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Abstract

Thiol redox status is an important physiologic parameter that affects the success or failure of 

cancer treatment. Rapid scan electron paramagnetic resonance (RS EPR) is a novel technique that 

has shown higher signal-to-noise ratio than conventional continuous-wave EPR in in vitro studies. 

Here we used RS EPR to acquire rapid three-dimensional images of the thiol redox status of 

tumors and normal tissues in living mice. This work presents, for the first time, in vivo RS EPR 

images of the kinetics of the reaction of 2H,15N-substituted disulfide-linked dinitroxide (PxSSPx) 

spin probe with intracellular glutathione. The cleavage rate is proportional to the intracellular 

glutathione concentration. Feasibility was demonstrated in a FSa fibrosarcoma tumor model in 

C3H mice. Similar to other in vivo and cell model studies, decreasing intracellular glutathione 

concentration by treating mice with L-buthionine sulfoximine (BSO) markedly altered the kinetic 

images.
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1. Introduction

Clinical evidence suggests that thiol redox status1–3 is a crucial physiologic endpoint, which 

may inform redox-status-modulating therapies leading to more successful cancer treatment. 

The heterogeneity of tumor environmental parameters (e.g., oxygen and pH)5–9 suggests that 

physiological imaging could be clinically beneficial. An imaging modality that could define, 

in an individual patient, the redox status of the tumor microenvironment would allow the 

selection of individuals who would benefit from local cancer therapies that would rebalance 

the tumor microenvironment by targeting resistant tumor regions. In contrast, patients whose 

tumor redox status indicates that such therapies are likely to be ineffective would avoid 

potentially toxic treatment.

The thiol-disulfide balance determines the intracellular redox microenvironment. This 

balance is essential for maintaining proper cellular function, and is therefore tightly 

regulated. Cellular thiols such as glutathione (GSH), and cysteine side chains on proteins 

(PSH), which coexist with their disulfide counterparts (GSSG and PSSP) comprise the 

cellular pool of redox-active sulfhydryls. The GSH/GSSG couple constitutes close to half of 

the thiol/disulfides in the cell and is thus an appropriate measure of thiol/disulfide balance.

In addition to its role in physiological regulation, GSH is also critical in maintaining cell 

viability by detoxifying xenobiotics that would otherwise compromise cellular function10–12. 

Moreover, GSH is the physiologic cofactor for GSH peroxidases, which reduce hydrogen 

peroxide and organic hydroperoxides to water and alcohols, respectively13,14.

Current cancer treatment commonly comprises radiotherapy with ionizing radiation, which 

generates highly reactive free radicals, and chemotherapy with cytotoxic agents. Cellular 

thiols can act as cofactors for detoxifying enzymes; therefore they can antagonize both of 

these therapeutic approaches and thus lead to unsuccessful clinical outcomes2. This 

understanding has led to strategies to control GSH levels in tumor cells and thereby enhance 

cell killing2,15,16.

Therefore, the ability to assess the intracellular thiol-disulfide balance is undoubtedly critical 

in predicting responsiveness of cancers to therapy.

We have recently synthesized a water-soluble, disulfide-linked dinitroxide (hereafter 

“disulfide-dinitroxide”) in both the normoisotopic and 2H,15N-substituted forms4. In this 
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report, the term “PxSSPx” designates the 2H,15N-substituted disulfide-dinitroxide. The 

disulfide-dinitroxides and the corresponding monomeric forms (generated through cleavage 

by thiols) have been characterized by EPR spectroscopy at X-band, L-band, and at 250 

MHz4,17. Importantly, the rate of disulfide cleavage in living cells is markedly decreased 

after treatment with L-buthionine sulfoximine (BSO, a specific inhibitor of GSH 

biosynthesis), which suggests that the disulfide-dinitroxides could be useful as probes of 

thiol redox status in vivo. In the present study, we introduce PxSSPx into leg-borne tumors 

in mice, where intratumoral thiols can cleave the dinitroxide into monomeric forms (Fig. 1), 

and monitor the local progress of the cleavage reaction with rapid-scan EPR imaging at 250 

MHz.

2. Results

2.1. Spectroscopic measurements of murine tumors at 250 MHz

After intratumoral injection, cleavage of PxSSPx into PxSH proceeded rapidly. To capture 

the initial phase of the cleavage reaction, data acquisition was initiated and then the spin 

probe was injected in situ. The time of injection was determined by post-acquisition 

inspection of the EPR spectra. Each cycle of data acquisition comprised a 4-second single 

spectroscopic trace followed immediately by a 31-second 3D rapid-scan (RS) image; this 

cycle was repeated continuously. The duration of the experiment was ~ 1 h, so that both 

cleavage and clearance of the spin probe could be captured. Single spectral traces and RS 

image projections had the same 6mT field sweep that encompassed the full EPR spectra of 

PxSSPx and its cleavage product.

Fig. 2 shows snapshots of the evolution of the EPR spectrum. The spectrum in Fig. 2A (the 

open circles), acquired within 30 s after injection, contains primarily the spectroscopic 

signature of PxSSPx. This interpretation was confirmed by spectral simulation (solid curve 

in Fig. 2A). The spectrum in Fig. 2B, acquired 175 s after injection, is a superposition of 

PxSSPx and PxSH spectra. The spectrum in Fig. 2C, acquired after ~30 min post-injection, 

is attributable to PxSH, as confirmed by spectral simulation (solid trace in Fig. 2C). To 

enable analysis of kinetics, the spectrum recorded at every time point was decomposed into a 

weighted superposition of the simulated PxSSPx and PxSH spectra, normalized to the area 

under the curve. The weighting factors are thus proportional to the detected number of spins. 

The Hamiltonian parameters for PxSSPx (see the caption of Fig. 2) were taken from the 

phantom study, while the linewidth was determined from the fitting of the first traces in the 

time sequence (Fig. 2A). The simulation parameters for PxSH were derived from the traces 

containing primarily this specie (Fig. 2C). The time dependence of the weighting factors is 

presented in Fig. 2D: PxSSPx (triangles) decreases monotonically, while PxSH rises initially 

and then declines.

2.2. Kinetics simulation

PxSSPx and PxSH equilibrate between extracellular and intracellular compartments rapidly 

relative to the time scale of the experiment4; therefore, assuming that cellular thiol 

concentration, [RSH], remains constant, the time course of cleavage can be analyzed by a 

simple kinetic model incorporating two processes: 1) cleavage of PxSSPx by intracellular 
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thiols, which decreases PxSSPx and increases PxSH; and 2) clearance of PxSSPx and PxSH 

from the detection volume of the resonator. Process 1 is described by Eqs. 1 and 2.

[1]

[2]

Here  is the initial number of PxSSPx molecules; [RSH] is the concentration of 

glutathione; k is the bimolecular rate constant of PxSSPx cleavage by RSH. Since a number 

of pathways leading to the disappearing of the observable spins are possible in vivo, we 

assume that the total number of spins in the outcome of the cleavage reaction is different 

from  by a “spin count” factor of a ≤ 1. The observed cleavage rate constant in the 

experiment is the pseudo-unimolecular rate constant kobs = k[RSH]. Additional kinetic 

processes include the clearance of PxSSPx and PxSH. Although the two species could be 

cleared at somewhat different rates, the nature and quality of the data likely would not 

permit estimation of two independent rate constants. Therefore, we introduce a single 

clearance rate constant kclr to arrive at the final formulae for the simplest kinetic model:

[3]

[4]

Table 1 contains the results for 3 representative experiments. As can be seen in all 

experiments the outcome of cleavage produced a spin count factor a < 1. This is different 

from the in vitro experiment (data not shown) where a ≈ 1 was observed. A kobs values of 

2.0·10−3 s−1 to 3·10−3 s−1 were observed, while clearance rates of 0.4·10−3 to 1.0·10−3 s−1 

were typical.

In a separate limited set of spectroscopic measurements, we attempted determination of kobs 

with injections having 50% and 75% lower spin probe concentration. We observed a slight 

(2.85(1.0) × 10−3 s−1) decrease in PxSH kobs; however, the lower SNR prevented us from 

making a conclusive determination of the effect of spin probe concentration on the results.

2.3. Rapid Scan imaging

The imaging parameters were chosen to accommodate rapid signal dynamics. We were not 

able to perform 4D spectral-spatial imaging, because imaging speed would have been slower 

by more than 10-fold. A smaller number of image projections (96) further accelerated 

acquisition. Since 3D imaging focuses on a single point (magnetic field) in the EPR 
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spectrum, we selected the field position to correspond to the high-field peak (marked with 

asterisk in Fig. 2C). A 3D image can be reconstructed without artifacts from a narrow and 

isolated spectral feature. The width of the feature should be small comparable to the line 

broadening produced by the gradient and other features should not contribute to the EPR 

spectrum obtained under the gradient. The upper field PxSH spectrum feature marked in Fig. 

2C satisfies this requirement when limited gradient strengths are used. The gradient strength 

below 0.9 mT/cm applied to objects smaller than ~2 cm does not force signals from upper 

and lower spectral features to overlap (0.9 mT/cm*2 cm < 2.04 mT). The PxSSPx spectrum 

(Fig. 2A) does not satisfy the above symmetry requirement and thus could not be reliably 

imaged using 3D methodology. Fortunately, the linewidth of the PxSSPx signal and its high-

field features were considerably broader than that of the PxSH spectrum. Moreover the 

applied gradient did not contribute much to this linewidth and projection filtration used in 

the image reconstruction process effectively eliminated it from the resulting image., The 

residual contribution of PxSSPx to spectral intensity was small and thus was neglected. 3D 

images of PxSH taken every 35 seconds yielded detailed kinetics data in every voxel. Eq. 4 

was used to fit the time dependence of voxel intensity.

Fig. 3A shows a representative slice from the cleavage kinetics image; the magenta outline 

shows the tumor border determined from a registered MRI image. Confinement of the image 

to the tumor area is consistent with injection of the spin probe directly into the tumor. When 

the tumors were injected with PxSSPx and imaged, and the same protocol was repeated 6 or 

24 h later, the two sequential imaging episodes yielded essentially similar kinetic 

parameters. The mode of the kobs distribution in the image is somewhat higher than kobs 

determined from the spectroscopic data, which can be explained by different image fitting 

procedure that uses Eqn. 4 only.

To test the sensitivity of the methodology to changes in [RSH], imaging was repeated 24 h 

after treating mice with L-buthionine sulfoximine (BSO). BSO is a highly selective and 

potent inhibitor of γ-glutamylcysteine synthetase, the rate-limiting enzyme in the GSH 

biosynthetic pathway, and is thus highly effective in attenuating intracellular GSH levels18. 

Because GSH constitutes a significant fraction of total cellular thiols (Hansen et al. 2009), 

lowering intracellular GSH concentration is expected to slow the cleavage reaction. Image 

and rate distributions in Fig. 3B show significantly reduced cleavage rates and, by inference, 

reduced cellular thiol content. Considerable diminution of spin probe clearance rates after 

BSO injection was also observed (see Figs. 3C and 3D). When cellular GSH content is 

markedly decreased by BSO treatment, intracellular cleavage of PxSSPx slows and does not 

yield PxSH exclusively (as represented in Fig. 1). Rather, the intermediate, PxSSG, can 

accumulate. But PxSSG, with three charged functional groups in its GSH moiety, is 

membrane-impermeant and thus trapped in the cell, which would contribute to slowed 

clearance from the tumor. In separate control experiments where BSO treatment was 

omitted, essentially similar kinetic parameters were determined from the initial and 24-hour 

images.
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3. Discussion

Signal to noise ratio (SNR) is the major factor that limits EPR imaging. RS EPR is an 

enhancement of CW methodology19,20 that offers a solution to this problem. Two key 

features of RS EPR are direct detection of the EPR signal (no magnetic field modulation) 

and scanning the complete EPR line at fast rates. Although rapid passage scanning rates 

were not achieved for the nitroxides used in this study, direct detection and full spectrum 

magnetic field sweep achieved sufficient enhancement in signal-to-noise ratio (SNR) and 

reduction of acquisition time relative to CW to enable the imaging of PxSSPx cleavage by 

thiols in tumor cells.

Spectroscopic results

Spectroscopic results can be interpreted using the rate constant for cleavage of PxSSPx by 

RSH at 37 °C, estimated from in vitro measurements4. The bimolecular rate constant is 

0.747 M−1s−1 at pH 7.2 and 37 °C which, in combination with our observed cleavage 

kinetics yields an estimate of [RSH] 2.7 to 4.8 mM in untreated control tumors and [RSH] 

1.5 to 2.1 mM in BSO-treated tumors. These values may be compared with the value 

determined in different murine mammary tumors by an essentially similar technique: ~10 

mM21.

Injection of spin probe directly into a tumor has advantages and disadvantages. On one hand, 

spin probe delivery was very efficient and toxicity was low owing to the low dosage per 

body weight. On other hand, the procedure was somewhat invasive, and may have had a 

confounding effect on EPR signal dynamics due to clearance from the region of observation. 

The invasiveness was reduced by using 30 G needles. In light of the relatively fast kinetics of 

spectral changes (on the order of 200 s) comparable to the spin probe redistribution time 

after iv injection, other modes of spin probe delivery are, at this time, impractical.

The analysis of EPR spectra demonstrates that only 40–60% of the overall amount of spin 

probe is converted to PxSH (a < 1). This could be explained by a bioreduction of spin probes 

or spin probe binding to tissue components and consequent broadening of the spectrum.

Imaging methodology

To accelerate image acquisition to image the kinetics, we had to sacrifice full spectrum 4D 

spectral-spatial imaging in favor of rapid 3D spatial imaging of a single spectral point, which 

is sensitive to a spectral feature primarily arising from the PxSH component. This had two 

consequences: (i) we monitored kinetics of PxSH with some contamination from PxSSPx 

signal; and (ii) we lost the information about PxSSPx kinetics. Was this loss of information 

significant? We did not find in the literature a detailed comparison of in vivo kinetics for 

both the disulfide-linked dinitroxide and the cleaved monomeric nitroxides. Existing studies 

did not include the complete analysis of the spectral shapes, but instead focus on the spectral 

features of the monomeric form4,22. Therefore, the approach used in the present study may 

be deemed acceptable until 4D imaging speed is accelerated by ~30-fold to enable the 

kinetics of cleavage to be fully characterized.
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Quantitative GSH measurements

One of the factors that can affect accuracy of RS EPR imaging of thiol redox status is the 

consumption of cellular thiols due to reaction with spin probe, which would cause [RSH] to 

decline during the course of the experiment. The spin probe concentration as reported by 

imaging was 3 – 7 mM. Therefore, spin probe concentration was comparable to [RSH], 

which challenges the kinetic model used in this study. Declining [RSH] consequent to RSH 

consumption would lead to under-estimation of the cleavage rate constant. Accounting for 

the [RSH] depletion will require kinetic model considerably more complicated than the one 

presented in this study.

Another important factor that will affect the accuracy of thiol concentration measurements is 

pH. The fraction of thiol that exists as the nucleophilic thiolate species and contributes to 

PxSSPx cleavage is pH-dependent. Taking GSH as a specific example, a shift in pH from 7.2 

by ±0.1 changes the concentration of the nucleophilic species by > 20% (see Fig. S1 and 

explanatory text in Supporting Information). Because thiol concentration is much higher 

inside cells than outside, cleavage is expected to be principally an intracellular process. 

Furthermore, acidification of the extracellular compartment in tumors means that what little 

extracellular thiol exists is essentially 100% in the non-nucleophilic form, and thus 

ineffective in cleavage. Therefore, it is safe to conclude that cleavage of the disulfide-linked 

spin probe occurs intracellularly. Although intracellular pH in tumor cells is typically found 

to be close to 7.2, any intracellular pH shift would nonetheless affect the estimated 

intracellular thiol concentration. Knowledge of the actual intracellular pH would thus 

improve thiol quantitation23. Availability of pH sensitive spin probes makes quantitative 

GSH measurement highly possible. A potentially desirable option is a dual-function probe 

that simultaneous yields information on pH and thiol redox status, as has been proposed21.

4. Summary

In this work, we apply RS EPR for rapid 3-dimensional spatial imaging to obtain in vivo 

images of thiol redox status, specifically the estimation of intracellular thiol concentration in 

vivo. This technology enabled remarkably fast (30 second) 3D images and enabled 

resolution of kinetic processes occurring on the 100-second time scale. Using PxSSPx spin 

probe we imaged thiol content in mouse tumors and demonstrated sensitivity of our 

methodology to alterations of intracellular thiol concentration. The work represents the first 

success in achieving kinetically resolved thiol redox images on the physiologically relevant 

timescales. It also points out the enabling capability of RS EPR imaging.

5. Experimental

5.1 Instrumentation

A Rapid Scan RF bridge redesigned from a cw bridge24 to have higher dynamic range and 

equipped with higher power 1W RF amplifier (ZHL-1A, Mini-Circuits, Brooklyn, NY) was 

used. We used a modified version of transmission bimodal cross-wire resonator25 with the 

RF shield installed between the magnetic field scan coils and resonator, demonstrated to 

reduce baseline through long experience at the University of Chicago. The RF shield was 

Epel et al. Page 7

J Magn Reson. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



wound using 20 gauge wire to avoid induction of eddy currents and covered with conducting 

silver paint. A resonated magnetic field sweep driver was used to generate sinusoidal 

sweep26. The gradient and magnetic field system is described elsewhere27. SpecMan4EPR 

software version 2.1 controlled the imager28. The signals were filtered using Model 3955 

filter (Kron-Hite, Brockton, MA) and detected using Acqiris AP235 (Keysight, Santa Rosa, 

CA) digitizer and averager.

For imaging we used 260 mW of RF power. The isolation of the excitation and detection 

portions of the bimodal resonator exceeding 55 dB was sufficient to keep the low noise 

amplifier in the linear regime. Each time trace acquired with 100 ns dwell time contained 

about 5 periods of rapid scan signal. 15000 traces were averaged for each spectrum. Scan 

frequency of 3.26 kHz and scan width of 7 mT was used for all measurements.

5.2. Rapid Scan imaging protocols

A filtered back projection (FBP) imaging protocol with 12×12 spatial angles (equal solid 

angle sampling) was used29. 94 projections and 2 zero gradient traces were acquired for each 

image. Zero traces were used to establish scanning and RF frequency phases. After 

deconvolution30,31, parts of rapid scan traces used for reconstruction were down-sampled to 

FBP requirements29. Only the absorption signal component was used. 32×32×32 spectral-

spatial images obtained upon FBP reconstruction were stacked together and each voxel 

intensity was fitted to Eq. 4 using MATLAB non-linear optimization routine. Only data 

above 15 % amplitude threshold were displayed and used for statistics.

5.3. Spin probe

1,6-bis([2H15,15N]2,2,5,5-tetramethylpyrrolidin-1-oxyl-3-carboxamido)-3,4-dithiahexane 

(PxSSPx) was synthesized by published procedures4; its solubility in water is 35.0 ± 0.9 

mM. A 20 mM solution was prepared in PBS containing 5% ethanol for intratumoral 

injection. The solution was injected through 30G needles in 2 parallel tracks. Injection was 

completed in < 5 s.

5.4. EPR spectra simulations

EPR spectra of PxSSPx and its cleaved, monomeric product were simulated using Easyspin 

software (www.easyspin.org). The complexity of multiple conformations of PxSSPx in 

solution was ignored because the simulation aimed to aid spectral decomposition rather than 

to obtain precise simulation parameters.

5.5. Nonlinear least-squares fitting of kinetic model

Standard nonlinear least-squares techniques were used to fit the kinetic model (Eqns 3 and 

4) to the data. Fitting of Eqn 4 is straightforward. For the purpose of curve fitting, Eqn 3 was 

written in the equivalent form,  to allow adjustment of the two 

rate constants. To test the robustness of fit, each kinetic data set was used to generate three 

separate data subsets: 1) the set of odd-index data, 2) the set of even-index data, and 3) the 

intact full data set. The appropriate kinetic equation (3 or 4) was fit to the three data subsets, 

and the three corresponding values of the rate constants (kobs or kclr) were used to compute a 
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mean and standard deviation (s). Generally, fits to Eqn 4 were more less variable, with s 
being 1 – 16% of the mean rate constant, whereas fits to Eqn 3 showed greater variability, 

with s ranging from ~3% to being comparable to the magnitude of the mean rate constant. 

This greater variability is not surprising because in Eqn 3, kobs and kclr are not truly 

independent and thus are more sensitive to shifts in the data set (i.e., whether the odd-

indexed, even-index, or full data set is being fit). From the mean rate constants and their 

standard deviations obtained by fitting Eqns 3 and 4, , the final 

weighted average rate constant (  and estimated error ( ) were computed: 

and . The value of the parameter a in Eqn 4 was obtained analogously. 

OriginPro software (OriginLab Corp. Nothampton, MA) was used for curve fitting analysis.

5.6. Animal preparation and imaging protocol

FSa fibrosarcoma cells (2×105 – 106 cells) were injected intramuscularly into the right 

gastrocnemius muscle of 6 – 8 week old female C3H/HeN mice (Harlan Sprague-Dawley, 

Indianapolis, IN). The tumor was grown to 8 – 10 mm mean dimension. During the imaging 

preparations and actual imaging, the mouse inhaled a 1.0 – 2.0% isoflurane atmosphere 

adjusted to maintain steady sleep. The mouse's rectal and surface abdominal temperatures 

were monitored. IR radiant heating or external fan were adjusted to maintain the mouse's 

core temperature within the range from 36 °C to 38 °C. The general condition of the animals 

and the depth of anesthesia were optimized based on breathing pattern, maintained at 100 

BPM. The tumor was immobilized in the resonator by a cast of vinyl polysiloxane dental 

impression material (GC Dental Products, Kasugai, Japan)32. For the purpose of EPR and 

MRI image registration, 3 fiducials were placed into the cast. After the second EPR image 

mice were sacrificed, and T2-weighed anatomical MRI enabled tumor localization. A total 

of 2.5 mg (100 mg/Kg, 200 µl of 20 mM solution) of the PxSSPx spin probe was injected in 

each animal; 8 animals were imaged. In addition we have tested two animals with injections 

of 5 mM and 10 mM solutions. The former did not permit imaging due to low SNR, while 

the 10 mM injection gave results similar to those obtained with 20 mM injection.

To change the tumor thiol redox state, L-buthionine sulfoximine (BSO), (THERMO SCI 

ACROS, Geel, Belgium) was applied as follows: The initial dose consisted of two injections, 

a 5 mg/kg BW ip injection (saline solution), and a 1 ml of 4 mM BSO solution sc injection. 

The animal was then allowed to recover from anesthesia overnight with a source of drinking 

water available ad libitum containing 20mM BSO. 18 h after first BSO application a second 

BSO dose was given as 5 mg/kg BW ip injection (saline solution). The second EPR imaging 

session was completed 24 h after first BSO injection.

All animal experiments were done according to the USPHS “Policy on Humane Care and 

Use of Laboratory Animals,” and the protocols were approved by the University Of Chicago 

Institutional Animal Care and Use Committee (ACUP No. 71697). The University of 

Chicago Animal Resources Center is an Association for Assessment and Accreditation of 

Laboratory Animal Care–approved animal care facility.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Thiol redox status imaging using EPR

• Rapid Scan EPR imaging in vivo
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Figure 1. 
Left. Schematic of the reaction of the disulfide-dinitroxide probe PxSSPx (1) with a thiol 

(RSH), leading to cleaved monomeric products, PxSH (2). Right. 251.1 MHz in vitro rapid-

scan EPR spectra of PxSSPx (1) and PxSH (2) after cleavage of PxSSPx by RSH.
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Figure 2. 
250.8 MHz rapid-scan spectra of PxSSPx after injection into a tumor in vivo. Relative 

amplitudes are preserved. A. Immediately after injection. Circles represent data; solid line is 

simulated spectrum with 15N hfi A = 2.04 mT and exchange coupling J = 110 MHz. B. At 

175 s post-injection. C. At 1850 s post-injection. Solid line is simulated spectrum with 15N 

hfi A = 2.31 mT. D. Time dependence of the PxSSPx (triangles) and PxSH (circles) spin 

numbers; solid curves are simulations with  and 

 (see main text for details).
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Figure 3. 
Sagittal slices and histograms of cleavage rate kobs images in FSa tumor A. before; and B. 

24 h after application of BSO. Magenta outline shows the tumor border as obtained from a 

registered MRI image. The histogram shows kobs in all voxels of the tumor. Sagittal slices 

and histograms of clearance rate kclr, images in FSa tumor C. before; and D. 24 h after 

application of BSO. Magenta outline shows the tumor border as obtained from a registered 

MRI image. The histogram shows kobs, in all voxels of the tumor.
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