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Summary

Hyperspectral data collected through a handheld 
spectroradiometer (400-1010 nm) were tested for as-
sessing the grapevine predawn leaf water potential (ѱpd) 
measured by a Scholander chamber in two test sites of 
Douro wine region. The study was implemented in 2017, 
being a year with very hot and dry summer, conditions 
prone to severe water shortage. Three grapevine culti-
vars, 'Touriga Nacional', 'Touriga Franca' and 'Tinta 
Barroca' were sampled both in rainfed and irrigated 
vineyards, with a total of 325 plants assessed in four 
post-flowering dates. A large set of vegetation indices 
computed with the hyperspectral data and optimized 
for the ѱpd values, as well as structural variables, were 
used as predictors in the model. From a total of 631 
possible predictors, four variables were selected based 
on a stepwise forward procedure and the Wald statistics: 
irrigation treatment, test site, Anthocyanin Reflectance 
Index Optimized (ARIopt_656,647) and Normalized Ratio In-
dex (NRI711,700). An ordinal logistic regression model was 
calibrated using 70 % of the dataset randomly selected 
and the 30 of the remaining observations where used in 
model validation. The overall model accuracy obtained 
with the validation dataset was 73.2 %, with the class of 
ѱpd corresponding to the high-water deficit presenting a 
positive prediction value of 79.3 %. The accuracy and 
operability of this predictive model indicates good per-
spectives for its use in the monitoring of grapevine water 
status, and to support the irrigation tasks. 

K e y  w o r d s :  handheld spectroradiometer; ordinal logis-
tic regression; spectral vegetation indices; vineyard; grapevine 
water status.

Introduction

The severe hydric water stress affects the quantity 
and quality of wine grapes. Therefore, in regions where 
precipitation is scarce and concentrated in a short period 

of the year, as in the Mediterranean regions, irrigation has 
been increasingly considered to regulate grapevine yield 
and quality (e.g. Chaves et al. 2010). An example of this 
increasing irrigation trend can be observed in Douro wine 
region, a worldwide known wine region (Cunha and Richter 
2016). However, in the context of foreseen warming and 
dry climate scenarios and the increasing competition for 
water among different economic sectors, a correct irriga-
tion management is essential to ensure the sustainability of 
Mediterranean irrigated areas (Cunha and Richter 2016, 
Medrano et al. 2015).

The grapevine irrigation scheduling is often based 
on ecophysiological measures of vine water status. 
One of the most widely used measures is referred to the 
predawn leaf water potential (ѱpd) using a Scholander 
chamber (Scholander et al. 1965). Despite being a very 
reliable technique (Moutinho-Pereira et al. 2007, Merli 
et al. 2015, Alves et al. 2012), it is a destructive method 
(Rodríguez-Pérez et al. 2018) and depends on the collec-
tion of a large set of measurement points to get a very ac-
curate assessment of the target area due to the variability in 
soil conditions (Oumar and Mutanga 2010). Thus, efforts 
have been made to find alternative methods capable of pro-
viding accurate information about vine water status, while 
being easy-to use and non-destructive.

The contribution of remote sensing to improve water 
management has increased in recent years. Spectral reflec-
tance obtained through proximity sensors (e.g. handheld 
spectroradiometers), cameras mounted on drones or sat-
ellite imagery has been widely used to estimate and map 
crop biophysical parameters (Zarco-Tejada et al. 2013, 
Blackburn 2007), including for estimating and monitor-
ing water status in vineyards (Pôças et al. 2015 and 2017, 
Rodríguez-Pérez et al. 2018). Different zones of the elec-
tromagnetic spectrum have been studied for the monitor-
ing of plant water status, including near and mid infrared, 
which present wavelengths of strong water absorption of 
the radiation, and the shortwave infrared due to the rela-
tion between canopy temperature and crop water status 
(Bellvert et al. 2014, Clevers et al. 2010). Additionally, 
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the spectral zones of visible and near infrared (NIR) are po-
tentially useful to estimate crop water status (Suárez et al. 
2008, De Bei et al. 2011). Additionally, the spectral data 
from the visible and NIR domains are more easily acces-
sible from commonly available handheld spectroradiom-
eters, as well as from sensors mounted on satellite and/or 
unmanned aerial vehicles (Zarco-Tejada et al. 2013).

A particular focus for assessing crop water status has 
been given to the use of hyperspectral vegetation reflec-
tion data, which are characterized from numerous narrow 
bands continuously distributed across the electromagnetic 
spectrum. These hyperspectral data are sensitive to subtle 
variations in the energy reflected and thus have great po-
tential for detecting differences between vegetation char-
acteristics (Blackburn 2007, Jones and Vaughan 2010, 
Mariotto et al. 2013). Nevertheless, the large amount of 
data generated from hyperspectral sensors can result in re-
dundancy of the information captured (Blackburn 2007, 
Wu et al. 2008, Caicedo et al. 2014, Rivera et al. 2014, 
Feng et al. 2017). Thus, the adequate data processing, cop-
ing with dimensionality issues, wavelengths selection and 
modelling tools are required for its efficient use. 

The hyperspectral reflectance data can be combined 
into vegetation indices (VI) frequently at two or three 
wavelengths, which can be specifically optimized for vines 
water status, and thus only using a small portion of the 
spectrum (Suárez et al. 2008, Zarco-Tejada et al. 2013, 
Pôças et al. 2015). There is a large set of VI related to 
structural, biochemical, and physiological parameters 
of the vegetation as reported in the literature (Jones and 
Vaughan 2010, Roberts et al. 2012). The Normalized 
Difference Vegetation Index (NDVI) (Tucker 1979), the 
Soil-Adjusted Vegetation Index (SAVI) (Huete 1988) and 
the Enhanced Vegetation Index (EVI) (Huete et al. 1997) 
are among the most frequently used VI, being particularly 
useful to assess parameters related to the vegetation status 
and structure. Additionally, some VI have been specifical-
ly designed to estimate parameters, such as the leaf water 
content and Chlorophyll concentration. Examples of such 
indices include the Potential Water Index (PWI) (Peñue-
las et al. 1997) and the Photochemical Reflectance Index 
(PRI) (Gamon et al. 1992), respectively.

Recently, the techniques of machine learning have been 
used to cope with the high dimensionality of hyperspectral 
datasets. Several studies have applied non-parametric re-
gression models to estimate the water status in grapevines, 
(Pôças et al. 2017, Rodríguez-Pérez et al. 2018). The ma-
chine learning classification methods have also been ap-
plied to hyperspectral data for estimating biophysical and 
biochemical crop parameters (Im et al. 2009). One of such 
classification methods is the ordinal logistic regression 
(OLR), which is used to explain a ranking variable (Har-
rell 2015), and has been employed in many environmen-
tal studies (Brant 1990, Rutherford et al. 2007, Coppock 
2011, Notario del Pino and Ruiz-Gallardo 2015). The 
OLR algorithm has been used for modelling the relation-
ship between an ordinal response variable and one or sev-
eral continuous independent variables, while considering 
the inherent ordering of the response variable, thus making 
full use of the ordinal information (Kleinbaum and Klein 

2010). Often, the OLR is fitted through a proportional-odds 
logit model (McCullagh 1980), applied to obtain an or-
dinal response (Verwaeren et al. 2012). The proportion-
al-odds logit model assumes that identical feature variables 
might result in different values for the underlying response 
variable and therefore the model contains a deterministic 
component and an error term, which is assumed to follow a 
logistic distribution (Verwaeren et al. 2012).

Although the ѱpd obtained with pressure chamber (e.g. 
Sholander chamber) is recorded as a continuous variable, 
farmers often use classes of ѱpd to characterize the water 
status in grapevines in order to support irrigation decisions 
(Deloire et al. 2005). Therefore, we argue that machine 
learning classification methods based on hyperspectral 
data could be an alternative to estimate grapevine ѱpd, re-
sulting classes of water status. Thus, the main goal of this 
work is modelling the water status in grapevines through a 
classification predictive regression model based on hyper-
spectral data. Specific goals include testing and validating 
the model in two different zones of Douro Wine region and 
considering three cultivars growing under two irrigation 
regimes.

Material and Methods

S t u d y  a r e a :  This study was conducted in the 
Douro Wine Region, Northeast of Portugal (Fig. 1), where 
45,613 ha of vineyards dominate the landscape and are es-
tablished mainly over terraces and slopes with shale-de-
rived soils (IVDP 2018). The Douro region is recognized 
worldwide, both by its classification as UNESCO World 
Heritage Cultural Landscape and by the exquisite quali-
ty of the Porto wine here produced. The region is divid-
ed into three sub-regions: Baixo Corgo (vineyard area of 
14,582 ha), Cima Corgo (vineyard area of 20,969 ha), and 
Douro Superior (vineyard area of 10,175 ha), distributed 
from the western up to eastern part of the region (Fig. 1), 
all with rigorous climate conditions.

The Douro wine region is one of the most arid regions 
of Europe where a strong water stress occurs in summer 
as a consequence of the low soil water content, associated 

Fig. 1: Location of the study area, identifying the test sites 1 and 2 
in the Douro Wine Region, Northeast Portugal, and the respective 
sub-regions: Baixo Corgo, Cima Corgo and Douro Superior.
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to the low annual rainfall and high gradients of the water 
vapour pressure between the leaves and the air (Jones and 
Alves 2012, Alves et al. 2013, Prata-Sena et al. 2018). 
The region has a Mediterranean climate, with high average 
temperatures during the summer period, ranging between 
22.4 °C in Baixo Corgo and 24.1 °C in Douro Superior 
and Cima Corgo (INMG 1991). In Baixo Corgo the annual 
precipitation is 856 mm, while in Cima Corgo it is 658 mm 
and in Douro Superior it is 539 m, with summer precipitation 
representing 10.3 %, 8.8 % and 7.4 % of the annual precipi-
tation, respectively. A detailed characterization of the region 
and sub-region climate is presented by Pôças et al. (2017). 
Fig. 2 compares the climate characterization of the Douro 
Wine Region in both test sites in the year 2017.

T w o  c o m m e r c i a l  v i n e y a r d s  w e r e  c o n -
s i d e r e d  f o r  t h e  s t u d y  ( F i g .  1 ) :  (i) Test site 1 
(TS1) – Quinta dos Aciprestes (wine company Real Com-
panhia Velha) located in Cima Corgo sub-region (Latitude 
41.21°N; Longitude 7.43°W; 145 m a.s.l.), and (ii) Test site 
2 (TS2) – Quinta do Ataíde (wine company Symington), 
in Douro Superior (Latitude 41.25°N; Longitude 7.11°W; 
m a.s.l.).

In  tes t  s i te  1  the cul t ivars  s tudied were:  (i) 
Touriga Nacional (TN) – two plots, with two replicate ar-
eas, including three irrigation treatments: non-irrigated 
(TN_NI), irrigation treatment 1 (TN_IT1), and irrigation 
treatment 2 (TN_IT2), and (ii) Touriga Franca (TF) – a 
single plot and a single treatment (TF_IT). Three cultivars 
were studied in test site 2: (i) TN – two plots (TN1 and 
TN2) with two irrigation treatments: irrigated (TN1_IT, 
TN2_IT) and non-irrigated (TN1_NI, TN2_NI), (ii) TF – 
one plot with an irrigated treatment (TF_IT) and a non-ir-
rigated treatment (TF_NI), and (iii) Tinta Barroca (TB) – 
one plot with an irrigated treatment (TB_IT).

The vines pruning system is Bilateral Royat in both 
test sites with planting spacing and vines maximum height 
respectively of 2.2 m ×1 m and 1.5 m in test site 1 and 
2.1 m ×1.1 m and 1.8 m in test site 2.

The irrigation scheduling and the irrigation amounts 
were managed by each wine company, based on information 

of ѱpd regular measurements and aiming to adjust for quality 
criteria. Tab. 1 summarizes the irrigation dates and amounts 
in each test site.

In both test sites, the total irrigation amount in TN 
is greater than that applied in TF (up to 25 %). TB is the 
grape variety that received the highest amount of irrigation 
(137.6 L∙plant-1).

G r o u n d  m e a s u r e m e n t s :  The study was con-
ducted in 2017 between post-flowering (end of June) and 
the harvest (early September). During this period, the av-
erage temperature was 24.6 °C in the test site 1 and 25 °C 
in the test site 2 and the precipitation in test site 1 was 
11.2 mm while for test site 2 it was 19.6 mm (Fig. 2). The 
year 2017 was characterized by high temperatures and ex-
tremely low precipitation during the summer period, forc-
ing producers to pick earlier in both test sites.

Ground measurements of ѱpd data and spectral reflec-
tance data were collected at four dates in both test sites: 
test site 1 (July 5, July 20, August 3, and August 31) and 
test site 2 (July 4, July 21, August 4, and September 1). A 
minimum of six plants per irrigation treatment and plot were 
sampled in each test site for ground measurements, resulting 
in 325 observations (grapevines), 135 in test site 1 and in 
test site 2 (Tab. 2).

A pressure chamber (Scholander et al. 1965) 
(PMS600, Albany, OR, USA) was used for measuring 
the ѱpd. The measurements were done at predawn, around 
6 AM, on one leaf from each vine per block sampled. A 
large variability both between test sites and within each 
test site was recorded in the ѱpd dataset.

The hyperspectral data were measured using a portable 
spectroradiometer (Handheld 2, ASD Instruments, Boul-
der, CO, USA), with a field-of-view of 25°, a spectral reso-
lution < 3 nm at 700 nm, a wavelength accuracy of ± 1 nm. 
During measurements, the equipment was maintained 
approximately 30 cm above canopy, which gives a sam-
pling footprint of approximately 13.3 cm. Measurements 
over a white spectralon panel, also called white reference 
standard, were done prior to measurements over the tar-
get plants aiming to calibrate the level of reflectance. The 

Fig. 2: Temperature and precipitation characterization of the Douro wine region for the reference period 1931-1960 (Ferreira 1965) and 
comparison with the temperature and precipitation records in 2017 during study period in the test site 1 (TS 1) and test site 2 (TS 2). 
The irrigation-timing and measurement period are highlighted in the figure.
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spectroradiometer records reflectance signatures between 
325 nm and 1075 nm of the electromagnetic spectrum (cor-
responding to visible and NIR), with a wavelength interval 
of 1 nm. However, only reflectance data between 400 nm 
to 1010 nm were considered due to noise occurrence out-
side of these spectral limits. The measurements were done 
in cloud free days between 11 h to 14 h (local time) to 
minimize changes in solar zenith angle. Ten repetitions per 
plant were collected and later averaged to minimize the ef-
fect of noise.

Data  processing:  The hyperspectral and ѱpd data 
were analyzed by each plant (Tab. 2). A one-way analy-
sis of variance (ANOVA) with p-value associated to the 
Fischer test was performed to compare the means of ѱpd 
between the test sites regarding the 12 irrigation treatment 
and the cultivars. These statistical analysis were computed 
in R (R Core Team 2017) combined with car package (Fox 
and Weisberg 2011) and agricolae package (Mendiburu 
2017). The hyperspectral data were processed into spectral 

vegetation indices (VI). A large 222 diversity of VI, includ-
ing two-band indices, represented by simple ratios (SR), 
normalized indices (NRI) and also other formulations de-
fined in the literature were computed (Tab. 3).

Following previous studies (Pôças et al. 2015 and 
2017), a band selection procedure for the two-band vege-
tation indices optimization was considered, testing all two-
band combinations (for simple ratio indices and normalized 
indices) within the spectral range of 400 nm and 1010 nm. 
Additionally, all combinations of bands for smaller sub re-
gions of the spectrum (spectral domains) were tested for 
the normalized difference vegetation index formulation. 
In this last case, all combination of bands within specific 
combinations of the spectral domains of blue, green, red, 
red edge, and near infrared were tested. The range consid-
ered for each spectral domain was 451-520 nm for blue, 
521-570 nm, for green, 571-700 nm for red, 681-740 nm 
for red edge, and 701-950 nm for near infrared (NIR). A 
linear fitting function was used for the band selection opti-

T a b l e  1

Irrigation dates and irrigation amounts (L/Plant/day) per test site and irrigation treatment. Test 
site 1: TN_IT1 – 'Touriga Nacional' – irrigation treatment 1; TN_IT2 – 'Touriga Nacional' – irri-
gation treatment 2; TF_IT – 'Touriga Franca' – irrigation treatment. Test site 2: TN1_IT – 'Touri-
ga Nacional', plot 1 – irrigation treatment; TN2_IT – 'Touriga Nacional', plot 177 2 – irrigation 
treatment; TF_IT – 'Touriga Franca' – irrigation treatment; TB_IT – 'Tinta Barroca' – irrigation 

treatment

Date
Test site 1*

Date
Test site 2*

TN_IT1 TN_IT2 TF_IT TN1_IT TN2_IT TF_IT TB_IT
19 June 16 16 16 20 June 9.6 9.6 16
23 June 0 16 0 24 June 16 16 16 16
29 June 16 16 16 1 July 19.2 19.2 16 19.2
13 July 16 16 16 7 July 19.2 19.2 16 19.2
21 July 16 16 16 15 July 16 16 16 19.2
28 July 16 16 16 25 July 16 16 16 16
4 August 0 16 0 31 July 16 16 16 16
11 August 12 12 12 7 August 16 16 16 16

14 August 16 16 13 16
22 August 13 13

Total 92 124 92 128 128 112 137.6

*Drip irrigation system with emitters discharge: Test site 1: 2 Lh-1; Test site 2: 1.6 Lh-1 with 
spacing between emitters of 1 m (test site 1) and 0.5 m (test site 2).

T a b l e  2

Number of observations (gapevines) per test site, cultivar and irrigation 
conditions

Test site Cultivar Irrigated Non-irrigated Total

Test site 1
Touriga Nacional 64 31 95
Touriga Franca 40 0 40

Total Test site 1 104 31 135

Test site 2
Touriga Nacional 68 68 136
Touriga Franca 18 18 36
Tinta Barroca 18 0 18

Total Test site 2 104 86 190
Total 208 117 325
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mization, having the ѱpd as the dependent variable. A cali-
bration dataset, corresponding to 70 % of the total obser-
vations, and a validation dataset, with the 30 % remaining 
observations, were used for assessing the best combination 
of bands. The bands selected for each VI corresponded to 
the best combinations obtained for both the calibration and 
validation datasets, expressed through the determination 
coefficient (R2). A total of fifteen VI were selected follow-
ing the optimization procedure (Tab. 3).

The VI computation and bands optimization were 
performed in the HSDAR package (Lehnert et al. 2017), 
implemented in software R (R Core Team 2017) and in 
the spectral indices toolbox of Automated Radiative Trans-
fer Models Operator (ARTMO) software (Verrelst et al. 
2011, Rivera et al. 2014).

A time-dynamic variable based on the ѱpd (ѱpd_0) was 
also used as predictor aimed at representing crop water sta-
tus dynamics in the post-flowering - harvest period. This 
variable is aimed at minimizing the spurious downward 
time trend inherent to both ѱpd and hyperspectral data. The 
time trend effect was discussed by Pôças et al. (2017). This 
ѱpd_0 was computed by integrating, in each measurement 
date to be predicted, the information of previous ѱpd meas-
urements. The ѱpd_0 was defined for each measurement 
point and measurement date as the ѱpd value corresponding 
to the previous measurement. For the first measurement 
date (test site 2: July 4th; test site 1: July 5th), a presumed 
value based on expert knowledge, was considered, corre-
sponding to 70 % of the ѱpd measured in each point.

M o d e l l i n g  a p p r o a c h e s :  In the modelling 
approaches the ѱpd was used as response variable and 
631 predictor candidates were considered. These potential 
predictors originated from both hyperspectral (626) and 
structural (5) data. The potential predictors relative to hy-
perspectral data were: i) spectral reflectance of 611 wave-
lengths in the range between 400 nm and 1010 nm (wave-
length interval of 1 nm), ii) 15 vegetation indices (Tab. 3). 
The potential predictors relative to structural parameters 
included: i) irrigation conditions (two levels: IT_I – irrigat-
ed, IT_NI – non-irrigated), ii) cultivar (tree levels: TN, TF, 
and TB), iii) test site (two levels: TS_1 and TS_2), iv) the 
time-dynamic predictor ѱpd_0 (three levels of the 15 classi-
fication: ѱpd_0-1: low ѱpd_0-2: moderate, and ѱpd_0-3: high) and 
v) the days after flowering (DAF).

To run the statistical model, the dataset was split into 
training data (70 % of random observations) and validation 
data (30 % of the remaining observations) (Kuhn and John-
son 2013). The training and validation datasets integrate 
the pairs of concurrent measurements of the ѱpd and the 
corresponding values of the predicting variables.

A stepwise regression procedure was used for selection 
within the initial 631 predictor candidates. Following this 
procedure, the predicting variable that most contributes to 
the model improvement in each step, compared to the model 
in the previous step, is chosen based on the lowest value of 
Akaike information criterion (AIC; Akaike (1974). The AIC 
is based on the maximum likelihood function allowing the 
comparison of models with different number of predictors. 

T a b l e  3

Vegetation indices formulations with bands (b) optimized according to grapevines predawn leaf water potential

Vegetation indexa Formulation Original reference
2-bands - Normalized indices
     NRI515,523 NRI515,523 = (b523 - b515)/(b523 + b515) -
     NRI520,701 NRI520,701 = (b520 - b701)/(b520 + b701) -
     NRI520,615 NRI520,615 = (b520 - b615)/(b520 + b615) -
     NRI520,694 NRI520,694 = (b520 - b694)/(b520 + b694) -
     NRI524,615 NRI524,615 = (b524 - b615)/(b524 + b615) -
     NRI535,701 NRI535,701 = (b535 - b701)/(b535 + b701) -
     NRI529,694 NRI529,694 = (b529 - b700)/(b529 + b700) -
     NRI711,700 NRI711,700 = (b711 - b700)/(b711 + b700) -
     NRI718,723 NRI718,723 = (b718 - b723)/(b718 + b723) -
2-bands - Simple ratios
     SR718,723

a SR718,723 = b723/b718 -
     WI900,970 WI900,970 = b900/b970 (Peñuelas et al. 1993)
2-bands - Other formulations
     ARIopt_665,647 ARIopt_665,647 = (1/b647) - (1/b665) (Gitelson et al. 2001b)
     MSAVIopt_701,587 MSAVIopt_701,587 = [2 * b701 + 1 - [(2 * b701 + 1)² - 8(b701 - b587)]½]/2 (Qi et al. 1994)
     OSAVIopt_745,700 OSAVIopt_745,700 = (b745 - b700)/(b745 + b700 + 0.16 (Rondeaux et al. 1996)
     RDVIopt_745,700 RDVIopt_745,700 = (b745 - b700)/[(b745 + b700)½] (Roujean and Breon 1995)

a NRI - Normalized Reflectance Index; SR – simple ratio; WI – Water Index; ARIopt – Anthocyanin Reflectance Index optimized; 
OSAVIopt - Optimal Soil Adjusted Vegetation Index optimized; MSAVIopt - Modified Soil Adjusted Vegetation Index optimized; 
RDVIopt - Renormalized Difference Vegetation Index optimized.
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This algorithm is based on the number of observations in the 
model (N), the sum of square error (SQE), and the number 
of parameters +1 (K), according to equation (1) (Akaike 
1974, Burnham 2002).

In the modelling approach, the ѱpd was used as cat-
egorical variable. The definition of classes of ѱpd values 
was based on the analysis of the ѱpd dispersion and on the 
ѱpd threshold of -0.5 MPa often considered by farmers in 
Mediterranean regions for irrigation decisions under deficit 
irrigation strategies (Van Leeuwen et al. 2009, Lopes et al. 
2011). Three class labels were defined: (i) class 1 (low wa-
ter deficit): 0 MPa > ѱpd ≥ -0.25 MPa; (ii) class 2 (moderate 
water deficit): -0.25 MPa > ѱpd ≥ -0.5 MPa; and (iii) class 
3 (high water deficit): 291 -0.5 MPa > ѱpd. 

P r e d i c t i v e  m o d e l l i n g  a p p l i e d  i n  c l a s -
s i f i c a t i o n  m o d e :  The OLR was selected for mod-
eling the ordinal response variables ѱpd. The OLR allows 
building a predictive model on a probabilistic basis. In the 
present study, the OLR was fitted through a proportion-
al-odds logit model (McCullagh 1980), which is widely 
applied to represent ordinal responses (Verwaeren et al. 
2012). The proportional-odds logit model defines a prob-
ability density function over the class labels for a given 
feature vector x, which belongs to the input space X (Mc-
Cullagh 1980, Verwaeren et al. 2012).

The "polr" function from the MASS library in software 
R (Venables and Ripley 2002) was used for (Harrell Jr. 
2018) applying this methodological approach.

M o d e l  p e r f o r m a n c e  a s s e s s m e n t :  The re-
sidual deviance (McCullagh, 1980, Kleinbaum and Klein 
2010) and the Akaike information criterion (AIC; Akaike 
(1974)) were computed for assessing the model's quality. 
The AIC statistics allows comparing between model's per-
formance, with lower AIC values corresponding to simpler 
models with fewer predictors (Kuhn and Johnson 2013). 
The Wald statistic was also used to assess the significance 
of the predictors selected for the model (Peng et al. 2002). 
The odds ratios were calculated to analyse the weight of 
each predictor. Additionally, the positive prediction value 
by class and the overall model accuracy were computed 
and organized in a confusion matrix. The overall model 
accuracy corresponds to the agreement between predict-

ed and observed values in each categorical class, making 
no distinction in the types of misclassification (Kuhn and 
Johnson 2013). The calculated positive prediction value re-
ports the percentage of correct classification cases by class 
considering the prevalence of the event (Kuhn and John-
son 2013). The caret package (Kuhn 2018), implemented 
in software R (R Core Team 2017), was used to automat-
ically compute the confusion matrices resulting from the 
predictive modelling approach in the classification mode.

Results

A n a l y s i s  o f  t h e  v a r i a b i l i t y  b e t w e e n 
a n d  w i t h i n  t e s t  s i t e s :  The impact of irrigation 
treatments and cultivars in each test site on the ѱpd is pre-
sented in Tab. 4. The test site 2 consistently presented 
lower ѱpd values (Fig. 3), evidencing that vineyards in this 
test site of sub-region of Douro Superior (Fig. 2) are more 
likely to present higher water deficit conditions. In both 
test sites, the irrigation and the grapes varieties presented a 
significant impact on ѱpd values.

The TF present higher ѱpd in both test sites, even with 
lower irrigation amounts (Tab. 1), may be an indicator of 
better water use efficiency due to the lower amount of wa-
ter required and higher ѱpd when compared to TN (Tab. 4). 
Nevertheless, it is important to highlight that only in the 
test site 1 the ѱpd values are statically different (TN). Al-
though the TB recorded higher mean values of ѱpd, this 
cannot reflect a better water use efficiency of this grape 
variety, since it also received higher amounts of irrigation 
(Tab. 1). The maintenance of this high ѱpd in TB, associat-
ed to high irrigation amounts, can be justified by the high 
sensitivity (yield and quality) of this grape variety to water 
stress (IVV 2011).

M o d e l  p e r f o r m a n c e :  Tab. 5 presents the 
statistics of the coefficients included in predictive mod-
els (model 1 and model 2) developed for assessing the 
grapevine ѱpd. From the potential predictors initially con-
sidered, only nine were selected through the stepwise 
procedure: i) two qualitative variables: Irrigation treat-
ment (IT) and Test site (TS); ii) four vegetation indices: 
ARIopt_656,647, NRI745,700, NRI711,700, WI900,970; iii) days after 
flowering (DAF); iv) ѱpd_0, and iv) one wavelength: R996. 
Then, the OLR model was applied to these nine predict-

Fig. 3: Dispersion of predawn leaf water potential (MPa), represented by a boxplot for the test site.
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ing variables selected by the stepwise method (model  1, 
Tab. 5). This model 1 presented an AIC value of 270.88.

The results of the individual regression coefficients 
of Wald statistics for each predictor, showed that only the 
variables "IT_NI", "TS_2", "ARIopt_656,647" and "NRI711,700" 
were statistically significant (p < 0.01) (Tab. 5). These re-
sults suggest that an alternative model (model 2) includ-
ing these four statistically significant predictors could be 
applied to the data. The model 2, combining the four se-
lected variables, presents AIC of 262.06. This AIC value 
improved when compared to model 1. For the model 2 

the results of the odds ratio indicate that the non-irrigation 
treatment (IT_NI) has the biggest influence on the assign-
ment of the class, followed by the ARIopt_656,647, test site 2 
(TS_2), and the NRI711,700. The model 2 overall accuracy, 
assessed through the validation dataset, was 73.2 % and 
the positive prediction value per class was 33.3 %, 44.4 % 
and 79.3 %, respectively, for the classes low (1), moderate 
(2), and high (3) water deficit (Tab. 6). The variability in 
the prediction value per class is likely due to the impact 
of the imbalanced data set used for validation (10, 20 and 
67 cases in class 1, class 2, and class 3, respectively).

T a b l e  4

Statistical results of mean predawn leaf water potential (ѱpd, MPa) for the different 
irrigation regimes and grape varieties in the test sites studied

Structural
parameters N. Obs

Location (ψpd, MPa) Mean ψpd

(MPa)
ANOVA
p-value*Test site 1 Test site 2

Irrigation
     - No irrigation 117 -0.822 -0.976 -0.936 0.002
     - Irrigation 208 -0.434 -0.559 -0.496 0.000
     ANOVA F* 0.000 0.000 0.000 ---
Grape cultivars
     T. Nacional (TN) 231 -0.566b -0.781b -0.692b 0.000
     T. Franca (TF) 76 -0.423a -0.726b -0.566ab 0.000
     T. Barroca (TB) 18 na -0.541a -0.541a ---
     ANOVA F* 0.012 0.003 0.003 ---
Overall mean 325 -0.523 -0.748 -0.655 0.000

ANOVA p-value*: is the p-value associated to Fischer's test performed in the ANOVA; 
means with p-value less than 0.05 is considered statistically different. Within columns, 
means followed by the same letter are not significantly different according to Duncan's 
test (α < 5 %). na: no data available

T a b l e  5

Coefficients determinate by Wald Statistics and odd ratios of the predictors in the models developed to 
estimated ѱpd

Predictors
Model 1 Model 2

Coefficient Odd ratio Coefficient Odd ratio
IT_NI 3.06 x 10*** 1.95 x 1013*** 1.89 x 10*** 1.68 x 108***
Test site_2 1.10*** 3.01*** 1.35*** 3.86***
ARIopt_656,647 1.92*** 6.83*** 1.77*** 5.86***
DAF -4 x 10-3 9.96 x 10-1 - -
NRI745,700 -1.43 2.40 x 10-1 - -
NRI711,700 -2.28 x 10*** 0.00*** -1.80 x 10*** 0.00***
WI900,970 9.13 9.26 x 103 - -
ψpd_0 3.63 x 10-1 1.44 - -
R996 -2.05 1.28*10-1 - -

IT_NI: non-irrigation treatment; TS_2: Test site 2; ARIopt_656,647: Anthocyanin Reflectance Index opti-
mized; DAF: days after flowering; NRI: Normalized reflectance index; WI: Water index; R996: reflec-
tance at wavelength 966 nm. ѱpd_0: time-dynamic variable based on ѱpd of the previous measurements; 
*p < 0.1; **p < 0.05; ***p < 0.01.



	16	 R. Tosin et al.

Discussion

The hyperspectral based predictive model developed 
is a valuable tool for predicting grapevine ѱpd because of 
the integration of variables relative to agronomic practic-
es (Irrigation Treatment, IT) and ecological conditions of 
grape-growth (Test Site, TS), as well as proxies of biophys-
ical features (expressed by the optimized vegetation indi-
ces ARIopt_656,647 and NRI711,700).

The selection of a predictor related with the IT is 
consistent with the differences between irrigation treat-
ment (Tab. 4) resulting in differences on the reflectance 
of irrigated and non-irrigated plants (Pôças et al. 2017). 
The selection of a variable relative to the test site is like-
ly associated to the different climatic conditions between 
sub-regions of Douro wine region (Fig. 2), with the test 
site 2 located in a usually warmer and drier zone than test 
site 1. Both irrigation and test site variables will influence 
the canopy reflectance, that will be expressed in the ѱpd 
values and consequently in the VI calculated. The selec-
tion of these 22 variables allows to see how different the 
canopy behaves under different climatic conditions and the 
band combination expressed in the VI works as proxy of 
the vegetation status.

Following the VI optimization for bands selection, 
the proposed ARIopt_656,647 integrates wavelengths of the red 
spectral domain, close to the red edge domain, instead of 
the wavelengths of the original formulation in the green 
and the red edge domains (Gitelson et al. 2001a). The 
wavelengths of ARIopt_656,647 are close to those studied by 
Blackburn (2010), the wavelengths of 680 nm and 635 nm, 
which are related to the chlorophyll a and chlorophyll b 
concentrations, respectively. Also, Sonobe et al. (2018) 
studied similar bands range to estimate the chlorophyll 
content. The content of chlorophylls a and b is a potential 
indicator of vegetation stress (Zarco-Tejada et al. 2002, 
Wu et al. 2008), which includes water stress. As discussed 
by these authors, several physiological perturbations in the 
light-dependent reactions of photosynthesis that occur in 
plants under stress can be related with changes in chloro-
phylls a and b, and assessed through differences in spectral 
reflectance. The NRI711,700 combines wavelengths of red 

and red edge. The red-edge zone is reported as a potential 
indicator of water stress in plants and thus the construction 
of VI using this zone of the spectrum can provide informa-
tion about the crop water status (Zarco-Tejada et al. 2013, 
Fang et al. 2017, Rodríguez-Pérez et al. 2018). 

Also other studies have used optimized VI combined 
with modelling approaches to assess biophysical variables 
related with water status in different crop types (e.g. Rallo 
et al. (2014), Pôças et al. (2017). 

As discussed in previous studies, the spectral infor-
mation, and specifically the optimized VI, can work as 
proxy of biophysical variables (Zarco-Tejada et al. 2013, 
Rallo et  al. 2014). The results obtained in the present 
study are consistent with the findings by Maimaitiyiming 
et  al.  (2017), who reported that stomata conductance (a 
water status 23 indicator) can be related to spectral bands 
close to those selected in our study for the optimized VI. 
Additionally, those authors reported that stomata conduct-
ance is strongly related to indicators of chlorophyll content.

Although a good accuracy of prediction (73.2 %) was 
obtained, the model was able to better classify the classes 
of higher stress, which may be due to the imbalanced num-
ber of observations of each class in the data set. As dis-
cussed by Brodersen et al. (2010), an imbalanced data set 
may lead to misleading conclusions about the performance 
of a classification predictive model when using an average 
accuracy measure.

The analysis of the positive prediction frequency per 
class, shows a good performance (79.27 % of cases correct-
ly classified) for the class of high-water deficit (class 3; ѱpd 
< -0.5 MPa). In Mediterranean regions, where the grape-
vine is frequently conducted under deficit irrigation strate-
gies the irrigation schedule often starts when plants are un-
der ѱpd values below -0.5 MPa (Van Leeuwen et al. 2009, 
Lopes et al. 2011). Therefore, the good results obtained for 
this specific class of ѱpd are particularly interesting to sup-
port grapevine deficit irrigation strategies, aimed at pro-
moting grape quality, which are generally implemented in 
the most technologically advanced grape-growers.

Conclusion

In this study we presented how the ѱpd in vineyards 
of Douro wine region could be predicted by a classifica-
tion model based on hyperspectral reflectance data. A large 
set of climatic, environmental, and agronomic conditions 
were sampled to test model's accuracy and robustness. The 
developed predictive model presented an overall accuracy 
of 73.2 %. The variables selected provide information of 
plant physiology relevant for the prediction of the water 
status in grapevines. Nevertheless, the modelling could be 
improved if a higher number of samples were assessed in 
the field to avoid problems related to imbalanced observa-
tions in the classes.

The use of the classification model to estimate ѱpd 
brings a potential application to support irrigation decision 
in viticulture. Usually, the operational decisions about the 
vine's irrigation scheduling are done for ѱpd values associ-

T a b l e  6

Confusion matrix for the comparison between observed and 
predicted predawn leaf water potential (ѱpd) in the validation 

dataset (97 observations; 30 % of the dataset)

ψpd
predicted

ψpd observed Positive 
prediction

by class (%)Low Moderate High

Low 2 3 0 33.3%
Moderate 5 6 2 44.4 %
High 3 11 65 79.3 %

Predawn leaf water potential (ѱpd) classes: low water deficit, 0 MPa 
> ѱpd > -0.25 MPa; moderate water deficit, -0.25 MPa > ѱpd > -0.50 
MPa; high water deficit, <-0.50 MPa.
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ated to the class 3 of this study, where the model obtained 
good performance. Therefore, the results of the proposed 
model have potential to be used in support to irrigation 
tasks. Moreover, the use of classes of ѱpd instead of contin-
uous values provides easier-to-use information for farmers. 
The accuracy and operability of this predictive model jus-
tify its use to support decision-making processes related to 
improvement of water productivity in vineyards. This work 
analyses data obtained on the ground level, while these 
results are the first step towards applications using other 
sensors mounted on aerial platforms (e.g. drones or satel-
lites). This is in line with the high number of forthcoming 
hyperspectral sensors mounted in aerial platforms, which 
will allow for the generation of hyperspectral time-series, 
giving access to spatial and temporal dynamics of crop bi-
ophysical parameters. Thus, the results presented in this 
work can be used to support the development of new tech-
nologies based on hyperspectral data for vineyards water 
status monitoring and mapping.
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