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Abstract 

DNA nanoswitches are tools to detect nucleic acids such as microRNAs and viral RNAs. The DNA 

nanoswitch is a linear duplex structure created from single-stranded circular viral M13 DNA using 

a DNA origami approach. Each nanoswitch can be designed to have explicit detector strands that 

bind to a specific DNA sequence. In the presence of a particular target sequence, the DNA 

nanoswitch will undergo a conformational change in which it switches from a linear “off” state to 

a looped “on” state. The shape of the DNA nanoswitch can then be detected using standard gel 

electrophoresis, a cheap and simple test. In this project, we aim to improve the sensitivity of the 

DNA nanoswitches in detecting target strands using DNA loop-ligation. This strategy will allow 

the target strand to be “recycled” in solution after a more permanent looped nanoswitch is formed 

and continue to convert more linear nanoswitches into looped nanoswitches through target 

recycling. We were able to confirm permanently looped nanoswitches after ligation using T4 DNA 

Ligase enzyme. We will optimize the reaction conditions to show stability and signal amplification 

of the nanoswitch. Ultimately, we hope to amplify detection signal at least 10-100 fold using this 

approach, bringing our sensitivity to the aM (10^-18M) range. 

 

Introduction  

DNA nanotechnology has become an important influencer on multiple disciplines due to the 

unusual physical and chemical characteristics of nanostructures. On the nanometer scale, 

arrangements of particles can be designed to function in highly specific conditions and with greater 

accuracy. The development of programmable DNA nanoswitches has provided scientists with a 

tool to detect nucleic acid sequences, which can be applicable to many issues present specifically 

in the medical and forensic fields. They have potential use for drug delivery, medical diagnostics, 

and information storage.  

Our lab focuses on creating inexpensive and highly specific sensors for detection of molecular 

interactions.  The DNA nanoswitch will undergo a conformational change and become looped in 
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the presence of specific inducers, such as a target strand, in which will bind to the complementary 

detector strands on the scaffold to loop a part of the DNA. The loop size of the nanoswitch can be 

programmed by incorporating detector strands in desired location along the M13 backbone and the 

functionality can be modified by varying the sequence of the detector strand.  The conformation 

change of the nanoswitch from the linear “off state” to the looped “on state” can be detected using 

gel shift assay. The looped nanoswitch migrates slower in a fixed electric field compared to linear 

nanoswitch. A single target strand can only create one looped nanoswitch in solution and the 

detection is therefore limited to the amount of target in solution. To improve the efficiency of 

nanoswitch looping, a target recycling approach can be implemented. To achieve this goal the loop 

portions of the nanoswitch can be ligated to create a more stable structure that is no longer 

dependent on a target strand to keep it in the looped state. The nanoswitch can be heat annealed to 

kick off the target strand and recycled back into solution for the next looping-ligation-reannealing 

cycle (Figure 2-A). This research shows our preliminary data for the confirmation and optimization 

of nanoswitch ligation.   

 

Methods  

Linearization of M13 circular DNA 

The process of designing the phosphorylated nanoswitch begins with linearizing circular single-

stranded M13 DNA. To a 5µl solution containing circular M13 (250 ng/µl),  2.5µl of 10x Cut 

Smart buffer, 1µl  of BtsCl restriction-site complimentary oligonucleotide(100uM) and 16.5µl 

nuclease free water was added. The mixture was heated to 95˚C and cooled down to 50˚C to heat 

anneal the BtsCI restriction-site oligo with the circular M13 DNA and create the BtsCI restriction 

site. 1µl of BtsCl enzyme is added and incubated at 50˚C for 15 minutes to linearize the M13 DNA 

strand, then heated up to 95 ˚C to deactivate the enzyme.  

 

Phosphorylation of Oligonucleotides 

The two specific detector strands 45 nucleotides in length, positioned at the 40th  and 80th position 

from 3’ site on scaffold are mixed in 1:1 ratio and diluted to a final concentration of (x M). T4 

DNA Ligase buffer is added to ensure optimal activity of the enzyme, and T4 Polynucleotide 

Kinase (PNK) is used to phosphorylate the 5’	end of the DNA. This will prepare the detector 
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strands for ligation as it adds the phosphate group on the 5’	site of detector oligonucleotide. After 

incubating the mixture at 37°C for 5 hour the enzyme is deactivated. 

 

Synthesis of DNA nanoswitch 

The DNA nanoswitch is constructed by adding 123 staple strands including two detector strands 

to the linearized M13 DNA. The mixture of M13 and staple strands were heat annealed in the 

thermal cycler. The constructed nanoswitch is then purified using liquid chromatography to 

remove excess oligonucleotides and is ready to be used.   

 

Gel Electrophoresis 

All experiments were done in 0.8% agarose gel made by dissolving agarose in 0.5x TBE (Tris-

borate EDTA) buffer by heating the mixture in a microwave. The mixture was then solidified in a 

casting tray with combs to form the indentations for the nanoswitch mixtures. All gel 

electrophoresis experiments were run at room temperature under constant voltage (75V) in 0.5X 

TBE buffer for 45 minutes. Each sample was pre stained with GelRedTM (Biotium) and loading 

dye and all images were taken using a Biorad gel imager.  
 

Results and Discussion 

We began to study the abilities of newly phosphorylated 

nanoswitches with varying target strands and temperature cycling. 

In order to ensure the reliability of this new nanoswitch, we 

compared the looping activity against a functional and commonly 

used nanoswitch Let7b (Figure 1). The phosphorylated nanoswitch 

was successful in forming loops that were congruent to the known 

looped nanoswitch when incubated with two different target 

strands, R20.1 and R20.1 with a toe-hold strand at 20nM 

concentrations. The toe-hold region on the data strand will allow 

the target to be removed in the presence of a complementary eraser 

strand and confirm that ligation has occurred (Figure 2-B).  

 

Figure 1: Gel image comparing 
the looping of the phosphorylated 
nanoswitch with two target 
strands, with and without a toe-
hold region, to a known Let7B 
nanoswitch.	
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We continued to use the R20.1toe strands in the proceeding experiments in addition to deionized 

water, 10x BSA, and T4 DNA Ligase buffer to optimize activity. The phosphorylated detector 

strands were incubated overnight with R20.1toe strands and 40k/mL T4 DNA Ligase enzyme. 

Although the enzyme caused other structures to be formed like dimers shown in lanes 4 and 8, 

there was still detection of looping activity (Figure 2-B). To understand the stability of the new 

phosphodiester linkage between the oligonucleotides on the looped nanoswitch, the 

complementary eraser strand was used to revert back to the original linear structure. We were able 

to conclude that not all of the looped nanoswitch was destroyed after the bonds were attacked by 

the eraser strand (comparing lanes 4 and 6 Figure 2-B). This indicated that T4 DNA Ligase enzyme 

was successful in ligating the target region of the nanoswitch and created a more permanent loop. 

 

 

A      B 

	 	
Figure 2: (A) Illistration of the formation of a looped nanoswtich when induced by a target strand that is 

then ligated. With each cycle of ligation and heat annealing to recycle the target strand in solution, the 

detection of looped nanoswitches will be amplified. (B) Shows how the target strand with a toe-hold region 

will unloop the nanoswitch when a complementary eraser strand is introduced. Gel image compares the 

loop-ligated nanoswitch detection with and without an eraser strand.  

 

 

We next wanted to observe the thermostability of the loop-ligated nanoswitch and the nanoswitch 

solution was heated in a thermocycler to 75°C for 20 minutes. The solution was subsequently pre-

stained and run under normal gel electrophoresis conditions (Figure 3-3). As predicted the 

nanoswitch and all other structures were not completely degraded in this temperature cycle (last 
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lane in figure 3). Although the detector loop was ligated and more stable, it was not enough to hold 

the entire nanoswitch together or the nanostructures were trapped in the wells of the gel. From this 

we were able to conclude the need to ligate the entire nanoswitch in order for the target strand to 

be kicked off without degrading the structure. If the entirely ligated nanoswitch remains unaffected 

by the temperature cycle, the signal of looped nanoswitches will dramatically increase due to the 

detector strands ability to be recycled in solution.        

 
Figure 3: Shows looping of the nanoswitch with T4 DNA Ligase enzyme (1), after incubation with R20.1 

toe-hold target eraser strand (2), and degradation of the nanoswitch after temperature cycle (3).   

 

 

Conclusion 
 
The focus of our preliminary testing was to create a nanoswitch that could undergo ligation, which 

began with ligating only a small region of the nanoswitch where the loop was formed. A protocol 

for developing the phosphorylated DNA nanoswitch was designed and we learned what conditions 

are necessary for the ligation to occur with T4 DNA Ligase enzyme. Additionally, we were able 

to determine that the loop-ligated nanoswitch is more permanent and remains looped in the 

presence of a complementary eraser strand that is meant to unloop and linearize the nanoswitch. 

Although signal amplification was not yet achieved by recycling the target into solution, future 

experiments will focus on developing an entirely ligated nanoswitch that can undergo the 

temperature cycle to remove the target strand from the looped nanoswitch without degrading the 

entire structure. Future experiments are planned to optimize the conditions for this nanostructure, 

help improve the efficiency of the target detection, and increase the overall sensitivity of the 

nanoswitch to respond to concentrations in the aM (10^-18M) range. 
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