#### Baptist Health South Florida Scholarly Commons @ Baptist Health South Florida

**All Publications** 

2-17-2020

#### Are we asking right questions? Mode of Intensivist model delivery and Patient Length of stay

Chintan Bhatt Baptist Health South Florida, ChintanB@baptisthealth.net

Follow this and additional works at: https://scholarlycommons.baptisthealth.net/se-all-publications

#### Citation

Bhatt, Chintan, "Are we asking right questions? Mode of Intensivist model delivery and Patient Length of stay" (2020). *All Publications*. 3445. https://scholarlycommons.baptisthealth.net/se-all-publications/3445

This Conference Lecture -- Open Access is brought to you for free and open access by Scholarly Commons @ Baptist Health South Florida. It has been accepted for inclusion in All Publications by an authorized administrator of Scholarly Commons @ Baptist Health South Florida. For more information, please contact Carrief@baptisthealth.net.



# Are we asking right questions Mode of Intensivist mode and Patient Length of s

#### Chintan Bhatt MBBS, MPH

Rojas L, Armaignac D, Bhatt C, et al. Research Snapshot Theater: Quality And Patient Safety VII 1359: Exploring LOS of tele-intensivist delivery model with and without 24/7 bedside intensivists. Critical Care Medicine.2020;48:34. Supl1 doi:10.1097/01.ccm.0000618768.07027.72.CCM







Critical Care Congress





## Disclosure

#### No conflict of interest to disclose







#### Disclaimer

The author(s) of the presentation appearing in front of you is/are solely responsible

for the content thereof; The research snapshot presentation shall not constitute or be

deemed to constitute any representation by the Baptist Heath South Florida or

Florida International University or any organization the data presented therein are

correct or sufficient to support the conclusions reached or that the experiment design or methodology is adequate.







#### Background

Leapfrog group's standard of critical care recommendation

• 24/7 coverage of a board certified intensivist in all ICUs (Leapfrog Factsheet: ICU physician staffing)

Amendment: Intensivist providing critical care by Telemedicine- will satisfy the guideline recommended by the leapfrog group if implemented properly

In, 2015, American Hospital Association Annual Survey suggests of all acute care hospitals (2814) only 50% had intensivists., however 75% of ICU bed had intensivist coverage. (Crit Care Med. 2019:47(4):517-525)









Current literature comparing patient outcomes with

- Intensivist with no intensivist (*JAMA*. 2002;288(17):2151–2162) (*Crit Care Med*. 2013;41(10):2253–2274)
- Intensivist with other specialist like hospitalists (J. Hosp. Med. 2012 March;7(3):183-189)
- Daytime versus Nighttime intensivist (N Engl J Med 2012; 367(10):971–972).(Crit Care Med. 2015 43(11):2275-82) (N Engl J Med. 2013;368(23):2201–2209)
- Alternative to Intensivist in different type of ICU(open versus closed) (Curr Opin in Anaes 2019 32(2):123-128

Role of Tele-ICU

- Evidence of consistent quality and efficiency outcomes (Crit Care Med. 2016 Feb:44(2):265-74)
- Lowering the cost of patient care (Mil Med. 2017;182(5):e1702-e1707)
- Tele-ICU beds account for 11% of total ICU beds in US (Arch Intern Med 2011; 171:498-506)

Currently there are no outcomes research on critical care provided by 24/7 Bedside Intensivist versus Tele-Intensivist.









#### **Objective of the study**

To compare 24/7 Bedside Intensivist versus Tele-Intensivist critical care delivery models and examine the difference in Length of stay using conventional and innovative statistical methods.

### **Study Setting**

12 ICUs from 5 hospitals were selected from a non teaching, not for profit, health system in south Florida from Oct 2016- June 2019.

19519 cases discharged from ICU between Oct 2016- June 2019 were selected for the study











## **Study Design**

Retrospective Cohort design using Health System's EHR data between Oct 2016-June 2019

<u>Dependent Variable</u>: ICU length of stay, Hospital length of stay ( days)

Independent Variable:

Model A: Intervention Group: presence of 24/7 Bedside Intensivist with standard of care universal to health system ICU Tele-Critical Care intensivist model

Model B: Only standard of care – Tele intensivist model of delivery.

<u>Prognostic Risk score</u>: used APACHE IVa predicted ICU LOS and Predicted Hospital LOS <u>Covariates:</u> Case Mix index, APACHEIVa Admitting diagnosis, Gender, Age, Race/Dethnicity, ED level of acuity, discharge disposition. Annualized ICU volume, Annualized hospital volume, Pre-ICU-Los, Post-ICU discharge LOS









#### Patient Characteristics of two CCModels

| Characterist                                  | tics                   | OVERALL       | CCD MODEL A                         | CCD MODEL                | Differen |  |
|-----------------------------------------------|------------------------|---------------|-------------------------------------|--------------------------|----------|--|
| Characteris                                   |                        | OVERTEE       | CCD MODEL N                         | В                        | ce¥      |  |
| Number of patients                            | N                      | 19519         | 13993(71.7%)                        | 5526(28.3%)              |          |  |
|                                               | Mean(95% CI)           | 67.28         | 67.66                               | 66.34                    |          |  |
| Age                                           | Wiedii(9570 CI)        | (66.24-67.88) | (67.37-67.94)                       | (65.84-66.84)            | < 0.001  |  |
|                                               | IQR (25 %-75%)         | 57-81         | 57-81                               | 54-82                    |          |  |
| Gender                                        | Female                 | 9620(49.3%)   | 6713(49.3%) <sup>a</sup>            | 2907(49.3%) <sup>a</sup> | 0.987    |  |
| Gender                                        | Male                   | 9899(50.5%)   | 7280(50.7%) <sup>a</sup>            | 2619(50.7%) <sup>a</sup> | 0.907    |  |
|                                               | White                  | 4013(20.6%)   | 2929(19.6%) <sub>a</sub>            | 1084(20.6%) <sub>a</sub> |          |  |
| <b>D</b> aga/athriaity                        | Black                  | 1937(9.9%)    | 1937(9.9%) 1414(10.1%) <sub>a</sub> |                          | <0.001   |  |
| Race/ethilicity                               | Hispanic               | 10905(56.3%)  | 7874(54.8%) <sub>a</sub>            | 3031(55.9%) <sub>a</sub> | <0001    |  |
|                                               | Other                  | 2664(12.7%)   | 1776(16.1%) <sub>a</sub>            | 88816.1%) <sub>b</sub>   |          |  |
| APS                                           | Mean(SE)               | 41.82(0.15)   | 42.66(0.18) a                       | 39.68(0.28) <sup>a</sup> | < 0.001  |  |
| APACHE IVa Score                              | Mean(SE)               | 55.19(0.17)   | 56.19(0.20) a                       | 52.65(0.31) <sup>a</sup> | < 0.001  |  |
|                                               | Mean                   | 0.125(0.001)  | 0.133(0.001)                        | 0.105(0.001)             | < 0.001  |  |
| APACHE IVa<br>Predicted ICU Mortality         | Median                 | 0.062         | 0.066                               | 0.054                    | < 0.001  |  |
|                                               | Interquartile<br>Range | 0.123         | 0.135                               | 0.100                    | < 0.001  |  |
|                                               | Mean                   | 0.125 (0.001) | 0.133 (0.001)                       | 0.105 (0.001)            | < 0.001  |  |
| APACHE Iva                                    | Median                 | 0.062         | 0.066                               | 0.054                    | < 0.001  |  |
| Mortality                                     | Interquartile<br>Range | 0.123         | 0.135                               | 0.1                      | < 0.001  |  |
| ADACHE IVa Diagnosia                          | Non-operative          | 12282(62.9%)  | 7900(56.5%)                         | 4382(79.3%)              | <0.001   |  |
| APACHE IVa Diagliosis                         | Operative              | 7233(37.1%)   | 6089(43.55)                         | 1144(20.7%)              | <0.001   |  |
|                                               | Cardiovascular         | 5179(26.5%)   | 3703(26.5) <sup>a</sup>             | 1476(26.7%) <sup>a</sup> |          |  |
| APACHE system diagnosis                       | Sepsis                 | 3013(15.4%)   | 2172(15.5%) <sup>a</sup>            | 841(15.2%) <sup>a</sup>  |          |  |
|                                               | Respiratory            | 2789(14.3%)   | 1976(14.1%) <sup>a</sup>            | 813(14.7%)a              | <0.001   |  |
|                                               | Neurologic             | 2613(13.4%)   | 1871(13.4%) <sup>a</sup>            | 742(13.4%)a              | <0.001   |  |
|                                               | Digestive              | 1573(26.5%)   | 1136(26.7%) <sup>a</sup>            | 437(26.5%)a              |          |  |
|                                               | Metabolic              | 999(5%)       | 725(5.1%) <sup>a</sup>              | 274(5%)a                 |          |  |
| Prior admission Emergency<br>Department Visit | Yes                    | 17079(87.5%)  | 11757(84%)                          | 5322(96%)                | < 0.001  |  |
| ICU admission ≤24hrs of<br>Hospital Admission | Number cases<br>(%)    | 13482(69.1%)  | 9247(66.1%)                         | 4235(76.6%)              | < 0.001  |  |
| Pre-ICU-LOS                                   | Mean (SE) days         | 1.91(0.05)    | 2.20 (0.71)                         | 1.12 (0.05)              | < 0.001  |  |
| Markenia IV antilaten                         | (%)                    | 5191(26.6%)   | 4154(29.6%)                         | 1037(18.7%)              |          |  |
| viecnanical ventilator                        | Mean (SE) days         | 3,76 (0.069)  | 3.71(0.078)                         | 3.98(0.142)              | 0.107    |  |







## **Summary of Results**



|                           | Unadjusted outcomes<br>Mean (SE) |                         | General Linear Model  |                         | Propensity Score Matching |                | Generalized Linear model with repeated<br>measures<br>Fixed factor + Random effect |                     |                      |                              |                                |                                     |
|---------------------------|----------------------------------|-------------------------|-----------------------|-------------------------|---------------------------|----------------|------------------------------------------------------------------------------------|---------------------|----------------------|------------------------------|--------------------------------|-------------------------------------|
|                           | Model A<br>Mean<br>(SE)          | Model B<br>Mean<br>(SE) | Difference<br>P value | Model A<br>Mean<br>(SE) | Model B<br>Mean<br>(SE)   | Differenc<br>e | Model A<br>Mean(SE)                                                                | Model B<br>Mean(SE) | Differenc<br>P Value | Model A<br>LS Mean<br>95% Cl | Model B<br>LS Mean<br>(95% CI) | Difference<br>LS Mean<br>95% Cl     |
|                           |                                  |                         |                       |                         |                           |                |                                                                                    |                     |                      |                              |                                |                                     |
| ICU<br>LOS<br>(Days)      | 3.17<br>(0.03)                   | 2.37<br>(0.04)          | <0.001                | 2.95<br>(0.12)          | 1.96<br>(0.09)            | <0.001         | 3.2(0.11)                                                                          | 2.5(0.99)           | <0.001               | 3.1407<br>(3.0621-<br>3.219) | 2.588<br>(2.4817-<br>2.6946)   | 0.5525<br>(0.4413-0.6638)<br><0.001 |
|                           |                                  |                         |                       |                         |                           |                |                                                                                    |                     |                      |                              |                                |                                     |
| Hospital<br>LOS<br>(Days) | 9.8(0.08)                        | 7.2(0.09)               | < 0.001               | 10.1(0.02)              | 7.4(0.03)                 | <0.001         | 10.9(0.44)                                                                         | 7.4(0.2)            | <0.001               | 9.056<br>(8.89-9.221)        | 7.31<br>(7.09-7.54)            | 1.73<br>(1.503-1.974)<br><0.001     |

Final model of each analytical study, multiple models were assesses with variation in variables



Critical Care Congress #CCC49







- Difference in length of stay (ICU & Hospital)among provided by A 24/7 bedside intensivist providing Critical care with presence of standard of care and Standard of care only (tele-intensivist) was0.55 i.e one half day which achieved statistical significance using complex modelling.
- Conventional and popular utilized technique did show statistical difference they accompanied with several limitation of not adjusting for case mix index and poorly fitted models with small number of matched cases.
- Nonfederal, nonacademic, not for profit ,Multicenter, single health system's study findings cannot be generalized to the whole teleICU population so research studies using multisystem data, utilizing randomizatized control trial is recommended,
- Tele-intensivist model is an intensivist model of care should be included as best practices













Continued discussion on other outcomes

Exploring Mortality in Tele-Intensivist Delivery Models With and Without 24/7 Bedside Intensivists: Tuesday, February 18, 2020 - 8:45 AM - 9:45, am





