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Asymptotic Theory for Robust Autocorrelation Test  

under Stochastic Volatility*

Manabu ASAI**

Abstract: Wooldridge (1991) suggest a robust test for autocorrelations of the disturbances of 

regression models, under misspecified conditional heteroskedastic model. Although stochastic 

volatility (SV) models allow unconditional time-varying variance, the Monte Carlo results of Asai  

(2000) indicate that the test of Wooldridge (1991) is robust under the SV process. This paper 

shows that the test statistic has asymptotic χ2 distribution under the null hypothesis of no serial 

correlation, even when the underlying process has stochastic volatility.
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1 Introduction

Wooldridge (1990, 1991) developed a general framework for robust, regression-based 

diagnostics to models with conditional means and conditional variances. As an application, 

Wooldridge (1991) proposed a test for autocorrelations of the disturbances of regression models, 

which is robust to the misspecification of conditional heteroskedastic models. Monte Carlo 

experiments of Asai (2000)  show that the robust autocorrelation test of Wooldridge (1991) has 

satisfactory size and power in finite sample. The purpose of this paper is to give a formal proof for 

the asymptotic property of the test statistic.

The organization of this paper is as follows, Section 2 introduce the testing procedure in the 

presence of stochastic volatility. Section 3 shows that the robust test follows the χ2 distribution 

under the null of no serial correlation, and Section 4 gives some concluding remarks.

The matrix (Euclidean) norm of the matrix, or vector A, is dened as , is defined as ||A|| =
√
tr(A′A). We. We 

denote a strictly positive constant by K.

2 Stochastic Volatility Model and Robust Autocorrelation Test 

Consider the regression model with autoregressive disturbance: 
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	 yt = xt β  + ut,								        (1)

	 ut = γ1ut-1 + ⋅  ⋅  ⋅ + γp ut-p + et (t = 1, 2,..., T ),					     (2)

where y t is a dependent variable, x t is a 1 × k vector of variables which may include exogenous 

variables and predetermined variables, β  is a k × 1 vector of parameters, γ = (γ1,..., γp)'  is a p × 1 

vector of parameters, and et follows a stochastic volatility (SV) process:

	 et = zt exp(α t /2)								        (3)

	 α t+1 = ω  + φα t + η t,								       (4)

with zt ∼ iid(0,1) and η t ∼ N(0, σ 2
η  ).  

We assume |φ | < 1 for the strict and covariance stationarity of α t . By the denitions (3) and (4), 

Theorem 3.5.8 of Stout (1974) shows that et is strict stationary and ergodic. The structure 21 of the 

SV model (3) and (4) and property of the log-normal distribution indicate: 

	 E(et) = 0,  V(et) = σ 2
e    E(et e s) = 0 for t ≠ s,					     (5)

where 

	 σ2e = exp

(
ω

1− ϕ
+

σ2η
2(1− ϕ2)

)
,

(see Andersen and Sørensen (1996) for the moments of the SV model). Hence, e t is covariance 

stationary if |φ | < 1. The autocovariance function of  e2
t  is given by:

	 E[e2t e
2
t−s] = exp

(
2ω

1− ϕ
+

σ2η
1− ϕ2

+
ϕsσ2η
1− ϕ2

)
, s = 0, 1, 2, . . . , 		  (6)

indicating the dependence of the second moment.

We assume that γ satisfy the stationary condition.

Assumption 1. The roots of the characteristic polynomial, 1 - γ1m - ⋅ ⋅ ⋅ γpmp = 0, are greater than one 

in absolute value. 

Remark 2.1.  Since et is strict stationary and ergodic, Theorem 3.5.8 of Stout (1974) and equation 

(2) with Assumption 1 imply that ut is strict stationary and ergodic. Hence ut has an MA(∞)  

representation: 

	 ut =

∞∑
i=0

ϱiet−1, ϱ0 = 1,						      (7)

with unconditional moments, E(ut) = 0 and V(ut) =  σ 2
u , where  σ 2

u = σ 2
e ∑

∞
i=0 , ϱ0 2i  < ∞ .

For the model defined in (1)-(4), consider testing autocorrelations via the null hypothesis: 

	 H0 : γ1 = ⋅  ⋅  ⋅ = γp = 0.							       (8)

For this purpose, we use the robust Lagrange multiplier (LM) test introduced by Wooldridge (1991). 

Following Wooldridge (1991), dene the ‘misspecification indicator’ as:

	 λ t( β  ) = ( yt−1 - xt−1 β ,..., yt−p - xt−p β ).					     (9)

Corresponding to the OLS estimate, β^, define λ^ 
t =  λ t( β^ ) = (û t − 1,..., û t − p) with the OLS 
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residual defined by ût = y t - x t β
^. Wooldridge (1991) considers a kind of standardization of the 

misspecification indicator  using an approximated heteroskedastic model. For the underlying SV 

process, we use the ARCH(q) specication for the approximated heteroskedastic model. Note that 

the test statistic of Wooldridge (1990) is robust to the misspecification of heteroskedastic function, if 

the regularity conditions are satisfied.

The construction of the robust LM statistic involves the following steps: 

1. Obtain the fitted values, h^ t (t = 1,...,T ) from the regression of  û2
t  on (1, û2

t−1,...,  û2
t−q). 

2. Define  x∼ t  = h^ t 
−1/2 xt and u∼ t =  h^ t 

−1/2 û t (t = 1,...,T ).

3. Save the 1 × p vector of residuals, say r∼ t , from the regression of each of λ
∼

t on x∼ t, where λ
∼

t = 

(u∼ t−1,..., u∼ t−p).

4. Compute T - SSR, where SSR is the sum of the squared residuals from the regression of 1 on 

u∼ t r∼ t. 

In the following, we show that T - SSR has the asymptotic  χ 2(p) distribution under H0. 

3 Asymptotic Property 

In the asymptotic analysis, we use the following notations to explain quantities used in the 

procedure in the previous section. 

In addition to the misspecification indicator (9), define the error term ψ t(β ) = yt - xt β . For the 

OLS estimator  β^ = [∑T
t=1 x't x t]−1 ∑T

t=1 x 't y t, the OLS residuals are given by û t = ψ t(β^ ) = ut - xt(β^ - β o), 

where  β o is the vector of true parameters. For the first step in the above procedure, we formally 

state the approximating ARCH(q) model as:

	 ht(θ) = δ0 + δ1(yt−1 − xt−1β)
2 + · · ·+ δq(yt−q − xt−qβ)

2, 			   (10)

where θ  = (δ ', β ')' and δ  = (δ 0, δ 1,..., δ q)'. The OLS estimator of  δ  is obtained by:

	 δ̂ =

[
T∑
t=1

κt(β̂)
′κt(β̂)

]−1 T∑
t=1

κt(β̂)
′φt(β̂)					     (11)

where

	 κt(β) = [1 (yt−1 − xt−1β)
2 · · · (yt−q − xt−qβ)

2], φt(β) = (yt − xtβ)2.		  (12)

By the definition of ht(θ ), we can write h^ t  in the first step as  h^ t  = ht(θ
^) with  θ^ = ( δ^ ',  β^ ')'.

Based on x∼ t and u∼ t in the second step, the residual in the third step is given by:

	 r̃t = λ̃t − x̃t

[
T∑
t=1

x̃′tx̃t

]−1 T∑
t=1

x̃′tλ̃t =
[
ht(θ̂)

]−1/2 [
λt(β̂)− xtB̂T

]
,

where

	 B̂T =

[
T∑
t=1

[ht(θ̂)]
−1x′txt

]−1 T∑
t=1

[ht(θ̂)]
−1x′tλt(β̂).				    (13)

By regressing 1 on u∼ t  r∼ t in the fourth step, we obtain:
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	 T − SSR = ζ̈ ′T Ω̈T ζ̈T 								       (14)

where

	 ζ̈T =
1√
T

T∑
t=1

ũtr̃
′
t =

1√
T

T∑
t=1

ψt(β̂)

ht(θ̂)

[
λt(β̂)− xtB̂T

]′
,

[ ]
			   (15)

	

∑
t=1

∑
t=1

[ ]

Ω̈T =
1

T

T∑
t=1

ũ2t r̃
′
tr̃t =

1

T

T∑
t=1

[
ψt(β̂)

ht(θ̂)

]2 [
λt(β̂)− xtB̂T

]′ [
λt(β̂)− xtB̂T

]
,		  (16)

and SSR is the sum of the squared residuals. Note T - SSR = TR 2
u , where R 2

u is the uncentered 

r-squared from the regression of 1 on u∼t r∼t.

Corresponding to θ , denote the parameter space as Θ = Θβ × Θδ  where Θβ ⊂ ℜk and  Θδ ⊂ ℜq+1 . 

We make the following assumptions.

Assumption 2. The vector process x t  is strict stationary and ergodic. For any t and s, x t and us are 

independent. For the second moments of x t and ut, Vx = E[x't xt] is finite and positive definite, and σ 2
u  

defined by equation (7) is finite, respectively. For the fourth moment of  xt, E(| xit xjt xlt xrt |) is finite for 

all i, j, l, and r (i, j, l, r = 1,...,k).

Assumption 3. For the approximating ARCH(q) model (10), δ 0 > 0  and  δ i ≥ 0 (i = 1,..., q). The 

roots of the characteristic polynomial, 1 - δ 1m - . . . - δ qmq = 0, are greater than one in absolute value.

Remark 3.1. The parameter vector,  δ , is determined by the property of ut with the structure (2)-(4).  

The true value of  δ  is given by the following assumption.

Assumption 4. Θ is compact. For the vectors of the true parameters, β o ∈ Θβ  and δ o ∈ Θδ ,

where

	 δo =
[
E[κt(β

o)′κt(β
o)]

]−1
E[κt(β

o)′φt(β
o)].

Assumption 5. The distribution of  zt is symmetric and E( z 4
t) < ∞.

Proposition 1. Under Assumptions 1-5,

	
√
T (δ̂ − δo) = Op(1),

where δ^ is defined by (11).

Proposition 2. Under Assumptions 1-5 and H0

	 T − SSR d−→ χ2(p).

where T - SSR is defined in equation (14).

4 Conclusion

Wooldridge (1991) developed a serial correlation test which is robust to the misspecification 

of conditional variance. The paper shows that the test statistic suggested by Wooldridge (1991) has 

the asymptotic χ2 distribution under the null hypothesis of no autocorrelation, when the underlying 

process follows the stochastic volatility (SV) model. The sufficient conditions for the result are 
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existence of the fourth order moment and the assumption of a symmetric distribution.

We can consider several extensions of the paper. Regarding the underlying process, the 

approach used in this paper applicable to symmetric ARCH class model and symmetric type 

SV models. We may also examine asymptotic properties of various tests under misspecified 

heteroskedastic models. These are important directions of future researches.
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Appendix

A.1 Proof of Proposition 1

For a matrix A, {A}ij denotes the (i, j )th element of A. We introduce Lemma A.1 of Wooldridge (1990) 

which is repeatedly used in the following proofs.

Lemma 1. Assume that the sequence of random functions {QT(wT, θ ) : θ  ∈ Θ, T = 1, 2,...}, where 

QT(wT, ⋅ ) is continuous on Θ and Θ is a compact subset of ℜP , and the sequence of non-random 

functions {Q−T(θ ) : θ  ∈ Θ, T = 1, 2,...} satisfy the following conditions:

(i) supθ ∈Θ |QT(wT, θ ) - Q−T(θ )| →p  0;

(ii) {QT(wT, θ ) : θ  ∈ Θ, T = 1, 2,...} is continuous on Θ uniformly in T. Let θ̈T be a sequence of random 

vectors such that  θ̈T - θ o
T   →p   0 where { θ o

T  } ⊂ Θ.

Then QT(wT, θ̈T ) -  Q−T(θ o
T) →p   0.

Proof. See Lemma A.1 of Wooldridge (1990). □

Lemma 2. Under Assumptions 1 and 2,  β^  → a.s.    β o.

Proof. Noting that  yt = xtβ o + ut,

	 β̂ = βo +

[
1

T

T∑
t=1

x′txt

]−1
1

T

T∑
t=1

x′tut.

Since xt  is strict stationary and ergodic, the uniform law of large numbers (ULLN) for stationary 

ergodic processes (see Lemma A.2.2 of White (1994)) indicates:

	

�����
1

T

T∑
t=1

xitxjt − {Vx}ij

�����
a.s.−−→ 0,

for all i and j (i, j = 1,..., k). By Assumption 2, Vx is positive definite, and the continuity of the matrix 

inverse indicates that  1−T ∑T
t=1 x't x t  is nonsingular almost surely for T sufficiently large. As the 

elements of   V −1
x
   are uniformly bounded,

	
������




(
1

T

T∑
t=1

x′txt

)−1



ij

− {V −1
x }ij

������
a.s.−−→ 0,

					     (A.1)

for all i and j. Since  E(x 2
it) =  {Vx}ii < K and E(u2

t ) = σ 2
u < K by Assumptions 1 and 2,

	 E|xitut| ≤
√
E(x2it)E(u

2
t ) < K,

by Hölder’s inequality. Since (x't , ut)' is strict stationary and ergodic, x't ut is strict stationary and 

ergodic. By the ULLN for stationary ergodic processes (Lemma A.2.2 of White (1994)), we obtain:

	

�����
1

T

T∑
t=1

xitujt − E(xitut)

�����
a.s.−−→ 0,

Since V −1
x   has uniformly bounded elements, uniform continuity implies, 
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������




[
1

T

T∑
t=1

x′txt

]−1
1

T

T∑
t=1

x′tut




i

− {V −1
x E(x′tut)}i

������
a.s.−−→ 0,

for all i (i = 1,..., k). Since E(x't ut) = 0 by Assumption 2,

	

[
1

T

T∑
t=1

x′txt

]−1
1

T

T∑
t=1

x′tut
a.s.−−→ 0,

implying that Lemma 2 holds. □

Lemma 3. Under Assumptions 1-4, Under Assumptions 1-4,
√
T (β̂ − βo) d−→ N(0, σ2V −1

x ).. 

Proof. Consider the quantity Consider the quantity 1√
T

∑T
t=1 x

′
tut. As (. As (x't, ut)' is strict stationary and ergodic, x't ut 

is strict stationary ergodic. Assumptions 1 and 2 indicate that x't ut is strict stationary ergodic 

martingale difference with E(u2
t xt x't ) =  σ 2

uVx , which is finite and positive definite. By the ULLN for 

stationary ergodic process (Lemma A.2.2 of White (1994)),

	

�����
1

T

T∑
t=1

u2txitxjt − σ2u{Vx}ij

�����
a.s.−−→ 0,

for all i and j (i, j = 1,..., k). Since Vx is finite and positive definite by Assumptions 2, we can define 

the symmetric positive definite matrix,   σ −1
u Vx 

−1/2 such that (σ −1
u Vx 

−1/2 )2 =  σ −2
u Vx 

−1 . Assumptions 2-4 

imply that the elements of Vx 
−1/2  and σ −1

u  are uniformly bounded. By Lemma 3.2 of White (1980a),

	

������
σ−2
u

{
V −1/2
x

[
1

T

T∑
t=1

u2tx
′
txt

]
V −1/2
x

}

ij

− {Ik}ij

������
p−→ 0, 				    (A.2)

for all i and j (i, j = 1,..., k). Also, by Chebyshev’s inequality,

	 P

(����
xitut√
T

���� > ε
)

≤ V (xitut)
Tε2

→ 0,

as T → ∞ . Hence,

	 max
1≤t≤T

����
xitut√
T

����
p−→ 0.							       (A.3)

As equations (A.2) and (A.3) satisfy the regularity conditions for the central limit theorem (CLT) for 

strict stationary ergodic martingale differences (Theorem 24.3 of Davidson (1994)), we obtain: 

	
σ−1
u V

−1/2
x

1√
T

T∑
t=1

x′tut
d−→ N(0, Ik).

					   
(A.4)

Now

	
√
Tσ−1

u V
1/2
x (β̂ − βo) = V 1/2

x

[
1

T

T∑
t=1

x′txt

]−1

V 1/2
x σ−1

u V
−1/2
x

1√
T

T∑
t=1

x′tut.

By (A.1), (A.2), and Lemma 3.2 of White (1980a),

	

������



V

1/2
x

[
1

T

T∑
t=1

x′txt

]−1

V 1/2
x





ij

− {Ik}ij

������
p−→ 0,
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and hence,

	

�����
√
Tσ−1

u V
1/2
x (β̂ − βo)− σ−1

u V
−1/2
x

1√
T

T∑
t=1

x′tut

�����
p−→ 0. 				    (A.5)

Lemma 3.3 of White (1980a) with (A.4) and (A.5) indicates: 

	
√
Tσ−1

u V
1/2
x (β̂ − βo) d−→ N(0, Ik).   □

Lemma 4. Define

	 Ξ0t = κt(β
o)′κt(β

o).

Under Assumptions 1-5,

(i) | 1−T ∑T
t=1 ξ0,ijt − E(ξ0,ijt)| → a.s.  0  for all i and j (i, j = 1,..., q+1), where  ξ0,ijt  is the (i, j )th element of  Ξ0t;

(ii) Γ0 = E[κ t(β o)'κ t(β o)] is positive definite.

Proof. We can write the (i, j )th element of Ξ0t as:

	
ξ0,ijt =




1 (i = j = 1)
u2t−j (i = 1, j = 2, . . . , q + 1)

u2t−i (j = 1, i = 2, . . . , q + 1)
u2t−iu

2
t−j (i, j = 2, . . . , q + 1).

By Remark 2.1, E | ξ0,1 j t | < ∞  and  E | ξ0,i1t | < ∞. For i, j = 2,..., q + 1,

	 E|ξ0,ijt| = E[u2t−iu
2
t−j ] ≤

[
E[u4t−i]

]1/2 [
E[u4t−j ]

]1/2
= E[u4t ] <∞,

by Hölder’s inequality and the finite fourth moment by Assumption 5. Hence E | ξ0 , i j t | exists and 

bounded. Since ut is strict stationary and ergodic, Theorem 3.5.8 of Stout (1974) with the structure 

Ξ0 t implies that all elements of Ξ0 t except for (1, 1) are strict stationary and ergodic. Note that  ξ 0,11t 

= 1. By the ULLN for stationary and ergodic process (Lemma A.2.2 of White (1994)),

	

�����
1

T

T∑
t=1

ξ0,ijt − E(ξ0,ijt)

�����
a.s.−−→ 0, 						      (A.6)

for all i and j (i, j = 1,..., q + 1), which gives Lemma 4(i).

By the structure, T −1 ∑T
t=1 Ξ0t is the sample mean of the outer product of random vector κ t(β 0), 

thus its determinant is non-negative. Since κ t(β 0) is linearly independent by Assumption 3, the rank 

of  T −1 ∑T
t=1 Ξ0t  is q + 1, which guarantees that the inverse of the matrix exists almost surely when 

T > q + 1. Combined with (A.6), we obtain Lemma 4(ii). □

Proof of Proposition 1 Since ut and xt  are strictly stationary and ergodic, Theorem 3.5.8 of Stout  

(1974) with the structure (12) implies that elements of κ t(β 0)'κ t(β 0)  and κ t(β^ )'κ t(β^ ) are strict 

stationary and ergodic. Combined with Lemma 4 and the consistency of β^  by Lemma 2, Lemma 1 

indicates that: 
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������

{
1

T

T∑
t=1

κt(β̂)
′κt(β̂)

}

ij

− {Γ0}ij

������
a.s.−−→ 0,

for all i and j (i, j = 1,..., q + 1), where Γ0 is stated in Lemma 4. By the proof of Lemma 4,  
1−T ∑T

t=1 κ t(β^)'κ t(β^) is nonsingular almost surely for T sufficiently large. As the elements of Γ −1
0  are 

uniformly bounded,

	

������




(
1

T

T∑
t=1

κt(β̂)
′κt(β̂)

)−1



ij

− {Γ−1
0 }ij

������
a.s.−−→ 0, 					     (A.7)

for all i and j (i, j = 1,..., q +1). Since ut and xt  are strictly stationary and ergodic, the elements of  

κ t( β 0)'ϕ t(β 0) and κ t(β^ )'ϕ t(β^ ) defied by equation (12) are strictly stationary and ergodic. Since  

E[[{κ t(β 0)}i]2] = {Γ0}ii < K by Lemma 3 and  E[[ϕ t(β 0)]2] = E(u4
t ) < K  by Assumption 5,

	 E |{κt(βo)}iφt(βo)| ≤
√
E[[{κt(βo)}i]2]E[[φt(βo)]2] < K (i = 1, . . . , q + 1),  	 (A.8)

by Hölder’s inequality. By the ULLN for stationary ad ergodic process indicates, we obtain:

	

�����

{
1

T

T∑
t=1

κt(β
o)′φt(β

o)

}

i

− {E[κt(βo)′φt(βo)]}i

�����
a.s.−−→ 0,

for all i (i = 1,..., q +1). Since  Γ−1
0  has uniformly bounded elements, uniform continuity implies

	

������




[
1

T

T∑
t=1

κt(β
o)′κt(β

o)

]−1
1

T

T∑
t=1

κt(β
o)′φt(β

o)




i

− {Γ−1
0 E[κt(β

o)′φt(β
o)]}i

������
a.s.−−→ 0,

for all i (i = 1,..., q +1). By Assumption 4,

	

������




[
1

T

T∑
t=1

κt(β
o)′κt(β

o)

]−1
1

T

T∑
t=1

κt(β
o)′φt(β

o)




i

− δoi

������
a.s.−−→ 0,

for all i (i = 1,..., q +1). By (A.7) and the consistency of β^  by Lemma 2, Lemma 1 indicates:

	

������




[
1

T

T∑
t=1

κt(β̂)
′κt(β̂)

]−1
1

T

T∑
t=1

κt(β̂)
′φt(β̂)




i

− δoi

������
a.s.−−→ 0,

for all i (i = 1,..., q +1), showing that   δ^ → a.s.   δ o .  The covariance matrix of √T (δ^ - δ o)is given by:

	 V
(√
T (δ̂ − δo)

)
= Γ−1

0 E
[(
u2tκt(β

o)′ − E[u2tκt(βo)′]
)′ (
u2tκt(β

o)′ − E[u2tκt(βo)′]
)]

Γ−1
0 .

Since the elements of Γ−1
0  are bounded and those of E[u4

t κ t(β 0)'κ t(β 0)] are bounded by (A.8), the 

elements of V(√T (δ^ - δ o)) are bounded. By Chebyshev’s inequality,

	

)

P
(√
T
���δ̂i − δoi

��� < ϵ
)
≥ 1− V (

√
T (δ̂i − δoi ))
ϵ2

,

for all i (i = 1,..., q + 1). The result establishes √T (δ^ - δ o) = Op(1). □

A.2 Proof of Proposition 2

Define the information set up to t as  ℑ t = {y t, x t , yt −1, x t −1,...}.

Lemma 5. Under Assumption 1 and 2, ht(θ ) is strict stationary and ergodic with: 
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	 E[ht(θ)] = δ0 +
[
σ2u + (β − β0)′Vx(β − β0)

] q∑
i=1

δi, 				    (A.9)

where

	 σ2u =
σ2e

1− γ21 − · · · − γ2q
,

and  σ 2
e  is the variance of et defined by (5).

Proof. Noting that yt - i - xt - iβ  = ut- i - xt -i( β  - β 0), we obatin:

	 ht(θ) = δ0 +

q∑
i=1

δi [ut−i − xt−i(β − β0)]2 , 					     (A.10)

where β 0 is the true value of β . Since ut and xt  are stationary and ergodic by Assumptions 1 and 2, 

Theorem 3.5.8 of Stout (1974) with the structure (A.10) implies that ht(θ ) is stationary and ergodic. 

For obtaining E[ht(θ )], the variance of ut is obtained by the conventional approach. Since ut is 

uncorrelated with xt  by Assumption 2, we obtain E[{ut − i - x t− i( β  - β 0)}2] = σ 2
u + (β  - β 0)'Vx(β  - β 0). 

Then we obtain (A.9). □

Lemma 6.  Let  Ξ1t(θ ) = [ht(θ )]−1 x't xt. Under Assumptions 1-4,

(i) supθ ∈Θ |T −1∑T
t=1 ξ1 , i j t(θ ) - E[ξ1 , i j t(θ )]| →p  0 for all i and j (i, j = 1,..., k), where ξ1 , i j t(θ ) is the (i, j)th 

element of  Ξ1t(θ ); 

(ii) {T −1∑T
t=1  E[Ξ1t(θ )] :  θ  ∈ Θ , T = 1, 2,...  } is O(1) and continuous on Θ uniformly in T;

(iii) E[Ξ1t(θ o)] is positive definite.

Proof. By definition, we obtain:

	 sup
θ∈Θ

||Ξ1t(θ)|| = sup
θ∈Θ

[ht(δ, β)]
−1||x′txt||,

and

	 ||xtx′t|| =
√
tr ((x′txt)

′(x′txt)) =
√
tr (x′txtx

′
txt) =

√
tr ((xtx′t)

2)

	               = xtx′t =
{√

tr(xtx′t)

}2

= ||xt||2.

Noting that ht(δ , β ) ≥ δ 0 > 0 by Assumption 3, we obtain:

	 E

[
sup
θ∈Θ

||Ξ1t(θ)||
]
= E

[
sup
θ∈Θ

[ht(θ)]
−1||x′txt||

]
≤ KE

[
sup
θ∈Θ

||xt||2
]
= KE

[
||xt||2

]
<∞.   (A.11)

The first inequality comes from Assumption 4. Since 1/ht(δ , β ) is strict stationary and ergodic by 

Lemma 5, the uniform law of large numbers (ULLN) for stationary ergodic process (see Theorem 

A.2.2 of White (1994)) with the result E[supθ ∈Θ || Ξ1t(θ )||] < ∞ indicate that:

	 sup
θ∈Θ

�����T
−1

T∑
t=1

ξ1,ijt(θ)− E[ξ1,ijt(θ)]

�����
a.s.−−→ 0,
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for all i and j (i, j = 1,..., k). By the almost sure convergence, we obtain the weak convergence in 

Lemma 6(i).

By (A.11), E[Ξ1t(θ )] exists, and it does not depend on t and continuous on Θ by the structure.

Thus Lemma 6(ii) holds.

By equation (10), ht(θ o) is independent of xt . Hence E[Ξ1t(θ o)] = E[1/ht(θ o)]Vx . Since E[1/ht(θ o)] 

> 0, we obtain Lemma 6(iii) by Assumption 2. □

Lemma 7. Define

	 Ξ2t(θ) = −[ht(θ)]
−1x′t[(yt−1 − xt−1β) · · · (yt−p − xt−pβ)]. 		  (A.12)

Under Assumptions 1-4,

(i) supθ ∈Θ|T −1∑T
t=1 ξ2 , i j t(θ ) - E[ξ2,ijt(θ )]| →p  0 for all i (i = 1,..., k) and j ( j = 1,..., p), where ξ2 , i j t (θ ) is 

the (i, j)th element of  Ξ2 t(θ ); 

(ii) {T −1∑T
t=1  E[Ξ2t(θ )] :  θ  ∈ Θ , T = 1, 2,...  } is O(1) and continuous on Θ uniformly in T . 

Proof. By (A.12), we obtain an alternative expression of Ξ2t(θ ) as:

	 Ξ2t(θ) = −[ht(θ)]
−1x′t[(ut−1 − xt−1(β − βo)) · · · (ut−p − xt−p(β − βo))].

We can write the (i, j )th element of Ξ2t(θ ) as:

	 ξ2,ijt(θ) = −[ht(δ, β)]
−1xit (ut−j − xt−j(β − βo)) .

To prove Lemma 7(i), we will show that E[supβ ∈Θβ  |ξ 2 , i j t|] is finite. By Assumptions 3 and 4 and ht(θ ) 

≥ δ 0 > 0, we obtain: 

	 |ξ2,ijt(θ)| ≤ K|xit (ut−j − xt−j(β − βo)) | ≤ K

[
|xitut−j |+

k∑
l=1

|xitxl,t−j ||βl − βol |

]
.

For the upper bound of | β l - β o
l | (l = 1,..., k), we follow the approach of the proof of Theorem 1 of 

White (1980b). Since β o is finite, there exists a compact neighborhood of ν  of β o such that ( β l - β o
l ) 

is finite. There also exists a finite vector β
∼  (not necessarily in ν ) with element  β

∼ 
l such that  | β l - β o

l | 

≤ | β
∼ 

l - β o
l | for all β  in ν , so that for all β  in ν :

	
k∑

l=1

|xitxl,t−j ||βl − βol | ≤
k∑

l=1

|xitxl,t−j ||β̃l − βol |.

Hence we obtain  E[supθ ∈Θ |ξ 2 , i j t(θ )|] < ∞. Since 1/ht(δ , β ) is strict stationary and ergodic by Lemma 

5, Theorem 3.5.8 of Stout (1974) with the structure (A.12) implies that ξ 2 , i j t(θ ) is strict stationary 

and ergodic. The ULLN for stationary ergodic processes (Theorem A.2.2 of White (1994)) with the 

result  E[supβ ∈Θβ  |ξ 2 , i j t(θ )|] < ∞  indicates that:

	

[ ]

sup
θ∈Θ

�����T
−1

T∑
t=1

ξ2,ijt(θ)− E[ξ2,ijt(θ)]

�����
a.s.−−→ 0,

for all i (i = 1,..., k) and j ( j = 1,..., p). By the almost sure convergence, we obtain the weak 

convergence in Lemma 7(i). By the proof of Lemma 7(i), E[Ξ2t(θ )] exists, and it does not depend on 

t and continuous on Θ by the structure. Thus Lemma 7(ii) holds. □
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Lemma 8. Define 

	 Bo
T =

[
E
[
[ht(θ

o)]−1x′txt
]]−1

E
[
[ht(θ

o)]−1x′tλt(β
o)
]
.

Under Assumptions 1-4, Bo
T exists and

	 B
^

T  -  Bo
T  =  op(1),								        (A.13)

where B
^

T is defined by equation (13).

Proof. Noting that B o
T = [E[Ξ1t(θ o)]]-1 E[Ξ2t(θ o)], Lemmas 6 and 7 indicate that BT(θ o) exists. Since   

β^ - β o →p  0 by Lemma 3 and  δ^ - δ o →p  0 by Proposition 1, Lemmas 6 and 7 satisfy the conditions of 

Lemma 1, which establishes (A.13). □

Lemma 9. Define 

	 Ξ3t(θ) = −ψt(β)
ht(θ)

x′t

Under Assumptions 1-4,

(i) supθ ∈Θ|T −1∑T
t=1 ξ 3,it(θ ) - E[ξ 3,it(θ )]| →p  0 for all i (i = 1,..., k), where ξ 3,it (θ ) is the ith element of  

Ξ3t(θ ); 

(ii) {T −1 ∑T
t=1  E[Ξ3t(θ )] :  θ  ∈ Θ, T = 1, 2,...  } is O(1) and continuous on Θ uniformly in T;

(iii)  1−
√-T ∑

T
t=1 Ξ3t(θ O) = Op(1). 

Proof. Assumptions 3 and 4 indicates:

	 |ξ3,it(θ)| ≤
1

ht(θ)
|xit (ut − xt(β − βo))| ≤ K|xitut|+K

k∑
l=1

|xitxlt||βl − βol |.

By discussions similar to the proof of Lemma 7, we obtain  E[supθ ∈Θ |ξ 3,it(θ )|] < ∞, and we can show 

that ξ 3,it(θ ) is strict stationary ergodic process by Theorem 3.5.8 of Stout (1974). By applying the 

ULLN for stationary ergodic process (Theorem A.2.2 of White (1994)) with E[supθ ∈Θ |ξ 3,it(θ )|] < ∞ 

indicates that:

	 sup
θ∈Θ

�����T
−1

T∑
t=1

ξ3,it(θ)− E[ξ3,it(θ)]

�����
a.s.−−→ 0,

for all i (i,= 1,..., k). By the almost sure convergence, we obtain the weak convergence in Lemma 

9(i).

Since E[supθ ∈Θ |ξ 3,it(θ )|] < ∞ , E[Ξ3t(θ )] exists, and it does not depend on t and continuous on Θ 

by the structure. Thus Lemma 9(ii) holds.

When  β  = β o, conditional on the information set up to t - 1, we obtain E( ξ 3,it(θ o)| ℑ t - 1) = 0 and:

	 V (ξ3,it(θ
o)|ℑt−1) =

E(u2t )E(x
2
it)

[ht(θo)]2
≤ Kσ2u{Vx}ii <∞,

for all i (i,= 1,..., k), by Assumptions 2-4. Hence V(ξ 3 , i t(θ )) is also bounded. By Chebyshev’s 

inequality,
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	 P

(�����T
−1/2

T∑
t=1

Ξ3t(θ
o)

����� < ϵ
)

≥ 1− V (ξ3,it(θ))
ϵ2

for any ∊ > 0 and all i (i,= 1,..., k), indicating that Lemma 9(iii) holds. □

Lemma 10. Define

	 Ξ4t(θ) =
ψt(β)

[ht(θ)]3
x′tκt(β) 						      (A.14)

Under Assumptions 1-4,

(i) supθ ∈Θ|T −1 ∑T
t=1 ξ4 , i j t(θ ) - E[ξ 4 , i j t(θ )]| →p   0 for all i (i = 1,..., k) and j ( j = 1,..., q+1), where ξ 4 , i j t(θ ) 

is the (i, j )th element of  Ξ4t(θ ); 

(ii) {T −1 ∑T
t=1 E[Ξ4t(θ )] :  θ  ∈ Θ , T = 1, 2,...} is O(1) and continuous on Θ uniformly in T.

Proof. We can write the (i, j )th element of Ξ4t(θ ) as:

	 ξ4,ijt(θ) =

{
−[ht(θ)]

−3ψt(β)xit for j = 1,

−[ht(θ)]
−3ψt(β)xit (ut−j+1 − xt−j+1(β − βo))2 otherwise,

for i (i = 1,..., k) and j ( j = 1,..., q + 1). For j = 1, noting that ht(δ , β ) ≥ δ 0 > 0, we just need to replace 

ht(δ , β ) by [ht(δ , β )]3 in the proof of Lemma 9 to obtain the result of Lemma 10.

Hence, we concentrate on the case j = 2,..., q + 1.

By Assumptions 3 and 4 and ht(θ ) ≥ δ 0 > 0, we obtain:

	 |ξ4,ijt(θ)| ≤ [ht(δ, β)]
−3|xit (ut − xt(β − βo)) (ut−j+1 − xt−j+1(β − βo))2 |

[ � �
		      

| ≤ | − − − −

≤ K

[
|utut−jxit|+

�����u
2
t−j+1

k∑
l=1

xitxlt(βl − βol )

�����
�� ��

			 

����
∑
l=1

+ 2

�����utut−j+1

k∑
l=1

xitxl,t−j+1(βl − βol )

�����
��

			 

����
∑
l=1

����

+

�����ut
k∑

l=1

k∑
r=1

xitxl,t−j+1xr,t−j+1(βl − βol )(βr − βor )

�����
�� ��

			 

����
∑∑ ����

+ 2

�����ut−j+1

k∑
l=1

k∑
r=1

xitxltxr,t−j+1(βl − βol )(βr − βor )

�����
��

			 

����
∑∑ ����

+

�����
k∑

m=1

k∑
l=1

k∑
r=1

xitxmtxl,t−j+1xr,t−j+1(βm − βom)(βl − βol )(βr − βor )

�����

]

[
		      

����
∑ ∑∑

≤ K

[
|utut−j ||xit|+ |u2t−j+1|

k∑
l=1

|xitxlt||βl − βol |

			 

∑

+ 2|utut−j+1|
k∑

l=1

|xitxl,t−j+1||βl − βol |

			 

∑

+ |ut|
k∑

l=1

k∑
r=1

|xitxl,t−j+1xr,t−j+1||βl − βol ||βr − βor |
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∑∑

+ 2|ut−j+1|
k∑

l=1

k∑
r=1

|xitxltxr,t−j+1||βl − βol ||βr − βor |

			 

∑
l=1

∑

+

k∑
m=1

k∑
l=1

k∑
r=1

|xitxmtxl,t−j+1xr,t−j+1||βm − βom||βl − βol ||βr − βor |

]
,

for all i (i = 1,..., k) and j ( j = 2,..., q +1). Since | β l - β o
l | is bounded by the discussion of the proof of 

Lemma 7,

	
sup
θ∈Θ

|ξ4,ijt(θ)| ≤ K1|utut−j ||xit|+K2|u2t−j+1|
k∑

l=1

|xitxlt|+K3|utut−j+1|
k∑

l=1

|xitxl,t−j+1|

		        

∑ ∑

+K4|ut|
k∑

l=1

k∑
r=1

|xitxl,t−j+1xr,t−j+1|+K5|ut−j+1|
k∑

l=1

k∑
r=1

|xitxltxr,t−j+1|

		        

∑
l=1

∑
r=1

+K6

k∑
m=1

k∑
l=1

k∑
r=1

|xitxmtxl,t−j+1xr,t−j+1|,

for all i (i = 1,..., k) and j ( j = 2,..., q + 1). By Assumption 2, we obtain E[supθ ∈Θ | ξ4 , i j t(θ )|] < ∞. 

Since ht(θ ), ψ t(β ), xt  are strict stationary ergodic processes, Theorem 3.5.8 of Stout (1974) with 

the structure (A.14) implies that ξ4 , i j t(θ ) is strict stationary and ergodic. The ULLN for stationary 

ergodic processes (Theorem A.2.2 of White (1994)) with the result E [supθ ∈Θ| ξ4, i j t(θ )|] < ∞ indicates 

that:

	 sup
θ∈Θ

�����T
−1

T∑
t=1

ξ4,ijt(θ)− E[ξ4,ijt(θ)]

�����
a.s.−−→ 0,

for all i (i = 1,..., k) and j ( j = 2,..., q + 1). By the almost sure convergence, we obtain the weak 

convergence in Lemma 10(i). By the proof of Lemma 10(i), E[Ξ4t(θ )] exists, and it does not depend 

on t and continuous on Θ by the structure. Thus Lemma 10(ii) holds. □

Lemma 11. Define

	 Ξ5t(θ) =
−2ψt(β)

[ht(θ)]3
x′t

q∑
l=1

δl(yt−l − xt−lβ)xt−l  . 				    (A.15)

Under Assumption 1-4,

(i) supθ ∈Θ|T −1 ∑T
t=1 ξ 5 , i j t(θ ) - E[ξ 5 , i j t(θ )]| →p  0  for all i and j (i, j = 1,..., k), where ξ5 , i j t (θ ) is the (i, j )th 

element of  Ξ5 t(θ ); 

(ii) {T −1∑T
t=1 E[Ξ5 t(θ )] :  θ  ∈ Θ , T = 1, 2,...  } is O(1) and continuous on Θ uniformly in T .

Proof. We can write the (i, j )th element of Ξ5 t(θ ) as:

	 ξ5,ijt(θ) = −2[ht(θ)]
−3ψt(β)xit

q∑
l=1

δl(ut−l − xt−l(β − βo))xj,t−l

for i and j (i, j = 1,..., k). Noting that ht(θ ) ≥ δ 0 > 0, Assumptions 3 and 4, we obtain: 

	 |ξ5,ijt(θ)| ≤ [ht(θ)]
−3

�����(ut − xt(β − βo))xit
q∑

l=1

δl(ut−l − xt−l(β − βo))xj,t−l

�����
��
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����
∑

≤ K
q∑

l=1

δl

�����utut−lxit − utxitxj,t−l

k∑
r=1

xr,t−l(βr − βor )

	                                              

����
∑

− ut−lxj,t−l

k∑
r=1

xrt(βr − βor )

	                                              

∑

+xj,t−l

k∑
r=1

k∑
m=1

xrtxm,t−l(βr − βor )(βm − βom)

�����
[

	                   

∑
r=1

∑
m=1

≤ K
q∑

l=1

δl

[
|utut−l||xit|+ |ut|

k∑
r=1

|xitxj,t−lxr,t−l||βr − βor |

	                                              

∑

+ |ut−l|
k∑

r=1

|xj,t−lxrt||βr − βor |

	                                              

∑

+

k∑
r=1

k∑
m=1

|xj,t−lxrtxm,t−l||βr − βor ||βm − βom|

]
,

for all i and j (i, j = 1,..., k). Since | β l - β o
l | is bounded by the discussion of the proof of Lemma 7 and  

δ l is bounded by Assumption 4,

	 sup
θ∈Θ

|ξ5,ijt(θ)| ≤ K1

q∑
l=1

[
|utut−l||xit|+K2|ut|

k∑
r=1

|xitxj,t−lxr,t−l|

				  

∑

+K2|ut−l|
k∑

r=1

|xj,t−lxrt|+K3

k∑
r=1

k∑
m=1

|xj,t−lxrtxm,t−l|

]
,

for all i and j (i, j = 1,..., k). By Assumption 2, we obtain E [supθ ∈Θ |ξ5,ijt(θ )|] < ∞. Since  ht(θ ),  ψ t(β ),  

and xt  are strict stationary ergodic processes, Theorem 3.5.8 of Stout (1974) with the structure (A.15) 

implies that ξ5,ijt(θ ) is strict stationary and ergodic. The ULLN for stationary ergodic processes 

(Theorem A.2.2 of White (1994)) with the result E[supθ ∈Θ |ξ5,ijt(θ )|] < ∞ indicates that:

	 sup
θ∈Θ

�����T
−1

T∑
t=1

ξ5,ijt(θ)− E[ξ5,ijt(θ)]

�����
a.s.−−→ 0,	

for all i and j (i, j = 1,..., k). By the almost sure convergence, we obtain the weak convergence 

in Lemma 11(i). By the proof of Lemma 11(i), E[Ξ 5 t(θ )] exists, and it does not depend on t and 

continuous on Θ by the structure. Thus Lemma 11(ii) holds. □

Lemma 12. Under Assumptions 1-5,  Bo
T = 0. 

Proof. Define

	 Ξo
6t =

1

ht(θo)
x′tλt(β

o).

We can write the (i, j )th element of  Ξo
6t as:

	 ξo6,ijt =
1

ht(θo)
xitut−j ,

for all i (i = 1,..., k) and j ( j = 1,..., p). By the structure, Ξo
6t is an odd function of ut− j . Since ut − j has 
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a symmetric distribution by Assumption 5,  E[ξ o
6,i j t |xt, ut

(− j)], where  ut
(− j ) = {ut−1,..., ut− j +1, ut− j−1,..., 

ut−p} ∩ {ut−1,..., ut−q}, is the integral of an odd function with respect to ut − j from -∞ to ∞, and thus 

E[ξ o
6, i j t |xt, ut

(−j )] = 0. By the law of iterated expectation, E[ξ o
6 , i j t] = E [E[ξ o

6, i j t | xt, ut
(−j )]] = 0 for all i (i = 

1,..., k) and j ( j = 1,..., p). Thus we obtain, Bo
T  = (E[[ht(θ o)]−1x't  xt])−1

E(Ξ o
6 t) = 0. □

Lemma 13. Define

	 Ξo
7t =

1

ht(θo)
[λt(β

o)− xtBo
T ]

′ ∂ψt(β
o)

∂β
.

∑
Under Assumptions 1-5,  1−T ∑T

t=1 Ξ 7t = op(1). 

Proof. Noting that Noting that ∂ψt(β)
∂β  = - xt and Bo

T  = 0 by Lemma 12, we can write the (i, j )th element of Ξ o
7t as:

	 ξo7,ijt = − 1

ht(θo)
ut−ixjt = ξ2,jit(θ

o),

for all i (i = 1,..., p) and j ( j = 1,..., k). By the structure, Ξ o
7t is an odd function of ut− i. Since ut− i has 

a symmetric distribution by Assumption 5, E[ξ o
7,ijt | xt, ut

(−i)] is the integral of an odd function with 

respect to ut− i from -∞ to ∞, and thus E[ξ o
7,ijt |xt, ut

(−i)] = 0. By the law of iterated expectation, E[ξ o
7,ijt ] 

= E[E[ξ o
7,ijt | xt, ut

(−i)]] = 0 for all i (i = 1,..., p) and j ( j = 1,..., k). By Lemma 7 with E[ξ 7,ijt (θ o)] = 0 for all 

i and j, we obtain  1−T ∑T
t=1 Ξ 7t(θ o)| → a.s.   0, which indicates  1−T ∑T

t=1 Ξ 7t(θ o)  = op(1). □

Lemma 14. Define

	 Ξo
8t =

ψt(β
o)

ht(θo)

[
∂λt(β

o)

∂θ

]′
.

Under Assumptions 1-5,  1−T ∑T
t=1 Ξ o

8t(θ o)  = op(1).

Proof. Since Since ∂λt(β)
∂δ  = 0, we can concentrate on the part including 

	
∂λt(β)

∂β
= −

[
x′t−1 · · · x′t−p

]
.

We can write the (i, j )th element of  Ξ o
8t as:

	 ξo8,ijt = − 1

ht(θo)
utxi,t−j ,

for i (i = 1,..., p) and j ( j = 1,..., k). With a minor change of the discussion of the proof of Lemma 9, 

we can show that:

	

�����
1

T

T∑
t=1

ξo8,ijt − E[ξo8,ijt]

�����
a.s.−−→ 0,						      (A.16)

for all i (i = 1,..., p) and j ( j = 1,..., k). Since E [ξ 0
8,ijt | ℑ t−1] = ] = − xi,t−j

ht(θo)
E[ut|ℑt−1] = 0, the E[ut | ℑ t−1] = 0, the law of iterated 

expectation indicates E[ξ 0
8,ijt] = 0. Equation (A.16) with E[ξ 0

8,ijt] = 0 establishes Lemma 14. □
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Lemma 15. Define

	 Ξo
9t = [λt(β

o)− xtBo
T ]

′ ψt(β
o)

[ht(θo)]2
∂ht(θ

o)

∂β′
.					     (A.17)

Under Assumptions 1-5 and H0,  1−T ∑T
t=1 Ξ 9 t(θ o)  = op(1).

Proof. Noting that  Bo
T  = 0  by Lemma 11 and

	
∂ht(θ

o)

∂β′
= −2

q∑
l=1

δol ut−lxt−l,

we can write the (i, j )th element of  Ξ o
9t  under H0 as:

	 ξo9,ijt = − 2etet−i

[ht(θo)]2

q∑
l=1

δol et−lxj,t−l,

for i (i = 1,..., p) and j ( j = 1,..., k). By Assumption 3

	 sup
θ∈Θ

��ξo9,ijt
�� ≤ K

�����etet−i

q∑
l=1

δol et−lxj,t−l

����� ≤ K
q∑

l=1

|etet−iet−l| |xj,t−l| ,

and hence

	

� �

E

[
sup
θ∈Θ

��ξo9,ijt
��
]
≤ K

q∑
l=1

E |etet−iet−l|E |xj,t−l| <∞,

by Assumptions 2 and 5. Thus, E[ξ o
9,ijt] exists and it is bounded. Since ht(θ o), et, and xt  are strict 

stationary ergodic processes, Theorem 3.5.8 of Stout (1974) with the structure (A.17) implies that 

ξ o
9,ijt is also strict stationary ergodic. By the ULLN for stationary ergodic process (Theorem A.2.2 of 

White (1994)) with  E[supθ ∈Θ |ξ o
9,ijt |] < ∞,

	

���
���
]

�����
1

T

T∑
t=1

ξo9,ijt − E[ξo9,ijt]

�����
a.s.−−→ 0,

for i (i = 1,..., p) and j ( j = 1,..., k). By the structure, E[ξ 0
9,ijt | ℑ t−1] = 0, and hence the law of iterated 

expectation indicates E[ξ 0
10, i j t] = 0. Therefore, we obtain   1−T ∑T

t=1 Ξ 9t(θ o)| → a.s.   0. Since the almost sure 

convergence implies the convergence in probability, which is equivalent to the definition of op(1), 

the result establishes Lemma 15. □

Lemma 16. Define

	 Ξo
10t = [λt(β

o)− xtBo
T ]

′ ψt(β
o)

[ht(θo)]2
∂ht(θ

o)

∂δ′
.

∑
				    (A.18)

Under Assumptions 1-5 and H0,  1−T ∑T
t=1 Ξ 10 t(θ o)  = op(1).

Proof. Noting that Bo
T = 0 by Lemma 11 and: 

	
∂ht(θ

o)

∂β′
=

[
1 u2t−1 · · · u2t−q

]
,

we can write the (i, j )th element of  Ξo
10t under H0 as:
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	 ξo10,ijt =

{ etet−i

[ht(θo)]2
for j = 1,

etet−ie
2
t−i

[ht(θo)]2
for j = 2, . . . , q + 1,

for i (i = 1,..., p) and j ( j = 1,..., k). By Assumption 3, 

	 sup
θ∈Θ

��ξo10,ijt
�� ≤ K |etet−i| ,

for j = 1, and:

	 sup
θ∈Θ

��ξo10,ijt
�� ≤ K ��etet−ie

2
t−j

�� ,
� �

for j = 2,..., q + 1. Since E |et et−i |< ∞ and E |et  et−i e2
t−j |< ∞ by Assumption 5, E[ξ o

10, i j t] exists and it is 

bounded. Since ht(θ o) and et are strict stationary ergodic processes, Theorem 3.5.8 of Stout (1974) 

with the structure (A.18) implies that ξ o
10,i jt is also strict stationary and ergodic. By the ULLN for 

stationary ergodic process (Theorem A.2.2 of White (1994)) with  E[supθ ∈Θ |ξ o
10, i j t |] < ∞ ,

	

�����
1

T

T∑
t=1

ξo10,ijt − E[ξo10,ijt]

�����
a.s.−−→ 0,

for i (i = 1,..., p) and j ( j = 1,..., k). By the structure, E[ξ 0
10,ijt | ℑ t−1] = 0, and hence the law of iterated 

expectation indicates E[ξ 0
10,ijt] = 0. Therefore, we obtain 1−T ∑T

t=1 Ξ 10t(θ o)| → a.s.   0. Since the almost sure 

convergence implies the convergence in probability, which is equivalent to the definition of op(1), 

the result establishes Lemma 16. □

Lemma 17. Define

	 Ω̈o
T =

1

T

T∑
t=1

Ωo
t ,								        (A.19)

where

	 Ωo
t = E

[[
ψt(β

o)

ht(θo)

]2
λt(β

o)′λt(β
o)

�����ℑt−1

]
.

Under Assumptions 1-5 and H0,

 (i)  Ω̈ o
T is positive definite for large T ;

(ii)  |T −1∑T
t=1 ω O

ijt - E[ω O
ijt]| →p  0  for all i and j (i = 1,..., p),

where  ω O
ijt is the (i, j )th element of  Ω o

T .

Proof. Noting that

	 Ωo
t =

σ2u
[ht(θo)]2

λt(β
o)′λt(β

o),

we can write the (i, j )th element of  Ω o
t under H0 as:

	 ωoijt =
σ2e

[ht(θo)]2
et−iet−j

for i and j (i = 1,..., p). By Assumption 3
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��ωoijt

�� ≤ K |et−iet−j | ,   

for all i and j (i, j = 1,..., p). Since E [et − i et − j] < ∞ by Assumption 5, E [ω O
i j t] exists and it is bounded. 

By the structure,  Ω̈ o
T  is the sample mean of the outer product of random vector [σ e ⁄ ht(θ o)]λ t(β o), 

thus its determinant is non-negative. Since λ t(β o) is linearly independent by Assumption 1, the 

rank of Ω̈ o
T  is p, which guarantees that the inverse of the matrix exists almost surely when T > p. 

Combined with (A.6), we obtain Lemma 17(i). 

Since ht(θ o) and et are strict stationary ergodic processes, Theorem 3.5.8 of Stout (1974) with 

the structure (A.19) implies that  ω O
i j t is strict stationary and ergodic. The uniform law of large 

numbers (ULLN) for stationary ergodic process (Theorem A.2.2 of White (1994)) with the result 

E[|ω O
i j t |] < ∞  indicates that:

	

�����T
−1

T∑
t=1

ωoijt − E[ωoijt]

�����
a.s.−−→ 0,

for all i and j (i, j = 1,..., p). By the almost sure convergence, we obtain the weak convergence in 

Lemma 17(ii). □

Lemma 18. Define

	 ζ̈ot =
ψt(β

o)

ht(θo)
λt(β

o)′. 							       (A.20)

Under Assumptions 1-5,

	 Ω̈o−1/2 1√
T

T∑
t=1

ζ̈ot
d−→ N(0, Ik),

where Ω̈ o  = E[Ωo
t ], where Ωo

t  is stated in Lemma 17.

Proof. By the definition,  E [̈ζ 0
t |ℑ t−1] = 0 and V [̈ζ 0

t | ℑ t−1] = Ωo
t . Since et and ht(θ o) are strictly 

stationary and ergodic, Theorem 3.5.8 of Stout (1974) with the structure (A.21) implies that ̈ζ 0
t  is 

strictly stationary ergodic matringale difference under H0. Since Ω̈ o   is finite and positive definite by 

Lemma 17, we can define the symmetric positive definite matrix,  Ω̈ o  −1/2, such that ( Ω̈ o  −1/2)2 =  Ω̈ o  −1. 

Lemma 17 implies that  Ω̈ o  −1/2 is uniformly bounded. By Lemma 3.2 of White (1980a), 

	

������

{
Ω̈o−1/2

[
1

T

T∑
t=1

Ωo
t

]
Ω̈o−1/2

}

i,j

− {Ip}i,j

������
a.s.−−→ 0, 					     (A.21)

for all i and j (i, j = 1,..., p). For the ith element of ζ̈ 0
t , ζ̈ 0

it(i = 1,..., p), Chebyshev’s inequality 

indicates:

	 P

(�����
ζ̈oit√
T

����� > ϵ
)

≤ V (ζ̈
o
it)

Tϵ2
=
ω̈oij
Tϵ2

→ 0,

as T → ∞, where  ̈ω O
ij  is the (i, j )th element of  Ω̈ o  . Hence,

	 max
1≤t≤T

�����
ζ̈oit√
T

�����
p−→ 0. 							       (A.22)



74 季刊　創　価　経　済　論　集　　　　Vol. XLIX, No. 1・2・3・4

As equations (A.21) and (A.22) satisfy the regularity conditions for the CLT for the strict stationary 

ergodic martingale difference (Theorem 24.3 of Davidson (1994)), we obtain 

	 Ω̈o−1/2 1√
T

T∑
t=1

ζ̈ot
d−→ N(0, Ip), 						      (A.23)

which establishes Lemma 18. □

Lemma 19. Define

	 Ξ11t(θ) =
[ψt(β)]

2

[ht(θ)]2
λt(β)

′λt(β).						      (A.24)

Under Assumptions 1-5 and H0,

(i) supθ ∈Θ|T −1∑T
t=1 ξ11,ijt(θ ) - E[ξ11,ijt(θ )]| →p  0  for all i and j (i, j = 1,..., p), where ξ11,ijt(θ ) is the (i, j )th 

element of  Ξ11t(θ ); 

(ii) {T −1∑T
t=1 E[Ξ11t(θ )] :  θ  ∈ Θ , T = 1, 2,... } is O(1) and continuous on Θ uniformly in T .

Proof. We can write the (i, j )th element of Ξ11t(θ ) under H0 as:

	 ξ11,ijt(θ) = −[ht(θ)]
−2[et − xt(β − βo)]2et−iet−j ,

for i and j (i, j = 1,..., p). Noting that ht(θ ) ≥ δ 0 > 0, Assumptions 3 and 4, we obtain:

	 |ξ11,ijt(θ)| ≤ [ht(δ, β)]
−3

��[et − xt(β − βo)]2et−iet−j

��
q

��
	 	     

| ≤
�� − − − −

��

≤ K
q∑

l=1

�����e
2
t et−iet−j − 2et−iet−j

k∑
r=1

xrt(βr − βor )

			         

∑

+et−iet−j

k∑
r=1

k∑
l=1

xrtxlr(βr − βor )(βl − βol )

�����

		      ≤ K
q∑

l=1

[��e2t et−iet−j

��+ 2 |etet−iet−j |
k∑

r=1

|xrt|(βr − βor )

			          

�� �� ∑
r=1

+|et−iet−j |
k∑

r=1

k∑
l=1

|xrtxlt|(βr − βor )(βl − βol )

]
,

for all i and j (i, j = 1,..., k). Since  | β l - β o
l |  is bounded by the discussion of the proof of Lemma 7,

	 sup
θ∈Θ

|ξ11,ijt(θ)| ≤ K1

q∑
l=1

[��e2t et−iet−j

��+K2 |etet−iet−j |
k∑

r=1

|xrt|+K3|et−iet−j |
k∑

r=1

k∑
l=1

|xrtxlt|

]
,

for all i and j (i, j = 1,..., p). By Assumptions 2 and 5, we obtain E[supθ ∈Θ| ξ11,ijt(θ )|] < ∞. Since 

ht(θ ), ψ t(β ), and xt  are strict stationary ergodic processes, Theorem 3.5.8 of Stout (1974) with the 

structure (A.15) implies that ξ11,ijt(θ ) is strict stationary and ergodic. The ULLN for stationary 

ergodic processes (Theorem A.2.2 of White (1994)) with the result E[supθ ∈Θ| ξ11,ijt(θ )|] < ∞ indicates 

that:
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	 sup
θ∈Θ

�����T
−1

T∑
t=1

ξ11,ijt(θ)− E[ξ11,ijt(θ)]

�����
a.s.−−→ 0,

for all i and j (i, j = 1,..., p). By the almost sure convergence, we obtain the weak convergence 

in Lemma 19(i). By the proof of Lemma 19(i), E[Ξ11t(θ )] exists, and it does not depend on t and 

continuous on Θ by the structure. Thus Lemma 19(ii) holds. □

Proof of Proposition 2 Noting that   ^BT - B o
T = op(1) by Lemma 8, we rewrite (15) as:

	 ζ̈T =
1√
T

T∑
t=1

ψt(β̂)

ht(θ̂)

[
λt(β̂)− xtBo

T

]′
−
(
B̂T −Bo

T

)′ 1√
T

T∑
t=1

ψt(β̂)

ht(θ̂)
x′t.

√We first consider the second term excluding  ^BT - B o
T . Noting that  √T ( θ^ - θ o) = Op(1) by Lemma 3 

and Proposition 1, a standard mean value expansion about θ o and Lemma 1 produce:

	
1√
T

T∑
t=1

ψt(β̂)

ht(θ̂)
x′t =

1√
T

T∑
t=1

ψt(β
o)

ht(θo)
x′t +

1

T

T∑
t=1

{
1

ht(θo)
x′t
∂ψt(β

o)

∂β

}√
T (β̂ − βo)

			       

∑
t=1

∑
t=1

{ }

− 1

T

T∑
t=1

ψt(β
o)

[ht(θo)]2
x′t
∂ht(θ

o)

∂θ′

√
T (θ̂ − θo) + op(1)		  (A.25)

For the right-hand-side of (A.25), the first term is Op(1) by Lemma 9. Since (1) by Lemma 9. Since ∂ψt(β)
∂β

 = -x't, the second 

term is  [−T −1∑T
t=1 Ξ1t]T −1/2(β^ - β o), which is Op(1) by Lemmas 3 and 6. Since

	

−
∑

−

∂ht(θ)

∂θ′
=

[
∂ht(θ)

∂δ′
∂ht(θ)

∂β′

]
=

[
κt(β) (−2)

q∑
i=1

δi(yt−1 − xt−iβ)xt−i

]
,

the third term of the right-hand-side of (A.25) is 

	 −

[
1

T

T∑
t=1

[Ξ4t(θ) Ξ5t(θ)]

]
√
T (θ̂ − θo),

which is Op(1) by Lemmas 3, 10 and 11 and Proposition 1. Therefore

	
1√
T

T∑
t=1

ψt(β̂)

ht(θ̂)
x′t = Op(1).

Accompanied by  ^BT - B o
T  = op(1), this results show that:

	 ζ̈T =
1√
T

T∑
t=1

ψt(β̂)

ht(θ̂)

[
λt(β̂)− xtBo

T

]′
+ op(1).

Noting that √T(θ^ - θ o) = Op(1) by Lemma 3 and Proposition 1, a mean value expansion about θ o and 

Lemma 1 produce:

	 ζ̈T =
1√
T

T∑
t=1

ψt(β
o)

ht(θo)
[λt(β

o)− xtBo
T ]

′

[
	           

∑

+
1

T

T∑
t=1

[
1

ht(θo)
[λt(β

o)− xtBo
T ]

′ ∂ψt(β
o)

∂β

]√
T (β̂ − βo)

[ [ ]
		  (A.26)
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∑

− 1

T

T∑
t=1

[
ψt(β

o)

ht(θo)

[
∂λt(θ

o)

∂θ

]′
− [λt(β

o)− xtBo
T ]

′ ψt(β
o)

[ht(θo)]2
∂ht(θ

o)

∂θ′

]

√
	                            

∑
=1

[ [ ]

×
√
T (θ̂ − θo) + op(1).

For the second term of the right hand side of (A.26),

	
√
T (β̂ − βo) = Op(1),

1

T

T∑
t=1

[
1

ht(θo)
[λt(β

o)− xtBo
T ]

′ ∂ψt(β
o)

∂β

]
= op(1),

by Lemmas 3 and 13, respectively. Hence the second term of the right hand side of (A.26) is op(1). 

For the third term of the right hand side of (A.26), Lemmas 14-16 indicate that

	
1

T

T∑
t=1

[
ψt(β

o)

ht(θo)

[
∂λt(θ

o)

∂θ

]′
− [λt(β

o)− xtBo
T ]

′ ψt(β
o)

[ht(θo)]2
∂ht(θ

o)

∂θ′

]
= op(1).

As √T ( θ^ - θ o) = Op(1) by Lemma 3 and Proposition 1, the third term of the right hand side of (A.26) 

is  op(1). With  B o
T = 0 by Lemma 12,

	 ζ̈T =
1√
T

T∑
t=1

ψt(β
o)

ht(θo)
λt(β

o)′ + op(1) =
1√
T

T∑
t=1

ζot + op(1),

where ζ o
t is stated in Lemma 18. By Lemma 17, the covariance matrix of ζ̈ T is positive definite for 

large T. Moreover,  Ω̈ o  −1/2ζ̈ T  →d   N(0, Ip) under H0 by Lemma 18. Thus,  ̈ζ 'T Ω̈ o  −1̈ζ T  →
d   χ2(p) under 

H0. Applying Lemma 1 with √T(θ^ - θ o) = Op(1), which is obtained by Lemma 3 and Proposition 1, 

Lemma 19 ensures that ̈ΩT is a consistent estimator of ̈Ωo. Therefore, ̈ζ 'T Ω̈ −1
T ̈ζ T  →d   χ2(p) under H0, 

which establishes Proposition 2. □


