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Abstract

We present the hypothesis that an accumulation of dysfunctional mitochondria initiates a signaling 

cascade leading to motor neuron and muscle fiber death and culminating in sarcopenia. 

Interactions between neural and muscle cells that contain dysfunctional mitochondria exacerbate 

sarcopenia. Preventing sarcopenia will require identifying mitochondrial sources of dysfunction 

that are reversible.

Graphical abstract

Summary for TOC: Sarcopenia is characterized by fiber atrophy and loss of fibers. Mitochondria 

health determine death signaling leading to localized protein loss and if unchecked, widespread 

loss of muscle fibers.
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Introduction

Sarcopenia, is associated with increased levels of apoptosis (47) and reduced capabilities for 

muscle regeneration (41) leading to muscle wasting. For this reason, many studies including 

our own have focused on the muscle specific signaling that contribute to muscle wasting in 

sarcopenia. However, sarcopenia in aged humans and rodents is also associated with motor 

neuronal death (96, 139), which causes impaired innervation (48, 106), and a ~27% 

reduction in the motor unit pool. In aging, a loss of innervation induces profound muscle 

atrophy (5, 106, 129). Some denervated fibers become innervated by axons from surviving 
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motor neurons (42, 45), whereas other fibers remain denervated and contribute to functional 

losses in sarcopenia (42).

We postulate that the tight relationship between the loss of motor neurons and muscle cells 

in aging is explained by a common underlying mechanism that initiates deterioration in 

these cells. It is interesting that a loss of mitochondria function with aging is a mechanism 

that is shared by both muscle cells (18, 63) and motor neurons (123). Our current 

perspective and hypothesis is that mitochondrial deterioration in muscles and motor neurons 

is the primary initiator of sarcopenia (Figure 1). We have identified some of the data that 

support this perspective, and the areas that are speculative and require additional work to test 

this hypothesis.

Mitochondrial regulation of sarcopenia - Hypothesis

Aging increases mitochondrial stress that sensitizes the opening of the mitochondria 

transition permeability pore (mPTP). A loss of mitophagy-proteasome-induced 

mitochondrial clearance in muscle and motor neuron cells promotes accumulation of poorly 

functioning mitochondria that have increased mPTP opening. Leakage of the mitochondrial 

contents to the cell cytosol initiates death (apoptosis) signaling in muscle cells and motor 

neurons, which contributes to nuclear DNA fragmentation and if not repaired, nuclear 

apoptosis. Removal of nuclei in muscle cells and motor neurons leads to fiber and motor 

neuron death and loss of innervation to the muscle cells. Cross talk between muscles and 

motor neurons that contain dysfunctional mitochondria exacerbates sarcopenia. Thus, 

mitochondria are key initiators and regulators of sarcopenia (Figure 1).

Sources for mitochondrial damage in aging muscles and motor neurons—Our 

working hypothesis is that sarcopenia is initiated by an aging-associated insult to 

mitochondria in muscle cells and motor neurons. Mitochondrial stress in aging can originate 

from greater levels of oxidants, DNA damage, or denervation (31, 133).

Reactive oxygen species (ROS) induced damage—Aging increases ROS 

production (22), and lowers antioxidant enzymes levels in muscle and neuron cells (58, 59, 

121). ROS production might be secondary to denervation that occurs in muscles from old 

animals or humans (48, 55, 133). The accumulation of ROS has the potential to damage 

cellular mitochondria (reviewed in (15)). The importance of antioxidants in sarcopenia is 

highlighted by observations that both neural and muscle losses of the cytosolic antioxidant 

CuZn-superoxide dismutase (CuZnSOD) recapitulated sarcopenic muscle loss in a mouse 

model (125). It is noteworthy that the absence of CuZnSOD in either neural or muscle cells 

did not manifest full sarcopenic muscle loss (125). However, this observation highlights the 

need to consider cross talk between these two tissues in aging. Whatever the initial source(s) 

of ROS production, it is clear that accumulation of excessive ROS contributes to damaged 

and dysfunctional mitochondria in muscle and neural cells.

Mitochondrial DNA damage and aging in motor neurons and muscle cells—
Mitochondrial DNA (mtDNA) deletions or DNA mutations contribute to mitochondrial 

dysfunction and aging-related muscle fiber loss and atrophy (50, 90). In neurons, DNA 
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damage precedes neuronal apoptosis (85), whereas forced repair of DNA damage rescues 

neurons from elimination by apoptosis (86). Indeed, increased mtDNA mutations have been 

found in fiber regions that contain oxidative damage (2, 90). Furthermore, aging-induced 

mtDNA deletions are closely associated with a loss of mitochondrial function in motor 

neurons (123), neuronal malfunction in diseases like Parkinson’s disease (115), and muscle 

loss with aging (50, 91). While elevated ROS production is not solely the result of mtDNA 

deletions or mtDNA mutations (141), it is clear that this mechanism contributes to 

mitochondrial ROS production in aging muscles and neurons (26, 86, 91).

Mitochondria permeability transition pore sensitization with aging – 

mitochondrial dysfunction

Stress-induced damage to mitochondrial membranes (40, 108, 144, 147) contributes to 

sensitization of the mitochondrial permeability transition pore (mPTP) (44). The mPTP is a 

large conductance pore in the inner mitochondrial membrane, which is predominantly closed 

under non-stressed conditions. Opening of the mPTP can be induced by ROS, increased 

concentrations of Ca2+, or mitochondrial depolarization. mPTP opening is further 

exacerbated by an imbalance of Ca2+ homeostasis that likely results from leaky ryanodine 

receptors in aged skeletal muscle (10). Excessive Ca2+ loading leads to mitochondrial 

swelling, and rupture of the outer mitochondrial membrane.

Opening the mPTP induces a further loss of mitochondrial membrane potential, and releases 

the mitochondrial contents to the cytosol to initiate apoptotic signaling (24, 77, 89). 

Apoptosis signaling has been reported in muscle and neuronal cells of aged rodents (4, 7, 26, 

34, 47, 77, 88, 130), and humans (44, 145). Aging-associated muscle denervation may also 

contribute to increased mPTP opening, that in turn induces apoptosis and muscle loss (76, 

133).

Similar to skeletal muscle cells, ROS damage to mitochondria in neurons from aged animals 

contributes to mPTP opening (53). This occurs through p66Shc which generates H2O2 that 

in turn, reacts with cytochrome c and induces oxidation of the mPTP and mitochondrial 

swelling (126). This mechanism is similar to neural degenerative diseases where induction 

of ROS (80, 113) contributes to motor neuron death (116). Thus, mitochondrial 

susceptibility to mPTP opening is a common point which triggers downstream cell 

destruction in both neuron and muscle cells.

Insufficient mitophagy allows unhealthy mitochondria to persist in aging 

muscles and neurons

Damaged mitochondria normally undergo fission then they are finally removed by 

mitophagy. However, mitophagy is attenuated with aging in skeletal muscle and motor 

neurons (40, 63, 70, 127). AMP-activated protein kinase (AMPK) and Sirtuin 1 (SIRT1) 

trigger the destruction of dysfunctional fragmented mitochondria through FoxO3-dependent 

autophagy (mitophagy) (94, 118). Mitofusin 2 (Mfn2) has an important role regulating 

mitochondrial fusion, but it also acts a receptor for Pink1 and Parkin-targeted mitophagy 
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(27). Recent data by Sebastián and colleagues (127) show that Mfn2 declines in muscle with 

aging and loss of Mfn2 produces an aging-like phenotype, including age-associated 

mitochondrial dysfunction, higher ROS accumulation and muscle fiber atrophy. Mfn2 has 

also been implicated in the loss of mitophagy in motor neurons. For example, a reduced 

inhibition of the E3 ligase Omi/HtrA2 in neuronal mitochondria contributes to a decrease in 

Mfn2 leading to attenuated mitophagy (29). Thus, an aging associated deficiency of Mfn2 

may be the bridge between impaired mitophagy and an accumulation of dysfunctional 

mitochondria in muscle and neurons during sarcopenia. However, it should be pointed out 

that other evidence does not support a decrease in Mfn2 or a decrease in the Mfn2 to Drp1 

ratio that would be expected if Mfn2 were suppressed in muscles of aged mice (75).

Defective mitophagy underlies the progression of motor neuron death in Amyotrophic 

lateral sclerosis (ALS) (38). In contrast, lithium-induced induction of mitophagy (38, 101) 

and mitochondrial biogenesis (101) improves mitochondrial morphology in motor neurons 

of a G93A SOD-1 mouse model of ALS. Other autophagy proteins, including Pink152, 

which is the cleavage product of the mitochondrial autophagy protein Pink1, has been 

implicated in the attenuation of mitophagy in motor neurons. Pink152 can exit the 

mitochondria in neuron cells and cleave Parkin, which then suppresses its translocation to 

the mitochondria to attenuate mitophagy (36).

Contrary data suggest that mitophagy may be increased in aging muscles as evidenced by 

greater migration of Parkin and p62 to the mitochondria (103). Nevertheless, an 

accumulation of lipofuscin granules suggests a failure of the lysosome to remove 

dysfunctional mitochondrial in aging even when Parkin has translocated to the mitochondria 

(103). Indeed, lipofuscin deposits have been reported previously in many tissues including 

muscles and neurons of aged rodents or other mammals (138). Further work is needed to 

determine if lysosomal dysfunction (136), loss of Mfn2, or some other protein involved in 

mitochondrial dynamics regulates mitophagy in sarcopenia.

Local apoptotic signaling in aging muscles and motor neurons becomes 

more wide spread to result in cell death

Our hypothetical model to explain the loss of single muscle fibers in sarcopenia is shown in 

Figure 2. This model assumes that local mitochondrial damage (potentially via ROS, high 

calcium loads, mtDNA damage etc.) causes increased mPTP opening, which triggers the 

contents of the mitochondria to leak to the cytosol. This initiates the intrinsic apoptotic 

signaling pathway leading to DNA fragmentation and nuclear apoptosis in a localized region 

of the fiber. An aging-suppression of autophagy activators like Sirtuin 1 (SIRT1) and Mfn2 

or other proteins involved in mitophagy, prevents removal of dysfunctional mitochondria via 

mitophagy and proteasome digestion.

The regional accumulation of damaged mitochondria could extend to other regions within 

the fiber via their connecting reticular network. As dysfunctional mitochondria accumulate, 

the region of the fiber that is engulfed by death signaling is expanded. We predict that 

eventually the entire fiber would be eliminated, presumably by involving the proteasome. 
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Genes of necrosis may also contribute to the overall cellular removal as sarcopenia 

progresses (26).

Cardiolipin is an important mitochondria-specific phospholipid, which is concentrated 

between inner and outer mitochondrial membranes, and redistribution of cardiolipin leads to 

a localized oligomerization of proapoptotic proteins (83). A local apoptotic cascade could 

occur via restricted remodeling and redistribution of cardiolipin adjacent to dysfunctional 

mitochondria. Furthermore, interaction of cardiolipin with the structural protein vimentin 

(104) could provide a localized cell-signaling site for targeted apoptotic disassembly and 

removal via anti-vimentin/CL complex antibodies, as has been observed in several 

pathologies involving apoptosis (104).

Our model for a localized apoptotic and proteolytic signaling cascade that expands to 

neighboring regions of a muscle fiber (Figure 2) has strong support from the work of Aiken 

and co-workers (26, 49, 50). For example, Cheema et al. (26) observed a localized aging-

induced loss of the mitochondrial enzymes succinate dehydrogenase and cytochrome c 
oxidase. Interestingly, the same fiber region that had mitochondrial disruption was both 

atrophic and had high levels of the apoptotic protein caspase-3. In contrast, fiber atrophy and 

apoptotic signaling did not occur in other regions of the same muscle fibers that were 

located further away from the dysfunctional mitochondrial (26). If the degenerative 

processes were not initiated locally but rather from a more general or systemic source, we 

would expect uniform muscle fiber wasting across its length, but this is not the case. 

Nevertheless, we predict that the progression of sarcopenia involves a gradual shift from 

targeted proteins in regions close to dysfunctional mitochondria to a strategy of non-targeted 

cellular destruction by activating the proteasome pathway when the apoptotic signaling 

expands to a wider fiber area.

We recognize that mitochondria are represented as distinct organelles in this simplistic 

model of localized signaling shown in Figure 2. However, mitochondria can range from 

small individual organelles, to rather extensive and connected reticular systems (57). In our 

model, mitophagy would be expected to target the regional area near dysfunctional 

mitochondria via the Pink1/Parkin and the LC3-II/autophagy receptor system for lysosomal 

removal. Although speculative, it is possible that elimination of a section of dysfunctional 

mitochondria could occur without disruption to the entire network of mitochondria along its 

reticulum. This could occur by activating fission signaling to wall off a healthy region of the 

mitochondrial reticulum from a region of dysfunctional mitochondria. Indeed, increased 

mitochondrial fission dynamics have been reported after muscle denervation (57) and in 

aging (55, 62). On the other hand, insufficient mitophagy in muscles from very old hosts 

could permit mitochondrial dysfunction in one area to affect other regions along the same 

mitochondrial reticulum and therefore affect a wider region of the cell.

We speculate that similar to our model in skeletal muscle fibers, motor neurons in aging 

hosts have increased mPTP opening, leading to apoptotic signaling, but dysfunctional 

mitochondrial are not removed because mitophagy is suppressed in aging. The apoptotic 

disassembly of motor neurons could begin regionally near dysfunctional mitochondria and 

spread to a wider area, resulting in motor neuronal death. Our speculation is supported from 

Alway et al. Page 5

Exerc Sport Sci Rev. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



data that show that in aging-associated neural diseases, there is a loss of mitochondrial 

function leading to increased mPTP sensitivity, and attenuated mitophagy that contributes to 

apoptosis (32, 68, 86, 99, 111). Nevertheless, we do not have data to support a process of 

aging associated localized motor neuron disassembly outside of neural degenerative disease. 

Additional work is needed to determine if localized loss of mitochondrial function 

contributes to a regional concentration of apoptotic signaling in motor neurons in the same 

way that it might occur in skeletal muscle cells with aging.

Altered mitochondrial dynamics with aging

Abnormal mitochondrial dynamics may negatively affect mitochondrial health. For example, 

both the mRNA level and the protein abundance of important fusion and fission proteins 

have been reported to be lower in old as compared to young adult skeletal muscle (55), and 

this would suggest that the potential for mitochondria to respond to changing environments 

might be reduced as compared to mitochondria from young hosts. Indeed, this appears to be 

the case, because electron microscopy and biochemical analyses have shown small, more 

fragmented mitochondria in muscles from old as compared to young adult hosts (56, 57), 

although very large mitochondria have also been noted in muscles from old animals (75). 

Consistent with the fragmented mitochondrial phenotype in muscles from old hosts, there is 

evidence to suggest that muscles of aged rodents and humans have a greater overall rate of 

fission vs. fusion (55, 62) and lower levels of the fusion protein Opa1 (62) as compared with 

younger muscles. Fragmented mitochondria tend to have a lower respiratory capacity, and a 

greater production of ROS, which increases the susceptibility of mitochondria to release its 

contents and activate the intrinsic caspase apoptotic pathway. Thus, it is not surprising that 

aging and disuse, which both have excessively fragmented mitochondria, are accompanied 

by muscle loss (57). It is interesting that a knockout of Mfn 1/2 in skeletal muscle, which 

prevented mitochondrial fusion, increased the accumulation of mtDNA defects and resulted 

in muscle atrophy (31). Together, these observations support for the idea that muscle 

mitochondria are important regulators of muscle size. However, to provide a balanced 

perspective it is important to point out that other studies have found higher fusion profiles in 

muscles of humans (14), and prematurely aged mice (63), and larger mitochondria in 

muscles of old mice (75). It is interesting that studies that have reported a higher fusion 

index in muscles from old rodents as indicated by ratios of Mfn1/Mfn2 (63) or Mfn2/Drp1 

(75) did not find changes in the protein contents of Mfn1, Mfn2, Opa1 or Drp1. Thus, even 

when higher fusion indexes are recorded there still may be more fragmented mitochondria in 

aged muscles

The impact of age-associated changes in the mitochondrial dynamics of motor neurons and 

their potential role in sarcopenia have not been studied. However, dysfunction of 

mitochondrial dynamics has been reported as an early event in Amyotrophic lateral sclerosis 

(61) which is a common motor neuron disease. Furthermore, increased mitochondrial 

fragmentation has been found to precede glutamate-induced death of motor neurons (143). 

Thus, similar to mitochondrial dynamic changes that have been proposed in muscle with 

aging, motor neuron dysfunction and death may converge upon mitochondria, and 

mitochondrial dynamics may play an important role in regulation of neuronal function that 

contributes to accelerated sarcopenia.
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FOXO proteins and the ubiquitin proteasome system (UPS) in muscle 

atrophy and sarcopenia

An acceleration of protein turnover with a net loss of protein is downstream of dysfunctional 

mitochondria but this represents a major contributor to sarcopenia. AMPK activation (118) 

and the Forkhead box class O (FOXO) transcription factor family regulates the ubiquitin 

proteasome system (UPS), and the autophagy-lysosome system. FOXO proteins also 

regulate the UPS, which is a tightly regulated system responsible for normal intracellular 

protein turnover and elimination of misfolded and dysfunctional proteins (72, 74). FOXOs 

control the mammalian target of rapamycin complex 1 (MTORC1) signaling, which is 

associated with muscle hypertrophy (43) and inhibition of mitophagy in skeletal muscle 

(23). FOXO regulation also occurs by MTORC1-mediated phosphorylation of ULK1 at 

Ser757 and the subsequent activation of the ULK1-ATG13- RP6KB/ribosomal protein 

p70S6 kinase (RB1CC1) in the UPS (23). Inhibition of MTORC1 in muscles of tuberous 

sclerosis complex (TSC) knockout mice, mimic many features of aging. This includes a loss 

of muscle mass and strength and attenuated mitophagy (23). However, protein turnover is 

tightly controlled because MTORC1 is upregulated in denervation-induced muscle atrophy 

(135). Interestingly, inhibition of MTORC1 reduced muscle atrophy via suppression of E3 

ligases, Muscle RING Finger 1 (MuRF1) and MAFbx/atrogin in response to denervation 

(135).

FOXO control of the UPS is important in the final steps of degradation of proteins in 

sarcopenia. FOXOs activate lysosomal cathepsins and cytosolic protease calpains which 

progresses towards ATP-dependent UPS activation via FOXO3a associated MuRF-1 and 

MAFbx regulation [reviewed in (66, 117)]. Thus, FOXO mediated autophagy via the UPS 

may be an important regulator of muscle mass in aging. In future studies it will be important 

to determine if failure to regulate FOXO control of MTORC1 or perhaps failure of other 

proteins that are in the pathways of anabolism might contribute to increased degradation of 

muscle proteins in aging.

Conflicting data highlight the complexity of understanding the importance of the UPS and 

atrogenes in sarcopenia. For example, ubiquitin (17), 26S proteasome, poly-ubiquitinated 

proteins (3), MuRF-1 and MAFbx expression were all reported to be elevated in hindlimb 

muscles of sarcopenic rats as compared to young adult animals (3, 30). Furthermore, 

ubiquitin was found to be greater in quadriceps muscles of older (70-79 yrs old) human 

subjects as compared to young adults (20-29 yrs old) (17). In contrast, MuRF-1 and MAFbx 

expression were reported to be lower in muscles of old rats than young adult rats (35) and 

not changed with aging in vastus lateralis of humans (145). The discrepancy between these 

studies might be due to variability introduced by a low number of subjects or animals in 

each study, and perhaps by some differences in the age and sex of the subjects that were 

studied. It is also possible that activity, nutritional history, health and smoking habits etc. 

will have affected MuRF-1 and MAFbx regulation in these studies. Thus, additional studies 

are warranted to understand the importance of the UPS in sarcopenia and the role of 

mitochondria in regulating the UPS more fully.
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UPS disruption increases dysfunctional mitochondria in muscle and neural cells

Aging associated neural diseases like Parkinson’s and Alzheimer’s disease, are associated 

with high ROS levels in neural cells. Reduced mitophagy associated Pink1- and Parkin-

regulated ubiquitination of the outer mitochondrial membrane of damaged mitochondria in 

aged neurons (79, 99, 140) contribute to a greater accumulation of ROS (81). High ROS can 

damage more mitochondria in muscle and neurons (81) and potentially elevate ROS levels 

even higher. It is therefore likely that proteasome dysfunction contributes to the higher 

potential for ROS generation in muscles and neuron cells of older individuals or animals.

An association between the UPS and mitochondria occur through a splice variant of the 

master mitochondrial regulator peroxisome proliferator-activated receptor gamma 

coactivator 1-alpha (PGC-1α). PGC-1α2, PGC-1α3, and PGC-1α4, have been shown to 

stimulate protein synthesis and attenuate UPS activity in cultured myotubes and mouse 

skeletal muscle (87, 119). Furthermore, PGC-1α reduces muscle protein degradation by the 

UPS via blocking nuclear factor κB (NF-κB) and FoxO3 activity (16, 124).

Cross talk between mitochondrial regulators of autophagy and the UPS

There is considerable communication between the UPS, mitochondrial regulators and 

governors of autophagy. For example, silent mating type information regulation 2 homolog 1 

(SIRT1) appears to be part of a pathway that regulates mitophagy. This pathway also 

involves AMPK, a master energy sensor (20). AMPK increases NAD+ levels, which 

activates NAD+-dependent SIRT1. Activated SIRT1 deacetylates and activates PCG-1α 
which promotes mitochondria synthesis, assembly, growth and mitochondrial antioxidant 

production (54). Deacetylation of FOXO1 and FOXO3a by SIRT1 (19, 20) mediates 

autophagic signaling in muscle cells, and aging attenuates SIRT1, which reduces autophagy 

(134). Furthermore, overexpression of SIRT1 reduces muscle wasting and innervation-

induced muscle atrophy by deacetylation and inhibiting FOXO1a and FOXO3 thereby 

inhibiting induction of MuRF-1 and MAFbx. Future studies should establish the relative 

importance of cross talk between PGC-1α, FOXO, SIRT1 and the UPS in aging muscles and 

motor neurons and establish how this affects sarcopenia.

Communication between mitochondrial induced death signaling in muscle and motor 
neuron cells accelerate cell death in aging

Cross talk between muscle and motor neurons are important to both tissues. This has been 

known for several decades, because when toxins or other compounds are injected into 

muscles, the compounds undergo retrograde transport to the neuromuscular junction (105), 

deposit in motor neurons (11), and sometimes contributes to motor neuronal dysfunction 

(reviewed in (33, 39). This communication is also seen when spinal cord injury or 

denervation induces large-scale muscle wasting (57, 76, 107, 129, 131, 137), and 

denervation is a condition often seen as part of sarcopenia. High levels of apoptotic signaling 

(1, 129) and altered autophagy signaling (102, 103) with elevated UPS activity (137) occurs 

in muscles after spinal cord injury or denervation. Thus, we would expect that altered 

neuronal signaling is due at least in part to high ROS production and mitochondrial 

dysfunction in the muscle cells, and conversely, that neural dysfunction will be 

communicated to muscle cells (57, 100).
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The health of muscle cells also affects motor neuron health. For example, increased muscle 

activity in male G93A SOD1 deficient mice contributes to greater motor impairment and 

motor neuron accelerated death (82). This implies that a feedback loop exists that conveys 

information about muscle activity and the condition of the muscle to the motor neuron. 

Further evidence of a muscle to motor neuron feedback pathway is supported from data 

showing increases in mitochondrial succinate dehydrogenase (SDH) activity in motor 

neurons following functional overload of the plantaris hindlimb muscle in cats (25). 

Furthermore, the presynaptic motor endplate of the neuromuscular junction is critical for 

providing retrograde transport to the motor neuron (98).

Observations from aging rats suggests that mitochondria in the axon terminals of the 

neuromuscular junction undergo swelling, in part from calcium overload. The resulting 

dysfunction of mitochondrial metabolism and dynamics contributes to elevations in cytosolic 

cytochrome c and caspase-3 (39). Furthermore, inhibition of synaptic loss reduces apoptosis 

of motor neurons in a mouse model of motor neuron disease (37). Together, these 

observations confirm that the same mitochondrial-induced initiation of apoptosis signaling 

that occurs in skeletal muscle also occurs in neuromuscular junctions with aging. We 

speculate that in aging, motor neurons receive feedback from deteriorating muscles and 

neuromuscular junctions and this communication in turn feeds to a loop of accelerated 

mitochondrial-induced degenerative changes in motor neurons. Although we cannot rule out 

the possibility that mitochondrial-induced apoptotic signaling and cell death may occur 

independently in muscle and motor neuron cells in aging, we have illustrated potential 

general feedback routes between muscle and motor neuron comparts that may affect the 

other tissue type, and if this occurs, we would expect sarcopenia to be accelerated (Figure 
1). Clearly, additional studies are need to test for the presence of these potential 

communication loops in aging.

Perspectives for Future Progress and the need for Future Studies

Our hypotheses is based on some speculation and therefore additional work is needed to test 

these hypotheses. Even if the mitochondrial centered hypothesis for sarcopenia is true, there 

are unknown factors that would be important to study in order that the information can make 

a practical impact on sarcopenia. A few of these questions are: As mitochondria damage 

may occur in several different ways (e.g., ubiquination, acetylation, succinylation, ROS 

damage to inner membrane, mtDNA damage, etc.), which of these (or other pathways) are 

the most important to sensitize mPTP opening to trigger apoptosis? What is the best strategy 

to combat mitochondrial dysfunction in aging? If exercise is considered to be a tool for 

reducing mitochondrial dysfunction, how would exercise target dysfunctional mitochondria? 

Is it necessary for muscle and neuron cells to improve mitochondria number or just remove 

dysfunctional mitochondria to slow or prevent sarcopenia? These questions are explored 

below, but the lack of clear information emphasizes the need for additional studies to 

provide these answers.
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What is the most important source of mitochondrial damage that triggers apoptosis and 
cell death?

We have focused on ROS damage to the inner mitochondrial membrane (15, 21, 22, 79) and 

mtDNA damage (22, 26, 50, 63, 73) as two important ways that might impair mitochondrial 

function in aging muscles and motor neurons. However, mitochondria damage and 

modifications may also occur by posttranslational modifications such as ubiquitination (67, 

99, 140, 148), acetylation (9, 21, 28), succinylation (114, 150), and phosphorylation (51, 73, 

79). Other potential sources of mitochondrial damage include excessive calcium loading (9, 

28). Likely some damage is repairable, whereas other damage contributes to irreparable 

mPTP opening leading to nuclear apoptosis and cell death. It is important to identify which 

of these (or other pathways) provide potential reversible mitochondrial damage and which 

cause irreversible damage that promotes apoptosis.

Potential strategies using exercise and nutrition to reduce sarcopenia should focus on 
mitochondrial health

Exercise interventions and nutritional manipulations have produced some successes for 

reducing although not fully eliminating sarcopenia. A logical place to begin the search for 

ways by which exercise and nutritional approaches might better attenuate sarcopenia is by 

targeting these strategies to maximize mitochondria health. This includes identifying the 

mitochondrial modifications that are reversible by exercise and nutritional interventions in 

aging. For example, mitochondrial acetylation is reversible at least under some 

circumstances including exercise (97). Proteins like SIRT1 and SIRT3 may be important 

regulators of deacetylation in mitochondria (46, 97, 132). SIRT1 is important for 

deacetylation of mitochondrial-interacting targets like PGC-1α, FOXO3, p53 and NF-kB 

(Reviewed in (13, 110) and has been implicated in improving function and life span in aging 

(95). Furthermore, SIRT1 deacetylation of Mfn2 may be important for regulating mitophagy 

and removing dysfunctional mitochondria (132). In addition, evidence from non-muscle and 

non-neuronal cells suggests that mPTP-mediated pore opening and apoptosis can be 

inhibited by deacetylation of mitochondria by SIRT3 (46).

Exercise training and nutrition could be used as an intervention to increase SIRT1 and 

SIRT3 activity with the goal of increasing mitophagy and mitochondrial biogenesis 

pathways in muscle and neuronal cells. However, aging is associated with high cell levels of 

ROS and ROS accumulation is an inductor for mPTP opening. ROS accumulation could 

increase with exercise, and this may be why exercise has only been partially successful in 

reducing sarcopenia. We postulate that nutritional regulation of oxidants should be 

considered to minimize the additional ROS burden (58, 59, 120-122) when initiating 

exercise training in the elderly to minimize mPTP opening. Future studies could test if 

nutritional antioxidants would minimize excessive ROS accumulation, oxidant damage and 

mPTP opening in muscles and neurons when elderly persons begin an exercise program. If 

this were the case, we would predict that antioxidant supplements should be slowly reduced 

after some duration of training adaption has past, to permit cellular increases in SIRT1/

SIRT3 and antioxidant defenses for the elderly subjects without risking excessive ROS 

damage.
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How might exercise target dysfunctional mitochondria by mitophagy?

Studies in rodents have shown an increased abundance of autophagy proteins including Drp1 

and Bcl-2 and 19 kDa interacting protein-3 (Bnip3) after exercise (60, 65, 71, 78). Bnip3 

functions as a mitophagy receptor to recruit selected autophagosomes for elimination. 

Exercise-induced Pink1 activation of Drp1 (112) could also target dysfunctional 

mitochondria for mitophagy. This idea is supported by recent data from Mejias-Pena et al. 

(92) who found an increase in the protein abundance of autophagy proteins Beclin-1, Atg12, 

Atg16, and the LC3II/I ratio in blood mononuclear cells of elderly subjects after 8 weeks of 

aerobic exercise. Furthermore, 8 weeks of aerobic exercise has been reported to increase 

autophagy proteins Beclin-1, ATG7, and MuRF-1 in muscles of old mice (70). Indeed, it has 

been proposed that autophagy signals are necessary to achieve aerobic improvements in 

skeletal muscle (78). Thus, autophagy proteins may be important for an exercise-mediated 

slowing of sarcopenia. If the same processes occur in humans as is the case in rodents and 

non-human mammals (64), exercise, or nutritional intervention such as caloric restriction 

would also be expected to increase mitophagy removal of dysfunctional mitochondrial, so 

the mitochondria that remain are proportionally healthier (64).

Although clearly speculative, we postulate that in response to exercise or nutritional 

interventions, mitochondria that are the most dysfunctional would provide the greatest 

magnitude of apoptotic signaling and be more likely to attract autophagy linker proteins 

(e.g., p62) for elimination by mitophagy. Future studies are needed to identify the precise 

signatures of local death signaling around individual dysfunctional mitochondria and to 

determine which autophagy receptors are reduced by exercise or nutritional interventions 

and to examine if activated LC3-II is attenuated or eliminated once dysfunctional 

mitochondria are removed. This will take technology that is able to identify dysfunctional 

from healthy mitochondria and sample the milieu adjacent to each mitochondria.

Although speculative, exercise or nutritional modifications might target dysfunctional 

mitochondria for elimination is via an autophagy pathway called chaperone-mediated 

autophagy (CMA). CMA involves the binding of constitutive heat shock 70 to selected 

proteins, which are targeted to the lysosomal membrane where they interact with membrane 

receptor lysosomal-associated membrane protein 2A (LAMP2A). Aging causes degradation 

and availability of LAMP2A in the lysosomal membranes (69), which reduces the 

effectiveness of CMA. Future studies should evaluate the role of LAMP2A and determine if 

exercise or nutritional interventions increase CMA and target dysfunctional mitochondrial 

for mitophagy in muscles and motor neurons of old animals or humans.

Another potential way that exercise could selectively target dysfunctional mitochondria is 

through elevation of Parkin or the degradation of PARK7/DJ-1 (142). PARK7 is an 

antioxidant protein that limits mitochondrial damage in response to oxidative stress (12) and 

it regulates skeletal muscle contractile protein synthesis and hypertrophy (149). 

Overexpression of PARK7 reduces mitochondrial dysfunction under oxidative stress (142) 

which shows a direct link between autophagy and mitochondrial function. Future studies 

should identify if exercise or nutritional intervention (e.g., antioxidants, caloric restriction) 

improves PARK7 expression in muscles and motor neurons of old hosts and if the change in 

PARK7 directly mediates improvements in mitochondrial function of skeletal muscle.
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Parkin and Pink1 are attractive candidates for targeting dysfunctional mitochondria, which 

we speculate would occur in response to exercise. This is because accumulation of Pink1 at 

the outer mitochondrial membrane provides a precise mechanism to identify dysfunctional 

mitochondria from healthy ones. Pink1 promotes Parkin recruitment to activate mitophagy 

and UPS signaling. However, overexpression of PGC-1α was reported to attenuate Pink1 

levels in response to remobilization of muscle (67). As we would expect exercise to increase 

mitochondrial biogenesis through the PGC-1α axis, it is not known if Pink1 plays an 

important role in an exercise-mediated increase in mitophagy of muscle cells and motor 

neurons of aged humans or rodents.

The potential role for mitochondrial biogenesis to reduce sarcopenia

In addition to increasing mitophagy, exercise and nutritional interventions might be expected 

to increase mitochondrial biogenesis and therefore replace the dysfunctional mitochondria 

that are removed by mitophagy. Both endurance and resistance exercise have been associated 

with elevated mitochondrial biogenesis (93, 109). Relative mitochondrial activity 

corresponds with fractional protein synthesis rates, because many proteins complete their 

translation at mitochondria (84). There is an assumption that endurance and strength training 

by older adults induces mitochondrial biogenesis, but given the propensity for mtDNA 

damage and high ROS levels in aging, this remains uncertain. If newly synthesized 

mitochondria were generated in exercised muscles and motor neurons from aged hosts, but 

the new mitochondrial were unhealthy (e.g., incompletely folded proteins), the mitophagy 

signals (from exercise or nutritional interventions) would need to be even higher to remove 

these newly formed but dysfunctional mitochondria. Clearly, additional work is needed 

before we fully understand if exercise or nutritional interventions synthesize completely 

functional and healthy mitochondria in aged hosts, or if the basal environment of oxidative 

stress etc. results in a new population of unhealthy mitochondria that must also be targeted 

for mitophagic removal in the elderly.

We know that exercise downregulates apoptosis and upregulates mitophagy (4, 52, 128, 

146). Nevertheless, future studies should explore the mechanisms by which exercise 

activates mitophagic, and attenuates apoptotic, and necrotic signaling pathways in muscle 

cells and motor neurons of older individuals (4, 47). We recognize that increased apoptosis 

and reduced mitophagy have not been identified as an aging-related condition in every study, 

but in our view, there is sufficient data to suggest that this is probably an underlying process 

for most cells in aging. Nevertheless, some of the mitochondrial mediated pathways leading 

to motor neuron death in aging have not received much attention and should be the 

investigation of future work.

Future experiments should also identify novel proteins and protein functions that better 

define the communication of dysfunctional signaling between motor neurons and muscle 

cells in aging. Modern genetic approaches, including RNA-seq and proteome pathway 

analysis, will likely be required. It will also be important to find out if it is possible to 

reverse the process responsible for regional disassembly in the absence of mitochondrial 

biogenesis, and then to focus on molecular events and targets in muscle and motor neurons 

that are upstream of this point. In the quest to attenuate sarcopenia, it will also be important 
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to understand the limit for mitochondrial health to impact satellite cell function for repairing 

and replacing sections of fibers or whole fibers, as satellite cells are affected adversely by 

aging, mitochondrial damage and death signaling (4, 6, 7, 144).

Conclusions

Mitochondrial-regulated apoptosis provides a strong signaling network that contributes to 

sarcopenia (8). We have taken the perspective that both neural and muscle components 

contribute to muscle wasting but mitochondrial health is central to initiating and 

perpetuating the signal for sarcopenia. We argue that mitochondrial dysfunction leads to 

increased mPTP opening and initiates apoptotic signaling in muscle cells and motor neurons. 

In aging, this is not corrected because mitophagy is inhibited. Proteasome activation leads to 

removal of cellular contents close to the site of dysfunctional mitochondria, and this cellular 

dismantling expands proportionally to the accumulation of dysfunctional mitochondria. 

Although aging induces wide spread systemic mitochondrial dysfunction, perhaps as a result 

of high ROS or accumulation of mtDNA damage, we have considered that retrograde and 

anterograde communication likely exists between dying muscle and motor neurons, which 

may accelerate death in both compartments.

Additional studies are needed to establish if exercise and nutrition can be used to effectively 

improve mitochondria health and reduce sarcopenia in aging populations. In our view, 

targeting dysfunctional mitochondria and increasing healthy mitochondria in motor neurons 

and muscle fibers provide the best strategy for reducing sarcopenia.
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Key Points

• Aging-induced mitochondrial insult in muscle and neurons (e.g., oxidative 

stress, DNA damage, posttranslational modifications) results in mitochondrial 

permeability transition pore opening.

• Mitophagy signaling normally removes dysfunctional mitochondria, but this 

process is impaired in aging muscle cells and motor neurons.

• Release of the contents from dysfunctional mitochondria to the cytosol 

initiates local apoptotic signaling, that if left unchecked activates nuclear 

fragmentation, cell death and proteasome activation for cell removal.

• Cross talk between dysfunctional muscle and motor neuron cells exacerbates 

the sarcopenic loss of muscle mass and function.

• To prevent sarcopenia, future studies should identify strategies that reverse 

mitochondrial modifications to prevent opening of the mitochondrial 

permeability pore and increase mitophagy in muscle and neuronal cells.
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Figure 1. Mitochondrial Regulated Sarcopenia
Induction of mitochondrial stress (lightning bolt) can result in dysfunctional mitochondria. 

Damaged mitochondria are engulfed in an autophagosome membrane and removed by 

mitophagy signaling in healthy young muscle and motor neurons. However, aging is 

associated with increased ROS and other mitochondrial stresses, which enhance mPTP 

opening. Release of the mitochondrial contents to the cell cytosol induces an apoptotic 

cascade ending with DNA fragmentation and removal of nuclei. Sufficient nuclear death in 

muscle cells will result in the death and removal of the entire muscle cell. Similarly, motor 

neuron death occurs when apoptosis removal of the alpha motor neuron nucleus occurs. The 

interdependence of muscle cells and motor neurons suggests a potential feedback loop 

(anterograde and retrograde) communication between the muscle and the motor neuronal 

compartments, which exacerbates death in both compartments. Death in these cell 

compartments leads to loss of muscle mass and function in aging. Thus, dysfunctional 

mitochondria provide the signal to initiate sarcopenia.

Alway et al. Page 23

Exerc Sport Sci Rev. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Hypothetical model for eliminating muscle fibers in sarcopenia via localized 
mitochondrial associated dysfunction – mitophagy and apoptosis
A. In healthy muscle, activation of mitophagy eliminates dysfunctional nuclei so that they 

cannot continue death signaling. B. Dysfunctional mitochondria that leak their contents to 

the cytosol will occur in muscle that has received a significant mitochondrial stress (e.g., 

ROS, inflammatory mediators etc.). C-D. This initiates the apoptotic signaling cascades. E-
F. If the dysfunctional mitochondria are not eliminated, apoptotic death signaling may be 

activated to eliminate myonuclei and this may concurrently or independently result in wide-

spread activation of autophagy and the ubiquitin ligase pathway and also, trigger the 

necrosis signaling pathway to remove muscle proteins, mitochondria and nuclei within the 

domain of the initial dysfunctional mitochondria (G-H). I-J. The extent of dysfunctional 

mitochondrial will extend along the mitochondrial reticular network and affect the function 

of other mitochondria near the dysfunctional mitochondrial. The wider accumulation of 

dysfunctional mitochondria will perpetuate signaling for apoptosis, which will remove 

nuclei from a larger area. The greater nuclear loss will be followed by elevated proteasome 

signaling to eliminate contractile and non-contractile tissue in the fiber segment that is 

associated with dysfunctional mitochondria and apoptotic signaling. This cellular removal 

will result in eventual elimination of the portion of the fiber in the area of the dysfunctional 

mitochondrial and potentially the entire fiber. We further hypothesize that the initiation of 

the disassembly and removal of the fiber could be blocked if the dysfunctional mitochondria 

which initiate the process, are removed or the damage to mitochondria reversed (e.g., via 
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exercise and nutritional interventions) and if irreparable damaged mitochondria are replaced 

by healthy mitochondria.
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