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Abstract

In women, breast cancer is the most common cancer diagnosis and second most common cause of 

cancer death. More than half of breast cancer patients will develop metastases to the bone, liver, 

lung, or brain. Breast cancer brain metastases (BCBM) confers a poor prognosis, as current 

therapeutic options of surgery, radiation, and chemotherapy rarely significantly extend life and are 

considered palliative. Within the realm of chemotherapy, the last decade has seen an explosion of 

novel chemotherapeutics involving targeting agents and unique dosage forms. We provide a 

historical overview of BCBM chemotherapy, review the mechanisms of new agents such as poly-

ADP ribose polymerase inhibitors, cyclin-dependent kinase 4/6 inhibitors, phosphatidyl inositol 3-

kinaseinhibitors, estrogen pathway antagonists for hormone-receptor positive BCBM; tyrosine 

kinase inhibitors, antibodies, and conjugates for HER2+ BCBM; repurposed cytotoxic 

chemotherapy for triple negative BCBM; and the utilization of these new agents and formulations 

in ongoing clinical trials. The mechanisms of novel dosage formulations such as nanoparticles, 

liposomes, pegylation, the concepts of enhanced permeation and retention, and drugs utilizing 

these concepts involved in clinical trials are also discussed. These new treatments provide a 

promising outlook in the treatment of BCBM.
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1. EPIDEMIOLOGY

Second only to heart disease, cancer accounted for 23% of recorded deaths in 2014. In 

women, lung cancer is the leading cause of cancer death, followed by breast cancer, and then 

colorectal cancer. It is estimated in 2018 there will be more than 260,000 new cases of breast 

cancer and more than 40,000 deaths as a result of the disease [1]. Breast cancer is one of the 

most common cancer diagnoses in women, with a 1-in-8 total lifetime risk for diagnosis [2]. 

Though breast cancer may be diagnosed at any age, a recently published report placed the 

average age of diagnosis at 50 years old [3]. This report also found that in those cases in 

which information on ethnicity was available, 68% were Caucasian, 17% were African 

American, and 11% were Hispanic.

Although not as common in men, breast cancer incidence within this population is 

increasing. The incidence in men is typically associated with factors such as a high body 

mass index, Klinefelter syndrome, gynecomastia, liver disease, testicular disease, 

alcoholism, and radiation exposure. Male breast cancer is most comparable to breast cancer 

that presents in postmenopausal women, but with a few distinct differences. In men, breast 

cancer is typically discovered at an older age and presents at a more advanced stage. In 

addition, male breast cancer has higher rates of estrogen and progesterone receptor positivity 

than female breast cancer. There is also evidence that genetic predisposition plays a larger 

role in developing breast cancer in males [4].

One of the biggest challenges of treating breast cancer is its propensity to metastasize to 

other areas of the body, including liver, bone, lung, and brain. After lung cancer, breast 

cancer is the second most common source of brain metastases [5] (Figure 1). Of patients 

diagnosed with breast cancer, between 10–15% will develop brain metastases [6] with the 

median time of presentation 2-3 years after initial diagnosis [7]. In about 30% of breast 

cancer patients, metastatic lesions in the brain were found post-mortem [8–11]. Brain 

metastases of breast cancer are associated with limited survival and a lower quality of life.

Some risk factors that have been associated with the development of brain metastases in 

women include: diagnosis of breast cancer at a younger age, tumors that are large or high 

grade, presence of lymph node metastases, and certain subtypes of breast cancer. The 

subtypes that have been shown to preferentially metastasize to the brain include estrogen-

receptor negative, estrogen, progesterone, and HER2 receptor negative (triple negative), and 

HER2+ breast cancers [3]. Survival for patients that have developed brain metastases is low, 

ranging from 2 to 16 months after diagnosis.

Current treatment strategies for breast cancer brain metastases (BCBM) include surgery, 

whole brain radiation or stereotactic radiosurgery, chemotherapy, and biological therapy [3]. 

Although these methods increase survival, the prognosis for patients with metastatic breast 

Shah et al. Page 3

Pharmacol Res. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cancer, especially those with brain metastases, remains poor. The treatment of brain 

metastases is especially challenging due to the number and location of secondary tumors, 

performance status of the patient, and the biological subtype of the primary breast cancer 

[12]. Many chemotherapeutic agents commonly used to treat primary breast cancer are 

unable to penetrate the blood-brain barrier (BBB), which is a highly selective cellular barrier 

that acts as a gatekeeper for solutes to enter the brain. In addition to keeping unwanted 

physiologic substances out of the brain, it also prevents many chemotherapeutic agents from 

reaching therapeutic concentrations within the brain, leading to potential resistance [13].

The incidence of brain metastases of breast cancer is increasing. Since 1979, the frequency 

of stage IV breast cancer has increased from 10% in 1979 to 24%. [3]. Today, more brain 

metastases are detected and diagnosed due to advanced imaging techniques. Although more 

advanced and efficacious therapies are allowing patients to live longer, the increase in 

survival has also increased the probability that primary cancer will metastasize to the brain 

[3]. The increasing rate of brain metastases necessitates the development of novel treatment 

strategies, which will be highlighted in this review.

2. Physiology / Pathology

2.1 Blood-Brain Barrier

Blood vessels, which deliver blood from the heart to different organs, have different 

properties to meet the requirements of the particular organ or tissue they vascularize [14]. 

Neurons of the brain communicate by chemical and electrical signals, which give rise to 

their function. For these signals to be reliable and reproducible, the ionic concentration of 

the tissue has to be constant to maintain homeostasis [15]. The microvasculature of the brain 

plays an important role in regulating the entry of any solute into the brain parenchyma and 

undisrupted function is required to maintain homoeostasis for proper neuronal function [15]. 

This unique property of brain microvasculature is described as the blood-brain barrier 

(Figure 2A). Continuous, non-fenestrated capillaries form the BBB, in which endothelial 

cells are attached together by tight junction protein complexes including claudins, occludins, 

and intercellular adhesion molecules. These junctional components restrict the paracellular 

diffusion of solutes [16, 17]. The brain endothelial cells also restrict vesicle mediated 

transcellular movement more so than endothelial cells in the periphery [18]. Surrounded by 

pericytes on the abluminal side, these cells have contractile proteins that regulate the 

diameter of the capillary [19]. Astrocytic foot processes also cover microvasculature, 

providing a link between neurons and blood vessels. Through this cellular link, astrocytes 

mediate blood flow in accordance with neuronal activity [20, 21]. Astrocytes play an 

important role in the formation of the BBB, and factors secreted by astrocytes play an 

important role in BBB function [22]. In addition to the physical barrier properties of brain 

capillaries, a great number of chemical barriers also exist in the BBB. Efflux transporters 

including p-glycoprotein, the breast cancer resistance protein, and the family of multi-drug 

resistance proteins are expressed on brain endothelium, which limit lipophilic solutes form 

entering the brain [23, 24]. Enzymes secreted by the BBB (e.g., phosphatases) inactivate 

larger molecules including peptides and neuropeptides, preventing their passing through the 

BBB [25, 26].
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2.2 Functions of BBB

The BBB provides a stable and partially sequestered environment for neuronal activity by 

means of ion regulation. Ion concentrations are kept relatively constant despite the changes 

in plasma ion concentration due to acute or chronic changes in conditions [27–29]. The BBB 

also separates central neurotransmitters from peripheral neurotransmitters. For example, the 

peripheral neuroexcitatory amino acid glutamate is present at high concentrations in 

peripheral blood and would cause permanent neurotoxic damage if allowed to enter the brain 

[30]. Macromolecules like albumin, pro-thrombin, and plasminogen may initiate apoptosis 

and are detrimental to central nervous system, but are restricted by the BBB [31, 32]. Aside 

from restricting potentially toxic substances, the BBB also plays an important role in 

regulating nutrition to the brain. Specific transport systems are in place for essential water-

soluble nutrients [30]. Many pathways regulate angiogenesis and vasculogenesis, including 

vascular endothelial growth factor (VEGF) and its receptors (VEGFR). Notch signaling also 

plays an important role in regulating endothelial cell functions [33, 34].

While the BBB helps maintain homeostasis to support proper brain function, it also restricts 

delivery of many drugs, including chemotherapy, to the central nervous system (CNS) [35]. 

Agents such as paclitaxel and doxorubicin are significantly subjected to efflux transport 

mechanisms present at the BBB [36, 37], prompting development of analogues that can 

circumvent the BBB and enter brain tissue [38].

2.3 Blood-Tumor Barrier

Once metastatic lesions begin to develop in the brain, BBB integrity is lost and the resulting 

tumor microvasculature is often referred to as the blood-tumor-barrier (BTB) (Figure 2B) 

[13]. As metastases grow, they promote the growth of new blood vessels via angiogenesis. 

These new blood vessels lack tight junctions and proper astrocytic contact. As a result the 

BTB has increased permeability and reduced blood flow [39–41]. In addition, the angiogenic 

vessels have fenestrations, which increase permeability through paracellular pathways [42, 

43], allowing normally regulated substances to freely enter the tumor and its 

microenvironment.

However, BTB permeability is not homogenous from tumor to tumor or even within the 

metastatic lesion [44]. Significant heterogeneity exists within and between tumors based on 

findings from preclinical breast cancer brain metastases models [13, 45]. Brain metastases 

become hypoxic as they grow beyond their blood supply. To meet their oxygen and nutrition 

requirements, tumor cells secrete vascular endothelial growth factor (VEGF) to initiate the 

process of new blood vessel formation [46]. VEGF secretion is associated with increased 

turnover of endothelial cells leading to increased permeability [46]. Angiogenesis is a 

dynamic process, to which the heterogeneity of BTB permeability between tumors can be 

attributed [47, 48].

A multitude of factors exist that make treatment of BCBM difficult. These factors can be 

anatomical or tumor-related. The region around the tumor, called the tumor 

microenvironment, has physiological conditions that vary from the normal tissue physiology. 

One such difference is hypoxia. Hypoxia induces resistance to drug and radiation therapy 
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[49]. A few conventional chemotherapy drugs such as bleomycin, etoposide, and 

cyclophosphamide, require oxygen to exert their cytotoxic effects [50]. Thus, under hypoxic 

conditions, these drugs fail to have an optimal cytotoxic effect leading to tumor resistance.

2.4 Effects of the BBB and BTB on drug therapy

Although lipophilic drugs have higher tendency to cross the BBB, many drugs achieving this 

feat are subject to efflux by the efflux pumps of the BBB. The primary efflux transporters 

belong to the ATP-binding cassette transporter family. Found on the luminal side of the 

BBB, these include the P-glycoprotein (P-gp), breast cancer resistance protein, and the 

multi-drug resistance protein [51]. Amongst them, the P-gp, present on both luminal and 

abluminal side, serves to remove a wide variety of substrates including chemotherapeutic 

drugs such as paclitaxel. The breast cancer resistance protein efflux transporter is also an 

important contributing factor in chemotherapy resistance. The BBB is dynamic in nature, 

and changes are seen in its integrity in different disease states, including metastatic cancer 

[52]. As stated previously the BTB has a higher permeability to chemotherapy as compared 

to the intact BBB; however therapeutic concentrations of drug are still unable to get across 

to the desired site. To add to the challenge, the BTB is highly variable in nature, which leads 

to variable drug concentrations reaching the target [53]. Chemotherapeutic drugs paclitaxel 

and doxorubicin were found to penetrate the BTB more easily compared to BBB in a brain 

metastatic mouse model of breast cancer; however, the drug concentrations in tumor were 

sub-therapeutic and non-uniform [13, 54]. Circumventing the BBB, BTB, and the efflux 

processes remain the ultimate challenge for the effective therapy of brain metastases.

3. Subsets of Breast Cancer Brain Metastases

3.1 Hormone receptor-positive

Hormone receptor-positive (HR+) breast cancer is a subtype of breast cancer that expresses 

estrogen receptors (ER), progesterone receptors (PR), and human epidermal growth factor 

receptor 2 (HER2). These types of tumors respond differently to treatment and confer a 

variety of prognoses [55]. Although PR are typically regulated by ER, they can act 

independently at times, creating the three types of HR+ BC: ER positive/PR positive, ER 

positive/PR negative, and ER negative/PR positive [55–57]. ER+/PR+ and ER+/PR− are more 

common and generally easier to treat than ER−/PR+ due to the presence of ER, which is the 

target for most HR+ BC therapies [55]. Furthermore, ER−/PR+ BC displays greater growth 

rates and are less responsive to endocrine therapy related to metastatic BC [56, 57]. The 

estrogen and progesterone signaling pathways are very similar representations of the typical 

steroid mechanism [55]. Although there are different types of ER and PR in cells, the main 

targets of medication are the nuclear transcription factors (i.e. ERα) responsible for cellular 

growth and proliferation [55, 57]. The endogenous hormones freely diffuse through the cell 

membrane to their respective protein receptors, which dimerize upon binding their hormone 

and translocate into the nucleus to bind DNA and activate transcription [55]. The HR+ BC 

subtypes tend to be more treatable than other BC subtypes due to the significant 

effectiveness of endocrine therapy on ER+BC [55].
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3.2 Hormone Positive Therapy

There are no chemotherapeutic agents or regimens specifically approved for hormone 

receptor-positive BCBM, however many are being investigated through clinical trials [58]. 

Multiple studies have demonstrated that the luminal subtypes of breast cancer (luminal A 

and luminal B) are associated with decreased likelihood of brain metastasis [59–61]. 

However, some chemotherapeutic research is being done for the rare cases when hormone 

receptor positive breast cancer does metastasize to the brain. In 1991, Lien et al. determined 

tamoxifen and its metabolites achieved 46 times higher concentrations in brain tissue 

compared to serum levels [62]. Then in 2006, a phase I trial was conducted with 24 BCBM 

patients receiving a combination of capecitabine and temozolomide [63]. The study reported 

one complete response and three partial responses warranting the need for further research 

regarding this therapy [63]. Three years later a retrospective study examined five BCBM 

patients who were treated concurrently with capecitabine and WBRT [64]. Of the five, one 

achieved a complete response, two achieved partial responses, one had stable disease, and 

one patient was deceased [64]. Three years after the previous study, Addeo et al. conducted a 

trial with the combination of vinorelbine, temozolomide, and WBRT in 36 patients [65]. 

This study reported three complete and 16 partial responses, with a PFS and OS of eight and 

11 months, respectively [65]. After another three-year period, eribulin was compared to 

capecitabine in the treatment of HR+ MBC with metastasis to the brain. All three selected 

patients from the study who received eribulin displayed brain lesion shrinkage during the 

study and fewer total patients developed new BCBM with eribulin than with capecitabine 

[66]. This study notes that eribulin does not cross a healthy BBB but capecitabine may [66]. 

That same year, Niravath et al. concluded that concomitant treatment of capecitabine and 

WBRT followed by capecitabine and sunitinib did not extend PFS and was associated with 

significant toxicity [67]. Furthermore, in 2015, a prospective study comparing BCBM versus 

serum concentrations for capecitabine and lapatinib concluded that both drugs penetrate 

BCBM to a significant albeit variable degree [68]. The American Society of Clinical 

Oncology recommends endocrine therapy as the initial treatment for HR+ metastatic breast 

cancer, with aromatase inhibitors being the first-line [69]. Fulvestrant or human epidermal 

growth factor receptor 2 (HER2)-targeted therapies can be added to the first-line treatment if 

the patient has not had prior exposure to adjuvant endocrine therapy or has HR+ and HER2+ 

metastatic BC, but it is not recommended to combine targeted endocrine therapy and 

nonspecific chemotherapy [69]. Table 1 lists the results of clinical trials involving HR+ 

BCBM.

3.3 Novel Therapy for Hormone Positive Brain Metastases

There are only a few clinical trials specifically involving HR+ BCBM. The majority of trials 

allow for participant enrollment if patients have been previously treated with radiation, 

surgery, or previous chemotherapy at least 2 weeks to 3 months prior to enrollment, with 

image-confirmed non-progression of brain lesions, and stability of disease without 

corticosteroid or anti-epileptic use. A compilation of ongoing and initiated clinical trials for 

HR+ BCBM is provided in Table 3. An illustration of overall mechanisms is provided in 

Figure 3.
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3.3.1 CDK4/6 inhibitors—Three cyclin-dependent kinase CDK-4 and -6 (CDK 4/6) 

inhibitors are being evaluated for their effects in treating hormone-positive BCBM: 

abemaciclib, palbociclib, and ribociclib. Abemaciclib has proved to be a safe and effective 

treatment for HR+/HER2− metastatic breast cancer in three separate MONARCH trials, the 

second of which earned the drug approval from the FDA [70–73]. However, women with 

CNS metastases were excluded from all three trials, raising the question of abemaciclib’s 

efficacy for the treatment of BCBM. Subsequently, there are a few ongoing trials of 

abemaciclib that include patients with HR+ BCBM. The first is a Phase II study specifically 

looking at abemaciclib’s safety and effectiveness in participants with BM from non-small 

cell lung cancer, melanoma, and HR+ BC (NCT02308020). The monarcHER trial is a Phase 

II study evaluating the effectiveness of abemaciclib and trastuzumab with/without fulvestrant 

in the BCBM setting (NCT02675231). Lastly, there is an expanded access study for HR+/

HER2− metastatic BC to be treated by abemaciclib after disease progression on prior 

therapies (NCT02792725).

Palbociclib is another CDK4/6-specific inhibitor under investigation in combination with 

other agents for the treatment of BCBM. It is being explored as monotherapy in the Phase III 

PATINA study including HR+ BCBM patients (NCT02947685). Palbociclib is also being 

studied in combination with aromatase inhibitors such as letrozole (NCT02600923), 

selective estrogen receptor modulators such as bazedoxifene and tamoxifen (NCT02448771, 

NCT02668666), and selective estrogen receptor degraders such as fulvestrant 

(NCT02738866). Other combinations with palbociclib include everolimus and exemustane 

(NCT02871791), exemustane and leuprolide (NCT02592746), fulvestrant or tamoxifen 

(NCT02384239), and the PI3K inhibitors taselisib or pictilisib (NCT02389842). In the 

PALINA trial, the combination of palbociclib and either letrozole or fulvestrant is being 

investigated in treating stable HR+/HER2− BCBM participants that self-identify as black, 

African, or African-American [NCT02692755).

Ribociclib (LEE011) is being explored in combination with many estrogenic pathway 

inhibitors in the treatment of BCBM. A phase 3 trial is looking at ribociclib efficacy in 

combination with letrozole (NCT03096847). A Phase 1 trial is evaluating ribociclib and 

letrozole along with alepelsib (NCT01872260). Similar to the phase 3 MONALEESA-3 

trial, ribociclib is combined with fulvestrant for HR+/HER2− BCBM (NCT02422615) or 

following disease progression on prior treatment with an aromatase inhibitor or other CDK 

4/6 inhibitor (NCT02632045). In the Phase 1 TEEL study, ribociclib is combined with 

tamoxifen with and without goserelin in HR+/HER2− metastatic breast cancer patients who 

may also have brain metastases (NCT02586675).

3.3.2 PI3K inhibitors—Three phosphoinositide 3-kinase (PI3K) inhibitors are being 

evaluated in combination with anti-estrogenic agents for their efficacy in treating hormone-

positive BCBM: alpelisib, buparlisib, and dactolisib. In the SOLAR-1 Phase 3 trial, the PI3K 

inhibitor alpelisib (BYL719) is coadministered with fulvestrant for participants with 

aromatase inhibitor-refractory HR+/HER2− BCBM (NCT02437318). Similarly, alpelisib is 

being explored in combination with letrozole for participants with HR+/HER2− non-

symptomatic BCBM in a Phase I study (NCT01791478).
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In the BELLE-4 study, buparlisib was paired with paclitaxel in the treatment of 

asymptomatic HER2− metastatic BCBM. Though overall results were posted for 338 

patients, no specific results were posted for BM patients (NCT01572727). This trial was 

meant to be a Phase II study followed by a Phase III, but was ended after the second phase 

due to pre-defined futility criteria as there was no improvement in progression free survival 

[74]. Subsequently, buparlisib was paired with fulvestrant in two separate Phase 3 studies, 

BELLE-2 and BELLE-3, evaluating its effectiveness in treating asymptomatic HR+/HER2− 

BCBM after disease progression on an aromatase inhibitor (BELLE-2) or an mTOR 

inhibitor (BELLE-3) (NCT01610284, NCT01633060). In a second experimental group of 

the Phase I B-YOND study, the PI3K inhibitor buparlisib will be combined with tamoxifen 

and goserelin (NCT02058381). Although no results have been posted, buparlisib completed 

a Phase I study in combination with letrozole in which BCBM patients were included 

(NCT01248494). In the Phase II STAR Cape study, buparlisib will be combined with 

capecitabine to treat any type of BCBM, though the HER2+ subset is also receiving 

trastuzumab (NCT02000882).

In a second experimental group from a previously mentioned completed phase 1 study, 

dactolisib will be combined with letrozole for BCBM participants (NCT01248494).

3.3.3 HDAC inhibitor—In a completed phase 1 study, entinostat (SNDX-275) was 

combined with erlotinib and exemestane for patients with HR+ metastatic BC including their 

brain metastases, but no results are posted (NCT01594398). Entinostat is being combined 

with exemestane in an upcoming Phase 1 trial for patients with similar criteria 

(NCT02833155).

3.3.4 mTOR inhibitors—In two ongoing Phase 1 trials, everolimus is being explored in 

combination with letrozole and trastuzumab for HR+ BCBM patients (NCT02152943, 

NCT02269670). In a Phase 2 study, everolimus was combined with an anti-estrogen drug 

using similar criteria as Phase 1 trials (NCT02291913). In the Phase 2 LEO trial, everolimus 

is combined with letrozole and leuprorelin following disease progression with tamoxifen 

with or without a GnRH agonist (NCT02344550). In the Phase 3 MAIN-A study, everolimus 

is combined with an aromatase inhibitor as part of a maintenance regimen for HR+/HER2− 

BCBM following treatment with one line of chemotherapy (NCT02511639).

3.3.5 Estrogen pathway antagonists—In addition to the trials listed above, anastrozole 

is being combined with the CDK4/6 inhibitor palbociclib in a Phase 2 study (02942355). In 

the phase 3 FEVEX study, fulvestrant is followed by exemestane and everolimus in the 

setting of symptomatic BM (NCT02404051). In a phase 2 study, fulvestrant is being 

investigated with and without ganetespib (NCT01560416). Fulvestrant is being utilized with/

without lapatinib in a Phase 3 study (NCT00390455). Alisertib (MLN8237), an Aurora A 

kinase inhibitor, proved to be ineffective in Phase III trials, but is now being combined with 

fulvestrant in a Phase I study (NCT02219789).

GDC-0810, a selective estrogen receptor degrader, is being tested in a Phase 1 and 2 study as 

monotherapy and in combination with palbociclib and/or a luteinizing hormone-releasing 

hormone agonist (NCT01823835). Elacestrant (RAD-1901), another selective estrogen 
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receptor modulator, is in two Phase 1 studies for HR+ BCBM patients that have progressed 

on at least 1 line of hormone therapy (NCT02650817, NCT02338349). Z-Endoxifen is being 

utilized in a Phase 1 study on participants with HR+ solid tumors and those with metastatic 

disease must have had at least one prior chemotherapy treatment (NCT01273168).

3.3.6 VEGF inhibitors—Cabozantinib, an inhibitor of c-Met and VEGFR2, is being 

trialed with and without trastuzumab in BCBM patients in a Phase II study that spans across 

HR+, HER2+, and triple-negative subtypes (NCT02260531). In another Phase II study, 

cabozantinib is combined with fulvestrant (NCT01441947). Lenvatinib, a tyrosine kinase 

inhibitor against VEGFR receptors, is being combined with letrozole in a phase 1 and 2 

study on asymptomatic HR+ BCBM (NCT02562118).

3.3.7 Insulin-like growth factor receptor antibodies—Xentuzumab (BI836845), an 

insulin-like growth factor receptor 1 antibody, and abemaciclib are being investigated with 

and without hormonal therapy (NCT03099174). The insulin-like growth factor-1 inhibitor 

BMS-754807 completed a Phase II study where it was tried with and without letrozole, but 

results have not been published (NCT01225172).

3.4 Triple Negative

The absence of ER, PR, and HER2 receptors (ER−, PR−, HER2−) in breast cancer cells is 

termed triple negative or the basal subtype. Triple negative breast cancer (TNBC) is 

aggressive and tends to affect younger women. Due to the lack of targeting options, TNBC 

often has a high rate of recurrence and a worse prognosis than other breast cancer subtypes. 

[75–77] TNBC make up approximately 30% of all BCBM, with approximately 40% of 

metastatic TNBC eventually developing brain metastases. [78] As such, therapy is primarily 

with systemic cytotoxic therapy. TNBC typically have an initial response to chemotherapy 

that often relapses to cause large numbers of chemoresistant metastases. [79]

3.4.1 Systemic Chemotherapy—Chemotherapy clinical trials have typically excluded 

patients with brain metastases for a variety of reasons, including limited penetration of 

agents through the BBB and BTB, the lack of a convenient modality for tumor burden 

monitoring, and poor overall survival prognoses leading to negative outcomes for patients 

[80]. Some of the earliest published work in chemotherapy for brain tumors began in the 

1950s and 1960s, focusing on use of systemic agents such as methotrexate, thioTEPA, 

nitrosoureas, and vinca alkaloids. [81–84] Kofman et al noted the use of prednisolone to 

reduce neurological symptoms in 1957. [85] Though the chemotherapy field has advanced, a 

regimen specific for the treatment of BCBM has yet to be approved and ratified by the Food 

and Drug Administration (FDA) or national and international cancer organizations. Systemic 

cytotoxic therapy including taxanes (docetaxel, paclitaxel), anthracyclines (doxorubicin), 

platinum compounds (cisplatin), and alkylating agents (cyclophosphamide) in combination 

with other agents have shown some efficacy in small studies. [86–89] The rise of novel 

dosage forms, immunotherapy, and small molecule inhibitors has pushed the envelope of 

treatment expectations and produced trials focusing specifically on BCBM.
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3.4.2 Traditional Chemotherapy—Various combinations of cisplatin, etoposide, 

doxorubicin, 5-fluorouracil, methotrexate, vincristine, teniposide, lomustine, irinotecan, 

gemcitabine, paclitaxel, and temozolomide have been trialed in BCBM patients. Of these 

combinations, cisplatin-etoposide [90] alone or pretreated with bevacizumab [91], cisplatin-

cyclophosphamide [92], cisplatin-vinorelbine [93], and cisplatin-gemcitabine [94] showed 

significant efficacy. Full descriptions of nonspecific chemotherapeutic regimens and 

descriptions are provided in Table 3.

Based on clinical trials, cisplatin has become the backbone for treating both primary BC as 

well as BM. Cisplatin, bevacizumab, and etoposide were combined for a Phase II trial of 8 

BCBM patients in Taiwan, showing effect in 5 [95]. Cisplatin is being combined with 

veliparib, a PARP-inhibitor, for treating triple-negative and BRCA-mutated BC and 

associated BM (NCT02595905). As a single agent, temozolomide has been explored to treat 

brain metastases of breast cancer, lung cancer, and melanoma (NCT00831545) Eribulin, 

though not a targeted agent, is noted for its potential response in both triple-negative and 

HER2+ patients, and is being studied in a Phase II trial in the treatment of HER2+ BCBM 

(NCT02581839). Figure 3 illustrates the mechanism of traditional chemotherapy.

3.5 HER2+

HER2 overexpression is found in 20-25% of all breast cancer cases [96]. As a plasma 

membrane-bound receptor tyrosine kinase (RTK), HER2 upregulation increases signaling 

from the extracellular environment for promotion of cellular survival and proliferation 

through a variety of downstream effectors [97]. Significantly, the HER2+ and TNBC 

subtypes have been shown to metastasize to the brain at higher rates than other BC subtypes 

[98–101]. The enhanced extracranial systemic management of HER2+ metastatic BC with 

HER2–therapies trastuzumab and pertuzumab in addition to chemotherapy has contributed 

to the increased incidence of BM in this group [97]. One of the major pathways involved in 

the HER2–targeted therapy resistance essential to survival of HER2+ BC cells that colonize 

the brain is that of PI3K. The PI3K pathway that transmits signals of cell cycle progression 

and survival to the central circuitry of the cell is over-activated via the mechanisms of PTEN 

loss and acquisition of activating mutations in the PI3K gene in trastuzumab-resistant BC 

[102–104].

3.5.1 HER2+ Therapy—Treatment of HER2+ metastatic breast cancer with pHER2-

targeted monoclonal antibody rhuMAb was first shown to have efficacy in patients who had 

received extensive prior chemotherapy in a Phase II study conducted by Baselga et al. in 

1996 [105]. Two years later a phase 2 study showed that the combination of rhuMAb and 

cisplatin produced higher clinical response rates in metastatic BC patients than either as a 

monotherapy [106]. Just a few years later in 2001, Slamon et al. demonstrated that HER2–

targeted monoclonal antibody trastuzumab in addition to either an anthracycline and 

cyclophosphamide combination, paclitaxel, or chemotherapy compared to each alone 

produced significantly longer progression-free survival (PFS) [107]. Recently in 2015, 

Swain et al. reported the most recent analysis of the CLEOPATRA trial [77] in which 

pertuzumab, a monoclonal antibody targeting a different epitope on the extracellular portion 

of HER2 than trastuzumab, was added to trastuzumab and docetaxel for the treatment of 
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metastatic BC [108]. The addition of pertuzumab improved overall survival (OS) by 15.7 

months to 56.5 months in treatment-naive patients, supporting the use of this triplet therapy 

in the clinic [108].

The increasing incidence of HER2+ BC metastasizing to the brain necessitates an intense 

focus on the treatment of these lesions. According to the American Society of Clinical 

Oncology 2014 Clinical Practice Guidelines for the treatment of HER2+ metastatic BC and 

BM, patients should receive local therapies including surgery, whole-brain radiotherapy, and 

stereotactic radiosurgery, and systemic therapy if indicated [109]. Many groups have 

investigated the roles of systemic chemotherapy, targeted therapy, immunotherapy, or a 

combination of these for the treatment of HER2+ BCBM. The registHER study found that 

HER2+ BCBM patients treated with chemotherapy vs. no chemotherapy had greater OS 

(16.4 vs. 3.7 months) and patients treated with trastuzumab had greater OS (17.5 vs. 3.8 

months) [110]. Multiple studies have shown patients with HER2+ metastatic BC with BM 

who received trastuzumab have improved survival due to better extracranial systemic 

management of HER2+ metastatic BC. Unfortunately, trastuzumab is less effective in 

controlling HER2+ CNS metastases [111–113]. Later it was found that the combination of 

lapatinib and capecitabine extended OS for HER2+ BCBM patients compared to 

trastuzumab alone [114, 115]. Further, Phase 2 results from the LANDSCAPE study 

indicated that combining lapatinib and capecitabine for first-line treatment of HER2+ BCBM 

showed activity by providing objective CNS responses in 65.9% of patients [116]. Most 

recently, ado-trastuzumab emtansine (T-DM1), a trastuzumab molecule conjugated to a 

cytotoxic microtubule-destabilizing agent, was associated with longer OS when compared to 

the combination of lapatinib and capecitabine [117]. T-DM1 significantly improved OS vs. 

treatment of physician’s choice in HER2+ metastatic breast cancer following two or more 

HER2-targeted treatment regimens in the phase 3 open-label TH3RESA trial [118]. To 

support the efficacy of T-DM1 in the treatment of HER2+ BCBM, a handful of small trials 

and case studies have reported promising results [119–123]. Perhaps the most encouraging 

results to date are those from the ongoing phase 3b KAMILLA study of T-DM1 in HER2+ 

BCBM patients which show that T-DM1 treatment decreases the size of brain target lesions 

in 84 of 126 patients with measurable CNS lesions [124]. Table 4 lists results of completed 

HER2+ BCBM clinical trials.

3.5.2 Novel Chemotherapy for HER2+ Brain Metastases—The future of 

pharmacological intervention for the treatment of HER2+ BCBM looks bright, however 

many challenges remain. These include determining the precise BTB permeability of T-

DM1 in HER2+ BCBM and to ascertain the mechanistic contributions of the trastuzumab 

molecule and DM1 molecule in conferring the cytotoxic actions of T-DM1 in the brain 

TME. The concurrent use of radiosurgery and T-DM1 elicited a 75% response rate in a small 

group of patients with HER2+ BCBM (n=4): one complete response, one partial response, 

one stable disease, and one progression [125]. This report is supported by mechanistic data 

showing that T-DM1 provides potent and tumor selective radiosensitization [126]. The 

rational combination of T-DM1 with targeted therapies that inhibit over-activated pathways 

in HER2+ metastatic BC has also been an area of interest. A phase 1 study of T-DM1 in 

combination with alpelisib (BYL-719), an oral PI3K inhibitor, showed that the combination 
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was safe and provided significant anti-tumor activity in metastatic BC patients previously 

treated with trastuzumab and taxane therapy [127]. It will be of great interest to determine 

whether combining T-DM1 with BBB-permeable targeted therapies that inhibit over-

activated pathways in HER2+ BCBM confers greater benefit than T-DM1 alone. A phase 1b 

trial combining trastuzumab with PI3K inhibitor, buparlisib, showed an impressive disease 

control rate (75%) in HER2+ metastatic BC and supported the continuation to a phase 1b/2 

trial including BM patients (NCT01132664) [128]. While this trial was ultimately 

terminated, many of the preclinical and clinical studies referenced above support a trial 

combining T-DM1 with a PI3K inhibitor (alpelisib or BBB-permeable buparlisib) for the 

treatment of HER2+ BCBM patients.

There are varieties of planned, recruiting, and active clinical trials for the treatment of 

HER2+ BCBM patients. The combination of everolimus, trastuzumab, and vinorelbine in 

treating this cohort is currently being investigated (NCT01305941). Others are seeking to 

determine whether T-DM1 in combination with metronomic temozolomide compared to T-

DM1 alone confers secondary prevention of HER2+ BCBM following stereotactic 

radiosurgery (NCT03190967). An ongoing phase II study is looking at the efficacy of 

lapatinib for the treatment of HER2+ BCBM that have progressed following radiation 

treatment using whole brain radiotherapy (WBRT) or stereotactic radiosurgery (SRS) to the 

brain (NCT00263588). A planned phase II study by the Jules Bordet Institute will determine 

whether T-DM1 (Kadcyla) is effective in treating HER2+ BCBM (NCT03203616). To test 

whether HER2-targeted therapy resistance is a factor in the relative ineffectiveness of 

trastuzumab and pertuzumab for the treatment of HER2+ BCBM, a phase I trial will assess 

the combination in patients with new untreated asymptomatic or low symptomatic HER2+ 

BCBM (NCT02598427). A phase I study of T-DM1 in combination with sequential whole 

brain radiotherapy was competed, however no results have been posted yet (NCT02135159). 

Another phase I study is observing the effect of ARRY-380 (HER2-targeted agent that 

appears to have some brain penetration) in combination with trastuzumab for the treatment 

of HER2+ BCBM (NCT01921335). A phase I study combining lapatinib, WBRT, and 

trastuzumab reported a median PFS of 4.8 months and median OS of 18 months in HER2+ 

BCBM patients (NCT00470847). The combination of neratinib (HKI-272) and capecitabine 

is currently being used in a phase II study at Dana-Farber Cancer Institute for the treatment 

of HER2+ BCBM (NCT01494662). The phase I LAPTEM trial combined lapatinib and 

temozolomide for the treatment of progressive HER2+ BCBM, however no results have been 

posted (NCT00614978). A phase II study of local therapy (SRS and/or neurosurgery) is 

planned for the treatment of up to 5 BMs in individual HER2+ BC patients (NCT02898727). 

The phase II Lux-Breast 3 study demonstrated that afatinib alone or in combination with 

vinorelbine did not produce better outcomes than treatment of physician’s choice (TPC) 

(NCT01441596). A phase II trial sponsored by Northwestern University is recruiting 

patients with HER2+ BCBM to be treated with a combination of palbociclib and 

trastuzumab (NCT02774681). Another phase II study by the National Cancer Institute (NCI) 

is recruiting patients to explore the combination of WBRS/SRC in combination with 

lapatinib for the treatment of HER2+ BCBM (NCT01622868). Yet another phase II study is 

recruiting patients with HER2+ BCBM to test the effectiveness of cabozantinib +/− 

trastuzumab (NCT02260531). Lastly, the combination of tucatinib, capecitabine, and 
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trastuzumab will be compared to placebo, capecitabine, and trastuzumab in the phase 2 

HER2CLIMB trial (NCT02614794). Table 5 outlines in-progress and upcoming HER2+ 

trials that include BM patients. Figure 3 illustrates mechanism of HER2+ therapeutics.

4. Formulations involved in treating brain metastases

The BBB provides considerable resistance to chemotherapeutic agents. Specific 

physicochemical properties allow drugs access into the brain. General characteristics that 

promote BBB permeation have been summarized to have an optimal molecular weight 

400-600 Da, higher lipophilicity and lower participation in hydrogen bonding. In an attempt 

to increase BBB permeability, chemical modification of drug molecules by charge reduction 

and addition of lipophilic moieties is a common approach. The BBB itself can be chemically 

targeted so that it transiently allows the passage of therapy across. Compounds such as 

bradykinin [129] and its synthetic analogs [130], interleukin-2 [131], and leukotriene C4 

[132] have been used to open tight junctions as well as osmotic agents such as mannitol. 

However, this approach comes with the risk of adverse and of infections due to a 

compromised BBB. Adenosine receptor agonists using a dendrimer-based delivery have also 

been used to briefly open the BBB, reducing complications [133].

Nanotechnology has become one of the defining standards in the development of “novel” 

therapeutic agents. Use of nanometer sized carriers for targeted delivery of 

chemotherapeutic drugs to brain metastases is one of the most commonly investigated 

approaches. Polymeric nanoparticles, solid-lipid nanoparticles, micelles, and liposomes are 

some of the delivery systems that can be used to achieve drug entry through the BBB. These 

novel drug delivery systems can be used to achieve spatial (site-specific) as well as temporal 

(time-dependent) control over treatment of brain metastases of breast cancer. Active 

targeting of the drugs can be achieved by delivering them via multifunctional nanoparticles. 

These systems have tumor specific moieties on their surface, which directs the carrier to the 

tumor site, where the drug is released. The main hypothesized advantage of using 

nanocarriers for cancer therapy is the Enhanced Permeation and Retention (EPR) effect. 

This concept was first laid down by Matsumura and Maeda, when they studied the tumor 

accumulation of a polymer conjugated protein neocarzinostatin, and a series of radiolabeled 

proteins of varying sizes [134]. Macromolecules tested were found to have a greater 

accumulation and longer retention in tumor tissue, as a function of their size. The observed 

phenomenon was attributed to twin effects [135].

Tumor vasculature is leaky due to rapid angiogenesis and elevated levels of vascular 

permeability factors, facilitating the permeation of macromolecules into the tumor tissue. 

Additionally, the absence of proper lymphatic drainage supports longer retention of 

chemotherapy at the tumor site. This effect can be applicable to drug delivery systems such 

as nanoparticles, micelles, and liposomes [136]. The EPR effect is attributed to liposomal 

and nanoparticulate formulations showing tumor site accumulation. Unfortunately, adequate 

evidence does not exist for the EPR phenomenon. Only one clinical study showed 

accumulation of radiolabeled PEGylated liposomes in tumor tissues, an indication of the 

EPR effect [137].
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A mathematical model to quantify the EPR effect was developed based on pharmacokinetic 

data from the clinical trials of the FDA approved PEGylated liposomal formulation of 

doxorubicin, Doxil® [138]. This pharmacokinetic model considered the tumor as a separate 

compartment, and introduced rate constants for extravasation, as well as intravasation. The 

tumor accumulation of Doxil was significantly higher compared to that of conventional 

doxorubicin. It has been determined that drug delivery systems should preferably be 

biocompatible materials, a size of at least 40 kDa or more for the EPR effect to be applicable 

[139], with the caveat that heterogeneity within the tumor tissue, and among tumor types, 

makes the EPR effect variable. Some of the parameters responsible for variable EPR effects 

include low systolic blood pressure, hypoxia, presence of emboli, and vascular density 

[140]. This phenomenon can be erratic with micellar and liposomal drug delivery systems, 

as they need to maintain system stability until they reach the site of action. The EPR effect 

has been used to predict therapeutic outcomes, but is not a reliable marker [140].

The therapeutic effect of the drug is a downstream effect that is dependent of other factors 

such as drug release and drug uptake. To make EPR more uniform, its augmentation has 

been described in rodents as well as humans using elevation of blood pressure [141]. Due to 

its heterogeneity, the EPR effect has been unsuccessful in a clinical setting, a stark contrast 

to its efficiency in pre-clinical murine models [142]. Better characterization of the EPR 

effect is required to create uniformity and reliability in clinical scenarios. Regardless of EPR 

in humans, nanoparticle based drug delivery systems still have relevance in terms of 

reducing the toxicity of chemotherapy drugs, localized delivery and imaging of tumor 

microenvironment [142].

5. Drug delivery systems intended to target brain metastases

5.1 Liposomes

Liposomes are a drug delivery vehicle that consists of a phospholipid bilayer containing an 

inner, aqueous pocket. Hydrophilic drugs or imaging agents may be incorporated into the 

aqueous compartment, or hydrophobic ones in the lipid bilayer [143]. There are multiple 

types of liposome structures that may form when phospholipids are suspended in aqueous 

solution, including micelles and multilamellar or unilamellar vesicles. These liposomes may 

be generated via multiple methods; the most common being thin lipid film hydration. 

Freeze-thaw cycles, sonication, and extrusion through filters are additional procedures which 

may be used to control the vesicle type and size distribution [144]. Typically, liposomes used 

for clinical drug delivery are constructed from endogenous lipids such as cholesterol or their 

synthetic derivatives, have a size on the order of 100 nm diameter, and are unilamellar in 

structure [145, 146].

The use of liposomes provides an opportunity for targeted drug delivery. Targeting ligands 

such as homing peptides and whole antibodies or their fragments, may be inserted on the 

surface of the liposomes [147]. This targeting confers liposomes the ability to potentially 

cross the BBB by adsorptive-mediated transcytosis (AMT) and receptor-mediated 

transcytosis [148]. AMT is a nonspecific mechanism in which the cationized surface of 

liposomes may interact with the anionic glycocalyx, stimulating their endocytosis and 

transport to the abluminal portion of the endothelial cell where they are exocytosed into the 
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interstitial fluid of the CNS [149]. Receptor-mediated transcytosis works through a similar 

mechanism whereby receptors on the luminal surface of the endothelium, such as the 

insulin, transferrin, and LDL receptors, may bind to liposomes which have been labeled with 

ligands or antibodies for these receptors [147–152]. These processes may result in three 

different fates for the liposome: they may pass through the endothelial cell completely and 

enter the brain, they may stay inside the endothelial cell, or they may be returned to the 

lumen of the vessel. These transcytotic pathways of BBB penetrance are the predominant 

pathways for liposomes because paracellular diffusion is limited by tight junctions and 

particle size [152–158].

One common problem with nanoparticle vehicles, including liposomes, is their rapid 

clearance by the reticuloendothelial system. This problem is ameliorated in the case of 

liposomes by incorporating PEG into the lipid membrane [159]. While PEGylation provides 

more opportunities for attachment for targeting moieties and may reduce clearance, 

immunogenicity, and antigenicity, it can have negative effects, such as the increased 

accumulation in the skin, increasing the risk of developing hand-foot syndrome with some 

formulations. Non-PEGylated liposome formulations have also been developed, which 

overcome reticuloendothelial system clearance and immunogenicity [151].

Preclinical data using a mouse model of brain metastases demonstrated a PEGylated 

liposomal formulation of irinotecan (MM-398) greatly enhanced its cytotoxic effect 

compared to conventional irinotecan [160]. Liposomal formulations of anthracyclines, such 

as Doxil®, show improved efficacy and toxicity profiles in comparison to conventional 

formulations [161]. Several drug formulations including liposomes have already received 

FDA approval. These include liposomal preparations of cancer drugs such as doxorubicin 

(Doxil®), daunorubicin (DaunoXome®), irinotecan (Onivyde®), and vincristine 

(Marqibo®), which are being explored in the treatment of BCBM. Liposomal formulations 

developed for brain metastases have yet to be approved, but clinical trials using glutathione 

PEGylated liposomal doxorubicin (NCT01386580] and liposomal cytarabine 

(NCT00992602) are underway.

Doxil® is a marketed formulation of doxorubicin, delivered using PEGylated liposomes. 

The addition of PEG imparts a ‘stealth’ feature to the nanosystem, by allowing it to avoid 

premature clearance via the RES. A modified version of Doxil®, was developed with an 

additional coating of glutathione [152]. Active transport of glutathione across the BBB 

helped enhance doxorubicin accumulation at the metastatic sites, as well as prolong 

circulation time. Doxorubicin bound to polysorbate 80-coated butyl cyanoacrylate 

nanoparticles was found to cross the intact BBB and reach therapeutic levels in the rat brain 

[162]. A multifunctional theranostic nanosystem was developed for the delivery of 

doxorubicin and diagnostic agents for brain metastases [163]. The system consisted of a 

terpolymer comprised of poly(methacrylic acid) and polysorbate 80 on a starch scaffold.

5.2 Conjugating nanoparticles

Housing therapeutics inside 10 nm to 100 nm carriers allow for smaller doses to be given 

that simultaneously achieve similar or enhanced efficacy, a reduction in side-effect profile, 

prolonged dosing intervals, and enhanced accumulation compared to their conventional 
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chemotherapy counterpart [164]. The carriers are often pegylated liposomes as described 

above, but conjugation to proteins such as transferrin or albumin are also used clinically. 

Paclitaxel has been formulated as polyethoxylated albumin bound nanoparticles 

(Abraxane®) and its published phase II [165] and phase III [166] clinical trials reported 

significant anti-tumor activity compared to standard paclitaxel. It targets the tumor by 

transcytosis, mediated by the albumin receptor (gp-60). The formulation, devoid of 

Cremophor EL solvent, was found to be safer. Microemulsion derived nanoparticles of 

paclitaxel have been prepared using cetyl alcohol and polysorbate as materials [167]. When 

tested in a rat model, the drug was shown to have an increased brain uptake and toxicity 

against P-gp expressing cancer cells, indicating a possible protection of paclitaxel from P-gp 

mediated efflux. Nanoparticles can also be used to house genetic therapy. A Phase I trial of 

nanoparticles housing the Rexin-G anti-cyclin G1 construct in the treatment of recurrent or 

metastatic breast cancer was started in July 2007, but no study results are posted as of 2011 

(NCT00505271).

Conjugation of chemotherapy to other small molecules allows for targeting. Preclinical 

models of BCBM were found to have a prolonged survival when treated with 

nanoconjugates of paclitaxel and hyaluronic acid [168]. This formulation exploited passive 

diffusion across the BBB, and active tumor cell uptake due to the affinity of hyaluronic acid 

for CD44 receptors. The active targeting was aimed at circumventing the P-gp efflux that is 

observed with paclitaxel. Active targeting of mitoxantrone was achieved by targeting the 

LDL receptor related protein using angiopeptide-2 ligand conjugated on the surface of fluid 

membrane liposomes [153]. This formulation was found to have improved therapeutic 

potential in experimental brain metastasis model of breast cancer.

5.3 Pegylation

Polyethylene glycol (PEG) moiety attachment has been a frequent method employed by the 

pharmaceutical industry for nearly four decades to improve the systemic circulation of 

bioactive molecules with poor pharmacokinetic profiles [169]. PEGylation refers to the 

covalent adherence of multiple linear or branched polyethylene glycol molecules to a drug 

product [170]. PEGylation has been utilized in small molecules, liposomes, carbohydrates, 

enzymes, nucleotides and other nanotherapeutic strategies [171–173]. The most common 

molecule used during the PEGylating process is methoxy-polyethylene glycol (mPEG) 

[170]. Much like liposomes, the EPR effect can be exploited in the cancer setting. Large 

macromolecular therapies are able to passively enter tumors due to the presence of neo-

angiogenesis and degree of permeability within tumor vasculature [135].

PEG is known to enhance the pharmacokinetics of poorly circulating chemotherapeutics. In 

the case of the brain, PEG has been shown to increase the concentration of cytotoxic drugs 

reaching brain tissue [152]. PEG is also shown to enhance the bioavailability of orally 

available drugs by protecting them from catalytic degradation [174].

While PEGylation also reduces the toxicity profile of many chemotherapeutic agents [175, 

176], this is not without its own drawbacks. After undergoing IV administration of 

PEGylated nanomedicines and small molecules, clotting and clumping can occur, initiating a 

cascade of detrimental side effects, such as embolism [177]. Hypersensitivity to PEGylated 
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therapies is also an important concern. The complement activation cascade of the immune 

system is thought to play a role in immunogenicity of PEG molecule, which may lead to 

anaphylactic shock [178, 179]. Hypersensitivity can also be observed in the gastrointestinal 

tract and to dermatological preparations containing PEG [180–184].

Another side effect to PEGylating compounds is the accelerated blood clearance (ABC) 

phenomenon. In the first mention of the ABC phenomenon, PEGylated liposomes were 

cleared at an accelerated rate during subsequent injection [185]. This observed effect further 

potentiates the idea of the immune system playing an important role in reaction to PEG 

molecules. The accelerated clearance may also indicate that size plays an important role, as 

previous experiments have shown that size is an important factor when considering ABC 

[186]. Perhaps, larger PEG molecules may elicit this effect to a greater degree. ABC is a 

poorly understood mechanism and warrants further research in regard to PEG.

PEG is an attractive therapeutic approach in cancer. Limiting systemic toxicity could provide 

many benefits to cytotoxic therapeutics. Oncaspar® (pegaspargase), an L-asparaginase that 

is covalently conjugated to PEG and mPEG, is FDA-approved for the treatment of acute 

lymphoblastic leukemia [187], though no clinical trials are planned for BCBM. Another 

PEGylated therapy being clinically investigated for BCBM is etirinotecan pegol 

(NKTR-102). This novel therapy is a four-armed PEG polymer, with each arm ending with a 

hydrolysable ester linker and an irinotecan molecule [188]. In its preclinical studies, 

NKTR-102 was found to increase the duration of exposure and accumulation of SN-38 (the 

active metabolite of irinotecan) into tumors when compared to conventional irinotecan. 

[188]. NKTR-102-treatment improved survival in a triple-negative brain metastatic model 

compared to conventional chemotherapy agents [189]. In the ATTAIN trial, BCBM patients 

are being recruited to test the efficacy of NKTR-102, with a primary outcome of CNS 

disease control rate (NCT02915744).

Another PEGylated cancer therapeutic which has completed an open-label, PhaseI/IIa 

clinical trial is glutathione PEGylated liposomal doxorubicin (2B3-101). 2B3-101 showed 

favorable improvements in overall survival in its preclinical studies over both PEGylated 

liposomal doxorubicin and vehicle [152]. 2B3-101 is thought to have increased targeting 

capabilities due to the presence of the glutathione acting as a targeting ligand [152]. The 

recently completed trial, for which no results have been reported as of yet, assessed the 

safety and tolerability of 2B3-101 in patients with brain metastases of solid tumors and 

malignant glioma over 16 months as well as its combination with trastuzumab in patients 

with HER2+ BCBM.

5.4 Physical devices

Several other therapeutic approaches hypothesized for treatment of primary brain tumors can 

be extrapolated to treat metastatic tumors as well. These include use of convection-enhanced 

therapy, Giladel® (carmustine) wafers, osmotic BBB disruption, and ultrasound mediated 

BBB opening [190]. Ultrasound mediated disruption of BBB has been found to be effective 

in enhancing large molecule delivery, such as trastuzumab therapy [191]. This technique has 

been combined with using nanocarriers for drug delivery in brain metastases of breast 

cancer. Ultrasound induced hyperthermia has been employed to deliver doxorubicin 
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encapsulated in a liposomal carrier for brain metastasis of breast cancer [192]. Significantly 

higher doxorubicin was measured in tumors with the combination as compared to treatment 

with doxorubicin liposomes alone.

6. CONCLUSION

The discovery of new biological targets has led to a resurgence and expansive interest in 

chemotherapy and dosage forms. New agents inhibiting PARP, CDK 4/6, PI3K, ILGF-1, 

estrogen pathways, HDAC, and HER2+ receptors and downstream effects, are being 

combined with traditional options such as radiation and surgery to develop new strategies to 

treat BCBM. Liposomes, conjugation to polymers, and nanoparticle sizing offer a route to 

repurpose conventional chemotherapy via the enhanced permeation and retention effect, 

which leads to reduced side effects, longer therapeutic windows, and less-frequent dosing 

intervals. With the combination of improved pharmacokinetic profiles and targeted 

chemotherapy, clinical trials are including patients with BCBM more frequently, and may 

provide substantial therapeutic advances to significantly extend overall survival for this 

diagnosis.
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Abbreviations

ABC accelerated blood clearance

BBB blood-brain barrier

BCBM breast cancer brain metastases

BTB blood-tumor barrier

CNS central nervous system

CDK cyclin-dependent kinase

EPR enhanced permeation and retention

ER estrogen receptor

HDAC histone deacetylase

HER2 human epidermal growth factor receptor 2

Hormone receptor HR

mTOR mammalian target of rapamycin

OS overall survival
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P-gp permeability glycoprotein

PARP poly-ADP ribose polymerase

PEG polyethylene glycol

PFS progression-free survival

PI3K phosphatidylinositide 3-kinase

PEG polyethylene glycol

PR progesterone receptor

SRS stereotactic radiosurgery

T-DM1 trastuzumab emtansine

TNBC triple negative breast cancer

VEGF vascular endothelial growth factor

WBRT whole-brain radiation therapy
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Table 1
Results of hormone positive BCBM clinical trials

Compared to standard chemotherapy, targeted agents have a better response rate and newer agents have fewer 

side effects.

Compound Combination Outcomes Summary

Anastrozole Gefitinib In a Phase II study, 108 patients received anastrozole with gefitinib or 
placebo. The PFS at 1 year was 35% with gefitinib and 32% with placebo 
while the median duration of response was 13.8 months with gefitinib and 
18.6 months with placebo. The most common AE was fatigue (35%), rash 
(32%), diarrhea (31%), dry skin (27%), and myalgia (27%) [193].

5-Azacitidine Entinostat In a Phase II study, 27 patients with HR+ and 13 with TN MBCB received 
the combination. There was one PR in the HR+ group (ORR =4%), none in 
the TN group, and one PR in an optional continuation group (n=12) [194].

This combination was 
well-tolerated but the 
primary endpoint (ORR 
≥20%) was not achieved.

Buparlisib Fulvestrant In a Phase I trial, 31 patients received this combination to determine the 
MTD of buparlisib and assess preliminary efficacy. Of the 29 evaluable 
patients, the clinical benefit rate was 58.6%. Commone AE were fatigue 
(38.7%), elevated hepatic enzymes (35.5%), rash (29%), & diarrhea (19.4%) 
[195].

Fulvestrant In a Phase III trial, 576 patients received this combination with median PFS 
of 6.9 months vs. 5 months in placebo group. The most common grade 3–4 
AE were increased hepatic enzymes (~25%), hyperglycemia (15%), and rash 
(8%) [196].

The results show that 
PI3K inhibition combined 
with endocrine therapy is 
effective but no further 
studies are being pursued 
with this combination due 
to the toxicity. Patients’ 
disease had to progress on 
or after an AI and up to 
one prior line of 
chemotherapy.

Paclitaxel In a Phase III & III trial, 207 patients received this combination and 209 
received a placebo with paclitaxel to measure PFS in Phase 2 before 
progressing to Phase 3. The PFS with buparlisib was 8 months vs. 9.2 
months with placebo. The trial did not enter Phase 3 due to futility [74].

Cabozantinib In a Phase III discontinuation study, 45 patients received cabozantinib as a 
12-week lead-in stage followed by a randomization stage to continue 
cabozantinib or receive placebo. During the lead-in stage, ORR was 13.6% 
and disease control rate at week 12 was 46.7%. The overall median PFS was 
4.3 months and median OS was 11.4 months [197].

Active brain metastasis 
was excluded but 
cabozantinib 
demonstrated clinical 
activity in objective 
response and disease 
control.

Capecitabine In a Phase III trial, 546 patients with MBCB received capecitabine. Overall 
survival was 14.5 months and PFS was 4.2 months and 25 patients developed 
new BCBM [66].

Capecitabine appears to 
cross the BBB and have 
activity in BCBM.

Sunitinib In a Phase II trial, 12 patients with BCBM first received capecitabine with 
radiation therapy followed by capecitabine with sunitinib. The trial was 
closed due to slow accrual but median PFS was 4.7 months and OS was 10 
months [67].

There was no extension of 
PFS and this combination 
was considered 
significantly toxic.

In a prospective study, 8 BCBM patients received capecitabine 2–3 hours 
before surgical resection of BCBM tumor to assess drug levels in BCBM 
tissue. There were measurable amounts of capecitabine and its metabolites in 
BCBM tissue but BCBM to serum ratio was higher for 5-fluorouracil than 
capecitabine [68].

Capecitabine was able to 
penetrate the BBB, though 
to a variable degree.

WBRT In this retrospective study, 5 BCBM patients received capecitabine with 
WBRT. One patient had a complete response, two had partial responses and 
one had stable disease [64].

Z-Endoxifen In a Phase I trial, 38 HR+ endocrine-refractory MBCB patients received Z-
Endoxifen. Overall clinical benefit rate was 26.3% [198].
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Compound Combination Outcomes Summary

Eribulin In a Phase III trial, 544 patients with MBCB received eribulin. Overall 
survival was 15.9 months and PFS was 4.1 months and 13 patients developed 
new BCBM [66].

Eribulin does not cross a 
healthy BBB but may be 
able to do so in 
combination with 
radiation therapy.

Sixty-six patients with pre-treated MBCB received eribulin monotherapy. 
Median PFS was 5 months and OS was 8 months, 15 patients had PR, and 36 
had stable disease [199].

Eribulin monotherapy was 
deemed safe and effective 
as a result of this study.

Estradiol Exemestane In a pilot study, 13 patients received estradiol and 6 (46%) had no 
progression at 3 months and were then switched to exemestane. Of the 6 on 
exemestane, 5 had disease progression and 1 had stable disease. Median PFS 
was 4.8 months [200].

Lapatinib In a prospective study, 4 BCBM patients received 2–5 doses of lapatinib 
daily with the last being 2–3 hours before surgical resection of BCBM tumor 
to assess drug levels in BCBM tissue. The median BCBCM concentrations 
ranged from 1.0–6.5 μM [68].

Lapatinib was able to 
penetrate the BBB, though 
to a variable degree.

Paclitaxel Pictilisib In the Phase II PEGGY study, paclitaxel was combined with pictilisib or a 
placebo for 183 eligible patients. The PFS for the pictilisib group was 8.2 
months versus the placebo group which was 7.8 months [201].

Pilaralisib Letrozole In a Phase I & II dose escalation study, 21 patients were enrolled in Phase 1 
to determine the MTD and 51 patients were enrolled in Phase II which 
determined efficacy using the MTD. One patient had a PR and the rate of 
PFS at 6 months was 17%. The most common grade ≥3 AE were increased 
hepatic enzymes (5%) and rash (5%) [202].

The safety was acceptable 
but the efficacy was 
limited.

Ramucirumab Eribulin In a Phase II trial, 141 MBCB patients received a combination of 
ramucirumab and eribulin or eribulin alone. Median PFS for the combination 
was 4.4 months versus 4.1 months for eribulin alone while OS was 13.5 
months versus 11.5 months and ORR was 21% versus 28% [203].

Temozolomide Capecitabine In a Phase I trial, 24 patients received temozolomide combined with 
capecitabine. Of the 24 patients, 1 had a complete response and 3 had partial 
responses (ORR 18%) [63].

Vinorelbine Thirty-six BCBM patients received temozolomide in combination with 
vinorelbine and WBRT. There were 3 complete responses and 16 PR with an 
ORR of 52%. The median PFS and OS were 8 and 11 months, respectively 
[65].

Voxtalisib Letrozole In a Phase I & II dose escalation study, 21 patients were enrolled in Phase I 
to determine the MTD and 51 patients were enrolled in Phase II which 
determined efficacy using the MTD. No patients responded and the rate of 
PFS at 6 months was 8%. The most common grade ≥3 AE were increased 
hepatic enzymes (11%) and rash (9%) [202].

The safety was acceptable 
but the efficacy was 
limited.

AE: adverse events; MBCB: metastatic breast cancer of the brain, MTD: maximum therapeutic dose; ORR: overall response rate; OS: overall 
survival; PFS: progression-free survival.
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Table 2

In-progress and upcoming clinical trials involving hormone-positive BCBM.

Compound Trial Phase and Status Parameters Comment

Abemaciclib NCT02308020 Phase II, currently 
recruiting

Must have brain 
metastasis from 
non-small cell lung 
cancer, melanoma, 
or HR+ breast 
cancer that can be 
HER2+/−.

Leptomeningeal 
metastases were 
excluded.

Abemaciclib + Trastuzumb +/− 
Fulvestrant

NCT02675231 (monarcHER) Phase II, currently 
recruiting

Participants with 
MBCB that is HR+/
HER2+ who 
previously received 
at least 2 HER2-
targeted therapies. 
CNS metastases 
were excluded if 
untreated, 
symptomatic, or 
required steroids to 
manage symptoms.

Abemaciclib NCT02792725 Phase unknown, 
offering expanded 
access

Participants with 
HR+/HER2− 
MBCB. CNS 
metastases requiring 
immediate local 
therapy are 
excluded.

Participants’ 
MBCB had to 
progress 
following anti-
estrogen therapy.

Alisertib (MLN8237) + 
Fulvestrant

NCT02219789 Phase I, ongoing but 
not recruiting

Participants with 
HR+ MBCB. CNS 
metastases treated 
by surgery and/or 
radiotherapy and 
neurologically stable 
and off steroids >12 
weeks are eligible.

Alpelisib (BYL719) + 
Fulvestrant

NCT02437318 (SOLAR-1) Phase 3, currently 
recruiting

Participants with 
HR+/HER2− 
MBCB. CNS 
metastases were 
excluded unless they 
completed treatment 
>4 weeks prior to 
study with stable 
CNS tumor at time 
of study screening 
and not taking 
steroids or enzyme 
inducing anti-
epileptic 
medications.

Participants’ 
MBCB had to 
progress on or 
after an AI.

Alpelisib + Tamoxifen + 
Goserelin

NCT02058381 (B-YOND) Phase I, ongoing but 
not recruiting

Participants with 
HR+/HER2− 
MBCB. 
Symptomatic CNS 
metastases are 
excluded.

Alpelisib + Letrozole NCT01791478 Phase I, ongoing but 
not recruiting

Participants with 
HR+/HER2− 
MBCB. 
Symptomatic brain 
metastases are 
excluded, must be 
clinically stable >4 
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Compound Trial Phase and Status Parameters Comment

weeks post-radiation 
treatment.

Anastrozole + Palbociclib NCT02942355 Phase II, currently 
recruiting

Participants with 
HR+/HER2− 
MBCB. Brain 
metastases are 
included if no 
evidence of 
progression >4 
weeks after CNS-
directed treatment.

Combination 
being trialed as 
first-line therapy 
and maintenance 
therapy.

Apitolisib (GDC-0980) + 
Paclitaxel +/− Bevacizumab

NCT01254526 Phase I, completed Participants with 
MBCB but 
untreated or active 
CNS metastases are 
excluded.

BMS-754807 +/− Letrozole NCT01225172 Phase II, completed Participants with 
HR+/HER2− 
MBCB, where those 
with symptomatic 
BM were excluded.

Must have disease 
progression 
following non-
steroidal AI 
treatment.

Buparlisib (BKM120) + 
Tamoxifen + Goserelin

NCT02058381 (B-YOND) Phase I, ongoing but 
not recruiting

Participants with 
HR+/HER2− 
MBCB. 
Symptomatic CNS 
metastases are 
excluded.

Buparlisib + Fulvestrant NCT01610284 (BELLE-2) Phase 3, ongoing but 
not recruiting

Participants with 
HR+/HER2− 
MBCB, where those 
with symptomatic 
BM are excluded.

Participants’ 
MBCB had to 
progress on or 
after an AI.

Buparlisib + Fulvestrant NCT01633060 (BELLE-3) Phase 3, ongoing but 
not recruiting

Participants with 
HR+/HER2− 
MBCB, where those 
with symptomatic 
BM were excluded.

Participants’ 
MBCB had to 
progress on or 
after mTOR 
inhibitor.

Buparlisib + Paclitaxel NCT01572727 (BELLE-4) Phase II/3, completed Participants with 
known HR status 
and HER2−, where 
those with 
symptomatic CNS 
metastases were 
excluded.

Buparlisib + Tamoxifen NCT02404844 (PIKTAM) Phase II, ongoing but 
not recruiting

Participants with 
HR+/HER2− 
MBCB, where those 
with symptomatic 
CNS metastases 
were excluded.

Participants had 
prior treatment 
with 1–2 
antihormonal 
therapies.

Buparlisib or Dactolisib + 
Letrozole

NCT01248494 Phase I, completed Participants with 
HR+/HER2+/− 
MBCB, where those 
with symptomatic 
BM were excluded. 
History of BM must 
be clinically stable 
>4 weeks post-
radiation treatment 
and >4 weeks after 
steroid tapering.

Those with 
HER2+ must have 
previous 
treatment with 
trastuzumab.

Buparlisib + Capecitabine NCT02000882 Phase II, ongoing but 
not recruiting

Participants with 
HR+/HER2−, 
HER2+, or triple-
negative MBCB 

At least 1 CNS 
lesion ≥5mm in at 
least 1 dimension 
with prior WBRT.
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Compound Trial Phase and Status Parameters Comment

with brain 
metastases.

Cabozantinib +/− Trastuzumab NCT02260531 Phase II, currently 
recruiting

Participants must 
have CNS lesions 
but leptomeningeal 
cannot be the only 
CNS metastasis.

This study has 
three arms, 
HER2+, HR+, 
and triple-
negative.

Cabozantinib + Fulvestrant NCT01441947 Phase II, ongoing but 
not recruiting

Participants with 
HR+/HER2− 
MBCB with bone 
involvement. 
Untreated, 
symptomatic brain 
metastases requiring 
current treatment 
with steroids and 
anti-convulsants are 
excluded.

Participants must 
have received ≥1 
prior line of 
hormonal therapy 
or chemotherapy.

Capecitabine + Pegylated 
Interferon Alfa-2a

NCT00227656 Phase II, terminated 
(study slow to accrue)

Participants must 
have CNS 
metastases that has 
not progressed on 
prior treatment with 
capecitabine, 
fluorouracil, 
interferon alfa, or 
interferon beta.

HR status not 
specified. 
Participants must 
have stable 
systemic cancer.

Capecitabine + WBRT NCT00977379 (XERAD) PhaseII, terminated 
(insufficient number of 
participants enrolled)

Participants with 
known HR/HER2 
status and newly 
diagnosed CNS 
metastases with at 
least one lesion ≥1 
cm or two lesions 
0.5–1 cm.

Leptomeningeal 
disease is 
excluded, as is 
prior treatment for 
brain metastases.

Capecitabine + Sunitinib + 
WBRT

NCT00570908 Phase II, terminated 
(poor accrual)

Participants must 
have measurable 
CNS metastases 
without prior 
WBRT.

HR/HER2 status 
not specified.

Capecitabine + AI (Anastrozole 
or Letrozole or Exemestane)

NCT02767661 (MECCA) Phase 3, not yet open 
for recruitment

Participants must 
have HR+/HER2− 
MBCB. Known 
uncontrolled or 
symptomatic CNS 
metastases are 
excluded.

Dactolisib (BEZ235) NCT01288092 Phase II, withdrawn 
prior to enrollment

Participants must 
have HR+/HER2− 
MBCB, without 
symptomatic CNS 
metastases.

Elacestrant (RAD-1901) NCT02650817 Phase I, ongoing but 
not recruiting

Participants have 
HR+/HER2− 
MBCB but 
symptomatic CNS 
metastases are 
excluded.

Tumor 
progression after 
≥6 months of at 
least 1 line of 
hormonal therapy.

Elacestrant NCT02338349 Phase I, ongoing but 
not recruiting

Participants have 
HR+/HER2− 
MBCB but 
untreated or 
symptomatic CNS 
metastases are 
excluded.
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Compound Trial Phase and Status Parameters Comment

Z-Endoxifen HCl NCT01273168 Phase I, currently 
recruiting

Participants must 
have HR+ solid 
tumor of any type 
and those with brain 
metastases are 
excluded unless 
remained stable ≥3 
months after 
treatment, without 
steroids or anti-
seizure medications.

Participants with 
MBCB must have 
had at least 1 
prior 
chemotherapy 
regimen.

Entinostat (SNDX-275) + 
Exemestane

NCT02833155 Phase I, currently 
recruiting

HR+ MBCB in 
Chinese women and 
CNS metastases are 
included if no 
steroids and stable 
disease ≥1 month.

Disease 
progression post-
treatment with a 
non-steroidal AI.

Entinostat + AI NCT00828854 Phase II, completed Participants with 
HR+ MBCB where 
known active brain 
metastasis is 
excluded.

Progressive 
disease following 
>3 months 
treatment with 3rd 

generation AI.

Entinostat + Erlotinib + 
Exemestane

NCT01594398 Phase I, completed Participants with 
HR+ MBCB or 
NSCLC and brain 
metastasis is 
included if certain 
criteria are met.

Entinostat + Nivolumab + 
Ipilimumab

NCT02453620 Phase I, currently 
recruiting

Participants must 
have HER2− MBCB 
that can be HR+ and 
brain metastasis is 
included if stable for 
>4 weeks and off 
steroids >2 weeks.

At least 1 prior 
chemotherapy 
regimen and 2 
lines of hormone 
therapy.

Eribulin Mesylate +/− 
Pembrolizumab

NCT03051659 Phase II, currently 
recruiting

Participants with 
HR+ MBCB and 
brain metastases are 
eligible if they 
completed treatment 
≥4 weeks prior to 
registration and 
discontinue steroids 
≥2 weeks before 
beginning study and 
remained symptom-
free.

Participants must 
have received at 
least 2 lines of 
hormonal therapy 
and can receive 
up to 2 lines of 
chemotherapy.

Erlotinib (BMS-690514) + 
Letrozole

NCT01068704 Phase II, completed Participants had HR
+ MBCB but 
symptomatic BM 
were excluded.

HER2+/− were 
accepted and 
participants had 
disease 
progression 
despite treatment 
with tamoxifen, 
anastrozole, or 
exemestane.

Esterified Estrogens NCT00131924 Phase II, terminated 
(poor accrual)

Participants must 
have HR+ MBCB 
where BM are 
included provided 
participants received 
previous treatment 
for BM, are stable, 
and BM are not the 
only site of 
metastasis.

Participants’ 
disease must have 
progressed 
following 
treatment with at 
least 2 prior 
endocrine 
therapies.
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Compound Trial Phase and Status Parameters Comment

Estradiol + Exemestane NCT01385280 Pilot study, completed Participants must 
have HR+ MBCB 
and treated CNS 
metastases are 
included.

Participants must 
have had prior AI 
therapy.

Everolimus + Letrozole + 
Trastuzumab

NCT02152943 Phase I, currently 
recruiting

Participants must 
have HR+/HER2+ 
MBCB where CNS 
metastases are 
included if 
previously treated 
and stable for 3 
weeks and off 
steroids and 
anticonvulsants.

Leptomeningeal 
disease is 
excluded.

Everolimus + Anti-Estrogen NCT02291913 Phase II, ongoing but 
not recruiting

Participants have 
HR+/HER2− 
MBCB where BM 
are eligible if treated 
≥2 weeks before 
study and not 
currently receiving 
enzyme inducing 
anti-epileptic drugs 
or steroids.

Everolimus NCT02387099 (Desiree) Phase II, currently 
recruiting

Participants with 
HR+/HER2− 
MBCB who do not 
have symptomatic 
visceral metastases. 
Brain metastases are 
included if 
previously treated 
by surgery and/or 
radiotherapy.

Everolimus + AI NCT02511639 (MAIN-A) Phase 3, currently 
recruiting

Participants have 
HR+/HER2− 
MBCB where 
symptomatic CNS 
metastases are 
excluded.

Participants must 
have received 1 
line of prior 
chemotherapy.

Everolimus + Hormone 
Therapy

NCT02269670 Phase II, ongoing but 
not recruiting

Participants have 
HR+/HER2− 
MBCB where 
uncontrolled CNS 
metastases are 
excluded.

Participants 
demonstrate 
disease 
progression on 
everolimus and 
exemestane 
combination.

Everolimus + Letrozole + 
Leuprorelin

NCT02344550 (LEO) Phase II, currently 
recruiting

Participants have 
HR+/HER2− 
MBCB, where 
symptomatic BM 
are excluded.

Must have 
progressive 
disease after 
treatment with 
tamoxifen +/− 
GnRH agonist.

Exemestane + Sunitinib NCT00905021 (EXTENT) Phase I & II, 
terminated (sponsor 
withdrew support)

Participants with 
HR+ MBCB and 
CNS metastases is 
allowed if stable for 
>3 months.

HER2+ is allowed 
but must have 
failed treatment 
with trastuzumab.

Fulvestrant + Everolimus + 
Exemestane

NCT02404051 (FEVEX) Phase 3, currently 
recruiting

Participants have 
HR+/HER2− 
MBCB, where 
symptomatic CNS 
metastases are 
excluded.
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Compound Trial Phase and Status Parameters Comment

Fulvestrant +/− Ganetespib NCT01560416 Phase II, ongoing but 
not recruiting

Participants have 
HR+/HER2− 
MBCB, where 
untreated or 
progressive brain 
metastases are 
excluded.

Fulvestrant + MK-0646 + 
Dasatinib

NCT00903006 Phase I & II, 
terminated (low 
accrual)

Participants have 
HR+/HER2− 
MBCB, where 
active or untreated 
BM were excluded.

Fulvestrant +/− Lapatinib NCT00390455 Phase 3, ongoing but 
not recruiting

Participants have 
HR+/HER2+/− 
MBCB and 
asymptomatic CNS 
metastases or BM 
that is >3 months 
past treatment are 
eligible.

Participants must 
have received 
prior treatment 
with 1–2 
endocrine 
therapies and 
third-generation 
AI.

G1T38 + Fulvestrant NCT02983071 Phase I & II, currently 
recruiting

Participants have 
HR+/HER2− 
MBCB, where 
active, uncontrolled, 
symptomatic CNS 
metastases are 
excluded.

Participants’ 
disease must have 
progressed on or 
after treatment 
with an AI or 
tamoxifen.

GDC-0077 + Fulvestrant + 
Letrozole + Palbociclib

NCT03006172 Phase I, currently 
recruiting

Participants have 
HR+/HER2− 
MBCB, where 
active, untreated 
CNS metastases are 
excluded.

Participants have 
PIK3CA 
mutation.

GDC-0810 + Letrozole and/or 
LHRH Agonist

NCT01823835 Phase I & II, ongoing 
but not recruiting

Participants have 
HR+/HER2− 
MBCB, where 
untreated, 
symptomatic CNS 
metastases are 
excluded.

Participants’ 
disease must have 
progressed after 
≥6 months of 
hormonal therapy.

IMP321 + Paclitaxel NCT02614833 (AIPAC) Phase II, currently 
recruiting

Participants have 
HR+ MBCB but 
symptomatic CNS 
metastases are 
excluded.

Irinotecan + Temozolomide NCT00617539 Phase II, completed MBCB with BM 
that has progressed 
following treatment.

Hormone receptor 
status not 
specified.

Lapatinib NCT00759642 Phase II, ongoing but 
not recruiting

Participants have 
HR+/HER2− 
MBCB, where CNS 
metastases are 
eligible if >3 
months from 
treatment and 
asymptomatic.

Must have disease 
progression on or 
after treatment 
with AI and/or 
fulvestrant.

Lenvatinib + Letrozole NCT02562118 Phase I & II, currently 
recruiting

Participants have 
HR+ BC but 
symptomatic BM 
are excluded.

Letrozole + Celecoxib NCT00101062 Phase II, terminated 
(study drug 
unavailable)

Participants had HR
+ MBCB, where 
BM were included if 
controlled by 
radiotherapy or 
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Compound Trial Phase and Status Parameters Comment

surgical resection ≥6 
months before study.

MK-2206 + Exemestane + 
Goserelin

NCT01240928 Phase I, withdrawn 
(funding not available)

Participants had HR
+ BC and CNS 
metastases were 
included if stable for 
>1 month prior to 
study.

MK-2206 + Exemestane + 
Goserelin

NCT01240941 Phase II, withdrawn 
(funding not available)

Participants had HR
+ BC and CNS 
metastases were 
included if stable for 
>1 month prior to 
study.

Paclitaxel + Pictilisib NCT01740336 (PEGGY) Phase II, completed Participants had HR
+/HER2− MBCB 
but untreated or 
active CNS 
metastases were 
excluded.

Palbociclib + Anti-HER2 
Therapy + Endocrine Therapy

NCT02947685 (PATINA) Phase 3, currently 
recruiting

Participants have 
HR+/HER2+ 
MBCB and CNS 
metastases are 
eligible if no 
progression after 
CNS directed 
therapy and >3 
weeks between 
radiotherapy and 
study start.

Palbociclib + Tamoxifen NCT02668666 Phase II, currently 
recruiting

Participants have 
HR+ MBCB and 
BM are eligible after 
tumors have been 
treated with 
resection and/or 
radiotherapy and 
neurologically stable 
>1 month off 
steroids.

Palbociclib + Letrozole or 
Fulvestrant

NCT02692755 (PALINA) Phase II & 3, currently 
recruiting

Participants have 
HR+/HER2− 
MBCB, where 
uncontrolled or 
symptomatic BM 
are excluded.

Participants must 
self-identify as 
black, African, or 
African-
American.

Palbociclib + Everolimus + 
Exemestane

NCT02871791 Phase I & II, currently 
recruiting

Participants have 
HR+/HER2− 
MBCB and CNS 
metastases are 
included if treated 
by surgery or 
radiotherapy with 
>3 months of stable 
disease, not 
requiring steroids or 
enzyme inducing 
anti-epileptic 
medications.

Palbociclib + Fulvestrant NCT01942135 (PALOMA-3) Phase 3, ongoing but 
not recruiting

Participants have 
HR+/HER2− 
MBCB, where 
uncontrolled or 
symptomatic CNS 
metastases are 
excluded.
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Compound Trial Phase and Status Parameters Comment

Palbociclib + Letrozole NCT02600923 Phase 3, currently 
recruiting

Participants have 
HR+/HER2− 
MBCB and treated, 
clinically stable BM 
are permitted.

Palbociclib + Fulvestrant NCT02738866 Phase II, currently 
recruiting

Participants have 
HR+/HER2− 
MBCB and CNS 
metastases are 
allowed if treated 
and stable.

Disease 
progression on 
prior treatment 
with palbociclib + 
AI.

Palbociclib + Exemestane + 
Goserelin

NCT02917005 (FATIMA) Phase II, not yet open 
for recruitment

Participants have 
HR+/HER2− 
MBCB, where 
uncontrolled CNS 
metastases are 
excluded.

Women must be 
premenopausal.

Palbociclib + AI or Fulvestrant NCT02894398 (INGE-B) Phase II, currently 
recruiting

Participants have 
HR+/HER2− 
MBCB, where 
known non-
irradiated CNS 
metastases are 
excluded.

Palbociclib + Bazedoxifene NCT02448771 Phase I & II, currently 
recruiting

Participants have 
HR+/HER2− 
MBCB and treated 
BM not requiring 
steroids are eligible.

Palbociclib + Fulvestrant or 
Tamoxifen

NCT02384239 Phase II, currently 
recruiting

Participants have 
HR+/HER2− 
MBCB and CNS 
metastases are 
eligible if 
definitively treated 
by radiotherapy or 
surgery, are stable, 
and off steroids and 
anticonvulsants >4 
weeks before 
beginning study.

Palbociclib + Exemestane + 
Leuprolide Acetate

NCT02592746 Phase II, currently 
recruiting

Participants have 
HR+/HER2− 
MBCB and treated 
and stable BM are 
included.

Participant must 
be 
premenopausal.

Palbociclib + Taselisib or 
Pictilisib

NCT02389842 (PIPA) Phase I, status 
unknown

Participants have 
HR+ MBCB that 
can be HER2+/− 
and untreated or 
active CNS 
metastases are 
excluded.

HR+ must have 
progressed on ≥1 
prior endocrine 
therapy; PIK3CA 
must have 
progressed on ≥1 
prior endocrine or 
chemotherapy.

Pembrolizumab (MK-3475) + 
Doxorubicin or Anti-Estrogen 
Therapy

NCT02648477 Phase II, currently 
recruiting

Participants have 
HR+/HER2− or 
triple-negative 
MBCB and CNS 
metastases may 
participate if stable 
and not using 
steroids >7 days 
before trial.

Pictilisib (GDC-0941) or 
GDC-0980 + Fulvestrant

NCT01437566 Phase II, completed Participants have 
HR+/HER2− 
MBCB where 

Disease 
progression on or 
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Compound Trial Phase and Status Parameters Comment

untreated or active 
CNS metastases are 
excluded.

after treatment 
with an AI.

Ribociclib (LEE011) + 
Letrozole

NCT03096847 Phase 3, currently 
recruiting

Participants have 
HR+/HER2− 
MBCB and CNS 
metastases are 
eligible if prior 
therapy is completed 
≥28 days before 
study, CNS tumors 
are stable, and 
patient is not using 
steroids or enzyme 
inducing anti-
epileptic 
medications.

Ribociclib + Fulvestrant NCT02422615 (MONALEESA-3) Phase 3, ongoing but 
not recruiting

Participants have 
HR+/HER2− 
MBCB and CNS 
metastases are 
eligible if prior 
treatment completed 
>4 weeks before 
study, stable, and 
not taking steroids 
or enzyme inducing 
anti-epileptic 
medications.

Ribociclib + PDR001 +/− 
Fulvestrant

NCT03294694 Phase I, not yet open 
for recruitment

Participants have 
HR+/HER2− 
MBCB and CNS 
metastases are 
included if prior 
treatment completed 
>4 weeks before 
study, stable, and 
not using steroids or 
enzyme inducing 
anti-epileptic 
medications.

Study includes 
ovarian cancer.

Ribociclib + Fulvestrant NCT02632045 Phase II, currently 
recruiting

Participants have 
HR+/HER2− 
MBCB and CNS 
metastases are 
eligible if definitive 
treatment and 
steroids are 
completed >4 weeks 
before study.

Participants must 
have disease 
progression on 
prior AI or CDK 
4/6 inhibitor.

Ribociclib + Letrozole + 
Alpelisib

NCT01872260 Phase I, currently 
recruiting

Participants have 
HR+/HER2− 
MBCB, where 
active CNS 
metastases are 
excluded.

Ribociclib + Tamoxifen NCT02586675 (TEEL Study) Phase I, ongoing but 
not recruiting

Participants have 
HR+/HER2− 
MBCB but CNS 
metastases are 
excluded unless 
specific criteria are 
met.

Seribantumab + Fulvestrant NCT03241810 (SHERBOC) Phase II, currently 
recruiting

Participants have 
HR+/HER2− 
MBCB, where 
uncontrolled CNS 
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Compound Trial Phase and Status Parameters Comment

metastases are 
excluded.

Sonidegib (LDE225) + 
Buparlisib (BKM120)

NCT01576666 Phase I, completed Participants have 
MBCB and CNS 
metastases are 
eligible if 
controlled, 
asymptomatic, and 
stable.

Study includes 
pancreatic 
adenocarcinoma, 
colorectal cancer, 
and glioblastoma 
multiforme.

Sorafenib (BAY 43-9006) + 
Capecitabine

NCT01234337 Phase 3, ongoing but 
not recruiting

Participants with 
HER2− MBCB but 
active brain 
metastasis is 
excluded.

Participants must 
have received up 
to 2 prior 
chemotherapy 
regimens one of 
which must 
include an 
anthracycline.

Taselisib (GDC-0032) +/− 
Fulvestrant or Letrozole

NCT01296555 Phase I & II, currently 
recruiting

Participants have 
HR+/HER2− 
MBCB, where 
active, untreated 
CNS metastases are 
excluded.

Study includes 
Non-Hodgkin’s 
Lymphoma.

Taselisib + Fulvestrant NCT02340221 (SANDPIPER) Phase 3, currently 
recruiting

Participants must 
have HR+/HER2− 
MBCB, where 
active, untreated 
CNS metastases are 
excluded.

Temozolomide + WBRT NCT02133677 Phase II, status 
unknown

Participants must 
have BM from BC 
or lung cancer.

Hormone status 
not specified.

Temozolomide + Radiation NCT00875355 Phase II, status 
unknown

Participants must 
have BM from BC.

Hormone status 
not specified.

Tucatinib + Palbociclib + 
Letrozole

NCT03054363 Phase I & II, not yet 
open for recruitment

Participants have 
HR+/HER2+ 
MBCB and CNS 
metastases are 
included if 
asymptomatic or 
previously treated 
and off steroids for 
>4 weeks before 
study.

Voxtalisib (XL765; 
SAR245409) or Pilaralisib 
(XL147; SAR245408) + 
Letrozole

NCT01082068 Phase I & II, 
completed

Participants have 
HR+/HER2− 
MBCB, where 
untreated, 
symptomatic, or 
progressive BM are 
excluded.

Disease is 
refractory to 
nonsteroidal AI.

Xentuzumab (BI 836845) + 
Abemaciclib +/− Hormonal 
Therapy

NCT03099174 Phase I, currently 
recruiting

Participants have 
HR+/HER2− 
MBCB and CNS 
metastases are 
eligible if treated 
and stable, off 
steroids and 
anticonvulsants >4 
weeks.

Study includes 1 
cohort of non-
small cell lung 
cancer.

MBCB: metastatic breast cancer.
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Table 3

Systemic chemotherapy trials in breast cancer brain metastases.

Compound Combination Outcomes Summary

Cisplatin Bevacizumab In a Phase II trial of 35 patients pre-treated with bevacizumab and 
then given cisplatin and etoposide, 25 patients (77%) achieved a 
response rate. [91]

Etoposide In a Phase II trial of 4 BCBM patients, 1 achieved a PR. [204]
In 56 patients treated with the combination, 7 achieved CR, 14 PR, 
12 did not change, 16 progressed, and 8 were not assessed, for an 
overall 38% response rate. [90]

Though it has poor 
CSF penetration, 
cisplatin can 
penetrate the blood-
tumor barrier.

Doxorubicin Cisplatin, doxorubicin, methotrexate and 5-fluorouracil caused 
major toxicity with no improvement in 4 BCBM patients. [205]

Cyclophosphamide 6 patients achieved a PR in a Phase II trial of 15 patients with 
BCBM. [92]

Gemcitabine In a trial of 15 BCBM, 4 of 6 were triple negative and achieved a 
response. [94]

Vinorelbine In combination with a 30 Gy radiation schedule, a Phase II trial of 
25 patients with cisplatin and vinorelbine resulted in 3 CR and 16 
PR (76%). [93]

Cyclophosphamide Cisplatin See cisplatin.

Methotrexate, 5-
fluorouracil, vincristine, 
doxorubicin

Cyclophosphamide, methotrexate, and 5-fluorouracil were given to 
20 patients with 13 attaining a positive response. [206]
In 56 patients treated with cyclophosphamide, methotrexate, 5-
fluorouracil and doxorobucin, PFS lengthened but no significant 
intracranial metastases-free interval. [207]
In 27 of 52 patients (52%) with BCBM, response was achieved 
with cyclophosphamide, 5-fluorouracil and prednisone, 19 of 35 
patients (54%) achieved response with cyclophosphamide, 5-
fluorouracil, prednisone, methotrexate and vincristine, and 1 of 6 
(17%) achieved response with cyclophosphamide and doxorubicin. 
[208]

Doxorubicin Cisplatin See cisplatin.

Cyclophosphamide See cyclophosphamide.

Topotecan, ifosfamide 5 BCBM patients treated with the triple combination, with 
progressive disease occurring 2 of 5. [209]

Teniposide, lomustine 8 patients were treated with this triple therapy, 5 showed 
improvement and symptom regression. [210]

Eribulin In one patient, eribulin was initiated as fifth-line therapy. Response 
was seen after one month, but ultimately the patient succumbed. 
[211]
In three heavily treated patients, eribulin was found to be 
beneficial. [66]
With concurrent whole-brain radiation therapy, eribulin regressed 
two brain metastases. [212]

5-fluorouracil Cisplatin See cisplatin. Though it can cross 
the blood-brain and 
blood-tumor barrier, 
5-fluorouracil is not 
used as monotherapy, 
always as a 
combination agent. 
[213]

Cyclophosphamide See cyclophosphamide.

Gemcitabine Cisplatin See cisplatin.

Vinorelbine In a Phase II trial of 3 evaluated BCBM patients, 1 had PR while 2 
remained stable. 2 patients had leptomeningeal involvement. [214]
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Compound Combination Outcomes Summary

Irinotecan Temozolomide The combination was studied in NCT00617539, but results are not 
posted or published.

Irinotecan is not 
typically used in 
brain metastases 
treatment, but may 
find utility in 
combination with 
newer treatment 
modalities.

Iniparib Of 34 evaluatable patients in a Phase II trial, 4 (12%) achieved a 
CR, 13 (41%) achieved stable disease state, for a total of 27% 
achieving a clinical benefit. [215]

Paclitaxel Of 152 metastatic breast cancer patients, 78 (51%) responded to 
paclitaxel while 6 (4%) developed progression. [216]

The brain is 
considered a 
“sanctuary site” from 
paclitaxel, due to its 
low brain and CSF 
concentrations.

Bevacizumab Of 4 patients treated with the combination, 1 achieved CR and 3 
achieved PR. No patients showed progression. [217]
2 patients achieved PR, 2 achieved stable disease, and 1 progressed 
when given combination therapy. [218]

Temozolomide

Vinorelbine 6 patients achieved a minor response, which unfortunately 
progressed. [219]
In a Phase II trial of 11 BCBM patients, only 1 achieved a minor 
response, while others were grouped into stable or progressing 
disease. [220]

Veliparib In a 25 patient Phase I trial, in combination with whole brain 
radiation therapy, median survival was 7.7 months compared to a 
predicted 4.9 months. [221]
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Table 4
Completed clinical trials of HER2+ BCBM

Patients receiving HER2-targeted therapy have improvements in overall and progression-free survival. Despite 

poor intracranial penetration, trastuzumab alone or with emtansine have good outcomes compared to 

chemotherapy or placebo.

Compound Combination Outcomes Summary

Trastuzumab The registHER study found that HER2+ BCBM patients who received 
trastuzumab following CNS disease diagnosis (n=258) had a median 
survival of 17.5 months as opposed to patients who did not receive 
trastuzumab (n=119) having a median survival of 3.7 months.

Lapatinib Capcitabine HER2+ BCBM patients treated with LC combination (n=30) had a median 
OS of 27.9 months compared to patients treated with trastuzumab beyond 
brain progression only (n=23) having a median OS of 16.7 months.
In the single-group phase 2 LANDSCAPE study, 29 of 44 HER2+ BCBM 
patients (65.9%) had an objective CNS response to LC combination 
treatment.
HER2+ BCBM patients treated with LC combination (n=46) had a median 
survival of 19.1 months compared to patients treated with trastuzumab-
based therapy (n=65) having a median OS of 12 months.

Trastuzumab emtansine (T-DM1) The phase 3 EMILIA study found that HER2+ BCBM patients treated with 
T-DM1 (n=45) had a median OS of 26.8 months compared to patients who 
received LC combination treatment (n=50) having a median OS of 12.9 
months.
T-DM1 was shown to significantly decrease index lesion size (M1: from 
1.6 cm to 0.8 cm) in one HER2+ BCBM patient.
Of 10 HER2+ BCBM patients treated with T-DM1, 3 had partial remission, 
2 had stable disease lasting for ≥ 6 months, 2 had stable disease for < 6 
months, and 3 progressed.
All 4 HER2+ BCBM patients treated with T-DM1 had 30% or greater 
reduction in tumor size, and 1 was maintained on therapy for 16 months.
T-DM1 was administered to 39 HER2+ BCBM patients; median PFS was 
6.1 months and one-year OS rate was 58%.
The phase 3 TH3RESA trial found that HER2+ BCBM patients who 
received T-DM1 (n=404) had a median OS of 22.7 months compared to 
patients who received treatment of physician’s choice (TPC) (n=198) 
having a median OS of 15.8 months.

OS: overall survival; PFS: progression-free survival.
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Table 5
Upcoming clinical trials for HER2+ BCBM

The success of lapatinib, capecitabine, trastuzumab and its conjugation to emtansine, have led these agents to 

be backbone therapy in the majority of newly initiated or in-progress trials for patients with HER2+ BCBM.

Compound Trial Phase and Status Parameters Comment

T-DM1 + Sequential Brain RT NCT02135159 1, complete. No previous WBRT or 
leptomeningeal disease.

No study results posted.

Lapatinib + WBRT + Herceptin NCT00470847 1, complete. No previous WBRT or other 
concurrent hormonal or 
chemotherapy.

Median OS of 19 
months.

Lapatinib + Temozolomide NCT00614978 1, complete. Steroids and previous trastuzumab 
allowed.

No study results posted.

ARRY-380 + Trastuzumab NCT01921335 1, active, not 
recruiting.

No radiation or chemotherapy 
>14 days before enrollment, no 
seizure history.

No study results posted.

Pertuzumab + Trastuzumab NCT02598427 1, Terminated in Feb 
2018.

No seizures or WBRT, no seizure 
or neuropsychiatric history.

Intrathecal 
administration of 
antibodies.

T-DM1 + Metronomic 
Temozolomide

NCT03190967 1 and 2, recruiting No WBRT or symptomatic brain 
metastases or cardiac issues.

For secondary 
prevention of HER2+ 

BCBM following SRS

Afatinib + Vinorelbine NCT01441596 2, complete Previous HER2+ tyrosine kinase 
use other than lapatinib not 
allowed, chemotherapy 
discontinued at least 14 days prior 
to enrollment.

No OS benefit vs. TPC

Everolimus + Trastuzumab + 
Vinorelbine

NCT01305941 2, active, not 
recruiting

No prior mTOR inhibitors or 
cardiac history, stable on 
dexamethasone, >4 weeks after 
cranial surgery.

65% of 26 patients had 
stable disease with 
about 4 months to 
intracranial 
progression.

Lapatinib NCT00263588 2, active, not 
recruiting

No neuropsychiatric or cerebral 
vascular diseases.

No study results posted.

Surgical Resection + Neratinib NCT01494662 2, active, not 
recruiting

2 week washout of prior therapy 
and radiation, no concurrent 
hormonal therapy, no antiepileptic 
drugs.

49% had volumetric 
reduction, 24% had 
overall response rates 
with a 6 month 
progression-free 
survival and a 13.5 
month median overall 
survival.

Palbocicib + Trastuzumab NCT02774681 2, recruiting Stable corticosteroid use, with no 
HER2+ therapy other than 
trastuzumab allowed.

No study results posted.

Lapatinib Ditosylate + SR or 
WBRT

NCT01622868 2, recruiting No prior radiation and concurrent 
lapatinib therapy, cardiovascular 
issues.

No study results posted.

Tucatinib + Capecitabine + 
Trastuzumab

NCT02614794 2, recruiting No lapatinib within 12 months, no 
neratinib or HER2+ agent or 
capecitabine prior.

No study results posted.

Cabozantinib + Trastuzumab NCT02260531 2, recruiting Previous c-Met use, seizure 
history, prior lapatinib use within 
1 week of starting.

No study results posted.

T-DM1 (Kadcyla) NCT03203616 2, not yet recruiting. Must have >1 metastases, cannot 
have hormonal therapy within 14 
days or trastuzumab within 21 
days of enrollment.
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SR: stereotactic radiation; TPC: treatment of physician choice; WBRT: whole-brain radiation therapy.
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