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Multiregional dynamic models of economic 

growth rarely capture the interdependencies 

among regions that are geographically distant 

and/or often underestimate the importance of 

these linkages. This bias has become more and 

more serious because travel and transportation 

costs continue to decrease, while new telecommu-

nication and information technologies enable 

business activities to readily take place between 

geographically remote locations. The conceptual 

framework in this study–modelling the network of 

regions–is based on well-known spatial economet-

ric methods and provides alternative ways to inte-

grate network interdependencies of economic ac-

tivities into many fields, as well as modelling tech-

niques such as spatial computable general equilib-

rium, input-output, and dynamic econometric 

models. 

Introduction 

Both spatial econometric models and network-based regressions can be considered 

as special cases of cross-sectional dependence regressions, where the relationships 

between regions are defined by spatial proximity and the edges of the network 

structure, respectively. LeSage and Debarsy (2016) suggest replacing the word ‘spa-

tial’ with the term ‘cross-sectional dependence’ when weight matrices are not creat-

ed through spatial proximity, but via any other non-spatial proximity definition. In 

this article, I take the example of interindustry relationships to show how further 

development of these techniques is possible based on weight matrices that are cre-

ated not only by contiguity and spatial distance algorithms, but also by defining 

network distance measurements. Empirically, long-distance cross-sectional depend-

encies can be more important than spatial ones depending on the industry; never-

theless, there are still many traditional industries where spatial autocorrelation can 

be dominant while other cross-sectional dependencies remain insignificant. 

 
1 This paper was presented at the 56th Meeting of the Southern Regional Science Association, Memphis, Ten-

nessee, April 2017.  
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For regional policy, it is essential to: identify the key industries within a given re-

gion and analyse their spatial and network dependencies, including geographically 

distant linkages; measure their dependencies from weaker to stronger; and know how 

to influence them to improve their economic performance. Before making policy 

decisions, it is crucial to run simulations using dynamic models, implement regional 

impact assessment, and take into consideration interregional and interindustry effects 

beyond macroeconomic aspects and regional impacts. In this respect, the main goal of 

this study is to provide theoretical and methodological insights about the importance 

of regional network interlinkages of key industries, as well as a proof of concept for 

future network econometrics and economic modelling research. 

Problem definition 

The aim of this study is to shed light on an alternative conceptual framework to build 

dynamic multiregional economic models in general, and to develop a new method to 

connect regions within multiregional models, as well as to emphasise the advantages 

of the new approach in the modelling of interregional and interindustry linkages in 

particular. The approach is based on the creation econometric equations (stochastic 

equations) among the spatial units instead of using identities (deterministic equations) 

and can be applied to many other fields other than economics. 

Several methods enable to connect regions within an economic model, and it is 

usually difficult to find the appropriate method depending on the purpose of the 

model. One of the most popular approaches is based on the well-known gravity 

model, where the intensity of the relationships decreases as geographical distance 

increases. In many cases, this approach provides the most satisfactory solution; thus, 

it is widely accepted, and this aspect of the multiregional model is rarely questioned 

or criticised. In some cases, if the model considers a more detailed level of industrial 

classification, distant interdependencies can become more important than the ones 

across closer neighbours, especially in industries where transportation costs are 

relatively low compared to the value of the transported goods. Here, the gravity 

model cannot provide accurate results, as it underestimates the economic interac-

tions among regions, which can be physically far apart. Nonetheless, in other indus-

tries, where spatial proximity does matter, the gravity model can still be the best 

solution. The problem occurs, for example, between regions where the gravity mod-

el predicts low trade value, although they actually exhibit strong interdependency for 

a given industry. There are many industry-specific examples for this phenomenon, 

some of which are outlined below. 

Spatial econometrics provides stochastic equations for multiregional economic 

models to capture the interactions among nearby regions. By connecting regional 

variables in many different regions, these equations allow modellers to establish 

interregional linkages for dynamic simulations. This method can be interpreted as an 
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extension of spatial econometric techniques where the weight matrix generates from 

network linkages among regions instead of traditional definitions (binary contiguity, 

inverse distance, etc.). In this study, the network definition is based on interregional 

trade data, although this is not the only way to create alternative types of cross-

sectional weight matrices. Depending on the investigated phenomena, many other 

matrix representations of directed or undirected graphs of interregional connections 

are imaginable and applicable in order to build weight matrices. 

In this context, the word ‘network’ refers to the network of regions. However, 

generally speaking, the word has a much wider meaning (e.g. social networks, neural 

networks, computer networks, etc).  

Considering whether the framework of network theory can be employed to de-

scribe the interregional interindustry linkages, Rodrigues et al. (2016) illustrate the 

case of an input-output model in which the network approach can result in much 

clearer and more flexible modelling techniques than conventional matrix formula-

tions. Additionally, they point out the advantages of the topological transformations 

applied to these network structures. 

Cross-sectional dependence seems to be a broader concept than network of re-

gions, as it involves many other applications that cannot be described in terms of 

network model. 

Examples of network-based weight matrices 

The following examples provide the base for a proof of concept of a multiregional 

model, which will be developed in the next step of this research. Network autocor-

relation can usually be defined similarly to spatial autocorrelation.  

The idea of defining network autocorrelation and creating weight matrices by 

network structures and topologies is not new and has already been accepted in so-

cial network studies. Leenders (2002) provides a clear definition: ‘social influence 

enters network autocorrelation models through the weight matrix W, also called the 

structure matrix. Entry wij represents the extent to which yi is dependent on yj thus 

to what extent actor j influences i’. Doreian (1989) describes the mathematics of 

different types of network models (network effects, network disturbances, and their 

mix) that can be employed to investigate network effects on social actors. Although 

an overview about the methodology of weight matrices of social networks can be 

obtained, the cross-sectional dependence of the interregional input-output linkages 

seems to be a different problem. For instance, the problem size is much smaller 

than in the case of social networks, which is important for the algorithms running 

on computers. Inverting a ten-million by ten-million sized matrix seems to be diffi-

cult and CPU time consuming; nonetheless, nowadays it is not impossible, and for-

tunately it is not even necessary in the case of the network of regions because of the 

limited number of nodes. 
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There are software packages allowing users to generate network spatial weights. 

For example, in ArcMap it is possible ‘…to model and store spatial relationships 

based on time or distance between point features in the case where travel is restrict-

ed to a network dataset’ (ArcMap 2017). Moreover, PySal contains functions for 

network constrained analysis (Rey 2016).  

Some contributions in the literature apply a combination of the network and the 

spatial approaches; for example, Ermagun and Levinson (2016) introduce the net-

work weight matrix as a replacement for the spatial weight matrix. Specifically, with 

the aim of modelling traffic flows, they define the elements of the weight matrix by 

network topology and structure beyond spatial proximity.  

In many cases, it is possible to reduce the specification of the econometric mod-

el into a simpler estimation and inference, in order to still apply conventional tech-

niques and software packages of spatial econometrics. LeSage (2017) develops an 

algorithm based on convex combinations of matrices to redefine the specification of 

the cross-sectional dependence regression replacing two or more different weight 

matrices by a single weight matrix. The latter combines all original matrices with 

their correspondent importance. 

In the simplest version of the multiregional model suggested in this study, the 

equations of the network regression models can be written similarly to the ones of 

the spatial regression models; for example, the equation of the Network Autoregres-

sive Model (NAR) is almost the same as the equation for the Spatial Autoregressive 

Model (SAR), and only the definition of the weight matrix is different: 
                                            y Wy Xρ β ε     (1) 

Furthermore, in most cases the estimation methods of the spatial econometric 

models are also applicable to the network econometric models. Moreover, the usage 

of the available software packages (Geoda, R, PySal, etc.) is possible, provided that 

there is a flexibility to rewrite the weight matrices. For the present application, it was 

convenient to use the weight matrix object and the spreg.ml_lag function of the 

PySal package in a Python script. This ‘module provides spatial lag model estimation 

with maximum likelihood following (Anselin 1988)’, as quoted by Rey in the soft-

ware documentation (Rey 2016).2 

Because it is only a conceptual description of the alternative approach, my ex-

ample consists of a simple econometric model to prove the existence of this type of 

network autocorrelation. To illustrate it, an apparent relationship between the com-

pensation per employee and labour productivity measured by gross industrial prod-

uct per employee is assumed. Both variables are generated in a two-dimensional 

state by industry tables for year 2012. In this example, the states are chosen as spa-

tial units; thus, the word ‘region’ will be used as a synonym for ‘state’. 

 
2 pysal.readthedocs.io/en/latest/library/spreg/ml_lag.html (downloaded: March 2017)  
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Data 

Data on employment, compensations, gross industrial product, input-output ac-

counts, and coefficients for 51 states and 71 industries were retrieved directly from 

the IO-Snap software, a third-party commercial data vendor.3 IO-Snap extracts the 

original tables from the U.S. Bureau of Economic Analysis (BEA) website, while 

facilitating the aggregation and regionalisation of the tables. The use of IO-Snap was 

more convenient than downloading data directly from BEA and creating a new pre-

processing algorithm. 

The interregional trade data are from the 2012 Commodity Flow Survey Public 

Use Microdata File (CFS PUMS file)4, which is downloadable from the United 

States Census Bureau website. Among the other things, this data file contains col-

umns for the FIPS state code of shipment origin, the FIPS state code of shipment 

destination, and the NAICS code of the shipper; therefore, trade classification by 

industry and the origin state was also considered. In this example, regions are de-

fined as states, but smaller or larger spatial units can also be used depending on the 

available data and the purpose of the analysis. The CFS PUMS file also provides 

information about the metro area of shipment origin, the CFS area of shipment 

origin, the metro area of shipment destination, the CFS area of shipment destina-

tion, and a two-digit SCTG commodity code of the shipment. By investigating the 

rows of the CFS PUMS file, it seems obvious that the trade matrix can also be gen-

erated for smaller spatial units. Moreover, beyond the industry by industry (IxI) 

analysis, commodity by commodity (CxC) and industry by commodity (IxC) anal-

yses could also be implemented, because IO-Snap can easily use its regionalisation 

features to generate the necessary data. For example, the regionalisation process can 

be run for input-output accounts (final demand, value added, use and make tables) 

and tables of direct and total requirements in all three formats: IxI, IxC, and CxC. 

The use of a CFS PUMS file is only an example of how to create weight matrices; 

indeed, there are many other possible ways to collect data and develop algorithms 

generating weight matrices to capture the far distance linkages. For example, region-

al level aggregations of researchers’ social network can provide the representation of 

the interregional innovation linkages in a simple region by region cross-sectional 

weight matrix format.  

Generating network-based weight matrices 

Aggregating the microdata from the commodity flow survey produces industry-

specific state-by-state tables of shipment values for each available NAICS code. 

Within a given industry, this matrix represents a directed graph where the nodes are 

 
3 www.io-snap.com (downloaded: March 2017) 
4 www.census.gov/econ/cfs/pums.html (downloaded: March 2017) 
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regions and the arcs are links defined by the following condition: two regions are 

connected if the total value of the shipment between them is greater than a given 

threshold. Any threshold is arbitrary, and one of the common choices is to specify 

the largest value, in order for all regions to have at least one neighbour. This algo-

rithm results in a non-symmetric matrix of first-order neighbours. The higher-order 

neighbours in the network case can also be calculated through a method similar to 

binary contiguity matrices in spatial econometrics. Using the graph theory terminol-

ogy, this is equivalent to the condition of the shortest path between two nodes. The 

non-symmetric weight matrix, that is, the directed graph, can be employed for ex-

ploratory data analysis (e.g. calculate Moran’s I in the network case) and to derive 

the network lagged independent variables, especially for industries’ backward and 

forward linkages–not only for the intraregional supply chain linkages, but also for 

interregional trade.  

In order to run a cross-sectional dependence autoregressive model, a symmetric 

weight matrix is required. This is derived from the original shipment matrix by add-

ing the matrix to its transpose (to add state A → state B shipments to state 

B → state A shipments and vice versa). This aggregation provides a symmetric ma-

trix, but can cause an information loss in terms of shipment direction. Nevertheless, 

both directions can influence the interdependencies between two regions. There-

fore, the result of the model might not be misleading. A possible improvement 

could deal with the development of a methodology of estimation and inference with 

asymmetric weight matrices; in other words, a way to handle directed graphs repre-

senting network structures in econometric models. 

In the first version of the network-based weight matrix (Figure 2), the rows of 

the row-standardised matrix are unweighted; this means that the actual shipment 

value is ignored, and only the existence of connections is considered using the same 

weight for each neighbour. In the second version, different weights are assigned to 

the neighbours distinguished by the shipment value. The significance of the auto-

correlation and the autoregressive coefficients does not substantially change be-

tween the two non-spatial models. 

The neighbours’ pattern in the network case is different from the spatial case. 

The first pair of maps (Figure 1) illustrates that the geographically defined neigh-

bours surround the examined states. 

In the second pair of maps (Figure 2), a very different pattern of neighbours can 

be seen for the same states. With the network-based method, some distant states 

became connected, while some spatial neighbours lost their connections to the giv-

en state. 

The comparison of the four maps shows that an interesting outcome might oc-

cur. There are no joint neighbours in the examined two states in the spatial case 

because of the far distance; however, in the network-based case, they have one 

common neighbour. After defining the weight matrix by trade data, physically dis-
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tant regions can become connected, such as Vermont and Oregon on the right-hand 

side of the map, while spatially connected neighbours might remain neighbours or 

become unconnected. 

Figure 1 

 
Source: Generated using GeoDa v1.8.16.4; 1 March 2017, coloured manually. 

Figure 2 

 

Source: Generated using GeoDa v1.8.16.4; 1 March 2017, coloured manually. 

Empirical results 

Based on a simple example, one spatial model (with binary contiguity weight matrix) 

and two network models (network threshold type and network flow type) are creat-

ed for each industry for which interregional trade data are available. The equation of 

the spatial autoregressive model (Anselin 1988) is as follows: 

               1 1 2 2 ...S k ky W y x x xρ α β β β ε        , (2) 

where the dependent variable y represents the compensation rates by states within a 

given industry, W is the same binary contiguity spatial weight matrix for each indus-

try, and x1 is the independent variable of labour productivity by states within a given 

industry. Although it would possible to use more explanatory variables x2…xk, in 

this simple example I use only one. Thus, in order to simplify the notation, x will 
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replace x1 henceforth. Actually, equation (2) is a generalised equation that can be 

written for each industry i. 
First, spatial autoregressive models are implemented for each industry from IO 

code 212 to 55, and the cases of positive significant autoregressive parameter are 

listed in Table 1. In many cases, the autoregressive parameters become significant, 

and the spatial diagnostic of OLS estimations show more robust Lagrange multi-

pliers for the spatial lag model than for the spatial error model (in the significant 

cases).  

Table 1 

IO  

code 
Name 

ρ  

coefficient 

ρ  

probability 

β  

coefficient 

β  

probability 

Spatial  

pseudo R2 

321 Wood products 0.3097636 0.0000031 0.3314931 0.0000000 0.7471041 

331 Primary metals 0.3827188 0.0000633 0.0327501 0.0110314 0.1577813 

333 Machinery 0.2343926 0.0266329 0.2006220 0.0000623 0.2931058 

335 Electrical equipment, appliances, components 0.2445147 0.0083023 0.2290565 0.0000000 0.4491828 

337 Furniture and related products 0.2547117 0.0027271 0.2847682 0.0000000 0.5247478 

339 Miscellaneous manufacturing 0.2807512 0.0143612 0.2362123 0.0000000 0.6514770 

323 Printing and related support activities 0.2422890 0.0051829 0.2539650 0.0000033 0.3709606 

325 Chemical products 0.4077508 0.0036684 0.0792176 0.0000230 0.3231142 

326 Plastics and rubber products 0.2209095 0.0018884 0.1839768 0.0000003 0.5240715 

42 Wholesale trade 0.1469258 0.0172730 0.4867514 0.0000000 0.7071403 

In the second step, the network lagged variables are created similarly to the spa-

tially lagged variables, the only difference being the weight matrices’ method. In the 

network-based case, I employ two types of row-standardised network matrices, 

while the other parts of the algorithm are mathematically equivalent to the spatial 

case. Thus, equation (2) can be rewritten as: 

                                   ,i N i i iy W y xρ α β ε     . (3) 

In equation (3), yi and xi are still vectors for all industries i, and the elements of 

such vectors are the values of dependent and independent variables by region, re-

spectively. 

The notation is almost the same as in equation (2), except that the weight matri-

ces are network-based instead of spatial matrices; and per definitionem, they are 

different for each industry depending on the interregional trade data. 

The results in Table 2 generate from the unweighted network-connectivity ma-

trices, while the corresponding results of the weighted network-flow matrices are 

showed in Table 3. All industries have different weight matrices in both cases (com-

pared to the other industries) according to the total trade value by industry among 

the states. 
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Table 2 

IO  

Code 
Name 

ρ  

coefficient 

ρ  

probability 

β  

coefficient 

β  

probability 

Spatial 

pseudo R2 

332 Fabricated metal products 0.7359775 0.0000032 0.3743817 0.0000000 0.6980953 

337 Furniture and related products 0.5951258 0.0029552 0.3245427 0.0000000 0.4780375 

323 Printing and related support activities 0.6899227 0.0000390 0.2942893 0.0000000 0.3252263 

326 Plastics and rubber products 0.6577262 0.0016704 0.2150794 0.0000000 0.4991782 

Table 3 

IO Code Name 
ρ   

coefficient 

ρ   

probability 

β   

coefficient 

β   

probability 

Spatial 

pseudo R2 

332 Fabricated metal products 0.6186635 0.0007193 0.3723363 0.0000000 0.6798423 

3364OT Other transportation equipment 0.4214841 0.0250983 0.2114154 0.0000000 0.3346656 

337 Furniture and related products 0.7259708 0.0000026 0.3320034 0.0000000 0.5111702 

323 Printing and related support activities 0.7390262 0.0000001 0.2676689 0.0000003 0.3494023 

326 Plastics and rubber products 0.8205607 0.0000000 0.2113470 0.0000000 0.5243172 

Network autocorrelation occurs less frequently than spatial autocorrelation. In a 

few cases, especially in the fabricated metal products industry, network interdepend-

encies are observed (irrespective of which type of network matrices is applied), de-

spite the spatial autoregressive parameter is not significant. As expected, the coeffi-

cients of the explanatory variables are positive and significant in all cases, because 

labour productivity can explain the variance of compensations reasonably well. The 

PySal report summary for both network cases can be seen in Tables 4 and 5. 

The conditions of the two network autoregressive models reported in Tables 4 

and 5 only differ for weight matrices; net_thres and net_flow denote binary network 

threshold type and weighted network flow type, respectively. The results from the 

two types of network weight matrices do not emerge as very different.  

The third step is the extension of the network autoregressive model in equation 

(3) to intraregional backward linkages. The interindustry weighted explanatory vari-

able generates from the national direct requirement table: 

                               ,i N i i B ry W y x W xρ α β γ ε      . (4) 

Note: in equation (4), vectors xi and xr are not in the same structure; nonetheless, 

they represent the same explanatory variable (labour productivity). Vector xi con-

tains the values of regions within a given industry, and vector xr contains the values 

of industries in a given region. The transformations in WB are implemented in all 

regions; thus, these lagged variables are in the same structure as the original xi varia-

bles and could be handled as regular independent variables. 



12 Péter Járosi  

 

Regional Statistics, Vol. 7. No.1. 2017: 003–016; DOI: 10.15196/RS07101 

Table 4 

REGRESSION 

---------- 

SUMMARY OF OUTPUT: MAXIMUM LIKELIHOOD SPATIAL LAG (METHOD = FULL) 

----------------------------------------------------------------- 

Data set            :     unknown 

Weights matrix      :   net_thres 

Dependent Variable  :     dep_var                Number of Observations:          51 

Mean dependent var  :     59.6675                Number of Variables   :           3 

S.D. dependent var  :      9.6399                Degrees of Freedom    :          48 

Pseudo R-squared    :      0.7164 

Spatial Pseudo R-squared:  0.6981 

Sigma-square ML     :      25.864                Log likelihood        :    -156.157 

S.E of regression   :       5.086                Akaike info criterion :     318.314 

                                                 Schwarz criterion     :     324.110 

------------------------------------------------------------------------------------ 

            Variable     Coefficient       Std.Error     z-Statistic     Probability 

------------------------------------------------------------------------------------ 

            CONSTANT     -17.3484699       9.7948880      -1.7711759       0.0765315 

               var_1       0.3743817       0.0360905      10.3734078       0.0000000 

           W_dep_var       0.7359775       0.1580331       4.6571094       0.0000032 

------------------------------------------------------------------------------------ 

Table 5 

REGRESSION 

---------- 

SUMMARY OF OUTPUT: MAXIMUM LIKELIHOOD SPATIAL LAG (METHOD = FULL) 

----------------------------------------------------------------- 

Data set            :     unknown 

Weights matrix      :    net_flow 

Dependent Variable  :     dep_var                Number of Observations:          51 

Mean dependent var  :     59.6675                Number of Variables   :           3 

S.D. dependent var  :      9.6399                Degrees of Freedom    :          48 

Pseudo R-squared    :      0.6967 

Spatial Pseudo R-squared:  0.6798 

Sigma-square ML     :      27.643                Log likelihood        :    -157.624 

S.E of regression   :       5.258                Akaike info criterion :     321.248 

                                                 Schwarz criterion     :     327.043 

------------------------------------------------------------------------------------ 

            Variable     Coefficient       Std.Error     z-Statistic     Probability 

------------------------------------------------------------------------------------ 

            CONSTANT     -10.5329975      11.2724135      -0.9344048       0.3500951 

               var_1       0.3723363       0.0376417       9.8915891       0.0000000 

           W_dep_var       0.6186635       0.1829223       3.3821111       0.0007193 

------------------------------------------------------------------------------------ 



Modelling Network Interdependencies of Regional Economies … 13 

 

Regional Statistics, Vol. 7. No.1. 2017: 003–016; DOI: 10.15196/RS07101 

The explanatory variable (within a given region) is weighted by the coefficients 

from the columns of the direct requirement table of the industry-by-industry struc-

ture, excluding the examined industry itself. There are three transformations be-

tween the matrix WB and the original industry-by-industry table: replacing the main 

diagonal of the input-output table with zeros, transpose it, and the row-

standardisation. This new variable in equation (4) can be considered as an explana-

tory variable for backward linkages. Matrix WB has no index r; this means that the 

national input-output table is used in the first approximation, but there are options 

in IO-Snap to regionalise the table of direct requirements and replace WB matrix 

with different regional WB,r matrices for each region. 

Table 6 

IO Code 
ρ   

coefficient 

ρ   

probability 

β  

coefficient 

β   

probability 

Spatial  

pseudo R2 

γ   

coefficient 

γ  

probability 

212 –0.2068741 0.1738937 0.0877126 0.0000000 0.4117533 0.0451872 0.0172671 

327 0.4593082 0.0420149 0.1537810 0.0007127 0.2416895 0.0309428 0.1032600 

332 0.6407994 0.0003017 0.3621068 0.0000000 0.6934640 0.0189350 0.1391610 

333 0.3286246 0.2139013 0.1944382 0.0000760 0.3505849 0.1272176 0.0096165 

334 –0.1889946 0.5149651 0.0715192 0.0000050 0.3450205 0.2490942 0.0041148 

337 0.7469666 0.0000002 0.2953514 0.0000000 0.5151907 0.0574779 0.1666706 

315AL 0.2018436 0.3359634 0.2917739 0.0000000 0.6145860 0.1577364 0.0014496 

323 0.7860992 0.0000000 0.2602953 0.0000002 0.3492147 0.0312487 0.0347412 

326 0.8192370 0.0000000 0.1940023 0.0000000 0.5505027 0.0149876 0.0536604 

42 0.0655316 0.7516733 0.2917696 0.0000444 0.7508864 0.2056734 0.0002273 

The backward linkages parameter explains the effect of changes in labour 

productivity in the supplier industries on compensations in the considered industry. 

Given this, a possibility is to estimate the econometric equations with a multidi-

mensional weight matrix defined as a combination of interregional and interindustry 

linkages: 

                       N B N By W y x W x W W xρ α β γ δ ε        . (5) 

The notation   between WN and WB is not the regular matrix multiplication. 

Instead, this transformation results in a three-dimensional weight matrix from the 

two-dimensional matrices, and can be defined by the elements of the original ma-

trices using the following formula. Specifically, denote zi,r the elements of the new 

variable in industry i, nr,s,j the elements of matrix WN in industry j, bi,j,r the ele-

ments of matrix WB in region r, where indices r, s represent the regions 

(s = origin, r = destination), while indices i, j denote related industries (j -> i) in 

the supply chain: 

                                                      , , , , , ,i r i j r r s j j sz b n x  . (6) 
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The projections of the multidimensional weight matrix (into the interregional 

plane) are not symmetric; in other words, they represent the directed graphs of in-

terregional backward linkages. Developing a methodology through which econo-

metric equations are defined by multidimensional weight matrices will make it pos-

sible to examine the effects of interregional supply chain linkages in an econometric 

context. 

Dynamic multiregional modelling framework 

The simple econometric equations representing the stochastic relationship between 

compensations and labour productivity only aimed to illustrate the opportunities 

behind the network-based weight matrix definition. In dynamic multiregional mod-

els, more sophisticated equations and econometric models are needed. These new 

equations will define the interlinkages among the most important regional variables 

(TFP, labour, capital, factor prices, R&D expenditures, etc.) and create dynamic 

interregional dependencies for simulations. 

The network-based econometric equations, created from the new type of weight 

matrices, connect the variables in the multiregional model and establish interde-

pendencies among regions; however, several other types of interregional equations 

can be added to the model to run dynamic simulations. The regional social account-

ing matrices can be linked by using different types of equations: identities, gravity 

model, and stochastic equations (spatial, network-based, and other cross-sectional 

econometric models). The best solution seems to be a mix of different types of 

equations, especially when the network-based estimation is not significant or is not 

possible to implement because of the lack of data. 

Regional policy implications 

The impact assessment can be implemented by changing the initial values of the 

exogenous variables. In this way, the shocks added to the system are defined as the 

differences between new and original values of the variables. This technique repre-

sents a powerful tool to investigate the dynamics of the multiregional model re-

sponding to an economic shock. 

The dynamic simulations highlight the consequences of changes in the policy 

variables, which can be implemented by using macroeconomic and multiregional 

models separately, or by developing a mixed macroeconomic-multiregional model. 

The multisectoral regional blocks of the suggested model can support the identifica-

tion of key industries within regions, while distinguishing spatially and network de-

pendent sectors. Different types of industries justify different policies, depending on 

the observed interregional, backward, and forward linkages. 
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Conclusions and further research 

The methodology to create network-based regions’ weight matrices has been out-

lined, and the existence of multiregional network autocorrelation has been proved 

through a simplified econometric example. 

The construction of interregional linkages in the multiregional modelling frame-

work via network and spatial econometric equations is more convenient than the 

burdensome creation of the identities to connect regions’ social accounting matri-

ces. Collecting reliable data for these problematic identities also seems to be labori-

ous or sometimes even impossible. Moreover, the assumptions of the spatial com-

putable general equilibrium modelling framework (e.g. short-term spatial equilibri-

um of the labour market) are not verifiable. In this new approach, the long-term 

dynamic simulation using the interregional econometric equations can provide re-

sults as reasonable as the ones from spatial computable general equilibrium models. 

As for the macroeconomic and the intraregional blocks of the integrated model, the 

computable general equilibrium approach and the identities creation through the 

social accounting matrix are still recommended. The most appropriate solution 

might be a mixed type of econometric, input-output, and computable general equi-

librium model, where the interregional linkages are simulated by network, gravity, 

and spatial econometric equations replacing the conventional identities. 

In the future, an alternative way to build a lightweight version of dynamic mul-

tiregional models will be developed by using the network econometrics equations. 
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