
Clinical and Translational Science Institute Centers 

2-1-2017 

Endoscopic Management of Cavernous Carotid Surgical Endoscopic Management of Cavernous Carotid Surgical 

Complications: Evaluation of a Simulated Perfusion Model Complications: Evaluation of a Simulated Perfusion Model 

Jeremy N. Ciporen 
Oregon Health & Science University 

Brandon Lucke-Wold 
West Virginia University 

Gustavo Mendez 
Rush University 

William E. Cameron 
Oregon Health & Science University 

Shirley McCartney 
Oregon Health & Science University 

Follow this and additional works at: https://researchrepository.wvu.edu/ctsi 

 Part of the Medicine and Health Sciences Commons 

Digital Commons Citation Digital Commons Citation 
Ciporen, Jeremy N.; Lucke-Wold, Brandon; Mendez, Gustavo; Cameron, William E.; and McCartney, Shirley, 
"Endoscopic Management of Cavernous Carotid Surgical Complications: Evaluation of a Simulated 
Perfusion Model" (2017). Clinical and Translational Science Institute. 592. 
https://researchrepository.wvu.edu/ctsi/592 

This Article is brought to you for free and open access by the Centers at The Research Repository @ WVU. It has 
been accepted for inclusion in Clinical and Translational Science Institute by an authorized administrator of The 
Research Repository @ WVU. For more information, please contact ian.harmon@mail.wvu.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The Research Repository @ WVU (West Virginia University)

https://core.ac.uk/display/288225769?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/ctsi
https://researchrepository.wvu.edu/med_centers
https://researchrepository.wvu.edu/ctsi?utm_source=researchrepository.wvu.edu%2Fctsi%2F592&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/648?utm_source=researchrepository.wvu.edu%2Fctsi%2F592&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/ctsi/592?utm_source=researchrepository.wvu.edu%2Fctsi%2F592&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ian.harmon@mail.wvu.edu


Endoscopic Management of Cavernous Carotid Surgical 
Complications: Evaluation of a Simulated Perfusion Model

Jeremy N. Ciporen1, Brandon Lucke-Wold2, Gustavo Mendez3, William E. Cameron4, and 
Shirley McCartney1

1Departments of Neurological Surgery, Oregon Health & Science University, Portland, Oregon

2Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, West 
Virginia

3Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois, USA

4Departments of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon

Abstract

Objective—Endoscopic surgical treatment of pituitary tumors, lateral invading tumors, or 

aneurysms requires surgeons to operate adjacent to the cavernous sinus. During these endoscopic 

endonasal procedures, the carotid artery is vulnerable to surgical injury at its genu. The objective 

of this simulation model was to evaluate trainees regarding management of a potentially life-

threatening vascular injury.

Methods—Cadaveric heads were prepared in accordance with the Oregon Health & Science 

University body donation program. An endoscopic endonasal approach was used, and a perfusion 

pump with a catheter was placed in the ipsilateral common carotid artery at its origin in the neck. 

Learners used a muscle graft to establish vascular control and were evaluated over 3 training 

sessions. Simulation assessment, blood loss during sessions, and performance metric data were 

collected for learners.

Results—Vascular control was obtained at a mean arterial pressure of 65 mm Hg using a muscle 

graft correctly positioned at the arteriotomy site. Learners improved over the course of training, 

with senior residents (n = 4) performing better across all simulation categories (situation 

awareness, decision making, communications and teamwork, and leadership); the largest mean 

difference was in communication and teamwork. Additionally, learner performance concerning 

blood loss improved between sessions (t = 3.667, P < 0.01).

Conclusions—In this pilot endoscopic endonasal simulation study, we successfully demonstrate 

a vascular complication perfusion model. Learners were able to gain direct applicable expertise in 

endoscopic endonasal techniques, instrumentation use, and teamwork required to optimize the 

technique. Learners gained skills of vascular complication management that transcend this model.
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Introduction

Endoscopic training is emerging as an effective opportunity for improving surgical skill sets 

for residents, fellows, and faculty, in a cost-effective manner.1 Simulation training can 

increase proficiency and allow learners to reach milestones set forth by accrediting 

agencies.2 Furthermore, simulation allows for appreciation of relevant neuropathology and 

anatomy that may be pertinent intraoperatively.3 In particular, endoscopic skull base 

approaches, which have a steep learning curve, can be practiced in a controlled and 

replicable environment.4

Multiple publications have addressed the topic and incidence of cavernous carotid injury 

during pituitary and skull base surgery.5-18 Ciric et al19 reported that 52% of surgeons who 

performed >500 endonasal pituitary surgeries reported an internal carotid artery (ICA) 

injury. Other studies have reported a 4%–9% incidence of ICA injury in patients who 

underwent expanded endonasal skull base surgery.20 Valentine and Wormald21 have 

established an endoscopic sheep model of ICA in which a muscle graft is used to control 

vascular injury. Although the model combines pressure and hemostatic dynamics to replicate 

a clinically relevant scenario of ICA injury, the model is limited due to the differences in 

sheep versus human anatomy.21

A preponderance of current simulation models focus on tumor resection.22,23 The use of 3-

dimensional models has improved training feasibility; however, these models lack the 

intricacies of complex human anatomy, especially in relation to vascular injury.24 Anesthesia 

models have been developed to control hypotension during simulated training experiences,25 

but until recently, simulated vascular complication models for surgical training have not 

been readily available. The live sheep model is the most comprehensive model addressing 

vascular injury repair, but it is difficult to replicate at most training programs and is limited 

in that human anatomy cannot be fully appreciated.21

Cadaveric heads offer advantage in simulated training experiences.26 Cadaveric heads are 

readily stored in containers with formalin allowing cost-effectiveness, replicability, and 

continued use over extended time periods. A cadaveric head model highlights the 

importance of proper exposure to the sphenoid sinus, sellar, parasellar, and clival structures 

via adequate removal of the face of the sphenoid. The anatomy directly correlates with what 

a surgeon will face during a surgical procedure, and instruments and endoscopes are the 

same as those used in the operating room.

We present the findings from a pilot simulation study of a cadaveric head perfusion model, 

which can be used innumerable times to train residents, fellows, and faculty. Additionally, 

the model can be used in the context of continuing medical education courses on appropriate 

endoscopic management of vascular complications.
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Methods

Preparation

Five adult cadaveric heads were used for this pilot study. The heads were acquired as part of 

the Oregon Health & Science University Body Donation Program. Heads were frozen and 

thawed once before use. A 1:100 solution of anticoagulant citrate dextrose (John B. Pierce 

Laboratory, New Haven, Connecticut, USA) mixed with warm water was prepared. The 

great vessels in the neck (jugular veins, carotid arteries, and vertebral arteries) were washed 

out for 15 minutes, and the head was allowed to sit overnight in a cold room at 5°C. The 

heads were embalmed and stored in formalin fixative solution (10%).

Dissection

Heads were placed in a slightly flexed position with good visibility of the nasal passages. 

Zero- and 30-degree endoscopes of 4-mm diameter and 18-cm length were used (Karl Storz, 

Tuttlingen, Germany). The endoscope was connected to a fiberoptic camera and light source. 

Exposure of the sphenoid sinus was performed, as previously described.27 Briefly, the 

middle turbinates were lateralized and a bilateral sphenoidotomy was performed. The 

incision was made at the articulation of the rostrum and vomer. A cottle elevator was used to 

clear the mucoperiosteum, and the rostral bone was removed bilaterally with a Kerrison 

rongeur and drilled flush to the floor of the sphenoid sinus and laterally just medial to the 

plane of the medial orbital walls bilaterally. Visualization of the sella, tuberculum, clivus, 

opticocarotid recesses, and cavernous carotid arteries was achieved. The bone overlying the 

sella and cavernous carotid artery was removed using a Kerrison rongeur. An 11-blade knife 

was used to make a 3-mm laceration in the right internal carotid artery at the level of the 

genu.

Perfusion and Training

To measure model feasibility, a small group of neurosurgical residents (n = 3) was used for 

testing and cavernous carotid perfusion model simulation assessment. Subsequently, testing 

and assessment were undertaken in a second learner group (n = 7) of additional 

neurosurgical residents using a similar yet more rigorous model setup.

In all scenarios, a cannula was inserted into the common carotid artery and secured with a 

clamp. Once the cannula was in place, it was connected to a perfusion pump that delivers the 

flow of simulated blood. The artificial blood (composed of red food coloring, water, and 

store-bought “vampire blood”; Forum Novelties, Inc., Melville, New York, USA) was mixed 

with these contents to achieve color and consistency that made it the most realistic. The 

artificial blood was recycled from one simulation to the next to maintain cost-effectiveness 

and consistency. An embalming perfusion pump (embalming machine JW-50 Noayr, 

Emmetsburg, Iowa, USA) was used to deliver the simulated blood for the first group. In the 

second learner group (n = 7), a rapid infusion Belmont pump was used (Belmont Fluid 

Management System 2000, Billerica, Massachusetts, USA). This pump provides the rate of 

infusion in mL/minute.

Ciporen et al. Page 3

World Neurosurg. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Additionally, an arterial line was set up with this infusion pump via the cannulated carotid 

artery. Mean arterial pressure (MAP) was transduced to accurately control MAP experienced 

by the learner as the cavernous carotid bled, to ensure that realistic MAPs, those experienced 

in the operating room, were presented. Learners experience a range of MAPs (65–110 mm 

Hg). In the first learner group (n = 3), an embalming pump was used and a conversion from 

psi to mm Hg was made to approximate the pressure experienced by the learner as the 

cavernous carotid artery bled.

An endoscopic approach was standardized for each of the 10 learners who completed the 

simulation during 2 simulation sessions. Each learner was faced with the same bony 

exposure and location and size of the cavernous carotid injury. A supervising instructor 

facilitated the training experience and provided relevant guidance for important anatomic 

landmarks when appropriate. A 4-handed approach was used similarly to that outlined by 

Wormald et al.28 The instructor held and directed the endoscope as an intrinsic control 

between trials. This allowed learners to familiarize themselves with instrumentation. The 

learner was instructed as to the order and method to obtain vascular control of the cavernous 

carotid injury. The learner was instructed that once bleeding occurred to virtually give 

instructions to decrease the blood pressure, ask for proximal vascular control, use the suction 

to guide the bleeding away from the endoscope, use a pituitary instrument to initially place a 

half cottonoid patty over the bleeding site, and apply pressure. The cottonoid was then 

exchanged with the free muscle graft harvested from the temporalis muscle with a new 

cottonoid placed over muscle graft to apply enough pressure to control the bleeding. 

Learners faced a task of obtaining vascular control with normal, then elevated, and then 

normalized perfusion pump pressure, in the first assessment (n = 3) and normalized MAPs in 

the second assessment (n = 7) as per the A-line pressure.

Three sessions were employed for each learner. In the first learner group, embalming 

perfusion pump unit measurements were psi; 1 psi converts to 51.7 mm Hg and a conversion 

of psi to mm Hg was made. Learners were presented with a range of mm Hg; 155.14 mm 

Hg, then 206.8 mm Hg, followed by 103.4 mm Hg, at which time learners were expected to 

have obtained vascular control. In the second learner group, there were 3 sessions; the first 2 

sessions were 7 minutes in duration with a final 4-minute session. Learners were presented 

with a MAP range of 65–110 mm Hg, and it was determined that a pressure of 65 mm Hg 

was ideal for obtaining vascular control. Blood loss by learners was measured for each 

session. An independent evaluator blinded to training level scored learner performance 

during the simulation experience on a scale of 1–4 (1 = poor, 2 = marginal, 3 = acceptable, 

and 4 = good). If the evaluator deemed a learner as performing between 2 levels, a midway 

score was assigned (i.e., 2.5 if the evaluator viewed the learner's performance between 

marginal and acceptable). Scoring categories were situation awareness, decision making, 

communications and teamwork, and leadership.

Statistical Analysis

Statistical analysis was performed using GraphPad Prism software, version 6 (GraphPad 

Software, San Diego, California, USA). Data are shown as mean ± standard error of mean, 

unless otherwise specified. Paired Student's t-tests were used to compare differences 
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between data collected at different time points. Statistical significance was considered at P < 

0.05.

Results

Simulation Model

The perfusion model produced clinically relevant pressurized bleeding as appreciated by 

pooling of simulated blood (Figure 1A). This is an important component due to the high-

pressure and high-flow dynamics of carotid artery injuries.28 Adequate working space was 

obtained with this approach for placement of the endoscope, as well as surgical 

instrumentation through the bilateral nasal passages (Figure 1B). Learners (n = 10; 1 learner 

per 1 instructor in each simulation time) were able to perform the stepwise approach to 

obtain vascular control and ultimately place the muscle graft over the carotid injury and 

apply counterpressure for vascular control (Figure 1C and D).

The model is highly replicable and useful for continued training practice. The cadaveric 

heads have been used >50 times for over 10 months with maintained tissue quality in the 

process of model testing and simulation training. Setup (Figure 2) is simple and cost-

effective (see costs later). This cadaveric simulation controlled for the endoscopic 

instruments used in the operating room (e.g., Skull Base Tray, Karl Storz), the bone 

exposure, the site of carotid injury, as well as the techniques by which the carotid artery 

injury is controlled (Video 1). Repetitive training allows participants to familiarize 

themselves with endoscopic instrumentation and the anatomy.

Learner Assessment—All learners (n = 10) “would participate in simulated training in 

the future if given the choice” and strongly agreed that they “would like to see simulation 

integrated into the curriculum” (Tables 1 and 2). The pilot learner group viewed the course 

as valuable and very valuable (see Table 1). In the second learner group, all learners (n = 7) 

strongly agreed that the simulation “surgical exposure was realistically represented” and 

strongly agreed (n = 4) or agreed (n = 3) that they had “learned an algorithm to manage 

vascular injury” (see Table 2).

Some example comments from learners were: “great job, very important to training,” “this 

was a fantastic learning experience,” and “I was extremely impressed, and I feel I learned a 

great deal in a relatively short amount of time.” One learner stated that the experience was 

“humbling” due to the intricacies associated with endoscopic skull base approaches. The 

participants have requested further simulated training experiences in the future as part of 

their ongoing training.

Learner Performance—In the second learner group (n = 7), performance was evaluated 

on a series of metrics. Average performance scores for each metric were tabulated by 

postgraduate training year (PGY) of learners for questions within categories of situation 

awareness, decision making, communications and teamwork, and leadership (Table 3). On 

the basis of these values, the average score for each category between junior (≤PGY 4; n = 

3) and senior residents (≥PGY 5; n = 4) is reported (Table 4). Mean differences between 

senior versus junior residents for situation awareness, decision making, communication and 
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teamwork, and leadership were 0.625 (t = 2.892, P < 0.01), 0.441 (t = 2.816, P < 0.05), 

1.056 (t = 2.893, P < 0.001), and 0.57 (t = 2.893, P < 0.01), respectively. Senior residents 

performed better across all categories of the simulation with the largest mean difference in 

communication and teamwork. The simulation highlights areas requiring further instruction 

and training for junior residents.

In the second learner group (n = 6; one assessment was not completed from the 7 learners), 

measurements of blood loss over 3 sessions were compared (Table 5). Mean blood loss for 

session 1 versus 2 was 1129 mL versus 865.8 mL (t = 3.903, P < 0.01). Learners 

significantly improved blood loss between sessions 1 and 2 and by the third session were 

able to control the vascular injury within the allotted 4-minute time frame with an average 

blood loss of 333 ± 20.8 mL.

Costs

The cost of a fresh cadaveric head is $500–$700, whereas a full cadaver costs ∼$2500 per 

body. Most programs with a body donation program have an embalming machine, and this 

can be used to provide the pressurized simulated blood through the carotid and vertebral 

arteries. Alternatively, we have used an Arthrex pump (Arthrex, Munich, Germany) and 

Belmont rapid infusion pump (Belmont Instrument Corporation, Massachusetts, USA) to 

deliver pressurized flow throughout the cannulated vessels. This reflects the reproducibility 

of the model. Institutional overhead costs have not been included.

Discussion

Endoscopic endonasal transsphenoidal and extended trans-sphenoidal approaches have been 

steadily increasing as the standard of care for sella, suprasellar, parasellar, and clival 

pathology. There are a number of challenges a surgeon faces when a catastrophic vascular 

injury occurs. First is the emotional stress of the occurrence and knowledge that what may 

have been an elective procedure on benign pathology, such as a pituitary macroadenoma, has 

turned into a life and death situation. Second, visualization is obscured, making it difficult to 

see the adjacent critical structures and site of bleeding. Impaired visualization can lead to 

technical errors that lead to injury of critical adjacent structures and can worsen and extend 

the site of vascular injury. Inadvertently enlarging or using the wrong strategy to obtain 

vascular control can lead to higher morbidity and mortality. While no 2 cavernous carotid 

injuries are the same, a treatment strategy/algorithm based on lessons learned from 

endoscopic training has been shown to improve outcome.29

Surgical simulation has gained significant momentum in the arena of resident and fellow 

training. In the setting of resident duty hour restrictions and limited hands-on experience in 

the most technically challenging of cases, graduating residents may lack experience for 

managing a vascular complication and might not obtain this experience until they are in 

practice. In practice, a vascular injury is rare but occurs and is likely underreported. Padye et 

al29 collected follow-up data from 110 participants who had taken their sheep-based vascular 

injury workshop. The participants were surveyed by an e-mail questionnaire regarding the 

instance of major arterial bleeding and the management undertaken. Nine cases were 

reported in total: 1 basilar artery and 8 ICA injuries. Each case was managed endoscopically 
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with the muscle patch application they learned in training. There were no deaths, 1 case of 

pseudoaneurysm with successful endovascular treatment, 2 cases of impaired carotid flow, 

and 1 carotid dissection managed conservatively. These articles and those in Table 6 further 

demonstrate the importance of a reproducible cost-effective endoscopic endonasal cavernous 

carotid injury simulation.5-18

The Accreditation Council for Graduate Medical Education has requirements for general 

surgery and obstetrics and gynecology surgical simulation as part of educational milestones. 

While neurologic surgery and otolaryngology do not have these requirements at this time, 

the value of surgical simulation is evident.29-31 As duty hours and patient safety concerns 

limit resident autonomy, cadaveric anatomic and simulation-based learning provide the 

opportunity for learners to gain the technical endoscopic skill set required. The complexity 

of these approaches warrants continued training opportunities. By using clinically relevant 

models that represent realistic pathology and potentially life-threatening occurrences such as 

vascular injury, learners can develop an appreciation of relevant anatomy and develop the 

technical skills for utilization of instrumentation before entering the operative arena. 

Learners also gain the experience of using these instruments in a cooperative manner, in a 

stressful scenario and visually compromised field secondary to simulated pressurized 

bleeding. Bly et al32 have shown that cadaveric simulation models offer an advantage in 

learning new endoscopic approaches.

In this pilot simulation study of a cadaveric head vascular perfusion model, we show the 

model was replicable and cost-effective. It was effective when used to train learners how to 

manage vascular complications endoscopically. The model is more cost-effective than whole 

body cadavers and has the potential to be used with SimMan technology to replicate 

clinically relevant changes in vital signs.33 The simulation model we describe is highly 

realistic and provides an excellent opportunity for teaching complex surgical skills. As with 

any pilot study, there are some study limitations. Study limitations include small learner 

sample size, single-institution training site, lack of biofeedback data, and lack of 

multidisciplinary training. In the future it will be valuable to consider a larger sample size, 

inclusion of operative colleagues (e.g., anesthesiology and otolaryngology), obtaining 

biofeedback data, and perhaps multi-institutional collaboration to provide further learner 

performance improvement data.

Using the simulation model, we describe how learners were able to familiarize themselves 

with instrumentation and appropriate intraoperative visualization. Successful management of 

a carotid injury with a muscle graft was demonstrated. Applicable to the study is an 

understanding of the anatomic segments of the cavernous carotid. The Cincinnati system 

describes segments of the ICA as a progression from C1 to C7. This advancement goes 

beyond the traditional rostral to caudal numbering system originally proposed by Fischer.34 

Pertinent to endonasal endoscopic approaches are the C3 (lacerum), C4 (cavernous), and C5 

(clinoid) segments.35 Variability exists in the tortuosity of the anterior and posterior genus of 

the cavernous carotid artery. Lin et al36 recently developed a grading scale for the cavernous 

carotid artery that can be used to assess intraoperative risk of damage at the genu. Advanced 

imaging in conjunction with simulated cadaveric training may offer the best approach to 

establish reliable and realistic training experiences for residents, fellows, and faculty.
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Floreani et al37 have shown that cadaveric models are excellent for teaching relevant 

vascular anatomic sites that have increased potential for intraoperative complications. 

Furthermore, simulated training offers the ability to set benchmark standards for resident 

performance during training. Residents early in their training can be assessed prospectively 

over time. Direct feedback can be provided to ensure that they are reaching surgical 

performance goals in a timely manner.

Conclusion

Simulated training offers a unique opportunity to improve surgical skill sets in a safe and 

controlled manner. The benefits of the cerebral perfusion and endoscopic carotid artery 

injury model described transcend this specific simulation. This simulation teaches and more 

importantly reinforces a treatment algorithm, as well as the technical skills necessary to 

safely manage and perform effectively in a highly stressful scenario. Maintaining the MAP 

around 65 mm Hg was ideal for obtaining vascular control. This simulation model is 

effective in providing relevant instruction about anatomic vasculature, proper use of 

instrumentation, and evaluation of intraoperative communication. Learners reported the 

training valuable and would like to have more opportunities in the future. Most importantly, 

the model is replicable, cost-effective, and can be used for repetitive simulation training 

experiences. Widespread value and portability of this model as a simulation training 

technique to ensure educational value warrants further exploration.
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Figure 1. 
(A) Right cavernous carotid injury simulation, (B) suction placed to divert the flow of blood 

away from the endoscope, (C) placement of a half by half cottonoid patty and manual 

pressure to control the bleeding as the muscle patch is prepared, and (D) muscle patch 

placement over the site of injury for control of bleeding (occlusion of the internal carotid 

artery) with the pressure brought to 2 psi (=103.4 mm Hg).
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Figure 2. 
An artist's illustration of the simulated perfusion model setup.
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Table 3
Average Performance Scores Organized by Postgraduate Year of Training (n = 7)

Category Element Postgraduate Year Average Score

Situation awareness Gathering information 1 2.5

4 3

5 4

6 3.5

7 3

Understanding information 1 2.75

4 4

5 4

6 4

7 4

Projecting and anticipating future state 1 3.25

4 3

5 3.5

6 3.5

7 3

Decision making Considering options 1 3

4 3

5 3.5

6 3

7 3

Selecting and communicating options 1 2.5

4 3.5

5 3.5

6 4

7 3.5

Implementing and reviewing decisions 1 3

4 3

5 3.5

6 3

7 3.5

Communications and teamwork Exchanging information 1 2.25

4 3

5 4

6 4

7 3

Establishing a shared understanding 1 2.75

4 3.5
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Category Element Postgraduate Year Average Score

5 4

6 4

7 4

Coordinating team activities 1 2.25

4 2.5

5 4

6 3

7 3

Leadership Setting and maintaining standards 1 2.75

4 3

5 4

6 3.5

7 4

Supporting others 1 3

4 3

5 4

6 3.5

7 3.5

Coping with pressure 1 3.75

4 4

5 4

6 4

7 4

Scoring scale:
1 Poor Performance endangered or potentially endangered patient safety, serious remediation is required.
2 Marginal Performance indicated cause for concern, considerable improvement is needed.
3 Acceptable Performance was of satisfactory standard but could be improved.
4 Good Performance was of a consistently high standard, enhancing patient safety; it could be used as a positive example for others.

N/A Not applicable.
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Table 4
Junior Versus Senior Resident Performance Comparison (n = 7)

Category Junior Resident* (n = 3) Senior Resident (n = 4) Student's t-test, P Value

Situation awareness 3 ± 0.166 3.625 ± 0.139 t = 2.892, P < 0.01

Decision making 2.944 ± 0.1 3.375 ± 0.109 t = 2.816, P < 0.05

Communication and teamwork 2.611 ± 0.162 3.667 ± 0.142 t = 4.889, P < 0.001

Leadership 3.222 ± 0.169 3.792 ±0.115 t = 2.893, P < 0.01

*
Junior (≤postgraduate year [PGY] 4; n = 3) versus senior (≥PGY 5; n = 4).
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Table 5
Learner Blood Loss During Sessions (n = 6)

Learner Session 1; 7 minutes (mL) Session 2; 7 minutes (mL) Session 3; 4 minutes (mL)

1 1150 900 286

2 1282 796 290

3 911 960 356

4 1267 845 423

5 1071 828 317

6 1094 134 (pump malfunction)* 326

Mean ± SEM 1129.17 ± 56.28 865.8 ± 28.96 333 ± 20.8

Student's t-test Trial 1 versus 2 t = 3.903, df = 9 P < 0.01

SEM, standard error of mean.

*
Not included in analysis (n = 5); df = degrees of freedom.
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Table 6
Summary of Carotid Injuries Following Endoscopic Endonasal Approaches

Report Surgery Type Patient Age Complication Outcome

Hudgins et 
al., 19929

Endoscopic paranasal sinus surgery Varied 1 patient with subarachnoid 
hemorrhage and 1 patient with 
aneurysm of the anterior 
cerebral artery

Emergent balloon 
embolization with massive 
hemorrhage

Cappabianca 
et al., 20015

Endoscopic transsphenoidal surgery Varied Pseudoaneurysm of 
intracavernous carotid

Successful endovascular repair

Liang et al., 
200413

Endonasal endoscopic surgery Varied Internal carotid artery rupture 
from carotid cavernous fistula

Muscle flap plug with 
maintained vascular control

Koitschev et 
al., 200612

Endonasal sinus surgery for 
sinusitis

Varied Laceration of the cavernous 
carotid artery

Balloon or coil occlusion of 
lacerated vessel

Pepper et 
al., 200715

Endoscopic sinus surgery Varied Cavernous carotid hemorrhage Balloon embolization with 
successful vascular control

Karaman et 
al., 200911

Endoscopic sinus surgery 40-year-old female Carotid-cavernous fistula Endovascular transarterial 
embolization with excellent 
recovery

Zhou et al., 
200917

N = 7 Microsurgical 
transsphenoidal
N = 3 Endoscopic transsphenoidal

Varied 8 subarachnoid hemorrhages, 
1 cavernous carotid 
thrombosis, 1 cavernous sinus 
hemorrhage

Of 400 treated patients, the 10 
with vascular injuries died 
from complications

Pawar et al., 
201014

Endoscopic sphenoid mucocele 
marsupialization

87-year-old male Cavernous carotid 
pseudoaneurysm formation

Rupture and death 4 months 
postoperatively

Zuo et al., 
201218

Transnasal endoscopic surgery for 
tumor resection

Varied 3 cavernous carotid injuries, 1 
lacerum segment injury, and 1 
clinoid segment injury

4 cases treated successfully 
with endovascular techniques. 
1 mortality due to massive 
hemorrhage

Felippu et 
al., 20138

Transnasal approach for lesions of 
the orbital apex

Varied 100 total cases with 1 case of 
cavernous carotid artery 
rupture

Mortality

Kalinin et 
al., 201310

Endoscopic transsphenoidal 
approach for pituitary adenoma 
resection

4 patients, varied 
ages

1 case cavernous carotid 
occlusion and 3 cases 
pseudoaneurysm formation in 
cavernous carotid artery

1 mortality and 3 endovascular 
treatments with successful 
recovery

Dedmon et 
al., 20147

Endoscopic sinus surgery 44-year-old male Epistaxis with 
pseudoaneurysm of the 
cavernous carotid artery

Repaired with endovascular 
coiling: coil extrusion through 
wall of pseudoaneurysm

Rangel-
Castilla et 
al., 201416

N = 3 endoscopic
N = 3 endoscopic transfacial
N = 1 myringotomy
N = 1 endoscopic meningioma 
resection
N = 1 PCA clipping
N = 1 ICA coiling

Varied Iatrogenic cavernous carotid 
injury

Extracranial-intracranial 
bypass with modified Rankin 
scale score of 0 or 1 at 19-
month follow-up

Cobb et al., 
20156

Endoscopic endonasal approach for 
osteoblastoma resection

13-year-old female Iatrogenic cavernous carotid 
injury

Balloon-assisted microsurgical 
repair of lacerated vessel

PCA, posterior cerebral artery; ICA, internal carotid artery.
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