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Making the Error Bar Overlap Myth a Reality: 

Comparative Confidence Intervals 

Frank S. Corotto 

University of North Georgia, 

Dahlonega, Georgia, 30597 

Frank.Corotto@ung.edu 

 

Introduction 
 

Error bars are often misinterpreted (Belia et al. 2005; Cumming et al. 2004). A common myth is 

that when error bars for two samples do not overlap, the difference is statistically meaningful, a 

term I use in place of statistically significant. This overlap rule is really an overlap myth; the rule 

does not hold true for any type of conventional error bar. There are rules of thumb for estimating 

P values (Cumming et al. 2007), but it would be better to show bars for which that overlap rule 

holds true. We could quickly assess the statistical meaningfulness of a pattern. 

If we want the overlap rule to hold true, what should we plot as error bars? John Tukey gave 

the answer (see Benjamini and Braun 2002) and suggested that interference notches would be a 

good way to show the intervals graphically (Tukey 1993). Others unknowingly repeated Tukey’s 

work in different ways (Austin and Hux 2002; Knoll et al. 2011) with Schuun (1999) using 

statistical significance bars and Tryon (2001) inferential confidence intervals in place of Tukey’s 

notches. 

None of the proposed terms for these error bars is ideal. All confidence intervals are inferential, 

statistical significance is widely misunderstood (which is why I use meaningfulness instead)1, and 

Tukey’s notches cannot be created with spreadsheets. I propose comparative confidence intervals 

(CCIs), preceded by  as in 0.05 CCIs. The use of  reminds us that CCIs are not conventional 

confidence intervals. 

To facilitate the broader use of comparative confidence intervals, I show here how to calculate 

the CCIs, how the intervals can be used in a variety of settings, and how they can be validated. I 

also explain why box-and-whiskers plots are good way to show CCIs, in place of Tukey’s notches. 

Schunn (1999) touched on some of the topics I cover here, but his approach was mathematical. To 

make a better case for comparative confidence intervals, I use figures instead. 

 

Conventional Confidence Intervals 
 

To understand how comparative confidence intervals are calculated, we first have to understand 

conventional confidence intervals. Conventional intervals are calculated by performing null 

hypothesis tests backwards, often single-sample t tests. The formula for t is as follows. 
 

 
1I use meaningfully different, statistically meaningful, and statistically different. “We in the behavioral sciences 
should ‘give’ this word [significant] back to the general public.” R. Kline. 2004. Beyond Significance Testing: 
Reforming Data Analysis Methods in Behavioral Research. American Psychological Association, 325 pp. See p. 87. 
Kline would use “statistical difference”, but it is awkward to turn that around and say that a difference is statistical. 
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𝑡 =
|�̅�  −  µ|

𝑆𝐸
 

 

The outcome of a study is the sample mean (x̅), the prediction based on the null hypothesis is the 

hypothetical population mean (), and SE represents standard error. To perform a t test, we start 

with the difference between our outcome and our prediction, e.g., the numerator in the equation. 

We divide that by standard error and use the resulting t value to find P. To calculate a confidence 

interval, we start with a P value (), find the t value that goes with that P value, i.e., the critical 

value of t, and multiply it by standard error. Since standard error is in the denominator of the 

formula for t, when we multiply the critical value of t by standard error, standard error cancels out. 

We are left with the numerator in the formula, which is half of the confidence interval. The mean 

would be shown plus and minus that half-interval. What does that half-interval show? It shows the 

numerator in the formula for t that corresponds to P = , i.e., the smallest difference between our 

prediction and our outcome that would yield a finding of P ≤ .2 The full interval contains the 

range of differences that would lead to a finding of statistical meaningfulness, and we calculated 

the half-interval by performing a t test backwards. 

Why would that range of differences be important? If we set  to 0.05, over a lifetime of 

constructing 95% confidence intervals around sample means, the population means will be outside 

of those intervals 5% of the time. Similarly, if we set  to 0.05, over a lifetime of testing true null 

hypotheses, we will incorrectly reject 5% of them. Confidence intervals and P values both show 

the results of null hypothesis tests. 

Misconceptions pertaining to confidence intervals parallel those pertaining to P. Neither one 

gives us a probability of anything on any one occasion. A population mean is either within a 

confidence interval or it is not, the same way we either make a type I error or we do not. With both 

confidence intervals and P values, the results are either entirely due to sampling error or they are 

not. The probability in all of these cases is either one or zero. As bad as these misconceptions are 

statements like We can be 95% confident that . . . What does it mean to be 95% confident of 

something? It means You won’t understand, so I will tell you something meaningless instead. 

 

Simultaneous Confidence Intervals 
 

Comparative confidence intervals would be most useful when there are multiple comparisons 

being made. We could easily assess the statistical meaningfulness of a pattern. When there are 

multiple comparisons, however, we cannot base our confidence intervals on t tests. To explain, 

suppose we collect samples A, B, and C and compare A with B, A with C, and B with C by 

performing three t tests. The cumulative or familywise error rate would be 0.14, not 0.05 (for why 

 
2 Except in the following paragraph, I do not speak of rejecting or failing to reject the null because many null 
hypotheses cannot be true. There is a large body of literature on that topic. A commonly cited, early source is P. 
Meehl. 1967. Theory-testing in psychology and physics: a methodological paradox. Philosophy of Science, 34: 151–
159. 
 



 

it is not 3 × 0.05 = 0.15, see Zar 2010, pp. 189,190). To keep familywise error at , instead of 

performing t tests backwards to get our intervals, we can perform multiple comparisons tests 

backwards. Good multiple comparisons tests hold familywise error at . The result would be 

simultaneous confidence intervals, simultaneous in that they have been corrected for multiple 

comparisons. Here I use Tukey-Kramer tests, because the Tukey test is highly regarded (Zar 2010, 

p. 232), and the Tukey-Kramer variation allows sample size to vary. 

To illustrate the calculation of simultaneous confidence intervals, I created eight samples with 

similar variances but different sample sizes and performed a 1-way ANOVA (Appendixes A and 

B). The denominator in the resulting F ratio is variously termed mean square error, MS error, or 

simply the error term. The error term is important later, but for now we need the degrees of 

freedom associated with it, which is 52 (Appendix B). We use those 52 degrees of freedom; the 

number of categories compared by the ANOVA, which is eight (typically shown as k in tables); 

and  (we will use 0.05); to find the corresponding critical value of q (qCV; use the table of critical 

values of q not t). In this case that critical value is 4.466. We calculate standard error with the 

Tukey-Kramer formula, which follows. 
 

𝑆𝐸 = √(
𝑀𝑆 𝑒𝑟𝑟𝑜𝑟

2
) (

1

𝑛1

+
1

𝑛2

) 

 

The two sample sizes are indicated by n1 and n2, and MS error is the denominator in the F ratio 

(Appendix B). We will use sample A and sample F (Appendix A) as an example. 
 

𝑆𝐸 = √(
2.308

2
) (

1

5
+

1

7
) 

 

𝑆𝐸 = 0.629 
 

Standard error multiplied by qCV yields a half simultaneous confidence interval of 2.809. 

For both Tukey and Tukey-Kramer tests, the test statistic q is calculated with the formula 

below 

𝑞 =
|�̅�A  −  �̅�B|

𝑆𝐸
 

 

in which x̅A and x̅B are the two sample means. By performing a Tukey-Kramer test backwards, we 

have solved for the numerator in the formula for q that corresponds to P = 0.05. The difference 

between the two sample means (x̅A – x̅F = –3) plus and minus the half simultaneous confidence 

interval (2.809) contains the range of differences between the two sample means that would have 

led to an outcome of statistical meaningfulness (–5.809 through –0.191). 

Figure 1 illustrates a common way to show the results. The differences between every pair of 

sample means are plotted along with a family of simultaneous confidence intervals based on 

different ’s. For samples A and F, –3 is plotted along with bars that end at –5.809 and –0.191, 

 



 

 

the 95% simultaneous confidence limits. The fact that zero lies outside of the 95% simultaneous 

confidence interval but inside the 99% interval shows that P is less than 0.05 but greater than 0.01, 

respectively. The actual P value is 0.028 (Appendix D). The error bars illustrate the results of 

Tukey-Kramer tests. 

 

Comparative Confidence Intervals 
 

One problem with plots like the one in Figure 1 is that we must think about what is being subtracted 

from what to interpret the signs of the outcomes. It is sample mean A minus sample mean F, so 

the negative difference means that F is greater than A, and not the other way around. Another 

problem is that, by showing the differences between the means, we cannot compare the means 

themselves by eye; larger patterns are obscured. It would be better to plot means with comparative 

confidence intervals. To calculate CCIs, we simply divide half simultaneous confidence intervals 

by two. Here is why. 

Consider the comparison of samples A and G in Figure 1. The difference between the means 

is –3 and the upper 95% simultaneous confidence limit lies almost on zero. Suppose that limit were 

exactly zero, i.e., P = 0.05, and the means themselves were plotted rather than the difference 

between them. Those means would be separated by 3. If we want bars for which separation 

indicates that P < 0.05, how long should they? They should be half the length of the bar extending 

from –3 to zero. To calculate comparative confidence intervals, we calculate half simultaneous 

confidence intervals, and divide by two. Then we plot the CCIs around means, not differences. 

The idea goes back to John Tukey. Benjamini and Braun (2002) describe his thoughts as follows. 
 

If there exists a distance beyond which the two means are considered separated, then an 

effective graphical display involves drawing an allowance equal to plus or minus half that 

distance around the mean, and noting whether the allowances of the pair of means being 

compared overlap. 
 

 

Figure 1. Some of the pairwise differences 

among the sample means in Appendix A, 

along with conventional simultaneous 

confidence intervals. CL = confidence limit. 



 

In the case of samples A and G, the “distance beyond which the two means are considered 

separated” is the half simultaneous confidence interval of 3. See also Figures 7 and 8 in Wainer 

(1996). 

We will use sample A to show how CCIs are calculated. Because there is only one sample, we 

calculate standard error with the Tukey test’s formula, which is as follows. 
 

𝑆𝐸 =  √
𝑀𝑆 𝑒𝑟𝑟𝑜𝑟

𝑛
 

 

Here is the calculation for sample A. 
 

𝑆𝐸 =  √
2.308

5
 

 

𝑆𝐸 =  0.679 
 

If  = 0.05, and there are eight groups, the critical value of q is 4.466, as we saw earlier That 

critical value multiplied by standard error yields a half simultaneous confidence interval of 3.032. 

We divide that half-interval by two and get 1.516. Bars that long would be plotted around sample 

A’s mean of 2 to show 0.05 CCIs. 

 

How to Plot Comparative Confidence Intervals 
 

When using comparative confidence intervals, we must assess the degree to which error bars 

overlap with other error bars. This can be difficult if families of CCIs are plotted that correspond 

to different ’s. One way to improve the situation is to plot just two intervals. I suggest 0.05 and 

0.15 CCIs.3 I chose 0.05 because it is a traditional  and 0.15 because it allows us to see close 

calls. If the 0.05 CCIs overlap, but the 0.15 CCIs do not, P is between 0.05 and 0.15; it may be 

worth increasing the sample size or conducting another study to further investigate. I prefer 0.15 

to 0.10 because the 0.10 CCIs come too close to those for 0.05. 

Another way to add clarity is to use box-and-whiskers plots. The boxes would show the 0.15 

intervals and the whiskers 0.05. For example, if we compare sample A with sample E, the whiskers 

do not overlap, and P = 0.022 (Figure 2; Appendix C). If we compare samples D and H, the 

whiskers overlap, but the boxes do not, and P = 0.085. 

 

Differing Sample Sizes 
 

When solving for P, the Tukey-Kramer formula is used to calculate standard error. This means 

standard error may vary depending on which sample is being compared to which. For example, in 

the comparison of sample A with sample F, we found that standard error was 0.629. For samples 

 

 
3 The critical values for 0.15 are available at the bottom of this page https://digitalcommons.northgeorgia.edu/ 
bio_facpub/1/ 

https://digitalcommons.northgeorgia.edu/bio_facpub/1/
https://digitalcommons.northgeorgia.edu/bio_facpub/1/


 

 

Figure 2. The means in Appendix A, along 

with comparative confidence intervals. CCL = 

comparative confidence limit; n = sample size. 

A and G, however, standard error is 0.679. Consequently, the conventional intervals for the 

comparison of sample A with F are smaller than those for the comparison of A with G (Figure 1). 

To calculate the comparative confidence intervals in Figure 2, I used the Tukey test’s formula to 

calculate standard error, with n varying according to each sample. Do the resulting intervals reflect 

the P values that would be obtained by performing Tukey-Kramer tests in which standard error 

varies? For example, can the CCIs for sample A be compared to those for both F and G when 

Tukey-Kramer tests for those comparisons would entail the use of different standard errors? To 

find out, I plotted the P values obtained from some of the Tukey-Kramer tests (Appendix D) as a 

function of the distance between the 0.05 and 0.15 CCIs, choosing results for which sample size 

varies and P values are low. The CCIs reflect the P values almost perfectly. Although sample A, 

for example, was compared to four different samples with four different sample sizes, the data for 

those comparisons line up with the rest (see the asterisks in Figure 3), and the curves as a whole 

 
 

Figure 3. The distance between bars 

representing comparative confidence intervals 

reflects P values calculated with the Tukey-

Kramer method. Negative x-values represent 

overlap of the bars. Asterisks indicate 

comparisons of sample A with other samples. 

Comparative confidence intervals are shown in 

Figure 2. Numbers indicate sample sizes for 

each pair of samples being compared. CCI: 

comparative confidence interval. 



 

have y-intercepts of 0.05 and 0.15. Large differences in sample size create slight anomalies. In the 

case where both samples sizes are 10, the two curves come close to each other while, when both 

sample sizes are five, they are farther apart (indicated by arrows in Figure 3). When the size of 

each sample is used to calculate standard error, CCIs reflect the results of Tukey-Kramer tests well 

enough to serve their function, even when there are large differences in sample size. 

 

Other Tests for Other Situations 

Because comparative confidence intervals can be obtained by performing Tukey tests backwards, 

any way we perform null hypothesis tests forward, to obtain P, we can perform backwards, to get 

CCIs. If we were to compare a number of samples to a single reference (such as a control) and not 

to each other, we could calculate the intervals by performing Dunnett’s test backwards. Dunnett’s 

test is more powerful than Tukey’s. What is important is that the critical values are based on the 

degrees of freedom associated with mean square error and the total number of groups, since those 

are the values that would be used to conduct Dunnett’s tests in the forward direction, and standard 

error should be based on mean square error as well. If there are only two samples being compared, 

comparative confidence intervals are not too important—there is no larger pattern to assess—but 

we could perform two-sample t tests backwards to get comparative confidence intervals. It would 

just be a matter of using total degrees of freedom to find the critical value of t and using pooled 

variance to calculate standard error, since pooled variance is the equivalent of mean square error. 

If sample size varies, standard error can be calculated for each sample based on each 

sample’s size, i.e., as was done for the intervals shown in Figure 2. This method works just as well 

for intervals based on Dunnett’s test and two-sample t tests as for intervals based on Tukey tests 

(the outcomes are similar to what is shown in Figure 3). Note that for both tests mean square error 

must be multiplied by two when calculating standard error. This is not the case when calculating 

standard error to obtain Tukey-based comparative confidence intervals. 

 

Main Effects and Interactions 
 

Sometimes null hypothesis tests only tell us what is already obvious once we plot our data. Where 

these tests are particularly helpful, however, is when there are multiple independent variables, i.e., 

a factorial design. Independent variables can have effects on their own, main effects, and they can 

affect each other; they can interact. It is often hard to judge by eye whether such an interaction is 

statistically meaningful or created by sampling error. We need to calculate P. To illustrate how we 

can use CCIs to show these P values, imagine we are testing three brands of tire, at the front and 

rear positions, and determining their longevity. If every possible combination of independent 

variables is represented, we have a factorial design (Figure 4). 

With a factorial design, the averages for each combination of every independent variable are 

referred to as cell means, because they occupy cells in the matrix that illustrates the factorial 

design, e.g., brand A went an average of 40,000 miles in the front position (Figure 4). If we pool 

the data across the rows or columns, we can calculate marginal means that illustrate the main 

 



 

 

Figure 4. A factorial design in which the longevity of three brands of car tire are 

compared at the front and rear positions. Longevity is in thousands (k) of miles. 

Sample size is indicated by n. 

 

effects of each independent variable. For example, the average longevity of brand A is the average 

of its two cell means, 35,000 and 40,000 miles, or 37,500 miles, shown in the bottom margin in 

Figure 4. Similarly, we can pool sample sizes and illustrate them in the margins too. Understanding 

cell and marginal means and sample sizes will help us understand how to use comparative 

confidence intervals when there is a factorial design. 

In the case of tire brand and position, we would analyze the results with a 2-way ANOVA, 

because there are two independent variables. The ANOVA would generate F ratios and P values 

for both of the main effects (tire and position) and also for the interaction. If there is a statistically 

meaningful main effect of tire, we might plot the marginal means of the three brands along with 

comparative confidence intervals to illustrate which brand is statistically different from which. The 

CCIs would be based on whatever multiple comparisons test we would use to compare the three 

brands. Here Tukey-Kramer tests would be appropriate because sample size varies. We would use 

the number of groups being compared (three) and the degrees of freedom associated with the error 

term for the main effect of tire to find the critical value of q. To calculate standard error, we would 

use the error term for the main effect of tire for variance; we are assuming equal variances, so the 

best estimate is that error term; and the marginal samples sizes for each group, e.g., 39, 40, and 40 

in the example shown in Figure 4. The resulting CCIs would illustrate the results of Tukey-Kramer 

tests used to investigate the main effect of tire. 

There would be no reason to investigate the main effect of position, since our interest is in tire 

brand, but if we did want to plot the marginal means for front and rear, we could base our 

comparative confidence intervals on a two-sample t test in which the marginal means of 40,000 

and 46,700 miles (Figure 4) serve as the sample means. To calculate standard error, we would use 

the marginal sample sizes of 59 and 60 and the error term for the main effect of position for 

variance. If there were three positions, as would be the case when towing a small trailer, then we 

would base our CCIs on Tukey-Kramer tests, not t tests. 

  Brand of car tire  

  
A B C 

Marginal means 

and sample sizes 

Position 

Front 
x̅ = 40k 

n = 20 

x̅ = 50k 

n = 20 

x̅ = 50k 

n = 20 

x̅ = 46.7k 

n = 60 

Rear 
x̅ = 35k 

n = 19 

x̅ = 40k 

n = 20 

x̅ = 45k 

n = 20 

x̅ = 40k 

n = 59 

 Marginal means 

and sample sizes 

x̅ = 37.5k 

n = 39 

x̅ = 45k 

n = 40 

x̅ = 47.5k 

n = 40 
 



 

If the interaction is statistically meaningful, it means that we can exclude chance as the sole 

cause of a difference between differences. For example, there is a greater difference between 

brands A and B when they are at the front position than when they are at the rear. Is that difference 

in differences statistically meaningful? Is that why P ≤  for the interaction? To find out, we might 

perform two sets of multiple comparisons tests, one for front and one for rear; or three two-sample 

t tests, one for each brand. To illustrate the results, we would simply base our CCIs on which of 

those two options we take. (It is not justifiable to do both.). Error bars must always be explained, 

so we would make clear that the error bars can only be used for comparing across the brands within 

each position or vise versa. 

 

Areas for Future Study 

I know of two situations in which there are problems with comparative confidence intervals. One 

is when there is heterogeneity of variance. Although Tukey tests are highly regarded (Zar 2010, p. 

232), they are not robust when variance differs among samples, especially when sample size varies 

as well (Zar 2010, pp. 230, 231). The other problem area is when there are repeated measures, i.e., 

paired data4, blocks, and other situations in which subjects are compared to themselves. A repeated 

measures ANOVA removes the variation among subjects from the analysis. This reduces the error 

term and increases power. The problem with repeated measures, though, is the requirement for 

sphericity: all samples must correlate to each other to the same degree. “Violation of [this 

assumption] is, unfortunately, common . . .” (Zar 1010 p. 274). Concerns regarding both sphericity 

and variance are often addressed the same way, by testing the null hypothesis that sphericity holds 

or that variances are uniform. This practice presents two problems. Because a null hypothesis is 

infinitely precise, many nulls cannot be correct,5 so failing to reject them or accepting them makes 

no sense. More importantly, if we “fail to reject” and decide there is no problem with sphericity, 

we are asking if a difference is large enough to be important. A null hypothesis test cannot answer 

that question. See also O’Brien and Kaiser (1985, pp. 318, 331). 

 

Varying Variance 
 

Tukey tests work well when samples sizes are the same and variances are at least “similar” (Zar 

2010, pp. 230, 231). We can plot Tukey-based comparative confidence intervals. If sample size 

varies and variances are not “similar”, one option is to transform the data to achieve homogenous 

variances. We could plot means and CCIs of the transformed data. Transformation can change the 

nature of the question, however. For example, an interaction following a log transformation 

indicates proportional differences, rather than absolute ones. Transformation can also fail equalize 

variances. In the case of a rank transformation, the more the samples overlap, the less successful 

the transformation. 

 
4 Sphericity always holds when there are only two samples, total, being compared, but CCIs are not valuable in that 
circumstance. 
5 A commonly cited, early source is P. Meehl. 1967. Philosophy of Science, 34: 151–159 



 

Another strategy begins with the Games and Howe nonparametric alternative to the Tukey test, 

to get P values, but what should we plot as error bars? Because the Games and Howe procedure 

begins with a rank transformation, not within each sample but across all the data pooled, we could 

plot means and comparative confidence intervals of those ranks. We would be plotting the results 

of Tukey tests on ranks, though, not Games and Howell tests. The validation strategy in Figure 3 

would be necessary. 

 

Repeated Measures 
 

Repeated measures presents a more vexing problem than differences in variance—there is no 

transformation to correct for a lack of sphericity. The severity of the problem can be gauged with 

the Greenhouse-Geisser method, the Huynh-Feldt method, and others. Those methods produce a 

statistic, , which ranges from zero to one, with one indicating perfect sphericity. I know of no rule 

of thumb for deciding if  is small enough to justify taking action. It is common to correct the 

ANOVA by multiplying both of the F ratio’s degrees of freedom by . The more severe the 

problem, the lower the value of , and the greater the correction. One method that might work to 

create CCIs would be to multiply degrees of freedom by  when finding the critical value of q. The 

CCIs would be corrected just like the ANOVA. Unfortunately, I have not seen this method in the 

literature, and I lack the expertise to test it. 

Suppose we abandon comparative confidence intervals and show conventional intervals 

instead. We would use the error term for the repeated measure to calculate standard error (Loftus 

and Masson 1994) but the problem with sphericity remains. Franz and Loftus (2012) show how to 

calculate intervals that would be plotted around differences, i.e. as in Figure 1, with those intervals 

correcting for a lack of sphericity. 

 

Summary 
 

Much of what I have discussed here has been described before. From what I can tell, the strategies 

for addressing different sample sizes and the problems with Tukey tests are mine, as is my 

advocacy for box-and-whiskers plots and my suggestion of the validation strategy illustrated in 

Figure 3. Because comparative confidence intervals are calculated by performing null hypothesis 

tests backwards, the intervals have the potential to be based on tests other than those I discussed. 

When basing CCIs on other types of tests, the intervals can be validated with the analysis illustrated 

in Figure 3. 

Confidence intervals are “the best reporting strategy” according to the American Psychological 

Association (APA 2010, p. 34). Conventional intervals that flank sample means provide a range 

of likely values for population means. When samples are compared, however, the relations among 

the sample means can be more important that the means themselves. When means are being 

compared to each other, comparative confidence intervals should be plotted, along with or instead 

of conventional intervals. 



 

Null hypothesis testing has been debated for decades. In fields in which it is termed null 

hypothesis significance testing, always initialized to NHST, the practice of making thoughtless 

yes-or-no decisions based on P values was once rampant. With comparative confidence intervals, 

we can practice thoughtless NHST. We can break out the T-square and see what overlaps with 

what. At the other end of the spectrum, Loftus (1993) encouraged plotting means with standard 

error and abandoning null hypothesis tests. With CCIs, we can take Loftus’s advice to an extreme. 

We can take in the big picture and never think about P values. Most of us will choose some strategy 

in between NHST and Loftus’s, and CCIs will serve us well. Comparative confidence intervals 

make the APA’s “best reporting strategy” even better, or at least more appropriate for making 

multiple comparisons.  
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Appendix A 

Eight Samples with Similar Variances but Differing Sample Sizes 

 Sample 

 A B C D E F G H 

 0 0 1 1 3 3 3 3 

 1 1 2 2 4 4 4 4 

 2 2 3 3 5 5 5 5 

 3 3 4 4 6 6 6 6 

 4 4 5 5 7 7 7 7 

  0  1 4 3  3 

  1  2 5 7  4 

  2  3 6   5 

  3  4    6 

  4  5    7 

mean 2 2 3 3 5 5 5 5 

variance 2.500 2.222 2.500 2.222 1.714 3.000 2.500 2.222 

SEMa 0.679 0.480 0.679 0.480 0.537 0.574 0.679 0.480 

nb 5 10 5 10 8 7 5 10  
dfc 4 9 4 9 7 6 4 9  
aSEM = standard error of the mean 
bn = sample size 
cdf = degrees of freedom. 

 

 

 

Appendix B 

ANOVA Table for the Samples in Appendix A 

Source Sum of the squares df Mean square error F P 

Corrected model 101.250a 7 14.464 6.268 < 0.001 

Intercept 770.642 1 770.642 333.945 < 0.001 

Between groups 101.250 7 14.464 6.268 < 0.001 

Within groups 120.000 52 2.308     

Total 1065.000 60       

Corrected total 221.250 59       

Note. The output was generated by SPSS except that the P values were reported as .000. 

ar2 = .458, adjusted r2 = .385. 

 

  



 

Appendix C 

Pairwise Comparisons of All Samples in Appendix A. P values were 

calculated with Tukey-Kramer tests.a 

Pair  P value  Pair  P 

value 
 Pair  P 

value 

A vs B  0.999  B vs E  0.003  D vs E  0.124 

A vs C  0.966  B vs F  0.005  D vs F  
0.155 

A vs D  0.928  B vs G  0.015  D vs G  
0.261 

A vs E  0.022  B vs H  0.001  D vs H  
0.084 

A vs F  0.028  C vs D  0.999  E vs F  
0.999 

A vs G  0.055  C vs E  0.308  E vs G  
0.999 

A vs H  0.015  C vs F  0.341  E vs H  
0.999 

B vs C  0.928  C vs G  0.440  F vs G  
0.999 

B vs D  0.818  C vs H  0.261  F vs H  
0.999 

        G vs H  0.999 
a Results were obtained from SPSS. Values of 1.000 were changed to 0.999. 
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