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Abstract
As communication signal properties change, through genetic drift or selective pressure, the sensory systems that
receive these signals must also adapt to maintain sensitivity and adaptability in an array of contexts. Shedding
light on this process helps us to understand how sensory codes are tailored to specific tasks. In a species of
weakly electric fish, Apteronotus albifrons, we examined the unique neurophysiological properties that support
the encoding of electrosensory communication signals that the animal encounters in social exchanges. We
compare our findings to the known coding properties of the closely related species Apteronotus leptorhynchus
to establish how these animals differ in their ability to encode their distinctive communication signals. While there
are many similarities between these two species, we found notable differences leading to relatively poor coding
of the details of chirp structure occurring on high-frequency background beats. As a result, small differences in
chirp properties are poorly resolved by the nervous system. We performed behavioral tests to relate A. albifrons
chirp coding strategies to its use of chirps during social encounters. Our results suggest that A. albifrons does not
exchange frequent chirps in a nonbreeding condition, particularly when the beat frequency is high. These findings
parallel the mediocre chirp coding accuracy in that they both point to a reduced reliance on frequent and rich
exchange of information through chirps during these social interactions. Therefore, our study suggests that neural
coding strategies in the CNS vary across species in a way that parallels the behavioral use of the sensory signals.

Key words: communication; electrosensory; information; neural coding; sensory tuning

Introduction
Sender and receiver matching facilitating communica-

tion has been demonstrated across diverse groups, in-

cluding songbirds (Brumm and Slabbekoorn, 2005),
anurans (Schul and Bush, 2002), and insects (Neuhofer
et al., 2008). Peripheral tuning and call matching are well

Received October 8, 2018; accepted February 9, 2019; First published March
4, 2019.
K.M.A. and G.M. designed research; K.M.A. performed research; G.M.

contributed unpublished reagents/analytic tools; K.M.A. analyzed data; K.M.A.
and G.M. wrote the paper.

The authors declare no competing financial interests.

Significance Statement

Sender–receiver matching is a phenomenon commonly observed in the peripheral nervous system. It
enables communication production and reception to evolve together so that conspecifics remain sensitive
to important signals. In this article, we examine this phenomenon in the CNS of the weakly electric fish
Apteronotus albifrons and compare its processing of communication signals to a closely related species
(Apteronotus leptorhynchus). Although some differences across the two species can help to tailor the
system for processing species-specific signals, our data indicate that encoding of communication signals
in A. albifrons is not as efficient as in A. leptorhynchus for certain categories of signals. Our data support
the idea that the extent of sender–receiver matching can vary as a function of behavioral needs.
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characterized, and studies have shown evidence for
sender and receiver matching in response to auditory
coding of courtship song (Gerhardt and Schwartz, 2001;
Woolley and Moore, 2011; Tootoonian et al., 2012), but
little work has been done in other sensory modalities. We
aim to identify species-specific variations in the coding
properties of central electrosensory neurons and link
them to the divergent use of communication signals,
showing that the extent of species-specific adaptations
results in a variably tight sender–receiver match.

Weakly electric fish are ideal for examining diversifica-
tion in signal production and reception. Apteronotids
share a common mode of communication, the modifica-
tion of their electric organ discharge (EOD), but exhibit
huge variety in signal structure. Voluntary modulations of
EOD (chirps) vary dramatically in properties such as du-
ration, frequency, and shape, even between closely re-
lated species (Zakon and Smith, 2002; Turner et al., 2007).
Likewise, chirp reception is influenced by EOD waveform
shape (Petzold et al., 2016), chirp features or structure
(Benda et al., 2006; Marsat et al., 2012), and social envi-
ronment (Stamper et al., 2010). The apteronotid electro-
sensory system could have coding properties generic
enough to process these signals efficiently despite differ-
ences in structure and use between species; alternatively,
differences in chirp processing could reflect adaptations
of the electrosensory system to these differences in chirp
production.

Relative EOD frequencies (EODfs) of interacting fish
greatly influences chirp perception. These fish perceive
ongoing amplitude modulations (AMs; i.e., AM beat) that
are the product of two fish with different EOD frequencies
interacting at close range (Bastian, 1981). Chirping mod-
ulates this beat (Hagedorn and Heiligenberg, 1985; Zu-
panc and Maler, 1993). In Apteronotus leptorhynchus,
low-frequency beats are typical of agnostic encounters
between fish of similar sex and size, and fish respond with
frequent small chirps (�100 Hz increase; Hupé and Lewis,
2008). Higher frequencies occur between fish of opposite
sexes or with large differences in body size and more
often elicit big chirps (�100 Hz), typical of courtship
(Hagedorn and Heiligenberg, 1985; Henninger et al.,
2018).

Chirp coding has been well characterized in A. lepto-
rhynchus. The two categories of signals described above
produce different responses in the primary sensory area,
the electrosensory lateral line lobe (ELL). Small chirps on
low-frequency beats cause stereotyped bursting among

ELL pyramidal cells. This encoding strategy, and the
structure of the signal itself, means variations in small
chirps cannot be discriminated (Marsat et al., 2009; Allen
and Marsat, 2018). Conversely, both big and small chirps
on high-frequency beats produce heterogeneous re-
sponses, and chirp variations are accurately discrimi-
nated (Marsat and Maler, 2010; Allen and Marsat, 2018).

The mechanisms of chirp production are similar in
Apteronotus albifrons and A. leptorhynchus, but chirp
structure differs in a number of ways. Chirp duration is the
most notable difference in these species. A. lepto-
rhynchus chirps are typically tens of milliseconds long,
whereas A. albifrons chirps are generally �100 ms long
(Zupanc and Maler, 1993; Dunlap et al., 1998; Turner
et al., 2007). This lengthening is thought to be a recent
evolutionary change, with shorter chirps representing the
basal state of this branch (Smith et al., 2016). A. albifrons
shows differences in frequency tuning from A. lepto-
rhynchus (Martinez et al., 2016) that may be adaptations
for coding these long chirps. Additionally, A. albifrons
chirps typically do not fall into discreet “small” and “big”
chirp categories like those of A. leptorhynchus (Turner
et al., 2007), and chirps of varying durations and fre-
quency are used in all contexts (Kolodziejski et al., 2007).
Therefore, it is unknown whether varying chirps have
different neural and behavioral impacts in A. albifrons.

In this study, we examine the coding of conspecific
social signals and their behavioral use to understand
whether the sensory system is adapted to the specific
characteristics of the communication system of A. albi-
frons, and if so, to what extent. We compare our findings
to the behavior and physiology of the closely related A.
leptorhynchus to identify specific neurophysiological ad-
aptations that reflect differences in the structure and be-
havioral use of chirps in these two species.

Materials and Methods
Animals

All animals were housed according to West Virginia
University Institutional Animal Care and Use Committee
standards (protocol 151200009.2). Wild-caught A. albi-
frons and A. leptorhynchus were obtained from commer-
cial fish suppliers and housed in small groups (1–10 fish/
tank). Tank conductivity was maintained at 200–500 �S.
Sex was not confirmed, but adult animals with a wide
range of EOD frequencies (600–1300 Hz) were used for all
experiments, indicating that we likely had multiple animals
of both sexes.

Electrophysiology
The surgical techniques used were identical to those

previously described in the studies by Marsat et al. (2009)
and Marsat and Maler (2010). Cells of the lateral segment
(LS) of the ELL were targeted. A. albifrons brain anatomy
is very similar to that of A. leptorhynchus, so major land-
mark blood vessels described in the study by Maler et al.
(1991) and electrode depth served as an adequate guide
to locate LS pyramidal cells (see Histology). In vivo re-
cordings were made via metal-filled extracellular elec-
trodes (Frank and Becker, 1964) and amplified with a
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Model 1700 Amplifier (A-M Systems). Data were recorded
(Axon Digidata 1500 data acquisition system and Axo-
Scope software, Molecular Devices) at a 20 kHz sampling
rate. ON and OFF cells were identified using known re-
sponse properties, particularly responses to sinusoidal
stimulation and spike-triggered average waveforms cal-
culated from responses to 0–60 Hz noise (Saunders and
Bastian, 1984).

Histology
In N 9 fish, correct electrode placement was confirmed

by the injection of Dextran Texas Red dye (catalog
#D1829, Thermo Fisher Scientific) at a recording site us-
ing double-barreled electrodes, similar to the methods
described in the study by Krahe et al. (2008). After record-
ing, the dye was pressure injected with a PicoPump (cat-
alog #PV820, WPI). Animals were then anesthetized and
respirated with a solution of Tricaine-S (0.5 g/L; Western
Chemicals) and perfused with 4% paraformaldehyde (cat-
alog #15712, Electron Microscopy Supply) in 1� PBS.
Brains were postfixed overnight, sectioned (150 �m), and
counterstained with Syto59 nuclear stain (#S11341,
Thermo Fisher Scientific), which allowed for clear distinc-
tion between ELL segments. In all marked sections, cor-
rect placement within the LS was observed.

Stimuli
All stimuli were created in MatLab (MathWorks) and

sampled at 20 kHz. Stimulation was provided by a direct
AM of a carrier artificial EOD phase locked to the EOD of
the fish rather than by mimicking a second EOD. This
method (described below) is commonly used in similar
experiments (Benda et al., 2005; Krahe et al., 2008; Mar-
sat et al., 2009) and allows precise control over the stim-
ulus AM. Baseline EOD was recorded via electrodes near
the head and tail of the fish. Each EOD cycle triggered a
sine-wave generator (catalog #DG1022A, Rigol) to gener-
ate one cycle of a sine wave matched to the sin wave of
the animal. This signal was then multiplied using a
custom-built signal multiplier (courtesy of the Fortune
Laboratory, New Jersey Institute of Technology, Newark,
NJ) by the AM stimulus to create the desired modulation
of the electric field. Stimuli were played through a stimulus
isolator (Model 2200, A-M Systems) into the experimental
tank via either two 30.5 cm carbon electrodes arranged
parallel to the longitudinal axis of the fish (global stimula-
tion) or two silver chloridized point electrodes 1 cm apart
from each other positioned near the receptive field on the
skin of the fish (local stimulation). The stimulus strength
was adjusted to provide �20% contrast (the difference
between the maximum and minimum of amplitude mod-
ulation divided by the baseline EOD). For further com-
ments on stimulus strength, see Extended Data Figure
1-1.

Random AM (RAM) stimuli consisted of 30 s of random
noise filtered using either a low pass (0–20 Hz), band pass
(40–60 Hz), or broadband (0–60 Hz) Butterworth filter.
Each stimulus was played for three repetitions in both
global and local stimulation configurations. Sinusoidal AM
(SAM) stimuli were 2-s-long stimuli modulated at 2, 5, 15,
30, 60, and 90 Hz with a 2 s rest between each frequency,

repeated at least three times. Step stimulations were
100-ms-long increases or decreases in amplitude re-
peated for 30 s.

Chirp stimuli were created by using recorded EOD sam-
ples (courtesy of Dr. Troy Smith, Electric Fish Signal
Library, http://www.indiana.edu/~efishlab/catalog/faqs.
php) to create a 1000 Hz template for A. albifrons EOD
shape, thereby accounting for the actual EOD shape and
resulting in the AM beat shape. Chirps of varying dura-
tions, frequency increases, and frequency rise/fall times
(Table 1) were each embedded in this template EOD by
decreasing the template EOD period by the inverse of the
desired frequency increase for each EOD cycle in the
duration of the chirp. For each 1 Hz of frequency increase,
the template amplitude was decreased by 0.11%, based
on Dunlap et al. (1998). Chirps were added at the rate of
1 chirp/s. To this chirper EOD, a second EOD, either 990
or 900 Hz, was added to create a combined EOD signal
with a beat AM frequency of 10 or 100 Hz. The AM of this
stimulus was extracted by rectifying and low-pass filtering
the combined EOD signal. The AM signal was delivered
during the experiments as described above. Each chirp
stimulus was played for at least 30 s and up to 60 s. Due
to time constraints, chirps were only played in the global
configuration.

Data analysis
For all analyses, spike trains were first binarized into a

sequence of ones (spike) and zeroes (no spike) using a bin
width of 0.5 ms. All analyses described here were per-
formed on these binary sequences in MatLab. Statistical
analyses (ANOVA, Student’s t test, Wilcoxon rank-sum
test) were performed using the MatLab statistical analysis
toolbox.

Synchronization coefficient
The strength of phase locking to SAM stimulation was

calculated as follows:

Table 1: Frequency and duration properties for all chirps
used

Chirp ID
Frequency
rise (Hz)

Duration
(ms) Other

1 200 100 � Shape
2 200 200 � Shape
3 350 100 � Shape
4 350 200 � Shape
5 50 50 � Shape
6 100 50 � Shape
7 50 50 Antiphase to 5
8 100 50 Antiphase to 6
9 350 200 Two frequency peaks
10 350 200 Ramp Shaped
11 60 10 A. leptorhynchus small chirp
12 122 15 A. leptorhynchus small chirp

“Other” indicates differences in chirp shape not due to peak frequency or
duration, such as the shape of frequency rise and fall, and the phase of the
beat on which the chirp occurred.

New Research 3 of 15

March/April 2019, 6(2) e0392-18.2019 eNeuro.org

https://doi.org/10.1523/ENEURO.0392-18.2019.f1-1
https://doi.org/10.1523/ENEURO.0392-18.2019.f1-1
http://www.indiana.edu/%7Eefishlab/catalog/faqs.php
http://www.indiana.edu/%7Eefishlab/catalog/faqs.php


s �
�� � xi�2 � � � yi�2

n

where n is the number of spikes in the analysis, and x and
y are the cosine and sine of the stimulus phase at which
spike i occurs (Goldberg and Brown, 1969; Marsat and
Pollack, 2004). The vector strength, s, ranges from 0 to 1,
with 1 being perfect precision in responding to a given
phase of the cycle.

Coherence
Lower-bound (stimulus-response) coherence is a mea-

sure of linear coding of the stimulus and is calculated by
comparing the spike train against the RAM stimulus (Borst
and Theunissen, 1999). Stimulus–response (S and R re-
spectively) magnitude-squared coherence (CSR) was cal-
culated as a function of frequency (f) according to the
following:

CSR�f� �
�PSR�f��2

PSS�f�PRR�f�

where P indicates the power-spectral or cross-spectral
densities.

Upper-bound (response–response) coherence mea-
sures the total information potentially coded in the re-
sponse, including linear and nonlinear information. It is
measured by comparing multiple responses of one neu-
ron to each other to determine response reliability (Borst
and Theunissen, 1999). Coherence between responses Ri
and Rj was calculated as follows:

CRiRj�f� � �PRiRj�f�PRjRi�f�

PRiRi�f�PRjRj�f�

and averaged across all pairwise combinations of re-
sponses.

Envelope responses were determined by computing
the lower-bound coherence between the responses and
the envelope of the 40–60 Hz RAM stimuli. To do so, the
stimulus S(t) in the lower-bound analysis described above
was replaced by the envelope E(t) calculated by rectifying
and low-pass filtering the 40–60 Hz noise stimulus AM.
Similar results were obtained when using a Hilbert trans-
form to calculate the envelope signal.

Burst detection
Bursts in RAM and chirp responses were identified by

creating a histogram of all interspike intervals (ISIs) in the
response. Bursting neurons have a bimodal, non-Poisson
distribution of ISIs, allowing us to visually identify a
threshold ISI at the upper boundary of intraburst intervals.
Spikes in groups with ISIs below the threshold were
classed as occurring in bursts, while all remaining spikes
were classed as tonic. This method is similar to that
described in the study by Avila-Akerberg et al. (2010)

Chirp detection and discrimination analysis
Analysis of chirps for detection and discrimination is

based on the study by Allen and Marsat (2018). Our

analysis accounts for both the firing rate as well as the
temporal pattern of spikes to quantify how similar or
dissimilar spiking patterns are (van Rossum, 2001). For
detection analysis, a window around the chirp [Rc(t)] of
length L (50, 105, or 205 ms) was extracted from the
filtered spike train and compared with a window of a beat
of the same size [Rb(t)]. Different window sizes led to
qualitatively similar results, and those using 205 ms are
shown. The responses were convolved with an � filter,
f�t� � t*exp� � 2.45t / ��, with � being the width of the
function at half-maximum (3, 10, 30, and 100 ms; 30 is ms
shown; Machens et al., 2003). Detection accuracy is cal-
culated for population responses by averaging multiple
spike trains, as follows:

PRi�t� �
�
i�t

n

Ri�t�

n

The result [PRi(t)] represents a population of neurons
presented with the same stimulus and mimics a neuron
integrating postsynaptic potentials with similar weights.
Distance (D) was calculated for all sets of combined re-
sponses, PRc(t) and PRb(t), creating an array of response
distances for each comparison using the following func-
tion:

Dcb �
�
t�O

L

�Rc�t� � Rb�t��2

L

The probability distributions of the values in these ar-
rays [P(Dcb) or P(Dbb)] were used for analysis. Receiver
operator characteristic curves were calculated by varying
a threshold distance (T) to separate chirp and beat re-
sponses. For each threshold, the probability of detection
(PD) was calculated as the sum of P(Dcb � T), and the
probability of false alarm (PF) as the sum of P(Dbb� T).
The error level for each threshold value is E�PF/2 � (1 �
PD)/2. The error rate reported in Figure 3 is the minimum
value of E across thresholds displayed as a function of the
number of spike trains included in the calculation.

Discrimination analyses were similar to those for detec-
tion, but rather than comparing chirp and beat responses,
the distances between two different chirps were com-
pared. Similar to detection analysis, windows of chirp
responses [R(t)] of length L (50,105, and 205 ms) were
used for analysis, and the results using 205 ms are shown.
The responses were convolved with an � filter, and the
population was averaged as described above. Up to 200
random combinations of spike trains from all recorded
neurons were used for all comparisons as more become
computationally prohibitive without improving results. Re-
sponses to a given chirp against a different chirp (x vs y)
were compared as well as multiple responses to the same
chirp (x vs x). Spike train metric distances (Dxy or Dxx) and
the ensuing distribution and error rates were calculated as
described for the detection analysis.
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Adaptation
Adaptation to stimuli was measured by using the Mat-

Lab Curve Fitting Toolbox to fit an exponential curve to a
plot of instantaneous firing rate for each neuron resulting
in a time constant �. The portion of the response to use for
fitting was determined by selecting the time of peak firing
rate and the following 500 ms.

Behavior
Twenty-eight behavior trials were conducted in a small

tank (27 � 27 � 14 cm) containing water with conductiv-
ity, pH, and temperature matched to the home system,
and one shelter tube. The tank was enclosed to block
ambient light and lit with infrared lights, and all trials were
recorded via infrared camera (HD Pro Webcam C920,
Logitech). The 14 cm carbon rod electrodes placed diag-
onally from each other in each corner of the tank recorded
electrical activity, which was then amplified (Model 1700,
A-M Systems) and recorded using a computer sound
card.

Stranger fish from different home tanks were paired.
Defining physical features (size, markings) and EODfs
were noted to avoid repeatedly testing the same pairing.
Individual fish were used no more than three times, with at
least 7 d between each trial. One fish was selected and
allowed to acclimate to the test tank for 20 min before the
introduction of the second fish. Recording began imme-

diately upon introduction of the intruder fish. Interactions
were recorded for 5 min.

To detect chirps, we used a custom MatLab script to
create a spectrogram of the electrical recordings to iden-
tify individuals and mark chirp times. Chirps were visually
identified as �10 Hz abrupt frequency increases.

Results
Diversity in conspecific chirp responses

In multiple gymnotid species, the LS of the ELL serves
as the primary location for the encoding of communica-
tion and social signals (Metzner and Juranek, 1997;
Metzner, 1999; Marsat et al., 2009); thus, we targeted our
recordings to pyramidal cells in that segment. To charac-
terize the pattern of responses of A. albifrons pyramidal
cells, we played a series of chirps mimicking the natural
range of reported A. albifrons chirps (Turner et al., 2007).
Additionally, for comparison we used a small number of
chirps with properties more typical of A. leptorhynchus
(Zupanc and Maler, 1993; Dunlap et al., 1998). Detailed
descriptions of chirp properties used are located in
Table 1. In addition to playing chirps with diverse proper-
ties, we also varied the frequency of the beat, presenting
chirps on both low-frequency (10 Hz) and high-frequency
(100 Hz) signals.

Figure 1 displays a representative selection of the di-
versity seen in chirp responses for both ON-type and

Figure 1. ELL Pyramidal cell responses to conspecific signals. A, Raster plots of chirp responses on a high-frequency (100 Hz)
beat. AM of the EOD stimulus is shown in black; three representative OFF cells are shown in cyan boxes, while three ON cells
responses are displayed in red boxes. The same six neurons are used for all panels. B, Responses to chirps on a low-frequency
(10 Hz) beat. For a detailed description of all chirps used, see Table 1. The shaded area highlights the duration of the chirp. See
Extended Data Figures 1-1 and 1-2 for comments and analysis of specific response properties (adaptation time and biphasic
responses to low frequencies).

New Research 5 of 15

March/April 2019, 6(2) e0392-18.2019 eNeuro.org

https://doi.org/10.1523/ENEURO.0392-18.2019.f1-1
https://doi.org/10.1523/ENEURO.0392-18.2019.f1-2


OFF-type pyramidal cells. Qualitatively, responses appear
to be heterogeneous with variability among inhibition,
excitation, and desynchronization. On high-frequency
beats (Fig. 1A), we see a transient increase in tonic firing
rate in OFF cells, while ON cells are briefly and weakly
inhibited during the chirp. On low-frequency beats (Fig.
1B), the responses also consisted of brief increases in
firing rates, but were additionally characterized by periods
of inhibition lasting the entire duration of the chirp. We did
not observe synchronized burst firing across the popula-
tion that is typical of the responses of A. leptorhynchus to
small chirps on low-frequency beats (Marsat et al., 2009;
Marsat and Maler, 2010), the strategy that limits ability to
discriminate these chirps (Allen and Marsat, 2018). There-
fore, all chirps appear to be coded primarily through
increases in firing among OFF cells, and inhibition and
desynchronization and cancelation of the beat (Extended
Data Fig. 1-1) of ON-cells. These results suggest that A.
albifrons pyramidal cells use the same coding patterns for
all chirp types, but possibly exhibit differences based on
beat frequency. Furthermore, a strong adaptation (Ex-
tended Data Fig. 1-2) in firing rate seen between the
beginning and end of the chirp response could cause
chirps of different length to be poorly discriminated.
Therefore, we next quantified how well the neural re-
sponses could support both the detection and discrimi-
nation of chirps.

Detection of chirps varies with beat frequency
We used a spike metric distance to measure the vari-

ability in firing patterns and how reliably an ideal observer
could distinguish chirp responses from beat responses.
The results are presented as an error level as a function of
the number of neural inputs pooled in the analysis. More
efficient encoding would lead this measure to drop faster
from 0.5 (chance level) as a larger population of neurons is
used in the detection task.

A small number of ON cells (about eight) is sufficient to
accurately detect chirps comparable to those of A. lepto-
rhynchus (Marsat and Maler, 2010; Fig. 2A). However, this
level of accuracy only holds for chirps on the 10 Hz beat.
ON-cell performance on 100 Hz is extremely poor, even
with high numbers of spike trains included in the anal-
ysis (Fig. 2B). OFF cells are also able to detect chirp
occurrence on low-frequency beats for all chirp types
(Fig. 2C), but on 100 Hz detecting chirps was less
reliable and accurate (Fig. 2D). The data suggest that
with a large enough sample of neurons accurate detection
is possible, but less robustly than on low frequencies.
Therefore, while chirps in all contexts are potentially de-
tected, detection sensitivity is much higher in low-
frequency contexts.

Discrimination between chirps also varies
We assessed the amount of information carried by the

response pattern about chirp properties that could sup-
port the discrimination of chirp variants. This analysis is
similar to that used for chirp detection, but, rather than
comparing responses of chirps to beats, we compare
responses between chirps. While A. albifrons chirps are
not typically grouped into distinct categories, we still use

the terminology used in A. lepthorhynchus to describe the
two ends of the spectrum of chirp properties (small, �150
Hz increase; big, �150 Hz). Figure 3 shows discrimination
ability for chirps grouped by size (Table 1; Small chirps: 5,
6, 7, 8; Big chirps: 1, 2, 3, 4, 9, 10) for both ON and OFF
cells on high and low beat frequencies.

Chirps of all types are more easily discriminable when
presented on 10 Hz beats (Fig. 3A) rather than on 100 Hz
beats (Fig. 3B). Performance for chirps on high-frequency
beats was variable: accurate discrimination was achieved
only for chirps with large differences in properties (Extended
Data Fig. 3-1), and both ON and OFF cell responses allow
qualitatively similar discrimination accuracy. These results
are unexpected, considering that the same analysis in A.
leptorhynchus shows that chirps on high-frequency beats
can be discriminated well using as few as six neurons, and
conversely exhibit poorer discrimination on low frequencies
(Marsat and Maler, 2010) where A. albifrons performs best.
Furthermore, we do not observe an asymmetry in coding
accuracy between ON and OFF cells, as observed in A.
leptorhynchus.

When looking at which chirps are well discriminated,
chirp duration and the steepness of the frequency rise
seem to be the most discriminable features, while total
frequency increase and the number of peaks are less
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Figure 2. Detection efficiency depends on beat frequency. A,
Detection of chirps on 10 Hz beat by ON cells as a factor of
neurons included in the analysis (n � 17). Error probability is the
probability of an ideal observer to correctly assign a spike train
as a chirp or beat response. Detection error levels for individual
chirp identities are shown in gray. Red line indicates mean
detection error for all chirps. ON cells can reliably detect the
occurrence of all chirps. B, ON-cell performance is worse on 100
Hz beats. C, D, Mean OFF-cell performance (cyan, n � 16) is
also more efficient on a 10 Hz beat.
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influential on coding (Extended Data Fig. 3-1). However,
discriminating the most easily separated chirps is prone
to error and requires a larger pool of neurons on high-
frequency beats. These data indicate that while qualitative

observations would suggest that chirp coding is similar
between A. albifrons and A. leptorhynchus, there are
quantitative differences in the information content about
chirps within the electrosensory system. To determine
which aspects of the neural responses could be respon-
sible for changes in chirp coding, we characterized a wide
variety of response properties using an assortment of
stimulation protocols.

Frequency tuning and neural coding
Encoding AMs in stimuli is crucial for the perception of

social signals. As shown above, A. albifrons neurons re-
spond variably to chirps, which consist of both high-
frequency AM signals and the low-frequency changes in
the contrast of the AM (i.e., the envelope). We asked
whether the accuracy of detection and the discrimination
of chirps by A. albifrons ELL neurons reflect species-
specific frequency-tuning properties.

Communication signals cause spatially diffuse stimula-
tion compared with the localized electric fields of prey
items. We simulate this difference by altering the geom-
etry of our stimulating dipoles. Using a large dipole (see
Materials and Methods) that simulates diffuse communi-
cation signals drives both the feedforward responses
from electroreceptor to pyramidal neuron and the feed-
back pathways driven by broad receptive fields. To sep-
arate the effects of feedback from the tuning of the
feedforward circuit, we also stimulated only the receptive
field of each cell with a small local dipole simulating
localized objects or prey (Bastian, 1986; Chacron et al.,
2005).

In response to simple sine waves, A. albifrons exhibits
the highest degree of coding fidelity at low frequencies.
The firing rate for each sine cycle peaks at 5 Hz for all cell
types and stimulation configurations (Fig. 4A). Maximum
phase locking also peaks at low frequencies (Fig. 4B).
These values closely match previously reported values
(Martinez et al., 2016). Temporal coding accuracy is con-
veniently quantified using random noise stimuli and infor-
mation theory (Borst and Theunissen, 1999). Lower-
bound coherence reflects the amount of information
encoded linearly, whereas upper-bound coherence takes
into account both linear and nonlinear aspects of the
response (Fig. 4C). Both ON- and OFF-cell coherence
curves peak at similar frequencies in the 5–20 Hz range
(Wilcoxon rank-sum test, p � 0.19). However, OFF cells
are clearly low pass and exhibit a sharp decline in coher-
ence to higher frequencies, while ON cells exhibit a
slightly broader lower-bound coherence (Fig. 5; see ac-
companying text for more details).

The movement of fish as well as the amplitude changes
caused by chirps create low-frequency changes in AM
contrast, or envelopes (Stamper et al., 2013). During
chirps, the AM will be high frequency (tens to hundreds of
hertz above the beat frequency), whereas the envelope of
the chirp is low frequency (e.g., a 100 ms chirp will lead to
an �10 Hz envelope). Therefore, the coding of the low-
frequency content of chirps must be investigated using
envelope stimuli. We characterized envelope coding using
stimuli consisting of RAMs with AM frequencies between
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Figure 3. Discrimination of chirps on high-frequency beats is
poor. A, Discrimination for small chirps (chirps 5, 6, 7, 8, right)
and big chirps (chirps 1, 2, 3, 4, 9, 10, left) on 10 Hz beat. Mean
ON-cell chirp discrimination shown in red, OFF cells are in cyan,
and discrimination for individual chirp pairs are shown in gray. B,
Discrimination of small chirps on a 100 Hz beat is relatively
inefficient for both ON (red) and OFF cells (cyan). Discrimination
of big chirps varies with chirp identity, but is still poor. For
chirp-by-chirp discrimination comparisons, see Extended Data
Figure 3-1.
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40 and 60 Hz, containing envelope frequencies of 0–20
Hz (Middleton et al., 2006). Although pyramidal cells do
encode the envelope of these stimuli (Fig. 4D), the coding
accuracy is low compared with the envelope coding ob-
served in A. leptorhynchus (Chacron, 2006; Middleton

et al., 2006; Extended Data Fig. 5-1). OFF-cells are par-
ticularly relevant for chirp discrimination. This is because
chirps consist of decreases in envelope amplitude, which
are best encoded by OFF cells (Marsat and Maler, 2010).
The observed poor coherence to envelope stimuli, partic-
ularly for OFF cells in receiving global stimulation, may in
part cause the poor chirp discrimination that we observe.

Burst firing and chirp detection
As described in the study by Marsat et al. (2009), burst

firing serves an important role in A. leptorhynchus for the
efficient detection of extremely short chirps. As qualita-
tively shown above in Figure 1, no conspecific chirps
reliably produced a burst response in A. albifrons. This
implies that A. albifrons may not be using this dedicated
code for the detection of very brief chirp signals. In A.
leptorhynchus, the coding of small chirps is directly re-
lated to beat frequency. On low frequencies, small chirps
are shorter than the period of one beat cycle. As beat
frequency increases and the period becomes shorter,
small chirps begin to last longer than one cycle. This
change in duration relative to beat period mediates a
change in how small chirps are coded (Walz et al., 2014).
In A. albifrons, all chirps are much longer than A. lepto-
rhynchus small chirps, spanning more than one beat cycle
even on low frequencies, which may eliminate the need
for a feature detection code specifically for extremely
short chirps. Thus, the observed lack of bursting may
result from the change either in signal structure (duration
relative to beat cycle) or from underlying changes to the
physiology and bursting capability of LS neurons.

To determine whether this change in signal coding is a
result of signal structure or underlying physiology, we
stimulated A. albifrons fish with A. leptorhynchus chirps
known to elicit a burst response in 73% of A. lepto-
rhynchus LS ON cells (Marsat et al., 2009). We determined
the burst threshold ISI for each neuron by plotting ISI
distribution of chirp and beat responses and manually
selecting a threshold that best distinguished between the
two (Martinez-Conde et al., 2002) in order to maximize our
measure of chirp-specific bursting. The mean 	 SE burst
threshold was 8.0 	 0.7 ms, which is comparable to the
burst thresholds determined for our RAM analyses and in
other reports (Chacron and Bastian, 2008; Marsat et al.,
2009; Avila-Akerberg et al., 2010).The majority of neurons
increased firing rate only slightly more in response to A.
leptorhynchus chirps than to the beat. There was, how-
ever, a small percentage (�20%) of ON cells that did
reliably burst more in response to A. leptorhynchus small
chirps than to the beat (Fig. 5A,C). Most importantly, even
the bursty neurons did not respond to the shortest A.
albifrons chirps with bursts (Fig. 5B,D). Unlike A. lepto-
rhynchus small chirps, which may cause either amplitude
increases or decreases, depending on chirp time in rela-
tion to beat phase, A. albifrons chirps are all long enough
to span more than one beat cycle. This chirp length in
relation to the beat period means that the AM waveform
caused by chirps is less variable and that the response
they elicit is largely independent of the phase at which
chirps start. This may mean that having a chirp-invariant

Figure 4. Temporal coding properties of pyramidal cells. A,
Mean firing in response to SAM stimuli. Mean firing rate (	SE) for
both ON (red, n � 19) and OFF (cyan, n � 15) cells in both
stimulation configurations (global: pink and pale blue; local: red
and cyan) peaks at 5 Hz. B, Phase locking to AM sinusoids is
also best at low frequencies. Maximum phase locking is seen at
15 Hz, with the exception of locally stimulated OFF cells, which
peak at 5 Hz. C, Mean coherence to noise stimulation is also low
pass. ON-cell coherence is shown in red, OFF-cell in cyan. The
upper-bound coherence measure (solid line) is based on the
response–response correlations between multiple presentations
of the stimulus, while the lower bound (dashed line) is based on
stimulus–response correlations. Shaded areas indicate SE;
darker shading indicates local stimulation. Mean global lower-
bound maximums: ON cells, 23.1 Hz (	0.86 SE); OFF cells,
11.6 Hz (	0.75 SE; Wilcoxon rank-sum test, p � 0.04). D,
Coding of low-frequency envelopes is poor. Mean (	SE)
lower-bound coherence between responses and the low-
frequency (0 –20 Hz) envelope of a bandpass RAM stimulus
(40 – 60 Hz) are displayed for both local and global stimulus
configurations. Both ON and OFF cells exhibit peak envelope
tuning at 10.10 Hz (	1.52 SE; Wilcoxon rank-sum test, p �
0.21). OFF cells have noticeably lower coherence to low en-
velopes than ON cells.
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coding mechanism, such as bursting, is not necessary in
this species.

The low proportion of neurons that burst in response to
A. leptorhynchus chirps demonstrates that there are
physiologic differences between these two species in
regard to the burst coding of communication signals. We
examined the differences between bursty and nonbursty
neurons in more detail by analyzing separately their re-
sponses to RAM stimuli. The subset of bursty neurons
have broader AM tuning (Fig. 5C), as tested by comparing
the ratio of coherences summed over the 0–30 versus
30–60 Hz (bursty cells mean ratio 	 SD, 0.91 	 0.12;
nonbursty cells mean ratio, 2.35 	 1.72; t test not assum-
ing equal variance, p � 0.0047; similar results were found
using the upper-bound coherence). While most ON cells
exhibited peak coherence at frequencies between 10 and
20 Hz (nonbursty cells mean peak frequency 	 SD, 19.6
	 18), these cells had significantly higher peak frequen-
cies as high as 40–50 Hz (mean 	 SD, 40 	 13.9 Hz; t
test, p � 0.023) and exhibited high coherence across the
range of stimulus frequencies. The remainder of the ON
cells displayed the low-pass tuning described in the study
by Martinez et al. (2016). These data show that while a
subset of ELL neurons is capable of bursting in response
to short chirp stimuli, they make up a small percentage of
the overall ELL population and bursting does not seem to
play a role in conspecific chirp coding.

Feature detection
Burst firing may not be a significant aspect of commu-

nication coding in A. albifrons, but other uses for burst
coding may be conserved. During spontaneous activity,
we observed a baseline firing rate of 13.54 Hz (	1.37 SE)
with 17.01% (	2.55 SE) of spikes in bursts. Thus, the
pyramidal neurons of A. albifrons are physiologically ca-
pable of bursting. In A. leptorhynchus, burst firing can
reliably signal the presence of spatially localized prey-like
stimuli (Gabbiani et al., 1996; Oswald et al., 2004). We
examined bursting in response to local RAM stimulation
(Fig. 6A) to determine whether bursting could serve similar
prey detection functions in A. albifrons. The ISI histogram
of the responses clearly showed that the neurons burst to
these stimuli (Fig. 6B). The proportion of spikes occurring
in bursts was as high as 63.07% (	5.64 SE) for stimuli in
the local configuration (Fig. 6C). The average stimulus
waveform triggering burst versus single spikes follows the
pattern observed in other species: slower AM for bursts
than for single spikes (Fig. 6D). However, in response to
RAM stimuli, unlike A. leptorhynchus there was not a large
difference in coding error between bursting and tonic
spiking (ANOVA, p � 0.10; Fig. 6E). These data suggest
that while bursts encode low-frequency stimuli in the LS
of A. albifrons, they do not appear to implement a burst-
based feature detection code for either prey-like stimuli or
chirps.

Figure 5. Coding of chirps by a small population of higher-pass neurons. A, The mean instantaneous firing rates of ON cells over the
time course of chirp and beat stimuli. The difference in peak firing rate(FR) characterize a small population (n � 5, red) that bursts in
response to A. leptorhynchus small chirps (beat responses: dashed lines; peak FR, 77.67 	 7.11 Hz; chirp responses: solid lines; peak
FR, 159.57 	 8.68 Hz; Wilcoxon rank-sum test (p � 0.001). The majority of the ON-cell population (n � 16, black) only showed a
modest increase in firing (beat response: peak FR, 62.68 	1.27 Hz; chirp response: peak FR, 66.56 	 4.21 Hz; Wilcoxon rank-sum
test, p � 0.002). Shaded area represents SE. B, Even the bursty population fires less in response to A. albifrons smallest chirps
compared with the beat (beat response: peak FR, 155.45 	 8.82 Hz; chirp response: peak FR, 117.75 	 9.40 Hz; Wilcoxon rank-sum
test, p � 0.04). C, Mean (	SE) upper-bound and lower-bound coherences for the bursting (red) and nonbursting (black) populations.
D, Example raster plots of chirp responses used for A and B. The nonbursty population (black box) responds similarly to both A.
leptorhynchus chirp and beat. The bursty population (red box) bursts to A. leptorhynchus chirps, but not A. albifrons chirps. For
comparable data obtained from A. leptorhynchus, see Extended Data Figure 5-1.
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Chirp production and behavior
Our physiology data suggest that A. albifrons is able to

detect and discriminate chirps on low-frequency beats
much more sensitively than on high-frequency beats. To
test this hypothesis, we recorded electrical behavior from
pairs of freely swimming and interacting fish. Chirping
behavior did occur but differed from that of A. lepto-
rhynchus in a number of ways. Primarily, overall rates of
chirping are dramatically lower than the numbers reported
from similar studies in A. leptorhynchus (Zupanc et al.,
2006; Hupé and Lewis, 2008). Over 28 trials, we recorded
a sum of 133 chirps, with a mean of 4.75 (	0.61 SE)
chirps per 5 min trial, whereas in a similar context male A.
leptorhynchus produced �125 chirps per 5 min trial (Hupé
and Lewis, 2008). The maximum number of chirps ob-
served in one trial was 13. Due to the small number of
observed chirps, we did not separate them into multiple
categories for analysis, although chirps of varying fre-
quency increases and duration occurred. Chirping fre-
quency is correlated with the difference in EODfs of
interacting fish. Smaller differences in EODf correspond to
higher numbers of chirps (Fig. 7A). However, under our
conditions chirping does not appear to be sexually dimor-
phic. Animals used in behavior experiments were not
killed to determine sex, but we grouped them by EODf
into high-frequency (�1100 Hz) and low-frequency
(�1100 Hz) groups, which can correspond to females and

males, respectively, in many populations of A. albifrons
(Zakon and Dunlap, 1999). We observed no differences in
chirp production between high- or low-frequency groups
(Fig. 7B). Further, chirp rate does not vary by pairing type,
or by relative EODf of individuals within each pair under
our conditions (Fig. 7B). These results confirm previous
findings that chirp frequency in this species is not sexually
dimorphic (Dunlap et al., 1998).

Chirp timing plays an important role in mediating A.
leptorhynchus interactions as they frequently exchange
chirps in an echo response pattern (Zupanc et al., 2006;
Hupé and Lewis, 2008; Henninger et al., 2018), a behavior
where one fish responds to the chirp of another fish by
chirping back within �1 s. To determine whether chirp
timing plays a similar role in A. albifrons interactions, we
analyzed interchirp intervals for all trials in which both fish
chirped. The resulting distribution of all chirp latencies
between fish indicates interchirp latencies much longer
than are typical of A. leptorhynchus echo responses (Fig.
7C). Of all recorded chirps, only two occurred within 2.5 s
of each other, making an echo response unlikely to be an
important feature of A. albifrons interactions. Further-
more, interchirp intervals for a given fish (Fig. 7D) follow a
Poisson distribution, indicating that chirp production is
not produced in stereotyped sequences . The lack of
echoing, the long interchirp intervals, and the low rate of
chirping in general suggest that A. albifrons does not rely
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Figure 6. Coding of AM by bursts. A, Sample of noise stimulus (0–60 Hz, gray) and representative spike train (black) from an OFF
cell during local stimulation. B, Example of ISI distribution used to determine burst threshold (dashed line). C, ON cells (red) burst more
than OFF cells (blue; ANOVA, p � 0.02), and local stimulation produced more bursting than global stimulation (ANOVA, p � 0.01).
Error bars show the SE. D, Mean burst-triggered averages (red/blue) and single spike-triggered averages (black) from ON and OFF
cells show that bursts are triggered by wider (lower-frequency) stimulus features than single spikes. E, Feature detection performance
for burst and isolated spikes. In both ON- and OFF-cell bursts (blue/red-filled bars) tend to have lower error rates (percentage of
events signaling false positives or false negatives) in detecting optimal stimulus features than single spikes (gray-filled bars), but this
trend is not significant (ANOVA, p � 0.10).
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on the detailed decoding of individual chirp characteris-
tics, as is the case in A. leptorhynchus.

Discussion
We found that neurons in the primary sensory area of A.

albifrons are able to detect chirp occurrence and do
encode chirp identities on low-frequency beats. However,
they discriminate between chirps less accurately when
chirps are presented on high-frequency beats. Rather
than producing discrete burst responses for small chirps
and tonic responses for big chirps, all chirps in this spe-
cies are encoded via graded and heterogeneous increase
or decreases in firing rate. We found several adaptations
in the basic response properties that may explain the
neural responses to conspecific chirps. These adapta-
tions, frequency tuning in particular, may facilitate encod-
ing long chirps in A. albifrons as well as enhancing chirp
coding in the behavioral context in which chirps are used
most often. Therefore, we also asked whether chirping be-
havior could explain differences in chirp coding efficiency for
high- and low-frequency beats. We found that the pattern of
chirp use during common social interactions is very different
from those of closely related species: A. albifrons fish pro-
duce very few chirps and do not respond to each other with
echo chirps. Infrequent chirping is particularly pronounced in
the context of high-frequency beats, suggesting that certain
types of interactions are not mediated by chirps. We suggest
that the observed differences in chirp coding accuracy on
high-frequency beats may reflect a relaxation in the de-
mands for exchanging information via chirps in this context.

Low-frequency tuning could be adaptive for chirp
coding

Our results confirm that pyramidal cells in the LS of A.
albifrons are low pass. This finding parallels the low-
frequency envelopes produced by long A. albifrons
chirps. However, the impact of this AM tuning on chirp
coding depends on the way AMs and envelopes are
processed in this system. Whereas the envelope of chirps
is low frequency, the AM is high frequency. Therefore,
low-frequency tuning to AM is not automatically helpful.
We found that the coding of low-frequency envelopes
was relatively poor, particularly in OFF cells, which, in A.
leptorhynchus, are best at coding chirp envelopes. How-
ever, if envelope response is synthesized before the py-
ramidal cells (e.g., at the electroreceptors, as could be the
case in A. leptorhynchus; Savard et al., 2011), low-
frequency tuning to AM could benefit chirp coding since
the input to the pyramidal cells would contain low fre-
quencies (Metzen et al., 2018). Nevertheless, we show
that the neural response does not accurately reflect the
chirp envelope and that envelope coding of decreases in
the amplitude of RAM envelope stimuli is poor. Our data
replicate the findings of Martinez et al. (2016) that also
show poor coding of envelope stimuli, with coherence
values of �0.1. It is possible that without low-frequency
tuning, chirp and envelope coding would be even worse.
Thus, low-frequency tuning may compensate for other
properties that hinder envelope coding (e.g., the amount
of rectification performed by the receptors; Savard et al.,
2011).

A

B

C D

Figure 7. Chirping behavior in freely swimming pairs (n � 28). A,
The number of chirps produced during interaction is correlated
with difference in EODf (r2 � 0.1093). B, Chirping does not differ
by absolute EODf, EODf pair type, or relative EODf. The mean
chirp rate for low-frequency fish (�1100 Hz) and high-frequency
fish (�1100) was similar (Student’s t test, p � 0.86). Mean chirps
per trial based on the EODf of pairing [Low:Low (L:L); Low:High
(L:H); High:High (H:H); ANOVA, p � 0.47] and by the relative
frequency of individuals within the pairing (Student’s t test, p �
0.55) were all extremely low and similar in all groupings. Error
bars indicate SD. C, Interchirp intervals between pairs binned by
time fall show no echoing chirp exchanges. Inset, Enlarged
section shows that very few chirps occur within 2 s of each other.
D, Interchirp interval distribution for individual fish follow a Pois-
son distribution (R2 � 0.9).
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The role of burst coding
Bursts also often play an important role in coding spe-

cific features of communication signals (Creutzig et al.,
2009; Fujimoto et al., 2011) as is the case for A. lepto-
rhynchus, where bursting enhances the detectability of
small chirps on low-frequency beats (Marsat et al., 2009).
A. leptorhynchus small chirps are unusual in that, for
low-frequency beats, they span less than a full cycle of
the beat. Consequently, the same chirp can be perceived
as a sharp decrease in amplitude, a sharp increase, or a
mix of the two, depending on the phase of the beat at
which the chirp starts (Benda et al., 2005). It may be
because of this aspect of chirp structure and its shortness
that the sensory system of A. leptorhynchus uses bursts
to enhance detectability rather than optimizing the coding
of the properties of these chirps. A. albifrons is not subject
to the same constraints. The perceived AM of a chirp is
largely independent of beat phase since chirps span sev-
eral cycles of the beat and their long duration might make
them more conspicuous (Petzold et al., 2016). Using noise
stimuli, we showed that burst coding in the LS is different
in A. albifrons. Since bursts are not used to encode chirps,
and because LS primarily focuses on processing commu-
nication signals, it is possible that these neurons do not
need to use burst as a feature detection signaling mech-
anism, as in other species (Gabbiani et al., 1996; Oswald
et al., 2004).

Chirp coding and behavior
Our chirp response analysis shows that all chirps are

coded with graded increases and decreases in firing rate
containing some information about chirp properties but,
for high-frequency beats, coding accuracy is inefficient at
supporting both chirp detection and discrimination. Our
behavioral data might shed some light on this apparent
inefficiency at coding chirps across all social contexts. We
show that, in our conditions, A. albifrons chirp relatively
infrequently to mediate dyad interactions. Furthermore,
we show that there is a tendency to chirp less when the
beat frequency is higher. This is supported by previous
findings showing that chirp production is more frequent in
interactions involving low-frequency beats (Kolodziejski
et al., 2007), reiterating the relevance of chirp coding on
low-frequency beats rather than high-frequency interac-
tions.

Comparison to A. leptorhynchus and other electric
fish

Our physiology and behavioral findings are markedly
different than those observed in the closely related A.
leptorhynchus. Primarily, our data show A. albifrons fish
exhibit poor chirp coding on high-beat frequencies, and
efficient coding on low-beat frequencies. This is directly in
contrast with A. leptorhynchus fish, which encode chirps
on high-frequency stimuli well and exhibit poorer coding
of chirp identity on low-frequency beats (Marsat and
Maler, 2010; Allen and Marsat, 2018). Furthermore, we
find that A. albifrons fish do not rely on the same coding
strategy as used in A. leptorhynchus since feature detec-
tion through bursts is not involved in chirp coding. Our
data clearly demonstrate that, despite being so closely

related (Smith et al., 2016), the sensory coding properties
of the neurons encoding communication signals have
diverged between A. leptorhynchus and A. albifrons.
Chirps have been suggested to be short in the ancestors
basal to the two species (Smith et al., 2016) and longer
chirps to be a development of the A. albifrons branch.
Therefore, it is possible that the differences in frequency
tuning we observed in A. albifrons may be adaptive for
coding these long chirps.

Our behavioral results suggest that A. albifrons fish
also use chirp exchanges very differently than A. lep-
torhynchus. Unlike the complex chirp interactions
observed in A. leptorhynchus, where chirps are omni-
present and play a central role in various types of
interactions (Hagedorn and Heiligenberg, 1985; Hupé,
2012; Henninger et al., 2018), A. albifrons fish chirp
infrequently and generally only in low-frequency differ-
ence interactions (Kolodziejski et al., 2007). While A.
leptorhynchus fish have dedicated uses for different
chirp types (Henninger et al., 2018), A. albifrons fish use
all types of chirps interchangeably for low-beat fre-
quency interactions and may not possess distinct chirp
categories (Dunlap et al., 1998; Kolodziejski et al.,
2007; Turner et al., 2007). The link between chirp prop-
erties and behavior in A. albifrons is also less clear than
that in A. leptorhynchus (Dunlap and Larkins-Ford,
2003). Therefore, we suggest that rather than having
distinct coding strategies for different chirp types, they
have adopted context-specific coding to better encode
chirps on low-frequency beats where chirps are most
likely to be produced.

Chirping behavior has been investigated across many
species of wave-type gymnotiforms (Hagedorn and Heili-
genberg, 1985; Turner et al., 2007; Petzold et al., 2016,
2018). Details of chirp encoding, however, have only been
investigated in one other species, Eigenmannia viscerens
(Metzner and Heiligenberg, 1991; Metzner and Viete,
1996; Stöckl et al., 2014). In this species, similarly to A.
leptorhynchus, different chirp types are used to mediate
agonistic and courtship encounters (Hagedorn and Heili-
genberg, 1985). In this species, unlike the apteronotids,
chirp coding appears to be unaffected by beat frequency,
at least at the level of electroreceptors (Stöckl et al.,
2014). However, the coding strategy observed in the ELL
pyramidal cells is that the duration of the chirp is the
primary feature encoded. This feature is coded via brief
excitation, then inhibition of both ON and OFF cells (de-
pendent on the sign of the DC component of the chirp)
that signals the duration of the chirp (Metzner and Heili-
genberg, 1991). This strategy is similar to the coding
observed in A. albifrons in low-frequency interactions,
suggesting that perhaps A. leptorhynchus represents the
outlier group, and burst detection of chirps is a special-
ization for their unique small chirps.

Conditions affecting chirp coding
Our study did not test for the effects of neuromodula-

tion on neural tuning and chirp coding. Neuromodulation
can change cell response properties for different behav-
ioral states (Harris-Warrick and Marder, 1991). Previous
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work in A. leptorhynchus shows that serotonin enhances
pyramidal cell excitability and responsiveness to small
chirps on low-frequency beats (Deemyad et al., 2013).
While we worked on adult animals, we did not determine
sex or breeding status, both of which have large effects of
the frequency and quality of chirps produced (Smith,
2013). It is likely that the effects of neuromodulation due
to behavioral state could affect the reception and encod-
ing of these chirps as well, altering the sensitivity to chirps
and possibly even the coding accuracy in response to
behavioral need. This may particularly influence the cod-
ing of chirps on high-frequency beats, which we observed
was surprisingly poor. This kind of interaction is more
likely to occur in breeding contexts, so it is possible that
animals in breeding condition could be better able to
detect and discriminate these signals than the results we
show here. We also did not investigate other environmen-
tal factors that could influence the sensory specializations
of both species, such as microhabitats, prey capture, and
general sociality, all of which could drive some of the
adaptations seen.

Our analysis technique is widely used to quantify the
encoding performance of sensory neurons (Neuhofer and
Ronacher, 2012; Itatani and Klump, 2014; Mouterde et al.,
2017), and is biologically realistic (Larson et al., 2009).
Nevertheless, other analysis techniques could be devised
to improve the discrimination accuracy estimate. Weight-
ing the contribution of the different neurons or weighting
them differently across time could be envisioned (Larson
et al., 2010). Keeping the different neurons as separate
dimensions in the analysis (Houghton and Sen, 2008) or
combining ON- and OFF-cell responses (Aumentado-
Armstrong et al., 2015) could also improve discrimination,
as could accounting for neural correlation in response
variability (Hofmann and Chacron, 2017). Finally, various
more complex decoding methods (e.g., multilayered
neural net or principal component analysis (PCA)-type
dimensionality reduction) could be used for analysis. Nev-
ertheless, we do not expect the neural mechanism to
differ widely across apteronotid species, so our analysis
provides a meaningful comparison. The strength of our
measure is that it is conservative: it gives a clear account
of the information available in ELL pyramidal cells with few
assumptions about what the downstream networks use
for decoding.

Trade-offs between specialization and generalization
Classical neuroethology dictates that the mode of sig-

nal production and mode of signal reception must evolve
in synchrony so that senders and receivers never lose
the ability to exchange information (Bradbury and Veh-
rencamp, 2011). There are many examples of the spe-
cialization of particular aspects of sensory systems to
accomplish a highly specialized task (Endler, 1992). In the
case of communication, sensory tuning for sender–re-
ceiver matching has been shown repeatedly. However,
the converse may also be true. Overspecialization may
come at the cost of reduced sensitivity to more general
environmental signals. In such a case, it may be more
beneficial to favor sensory generalization over specializa-

tion in animals that engage in social behaviors less often
than their more gregarious relatives do. Indeed, there are
several examples of peripheral sender–receiver mis-
matching that may be explained by gains in sensitivity to
prey or predator signals too (Mason, 1991; Römer, 2016).
While we see in A. leptorhynchus dedicated codes for
communication signals with distinct meaning and in dis-
tinct contexts (Marsat and Maler, 2010; Allen and Marsat,
2018), maintaining that level of specificity for conspecific
communication may be costly both metabolically (Niven
and Laughlin, 2008) and in regard to detecting environ-
mental stimuli apart from communication signals.

In A. albifrons, we show a general match between signal
characteristics, low-frequency chirp envelopes, and CNS
sensitivity to low-frequency signals, but a lack of detailed
coding that would allow for efficient discrimination of
chirp identity in all contexts. Additional changes that
would lead to a more accurate chirp coding could come at
the expense of the ability to encode other stimuli. There-
fore, for this species, limiting the resources dedicated to
the coding of social signals in certain contexts (e.g., ag-
gressive encounters with a fish with a high difference in
EOD frequency) may allow the system to preserve or
enhance sensitivity to other stimuli.
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