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Abstract. This article explores a mathematical model of a data transmission channel with errors
grouping. We propose an estimating method for energy gain from coding and energy efficiency of binary
codes in channels with grouped errors. The proposed method uses a simplified Bennet and Froelich’s
model and allows leading the research of the energy gain from coding for a wide class of data channels
without restricting the way of the length distributing the error bursts. The reliability of the obtained
results is confirmed by the information of the known results in the theory of error-correcting coding in
the simplified variant.
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1. Introduction

The usage of redundant codes to increase the reliability
of the transmitted information requires the designer
to take into account various factors, including the
nature of the error distribution in the communication
channel [1–9]. A detailed research of statistical prop-
erties of error sequences in real channels has shown
that the errors are dependent and have a tendency to
batch groups [1–3]. Most of the time, the information
is transferred via communication channels without
any distortions. However, at any point of time, er-
ror condensations, so-called error bursts, can occur,
inside of which the error probability is significantly
higher than the average error probability calculated
for a considerable transmission time. In such con-
ditions, protection methods that are optimal for the
independent error hypothesis are absolutely ineffective
in real communication channels [4–9]. It is necessary
to use a (scientific and) methodological apparatus
to estimate the error-correcting codes efficiency cor-
rectly. It allows to describe the error behaviour in
the communication channel and to develop practical
recommendations on using error correcting codes.

One of the main criteria of the error-correcting code
efficiency is the energy gain from coding (EGC), which
refers to the reduction of the minimum required ratio
of signal energy to spectral power density of noise. It
allows to apply a system of an error-correcting code
while ensuring the given probability of the erroneous
receiver of signs [10–12]. Today, the EGC is calculated
in the known manner, for channels with independent
errors. The current direction of research is to develop
methods of estimating the energy gain from coding in
channels with grouping errors.

2. Model of channel with
independent errors

Let’s consider the process of a code word decoding
in conformity with the binary symmetrical channel
model with an independent error distribution. Let’s
suppose that transmission errors occur independently
with a probability P0. If t is the number of corrected
errors by (n, k, d)-block code, t =

⌊
d−1

2
⌋
, then the

probability of the erroneous decoding is calculated as

Ped(n) = 1−
t∑
i=0

CinP
i
0(1− P0)n−i−

−
n∑

i=t+1
u(i)P i0(1− P0)n−i, (1)

where Cin is a binomial coefficient; u(i) is the number
of error vectors of weight i, errors being fixed by the
code.
If the code corrects all errors within the radius of

the code batch and does not fix other bugs, then

Ped(n) = P (> t, n) =
n∑

i=t+1
CinP

i
0(1− P0)n−i =

= 1−
t∑
i=0

CinP
i
0(1− P0)n−i, (2)

To recalculate the error probability of the decoding
for one character, Ped will use the expression [10–12]:

Ped = d

n
Ped(n).

After the substitution in (2), we will obtain

Ped = d

n

n∑
i=t+1

CinP
i
0(1− P0)n−i. (3)
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To calculate the EGC, we will consider the proba-
bility dependence of P0 from the ratio of the signal
energy to spectral power density of noise to [13]:

P0 = 1√
2π

∫ −√E(1−bs)/N0

−∞
exp

(
−y

2

2

)
dy =

= V

√E(1− bs)
N0

 , (4)

where E is the signal energy, N0 is the spectral power
density of white noise; bs is the coefficient of mutual
correlation between signals; V (x) is the error integral.

Thus, in the case of using binary phase-shift keyed
(PSK) signal with a 1800 phase manipulation, the
coefficient of correlation is bs = −1. The probability
of P0 for such signals is determined by the expression

P0 = 0, 5
(

1− Φ
(√

2E
N0

))
= 1− Φ′

(√
2E
N0

)
,

where Φ and Φ′ are tabulated functions that repre-
sent the probability integrals:

Φ (x) = 2√
2π

∫ x

0
exp

(
−y

2

2

)
dy =

= 1− 2√
2π

∫ −x
−∞

exp

(
−y

2

2

)
dy,

Φ′ (x) = 1√
2π

∫ −x
−∞

exp

(
−y

2

2

)
dy =

= 1− 1√
2π

∫ ∞
x

exp

(
−y

2

2

)
dy.

The usage of (n, k, d)-block codes detecting and
correcting errors leads to increasing the redundancy
of the transmitted data. If you fix the message en-
ergy transmitted in the channel, then the energy per
symbol is reduced proportionally to the introduced
redundancy. To calculate the error probability per
symbol at the output of the decoder according to the
expression (3), considering the introduced redundancy,
we will decrease the ratio of the signal energy to spec-
tral power density of noise in the expression ( 4) in
R = k/n times.
The final expression for the error probability per

symbol, using the error-correcting (n, k, d)-block code,
will be as follows:

Ped = d

n

n∑
i=t+1

Cin

V
√kE(1− bs)

nN0

i

×

×

1− V

√kE(1− bs)
nN0

n−i

. (5)

For binary PSK signals, the last expression we will
rewrite as follows:

Ped = d

n

n∑
i=t+1

Cin

(
1− Φ′

(√
2kE
nN0

))i
×

×

(
Φ′
(√

2kE
nN0

))n−i
. (6)

Let’s fix the required probability of an error on one
character Pd and calculate the required ratio γ1 =
E/N0 at P0 = Pd according to the expression (4), and
the ratio γ2 = E/N0 at Per = Pd, according to the
expression (5). The difference γ2−γ1 gives the needed
estimation of the EGC. If the EGC is positive, then
the usage of the error-correcting code leads to a gain,
and, on the contrary, it is inappropriate to use the
chosen (n, k, d)-block code with a negative EGC. The
values γ1, γ2 and EGC are usually on a logarithmic
scale.

3. Model of channel with
grouping errors

A convenient tool to describe data transmission chan-
nels is Bennet and Froelich’s mathematical model,
which has no restrictions as to the way of length dis-
tribution of error bursts [1–9]. The main features of
the Bennet and Froelich’s model [4] are:
• constant Pn-probability is the probability that the
error package will start from a certain position;

• the independence of error packets occurrence;
• the independence of the Pl-probability of error

packet occurrence with l-length from the lengths of
other packet errors;

• the independence of errors within the package;
• constant Pε-probability inside the package;
• no errors outside the package;
• the possibility of contiguity and mutual overlapping

of the error packets.

To specify the model, it is enough to determine
Pn, Pε probabilities and Pn(l, n) distribution. At
the same time, only solid batches with Pε = 1 are
experimentally singled out. In [6–8], a simplified
Bennet and Froelich’s model is proposed:
• an error can only arise within the error burst with

the constant (Pε = 1)-probability (continuous pack-
ages);

• contiguity and mutual overlap of solid packages do
not exist;

• the constant Pn-probability is the probability that
a solid error burst of any length will start from a
certain position;

• P (l) is the probability of continuous l-length packet
occurrence;
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• Pn(l) is the probability that a continuous error burst
of l-length will start from a certain position,

Pn(l) = Pn · P (l).

To specify a simplified Bennet and Froelich’s model,
it is sufficient to specify the Pn-probability and P (l)-
distribution. The Pn probability value and P (l)-
distribution can be obtained experimentally on a large
enough sample size [1, 2, 4].

According to the Bennet and Froelich’s model, the
distribution of Pner(m) -probabilities of occurrence
of error-free m-length intervals between adjacent con-
tinuous error bursts has the following geometrical
meaning:

Pner(m) = Pn(1− Pn)m−1
. (7)

If P (l)-distribution can also be presented as a geo-
metrical law

P (l) = (1− g)gl−1, (8)

then, the average error burst length lav, the average
length of error-free interval mav, the error probability
for the bit P0 and the error burst probability Pn are
associated with the values

mav = 1, P0 = Pnlav, lav(1− g) = 1. (9)

To define the considered model, it is sufficient to
specify only two parameters, for example, P0 and lav.
In Figure 1, there are P (l) dependencies for cases:

1) lav = 2; 2) lav = 4; 3) lav = 8; 4) lav = 16; 5)
lav = 32; 6) lav = 64.

Figure 1. The dependencies of the probability of
solid package occurrence.

The analysis of dependencies presented in Figure 1
shows that even with a small average error burst
length, there is a high probability of a continuous
package occurrence. Indeed, with the average error
burst length lav = 8 bits the probability of a solid
package occurrence of 20 errors is ≈ 10−2. With the
same average error burst length, the probability of a
solid package occurrence of 40 errors is ≈ 10−3.

Using the considered simplified model, it is possible
to calculate the features of an error-correcting coding
efficiency in channels with grouping errors. Let us fix
the average error burst length lav and error probability
per bit P0. Then, we obtain:

Pn = P0

lav
, g = 1− 1

lav
,

P (l) = 1
lav

(
1− 1

lav

)l−1
,

Pn(l) = P0

l2av

(
1− 1

lav

)l−1
. (10)

As an example, Figure 2 shows the dependencies
Pn(l) for different values lav: a) lav = 2; b) lav = 4;
c) lav = 8, d) lav = 16, e) lav = 32, f) lav = 64. The
values Pn(l) were calculated for the case of receiving a
binary phase-shift keyed signal and correspond to the
following values: 1) P0 = Pn(1); 2) Pn(2); 3) Pn(4);
4) Pn(8); 5) Pn(16); 6) Pn(32); 7) Pn(64).

The analysis of the dependencies presented in Fig-
ure 2 shows that, whith increasing the average error
burst length lav, there is a very slight (one to two
orders of magnitude) decrease in the probability of
the continuous package occurrence of small length
(2 ≤ l ≤ 4 bits). At the same time, there is a signifi-
cant increase in the probability of the solid package
occurrence of great length (32 ≤ l ≤ 64 bits). So,
with lav = 2, the probability of the continuous error
burst occurrence of the length l = 64 bits is

P (64) = 1
2

(
1− 1

2

)64−1
=
(

1
2

)64
≈ 5.42 · 10-20,

and the probability of the continuous error burst oc-
currence of the length l = 64 bits from the current
position is as follows

Pn(64) ≈ P0 · 5.42 · 10-20.

With lav = 64, the corresponding probabilities are:

P (64) = 1
64

(
1− 1

64

)64−1
≈ 5.70 · 10-3,

Pn(64) ≈ P0 · 5.70 · 10-3,

as it can be seen, the probability of occurrence of
long solid package increased by seventeen orders of
magnitude.
Thus, as the analysis shows, with the increase in

the average length of packet errors, a redistribution of
the probabilities of occurrence of packet errors takes
place: the reduction of the probability of occurrence
of packets of short length and the increase in the
probability of occurrence of packages of greater length.

Consider the event consisting in the error decoding
of linear (n, k, d)-block code, when used in channels
with grouping errors. If, for a block of n-symbols, the
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Figure 2. The dependencies Pn(l) for different values lav.
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code corrects all errors of t-weight and less, doesn’t
corrects other errors and errors that occurred in an
accordance with the considered model are grouped in
packets of l -symbols, then the errors that occurred in
an accordance with the considered model are grouped
in packets of ξ-packages, so that ξl > t.
Let’s consider a simplified Bennet and Froelich’s

model with a disjoint not adjacent to any other error
bursts. In this case, the probability of the error burst
occurrence ξ-packages of an l-length on a block with
n-symbols is determined by the quantity combination
of the package number (with no overlapping parts) on
the length of n-symbols. The probability of one error
burst occurrence of an l-length on the length of the
package of n-symbols is computed as:

P1(l, n) = (n− l + 1)Pn(l)(1− Pn(l))n−l.

It applies that, on a block length of n-symbols, no
more than λ =

⌊
n+1
l+1

⌋
error blocks of an l-length

can appear. The combination number of ξ-packages
on the length of n-symbols is defined as a value of the
binomial coefficient

Cξλ+n+1−ξ(l+1)−λ+ξ = Cξn−ξl+1. (11)

Then, the expression for the probability of ξ-error
burst occurrence with l-length on the package of n-
symbols is written as:

Pξ(l, n) = Cξn−ξl+1Pn(l)ξ(1− Pn(l))n−ξl. (12)

For the probability of ξ > 1-packages occurrence
from l-errors on the block length of n-symbols, the
ξl ≤ t is determined by the expression:

Pl<ξl ≤t(l, n) =

=
λ∑
ξ=1,

l<ξl ≤t

Cξn−ξl+1Pn(l)ξ(1− Pn(l))n−ξl. (13)

The probability of the error decoding is defined as

Ped = 1− (1− Pn)n −
n∑
l=1

Pl<ξl ≤t(l, n),

where (1− Pn)n is the probability that, on the block
of n-symbols, no error bursts will happen. Then,
taking into account (13), we get

Ped = 1− (1− P)n−

−
n∑
l=1

λ∑
ξ=1,

l<ξl ≤t

Cξn−ξl+1Pn(l)ξ(1− Pn(l))n−ξl. (14)

When compared to the model with independent
errors, the disadvantage of the model with no attached

error bursts is irreducibility, even in the case of the
fixed l = 1. Indeed, let us suggest, that lav = 1, then
g = 0, P (1) = 1, P (> 1) = 0, Pn = P0 = Pn(l),
with only single errors, which are not adjacent to each
other, appearing. Then, the expression (12-13) will
be rewritten as:

Pξ(l, n) = Cξn−ξ+1P0
ξ · (1− P0)n−ξ,

P1<ξ ≤t(l, n) =
t∑

ξ=1
Cξn−ξ+1P0

ξ(1− P0)n−ξ,

and the expression for the decoding of an error proba-
bility will be written as

Ped = 1− (1− P0)n −
t∑

ξ=1
Cξn−ξ+1P0

ξ(1− P0)n−ξ =

= 1−
t∑

ξ=0
Cξn−ξ+1P0

ξ (1− P0)n−ξ. (15)

that does not correspond to the expressions (1-2) for
the model with independent errors. Let’s analyse the
reasons of this disparity.

The expression (15) conforms to the probability of
an erroneous decoding, distorted by such single er-
rors, which cannot adhere to each other. In general,
the model of a binary symmetrical channel without
memory, described by the expressions (1-2), allows
adjoining single errors that cause the discrepancy be-
tween the corresponding formulas. Let’s consider a
simplified Bennet and Froelich’s model with disjoint
error bursts and their possible adjacency to each other.
In this case, on the block length of n-symbols, there
could be no more than λ′ = bn/lc error bursts of an
l-length. The number of combinations of ξ-packages
on the length of n-symbols is defined by the binomial
coefficient

Cξλ′+n−ξl−λ′+ξ = Cξn−ξl+ξ. (16)

Then the expression for the ξ-error bursts occur-
rence probability of l-length on the block of n-symbols
is determined by the expression:

Pξ(l, n) = Cξn−ξl+ξPn(l)ξ(1− Pn(l))n−ξl. (17)

For any occurrence of ξ > 1 of l-errors packages on
the block of n-symbols with ξl ≤ t, Pl<ξl ≤t(l, n), the
probability is computed by the expression

Pl<ξl ≤t(l, n) =

=
λ′∑
ξ=1,

l<ξl ≤t

Cξn−ξl+ξ · Pn(l)ξ · (1− Pn(l))n−ξl. (18)
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The probability of erroneous decoding is computed
as

Ped = 1− (1− Pn)n −
n∑
l=1

P1<ξ ≤t(l, n),

and, taking into account (18), we get

Ped = 1− (1− Pn)n−

−
n∑
l=1

λ′∑
ξ=1,

l<ξl ≤t

Cξn−ξl+ξPn(l)ξ(1− Pn(l))n−ξl. (19)

The disadvantage of the model with not-adjacent
error bursts is the irreducibility, even with the fixed
l = 1, when compared to the model with independent
errors. Indeed, let’s suggest that lav = 1, g = 0,
P (1) = 1, P (> 1) = 0, Pn = P0 = Pn(l) and only
single errors occur, which are not adjacent to each
other.
Then, the expression (17-18) will be rewritten in

the following form

Pξ(l, n) = CξnP0
ξ(1− P0)n−ξ,

P1<ξ ≤t(l, n) =
t∑

ξ=1
CξnP0

ξ(1− P0)n−ξ,

and the expression for the error probability decoding
will be transformed to

Ped = 1− (1− P0)n −
t∑

ξ=1
CξnP0

ξ(1− P0)n−ξ =

= 1−
t∑

ξ=0
CξnP0

ξ(1− P0)n−ξ,

that with i = ξ, it fully complies with the expressions
(1-2) for the model with independent errors.

To calculate the EGC of (n, k, d)-block code in a
channel with grouping errors, it is necessary to fix a
required error probability on one character Pd and cal-
culate the corresponding value of E/N0 by expressions
(14) and/or (19) (taking into account the introduced
redundancy and the multiplier d/n). The difference of
γ2 and γ1 gives the required estimation of the EGC:

EGC = γ2 − γ1,

where γ2 is the ratio E/N0, the minimum required to
achieve a desired probability of an erroneous reception
of symbols Pd for a fixed ensemble of signals (without
coding); γ1 is the ratio E/N0, the minimum required
to achieve Pd for a fixed ensemble of signals by using
the (n, k, d)-code block.

It should be noted that the considered mathematical
model and methodology of evaluating the energy gain
are not limited by the distribution of the length of
error bursts that allows to explore the EGC for a wide
class of data channels.

GF (2m) The roots the polynomial g(x)
(n, k, d)

GF (24) α1, α2, α4, α8,
(15, 7, 5) α3, α6, α9, α12

GF (25) α1, α2, α4, α8,α16,
(31, 16, 7) α3, α6, α12,α24, α17,

α5, α10, α20, α9, α18

GF (26) α1, α2, α4, α8, α16, α32,
(63, 36, 11) α3, α6, α12, α24, α48, α33,

α5, α10, α20, α40, α17, α34,
α7, α14, α28, α56, α49, α35,
α9, α18, α36

GF (27) α1, α2, α4, α8, α16, α32, α64,
(127, 64, 21) α3, α6, α12, α24, α48, α96, α65,

α5, α10, α20, α40, α80, α33, α66,
α7, α14, α28, α56, α112, α97, α67,
α9, α18, α36, α72, α17, α34, α68,
α11, α22, α44, α88, α49, α98, α69,
α13, α26, α52, α104, α81, α35, α70,
α15, α30, α60, α120, α113, α99, α71,
α19, α38, α76, α25, α50, α100, α73

Table 1. Primitive binary BCH-code.

4. EGC-evaluation of BCH codes
Consider the binary Bose-Chaudhuri-Hocquenghem
(BCH) codes for an assessment of their EGC into
channels with independent and grouping errors. To
evaluate the EGC, we will use the techniques devel-
oped earlier. The theory and methods of constructing
BCH codes are best described in the monographs [10–
12], in which it is shown that BCH codes yield the
highest win at R ≈ 1/2.
Fix a finite field GF (2m), m = 4, 5, 6, 7 and primi-

tive binary BCH-code with R ≈ 1/2. In Table 1, the
corresponding code parameters and the roots of the
generating polynomial g(x) in the form of the degrees
of the primitive element of the field are presented.

Figure 3 shows the dependencies of the probability
of erroneous receiving of symbols for the cases:
• 1 - the optimum receiving of binary PSK signals
(without coding);

• 2 - using the (15, 7, 5) BCH-code;
• 3 - using the (31, 16, 7) BCH-code;
• 4 - using the (63, 36, 11) BCH-code;
• 5 - using the (127, 64, 21) BCH-code.

In Figure 3a), the reduced dependencies correspond
to the model considered earlier with an independent
occurrence of errors, which is equivalent to the case
lav = 1. In the rest of the figures, the reduced de-
pendencies correspond to the probability of receiving
erroneous channel symbols, which is described by a
simplified Bennet and Froelich’s model containing dis-
joint error packets and their possible contiguity to each
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Figure 3. The dependencies of the probability of erroneous receiving of a symbol.

other for the cases: b) lav = 1, 00001; c) lav = 1, 0001;
d) lav = 1, 001. As follows from the reduced depen-
dencies, even a small clustering of errors leads to a
sharp decrease of the EGC.
Indeed, for the above considered model with in-

dependent errors at Pd = 10−5, the EGC binary
(127, 64, 21) BCH-code is equal to ≈ 3.2dB (see Fig-
ure 3a). But when lav = 1, 0001, the EGC is sharply
reduced and, for the same, value Pd is approximately
equal to 0.9 dB (see Figure 3b). With an increasing
average length of a package of continuous errors, the
EGC continues to decrease and becomes negative (see
Figure 3d). Practically, this means that the use of
strictly random error-correcting coding in channels
with a strong clustering of errors is inefficient and
leads to energy loss.

5. Conclusions
As the result of the research, we have developed a
scientific and methodological apparatus description
of the error behaviour in discrete channels. For the
first time in the open literature, we have developed
the methodology of estimating the EGC-binary codes
in channels with grouping errors.

The proposed method uses a simplified Bennet and
Froelich’s model and allows conducting a research
of the EGC for a wide class of data channels with
different laws of length distribution of the error bursts.
The reliability of the obtained results is confirmed
by the information in the simplified variant of the
known results in the theory of the error-correcting
coding. So, the estimating expression of probability of
erroneous decoding in channels with grouping errors
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with lav = 1 (19) is reduced to the known expression
(2) concerning the computation of the probability of
erroneous decoding in channels with an independent
error distribution.
Using the developed methodology, we have con-

ducted the estimation of the EGC for binary BCH-
codes, which has shown a significant decrease of the
efficiency of error-correcting coding in channels with
grouping errors. Even with a negligible error group-
ing, the EGC of binary BCH-codes is sharply reduced,
while further increasing the average length of an error
burst, the EGC reaches negative values.
A remark should be added, stating that many bi-

nary BCH codes are optimum for correcting burst
errors when they satisfy the Reiger bound, i.e. when-
ever 2b = n− k, where b denotes the maximum guar-
anteed correctable burst length and the BCH code
has parameters (n, k, d). However, the introduced re-
dundancy with this encoding still requires significant
energy costs (for the transmission of each redundant
bit). For channels with a strong clustering of errors,
the EGC may be small or negative, i.e. coding may
lead to an energy loss. Thus, even codes that are
optimal for correcting error bursts may not compen-
sate for the energy costs of transmitting redundant
symbols. Obviously, in this case, it is better to use
protocols with error detection and automatic repeat
request (ARQ).
A perspective direction for further research is the

development of estimating methods of the EGC for
non-binary codes in channels with grouping errors
and a direct estimation of the EGC for such codes
(e.g., for non-binary BCH-codes, Reed-Solomon codes,
algebraic geometric codes).

These results may also be useful in other important
practical applications: cryptography, authentication,
the theory of complex signals, etc. [14–16].
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