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Abstract. A comparative study of the viscous response of polymer matrix based fibrous composites
predicted by the Mori-Tanaka method and finite element simulations based on the 1st order homoge-
nization theory is presented. Aligned basalt and carbon fibers embedded into a polymeric matrix are
considered to represent a quasi isotropic and transversely isotropic two-phase systems. While differences
in the prediction of the macroscopic elastic response are attributed merely to the properties of the fiber
phase, the viscoelastic behavior is largely affected by the selected homogenization method. A stiffer
response predicted by the Mori-Tanaka method for both creep and relaxation tests is observed for both
material systems and supports similar finding found in the literature. Thus suitable modifications of
the original formulation of such two-point averaging schemes are needed for them to be applicable in
the multi-scale modeling of generally anisotropic yarns in plane weave textile composites.

Keywords: Viscoelasticity, homogenization, Mori-Tanaka method, periodic unit cell, transformation
field analysis, fibrous composites.

1. Introduction
A plane weave textile composites made of woven yarns
reinforced by unidirectional fibers bonded to a poly-
meric matrix are used in many engineering applica-
tions. Since often exposed to rate dependent or long
lasting variable loading the viscous behavior of the
matrix phase should be properly represented to arrive
at reliable predictions of generally time dependent
macroscopic response of such composites.
It has been shown in [1] that random nature of

the yarn microstructure may play a significant role in
the prediction of its macroscopic viscoelastic response
particularly in case of high contrast in material prop-
erties of the fiber and matrix phase. Therein, the
concept of statistically equivalent periodic unit cell
(SEPUC) [2, 3] was exploited to address adequacy of
the often assumed periodic hexagonal arrangement
(PHA) of fibers. This issue is also briefly addressed
herein. The point is that if sufficiently accurate, the
PHA model may be used to validate the applicability
of the Mori-Tanaka method because of their corre-
spondence in the elastic regime.
Following the footsteps of [4] the virtual creep or

relaxation tests carried out numerically at the level of
yarn could be used to calibrate a suitable macroscopic
viscoelastic model to represent the yarn behavior at
the level of textile. However, the macroscopically
isotropic response of asphalt mixtures assumed in [4]
is hardly acceptable for macroscopically orthotropic fi-
brous composites. This opens the way to fully coupled
multi-scale analysis. Most often the FE2 computa-
tional scheme [5] is used, where the SEPUC model

at the level of yarns is loaded by increments of the
local strain averages derived at the level of yarns for a
given increment of the macroscopic load. The SEPUC
analysis provides the instantaneous homogenized yarn
stiffness and corresponding stress increment. Such
a format of stress update may often be very compu-
tationally expensive. A potential route appears in
replacing detailed finite element simulations by a suit-
able micromechanical model such as the Mori-Tanaka
averaging scheme [6] assuming a piece-wise uniform
distribution of stresses and strains in individual ma-
terial phases thus utilizing the so called two-point
averaging scheme in case of two-phase materials, see
e.g. [7, 8].

However, using the Mori-Tanaka method may raise
some doubts because of the method limitations in
connection to time dependent or nonlinear analyses.
In particular, much stiffer response delivered by the
Mori-Tanaka method in comparison to unit cell finite
element simulations has often been reported. The pur-
pose of this study is to contribute to this subject in
the light of purely viscoelastic behavior of the matrix
phase and if needed to offer suitable modifications to
the original formulation of such micromechanical mod-
els while still keeping their computational efficiency.
The paper is organized as follows. Section 2 intro-

duces the two material systems examined herein. A
formulation of the adopted viscoelastic model is pre-
sented next in Section 3 followed in Section 4 by short
theoretical description of the two homogenization ap-
proaches. The principal achievements are summarized
in Sections 5 and 6.
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EA ET GA GT νA a b n cf
[GPa] [GPa] [GPa] [GPa] [-] [GPa]−1 [GPa]−1 [-] [-]

Carbon fiber 294 13 12 5 0.24 0.67
Basalt fiber 69.68 64.82 28.10 26.14 0.40 0.69
Epoxy matrix 2.03 2.03 0.725 0.725 0.40 0.0474 0.00214 0.3526

Table 1. Material properties of individual phases.

2. Materials
Two material systems are examined in the present
study to address both the influence of microstructural
details and material properties of individual phases.
The same epoxy resin was considered for both carbon
and basalt fiber composite with their microstructure
displayed in Fig. 1(a) and (b), respectively.

(a) (b)

Figure 1. Example images of local microstructure:
a) carbon fibers, b) basalt fibers. Reprinted from [9]
with permission from Begell House Publishers.

The corresponding material data taken from [9–
11] are listed in Table 1. While basalt fibers are
quasi-isotropic the carbon fiber composite represents
a highly anisotropic system. On the contrary, the
contrast in material properties of the fiber and matrix
in the transverse plane is relatively small in case of
carbon fibers as oppose to basalt fibers. This particu-
lar mismatch in material properties will be reflected
in Section 4.2 when constructing the computational
model.

3. Local constitutive equations
For the selected epoxy resin the last three parameters
in Table 1 are the model parameters of a simple power
law like formula for the relaxation rate1

R(t, τ) = 1
a+ b(t− τ)n , (1)

where R(t, τ) is the relaxation function representing
the stress at time t due to a unit strain applied at
time τ and held constant. To facilitate the numerical
solution this function is typically approximated by
the Dirichlet series in the form

R(t, τ) =
M∑
µ=1

Eµ(τ) exp
[
τ

θµ
− t

θµ

]
, (2)

1Note that these specific values of parameters a, b, n require
the time t − τ be given in minutes to yield the viscoelastic
modulus in [MPa].

where θµ are the a priory selected relaxation times.
Functions Eµ are usually obtained by fitting the re-
laxation function, e.g. Eq. (1), via Eq. (2) using the
method of least squares.

(a) (b)

Figure 2. a) Maxwell chain unit, b) Relaxation
function.

Assuming for example the generalized Maxwell
chain model in Fig. 2(a) composed of ten Maxwell
elements, we get the spring moduli Eµ listed in Ta-
ble 2. Note that sum of all spring moduli provides
the elastic modulus of the epoxy matrix in Table 1.
For illustration, Fig. 2 plots the relaxation functions
provided by Eqns. (1) and (2).

µ θµ [MPa·s] Eµ [MPa]
1 2.949089 3.548983×101

2 9.506234 9.965608×101

3 8.905084×101 2.133588×102

4 7.939963×102 3.599087×102

5 6.874448×103 4.325570×102

6 5.709058×104 3.954614×102

7 5.221879×105 2.450281×102

8 4.561310×106 1.384739×102

9 4.654514×107 5.785885×101

10 4.749622×108 5.854287×101

Table 2. Parameters of Maxwell chain model.

For the generalized Maxwell chain model it holds

σ =
M∑
µ=1

σµ, (3)

where σµ are stresses in individual Maxwell elements.
Integrating the differential form of constitutive equa-
tion for each Maxwell element over the time increment
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∆t and using Eq. (3) gives the increment of the total
stress ∆σ as

∆σ = Ê (∆ε−∆µ) , (4)

where the instantaneous Young’s modulus Ê and the
increment of viscoelastic strain ∆µ read [12]

Ê =
N∑
µ=1

∆tEµ
θµ

(
1− exp

[
−∆t
θµ

])
, (5)

∆µ = 1
Ê

N∑
µ=1

(
1− exp

[
−∆t
θµ

])
σµ(ti−1), (6)

where σµ(ti−1) represents the hidden stress at the
beginning of the new time increment. The stress σµ(ti)
at the end of the time increment is then provided by

σµ(ti) = σµ(ti−1) exp
[
−∆t
θµ

]
+ (7)

+ Eµ

(
1− exp

[
−∆t
θµ

])
(∆ε−∆µ).

Extension of the above set of one-dimensional equa-
tions to a general three-dimensional space is provided,
e.g. in [1].

4. Homogenization schemes
In this section we briefly review the Mori-Tanaka mi-
cromechanical model for a two phase material system
in the framework of transformation field analysis [13]
and the first-order homogenization scheme grounding
on the existence of periodic fields.

4.1. Mori-Tanaka method
Consider a two-phase composite made of elastic trans-
versely isotropic fibers of a circular cross-section em-
bedded into a viscoelastic isotropic matrix. Assuming
piece-wise constant local fields in individual phases
r = f,m2 allows us to write the local constitutive
equations in the form

∆σf = Lf∆εf , ∆σm = L̂m(∆εm −∆µm), (8)

where L is the material stiffness matrix and L̂ rep-
resents the dependence on the viscoelastic modulus
Ê.
Suppose that the composite is loaded on its outer

boundary either by the prescribed displacements
(strain control) or tractions (stress control) compatible
with macroscopic uniform strain ∆E or stress ∆Σ
increments. The local strains or stresses in terms of
their applied macroscopic counterparts follow from
Dvorak’s transformation field analysis [13] as

∆εf = Âf∆E + D̂fm∆µm, (9)
∆εm = Âm∆E + D̂mm∆µm, (10)
∆σf = B̂f∆Σ− F̂ fmL̂m∆µm, (11)
∆σm = B̂m∆Σ− F̂mmL̂m∆µm, (12)

2Subscripts f,m stand for the fiber and matrix phase, re-
spectively.

where Âr, B̂r and D̂rm, F̂ rm, r = f,m, are the me-
chanical strain and stress localization factors and
strain and stress transformation influence functions,
respectively.
The Mori-Tanaka method gives the mechanical lo-

calization factors in the form

Âm =
[
cmI + cf T̂f

]−1
, Âf = T̂f Âm, (13)

B̂m =
[
cmI + cfŴf

]−1
, B̂f = Ŵf B̂m,(14)

where the so called partial strain and stress localiza-
tion factors T̂f , Ŵf can be expressed in terms of the
Eshelby tensor Ŝ as

T̂f =
[
I− P̂

(
L̂m − L̂f

)]−1
, (15)

Ŵf =
[
I− Q̂

(
M̂m − M̂f

)]−1
, (16)

P̂ = ŜM̂m, P̂ = −L̂m
(

Ŝ− I
)
, (17)

where M = L−1 is the material compliance matrix.
Note that in case of the Mori-Tanaka method the
Eshelby tensor Ŝ depends on instantaneous proper-
ties of the matrix phase. For a cylindrical fiber3 its
particular form is available, e.g. in [8].
For a two-phase composite the transformation in-

fluence functions are readily provided in terms of the
localization factors as

D̂fm =
(

I− Âf

)(
L̂m − Lf

)−1
L̂m, (18)

D̂mm =
(

I− Âm

)(
L̂m − Lf

)−1
L̂m, (19)

F̂fm =
(

I− B̂f

)(
M̂m −Mf

)−1
M̂m, (20)

F̂mm =
(

I− B̂m

)(
M̂m −Mf

)−1
M̂m. (21)

4.2. 1st order homogenization
Assuming again the composite be loaded either by the
macroscopic uniform strain ∆E or stress ∆Σ admits
the following decomposition

∆u(x) = ∆E x + ∆u∗(x), (22)
∆ε(x) = ∆E + ∆ε∗(x), (23)

where ∆u∗(x) is the fluctuation part of the local dis-
placement field ∆u(x). The former one is considered
periodic to give the volume average of the fluctuation
strain ∆ε∗(x) equal to zero. The stepping stone in
the derivation of fluctuation displacements ∆u∗(x) is
the Hill lemma given by〈

δεT∆σ
〉

= δET∆Σ. (24)
3Note that for cylindrical fibers the Eshelby tensor depends

on the matrix phase Poisson ratio only, which is assumed con-
stant in our study, i.e. Ŝ = S . Also note that keeping the time
increment ∆t constant yields the viscoelastic modulus Êm also
constant. Thus the localization and transformation matrices
need to be evaluated only once.
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where 〈·〉 stands for volume averaging.
In the framework of finite element discretization we

approximate ∆u∗(x) in terms of their nodal values
∆r to write

∆u∗(x) = N(x)∆r, ∆ε∗(x) = B(x)∆r. (25)

Substituting from Eq. (25)2 into (24) yields the final
system of algebraic equations in the form

[
K11 K12
K21 K22

]{
∆E
∆r

}
=
{

∆Σ + ∆F 0

∆f0

}
.

(26)
Individual matrices listed in Eq. (26) are written as

K11 = 1
Ω

∫
Ω

L̂(x) dΩ,

K12 = KT
21 = 1

Ω

∫
Ω

L̂(x)B(x) dΩ, (27)

K22 = 1
Ω

∫
Ω

BT(x)L̂(x)B(x) dΩ,

and components of the right-hand side vector are

∆F 0 = 1
Ω

∫
Ω

L̂(x)µ(x) dΩ, (28)

∆f0 = 1
Ω

∫
Ω

BT(x)L̂(x)∆µ(x) dΩ.

Recall that the system of equations 26 is adopted when
loading the composite by the prescribed macroscopic
stress such as in case of creep. Simulating a relaxation
test calls for the macroscopic strain ∆E be prescribed.
The system of equations 26 then simplifies to

(K22)∆r = −(K21)∆E + ∆f0. (29)

The increments of macroscopic strains ∆E (Σ pre-
scribed) or stress ∆Σ (E prescribed) follow from the
volume averaging of their local counterparts. Further
details can be found in [1, 8].

5. Results
The first study aimed at comparing the results pro-
vided by various unit cell models. Figures 3(b-c)
show 5-fiber and 10-fiber periodic unit cells (PUC).
Note that these were constructed by simply chang-
ing the diameter and slightly also the position of
SEPUCs derived originally in [8, Chapter 3] for a
carbon-carbon composite to meet the required vol-
ume fractions. Such PUC thus should not be termed
SEPUC for the present systems. Inadequacy of such a
simple approach is confirmed by the results plotted in
Fig. 5 for the basalt fiber composite subjected to both
creep and relaxation loading conditions displayed in
Fig. 4.
A highly anisotropic behavior predicted by 5-fiber

and 10-fiber PUC in comparison to PHA model in
Fig. 3(a) is evident in Figs. 5(a,c) showing a different

(a) (b)

(c)

Figure 3. Periodic unit cells: a) PHA model, b)
basalt 5 fiber UC, c) basalt 10 fiber UC.

Time [s]

Σ   (Σ   )xy = 100 [MPa]xx

Σ

Time [s]

E

xy xxE   (E   ) = 0.375 [%]

(a) (b)

Figure 4. Applied loading: a) creep test, b) relax-
ation test.

response of the two systems when loading the com-
posite along X and Y axes, but also in Figs. 5(b,d)
showing an evolution of a non-negligible shear strain
and stress for the creep and relaxation loading con-
ditions, respectively, associated with the two loading
cases. While, as expected, the response predicted
by the PHA model confirms a material isotropy in
the transverse plane. Further study comparing the
predictions provided by the FEM simulations and the
Mori-Tanaka thus adopted the PHA model only. The
results appear in Fig. 6.

Figure 6(a) shows the evolution of the macroscopic
normal strain Exx caused by the macroscopic normal
stress Σxx. For both material systems the initial elas-
tic response predicted by the Mori-Tanaka method
appears more compliant in comparison to FEM simula-
tions, while the subsequent time dependent evolution
of strains confirms much stiffer behavior suggested by
the Mori-Tanaka method. This is supported by the
results derived for the shear loading, Figure 6(b), as
well as for the relaxation tests, Figs. 6(c,d)

The results clearly show that the predictions depend
not only on the material system but also on the applied
type of loading conditions. While the differences in the
elastic behavior can be associated with the material
properties of the fiber phase, the evolution of local
creep strain is driven by the selected computational
model. A non-uniform distribution of creep strain in
the matrix phase caused by the microstructural details,
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Figure 5. Test of SEPUC applicability: (a-b) creep
test - time variation of macroscopic strains due to pre-
scribed macroscopic stresses Σxx, Σyy, (c-d) relaxation
test - time variation of macroscopic stresses due to
prescribed macroscopic strains Exx, Eyy
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Figure 6. Comparison of macroscopic response pre-
dicted by finite element simulations and Mori-Tanaka
method for both basalt carbon fiber composites: (a-b)
creep test, (c-d) relaxation test - a) Σxx prescribed,
b) Σxy prescribed, c) Exx prescribed, d) Exy pre-
scribed.
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recall Fig. 5, and the mismatch in material properties
of the fiber and the matrix phase then renders a
significantly more compliant macroscopic response in
comparison to the Mori-Tanaka method, which builds
on the piecewise constant stress and strain fields in
individual phases, recall Eqns.(9) - (12).

6. Conclusions
The present paper examined a potential application
of the Mori-Tanaka method in prediction of effective
viscoelastic response of polymer matrix based fibrous
composite. The results presented in Fig. 6 confirmed a
relatively stiff response delivered by the Mori-Tanaka
method when compared to finite element simulations
already observed in some previous studies.

Thus for the Mori-Tanaka method presented in the
framework of Dvorak’s transformation field analysis
to be applicable as a very efficient substitute of com-
putationally demanding finite element simulations in
multi-scale analysis requires some modifications to its
original formulation. With regard to generally nonlin-
ear material behavior the literature offers a number of
potential approaches. Reduction of stresses in the re-
inforcing phase, typically assumed linearly elastic, by
introducing an artificial damage parameter is one par-
ticular example [7, 14]. Slightly different approach has
been proposed in [15] for the analysis of quasi-brittle
materials where the effect of strain localization was ad-
dressed with the aid of interfacial coating to allow for
gradual debonding and thus letting the matrix to take
all the stresses. Another approach offers more refined
transformation field analysis where the concentration
and transformation matrices are derived from finite
element method using rather crude meshes where each
element represents a single material [16]. All these
approaches will be examined in our future studies
depending on the results provided by an accompanied
experimental program.
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