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Abstract

Elevated triglycerides (TG) contribute towards increased risk for cardiovascular disease. 

Lipoprotein lipase (LPL) is an enzyme that is responsible for the metabolism of core triglycerides 

of very-low density lipoproteins (VLDL) and chylomicrons in the vasculature. In this study, we 

explored the structure-activity relationships of our lead compound (C10d) that we have previously 

identified as an LPL agonist. We found that the cyclopropyl moiety of C10d is not absolutely 

necessary for LPL activity. Several substitutions were found to result in loss of LPL activity. The 

compound C10d was also tested in vivo for its lipid lowering activity. Mice were fed a high-fat 

diet (HFD) for four months, and treated for one week at 10 mg/kg. At this dose, C10d exhibited in 

vivo biological activity as indicated by lower TG and cholesterol levels as well as reduced body fat 

content as determined by ECHO-MRI. Furthermore, C10d also reduced the HFD induced fat 

accumulation in the liver. Our study has provided insights into the structural and functional 

characteristics of this novel LPL activator.
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Elevated triglycerides (TGs) are considered an independent risk factor for coronary heart 

disease (CHD). In many cases, the continuing residual CHD risk in spite of optimal low-

density cholesterol (LDL-C) after statin monotherapy can be attributed to elevated 

apolipoprotein B (apo-B) and hypertriglyceridemia.1–3 TGs associated with remnant 

lipoproteins formed as a result of partial hydrolysis by LPL, are atherogenic as well as 

subject to endothelial accumulation and uptake by macrophages to form foam cells.4, 5 

Similarly type 2 diabetes mellitus (DM) and metabolic syndrome patients commonly present 

with combined dyslipidemia, which is characterized with fasting and postprandial 

hypertriglyceridemia and low HDL-C. These patients are at risk for CHD even if LDL-C 

levels are optimal. Hence, there is a significant need for novel approaches to control plasma 

TG levels.

Extracellular lipases have been shown to tightly regulate the plasma TG and /or HDL-

cholesterol levels. The lipoprotein lipase enzyme (LPL) that is found lining the capillary 

endothelium is a critical regulatory protein involved in TG metabolism.6, 7 TG-rich 

lipoproteins such as VLDL and chylomicrons are catabolized by the action of LPL into free 

fatty acids and remnant lipoproteins. Such activity is crucial for effective utilization of TGs 

and for the resultant uptake of fatty acids by tissues. Furthermore, intact LPL activity is 

crucial to guard against fluctuations resulting from intake of high fat meals or production of 

TG rich lipoproteins from the liver.

As such, a reduction in the expression and activity of LPL is associated with 

hypertriglyceridemia. Both gain-of-function and loss-of-function genetic mutations of LPL, 

resulting in dysregulated plasma TG levels in patients, have been reported.7, 8 Glybera 

(alipogene tiparvovec), a gene therapy product that replaces the LPL gene is available in 

Europe from uniQure (www.uniqure.com) for the treatment of patients diagnosed with a 

genetic deficiency in familial lipoprotein lipase (LPLD). A large gap in the LPL field is the 

lack of clinically used small molecule drugs to modulate LPL activity. Previous attempts to 

modulate LPL activity using small molecules produced highly significant effects in several 

animal models of hyperlipidemia. Developed by Otsuka Pharmaceutical Factory (Japan), 

NO-1886 (generic name: Ibrolipim) remains the best characterized specific LPL activator. 

NO-1886 was discovered in early 1990s and significantly stimulated LPL activity, lowered 
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plasma triglycerides, as well as elevated the levels of HDL-C.9,10 In addition to affecting 

LPL activity, NO-1886 also increases LPL mRNA thereby increasing post-heparin LPL 

mass.9 In streptozotocin (STZ) treated diabetic rats, NO-1886 increased LPL activity 59% 

over the control.11 Finally, long term NO-1886 administration to rats with experimental 

atherosclerosis caused by high-cholesterol feeding significantly inhibited the development of 

atherosclerotic lesions in coronary arteries.9 Similar results were observed in rabbit model of 

atherosclerosis.12

Our group previously reported the identification of a novel small organic compound with 

LPL activation property.13 This lead compound named C10d which was identified from an 

in vitro high-throughput (HTS) screening assay exhibited potent LPL activation twofold as 

compared to NO-1886. In the present study, we have carried out additional structure-activity 

relationship studies to identify the key structural features of the C10d molecule that is 

responsible for its LPL activation. Moreover, we present the first in vivo studies to show 

lipid lowering properties of C10d in a high fat diet model of hyperlipidemia.

To explore the structure-activity around C10d, we synthesized benzoic acid derivatives of 

C10d through a condensation of 1-(3-aminopropyl) imidazole with the appropriate aromatic 

moiety. The carboxylic group of the aromatic side chain was first activated using 1'-

carbonyldiimidazole (CDI) by stirring at room temperature for 24 hours in tetrahydrofuran 

(THF), after which the imidazole was added (Scheme 1). Analytical data of the compounds 

given in the Supplementary data.

In this study, we evaluated the structure-activity relationship surrounding the imidazole 

moiety of C10d. Compounds 2A-5E were tested in comparison with C10, our originally 

identified hit compound and C10d, the more potent activator identified in subsequent studies 

(Figure 1 and Figure 2). Compound 2A improved LPL activity, although still much less than 

C10d (Figure 2). Similar trend was observed for the benzoic acid derivatives of C10d, 

including C10d-Cl, C10d-H, and C10d-F as well. Compounds that acted as substantial 

inhibitors of LPL enzyme activity were 2E, 2F, 4E, C10d-SH, and C10d-OH.

To further explore the activity of C10d, we synthesized several benzoic acid derivatives 

lacking the cyclopropyl group present in C10d. We found that C10d-H and C10d-Cl have 

similar activity to the control compound C10, but less than C10d (Figure 2). Based on 

previous docking studies, we expect that the aromatic ring of C10d is oriented towards a 

pocket ideal for aromatic or hydrophobic interactions. The lack of the cyclopropyl group 

allows for more flexibility and can potentially lead to decreased occupancy in this pocket, 

explaining in part the loss of activity compared to C10d. However, since the compounds 

lacking the cyclopropyl group also show agonist activity, it suggests that that the cyclopropyl 

moiety of C10d is not essential for activity on LPL and can be removed for alternative 

scaffold hopping efforts.

To understand how C10d acts as activator of LPL, we docked C10d onto the homology 

model of LPL we had previously published (Figure 3).6, 13 We found that upon docking of 

C10d to LPL, the catalytic amino acids are pushed closer in space suggesting that the 

induced docking of C10d may lead to more efficient enzyme kinetics via a stabilization of 
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the catalytic unit resulting in lowering of the activation energy of TG catalysis. In 

comparison with C10d, the compounds that act as inhibitors, for example 2E, seem to bind 

to LPL but prevent the induced fit suggested from the C10d experiments. As can be seen 

from our docking studies, when C10d binds to LPL, hydrogen bonds are formed with 

Ser216 and an aromatic interaction with Pro217 occurs. The induced fit docking also 

indicated that the catalytic residues are moved slightly towards the catalytic site via the 

amino acids Ile272-Phe275. In the case of the antagonists such as 2E, an extra hydrogen 

bond is formed with Lys294, effectively preventing the inductive effect seen from the C10d 

binding.

We tested the enzyme kinetics of C10d and found that the Km for the enzymatic reaction is 

significantly lowered (Km=648 µM in presence of C10d versus Km=8.15 mM in presence of 

DMSO) by using C10d, suggesting enhanced affinity of LPL for its substrate in the presence 

of C10d (Figure 4).

We furthermore explored the in vivo efficacy of C10d in its ability to lower serum 

triglycerides. Mice were fed a high fat diet (60% Kcal from fat) for four months. In the last 

week of the study, we treated the mice with C10d at 10 mg/kg dose i.p. daily until the end of 

the study. The dose of C10d used for the in vivo study was selected based on a dose response 

study wherein a 10 mg/kg dose of C10d exhibited an increase in LPL activity whereas the 

doses of 1 mg/kg and 5 mg/kg did not alter the LPL activity (data not shown). Before 

sacrifice, ECHO-MRI was performed on the animals. C10d treated animals showed a small 

but not significant decrease in body weight as compared to untreated HFD controls as well 

as lower total body fat content (Figure 5).

The lowering of total body fat content observed after C10d treatment of mice only in the 

final week of the four-month feeding suggests a potent in vivo efficacy of this LPL activator. 

A decrease in serum triglycerides and cholesterol was also observed (Figure 6 A and 6 B).

Additionally, mice treated with C01d were found to have livers which morphologically 

resembled that of the mice fed a normal diet (Figure 7). In contrast, the livers of mice fed a 

high fat diet (HFD) only, appeared enlarged and steatotic. Histochemical H & E staining 

indicated that the livers of mice treated with C10d showed less lipid accumulation as 

compared to the HFD-only group.

Based on our morphological findings of the livers, we evaluated the protein levels of two 

markers that are associated with liver protection, the NAD dependent deacetylase – sirtuin 1 

(SIRT1) and the autophagy marker – microtubule associated protein 1 light chain 3 alpha 

(LC3). These markers were increased in mice treated with C10d (Figure 8 and 9), suggesting 

a likely mechanism of action of C10d in the liver might be via stimulation of liver protection 

pathways.

In conclusion, we explored the SAR for our lead compound C10d as LPL agonist and found 

that the imidazole moiety plays an important role in determining agonist/antagonist activity. 

Additionally we tested the compound C10d in a high fat diet study to evaluate its effect on 

lipid lowering activity. We found the compound can reduce whole body fat, serum 

triglyceride levels, and hepatic fat accumulation in mice fed high fat diet. Taken together our 
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data shows the feasibility of using LPL agonists in lowering triglycerides. Lastly, the novel 

scaffolds here may lead to identification of new classes of lipid lowering drugs which has 

therapeutic potential in a variety of metabolic diseases such as dyslipidemia, obesity, 

diabetes and fatty liver disease.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Structures of C10d-derivatives tested in the LPL assay
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Figure 2. 
Activity profile of the hit compound C10, the lead compound C10d and structural derivatives 

using an in vitro recombinant lipoprotein lipase (LPL) activity high-throughput (HTS) 

screening assay. All compounds were screened at 100 µM, in an assay set up in a 384 well 

plate. p-nitrophenyl butyrate was used as a substrate in the assay and absorbance detection at 

405 nm was performed to detect product of cleavage, butyric acid. The fold change in 

absorbance as a measure of LPL activation is plotted. Bars represent average ± S.D. with the 

error bars contained within the size of the bar where N = 2.
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Figure 3. 
Docking studies of the lead compound C10d (A and C) and compound 2E (B and D) in the 

homology model of LPL.13 C10d shows agonist behavior and 2E shows antagonist behavior. 

Based on the docking studies, it appears that C10d allows for the amino acids in the catalytic 

site to be optimally place for a lower activation energy, while the tight binding of 2D inhibits 

the flexibility of the protein to allow for efficient catalysis of the TG.
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Figure 4. 
Enzyme kinetics for LPL stimulated hydrolysis was determined in the presence or absence 

(DMSO vehicle control) of C10d. Using a dilution series for the substrate, velocity of the 

reaction was determined.. A Lineweaver-Burk plot of 1/V vs. 1/S is shown. C10d 

significantly lowered the Km from 8.15 mM for the vehicle treated to 0.648 mM in the 

presence of C10d. Symbols represent average ± S.D. with the error bars contained within the 

size of the symbols where N = 3.
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Figure 5. 
ECHO-MRI analysis for different groups of animals in the high-fat diet (HFD) study. At the 

conclusion of the four months of high fat diet feeding, body weight, as well as total body fat 

and lean mass, were monitored by EchoMRI. Each bar represents mean ± S.D., where n = 4.
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Figure 6. 
Serum triglycerides (A; TG) and cholesterol (B; CHO) measurements in mice. High-fat diet 

(HFD) feeding was performed in mice for 4 months. HFD + C10d group received 10 mg/kg 

i.p. of C10d in the last week of the study. The mice were sacrificed and lipids were measured 

in the serum using commercially available assay kits (n=3). Data show mean ± SE.
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Figure 7. 
Mice treated with C10d (10 mg/kg) show reduction in liver fat deposition from a high-fat 

diet (HFD) as compared to mice on a HFD alone. The livers of mice on HFD were enlarged 

as expected, and treatment with C10d showed a reduction in liver size (Top panel). 

Histochemical staining with hematoxylin and eosin (H and E) showed reduction in lipid 

accumulation in the livers treated with C10d (bottom panel; 20X magnification).
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Figure 8. 
Mice treated with C10d show reduction in liver injury from a high-fat diet (HFD). Mice 

were fed a HFD for four months, and treated with C10d for seven days at 10 mg/kg. The 

protein levels of SIRT1 was increased in mice treated with C10d. *Statistical significance 

P<0.05. n = 5 mice.
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Figure 9. 
Mice treated with C10D show reduction in liver injury from a high-fat diet (HFD). Mice 

were fed a HFD for four months, and treated with C10D for seven days at 10 mg/kg. The 

protein levels of LC3 was increased in mice treated with C10D. *Statistical significance 

P<0.05. n = 5 mice.
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Scheme 1. 
Synthesis of the C10d and its benzoic acid derivatives which are devoid of the cyclopropyl 

moiety. The carboxylic group of the aromatic side chain is activated with CDI in THF for 24 

hours, after which the 1-(3-aminopropyl) imidazole is added and stirred for 48 hours until 

workup.
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