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Passive Quadrupedal Gait Synchronization for Extra Robotic Legs
Using a Dynamically Coupled Double Rimless Wheel Model

Daniel J. Gonzalez, Member, IEEE", and H. Harry Asada, Member, IEEE?

Abstract— The Extra Robotic Legs (XRL) system is a robotic
augmentation worn by a human operator consisting of two
articulated robot legs that walk with the operator and help
bear a heavy backpack payload. It is desirable for the Human-
XRL quadruped system to walk with the rear legs lead the
front by 25% of the gait period, minimizing the energy lost
from foot impacts while maximizing balance stability. Unlike
quadrupedal robots, the XRL cannot command the human’s
limbs to coordinate quadrupedal locomotion. Connecting the
XRL to the human using a passive coupler, we have found
that the two bipeds converge to the desired phase difference
without active control. Using a pair of Rimless Wheel models,
it is shown that the systems coupled with a spring and damper
converge to the desired 25% phase difference. A Poincaré
return map was generated using numerical simulation to
examine the convergence properties to different coupler design
parameters, and initial conditions. The Dynamically Coupled
Double Rimless Wheel system was physically realized with a
spring and dashpot chosen from the theoretical results, and
initial experiments indicate that the desired synchronization
properties may be achieved within several steps using this set
of passive components alone.

Keywords: Human Augmentation, Supernumerary Robotic
Limbs, Exoskeletons, Locomotion, Nonlinear Dynamics

I. INTRODUCTION AND MOTIVATION

The Extra Robotic Legs (XRL) system aims to empower
the industrial worker and emergency responder to enhance
their ability to perform their job by alleviating the burden of
heavy equipment and enabling them to execute strenuous
maneuvers more easily. The XRL system was designed
to allow United States Department of Energy (DOE) nu-
clear decommissioning workers to carry more life support
equipment (such as an air tank, extra tools, and a body
cooling system) to increase their ‘“stay time” at the task
location, and to support workers in general who must take
kneeling, crouching, and other fatiguing postures near the
ground [1]. Previous work has explored the shared control
of balance while the operator squats down to the ground [2].
We now investigate the synchronization of the human and
XRL bipedal systems with each other during steady-state
locomotion.
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Fig. 1: The Extra Robotic Legs System and desired gait
cycle, with the hind legs leading the rear legs by 25%.
Note that this quadrupedal system behaves as if it were two
coupled bipeds.

When walking together, the human-XRL system forms
a type of quadrupedal system (See Fig. 1). Unlike fully
biological or fully robotic quadrupeds, the human-XRL sys-
tem consists of two independently controlled biped systems
which are physically connected; one is a human and the
other is a robot. The synchronization challenge arises from
the fact that there is no centralized controller to command
the entire quadruped. Rather, the human and robot bipedal
systems are functionally independent. The human gait is not
directly controllable from the robot side, but can be indirectly
affected through the coupler that physically connects the
two. Apart from adding sensors to the human for the robot
to monitor, their interaction is purely physical. The XRL
gait control must be designed by considering the unique
properties of the system: a) the bidirectional nature of the
dynamic interactions, and b) the limited sensing and control
over the human gait through the physical coupling. Our goal
is to establish a natural regulator that achieves a desired gait
cycle by exploiting the intrinsic dynamic synchronization
properties of the human-XRL system.

This desired gait cycle comes from studying animal
biomechanics. Analysis of quadrupedal animal gaits [3]
shows that quadrupeds behave as if they were two coupled
bipeds and tend to fall into a gait cycle where the hind limbs
lead the fore limbs by about 25% of the stride time (or 90°
out of phase) during steady-state walking, as shown in Fig.
1. This walking gait cycle in which the footfalls are timed in



a 1-4-2-3 sequence (numbered clockwise starting from the
front-left foot) has also been found to maximize the margin
of stability of the quadruped’s balance [4]. It has also been
shown that gaits with more sequenced collisions per stride
(such as in the four-beat walking gait) are more energy
effective than gaits which group multiple foot collisions
together [5]. Using a quadrupedal model incorporating legs
with mass and a wobbling mass passively connected to a
rigid body, the four-beat gait can be stabilized [6]. It is of
interest, then, to analyze how intrinsic dynamics can lead
the Human-XRL System to naturally fall into this special
gait cycle.

We will show that this desirable gait can be achieved by
simply connecting the two biped systems with the proper
passive dynamic coupler. This is an interesting phenomenon,
since we neither force the human to follow a desired gait
pattern, nor actively control the XRL to track the desired gait.
Intrinsic dynamics of the interacting biped systems bring the
mutual gait to the desired one. The dynamic coupler, which
is a passive device, contracts the two nonlinear dynamical
systems towards a desired stable limit cycle.

It is imperative that the interactive nature of the dynamics
between the human and the XRL be taken into account in
analyzing and achieving synchronization, because the XRL
is physically attached to the human. Motion from the XRL
perturbs the human, and vice-versa through bidirectional
interactions. Both the human and XRL must individually
establish a steady gait cycle while experiencing interference
from the other. The challenge is to assure that the two gaits
can be coordinated properly despite, or perhaps because of,
the bidirectional dynamic interaction. Passive quadrupedal
synchronization has an application in not only the XRL
system, but can also inform the mechanical and control
design of more general quadrupedal robots.

In this work, we aim to establish an interactive passive
gait synchronization method for the human-XRL system. In
Section II we introduce and analyze a simple, yet novel,
quadrupedal walking model consisting of two Rimless Wheel
biped systems connected with a dynamic coupler: the Dy-
namically Coupled Double Rimless Wheel model. Property-
agnostic coupler conditions that maximize the convergence
rate are found using a numerically acquired Poincaré map in
Section III. Synchronization is demonstrated on a physically
realized Coupled Rimless Wheel pair in Section IV. Section
V provides a conclusion and outlines future work to be
conducted.

II. THE DYNAMICALLY COUPLED DOUBLE RIMLESS
WHEEL MODEL

The canonical Rimless Wheel model [7] is a simple model
that captures natural bipedal walking dynamics. The Rimless
Wheel model has been extended to capture quadrupedal
walking dynamics by coupling a pair of Rimless Wheels with
a rigid beam and forcing a set footfall timing sequence [8].
Stable walking limit cycles can be observed with this model,
though the gait cycle phase is strictly enforced through
kinematics. Such a system was then shown to maximize

passive steady-state velocity when the phase parameter was
chosen to be perfectly out of phase, or 50% out of phase'
[9]. We now introduce some novel modifications of our own.

In order to explore the effects of dynamic coupling, we
extend the Rimless Wheel model by adding a second Rimless
Wheel and connecting the two with a passive coupler made
up of a spring k and a viscous damper b in parallel.

Fig. 2: The Coupled Rimless Wheels Model

Characteristic to our human-XRL system is that this cou-
pler is dynamic rather than rigid. Smith and Berkmeier use
a rigid connection, which kinematically couples the angles
f, and 05 and the angular velocities 6, and 65 [8]. Once a
set of initial conditions has been chosen, the rigidly coupled
Rimless Wheels cannot change their relative phase.

Our novel model, by including a passive spring and
damper connecting the two wheels, allows the angles and
angular velocities of each wheel to move independently,
allowing for rich dynamic interactions between the two.
Tuning design parameters k& and b can affect the mutual
dynamics and gait cycle. Indeed, it is through this mechanism
that we aim to synchronize the gait cycle of the first and
second Rimless Wheels.

The masses m1 and ms of each pendulum are point masses
atop massless links of length ¢; and /¢, respectively. The
angle of the first Rimless Wheel about point A is 6; and the
angle of the second about point B is 3, and the step angles
for each are a; and a. The distance between the coupler
endpoints is D and the unstretched length of the spring is
Dy. See Fig. 2.

The force balance equations for the Rimless Wheels are

mi020; =mygly sin (01 + )

1
—F.l1(cos 0y cos § — sin b sin §) M

Note that in quadrupedal locomotion we consider the system to be at
our desired gait cycle when the hind legs are 25% out of phase with the
front, but in planar models there is no distinction between the left or right
legs, and thus we consider successful synchronization to be achieved when
the stance leg of the front and rear halves are 50% out of phase from each
other. The additional virtual pair of legs in the swing phase are not taken
into account in this model.
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where the coupler force is
F, = k(D — Do) + bD 3)

Fig. 3: Geometric Relationship for D and /.

The coupler of length D acts between the two pendula and
has an orientation [ relative to the sloped ground surface.
See Fig. 3 for details. The z-component of D is

D, =Dcosp =/{;sinfy — lysinfy + S 4)
and the y-component of D is
Dy = Dsinf8 = {; cos 0y — {5 cos by 5

where S is the distance between the stance foot locations x;
and x5 of each Rimless Wheel 1

S =z — 29 (6)
From these components, we find the coupler distance

D=,/D2+ D2 7)

the coupler angle

5= sin~! (ﬁl cos B, — ¥ COSGQ) ®)
D
and the coupler distance time derivative
. D,D,+D,D
e ©)
where ) ] .
D, = {1 cos (01)01 — 5 cos (02)02 (10)
and ) _ '
Dy 252 sin (92)92 —Zl sin (91)91 (11)
resulting in
D = 0y cos(01 + B)0y — €y cos(Ba + 3)0s (12)
The stance distance S is piecewise constant
S =5y +ni101 —ngoo (13)

and depends on the initial step length Sp, the number of
steps taken by each wheel n; and the step length o; for each
Rimless Wheel

o =2lsinq;, i €1,2 (14)
If step lengths are the same (017 = 02 = o) then
S =S8y +no (15)
where
n=ni—ng (16)

is the relative difference in the number of steps between the
front and back halves. During normal operation, n is O or 1.

The nonlinear state-determined equations during the con-
tinuous dynamics are, assuming ¢; = fo = ¢ and m; =
mog =M.

b, =2 sin (0, + )

14
*%(D — Do) cos (61 + )
f% (005(01 + B8)6, — cos(fa + ﬂ)é)g) cos (61 + B)

a7)

0y :% sin (02 + )

k
—&—W(D — Dyg) cos (02 + )
—&-% (005(91 + B)6; — cos(fy + 6)92) cos (02 + 3)
(18)
D=v¢ (008(01 + 5)91 — cos(0y + 6)92) (19)
where, for brevity, we write
B =sin"! <f)(cos 61 — cos 02)) (20)

and the state of the system can be fully determined with the
following state vector

T = [91 91 92 92 D}T (21)

where each of the five energy storage elements in the system
(kinetic energy of each pendulum, gravitational potential
energy of each pendulum, and potential energy stored in the
spring) is associated with its own state variable.

The hybrid heel strike/toe-off dynamics are treated inde-
pendently for each pendulum system at the angle limit o of
forward lean before the swing leg impacts and becomes the
new stance leg. Energy is lost by conserving only angular
momentum about the new stance leg. The discrete jumps
for the hybrid dynamical system occur as follows (assuming
near-steady-state rolling in the positive § direction):

A. when 0, > a:

The angle instantaneously changes: 61, = —a;
The angular velocity instantaneously changes: 6, =
01— cos (2a);

The difference in steps between Rimless Wheels 1 and
2 increases: n = 1.



Stance Foot Angles and Coupler Force vs Time (Passive Walking)
v =3°,50% Initial Phase, Slight Initial Velocity, K=1 N/m, B=1000 Ns/m
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Fig. 4: Passive walk with desired 50% phase difference

B. when 6; > a:

The angle instantaneously changes: 024 = —a;
The angular velocity instantaneously changes: 02, =
f2— cos (2a);

The difference in steps between Rimless Wheels 1 and
2 decreases: n = 0.
Note that D is continuous and does not ever jump dis-
cretely, but D does abruptly jump due to its proportionality
to 61 and 65.

A. Qualitative Properties of the Coupled Rimless Wheels
Model from Simulation

Because the Coupled Rimless Wheels system has a
straightforward state-space representation, it can be simu-
lated using an ODE solver. The system, given a set of initial
conditions, may be forward simulated an arbitrary amount of
time. By simulating the system up to the Hybrid Dynamical
switching trigger points (angles #; or 65 reaching «), then
resetting the initial conditions to meet the new case, the full
Hybrid Dynamical system can be simulated continuously.

This simulation is used to introduce some interesting
properties of the Coupled Rimless Wheels system and their
implications on the overall Human-XRL walking system. For
the following simulations assume that the first and second
Rimless Wheels are physically identical (/; = ¢5 = ¢ and
my = mg = m) and that a gentle incline angle v = 3°, mass
m = 68 kg (150 lbs), length ¢ = 1.5 meters (60 inches), a
step angle 2o = 20°, and Sy = Dy = ¢/4 were used as
system parameters.

Fig. 4 shows the results of the system passively walking
down a 3° slope. Note that the human gait and the robot
gait are 50% out of phase for the total duration. Although
the pace frequency increases, the phase difference remains at
the desired 50%. The coupling force acting between the two
generates a large restoring force initially. This was achieved
with a relatively large damping coefficient, B = 1 x 103
[Ns/m] and a smaller stiffness K = 1 x 10° [N/m].

Fig. 5 shows the case where the initial phase difference
between the human and the robot is 25% out of phase. As the
human and robot walk down the slope, the phase difference
shifts and converges to the desired 50%. If the two gaits
are initially perfectly in-phase, i.e. 0%, no coupling force

Stance Foot Angles and Coupler Force vs Time (Passive Walking)
v = 3°, 25% Initial Phase, No Initial Velocity, K=1 N/m, B=1000 Ns/m
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Fig. 5: Passive walk with initial phase difference of 25%
converges to the desired 50% difference

is generated and, therefore, the phase difference does not
converge. It is an unstable equilibrium. However, if we apply
a small disturbance by giving a small initial velocity to the
system, it converges to the desired gait phase of 50%. Fig.
6 shows this convergence case. The two gaits are perfectly
in phase in the beginning with only a small initial velocity
difference. The rate of convergence is slow at first, but
the phase difference converges to the desirable 50%. The
coupling force brings the two bipedal systems to the desired
quadrupedal gait.

When the two Rimless Wheels are disconnected, that is,
when k£ = 0 and b = 0, each wheel walks independently. By
using a dynamic coupler, we observe the above results, where
the human and robot synchronize their cycles out of phase.
This implies that the effect of coupling forces to drive the
relative positions and velocities of the two Rimless Wheel
systems closer together can naturally lead to a 50% out-of-
phase gait cycle with the proper conditions and parameters.

If we design the robotic XRL system to stand and balance
itself, take steps, and maintain stability when walking on
its own, we can expect that connecting it to the human
via the proper spring-dashpot will naturally lead the whole
system to converge to the 25% out-of-phase 4-legged gait
cycle. This makes sense physically because periodic motion
of the human walking generates a force transmitted to the

Stance Foot Angles and Coupler Force vs Time (Passive Walking)
v = 3°,0% Initial Phase, Slight Initial Velocity, K=1 N/m, B=1000 Ns/m
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Fig. 6: Passive walk with initial phase difference of 0% and
slight initial velocity converges to the desired 50% difference



robot with a phase shift. Because the magnitude of damping
is higher than the magnitude of stiffness in this example,
the generated coupler force is mostly proportional to the
derivative of the displacement. Thus, the transmitted force
to the robot is out of phase with of the resultant motion.

III. COUPLER PARAMETERS AND SYNCHRONIZATION
RATE

A. Nondimensionalized State Equations for the Coupled
Rimless Wheels System

To generalize our numerical analysis of the properties
of the Coupled Rimless Wheels System, we must first
nondimensionalize the state equations.

Recall that the full nonlinear state equations are (17), (18),
and (19). We first nondimensionalize the system by defining
a unit time

T=1\/{/g (22)
which gives us the derivative conversion form
dz dz dt g
"= = —=— =3(t)/=, €6,,00,D (23
2'(7) i dtdr (1) 7 z € 01,02 (23)
and the second derivative conversion form
) =22, 2€61,00,D (24)

g )
Finally, by choosing nondimensionalized parameters, ini-
tial conditions, and state variables

. Dy - E ~ b /L
7Doo,k,bvf (25)
l mg m\ g

the nondimensionalized nonlinear state equations are

D=

07 =sin (61 + )

—k(D — Dy) cos (61 + 8) (26)
—b(cos (01 + )8, — cos (62 + 8)85) cos (01 + f3)
05 =sin (02 + )
+k(D — Dg) cos (62 + ) (27)
b (cos (0, + B)0, — cos (B2 + B)8)) cos (B2 + )
D' = cos (01 + B)0, — cos (05 + B)6) (28)
where for brevity we write
6, — cos b
= sin~* <M> 29
B b (29)
which have an augmented state vector
i=1[0, 0 6, 0, D] (30)

and whose continuous dynamics are only dependent on the
parameters -, Dy k, and b and hybrid switching dependent
on «. The discrete jumps for the nondimensionalized hybrid
dynamical system are identical to those in Section II.

B. Acquisition of Optimal Coupling Parameters via Numer-
ical Poincaré Return Map

We now aim to find the stiffness k£ and damping b with the
highest rate of convergence to synchronize a given system
with a set of mass and length parameters. We will consider
only the effects of k and b on the nondimensionalized system,
which can then be used to find the physical stiffness k& and
damping b after scaling using physical parameters.

Due to our system’s behavior as a stable limit cycle
oscillator, we will analyze the convergence of 5 from one
oscillation period to the next using a Poincaré return map.
Consider a state-determined stable limit cycle oscillator with
a state x € R". There is a periodic orbit in the phase plane
of this system. We define a Surface of Section (which can
be an n — 1 dimensional hyperplane transverse to the stable
orbit at some specific point in the trajectory) through which
intersect all trajectories converging to the stable limit cycle.
If this hyperplane is orthonormal to one state variable in the
phase plane, then the intersecting points are part of a reduced
dimension Poincaré state vector z, € R"~1. A stable fixed
point of this discrete Poincaré system implies a stable limit
cycle of the original system.

A Poincaré return map P() is an autonomous function
representing the reduced state after one orbit to timestep k+1
given the state at time k

zplk + 1] = P(zp[k]) 31

The Poincaré return map P() can be linearized about an
equilibrium as

dP(xp[k])

zplk+1] = .
P

zp(k] = Az, k] (32)
Because this is a discrete system, the eigenvalues \; of matrix
A represent the dynamic response of the linearized system,
which informs the local dynamic response of P(). If |\;| <
1, 4 € [1:n —1] then the discrete system is stable. The
state x,, at time m given some initial condition z,[0] can be

linearly approximated as

zplm] = A", [0] (33)

For the Nondimensionalized Dynamically Coupled Double
Rimless Wheel system, we have a continuous time state
vector

v=[0, 0 6, 0, D" (34)

We take a Surface of Section during the transition when 6, =
« and takes a step. We wish for 65 to converge to 0° along
this Surface of Section. Our augmented state vector is now

wp=10) 6, 0, D] (35)

The analytical solution to the time response of (17), (18),
and (19) is dependent on knowing the time spent in both
cases of continuous motion, which we do not know a priori.
Thus, the analytical Poincaré return map for the Coupled
Rimless Wheels system can be intractable to solve for, but
the linear matrix A may be obtained numerically using data
collected from several simulated trajectories.



Coupled Rimless Wheel Convergence, All Valid Trajectories

Fig. 7: All converging trajectories from the set of numerical
simulations.

Consider a trajectory of x,, from an initial condition x,[0]
to some convergent value x,[M] after M discrete samples.
Now we run K different trials of the same system at different
initial conditions, for a total of M x K samples of . These
data may be used to formulate an A matrix using Least
Squares Regression, as adapted from Chapter 3 of [10].

We wish to find matrix A that minimizes the squared
error between our predicted value of z,,cq(k + 1] = Ax[k]
and the actual value z[k + 1]. We may formulate this as an
optimization:

| K Mt
J = 9 Z Z (Axp[m}—xp[m—i—l])T(Axp[m]—xp[m—i—l])
k=1 m=1 (36)
Taking the derivative and setting it equal to a zero matrix

dJ K M-1

TL=0=3" 3 (Aaylm] — apfm + 1)z m]

k=1 m=1

(37)

we can distribute and rearrange (with the sums written in
shorthand for brevity)

AZ pr[m]x;";[m] = Zpr[m + 1]x§[m] (38)

Defining
K M-1
Pl = Z Z zp[m]x] [m] (39)
k=1 m=1
and
K M-1
B=>"Y"apm+1al[m] (40)
k=1 m=1
we obtain the final matrix
A=BP 41)

The eigenvalues of A provide the system rate of convergence.
By performing this operation for different system parameters
and comparing the eigenvalues, the parameters that lead to
the fastest convergence rate may be selected.

Valid Nondimensional Coupler Values

XX X

x X X X

X X X X

Damping b
akO
T

x
x
%
x

x X x X
x
x
x
x

107
104 107 102

Stiffness &
Fig. 8: Valid combinations of k and b which lead to con-
verging systems.

Data were obtained via physics simulations that were run
for systems with a slope angle v = 1.75° nondimensional
stiffness k from 10~4 to 10~2 and damping b from 10~ to
10'. (Again, note that these parameters are nondimensional,
but can be related to physical parameters using (25).) The
same sets of initial conditions were used to generate the
set of trajectories for each [l;:,l;] pair. From these sets of
trajectories, the valid [];',ZA)] pairs were chosen. We consider
valid combinations of & and b to be ones in which for all
trajectories for all initial conditions |f2| < 1° within the
simulation time. See Fig. 7 and Fig. 8. Note that two separate
regions of continuous points exist, which may be the result
of our time cutoff. While there may be additional stable
parameter sets that only converge given significantly more
time, these points are by definition not operationally useful
for our application.

An A matrix was generated from each valid set of trajec-
tory data corresponding to a valid [l%7 lA)] pair. The dominant
(largest magnitude) eigenvalue of each A was plotted for
each [k, b] pair in Fig. 9.

The [l%, E] pair having the lowest magnitude discrete eigen-
value was selected. The simulation trajectories and the Least
Squares estimate of the trajectories for this best parameter
set are shown in Fig. 10

IV. EXPERIMENTAL VALIDATION OF PASSIVE COUPLED
RIMLESS WHEEL CONVERGENCE TO GAIT
SYNCHRONIZATION

A prototype Coupled Rimless Wheels system was built
in order to test gait cycle convergence between two passive
dynamic walkers (See Fig. 11). Each wheel was designed to
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Fig. 9: Dominant eigenvalues of the linear Poincaré maps
for converging systems for various nondimensional damping
b. Note that because these are discrete systems, 1 is the
threshold for stability, and the farther from 1 the eigenvalue
is, the faster the response.

be human-sized with ¢ = 0.9652 meters (38 inches) which
is the center of mass for a 1.7272 meter (5 foot 8 inch) tall
male. Twelve spokes give each wheel a step angle o = 15°.

Each Rimless Wheel consists of an identical pair of
wheels, each with a hub made from ABS plastic, 12 spokes
made of aluminum with rubber caps at the end of each
for ground contact, and a rigid shaft, also aluminum, about
which the coupler is free to rotate via a bearing. In order
to track the position and orientation of each Rimless Wheel,
AprilTag markers were mounted to the side of each wheel
[11].

The coupler consists of a spring and a dashpot constrained
to be loaded only linearly. A custom dashpot was made by
the Airpot Corporation with a 280mm (11 inch) stroke and
a hand-adjustable damping range from O [Ns/m] to 5234
[Ns/m]. The damper was tuned to be roughly 100 [Ns/m]. In
order to overcome static friction in the dashpot, and due to
the lack of practical availability of springs of lower stiffness,
the coupler spring was chosen to be 5.25 [N/m]. See Fig. 11
for details.

The Coupled Rimless Wheels were sent down a gentle
slope of v = 2° while a camera on a tripod filmed the result
from the left side. Fig. 12 shows snapshots of the wheel’s
progress down the slope. The wheel phase converges to oscil-
late within +6% of the desired phase difference of 50% from
an initial condition of 21.6% within 7 steps. The difference in
number of convergence steps between the simulation in Fig.
10 and the physical system can be attributed to a different

s Coupled Rimless Wheel Convergence for k£ =0.0042919, b =2.4421

Simulation data
Linear Approximation

15 | I | I I I | L I
0 10 20 30 40 50 60 70 80 90 100

Steps

Fig. 10: Converging trajectory for the best stiffness and
damping selected from the set of numerical simulations.

Fig. 11: Setup for testing synchronization of the Cou-
pled Rimless Wheels system using a hardware-implemented
spring-dashpot coupler.

slope angle v and unmodeled dynamics such as elasticity in
ground collisions and friction in the coupler bearing.

Fig. 13 shows the trajectory of the Rimless Wheels and
the normalized angle difference

=00,

for the first 5 seconds of Trial 1. While ¢ is oscillatory, it
converges to within +2° of the desired angle difference of
15° within several steps.

Fig. 14 shows the trajectory of the Rimless Wheels and
the normalized angle difference ¢ for the first 5 seconds of
Trial 2 (when both AprilTags were visible, as demonstrated
in the supplementary video). Again, ¢ converges to within
+2° of the desired angle difference of 15° within several
steps.

These results validate the convergence of two coupled
walking systems through passive means alone.

(42)



Fig. 12: Synchronization of a physically implemented Coupled Rimless Wheels system. The system synchronizes to the

desired gait cycle within 7 steps.
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Fig. 13: 04, 02, and ¢ during Experiment Trial 1

Raw Rimless Wheel Angles during Slope Experiment 2
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Fig. 14: 64, 05, and ¢ during Experiment Trial 2

V. CONCLUSION AND RECOMMENDATIONS FOR FUTURE
WORK

This work explored the use of a passive spring-dashpot
to couple two hybrid dynamic limit cycle oscillators and
synchronize their motion, with an application in coordinating
the gait of the human-XRL quadrupedal system during steady
state locomotion. A novel Dynamically Coupled Double
Rimless Wheel model was formulated to capture these
dynamic interactions, and it was shown that the system
converges to a desired gait cycle for certain coupler pa-
rameters. A Poincar¢ map was numerically acquired and
used to identify the coupler parameters leading to the fastest
synchronization convergence. A physical pair of Rimless
Wheel walkers was built and coupled with a spring-dashpot
matching these parameter values. Synchronization was ob-

served when this physical system walked down a gentle
slope.

This truly passive method using a dynamic coupler is
rather limited in flexibility and adaptability. To extend the
utility, active control will be considered. This active control
will be built on the basis of the intrinsically contracting
dual biped systems. Rather than fighting against the intrinsic
dynamics, it will exploit the natural properties of the system.
Additional analysis of necessary and sufficient conditions for
synchronized steady-state walking will be performed, as well
as thorough experimentation to further validate our findings.
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