-hour treatment. 

Furthermore, HAV recovered titer of both the OA at 60 µg/ml compared to 600 µg/ml was not 

statistical different (p>0.05). Likewise, recovered HAV titers of UA at 180 µg/ml compared to 

UA at 360 µg/ml was not statistical different. This insignificancy is perhaps due to high standard 

deviation among measurements. This could be improved in future experiments by a using 
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smaller stainless-steel coupons as a contact surface in order to measure and control surface 

roughness similar to those used by Park et al., 2015 or increasing the number of replicates (more 

than three replicates) in order to decrease the standard deviation of the HAV recovered titer. 

 

Thus, OA at 600 µg/ml was used in the photodynamic inactivation (PDI) experiment to enhance 

its reduction level using a shorter treatment time of 10 min. OA has its highest absorbance at 259 

nm with one absorbance unit. UV light with a wavelength of 254 nm was used as the light 

source, at a distance of 72 cm and UV-C dose (energy density) value of 0.040±0.001 J/cm2. 

Although OA at 600 µg/ml had a 2.27±0.67 log PFU/ml reduction after one-hour, it did not 

affect HAV at a shorter treatment time of 10 min without UV illumination, which indicates the 

importance of longer treatment time for effective viral reduction at this concentration. Moreover, 

photoactivated HAV with coupons treated with OA at 600 µg/ml showed higher viral reduction 

levels of 2.39±0.31 PFU/ml than the photoactivated HAV with (dd) water, which recorded a 

1.75±0.7 log PFU/ml reduction only. Although the recorded reductions of HAV with water and 

HAV with OA were statistically significant from the control, they were not statistically 

significantly(p>0.05) from each other, which implies that the recorded reduction was probably 

due to the UV effect rather than the generation of reactive oxygen species.   

 

Conclusions 

This research shows that triterpenoid oleanolic acid and ursolic acid possesses antiviral activity 

against HAV, with OA exhibiting stronger anti-viral activity. It seems that the difference in the 

position of the methyl group proves to be crucial factor in the ability of these compounds to 
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inactivate HAV. It was observed that higher concentration of UA at 600 µg/ml (2.1 µg/ cm2 

applied on coupons) showed a decrease in the anti HAV activity. However, just one replicate 

was done which was not enough to confirm this finding. While this research does not give an 

answer to the question of the mechanisms of antiviral activity of OA and UA against HAV 

infectivity, or whether physical changes occur in the virus capsids, these questions could be 

answered in future research. By using electron microscopy images of OA treated HAV as 

compared to untreated HAV, as well as by treating the host cell with OA and UA pre-and post-

HAV infection, the specific effects of these compounds in the virus’ attachment to and 

replication within the host cells could be elucidated. In this study, the photodynamic inactivation 

of HAV using OA and UV-C light at 254 nm did not show a significant difference compared to 

the reduction caused by HAV with water and UV light Therefore-PDI treatment could 

potentially be successful if a different UV light source with broader wavelength is utilized than 

the germicidal UV light used in the experiment. The UV light used in this study has a narrow 

wavelength range, with most of the energy concentrated around 254 nm (Qian, 2002). However, 

UA has its highest light absorbance at 216 nm with 2 absorbance units, as measured by 

spectrophotometry. Although UA has more absorbance units than OA, suggesting better ability 

as a photosensitizing compound (by generating stronger ROS), there were no available, efficient 

light sources in our lab that could emit in this wavelength during the course of this experiment. 

Therefore, research with UA as a potentially promising photosensitizer compound could be used 

for future PDI research. 
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Table 3.1: Effect of oleanolic acid and ursolic acid at room temperature for one hour or 10 min 

treatment times against hepatitis A virus dried on Formica coupons compared to a control 

(water). Different letters within the recovered titer column denote significant differences between 

treatments (p < 0.05). Data are presented as the average of three replicates ±S.D.  

 

Reagents 

HAV (log PFU/ml) 

Treatment for 1h Recovered titer Reduction 

 

 

Ursolic Acid 

 

 

 

Water 

 

180 µg/ml  

 

 

 

6.07±0.46  A 

 

5.49±0.31  A 

 

 

- 

 

0.66±0.16 

 

 

Water 

 

360 µg/ml  

 

 

 

6.36±0.25  A 

 

5.07±0.51  B 

 

 

- 

 

1.33±0.35 

Oleanolic 

Acid 

 

Water 

 

60 µg/ml  

 

 

6.07±0.46 A 

 

4.93±0.48 B 

 

 

- 

 

1.23±0.27 

 

 

Water  

 

600 µg/ml  

 

 

6.39±0.23 A 

 

4.35±0.78 B 

 

 

- 

 

2.27±0.67 

 

Treatment for 10 min Recovered titer Reduction 

 

Water 

 

2000 µg/ml 

 

 

6.00±0.44 A 

 

4.21±0.50 B 

 

 

- 

 

1.79±0.61 
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Table 3.2: Effects of photoactivated oleanolic acid at 600 µg/ml, with UV wavelength of 254 

nm, distance of 72 cm, UV dose (energy density) of 0.040±0.0011 J/cm2 for 10 min exposure 

time against hepatitis A virus (~6 log PFU/ml) dried on Formica coupons at room temperature. 

Different letters denote significant differences within the average recovered  column (p < 0.05). 

Data are presented as the average of five replicates ±S.D. 

Treatment Time 10 min 

0.04 J/cm2 

Average Recovered 

log (PFU/ml) 

Reduction 

log (PFU/ml) 

Control A 

6.24±0.18 
- 

HAV with Oleanolic Acid at 

600 µg/ml 

A 

6.25±0.17 
0 

HAV with Water and UV 
 

B 

4.34±0.68 
1.75±0.70 

HAV with Oleanolic Acid  

at 600 µg/ml and U.V 

B 

3.82±0.49 
2.39±0.31 
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Figure 3. 1: Illustration of the four positions of the petri dishes containing either coupons or 

tomatoes inside the LABCONCO class II biosafety cabinet. Specifications included UV light 30-

Watt fluorescent light bulb (Philips), emitting at 254 nm, with a plate distance of 72 cm from the 

light source. The UV dose (energy density) for the 10 min exposure time was 0.040±0.001 J/cm2. 

Irradiance was determined by taking the average of three irradiance measurements at each 

position and then averaging those values. 
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Figure 3.2: Treatment of HAV, dried on Formica coupons with ursolic acid at 180 µg/ml, 360 

µg/ml for 1 h, resulting in 0.66±0.16 and 1.33±0.35 log PFU/ml reduction of HAV, respectively. 

Different letters denote significant differences between each treatment concentration and its 

control (p < 0.05). Data are presented as the average of three replicates ±S.D. 
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Figure 3.3:Treatment of HAV dried on Formica coupons with oleanolic acid at 60 and 600 µg/ml 

for 1 h and 2 mg/ml for 10 min, resulting in 1.23±0.27, 2.27±0.67, and 1.79±0.61 log PFU/ml 

virus reduction, respectively. Different letters denote significant differences between each 

treatment concentration and its control (p < 0.05). Data are presented as the average of three 

replicates ±S.D. 
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Figure 3.4: Effect of photoactivated oleanolic acid at 600 µg/ml against HAV (titers ~6 log 

PFU/ml) dried on the surface of Formica coupons after 10 min treatments and illumination with 

254 nm wavelength, at a distance of 72 cm and dose (energy density) of 0.040±0.001 J/cm2, at 

room temperature. Different treatments included HAV with (dd) water, No UV (Control); HAV 

with OA, No UV (OA-NUV); HAV with (dd) water and UV (HAV-UV); and HAV with OA and 

UV (OA-UV). Different letters represent significant differences of recovered titers between 

different treatments (p<0.05). 
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Chapter IV: Conclusion 

This research investigated the anti-HAV activities of three compounds; grape seed extract 

(GSE), oleanolic acid (OA) and ursolic acid (UA) and in combination with ultraviolet light to 

explore potential enhanced inactivation. It was determined that GSE at a concentration of 0.91 

mg/ml with a treatment time of 30 min had no effect on HAV dried on Formica coupons, while 

at a higher concentration of 10 mg/ml and a treatment time of 5 min, GSE showed 1.53±1.04 log 

PFU/ml reduction of HAV on the surface of tomatoes. Both OA at 60 and 600 µg/ml and UA at 

180 and 360 µg/ml were found to possess anti-viral activities against HAV dried on Formica 

coupons. OA at 60 and 600 µg/ml after one-hour treatment time showed 1.23±0.27 and 2.2±0.67 

log PFU/ml viral reduction, respectively. A higher OA concentration of 2 mg/ml and a shorter 

treatment time of 10 min, resulted in a 1.79±0.61 log PFU/ml reduction of HAV. UA at 180 and 

360 µg/ml after one-hour treatment showed 0.66±0.16 and 1.33±0.35 log PFU/ml reduction of 

HAV, respectively. At the tested concentrations, OA was found to have a higher anti-viral 

activity against HAV than UA. Furthermore, photodynamic inactivation of HAV was 

investigated using GSE at 10 mg/ml and OA at 600 µg/ml to enhance viral reduction by the 

initiation of reactive oxygen species (ROS). The 30-Watt G30T8 fluorescent germicidal UV-C 

lamp (Philips, Holland) emitting light at 254 nm wavelength was used for the PDI experiments. 

The resulting reductions of HAV with 10 mg/ml GSE and HAV with 600 µg/ml OA for the 

different UV-C exposure times (3, 5, 10, 15, 20 and 30 min) were not statistically significant 

(p>0.05) from the reduction of HAV with PBS or water and UV-C which indicates that the 

resulting viral reduction was due to the effects of UV rather than the generation of reactive 

oxygen species. Moreover, the germicidal UV-C light used in the PDI experiments has most of 
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its energy concentrated around 254 nm; therefore, a different UV-C light source with a broader 

wavelength emission could be used in the future. Both OA and UA at the tested concentrations 

showed anti-HAV activities on Formica surfaces. However, OA at 2 mg/ml and a short treatment 

time of 10 min appears to be more applicable to the food sector for use on food contact surfaces. 

This approach can potentially reduce foodborne outbreaks associated with cross-contamination 

of ready-to-eat foods (RTE) such as produce.  
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