
Clinical and Translational Science Institute Centers 

1-1-2017 

Targeting Intrinsic and Extrinsic Vulnerabilities for the Treatment Targeting Intrinsic and Extrinsic Vulnerabilities for the Treatment 

of Multiple Myeloma of Multiple Myeloma 

Nagaraju Anreddy 
West Virginia University 

Lori A. Hazlehurst 
West Virginia University 

Follow this and additional works at: https://researchrepository.wvu.edu/ctsi 

 Part of the Medicine and Health Sciences Commons 

Digital Commons Citation Digital Commons Citation 
Anreddy, Nagaraju and Hazlehurst, Lori A., "Targeting Intrinsic and Extrinsic Vulnerabilities for the 
Treatment of Multiple Myeloma" (2017). Clinical and Translational Science Institute. 497. 
https://researchrepository.wvu.edu/ctsi/497 

This Article is brought to you for free and open access by the Centers at The Research Repository @ WVU. It has 
been accepted for inclusion in Clinical and Translational Science Institute by an authorized administrator of The 
Research Repository @ WVU. For more information, please contact ian.harmon@mail.wvu.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The Research Repository @ WVU (West Virginia University)

https://core.ac.uk/display/288225674?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/ctsi
https://researchrepository.wvu.edu/med_centers
https://researchrepository.wvu.edu/ctsi?utm_source=researchrepository.wvu.edu%2Fctsi%2F497&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/648?utm_source=researchrepository.wvu.edu%2Fctsi%2F497&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/ctsi/497?utm_source=researchrepository.wvu.edu%2Fctsi%2F497&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ian.harmon@mail.wvu.edu


Targeting intrinsic and extrinsic vulnerabilities for the treatment 
of multiple myeloma

Nagaraju Anreddy and Lori A Hazlehurst*

Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 
Morgantown, 26506

Abstract

Multiple myeloma (MM) is a malignant plasma cell disorder, clinically characterized by osteolytic 

lesions, immunodeficiency, and renal disease. Over the past decade, MM therapy is significantly 

improved by the introduction of novel therapeutics such as immunomodulatory agents 

(thalidomide, lenalidomide, and pomalidomide), proteasome inhibitors (bortezomib, carfilzomib, 

and ixazomib), monoclonal antibodies (daratumumab and elotuzumab), histone deacetylase 

(HDAC) inhibitors (Panobinostat). The clinical success of these agents has clearly identified 

vulnerabilities intrinsic to the MM cell- as well as targets that emanate from the tumor 

microenvironment. Despite these significant improvements, MM remains incurable due to the 

development of drug resistance. This perspective will discuss more recent strategies which take 

advantage of multiple targets within the proteome recycling pathway, chromatin remodeling, and 

disruption of nuclear export. In addition, we will review the development of strategies designed to 

block opportunistic survival signaling that occurs between the MM cell and the tumor 

microenvironment including strategies for inhibiting myeloma-induced immune suppression. It 

has become clear that MM tumors continue to evolve on therapy leading to drug resistance. It will 

be important to understand the mechanism and additional vulnerabilities that occur due to the 

development of clinical resistance.
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Introduction

Multiple myeloma (MM) is a plasma cell malignancy clinically characterized by greater than 

10% bone marrow (BM) resident plasma cells and increased monoclonal protein in the 

blood and/or urine. MM leads to end-organ damage diseases such as anemia, hypocalcemia, 

renal insufficiency, or osteolytic bone lesions. Monoclonal proliferations of plasma cells 

residing in the bone marrow can be detected at a pre-malignant stage referred to as at as 

monoclonal gammopathy of undetermined significance (MGUS). Paradoxically, MGUS 
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lacks the clinical characteristics of MM, yet can harbor the same genetic alterations of 

symptomatic myeloma [Brousseau et al., 2007]. The rate of development of myeloma from 

MGUS is very low, and it has been estimated to be 1% per year. The introduction of several 

novel agents such as immunomodulatory (lenalidomide, and pomalidomide) agents which 

target the bone marrow microenvironment (BME), proteasome inhibitors (bortezomib, 

carfilzomib, and ixazomib), monoclonal antibodies that target cell surface receptors 

(daratumumab and elotuzumab), and histone deacetylase (HDAC) inhibitors (Panobinostat) 

significantly improved outcomes for patients with MM. The promise of these agents led to a 

rapid explosion of inhibitors, which target these pathways. The goal of this perspective is to 

discuss novel therapeutic strategies which target pathways intrinsic to MM cell (ie., i: 

protein homeostasis; ii: epigenetic regulation; iii: disruption of nuclear export homeostasis) 

and the supportive BME (i:adhesion receptors; ii: chemokines/cytokines and iii: immune 

suppression). Many of these strategies are in early clinical development and efforts to define 

optimal combination strategies are ongoing to provide MM patients with better outcomes.

1.0: Agents that target protein homeostasis

Myeloma cells are terminally differentiated plasma cells, and as such have an efficient and 

well-developed secretory machinery to support the physiological function of antibody 

production of the plasma cell in the humoral immune response. However, the function of 

secreting high levels of immunoglobulin occurs at a cost to the cell and contributes to the 

relatively short life span of a normal plasma cell [Smith et al., 1996]. Myeloma cells can 

tolerate the consistent production of secretory antibodies; however, coordinated and coupled 

degradation/recycling of proteins are essential to support the survival of MM cells. 

Understanding and delineation of the degradation/recycling proteome machinery has 

provided key targets for intervention that provide specificity toward the MM cell. 

Chaperones such as heat shock proteins assist with the folding of newly synthesized proteins 

and refolding of proteins destructed by stress and cellular injury. Misfolded proteins are 

targeted for degradation by the ubiquitin-proteasome system (UPS). UPS involve a two-step 

process, ubiquitination and proteasome degradation. Ubiquitination involves a three-step 

enzymatic cascade as shown in Figure1. First, E1 utilizes ATP to adenylate Ub to create a 

thioester bond between the Ub C-terminal group and the thiol group of a cysteine residue. 

The activated Ub is then shifted to the cysteine residue of an E2 by a thioester linkage. 

Ultimately, an E3 ligase recruits a charged E2 and facilitates the transfer of Ub to the target 

protein to form mono-or poly-Ub chains, which can lead to protein degradation mediated by 

the proteasome. Deubiquitinating enzymes (DUBs) catalyze the separation of Ub from 

polypeptides to reverse the ubiquitination process and to maintain Ub homeostasis[Lub et 

al., 2016]. Aggresome pathway (Proteosome independent pathway) also eliminate the 

misfolded proteins by transporting aggregated or misfolded proteins from ER to the cytosol 

for lysosomal degradation with the help of microtubule, HDAC6, and dynein/dynactin motor 

complex. Myeloma cells have a narrow index for triggering the unfolded protein response 

(UPR) due to the basal load of monoclonal antibody production produced by the MM cell 

[Bianchi et al., 2009]. Several pharmacological strategies can be applied to targeting this 

intrinsic vulnerability of the myeloma cell, including the blockade of proteasome activity, 
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inhibition of the protein deubiquitinating and chaperoning processes, and as well as 

modulation of the downstream UPR.

1.1: Agents that block the proteasome activity

The proteasome is a multi-subunit protease complex that plays a central role in the 

regulation of protein degradation of intracellular proteins and clearance of misfolded and/or 

unfolded proteins. MM cells have a dependency on the proteasome to remove misfolded or 

damaged proteins due to the high rate and a load of immunoglobulin secretion. Preclinical 

studies have shown that MM cells are more sensitive to proteasome inhibition compared to 

normal cells as well as other tumor types. Bortezomib, a dipeptide boronic acid analogue 

mediating selective and reversible inhibition of the 26S proteasome, has dramatically 

changed outcomes for MM patients. Despite the clinical success of bortezomib, majority of 

patient progress to a refractory stage due to the emergence of drug resistance. Second-

generation proteasome inhibitors with reversible and irreversible inhibition of chymotrypsin-

like (CT-L), trypsin-like, and/or caspase-like (C-L) activities have been developed. These 

agents showed significant activity in both bortezomib-resistant and newly diagnosed MM. 

Carfilzomib is a highly selective inhibitor of 20S proteasome and has chymotrypsin-like 

(β5) subunit activity. It is more potent than bortezomib, achieving a 24% response rate in 

bortezomib refractory patients. FDA recently approved carfilzomib combination therapy 

with dexamethasone or with lenalidomide plus dexamethasone for the treatment of patients 

with relapsed or refractory multiple myeloma (RRMM) who have received one to three lines 

of therapy. Ixazomib (MLN9708) is an orally available proteasome inhibitor recently 

approved in combination with lenalidomide and dexamethasone. Ixazomib demonstrated 

effectiveness in phase 3 trial, which was conducted in 26 countries and included 722 patients 

with RRMM. Clinical results showed that a combination with ixazomib, lenalidomide, and 

dexamethasone significantly improved progression-free survival (PFS) when compared with 

the doublet of lenalidomide and dexamethasone [Kumar et al., 2014].

Several other novel PIs have already established promising activity. Marizomib (NPI-0052) 

is an irreversible PI that non-selectively inhibits the chymotrypsin-like, trypsin-like, and 

caspase-like protease activities within the proteasome. Marizomib with or without 

dexamethasone has shown promising responses even in bortezomib- and lenalidomide-

resistant MM. Marizomib in combination with pomalidomide and dexamethasone are under 

evaluation in RRMM [Potts et al., 2011]. Oprozomib (ONX0912) is a novel orally 

administered PI that is derived from carfilzomib. It binds irreversibly to CT-L subunit of the 

proteasome, resulting in longer duration of inhibition compared to bortezomib[Chauhan et 

al., 2010]. Oprozomib inhibits growth and migration of myeloma cells and activates poly 

(ADP) ribose polymerase (PARP), and caspase enzymes thereby induce MM cell apoptosis 

[Chauhan et al., 2010]. However, the challenge for proteasome inhibitors continues to be the 

emergence of drug resistance, and it is unlikely that the addition of more potent inhibitors 

will resolve emergence of clinical resistance. Perhaps, incorporation of proteasome 

inhibitors into combination strategies targeting additional points in the protein-recycling 

pathway may represent a tractable approach for effective combination strategies that delay 

the emergence of resistance to proteasome inhibitors. These additional potential targets are 

discussed below.
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1.2: Agents that target enzymes of the ubiquitination cascade system

Novel strategies targeting the key components of the ubiquitination cascade system are also 

under evaluation to overcome PI resistance. E1 ubiquitin activating enzyme plays a major 

role in proteasome-mediated protein degradation in MM. Knockdown of E1 ubiquitin 

activating enzymes resulted in a decreased viability of MM and leukemia cells indicating 

that it could be an interesting target [Xu et al., 2010]. To date, two inhibitors of E1 ubiquitin 

activating enzyme have been examined in MM, JS-K, and PPZD-4409. JS-K is a prodrug of 

nitric oxide (NO) that releases NO when metabolized by glutathione S-transferase. JS-K 

inhibits the ubiquitin-E1 thioester formation through binding of NO to the active cysteine 

residue on E1[Kitagaki et al., 2009]. However, JS-K also has been shown induce DNA 

double-strand breaks, which may also contribute to the induction of apoptosis in human MM 

cells in vitro and in vivo. PYZD-4409 was also shown to inhibit the growth of MM cells in 
vitro and inhibited the growth of leukemia cells using both in vitro an in vivo models [Xu et 

al., 2010].

Although the specificity of the drug tools to probe E1 inhibition are likely not ideal, the 

target remains attractive for the treatment of MM. Another potential strategy to allow for 

more specificity in targeting the expression of the proteome is by targeting specific E3 

ligases. For example, human double minute 2 (MDM2), is an E3 ubiquitin ligase 

accountable for degradation and inhibition of wild-type p53 (wt-p53) activation. MDM2 is 

overexpressed in MM cell lines; this expression has been shown to contribute to growth and 

survival of MM cells[Teoh et al., 1997]. Several MDM2 inhibitors were identified among 

them nutlin-3 was first discovered. Nutlin-3 binds to MDM2 thereby inhibits the interaction 

between MDM2 and p53, resulting in activation of the p53 signaling pathway [Teoh and 

Chng, 2014]. Nutlin-3 demonstrated the significant activity against primary MM samples 

and cell lines. Analogues of nutlin-3a, including MI-63, RITA, and Serdemetan, are under 

evaluation in preclinical models of MM.

1.2.1: Deubiquitinating enzymes (DUBs) inhibitors—The ubiquitination process 

reversed by a group of proteases called deubiquitinating enzymes (DUBs), which recognize 

ubiquitinated proteins and remove their ubiquitin tags by cleavage of the isopeptide bond at 

the C-terminus of ubiquitin [Colland, 2010]. Inhibition of DUBs lead to lethal ER stress and 

has been reported to overcome cell line models of proteasome inhibitor resistance. Several 

studies reported that DUBs such as ubiquitin-specific proteases (Usp) Usp9x, Usp24, and 

Usp7 are potential new therapeutic targets in MM. Usp9x inhibitor WP1130 shown to 

induce apoptosis and reduce Mcl-1 levels in human MM cells[Kapuria et al., 2010]. The 

novel inhibitor EOAI3402143 proved to inhibit both Usp9x and Usp24 activity and 

suppresses tumor growth in vivo [Peterson et al., 2015]. P5091, a selective inhibitor of Usp7 

induced apoptosis in MM cells and shown more effective when combined with HDAC 

inhibitor SAHA, lenalidomide or dexamethasone[Chauhan et al., 2012].

1.3: Inhibition of Heat shock proteins

Heat shock proteins play an important role in the handling of immunoglobulin folding in 

myeloma. Numerous studies have shown that Hsp 70 and 90 inhibition in myeloma cells 

induces apoptosis. Preclinical studies have demonstrated that the inhibition of Hsp90 is 
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active in myeloma in vitro and in vivo. Hsp90 inhibitors 17-AAG and NVP-AUY922 are 

under evaluation in preclinical models of MM. Hsp70 inhibition triggers myeloma cell death 

via the intracellular accumulation of immunoglobulin and the generation of proteotoxic 

stress. HSP 70 inhibitor, Ver-155008 significantly reduced the division of myeloma cells 

with limited effects on normal blood cells[Zhang et al., 2014a].

1.4: HDAC 6 Inhibitors

HDAC6 plays an import role in aggresomal protein degradation because it binds to 

misfolded proteins on the one hand and the dynein motility complex on the other, thereby 

shuttling polyubiquitinated proteins to the aggresome/lysosome for degradation. Ricolinostat 

(ACY-1215) is a specific HDAC6 inhibitor that is cytotoxic against MM cells and synergizes 

with bortezomib and lenalidomide in vitro [Santo et al., 2012]. A phase 1b study of 

ricolinostat plus bortezomib/dexamethasone in RRMM showed a promising activity in 

bortezomib-refractory MM (NCT01323751).

2: Agents that target epigenetic alterations

Epigenetic modifications, such as aberrant DNA and histone methylation or abnormal 

microRNA (miRNA) expression, are found to contribute to the pathogenesis of MM 

[Chapman et al., 2011]. Histones constitute a significant level of epigenetic regulation as 

modifications can alter the chromatin structure, thus changing accessibility to transcription 

factors. Histone tails can be post-translationally reversibly modified by methylation, 

acetylation, phosphorylation, ubiquitination, and the addition of poly (ADP-ribose) moieties. 

In this section, we will discuss the agents that targeting these key modifications of histone.

2.1: Targeting the HDACs

Acetylation of histones is correlated with open chromatin and elevated transcription while 

deacetylated histones are often corelated with tighter backed chromatin and repression of 

gene transcription. Histone deacetylases (HDACs) are crucial regulators of gene expression 

that enzymatically remove the acetyl group from histones. Recently, expression of 

HDAC1-3, HDAC6 and HDAC5 and 10 were found to be significantly upregulated in MM 

cells compared to normal plasma cells. In this same report investigators showed that patients 

with increased levels of HDAC1–3, HDAC4, HDAC6, and HDAC11 had poorer outcomes 

[Mithraprabhu et al., 2014]. Experimental and clinical evidence indicates that targeting 

HDAC’s is an attractive strategy for the treatment of MM. The pan-HDAC inhibitor 

Panobinostat was recently approved in combination with bortezomib and dexamethasone in 

RRMM patients. However, pan-HDAC inhibitors have shown significant toxicity 

(thrombocytopenia, diarrhea, and fatigue) in phase 3 study; that limited the therapy 

tolerability and duration. The challenge will be to determine whether the anti-myeloma 

activity associated with pan-HDAC inhibitors can be achieved by targeting a specific HDAC. 

This strategy will hopefully lead to a decrease in overall toxicity while retaining anti-

myeloma activity.
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2.2: Targeting the histone methyltransferases

Recent data demonstrate that changes in histone methylation may be a specific role in the 

pathogenesis of MM. A 15–20% subset of MM patients present with the t(4:14) 

chromosomal translocation, and this particular group has a significantly poorer prognosis 

[Kuehl and Bergsagel, 2002]. This translocation leads to the dysregulated expression of M-

SET domain (MMSET), a histone methyltransferase. The MMSET gene consists of 24 

exons and expression of multiple splice variants has been identified, which has led to 

complications understanding the function of this histone methyltransferase. The dominant 

histone mark generated by MSET/WHSC1/NSD2 is demethylation of H3 at lysine 36 and 

promotes expression of TGFA, MET, PAK1 and RRAS2 on MM cells. Moreover, reducing 

the expression of the gene product of WHSC1 referred to as NSD2 in KMS11 MM cells 

inhibited growth in vitro and in vivo[Kuo et al., 2011]. In additional methyltransferase 

overexpressed in MM is referred to as enhancer of Zeste Homolog 2 (EZH2) [Zhan et al., 

2002]. EZH2 contributes to the methylation status of H3K27, and EZH2 dysregulation has 

been described to contribute to silencing of tumor suppressor genes, thus contributing to 

MM phenotype [Hernando et al., 2016]. Experimental evidence indicates that EZH2 

upregulation in MM can be mediated by interleukin-6 (IL-6), c-Myc activation, or miR-26a 

downregulation [Sander et al., 2008]. In human MM cell lines, EZH2 expression has been 

correlated with proliferation and growth factor independence[Croonquist and Van Ness, 

2005]. Inhibition of EZH2 expression and activity is associated with myeloma cell growth 

inhibition and reduced tumor burden in murine models of MM [McCabe et al., 2012; Zhao 

et al., 2010]. Two EZH2 inhibitory molecules (EPZ005787 and GSK126) were identified 

independently by high-throughput screening[McCabe et al., 2012]. Future studies are 

warranted to define the activity of EZH2 inhibitors for the treatment of MM. Moreover, it 

will be important to determine the changes in histone marks as a consequence of drug 

selection and whether epigenetic changes contribute to the progression of MM towards drug-

resistant disease.

2.3: Bromodomain-containing protein 4 (BRD4) inhibitors

BRD4 is a member of the bromodomain and extra-terminal (BET) family of proteins, which 

contains two bromodomains. BET family proteins bind with acetyl-modified lysine residues 

of histone tails and facilitate transcriptional activation. Several studies reports that oncogene 

MYC drives disease progression in multiple myeloma and BET inhibitor, JQ1shown 

antiproliferative activity by downregulating MYC transcription [Delmore et al., 2011]. 

Recently two BET inhibitors (I-BET151 and I-BET762) were identified and showed 

promising activity with acceptable off-target effects in preclinical models of multiple 

myeloma [Chaidos et al., 2014]. The rapid development of resistance to BET inhibitor has 

been reported in leukemia and breast cancer models [Rathert et al., 2015] and maybe be a 

concern for the development of this class of inhibitors for the treatment of MM.

3: Targeting nuclear export with CRM1/XPO1 inhibitors

Chromosome region maintenance (CRM1) the key nuclear export protein is more commonly 

called Exportin 1 (XPO1), is involved in transporting cargo proteins with leucine-rich 

nuclear export sequences from the nucleus to the cytoplasm. Recent literature suggests that 
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CRM1 was found to be highly expressed in MM cells, and increased activity is associated 

with reduce survival and increased lytic bone lesions. Experimental data indicates that 

CRM1 downregulation results in decreased MM cell growth and survival. Furthermore, 

CRM1 inhibitors KPT-251, KPT-276 and KPT-330 significantly inhibited the growth of MM 

cells in vivo [Tai et al., 2014]. The sensitivity of myeloma cells to CRM1 inhibitors suggests 

that an imbalance in nuclear/cytoplasmic trafficking contributes to survival. Moreover, 

myeloma cells placed in high density are known to contain a high cytoplasmic ratio of 

topoisomerase II alpha, and co-administration of a CRM1 inhibitor plus topoisomerase II 

inhibitors results in synergistic cell kill; a finding which correlated with retention of 

topoisomerase II in the nucleus[Turner et al., 2013]. It is attractive to think that this 

combination strategy may be more effective in quiescent cells, which typically have low 

nuclear levels of topoisomerase II [Turner et al., 2014]. Together, pre-clinical studies support 

the continued clinical development of CRM1 antagonists for the treatment of MM [Tai et al., 

2014].

4.0: Agents that target the bone marrow microenvironment

MM cells grow and expand within the bone marrow (BM), suggesting the significance of the 

BM microenvironment in mediating MM cell growth and survival. The BM 

microenvironment consists of both a cellular compartment and a non-cellular compartment, 

and further complexity is provided by active crosstalk between the two compartments. The 

cellular compartment can be subdivided into hematopoietic cell types including myeloid 

cells, T-lymphocytes, B-lymphocytes, NK cells, and osteoclasts while non-hematopoietic 

cells include bone marrow stromal cells (BMSCs), fibroblasts, osteoblasts, endothelial cells, 

and blood vessels. The non-cellular compartment includes the extracellular matrix (ECM), 

and the soluble factors (cytokines, growth factors, and chemokines), which are produced 

and/or affected by the cellular compartment within the bone marrow microenvironment. 

These microenvironment compartments exert differential effects on MM cell progression 

and resistance to therapeutics and may work synergistically. In this section, we discuss the 

agents that target each component of BM microenvironment to prevent MM progression.

4.1: Targeting the immune microenvironment

MM patients have substantial immune cell dysregulation, which effects B-lymphocytes, T-

lymphocytes, natural killer (NK) cells, and dendritic cells (DCs)[Dhodapkar et al., 2003; 

Raitakari et al., 2003]. The homeostasis of regulatory T cells (Treg) and T helper (Th) 17 

cells is essential for maintaining anti-tumor immunity in MM [Dhodapkar et al., 2003]. 

Tregs play a major role in the preservation of self-tolerance and modulation of overall 

immune responses against infections. Immune dysregulation not only increases the risk of 

infections in MM patients but also affect antigen presentation and up-regulation of inhibitory 

antigens that advances immune escape and growth for malignant clones. Several novel 

approaches have been explored to enhance the immune system to fight against MM.

4.1.1: Immunomodulatory drugs (IMiDs)—IMiDs directly affect MM cells and bone 

marrow microenvironment leading to modulation of cytokines meliu present in the BME 

(TNFα, IL-6, and VEGF, IL-2 interferon-γ) and stimulation of NK and T-cells[LeBlanc et 
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al., 2004]. Recent studies suggest that IMiDs interact with cereblon, and also downregulate 

Ikaros (IKZF1), and Aiolos (IKZF3) proteins which was shown to improve the antitumor 

and host immune effects in MM [Lu et al., 2014]. Pomalidomide is currently approved to 

treat RRMM, and shown positive results in lenalidomide- and bortezomib-refractory disease. 

The positive clinical data obtained with treatment with IMiDs provided the first clinical 

proof that targeting the BME is a critical component for the successful management of MM.

4.1.2: Immune Checkpoint Inhibitors (PD-1/PD-L1)—Programmed cell death 1 

(PD-1) is a type I transmembrane protein expressed on the surface of activated T cells, 

interacting with its two ligands, PD-L1, and PD-L2. The association between PD-L1 on 

target cells and PD-1 on T and effector cells act as an immunologic checkpoint to suppress 

antitumor immunity. MM cells express PD-L1, which is further upregulated in the BM 

microenvironment [Liu et al., 2007; Tamura et al., 2013]. In addition, the PD-1 expression is 

upregulated on NK or T cells in MM patients[Benson et al., 2010]. Furthermore, the growth 

of MM cells is inhibited in PD-1-deficient mice, and an anti-PD-1 antibody pidilizumab 

(CT-011) enhances NK-cell cytotoxicity against MM cells[Benson et al., 2010]. A Phase I 

study evaluating CT-011 in patients with advanced hematologic malignancies has shown that 

it is well-tolerated with clinical benefit noted in one-third of study patients. A Phase II study 

evaluating the combination of CT-011 and dendritic cell (DC)/myeloma vaccine is currently 

underway (NCT01067287). Multiple ongoing clinical studies are looking into safety and 

efficacy of different anti-PD-1 antibodies alone or in combination with IMiDs in the 

treatment of advanced MM. A phase 2 study of anti–PD-1 mAb pembrolizumab with 

lenalidomide (NCT02331368) and a phase 1/2 study of pembrolizumab plus pomalidomide 

in RRMM (NCT02289222) are ongoing. The anti–PD-1 antibody nivolumab alone or in 

combination with the CTLA4-blocking antibody ipilimumab or the killer cell 

immunoglobulin-like receptor–blocking antibody lirilumab, is being assessed in phase 1 

clinical trial in relapsed or refractory hematologic malignancies, including MM 

(NCT01592370). Ongoing studies include combining checkpoint inhibitors, mAbs, 

vaccinations, and/or IMiDs to improve anti-MM memory immunity further and to 

accomplish durable clinical response. As all patients do not respond to checkpoint inhibitors, 

it will be critical to delineate the mechanism underlying primary resistance to PD1 

antibodies, which may allow for rational combination strategies designed to increase the 

overall response rate.

4.1.3: Chimeric Antigen Receptor (CAR) T cell therapy—One emerging treatment 

strategy that is showing considerable promise in hematological malignancies is CAR T cell 

therapy. In this therapy, T-cells isolated from a patient and engineered to express a tumor-

specific CAR then injected back into the patient. B-cell derived lymphoma and leukemia, 

express the cell surface marker CD19, allowing the design of a matching, specific CAR. 

Garfall et al. have observed a low expression CD19 on plasma cells and targeted this 

population via the use of lentivirus-transduced autologous T cells harboring CD3-zeta/

CD137 based anti-CD19 chimeric receptor named as CTL019 cells, found an encouraging 

result in one patient [Garfall et al., 2015]. The CD19 CAR-T strategy was used in 

conjunction with autologous transplantation. The response was achieved despite a low 

percentage of MM cells presenting as CD19 positive. These data support that depletion of 
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the putative myeloma stem cell (CD138-/CD19+ CD20+ cells) can lead to robust clinical 

responses. Moreover, these data indicate that depleting the putative myeloma stem cell, 

which is characterized as drug resistant, using immunologic strategies, is a promising 

approach. Currently, additional CAR-T cells strategies are being developed directed against 

CD38 and SLAMF-7 and are in preclinical development in MM[Bianchi et al., 2015].

4.1.4: Vaccination therapy—Therapeutic vaccination represents another immunology 

based treatment option for multiple myeloma patients. Lately, dendritic cell (DC)-tumor 

fusion vaccines have been investigated as a promising approach for the treatment of cancer. 

Fusion vaccines offer several advantages that differentiate them from other DC-based 

vaccines. Phase II clinical trial, Rosenblatt et al. demonstrated that repeated immunization 

with a DC-tumor fusion vaccine after subsequent autologous stem cell transplantation 

induces myeloma-specific immunity and improves clinical response[Rosenblatt et al., 2013]. 

Another vaccine approach is established on stimulating immunity against MM antigens 

which are typically overexpressed such as XBP1, CD138, or HSP90, individually or in 

combination. For instance, a combined XBP1, CS1, and CD138 peptide vaccination strategy 

(PVX-410) is currently under evaluation, alone and with lenalidomide, to stimulate 

antitumor immunity in smoldering MM and prevent progression to active MM 

(NCT01718899).

4.2: Targeting the other cellular components of bone marrow microenvironment

Apart from hematopoietic cells, bone marrow microenvironment also contains bone marrow 

stromal cells (BMSC), Osteoblasts, and Osteoclasts.

4.2.1: Targeting BMSCs—MM cells adhere to BMSCs and ECM into the BM. Adhesion 

of myeloma cells to BMSCs triggers many pathways resulting that promote survival and 

drug resistance. The anti-apoptotic phenotype that occurs in the MM BME niche is a 

complex interplay between soluble and matrix derived factors. For example, the interaction 

between MM cells and BMSCs activates NFkB signaling pathway and IL-6 secretion in 

BMSCs. IL-6 increases the production and secretion of vascular endothelial growth factor 

(VEGF) by MM cells[Kumar et al., 2003]. BMSCs from MM patients expresses several pro-

angiogenic molecules such as VEGF, basic-fibroblast growth factor (bFGF), angiopoietin 1 

(Ang-1), TGF-b, platelet-derived growth factor (PDGF), hepatocyte growth factor (HGF), 

and IL-1 [Giuliani et al., 2011]. Neutralizing antibodies is one approach to disrupt the 

impact of soluble factors on the progression of MM. To this end monoclonal antibodies 

(Mabs) that target IL-6 (Siltuximab) and VEGF (Bevacizumab) are showing promising 

results in early clinical studies in MM patients [Orlowski et al., 2015; White et al., 2013]. It 

has been established by our laboratory as well as others that cell adhesion is sufficient to 

induce a multi-drug resistant phenotype commonly referred to as CAM-DR[Damiano et al., 

1999; Hazlehurst et al., 2007; Hazlehurst et al., 2003]. Thus, experimental data indicates that 

drug discovery must consider not only intrinsic vulnerabilities of MM but identify and target 

vulnerabilities in the context of bone marrow microenvironment models. To this end Silva 

and colleagues have developed a non-destructive assay that allows for assessment of drug 

response using a high-throughput assay that includes bone marrow stroma cells and collagen 

[Khin et al., 2014; Silva et al., 2015]. Importantly these investigators showed that this assay 
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system could be used for primary MM cells to test drug sensitivity reproducibly. It will be 

critical to consider high content screening of novel agents in systems that allow for crosstalk 

with the tumor microenvironment.

4.2.2: Targeting Osteoclasts—The equilibrium between bone resorption and 

ossification is disrupted during the progression of MM, leading to bone destruction and the 

development of painful osteolytic lesions [Bataille et al., 1989]. Clinical evidence indicates 

that MM is associated with excessive tumor induced, osteoclast-mediated bone destruction. 

Osteoclast activation is mediated by several key factors, such as receptor activator of NF-κB 

ligand (RANKL), interleukin-3 (IL-3), macrophage inflammatory protein-1a (MIP-1a), and 

IL-6. RANKL is a member of the tumor necrosis factor (TNF) family and plays a vital role 

in the increased osteoclastogenesis in MM. Osteoclast cells express RANK receptor; 

interaction between MM cell and BMSC within the bone marrow results in the elevated 

release of RANKL in BM microenvironment. In turn, elevated RANKL levels leads to 

stimulating osteoclast activity through the binding of RANKL to its receptor, on osteoclast 

precursor cells. RANKL is also intricated in inhibition of osteoclast apoptosis. Blocking the 

interaction of RANKL with RANK has been shown to regulate bone loss and tumor burden 

in myeloma SCID-Hu animal model [Yaccoby et al., 2002]. Recently, a monoclonal 

antibody, denosumab blocking the RANKL was proven to be effective in relapsed or 

plateau-phase multiple myeloma patients [Vij et al., 2009]. Phase III studies are underway 

for use of denosumab in myeloma patients.

4.2.3: Targeting Osteoblasts—Experimental evidence indicates that suppression of 

osteoblast activity is accountable for both bone destructive process and progression of 

myeloma tumor burden[Yaccoby, 2010]. DKK 1(Dickkopf-1) plays a vital role in inhibiting 

osteoblast activity in MM [Tian et al., 2003]. DKK1 is a Wnt-signaling antagonist produced 

by MM cells, and it inhibits osteoblast differentiation and disrupts Wnt-regulated OPG and 

RANKL production by osteoblasts [Tian et al., 2003]. The DKK1 expression is significantly 

higher in myeloma patients with lytic bone lesions [Dun et al., 2009]. Studies have shown 

that antagonizing DKK1 and activating Wnt signaling prevents bone disease in MM [Tian et 

al., 2003]. Recent studies suggest that the anti-Dkk1 antibody (BHQ880) increases 

osteoblast differentiation in vitro and increases osteoblast number and trabecular bone in 

vivo [Fulciniti et al., 2009]. Ongoing clinical studies will determine whether agents that 

inhibit MM-induced lytic lesions and disruption of the MM bone interface niche will have 

an impact on MM progression.

4.3: Targeting cell adhesion mediated drug resistance associated with the bone marrow 
microenvironment

MM homes to the bone and molecules that mediate homing to the bone include VLA-4 

(α4β1), and CD44. Targeting these key molecules as well as other adhesion receptors that 

contribute to survival such as VLA-7 (α4β7) remains a promising approach in the treatment 

of MM.

4.3.1: Targeting the cell adhesion molecules—MM cells demonstrate adhesion 

towards various ECM constituents, including laminin, the microfibrillar collagen type-VI, 
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and fibronectin (FN), via β1 integrin-mediated adhesion (Kibler, Schermutzki et al. 1998). In 

addition to FN, VLA-4 can bind vascular cell adhesion molecule-1 (VCAM-1), which is 

constitutively expressed on bone marrow stromal cells. The interaction between VCAM-1 

and VLA-4 promotes myeloma cell colonization in bone marrow[Okada et al., 1999]. 

Moreover, cell adhesion via VLA-4 integrin was shown to be sufficient to cause a multi-drug 

resistant phenotype[Damiano et al., 1999]. Indeed, antibodies that target α4 integrins have 

been shown to have success in decreasing tumor burden. Targeting α4β1 integrin using 

antibody (Natalizumab), suppresses the MM cell growth in BM microenvironment[Mori et 

al., 2004; Podar et al., 2011]. In addition, to antibodies peptides are an attractive approach 

for inhibition of cell adhesion. HYD1 was identified using a decapeptide all D-amino acid 

library using a phenotypic screen of cell adhesion as an endpoint[Sroka et al., 2006]. The 

lead candidate identified using this high-content screening approach was termed HYD-1. 

Our laboratory subsequently determined that HYD-1 blocked adhesion of MM cells to 

extracellular matrixes but also induced caspase-independent necrotic cell death as a single 

using both in-vitro and in vivo MM models[Emmons et al., 2011; Nair et al., 2009]. Another 

unique feature of this class of compounds is that ex-vivo testing of primary patient 

specimens indicated that this class is more potent in specimens obtained from patients which 

had relapsed on standard of care agents. These data suggest that targeting alternative cell 

death pathways maybe an important strategy for RRMM. Standard of care agents typically 

all converge mechanistically at activation of caspase and subsequent apoptotic cell death, 

and targeting alternative cell death pathways has not been explored for the treatment of 

RRMM. To increase the bioavailability and potency of HYD-1, cyclization strategies were 

used to constrain the minimal active sequence of MVISW. The cyclized HYD1 molecule 

referred to as MTI-101 binds to a CD44/VLA-4 containing complex in MM cells and was 

shown to have robust in vitro and in vivo activity [Gebhard et al., 2013]. Interestingly 

MTI-101 appears to have agnostic properties as treatment resulted in activation of Pyk2 and 

Erk1/2. Mechanistic studies revealed that cell death was only partially dependent on the 

RIPK mediated necrotic pathway, and further studies are required to fully understand the 

mechanism of cell death of this class of molecules.

CD44 is a cell surface transmembrane glycoprotein encoded by the single gene, and is a 

receptor for hyaluronic acid (HA). Both CD44 and VLA-4 are both thought to be critical for 

homing of normal hematopoietic stem cells as well as malignant leukemias[Cao et al., 2016; 

Krause et al., 2006]. Reducing the expression of CD44 was shown to sensitize MM cell lines 

to lenalidomide[Bjorklund et al., 2014]. Finally, CD44 was recently shown to be highly 

expressed in extracellular vesicles obtained from the serum of primary MM patients and 

high expression was found to be a poor prognostic indicator[Harshman et al., 2016]. 

Extracellular vesicles or exosomes have gained much attention for a mechanism whereby 

tumors can condition the tumor niche. Targeting cell adhesion molecules maybe an attractive 

approach for inhibiting the trafficking of exosomes to the bone marrow niche for the 

treatment of MM [Hoshino et al., 2015].

4.3.3: Proline-rich tyrosine kinase 2 (Pyk2) and focal adhesion kinase (FAK) 
inhibitors—Due to the redundancy of signaling of integrin and cell adhesion receptors, it is 

attractive to consider blocking common or convergent downstream signaling pathway. Pyk2 
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is a member of the focal adhesion kinase(FAK) family and plays a major role in tumor 

development of various cancers. Zhang et al reported that MM patients have increased 

expression of Pyk2 when compared to healthy individuals. Reduing Pyk2 levels results in 

reduced in vivo MM cell growth as well as decreased MM cell proliferation in vitro by 

suppressing Wnt/β-catenin signaling[Zhang et al., 2014b]. Furthermore, FAK/Pyk2 inhibitor 

VS-4718 effectively inhibits MM cell growth both in vitro and in vivo. Recent studies 

indicate that interaction between β1 integrin, fibronectin, and interleukin-6 in bone marrow 

microenvironment results in increased activation of Pyk2, resulting in amplification of signal 

transducer and activator of transcription 3 (STAT3) activation. Molecular and 

pharmacological targeting of Pyk2 results in attenuated MM progression in vivo [Meads et 

al., 2016]. Interestingly the dependency of Pyk2 in mediating survival in these studies was 

more notable when MM cells were placed in co-culture with bone marrow stroma cells 

compared to unicellular MM model. Again these studies point to the need for exploring 

cancer cell dependencies in the context of the tumor microenvironment.

5: Monoclonal antibodies (mAbs)

Myeloma cells can be targeted by cell surface receptors which are enriched on the plasma 

cell or B-cell lineage. mAbs induce cytotoxicity by several mechanisms. For example, mAbs 

can cause antibody-dependent cellular cytotoxicity (ADCC), complement-dependent 

cytotoxicity (CDC), antibody-dependent phagocytosis (ADCP) and they can cause 

apoptosis/growth arrest via blocking intracellular signaling pathways. FDA recently 

approved two monoclonal antibodies daratumumab and elotuzumab for the treatment of 

MM. Targeting antibodies take advantage of cell surface receptors that are present on plasma 

cells and/or B-cells. Daratumumab is a human CD38 IgG1 mAb that was generated by 

immunizing transgenic mice possessing human immunoglobulin genes. Daratumumab can 

cause cytotoxicity in myeloma cells by ADCC, ADCP, and CDC. Recent clinical trial 

(NCT01985126) results reported that Daratumumab monotherapy showed promising 

efficacy in PIs and IMDs refractory patients with multiple myeloma[Lonial et al., 2016]. 

Elotuzumab has been approved for the combination therapy with lenalidomide and 

dexamethasone for RRMM. Elotuzumab binds to the cell surface receptor signaling 

lymphocytic activation molecule F7 (SLAMF7). SLAMF7 is selectively expressed on 

myeloma cells and natural killer cells, induce antibody-dependent cellular cytotoxicity and 

direct natural killer cell activation. Elotuzumab does not show cytotoxicity by CDC in 

myeloma cells. In a phase III clinical trial (NCT01239797), the addition of elotuzumab to 

lenalidomide and dexamethasone therapy in patients with RRMM was associated with a 

significant improvement in progression-free survival and overall response rate. Several new 

mAbs are under development for various cell membrane targets such as CD20, CD40, 

CD56, CD74, CD138 and CD200(See Table 1). Additionally, Mabs are in development that 

is designed to neutralize soluble factors within the tumor microenvironment that promote 

myeloma-induced bone destruction such as RANKL and DKK or promote progression of 

myeloma cells such as IGF-1R, IL-6, VEGF, and BAFF( see Table 2).
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Conclusion and future directions

Therapy for MM has significantly improved in the past decade with the introduction of novel 

therapies and survival outcomes in MM patients markedly changed. The number of agents 

available to treat MM has increased dramatically, suggesting that multiple pathways are 

required to inhibit the progression of MM. Pathways discussed in this review may not be 

sufficient to cause transformation yet are critical to facilitate disease progression and 

emergence of drug resistance. Continued challenges include developing rational 

combination strategies based on patient-specific MM tumor cell and BME vulnerabilities. 

As such, it is critical to continue to understand the emergence of drug resistance and newer 

technologies such as RNA-SEQ, whole exome sequencing and CHIP-SEQ will allow for 

unbiased molecular monitoring of disease progression. These initiatives will likely provide 

insight into the evolution of drug resistance and will hopefully allow for the direct discovery 

of novel druggable targets from specimens derived from patients progressing on therapy. It is 

likely that identification of target discovery directly from drug resistant patient specimens 

will be a powerful approach to expedite drug discovery.
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Figure 1. Therapeutic approaches to target protein homeostasis in multiple myeloma (MM)
MM cells depend on tight control of protein homeostasis to prevent terminal unfolded 

protein response and apoptosis. Inhibition of proteasome is a successful strategy in MM. In 

addition, modulation of enzymes that involved in ubiquitin proteasome systems (UPS) such 

as E1, E2, and DUBs can effect the growth of myeloma cells. Moreover, HSP70 and HSP90 

inhibitors can induce proteotoxic stress. Furthermore, HDAC6 inhibitors can induce 

apoptosis in MM. DUB, deubiquitinating enzyme; HDAC6, histone deacetylase 6; HSP, heat 

shock protein; Ub, ubiquitin.
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Figure 2. Therapeutic approaches to target the elements of bone marrow microenvironment
MM cells interact with many cellular and non-cellular components of the BM such as 

hematopoietic cells, osteoclasts, osteoblasts, stromal cells, endothelial cells and ECM. 

Several cytokines and chemokines are secreted in response to these cell-cell and cell- ECM 

interactions, leading to enhanced tumor growth, inhibition of osteoblasts, and increased 

osteoclast activity. IMIDs and PDL1-PD1 inhibitors increase the anti-tumor immunity; 

CART cell therapy directly targets Myeloma cells. RANKL, DKK1 inhibitors decrease the 

osteoclast activity and promote osteoblasts activity respectively. Targeting the IL6, VEGF 

and SDF 1 inhibits myeloma cells proliferation and survival. MM cells interact with many 

cellular and non-cellular components of the BM such as hematopoietic cells, osteoclasts, 

osteoblasts, stromal cells, endothelial cells and ECM. Several cytokines and chemokines are 

secreted in response to these cell-cell and cell- ECM interactions, leading to enhanced tumor 

growth, inhibition of osteoblasts, and increased osteoclast activity. IMDs and PDL1-PD1 

inhibitors increase the anti-tumor immunity; CART cell therapy directly targets Myeloma 

cells. RANKL, DKK1 inhibitors decrease the osteoclast activity and promote osteoblasts 

activity respectively. Targeting the IL6, VEGF and SDF 1 inhibits myeloma cells 

proliferation and survival. Targeting the CD44 and integrin’s reverses the cell adhesion 

mediated drug resistance and inhibit the myeloma cell survival.

bFGF, basic fibroblast growth factor; CD44, cell adhesion molecule; CAR, chimeric antigen 

receptor; Dkk1, Dickkopf-related protein 1; HA, hyaluronic acid; IMiD, immunomodulatory 

drug; IL-6, interleukin 6; IL-7, interleukin 7; IGF-1, Insulin-like growth factor 1; ICAM1, 

intercellular Adhesion Molecule 1; LFA-1, Lymphocyte function-associated antigen 1; 

MUC-1, mucin1; MHC, major histocompatibility complex; MDSC, myeloid-derived 

suppressor cell; PD-1, programmed death 1; PD-L1, programmed death ligand 1; RANKL, 

receptor activator of nuclear factor κ B ligand; SDF1, stromal cell-derived factor 1;TCR, T 

cell receptor; TNF-α, Tumor necrosis factor; TGF-β, Transforming growth factor beta; 
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VEGF, vascular endothelial growth factor; VLA-4, Very Late Antigen-4; VCAM-1, vascular 

cell adhesion molecule 1
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Table 1

mAbs that target myeloma cell surface.

Target Antibody Phase Status Identifier

CD38 Daratumumab Approved ---- ----

SLAMF7 Elotuzumab Approved ---- ----

CD20 Rituximab II C NCT00003554

CD40 Dacetuzumab II C NCT00435916

CD56 Lorvotuzumab II R NCT02420873

CD74 Milatuzumab I C NCT00421525

CD138 BT062 II ONR NCT01638936

CD200 Samalizumab I C ----

R: Recruiting; C: Completed; ONR: Ongoing, not recruiting;
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Table 2

mAbs that target the components of bone marrow microenvironment.

Target Antibody Phase Status Identifier

IL-6 Siltuximab II C NCT00911859

VEGF Bevacizumab II C N01-CM-62209

BAFF LY2127399 I C -

RANKL Denosumab III C NCT00330759

DKK1 BHQ880 I C NCT20050244

IL-6 Siltuximab II C NCT00911859

R: Recruiting; C: Completed; ONR: Ongoing, not recruiting; BAFF: B-cell activating factor;
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