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Abstract 

This thesis explores Centralised Demand Information Sharing (CDIS) in supply 
chains. CDIS is an information sharing approach where supply chain members 
forecast based on the downstream member’s demand.  

The Bullwhip Effect is a demand variance amplification phenomenon: as the demand 
moves upstream in supply chains, its variability increases. Many papers in the 
literature show that, if supply chain members forecast using the less variable 
downstream member’s demand, this amplification can be reduced leading to a 
reduction in inventory cost. These papers, using strict model assumptions, discuss 
three demand information sharing approaches: No Information Sharing (NIS), 
Downstream Demand Inference (DDI) and Demand Information Sharing (DIS). The 
mathematical analysis in this stream of research is restricted to the Minimum Mean 
Squared Error (MMSE) forecasting method.  

A major motivation for this PhD research is to improve the above approaches, and 
assess those using less restrictive supply chain assumptions. In this research, apart 
from using the MMSE forecasting method, we also utilise two non-optimal 
forecasting methods, Simple Moving Averages (SMA) and Single Exponential 
Smoothing (SES). The reason for their inclusion is the empirical evidence of their 
high usage, familiarity and satisfaction in practice. 

We first fill some gaps in the literature by extending results on upstream demand 
translation for ARMA (p, q) processes to SMA and SES. Then, by using less 
restrictive assumptions, we show that the DDI approach is not feasible, while the NIS 
and DIS approaches can be improved. The two new improved approaches are No 
Information Sharing – Estimation (NIS-Est) and Centralised Demand Information 
Sharing (CDIS). It is argued in this thesis that if the supply chain strategy is not to 
share demand information, NIS-Est results in less inventory cost than NIS for an 
Order Up To policy. On the other hand, if the strategy is to share demand 
information, the CDIS approach may be used, resulting in lower inventory cost than 
DIS.  

These new approaches are then compared to the traditional approaches on 
theoretically generated data. NIS-Est improves on NIS, while CDIS improves on the 
DIS approach in terms of the bullwhip ratio, forecast error (as measured by Mean 
Squared Error), inventory holding and inventory cost. The results of simulation show 
that the performance of CDIS is the best among all four approaches in terms of these 
performance metrics. 

Finally, the empirical validity of the new approaches is assessed on weekly sales data 
of a European superstore. Empirical findings and theoretical results are consistent 
regarding the performance of CDIS. 

Thus, this research concludes that the inventory cost of an upstream member is 
reduced when their forecasts are based on a Centralised Demand Information Sharing 
(CDIS) approach.       
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1. Introduction 

1.1. Business Context 

Changes in the economic environment have led organisations to re-evaluate their 

business models and focus their attention towards better ways of providing products 

and services to their customers across complex networks of suppliers. Effective co-

ordination of decisions across the supply chain has been recognised as a major source 

of competitive advantage. Cross-industry collaboration initiatives for formal 

coordination of decisions, such as Collaborative Planning, Forecasting and 

Replenishment (CPFR) and Vendor Managed Inventory (VMI), have been successful 

in terms of inventory reductions and service level improvements. Results from recent 

research (Kulp et al, 2004; Ernst and Young, 2007) have shown that supply chain 

collaboration activities may have a significantly greater effect on profit margins than 

other improvements in the supply chain. 

The benefits of supply chain collaboration are leading many companies to re-model 

their supply chains. Examples include the collaboration programmes between Wal-

Mart and Sara Lee, Schering-Plough Health Care with all their retail partners, and 

Marks and Spencer with Gunstones (Ireland and Crum, 2006). Seifert (2003) 

discusses more than 26 such initiatives in Europe alone. European retailers such as 

Carrefour in France, Metro in Germany and Tesco in the UK are working towards 

the improvement in efficiency that can result from supply chain collaboration. 

Findings from AMR research (Suleski, 2001) on the financial impacts of CPFR in 

the retail industry, based on 94 companies, reveal the benefits of supply chain 

collaborations. The results show that sales increased by up to 20%, with reduced 

inventory of up to 40% for retailers. In terms of benefits to the suppliers, inventory 

reductions of up to 40% and more frequent replenishment cycles were found in these 

companies.  

Information sharing is an integral part and an enabler of collaborative partnerships. 

The development of web-enabled technologies provides a platform for exchange of 

real-time information with increased quantity and velocity and at less cost. Such 
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cheaper information exchange technologies have made information sharing more 

achievable in recent years. Companies are leveraging information integration by 

forming collaborations, and visibility is proving to be a key ingredient in realising 

value chain excellence. In the last decade, some authors have argued that supply 

chain information sharing is one of the most rewarding applications of information 

technology (e.g. Edwards et al, 2001; Barut et al, 2002).  

Sharing of consumer demand information has been extensively studied in the 

literature, specifically in terms of the reduction of the Bullwhip Effect. The Bullwhip 

Effect is a well-known phenomenon in supply chain management. It occurs when the 

demand variability amplifies as one moves up the supply chain. Empirical evidence 

and mathematical models, to be reviewed later in this thesis, show that the orders 

placed by a retailer on its supplier tend to be much more variable than the consumer 

demand seen by the retailer. This amplification in the variability of demand 

propagates upstream in the supply chain. Information sharing can counter this effect.  

How it does so is the subject of this research.   

1.2. Theoretical Background and Research Motivations 

Various demand information sharing approaches have been discussed extensively in 

the literature, mainly from a theoretical perspective. A substantial part of the demand 

information sharing literature has been devoted to discussions on the reduction of the 

Bullwhip Effect, which leads to reductions in inventory cost.  

Research papers analysing the value of sharing demand information present two 

strategies that may be adopted by a supply chain. The first strategy is not to share the 

consumer demand information, in which case the forecasts will be based only on the 

orders received by the downstream members in the supply chain. On the other hand, 

a strategy of sharing consumer demand information can be adopted through some 

formal information sharing mechanism. In this case, the forecasts will be based on 

the consumer demand information. We argue in section 5.4 that the forecasting 

approaches used in the literature can be improved and present two new approaches, 

NIS-Estimation (NIS-Est) and Centralised Demand Information Sharing (CDIS). The 

NIS-Est approach is used when the consumer demand is not shared and the upstream 



M. Ali, 2008, Chapter 1  3 

 

member forecasts by using the orders received from the downstream member. The 

CDIS approach is used when the upstream member forecasts using the shared 

consumer demand information.  

Based on a survey of various surveys of forecasting practices (see section 3.3), we 

find that practitioners’ choice of forecasting methods is based not on optimality but 

rather on simplicity, ease of use and familiarity with methods. The literature on 

demand information sharing is dominated by papers that are restricted to the use of 

optimal forecasting methods. There is a gap in the literature on the analysis of the 

value of demand information sharing when non-optimal forecasting methods are 

utilised. Analysis of upstream demand translation plays a major role in investigating 

the value of information sharing and the literature is limited to upstream translation 

of an AR (1) demand process for non-optimal forecasting methods (Chen et al, 

2000a; Chen et al, 2000b; Alwan et al, 2003; Zhang, 2004a). No other demand 

process has been examined. Thus, there is a need to extend the analysis of upstream 

demand translation for non-optimal methods to more general ARMA processes.  

Some authors (e.g. Lee et al, 1997a; Chen et al, 2000a; Lee et al, 2000; Yu et al, 

2002; Raghunathan, 2003; Cheng and Wu, 2005; Hosoda et al, 2008) have argued 

that demand information sharing is vital to reduce inventory costs. On the other hand, 

other authors (Graves, 1999; Raghunathan, 2001; Zhang, 2004b; Gaur et al, 2005; 

Gilbert, 2005) have argued that the orders from the downstream member to the 

upstream member already contain information about the market demand process. By 

using their order history, the upstream member can infer the demand at the 

downstream member. This is known as Downstream Demand Inference (DDI). 

According to the DDI approach, the savings in inventory costs from demand 

information sharing could be obtained without any formal information sharing with 

the downstream member. In this thesis, we analyse the supply chain models 

presented in previous papers, particularly with respect to their assumptions. We 

observe that the difference in conclusions of the above papers is due to the strict 

model assumptions made by authors advocating DDI. Specifically, we argue that in 

real life supply chains, the demand process and demand parameters are not known to 

the supply chain members. Thus, we analyse the value of sharing demand 

information by relaxing the assumption that these are known to all members in the 
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mathematical model, and in the simulation and empirical analysis. More realistic 

assumptions in this thesis have led to a more realistic evaluation of the benefits of 

sharing demand information.  

In this thesis, we compare demand information sharing approaches using four 

performance metrics, namely forecast error, bullwhip ratio, inventory holdings and 

inventory cost. The forecast error is measured using the Mean Squared Error and the 

Mean Absolute Percentage Error. In Chapter 3, we find that it is very complicated to 

derive mathematical expressions for the bullwhip ratio and forecast error. In the same 

chapter, we also show that the mathematical derivation for inventory holdings results 

in an approximate equation, yielding approximate values of inventory holdings and 

inventory costs. We use simulation to estimate the bullwhip ratio and forecast error 

and to assess the accuracy of the approximate values of inventory holdings and 

inventory costs. Research studies, to be reviewed in Chapter 3, have found the 

following factors to affect the value of sharing demand information: lead time, 

demand process parameters, demand variance, cost ratio and forecasting method 

parameters. Using simulation will also help to evaluate the sensitivity of the value of 

demand information sharing to these factors. 

There is a lack of empirical research in the papers modelling the value of demand 

information sharing. Only two such papers (Wong et al, 2007; Hosoda et al, 2008) 

provide empirical evidence on the value of information sharing. Hosoda et al (2008) 

analyse the sales data of a cold drink supply chain and show that there is value in 

sharing demand information. However, they consider only three data series. Wong et 

al (2007) explore 46 series in a toy supply chain but restrict their analysis to 

calculation of the Bullwhip Effect. There is no examination of inventory costs, as in 

papers that theoretically quantify the value of demand information sharing, e.g. Lee 

et al (2000), Yu et al (2002). There is a need for a more comprehensive empirical 

analysis to evaluate demand information sharing models.  
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1.3. Research Aims and Objectives 

The overall research aim of this thesis is to analyse the value of demand information 

sharing in supply chains, based on more realistic assumptions than in previous 

research. 

There are two supply chain strategies for sharing demand information: either to share 

downstream demand or not to do so. If the supply chain members decide to share this 

demand information, there are different approaches to utilising this shared demand in 

their forecasts. A Centralised Demand Information Sharing (CDIS) approach is 

presented in this thesis.  The value of this approach is quantified based on various 

performance metrics such as amplification of demand variance, forecast error, 

inventory holdings and inventory cost.   

Based on the theoretical background and research motivations, six objectives have 

been formulated for this research: 

1. To critically analyse and improve the current demand information sharing 

approaches discussed in the literature. 

2. To extend the upstream translation of demand to a general ARMA (p, q) 

process for non-optimal forecasting methods.  

3. To analyse the Downstream Demand Inference (DDI) approach and reflect on 

the implications for the value of sharing demand information.  

4. To evaluate the performance of demand information sharing approaches with 

the help of simulation experiments, in the light of relaxed model assumptions.  

5. To analyse the effect of lead time, demand variance, autoregressive parameters, 

moving average parameters, cost ratio and forecasting method parameters on 

the value of demand information sharing approaches.  

6. To test the empirical validity and utility of the theoretical and simulation results 

on a large set of real world data.  
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1.4. Methodology 

The research follows three research methods, namely mathematical analysis, 

simulation and testing on empirical data. The relationship between the three methods 

is illustrated in Figure 1-1:  

 

Figure 1-1 Methodology of the Research 

We take a purely deductive approach in this thesis. The research will follow by 

developing a theoretical structure based upon well specified assumptions. These are 

then expressed in operational terms in the mathematical analysis stage. This 

mathematical model will be tested on empirical data as well as being simulated. 

Simulation is required as some approximate equations are used in the mathematical 

analysis. Simulation will also be used in order to gain a better understanding of the 

performance of CDIS and the factors that affect its value. The results attained from 

the simulation will also be tested on empirical data. Results of mathematical analysis 

will be tested on empirical data in order to ensure the applicability of the theory in 

real world situations.  

1.5. Thesis Structure 

In Chapter 2, an overview of the Bullwhip Effect is presented. Discussions are 

structured around the evidence, causes, control and mathematical analysis of the 

Bullwhip Effect. 

Mathematical 

Analysis 

Simulation Testing on 

Empirical Data 
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In Chapter 3, the supply chain model is presented, concentrating on the demand 

process, forecasting methods, inventory policy and performance metrics used in this 

research. 

A literature review on the upstream translation of demand is presented in Chapter 4 

and results are extended for multi-stage ARMA (p, q) processes for non-optimal 

forecasting methods.   

In Chapter 5, we review and analyse the demand information sharing approaches in 

the literature and present two new approaches. 

Chapter 6 starts with a literature review of Downstream Demand Inference. We 

analyse this approach and show that it is not feasible for some forecasting methods. 

In Chapter 7, the design of the simulation experiment is discussed and the results of 

the experiment are presented in Chapter 8. 

Chapter 9 assesses the empirical validity and utility of the analytical and simulation 

results on a set of data from a European superstore. 

Finally, in Chapter 10, we summarise the findings from each chapter and discuss the 

conclusions of this thesis. Managerial implications and limitations of the research are 

discussed, along with opportunities for future research.  
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2. The Bullwhip Effect 

2.1. Introduction 

In supply chains, in addition to the physical flow of products downstream, there is a 

flow of information from downstream to upstream members, such as placement of 

orders.  

The demand seen by upstream members is not the consumer demand of products, as 

each member in the supply chain adjusts their orders according to forecasting 

methods and inventory policies. It has been observed in many supply chains (Lee et 

al, 1997a) that orders placed in this fashion have a tendency to become more variable 

as they move upstream in the supply chain or further away from the consumer. As 

this demand variability amplifies as one moves up the supply chain, the orders seen 

by the upstream stages of a supply chain have more variability than the orders seen 

by the downstream stages. This phenomenon of increasing demand variability in 

supply chains is known as the Bullwhip Effect.  

 

Figure 2-1 Amplification of Demand Variability in Supply Chains 

         (Lee et al, 1997a) 
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The Bullwhip Effect results in huge operating costs for upstream suppliers in supply 

chains. Because of higher variability, these members either incur high inefficiencies 

or lack of customer responsiveness (Ouyang et al, 2006). Lee et al (1997a) estimated 

an increase of 12 – 25 percent operating cost due to the Bullwhip Effect. Other 

studies (e.g. Lee et al, 1997b; Cooke, 1999) have estimated that, by eliminating the 

Bullwhip Effect, the US grocery industry alone would save $30 billion each year. 

Ireland and Bruce (2000) studied the financial impact of the Bullwhip Effect in the 

retail industry in the USA and found that it lost between $7 and $12 billion in sales 

annually because of out-of-stock situations. Sterman (2006) remarked that the 

Bullwhip Effect was the most significant factor in the inventory write-off of  $2.25 

billion of obsolete inventory by Cisco Systems.   

In this chapter, we present a literature overview of the Bullwhip Effect, before 

proceeding to a more detailed critique in subsequent chapters.  

2.2. Early Research on the Bullwhip Effect 

The Bullwhip Effect, introduced in section 2.1, is a term first used by Lee et al 

(1997a). The term is new, but the phenomenon is well-established. Forrester (1958, 

1961) was the first to analyse amplification of demand variability. Forrester 

discussed its causes and remedies in the context of industrial dynamics by modelling 

the linkages between business activities in terms of flow of information, materials, 

money, manpower and capital equipment. In acknowledgement of this contribution, 

the phenomenon is also known as Forrester’s Effect.  

Burbidge (1991) reported the phenomenon of increase in demand variations in the 

context of controlling production and inventory. Various other studies regarding 

inventory volatility (Blinder, 1982; Blanchard, 1983; Blinder, 1986; Kahn, 1987) 

discussed effects similar to the Bullwhip Effect. The phenomenon was also 

experienced by players in the inventory management experimental beer game 

introduced by Sterman (1989), also known as the Beer Distribution Game. This is 

one of the most popular simulation games used to introduce students and managers to 

demand variance amplification in supply chains. The game involves independent 

inventory decision making by players. The players rely only on the orders from their 
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neighbouring players. Sterman (1989) discusses the amplification in demand 

variability upstream and the systematic irrational behaviour of the players that causes 

this amplification.  

2.3. Literature Overview of the Bullwhip Effect 

Miragliotta (2006) divides the literature on the Bullwhip Effect into three streams: 

measurement and empirical assessment, causes, and remedies for the Bullwhip 

Effect. We use the same grouping except that we divide the first stream of 

Miragliotta (2006) into empirical evidence and mathematical analysis. As one of the 

objectives of this research is the quantification of the Bullwhip Effect, this further 

classification helps us clarify the contributions of papers providing empirical results 

and those offering theoretical insights into the Bullwhip Effect, based on 

mathematical models. As noted in section 1.2, there are very few papers that 

combine mathematical and empirical analyses. 

The literature review in this section is thus divided into four streams: empirical 

evidence, causes, control and mathematical analysis. We start the review by looking 

at papers that provide empirical evidence of the bullwhip phenomenon in real life 

supply chains. After discussion of these empirical findings, we discuss the second 

stream in the literature, concerning the causes of the Bullwhip Effect. The third 

stream reviews the papers suggesting ways to control the Bullwhip Effect. Finally, 

we look at the papers that mathematically analyse the amplification of demand 

variability. 

2.3.1. Empirical Evidence 

We mentioned in sub-section 2.2 that Lee et al (1997a) first coined the term 

“Bullwhip Effect”. This term originated from an examination of the order patterns at 

Procter and Gamble for their product “Pampers”. Lee et al (1997a) report that, 

although the consumer demand for the product was steady, there was a high degree 

of variability in the orders to the distributors and even higher variability was 

observed at the raw material provider. Lee et al (1997a, 1997b) detail the occurrence 

of the Bullwhip Effect in other products such as noodles, soups and printers. 
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There is certainly no lack of evidence of the Bullwhip Effect from real world supply 

chains. Phenomena similar to those discussed in the above paragraph have been 

observed in empirical data in various other industries. Table 2-1 (page 14) lists 

papers providing empirical evidence of the Bullwhip Effect published in the last 

twenty years. Many earlier studies (e.g. Forrester, 1961) have provided examples of 

amplification of demand variability from real life and the literature is full of such 

examples. This review of the past twenty years is not necessarily exhaustive, but 

includes six papers that were not identified by Miragliotta (2006) who presented a 

similar literature review on empirical evidence of the Bullwhip Effect. 

Many papers have analysed demand variance amplification in the grocery industry. 

Holmstrom (1997) reported a grocery supply chain where variability, as measured by 

the standard deviation of weekly demand relative to average weekly demand, 

increases from 9 to 29 for two different product groups going from consumer 

demand to plant supply. Gill and Abend (1997) presented the case study of Wal-Mart 

and how the demand variability amplifies when Wal-Mart places orders on their 

suppliers. Fransoo and Wouters (2000) observed ten weeks of daily demand data of 

two supply chains for ready-made pasteurised meals. Using the ratio of the 

coefficient of variation of production demand to consumer demand to calculate the 

Bullwhip Effect, they found an average amplification of 1.78 in both chains. 

Hammond (1994) reported a case study of the product, Barilla, and found 

amplification of demand variance in the supply chains for pasta. A similar effect has 

been observed in the dry grocery industry (Kurt Salmon Associates, 1993). 

Dejonkheere et al (2003) graphically display the order data at a retailer and its 

manufacturer for a product in the fast moving consumer goods sector. The graph 

clearly indicates that the order at the manufacturer is more variable than the order at 

the retailer. Disney (2007) analysed the sales pattern of Tesco, a major UK retailer, 

and found that Tesco had a bullwhip problem. The store replenishment system 

unnecessarily amplified the daily variability of workload by 185% in the distribution 

systems.  

Evidence has also been presented in other retail sectors. Hameri (1996) has analysed 

the sales pattern of A4 size paper compared to the demand at the paper mill. He 

found that 75% of the orders from the paper wholesaler to the mill were never 
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required by the final consumer. He suggested that the retailer should share the 

consumer demand information with the sales office, wholesaler and the paper mill. 

Wong et al (2007) measured the Bullwhip Effect of multiple toy products in a supply 

chain with high demand volatility, seasonality and high risk of inventory 

obsolescence. Utilising the ratio of the coefficient of variation, Wong et al (2007) 

showed that high demand variance amplification exists in nearly all 46 products 

considered. Lee et al (1997a) graphically displayed a retailer store’s sales of a 

product and their orders to the suppliers. While the variation of sales was very low, 

the orders placed on the supplier for the same product had very high variability. 

Similar data were exhibited in Lee et al (1997b) for a soup manufacturer, whose 

leading brand had highly seasonal sales. When the order data in the supply chain 

were observed, the shipments from the manufacturer to the distributor varied highly 

compared to the retailer’s sales. 

Terwiesch et al (2005) explored demand variance amplification in the semiconductor 

and computer industry. They compared the ratio of demand variance at the retailer to 

the manufacturer, between the two industries, and concluded that the computer sector 

is less volatile than the semi-conductor sector. The amplification of demand variance 

in the semi-conductor industry has also been illustrated by Greek (2000). Lee et al 

(2004) observed that data from various computer and computer accessory companies 

such as Hewlett Packard, Xilinx, Canon, 3Com, Raychem and Intel, clearly indicated 

the existence of the Bullwhip Effect. Hejazi and Hilmola (2006) presented two case 

studies in the furniture and international electronics sectors and observed the 

Bullwhip Effect in both supply chains.  

Sterman (2006) graphically presented US oil production data from  1950 to 2005. 

The data shows that the oil and gas drilling activities fluctuates about three times 

more than the production. 

Edgehill and Olsmats (1988) presented a case study from the automotive industry 

and discussed the order variance amplification of a close-coupled production 

distribution system. Using examples ranging from the automotive industry to camera 

manufacturers, Blackburn (1991) argued that the time delay between supply chain 

links is a major source of the Bullwhip Effect. He showed that, by using time 

compression tactics, the mean squared error could be halved. Avery et al (1993) 
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discussed the case of an automotive assembler which procures wire harness from a 

manufacturer. They illustrate the presence of the Bullwhip Effect in the automotive 

market as the order variability increases from the automobile assembler to the 

manufacturer of wire harness. The manufacturer procures ‘steel tubes’ to produce 

wire harness and the order variability of the tube supplier is higher than the order 

variability of the wire harness manufacturer. Fine (1998) discussed the effect of 

Gross Domestic Product on the machine tool industry. According to his research, 

from 1961 – 1991, the Gross Domestic Product of the USA had a variability of 2 to 3 

percent. This affected the sales of automobiles in the USA, which had a variability of 

around 20%. The orders placed by automotive component suppliers on the machine 

tool industry resulted in variability of between 60 to 80 percent. However, the 

measure of variability was not specified by the author. Taylor (1999) analysed an 

automotive supply chain and found that the standard deviation of daily order sizes 

increases as the order moves upstream. The standard deviation of OEM demand is 

0.88, then 1.63 at final assembly, 2.17 at pressing, 3.64 at blanking, 3.05 at the 

service centre and 13.76 at the steel mill for the order of raw materials. McCullen 

and Towill (2002) discussed bullwhip in a global supply chain for mechanical 

products. A study of the complex mechanical systems manufacturer, with three 

factories in the UK, showed that when the sales of a certain product ranged from 70 – 

150, the production orders were ranging between 20 – 270.  

In the following table (Table 2-1) the studies providing empirical evidence are listed 

along with the type of evidence provided. The type of evidence is divided into two 

categories: example and case study. When a paper only reports summary empirical 

evidence of demand variance amplification, we term such evidence as an ‘example’. 

On the other hand, if a paper undertakes detailed analysis of a specific case of the 

Bullwhip Effect, such empirical evidence is called a ‘case study’.  
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Paper Industry Evidence Type 

Edgehill and Olsmats 
(1988) 

Automotive Case Study 

Blackburn (1991) Various from Automotive to 
Cameras 

Examples 

Avery et al (1993) Automotive Examples 

Kurt Salmon Ass. (1993) Grocery Case Study 

Hammond (1994) Grocery Case Study 

Hameri (1996) Paper Making Case Study 

Gill and Abend (1997) Retail Case Study 

Holmstrom (1997) Grocery Examples 

Lee et al (1997a) Home & Personal Care Examples 

Lee et al (1997b) Soups, Printers Case Study 

Fine (1998) Machine Tools Examples 

Taylor (1999) Automotive Case Study 

Fransoo and Wouters 
(2000) 

Perishable Food Case Study 

Greek (2000) Semi Conductor  Examples 

McCullen and Towill 
(2002) 

Mechanical Parts Case Study 

Dejonkheere et al (2003) FMCG Examples 

Lee et al  (2004) Computer & Computer 
Accessory  

Examples 

Terwiesch et al (2005) Computer and Semi-
conductor 

Case Study 

Hejazi and Hilmola (2006) Electronics and Furniture Case Studies 

Sterman (2006) Oil Industry Examples 

Disney (2007) Retail Supermarket Case Study 

Wong et al (2007) Toys Case Study 

Table 2-1 Empirical Evidence of the Bullwhip Effect  

(Adapted from Miragliotta (2006)) 

 

In this sub-section, we provided an overview of empirical evidence of the Bullwhip 

Effect. We observe that the literature contains many examples of the demand 

variance amplification phenomenon. The empirical evidence is spread across many 

industries including groceries, automotive, electronics, computers and food. Some 

studies offer detailed analysis of a specific case; others are limited to short examples.  
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Although the quality of evidence is variable, it all points towards the existence of the 

Bullwhip Effect. 

The existence of the phenomenon has led to research into the causes of demand 

variance amplification, which we discuss in the next sub-section. 

2.3.2. Causes of the Bullwhip Effect 

Another important stream of research focuses on evaluating the causes of the 

Bullwhip Effect. Lee et al (1997a) presented four causes of the Bullwhip Effect. The 

four causes are Demand Signal Processing, Rationing and Shortage Gaming, Batch 

Ordering and Price Fluctuations. 

2.3.2.1. Demand Signal Processing 

Lee et al (1997a) mathematically identified that the Bullwhip Effect will naturally 

occur when forecasting is performed by multiple stages in a supply chain using an 

Order-up-to (OUT) policy. An OUT policy is where the inventory is reviewed at 

regular intervals and, at each of these intervals, an order is placed to bring the 

inventory to a pre-defined level. The upstream member will place the order based on 

the demand it receives, which is not the actual consumer demand of the products. 

The upstream member adjusts their orders according to the forecasting method, OUT 

inventory policy and lead time, and this results in an increase in the demand 

variance. Graves (1999) mathematically showed that the variability of an ARIMA (0, 

1, 1) demand process at the retailer will amplify even when Single Exponential 

Smoothing (SES), which is the optimal forecasting method for such demand, is 

utilised. Chen et al (2000a, 2000b) showed that demand variance is amplified when 

the Simple Moving Averages (SMA) or SES method is employed, assuming an AR 

(1) demand process and an OUT inventory policy. Dejonkheere et al (2003) 

investigated the effect of inventory policies on demand variance amplification and 

confirmed that the Order-up-to inventory policy (OUT) is a contributor to the 

Bullwhip Effect. They mathematically showed that the OUT policy will always 

result in demand variance amplification, irrespective of the forecasting method 

employed. Other papers (e.g. Chen, 1998; Hanssens, 1998; Lee et al, 2000; Wong et 
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al, 2007) have mathematically shown that demand signal processing is a major 

contributor to the Bullwhip Effect.  

The literature on mathematical analysis of demand signal processing is reviewed 

more extensively in sub-section 2.3.4. 

2.3.2.2. Rationing and Shortage Gaming 

Lee et al (1997a, 1997b) argued that rationing and shortage gaming is a major cause 

of the Bullwhip Effect and occurs in situations where the demand exceeds the 

production capacity. In these situations, the manufacturer may ration or allocate 

supplies to the retailers. On recognising the rationing criteria, the retailer may place 

orders exceeding the required quantity, to secure a greater share of the supplies from 

the manufacturer. This gives the manufacturer a false impression of the true demand 

and they in turn place large orders on their suppliers.  This results in increased 

variability of the demand as it moves upwards in the supply chain. Cachon and 

Lariviere (1999) examined how the choice of allocation mechanism impacts retailer 

actions and supply chain performance and produces the Bullwhip Effect. Cheung and 

Zhang (1999) explored cases where, due to rationing, the retailer places a large order 

and then cancels the remaining balance when the required quantity has been 

received. They show that such order cancellations cause the Bullwhip Effect. Paik 

and Bagchi (2007) use simulation to show how rationing and shortage gaming results 

in the amplification of demand variability.  

2.3.2.3. Batch Ordering 

A common practice in industry is not to place orders on the upstream link as soon as 

demand arises. Instead, the individual demands are batched or accumulated before 

placing the orders and thus, instead of frequent orders, weekly, biweekly or monthly 

orders are placed. This is done for various reasons including economies of scale, 

distribution efficiencies, and MRP or similar calculations.  

Lee et al (1997a) identified that order batching is a major contributor to demand 

variance amplification. If the retailer is using batch ordering, the manufacturer would 

observe large orders in some periods and no orders in other periods. This results in 
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amplifying the variability in demand and contributes to the Bullwhip Effect, as these 

activities destroy the connection between the actual demand patterns of the 

customers and the upstream links of the supply chain. Cachon (1999) showed that 

when a retailer orders in fixed periodic cycles and in multiples of fixed batch sizes, 

the Bullwhip Effect occurs naturally. Jung et al (1999) investigated the correlation of 

suppliers’ demand and capacity utilisation when buyers’ orders are impacted by 

batching and concluded that suppliers prefer infrequent large orders, which results in 

demand variance amplification. Moinzadeh and Nahmias (2000) argued that batch 

ordering results in variance amplification and suggested correlated ordering to reduce 

this amplification. Riddalls and Bennett (2001) examined the effect of batch 

production costs on the Bullwhip Effect. They found that the amplification of 

variability is related to the remainder of the ratio between the batch size and average 

demand. Holland and Sodhi (2003) quantified the Bullwhip Effect that occurs due to 

order batching. They assume orders to be an integer multiple of the batch size and 

they model demand noise as random identically and independently distributed (i.i.d.) 

errors or deviations from the optimal order size. Simulations were run for five 

different batch sizes and the results were analysed statistically. They concluded that 

the increase in order variance is directly proportional to the square of the batch size 

and to the variance of the order deviations. 

Pujawan (2004) compared the mean and variance of two lot sizing rules: Silver Meal 

and Least Unit Cost. With the help of mathematical models, he examined the order 

quantity and interval produced by the two rules under low demand variability. The 

study reveals that addition of an appropriate amount to an order may significantly 

reduce order variability. The results provide insights on the choice of lot sizing rules 

to be applied by a channel of a supply chain in determining ordering policies. 

Potter and Disney (2006) extended the above study by considering a full range of 

batch sizes, both greater and lesser than the average demand. They derive an 

expression for the bullwhip ratio when the consumer demand is deterministic. With 

the help of simulation, they looked at the impact of changing batch size on the 

Bullwhip Effect in a production control system. They show that the Bullwhip Effect 

from batching can be reduced if the batch size is a multiple of average demand.  
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In this section, we have found that batch ordering results in demand variance 

amplification. All the above papers show that when supply chain links resort to order 

batching, the Bullwhip Effect will take place.  

2.3.2.4. Price Fluctuations 

It has been observed as a common practice of retailers that they offer discounts and 

clearance prices. For price-elastic products, when the price of an item changes, the 

customer demand will also change. Customers buy in bulk quantities when the price 

of the product is low. Then, customers stop buying when the price returns to normal, 

until they have exhausted their inventory. Thus, the actual customer sales do not 

match the true demand for the product when there are price variations. This results in 

the Bullwhip Effect, as the variance of the order quantities amplifies upstream 

because of the temporary price reductions. Reiner and Fichtinger (2006) 

mathematically, and with the help of simulation, show that price fluctuations lead to 

the Bullwhip Effect. Iyer and Ye (2000) and Gavirneni (2006) show that supply 

chain performance is affected if information on discounts is not passed on to the 

upstream link.  

A summary of the papers discussing the causes of the Bullwhip Effect is presented in 

tabular form in Table 2-2. 
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Causes of the Bullwhip Effect Papers 

Demand Signal Processing Lee et al (1997a, 1997b); Chen (1998); 

Hanssens (1998); Graves (1999); Chen et 

al (2000a, 2000b); Lee et al (2000); 

Wong et al (2007) 

Rationing and Shortage Gaming Lee et al (1997a, 1997b), Cachon and 

Lariviere (1999); Cheung and Zhang 

(1999); Paik and Bagchi (2007) 

Batch Ordering Lee et al (1997a, 1997b); Cachon (1999); 

Jung et al (1999); Moinzadeh and 

Nahimas (2000); Riddalls and Bennett 

(2001); Holland and Sodhi (2003); 

Pujawan (2004); Potter and Disney 

(2006) 

Price Fluctuations Lee et al (1997a, 1997b); Iyer and Ye 

(2000); Gavirneni (2006); Reiner and 

Fichtinger (2006)  

Table 2-2 Causes of the Bullwhip Effect 

It is noticeable that few of the papers shown in Table 2-2 are listed under more than 

one cause. The interaction between the four causes has yet to receive serious and 

sustained attention in the academic literature. 

Some papers have identified factors such as time delays (Blackburn, 1991), demand 

uncertainty (Naish, 1994), lead time (Lee et al, 2000), machine breakdown (Paik and 

Bagchi, 2007), and behavioural factors (Croson and Donohue, 2006) that influence 

the above causes. In the following table (Table 2-3), we list some papers discussing 

various factors resulting in the four causes (as listed in Table 2-2) that lead to the 

Bullwhip Effect.  
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Factors Papers 

Lead Times / Time Delay Blackburn (1991); Chen et al (2000b); 

Lee et al (2000); Paik and Bagchi (2007); 

Lee et al (2000); Cachon and Fisher, 

2000) 

Behavioural Factors Kahn (1987); Eichenbaum (1989); Naish 

(1994); Lee et al (1997a); Croson and 

Donohue (2006) 

Demand Uncertainty Naish (1994) 

Machine Breakdown Taylor (1999); Paik and Bagchi (2007) 

Number of Echelons Paik and Bagchi (2007) 

Table 2-3 Factors Contributing to the Causes of the Bullwhip Effect 

The factors shown in Table 2-3 contribute to the causes of the Bullwhip Effect 

discussed earlier. For example, lead time/time delay, demand uncertainty and number 

of echelons affect demand signal processing, which in turns results in the Bullwhip 

Effect. Similarly, machine breakdowns, behavioural factors and demand uncertainty 

are some factors that can give rise to rationing and shortage gaming in supply chains. 

Identification of these causes aids the development of strategies to alleviate variance 

amplification.  

2.3.3. Control of the Bullwhip Effect 

Another important stream in the literature on the Bullwhip Effect identifies ways to 

control or reduce the Bullwhip Effect.  

In sub-section 2.3.2, we considered the forces that lead to systematic distortion and 

amplification of demand variance or the Bullwhip Effect. In this sub-section, we 

briefly present the combination of activities proposed in the literature to control this 

phenomenon. Lee et al (1997b) group the approaches on the basis of system 
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coordination, namely: Information Sharing, Channel Alignment and Operational 

Efficiency. Information Sharing is the transmission of various kinds of information 

from a downstream site in a timely fashion. Channel Alignment is the coordination 

of pricing, transportation, inventory planning, and ownership between the upstream 

and downstream sites in a supply chain. Operational Efficiency refers to other 

activities that improve performance, such as reduced costs and lead time.  

 

 

Figure 2-2 Ways to Control the Bullwhip Effect (Lee et al, 1997b) 

 

In the following table (Table 2-4), we list various papers investigating the control of 

the Bullwhip Effect. These papers have been grouped according to the causes of the 

Bullwhip Effect discussed in sub-section 2.3.2 and the methods of controlling the 

Bullwhip Effect summarised in this sub-section. 
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Information Sharing Channel Alignment  Operational Efficiency 

Demand Signal Processing 

Sharing inventory and 
inventory rule data 
(Cachon and Fisher, 2000) 
Demand Information 
Sharing (Bourland et al, 
1996; Gavirneni et al , 
1999; Lee et al, 2000) 
Single Supply Chain 
Forecast (Chen et al, 
2000a) 
Sharing Explanatory 
variables (Aviv, 2002) 
Future order information 
(Zhao et al, 2002) 

Synchronisation in supply 
chain members (Cachon, 
1999) 
Vendor Managed 
Inventory (VMI) (Waller 
et al, 1999, Yu et al, 2002) 
Same Ordering Policy 
(Hieber and Hartel, 2003) 

 
 

Lead Time and Time 
Delay Reductions (Chen et 
al, 2000b; Cachon and 
Fisher, 2000; Lee et al, 
2000; Boute et al, 2007) 
Use of Optimal Time-
Series Forecasting Models 
(Alwan et al, 2003) 
Multi-echelon Inventory 
Control System 
(Warburton, 2004) 
Use of proportional   
controllers (Disney et al, 
2006) 
 

Rationing and Shortage Gaming 

Demand Information 
Sharing (Bourland et al, 
1996; Gavirneni et al , 
1999; Lee et al, 2000)  
Sharing of Capacity and 
Inventory Data (Gavirneni 
et al, 1999, Gavirneni, 
2002) 

Inventory Balancing and 
Better Return Policies 
using Vendor Managed 
Inventory (VMI) (Waller 
et al, 1999) 

 

 

Batch Ordering 

Demand Information 
Sharing (Bourland et al, 
1996; Gavirneni et al , 
1999; Lee et al, 2000) 
Future order information 
(Zhao et al, 2002) 

 

Vendor Managed 
Inventory (VMI) (Waller 
et al, 1999) 
Correlated ordering 
(Moinzadeh and Nahmias, 
2000) 

Resort to different 
Batching Rules (Kelle and 
Milne, 1999; Riddalls and 
Bennett, 2001) 
Batch size multiple of 
average demand (Potter 
and Disney, 2006) 

 

Price Fluctuations 

Sharing data on prices & 
price changes (Iyer and 
Ye, 2000) 

 

Every Day Low Price  
(Kristofferson and Lal, 
1996) 
Link promotional 
allowances to demand data 
(Dreze and Bell, 2004) 
 

Activity Based Costing 
(Lee et al, 1997b) 
Incorporation of reference 
price in the Forecasting 
Model (Reiner and 
Fitchinger, 2006) 

Table 2-4 Framework to Control the Bullwhip Effect. 

       (Adapted from Lee et al, 1997a; Miragliotta, 2006) 

There are numerous papers showing that the Bullwhip Effect can be controlled by 

sharing information among the supply chain members. Cachon and Fisher (2000) 
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mathematically analyse a single manufacturer, multiple retailer supply chain with 

stationary stochastic consumer demand. Their simulation experiment shows that 

sharing information on the inventory rule and inventory data reduces the supply 

chain costs by between 2.2% and 12.1%, by reducing the distortion from Demand 

Signal Processing. Sharing demand data has been advocated by many authors to 

reduce the effect of demand signal processing and rationing and shortage gaming 

(e.g. Bourland et al, 1996; Gavirneni et al, 1999; Lee et al, 2000). These papers have 

shown that the Bullwhip Effect will be reduced if the demand data is shared with the 

upstream member. Zhao et al (2002) investigated sharing of future orders, while 

Aviv (2002) argued that using shared values of explanatory variables or any such 

advance information will reduce the effect of demand signal processing. Aviv (2002) 

and Chen et al (2000a) have shown that the Bullwhip Effect can be reduced if a 

single forecast is produced for the whole supply chain. 

Gavirneni et al (1999) mathematically showed that sharing data on inventory will 

reduce the variability amplification due to the effects of rationing and shortage 

gaming. Gavirneni (2002) extended this study by exploring how capacity information 

will help in the reduction of the Bullwhip Effect. Iyer and Ye (2000) investigated the 

effect of price fluctuations on grocery supply chains. Their mathematical analysis 

concludes that the supplier may improve his performance by sharing information on 

price fluctuations with the retailer. 

Various papers have discussed the issue of channel alignment to control the four 

causes of the Bullwhip Effect. Yu et al (2002) have investigated Vendor Managed 

Inventory (VMI) to reduce the amplification of demand variance. The study 

concludes that part echelon elimination, as in VMI, will help reduce the effects of 

demand signal processing.  Hieber and Hartel (2003) argued that different inventory 

and ordering policies at different stages of supply chains are a source of the Bullwhip 

Effect. Their mathematical analysis concludes that amplification in variability can be 

dampened if all links in the supply chain use a single ordering policy. Cachon (1999) 

argued that not only the inventory policies but also the forecasting method should be 

synchronised between all members of the supply chain. They mathematically show 

that if all members of the supply chain use the same inventory policy and forecasting 

method, it will result in reduced bullwhip. 
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Waller et al (1999) investigates how a channel alignment programme such as Vendor 

Managed Inventory (VMI) can help reduce the effects of rationing and shortage 

gaming and batch ordering. They discussed the case of a retail supply chain where 

the manufacturer is involved in a VMI programme with many retailers. Firstly, they 

discuss that in the case of inventory shortages, it is easier to ration the supplies as the 

manufacturer can see the widespread disposition of inventory at the retailers. 

Secondly, if the manufacturer is not managing inventory of a major retailer and the 

retailer produces batch orders, this creates chaos in manufacturing. More inventory is 

required by the manufacturer to counter this uncertainty. They argue that the 

uncertainty can be reduced by bringing such major customers into a VMI 

programme. Moinzadeh and Nahmias (2000) recommended that the links should 

submit their orders with the same frequency to take into account the batching effect. 

Both supply chain links place orders with the same frequency in the same periods. 

Kristofferson and Lal (1996) recommended instituting systems that create a more 

demand driven environment. They argue that it is beneficial for the whole supply 

chain to offer “Every Day Low Price” instead of frequent promotional activities that 

take the supply chain away from the actual consumer demand. “Every Day Low 

Price” has been used frequently in the grocery industry (Schiller, 1994). Dreze and 

Bell (2003) argue that manufacturers lose money on trade promotions as a result of 

forward buying by retailers. They discuss the concept of scan-back where the 

discount is given to the retailers on the units sold rather than the units bought. Using 

scan-backs will reduce the trade promotional offers, making the manufacturer more 

aware of the actual consumer demand. 

Other papers have explored how increasing operational efficiency will result in 

reduction of the Bullwhip Effect. Alwan et al (2003), using an AR (1) demand 

process, mathematically compared the Minimum Mean Squared Error (MMSE) 

forecasting method (optimal) with Simple Moving Averages (SMA) and Single 

Exponential Smoothing (SES), which are non-optimal for the AR (1) demand 

process. They show that optimal forecasting methods result in less amplification of 

demand variance compared to non-optimal methods. Thus, they conclude that 

practitioners should resort to more operationally efficient forecasting methods to 

reduce the Bullwhip Effect. Warburton (2004) discussed centralising inventory to 
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reduce demand variance amplification. He shows that a multi-echelon inventory 

control system will result in inducing lower variability in the demand upstream 

compared to individually controlled inventory systems. Disney et al (2006) analysed 

a supply chain using Proportional Controller methods. Proportional Controllers are 

based on a control engineering technique used to dampen the response of dynamic 

systems. The authors assume that the supply chain uses an OUT inventory policy. 

They discuss that the orders placed under such an inventory policy have two 

feedback loops: net stock and work in progress (WIP). They introduce the idea of 

using two proportional feedback controllers: one for regulating the net stock error 

feedback and the other for WIP error. They mathematically show that allowing such 

independent feedback loops will result in reduction of the Bullwhip Effect as the 

natural frequency and damping ratio of the OUT policy are decoupled from each 

other. Riddalls and Bennett (2001) examined the effect of batch production costs on 

the Bullwhip Effect. They find a relationship between the Bullwhip Effect and the 

remainder of the ratio between the batch size and average demand. For two links in 

the supply chain, Potter and Disney (2006), with the help of simulation, analyse the 

impact of changing batch sizes on the Bullwhip Effect in a production control 

system. They show that the Bullwhip Effect from batching can be reduced if the 

batch size is a multiple of average demand.  

Several authors (Chen et al, 2000b; Cachon and Fisher, 2000; Lee et al, 2000; Boute 

et al, 2007) have shown that lead times and time delays are major contributors to 

amplification of demand variance. These authors recommend that the supply chain 

members should work towards reduction of lead times and time delays in order to 

reduce this effect. 

Lee et al (1997b) have argued that conventional accounting systems do not enable 

companies to recognise the excessive cost incurred due to forward buying and 

promotions. They recommend that companies should use Activity-Based Costing 

which will reveal various hidden costs such as inventory, storage, special handling 

and premium transportation that offset the benefits of price promotions. Reiner and 

Fitchinger (2006) develop a model where reference prices of a product are used to 

optimise forecasts and inventory decisions. They conclude that incorporating pricing 
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information in forecasting and inventory models will reduce the Bullwhip Effect and 

the average on-hand inventory.  

In this sub-section, we have presented an overview of studies that have investigated 

controlling the Bullwhip Effect by three means: Information Sharing, Channel 

Alignment and Operational Efficiency. Although many of these studies 

mathematically analyse their models, in the next sub-section (sub-section 2.3.4) we 

will specifically discuss studies that quantify the Bullwhip Effect analytically. 

2.3.4. Mathematical Analysis of the Bullwhip Effect 

Many papers have mathematically investigated the existence of the Bullwhip Effect 

and quantified the increase in demand variability. As we use the bullwhip ratio as 

one of the performance metrics (see section 3.7), the papers mathematically 

quantifying demand variance amplification are highly relevant to this research. The 

literature review of these papers has thus become an important issue in this thesis. 

We present an overview of the papers in this sub-section and critically evaluate some 

important papers in this stream of research in Chapters 4 and 5. 

On reviewing the literature, we observe that the supply chain models in these papers 

differ in four respects: demand process, inventory policy, forecasting method and 

bullwhip measure. Kim et al (2006) assume an i.i.d. consumer demand process, while 

Alwan et al (2003) assume AR (1) and Luong and Phien (2007) assume an AR (p) 

process. In terms of inventory policy, papers assume different rules, e.g. Caplin 

(1985) assumes a (s,S) policy, Metters (1997) assumes a cost minimisation model 

while Kahn (1987) assumes an OUT policy. The Bullwhip Effect has been quantified 

using different forecasting methods, e.g. Single Exponential Smoothing (Xu et al, 

2001), Simple Moving Averages (Chen et al, 2000a), Minimum Mean Squared Error 

(Lee et al, 2000). Similarly, different measures have been adopted to quantify the 

Bullwhip Effect, e.g. variance ratio (Chen et al, 2000a), variance difference (Zhang, 

2004a), standard deviation ratio (Wong et al, 2007), and coefficient of variation 

(Fransoo and Wouters, 2000). We list papers in this stream of research in the 

following table and summarise the demand process, inventory policy, forecasting 

method and bullwhip measure used in each paper (Table 2-5). 
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Paper Demand Process Inventory 

Policy 

Forecasting 

Method 

Bullwhip 

Measure 

Metters (1997) Probability 
distribution 

Cost 
minimisation 
model 

Seasonality 
adjusted 
averages 

Ratio of 
Variance / 
Mean 

Graves (1999) ARIMA (0, 1, 1) Base Stock SES Variance ratio 

Chen et al 
(2000a) 

AR (1) OUT SMA Variance ratio 

Chen et al 
(2000b) 

AR (1) OUT SMA, SES Variance ratio 

Xu et al (2001) AR (1) OUT SES Variance ratio 

Alwan et al 
(2003) 

AR (1) OUT MMSE, SMA, 
SES 

Variance ratio 

Dejonckheere 
et al (2003) 

i.i.d. OUT, 
smoothing 
replenish-
ment  

MMSE, SMA, 
SES 

Coefficient of 
variation 

Zhang (2004a) AR (1) OUT SES, SMA, 
MMSE 

Variance ratio, 
Variance 
difference 

Chandra and 
Grabis (2005) 

AR (p) OUT, MRP MMSE Variance ratio 

Li et al (2005) ARIMA (p, d, q) OUT MMSE Comparison of 
variance of 
sample points 

Disney et al 
(2006) 

i.i.d., ARMA OUT MMSE Variance ratio 

Gaalman and 
Disney (2006) 

ARMA (1, 1) OUT MMSE Variance ratio 

Kim et al 
(2006) 

i.i.d. OUT SMA Variance ratio 

Stamatopolous 
et al (2006) 

AR (1) OUT SES Variance ratio 

Sucky (2006) AR (1) OUT SMA Variance ratio 

Luong (2007) AR (1) OUT MMSE Variance ratio 

Luong and 
Phien (2007) 

AR(p) OUT MMSE Variance ratio 

Table 2-5 Assumptions in Papers Quantifying the Bullwhip Effect 
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Dejonkheere et al (2003) and Kim et al (2006) investigated the Bullwhip Effect by 

assuming independently and identically distributed demand while Metters (1997) 

showed the existence of demand variance amplification by assuming that the 

consumer demand is stochastic and time dependent and has a known  probability 

distribution. Graves (1999) and Lee et al (2000) argued that demand over 

consecutive time periods is rarely statistically independent and that the assumption of 

correlated demand is more appropriate to study the Bullwhip Effect. A common 

assumption in the mathematical analysis of the Bullwhip effect is of an AR(1) 

demand process (e.g. Chen et al, 2000a; Chen et al, 2000b; Alwan et al, 2003; 

Luong, 2007). Other papers analyse the Bullwhip Effect by considering more 

complex demand processes, by assuming ARIMA (0, 1, 1) (Graves, 1999) and by 

simulating ARIMA (p, d, q) processes (Li et al, 2005). As many other supply chain 

assumptions in these papers also vary, the results of these papers and thus the effect 

of demand process on the Bullwhip Effect cannot be directly compared. In this 

research, we assume nine different ARIMA processes (see sub-section 7.3.1). By 

keeping all other factors constant, we discuss the effect of demand processes on 

amplification of demand variability (see sub-section 8.4.1). 

Table 2-5 also shows that an OUT inventory policy is commonly assumed. Disney 

(2007) has found that products accounting for 65% of the sale value at a major UK 

retailer, Tesco, follow forms of an OUT inventory policy.  Dejonkheere et al (2003) 

have shown that an OUT policy will always result in demand variability 

amplification. They demonstrate the existence of the Bullwhip Effect for other 

replenishment rules but claim that smoothing replenishment rules may reduce 

demand variance amplification. Chandra and Grabis (2005) compared the OUT 

policy with a Material Replenishment Planning (MRP) scheme and show the 

existence of the Bullwhip Effect in both policies. Metters (1997) based their 

inventory policy on a cost minimisation model and show that demand variance 

amplification will occur in this model as well. In section 3.4, we discuss the adoption 

of the OUT policy in this research. This is consistent with the practice of 

organisations such as Tesco, and will facilitate critical comparison of this PhD 

research with earlier papers. However, in Chapter 10, we acknowledge that assuming 

one inventory policy (OUT) is one of the limitations of the supply chain model and 
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further research in required to analyse the effect of inventory policy on demand 

variability amplification. 

The third important assumption in mathematical analysis of the Bullwhip Effect is 

the forecasting method. Some authors assume non-optimal forecasting methods, e.g. 

Simple Moving Averages (SMA) (Chen et al, 2000a; Kim et al, 2006; Sucky, 2006) 

and Single Exponential Smoothing (SES) (Chen et al, 2000b; Xu et al, 2001; 

Stamatopolous et al, 2006). All these papers show that the Bullwhip Effect exists 

when non-optimal forecasting methods are employed by the supply chain members. 

Alwan et al (2003), Zhang (2004a) and Stamatopolous et al (2006) compare demand 

variance amplification of non-optimal methods with optimal methods. They show 

that the Bullwhip Effect is present, irrespective of the forecasting method employed. 

However, the mathematical analysis in these papers demonstrates that the 

amplification is more pronounced in the case of non-optimal methods (SMA and 

SES) compared to the optimal methods (Minimum Mean Squared Error (MMSE)). 

As is evident from the above table (Table 2-5), the analysis in the case of non-

optimal methods is limited to i.i.d. and AR (1) demand processes. In this research, 

we assume three forecasting methods (SMA, SES and MMSE) (section 3.4) and 

calculate demand amplification for a more comprehensive range of nine ARIMA 

demand processes (see section 7.4). 

Finally, the papers mathematically investigating the Bullwhip Effect use different 

measures to quantify the effect. Because the Bullwhip Effect is defined as the 

amplification in demand variability, it has been argued (Zhang, 2004a, Sucky, 2006) 

that the difference or ratio of variance at the stages under consideration are 

appropriate measures. Zhang (2004a) argued that the above two measures are 

equivalent measures and linked by ( ) ( )tDifference Ratio Var d= −1 . We use the 

variance or the bullwhip ratio in this research (section 3.7). The above table (Table 2-

5) shows that this measure has been used by most of the papers. Thus, adopting the 

variance ratio will help in making comparisons with previous research. 

The papers discussed in this section have used different patterns to model consumer 

demand and all papers have shown an increase in demand variability. Similarly, 

papers using different inventory policies have shown the presence of the Bullwhip 
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Effect, although the amplification may vary with different policies. The papers show 

similar effects for forecasting methods, where optimal forecasting methods may 

result in lower demand variance amplification compared to non-optimal forecasting 

methods. However, demand variance increases along the supply chain in all cases. 

Finally, the literature review in this section shows that although the Bullwhip Effect 

can be quantified by using different measures, all measures will show its presence. 

Thus, the literature review shows that the Bullwhip Effect is present in supply chains 

for a wide range of model assumptions regarding demand process, inventory policy, 

forecasting methods and bullwhip measures.  

2.4. Anti-Bullwhip Effect 

In the previous sub-sections, we discussed the phenomenon of the Bullwhip Effect 

and presented a brief literature review of its empirical evidence, mathematical 

analysis, causes and control. Some papers (Lee et al, 2000; Li et al, 2005; Hosoda 

and Disney, 2006; Luong and Phien, 2007) have identified that the Bullwhip Effect 

does not take place for certain values of the demand parameters. Lee et al (2000) 

show mathematically that for an AR (1) demand process, the variability of the 

demand does not amplify when the value of the autocorrelation coefficient ( ρ ) is 

negative. The same result is also given by Hosoda and Disney (2006) and Luong and 

Phien (2007), who show that for an AR (1) demand process, the Bullwhip Effect 

only occurs when ρ is strictly positive. 

Li et al (2005) also demonstrate the existence of the inverse of the Bullwhip Effect 

(BE), the Anti-Bullwhip Effect (ABE), whereby the variability in the order is less 

than the variability in the demand itself. They show via simulation that for any 

ARIMA (p, d, q) demand process, there exists a transition surface for parameter 

vectors ( , )Ρ Θ where the vectors ( , )Ρ Θ  are defined as:  

),...,,( 21 pP ρρρ= and ),...,,( 21 qθθθ=Θ . 

When the transition surface is reached, there is information invariance and the 

variability in orders is equal to the variability in the demand. The Bullwhip Effect is 
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observed on one side of this transition surface and the Anti-Bullwhip Effect on the 

other side. 

They show the following transition points for the three cases when i) d, q = 0, ii) p, d 

= 0 and iii) d = 0 & p = q. 

ARIMA (p, 0, 0): The transition point is 0i =ρ . ( [1, ])i p∈  

ARIMA (0, 0, q): The transition point is 0i =θ . ( [1, ])i q∈  

ARIMA (r, 0, r): The transition point is i i=ρ θ . ( [1, ])i r∈  

The literature on the Anti-Bullwhip phenomenon is very limited. There are only a 

few papers that discuss its occurrence and only one paper (Li et al, 2005) uses the 

term ABE. Apart from the above transition points for certain stationary models, there 

is no mathematical derivation of the transition surface for demand parameter 

vectors ( , )Ρ Θ that indicates when a decrease in demand variability will take place. 

Luong and Phien (2007) have shown that, in addition to the demand parameters, the 

definition of the Bullwhip Effect region also depends on the value of the lead time. 

With the help of simulation, they show values of the Bullwhip Effect for some 

parameter regions and lead time ranges for an AR (2) process (Luong and Phien, 

2007). 

As mentioned in section 1.3, this research focuses on reducing the amplification of 

demand variability. Thus, in the subsequent chapters, we restrict attention to the 

cases and parameter regions where the Bullwhip Effect takes place. As discussed in 

the literature review above, the parameter regions for the Bullwhip Effect have not 

been established for non-stationary processes (Li et al, 2005). In the simulation 

experiment, we generate five stationary and four non-stationary ARIMA processes 

(see sub-section 7.3.1). For the non-stationary processes used in the simulation, we 

simulate the stationary and invertible range, and then choose parameters exhibiting 

the Bullwhip Effect (see sub-section 7.3.9). 
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2.5. Conclusions 

In this chapter, we have given an overview of the literature on the Bullwhip Effect. 

The overview has been presented by classifying the literature into four streams: 

empirical evidence, causes, control and mathematical analysis. 

The first stream of papers provides empirical evidence of the presence of the 

Bullwhip Effect in various industries such as groceries, automotive, electronics, and 

toys. The evidence is of variable quality, but all the papers demonstrate the existence 

of the Bullwhip Effect.  

The proof of the existence of the Bullwhip Effect has led various authors to look into 

the causes of the phenomenon. Four causes of the Bullwhip Effect have been 

discussed by Lee et al (1997a). These are Demand Signal Processing, Rationing and 

Shortage Gaming, Batch Ordering and Price Fluctuations. We present an overview of 

these causes and also discuss various factors that may lead to these four causes.  

Identification of the causes of the Bullwhip Effect has helped the development of 

strategies to control the amplification in variability. A review of papers discussing 

how to control the effect has been presented. The papers in this stream of research 

have been classified on the basis of three control elements: Information Sharing, 

Channel Alignment and Operational Efficiency.  

The fourth stream of research, mathematical analysis of the Bullwhip Effect, is 

particularly relevant to this Ph.D. research. The analyses in these papers are not 

directly comparable, owing to differences in model assumptions. The supply chain 

models in these papers differ according to four major assumptions: demand process, 

inventory policy, forecasting method and bullwhip measure. We first consider the 

assumption of demand process and observe that nearly all papers consider a single 

demand process. Thus, the effect of the demand process on the Bullwhip Effect has 

not been analysed in the literature. In order to fill this gap, we examine nine ARIMA 

demand processes and discuss the effect of demand processes on the amplification of 

demand variance. This effect is also discussed in the empirical analysis where 19 

demand processes have been identified in the empirical data. We analyse 12 out of 

19 ARIMA processes where there are a sufficient number of time series (see section 
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9.4 for details). Secondly, the OUT inventory policy has been employed in nearly all 

the papers. As inventory policy is not the focus of this Ph.D., we also assume an 

OUT policy so as to be able to compare this research with other papers. In terms of 

forecasting methods, we observe that three forecasting methods have been used in 

the literature, SMA, SES and MMSE. We use all three methods in this research. In 

previous research, the analysis of the Bullwhip Effect is limited to an AR (1) process 

for non-optimal forecasting methods. Using simulation, we calculate the Bullwhip 

Effect for two non-optimal forecasting methods, SMA and SES, for nine ARIMA 

processes.   

Finally, we discuss the inverse of the bullwhip phenomenon called the Anti-Bullwhip 

Effect. The literature review shows that for some values of demand parameters and 

lead times, the variability of orders is less than the demand variability. In Chapter 1, 

we stated that one of the objectives of this research is to investigate the reduction of 

the amplification of variability. Thus, in simulation and empirical analysis, we 

restrict the focus to the parameter regions and values of lead times where the 

Bullwhip Effect takes place. 
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3. Supply Chain Model  

3.1. Introduction 

In the previous chapter, we presented a literature review on the Bullwhip Effect and 

the Anti-Bullwhip Effect. In this chapter, we will give a brief overview of the supply 

chain model used in this research. 

We consider a two level supply chain having one upstream member, e.g. a 

manufacturer, and one downstream member, e.g. a retailer.  The upstream and 

downstream members may be other than a manufacturer and a retailer, e.g. 

warehouse and distributor, but this does not affect the results. We consider the flow 

of a single product from the manufacturer to the retailer. The flow of orders and 

demand information is from the retailer to the manufacturer, as shown in Figure 3-1: 

 

Figure 3-1 Flows in the Supply Chain Model 

We assume that the replenishment lead times are fixed, known and strictly positive, 

denoted by l from the manufacturer to the retailer and L from the supplier to the 

manufacturer. Throughout this thesis, time is treated as a discrete variable. In the 

following sub-sections, we will discuss the demand process, forecasting methods, 

inventory policy and the ordering decisions made by the supply chain links in the 

model shown in Figure 3-1.  
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3.2. Demand Process 

We assume that the demand process at the retailer can be represented by a univariate 

ARIMA (p, d, q) model (Box et al, 1994). There are three major reasons for using the 

ARIMA representation of demand in this research. Firstly, evidence from the M1 and 

M3 forecasting competitions has shown the ARIMA methodology to be competitive 

in terms of forecast accuracy (Makridakis et al, 1982; Makridakis and Hibon, 2000) 

and, hence, provides support for the assumption of ARIMA processes. Secondly, as 

outlined in the research aims and objectives (see section 1.3), this research quantifies 

the value of information sharing in supply chains. Many papers (e.g. Graves, 1999; 

Raghunathan, 2001; Zhang, 2004b; Gilbert, 2005) have adopted univariate ARIMA 

models and claimed that there is no value in sharing demand information in supply 

chains. Thus, in order to undertake critical analysis of these papers, an ARIMA 

demand process is assumed. Thirdly, other papers (Chen et al, 2000a; Chen et al, 

2000b; Alwan et al, 2003; Zhang, 2004a) have analysed the value of sharing demand 

information using ARIMA models for non-optimal forecasting methods. But all these 

papers limit their analysis to an AR (1) demand process. Thus, on finding various 

gaps in the information sharing literature based on univariate ARIMA modelling, it is 

appropriate to resolve these issues before moving on to an alternative demand model, 

e.g. the state space representation. 

Supply chain modelling, based on the upstream translation of demand (discussed in 

detail in Chapter 4), shows that ARIMA demand at the retailer is translated into 

ARIMA demand at the manufacturer (Gilbert, 2005) if the retailer uses an OUT 

policy. Thus, if ARIMA demand at the retailer is estimated using an MMSE 

forecasting method, the order placed on the manufacturer will also follow an ARIMA 

process. We consider a single retailer – single manufacturer supply chain. Various 

papers have used a similar supply chain model, but for a single manufacturer – 

multiple retailer scenario. Simchi-Levi and Zhao (2003) and Cheng and Wu (2005) 

have modelled the cross-correlation of multiple demand streams by assuming an 

identical correlation coefficient between any two distinct demand streams. Zhang and 

Zhao (2004) used a similar supply chain model for a single manufacturer and all 

retailers, assuming a Vector Autoregressive (VAR (1)) demand process at the 
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retailers. Zhang (2006) has used a state space formulation to analyse multiple streams 

of demand in a similar supply chain model. 

Hamilton (1994) has shown that the sum of uncorrelated ARMA processes remains 

an ARMA process. It can easily be shown to be true for ARIMA processes. Now 

consider a supply chain having multiple retailers and a single manufacturer and 

assume that the demands at the retailers are uncorrelated ARIMA processes. 

According to the results on the upstream translation of demand, the retailer’s orders 

will also follow ARIMA processes. In this case, the sum of all the retailer’s orders, 

or the final order on the manufacturer, will also follow an ARIMA process if the 

retailers’ orders are uncorrelated. Thus, keeping the assumptions discussed above, 

the results of this doctoral research can be applied to a single manufacturer – 

multiple retailer supply chain model. However, further research is required to 

investigate correlated ARIMA processes. 

We assume that the time series of demand (dt), if stationary, can be represented by an 

ARMA (p, q) process given by: 

1 1 2 2 1 1 2 2... ...R R R

t t t p t p t t t q t qd d d dτ ρ ρ ρ ε θ ε θ ε θ ε− − − − − −= + + + + + − − − −             3-1 

where 1, ,...,t t t pd d d− −  are the observed demands at time periods t, t-1,…, t-p and all 

time periods are treated as distinct variables. τ  is a constant and τ >0, 

1 2, ,..., pρ ρ ρ are the autoregressive parameters, and 1 2, ,...,R R R

qθ θ θ  are the moving 

average parameters at the retailer. 1, ,...,t t t qε ε ε− − are the noise terms in the observed 

demands at time periods t, t-1, t-2, …, t-q. The noise terms are i.i.d. i.e. independent 

and identically distributed, with mean zero and constant variance εσ
2 . Rewriting 

equation 3-1 using the backshift operator, B, and dropping the constant term (τ ): 

( )( ) ( )R

t tB d Bρ θ ε=
                                                                                     3-2 

where:  

= − − − −

= − − − −

2

1 2

2

1 2

( ) 1 ...

( ) 1 ...

p

p

R R R R q

q

B B B B

B B B B

ρ ρ ρ ρ

θ θ θ θ
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We assume that the above demand is invertible, i.e. the roots of the following 

characteristic equation lie outside the unit circle. 

− − − − =2

1 21 ... 0R R R q

qx x xθ θ θ
                            3-3 

The assumption of invertibility is important here, as Gilbert (2005) has modelled an 

invertible demand process, whereas Gaur et al (2005) assumed non-invertibility. We 

argue that for any non-invertible representation of an ARMA (p, q) process, there 

exists an invertible representation of the process and vice versa. Thus, if a retailer 

uses a non-invertible ARMA (p, q) representation, they may instead use the 

invertible representation of the demand. Hamilton (1994) comments that, in order to 

calculate the noise terms associated with any time series, the current and past values 

of demands are required if an invertible representation is used. On the other hand, in 

order to calculate the noise terms for a non-invertible representation, the future 

values of demands are required. Thus, it is not feasible to use the non-invertible 

representation. 

We assume that the time series of demand (dt), if non-stationary, can be represented 

by an ARIMA (p, d, q) process given by: 

ρ θ ε∇ =( ) ( ) ( )d R

t tB d B
                             3-4 

where B∇ = −1 .   

Standard conditions for the stationarity and invertibility of the dth differenced series 

are assumed to apply (Box et al, 1994).  

3.3. Forecasting Methods 

In order to examine the effect of the forecasting method, we assume that the supply 

chain members employ three different methods to forecast the lead time demand: 

Minimum Mean Squared Error (MMSE), Simple Moving Averages (SMA) and 

Single Exponential Smoothing (SES). The MMSE forecast is the MSE-optimal 

forecasting method for a specified ARIMA demand process.  
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The inclusion of non-optimal forecasting methods in this research reflects practice in 

industry. Forecasting is seen as an increasingly critical organisational capability 

(Sanders and Manrodt, 2003) but relatively few studies have assessed the usage, 

familiarity and satisfaction of forecasting methods among practitioners. Table 3-1 

provides a summary of nine such surveys highlighting the methods that ranked first, 

according to these criteria. It shows that practitioners are more familiar, satisfied and 

more likely to use simpler forecasting methods compared to sophisticated 

quantitative methods. Thus, in the real world, a forecasting method is not always 

chosen on the basis of its optimality or accuracy but rather its simplicity and ease of 

use. 

 Year 
of 
Study 

Researcher(s) Familiarity 
(%) 

Satisfaction 
(%) 

Usage     
(%) 

1 2001 Klassen and Flores   27 (SMA) 

2 2000 Mady  67(SA)   40 (SA) 

3 1997 Sanders     32.9 (SMA) 

4 1995 Mentzer and Kahn 92 (SMA) 72 (SES) 92 (SES) 

5 1994 Sanders and Manrodt 96 (SMA) 45.8 (RA) 33.5 (SMA) 

6 1992 Sanders 96 (SLP)   37 (SMA) 

7 1987 Dalrymple     30.6 (Naïve) 

8 1984 Mentzer and Cox 85 (SMA) 67 (RA) 36 (RA) 

9 1984 Sparkes and McHugh   58 (SMA) 

 

Table 3-1 Use of Forecasting Methods in Industry – Survey Results 

Legend: 
SMA – Simple Moving Average     SES – Single Exponential Smoothing 
RA    – Regression Analysis   SLP – Single Line Projection 
SA    – Simple Average of all data 
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The practitioners’ choice of two non-optimal forecasting methods, SMA and SES, is 

quite rational (NB: SES is optimal only for an ARIMA (0, 1, 1) process and is a non-

optimal method for all other ARIMA demand processes). They are more intuitive, 

especially for those with a limited mathematical background (Boylan and Johnston, 

2003). Difficult and sophisticated, but optimal, methods are seen as not worth the 

added effort (Sanders and Mandrot, 1994). Johnston et al (1999) compared the 

forecasting accuracy of combinations of SMA, a non-optimal forecasting method, 

with SES, the optimal forecasting method for an ARIMA (0, 1, 1) demand process. 

They showed that the variance of the forecast error for the non-optimal method was 

typically less than 3% higher than the optimal method. 

The three forecasting methods are briefly discussed below: 

3.3.1.  Minimum Mean Squared Error (MMSE) Forecast 

This is the expectation of the lead time demand, based on the known current demand 

and is given by: 

+
=

= ∑
1

ˆ ( )
L

L

t t i t
i

D E D D                                                         3-5 

The MMSE forecast follows the Box-Jenkins Methodology where the model is 

identified, followed by demand parameter estimation. Once a model with required 

parameters is selected, the calculation of the above conditional expectation is quite 

straightforward. This will be further discussed in Chapter 7.  

 

 

 

 

 

 



M. Ali, 2008, Chapter 3  40 

 

3.3.2. Simple Moving Averages (SMA) 

The Simple Moving Average forecasting method is the arithmetic mean of the n most 

recent observations. Every forecasting period, the newest observation is included and 

the oldest is dropped out. Mathematically, 

−

+ −
=

 
= =  

 
∑

1

1
0

1ˆ ˆ
n

L

t t t i
i

D LD L d
n

                 3-6 

where, 

+1
ˆ
tD = forecast value for next period 

n   = number of terms in the Simple Moving Average. 

Empirical results from the subset of 111 series from the M1 competition show that 

statistically sophisticated or complex methods do not necessarily provide more 

accurate forecasts than simpler methods like SMA (Makridakis and Hibon, 1979). 

3.3.3. Single Exponential Smoothing (SES) 

In the Simple Moving Average method discussed above, the past observations are 

weighted equally; SES assigns exponentially decreasing weights as the observations 

get older. Single Exponential Smoothing performed very well in the M1 and M3 

competitions and its results in M1 were generally better than those of Simple Moving 

Averages (Makridakis et al, 1982). 

There are two ways in which an SES forecast can be expressed. The first approach is 

to assume that an infinite data history ( , , ,...1 2− −t t td d d ) is available. Then, the 

‘infinite representation’ of SES is as follows: 

α α
∞

+ −
=

= = −∑1

0

ˆ ˆ [ (1 ) ]L j

t t t j

j

D LD L d                                    3-7 

This can also be expressed recursively: 

α α+ = + −1
ˆ ˆ(1 )t t tD d D  
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+= 1
ˆ ˆL

t tD LD                     3-8           

where, 

+1
ˆ
tD is the forecast value for the next period, td   is the actual value of the observation 

in period t, α  is the smoothing constant and L is the lead time from the supplier to 

the manufacturer. (The same method applies for the retailer.) 

The second approach is to assume a finite data history ( , , ,...,t t td d d d− −1 2 0 ). Then the 

‘finite representation’ of SES is given by: 

( ) ( ) ( ) ( )α α α α α α α α
−

+ − −= + − + − + + − + −
2 1

1 1 2 1 0
ˆ [ 1 1 ... 1 1 ]

t tL

t t t tD L d d d d d       3-9 

Although the ‘infinite representation’ is more convenient for some mathematical 

derivations, the ‘finite representation’ is clearly more realistic. 

In the following table (Table 3-2), we summarise the forecasting methods employed 

in this research. 

Forecasting Method Mathematical Representation 

Minimum Mean Squared Error 
(MMSE)  +

=

= ∑
1

ˆ ( )
L

L

t t i t

i

D E D D  

Simple Moving Averages 
(SMA) 

−

+ −
=

 
= =  

 
∑

1

1
0

1ˆ ˆ
n

L

t t t i

i

D LD L d
n

 

Single Exponential Smoothing 
(SES) 

(Finite Representation) 

( ) ( )

( ) ( )

α α α α α

α α α

− − −

− −

= + − + − + +

− + −

2

1 2 3

2 1

1 0

ˆ [ 1 1 ...

1 1 ]

L

t t t t

t t

D L d d d

d d
 

Table 3-2 Supply Chain Model Forecasting Methods 

The choice of the two non-optimal forecasting methods is not comprehensive but 

reflects their popularity, as shown in Table 3-1. There is scope to extend this research 

by examining the other non-optimal forecasting methods highlighted in this table. 
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3.4. Inventory Policy 

We consider a periodic review inventory system where supply chain links review 

their inventory level every period. The links base their inventory replenishments on a 

simple order-up-to (OUT) policy.  Each link replenishes the demand during the last 

period plus the change being made in the order-up-to levels. 

We discussed in sub-section 2.3.4 that the assumption of an OUT policy is a 

common theme in nearly all the papers mathematically analysing the Bullwhip 

Effect. As the focus of this research is not to evaluate or compare inventory policies, 

we also assume an OUT inventory policy. This consistency with past papers will 

help facilitate critical analysis of the current literature. There is also some empirical 

evidence from Disney (2007) on the use of the OUT policy. As noted in sub-section 

2.3.4, he analysed the inventory policy of Tesco, a major UK retailer, and found that 

forms of OUT policy were being used in products accounting to 65% of the sales 

value.  

3.5. Ordering Decisions by the Retailer 

Demand (dt) is realised by the retailer, following an ARIMA (p, d, q) process given 

by equation 3-1 above. The retailer then forecasts its lead time demand and places an 

order Yt on the manufacturer. Now the order placed by the retailer on the 

manufacturer becomes the demand at the manufacturer: 

Yt = order placed by retailer on the manufacturer = demand at the manufacturer 

In an OUT inventory policy such an order would be calculated by: 

1( )t t t tY d S S −= + −                  3-10 

where -1 and t tS S  are the order up to levels for the periods t and t-1 respectively. 

These are calculated by: 

+ +

+ +
= =

= +∑ ∑
1 1

1 1

( ) ( )
L L

t t i t t i t
i i

S E d d k Var d d                 3-11 
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where 1 p
k

p h

−  
= Φ  + 

 for the standard normal distribution function Φ , p is the 

retailer’s shortage cost and h is the retailer’s holding cost. We assume the total lead 

time to be L+1, the replenishment lead time plus a review period, as recommended 

by Silver et al (1998). 

3.6. Ordering Decisions by the Manufacturer 

On realising its demand (Yt), the manufacturer now makes its lead-time forecast. 

Using the same inventory policy as the retailer, the manufacturer will then place an 

order Zt on its supplier. The sequence of events of ordering, receipt and shipment for 

the manufacturer are the same as assumed by Lee et al (2000:630). 

In this research, we will discuss various information sharing approaches that can be 

used by the manufacturer in making its lead-time forecast. These approaches are 

discussed in detail in Chapter 5.  

3.7. Performance Metrics 

In order to quantify the value of sharing demand information, we compare various 

performance metrics for the different approaches. In the following sub-sections, we 

briefly discuss these metrics. 

3.7.1. The Bullwhip Ratio 

One of the objectives of this thesis is to look at the amplification of variance 

upstream in supply chains, the Bullwhip Effect, and examine whether sharing 

demand information helps in reducing this variance. Thus, we quantify the Bullwhip 

Effect for each scenario in each stage. 

In Chapter 2 (Table 2-5), we listed various bullwhip measures used in the literature. 

In this research, the variance ratio or the Bullwhip Ratio is used to quantify the 

Bullwhip Effect. Mathematically, 

( )
Bullwhip Ratio = B=

( )

Var order

Var demand
                                    3-12 



M. Ali, 2008, Chapter 3  44 

 

We will use the ratio B, as most of the papers discussed in the literature overview 

(Table 2-5) adopt this as a measure of the Bullwhip Effect. Deriving an equation to 

calculate the Bullwhip Ratio for an ARIMA (p, d, q) process is mathematically very 

complex; therefore we compare this performance metric via simulation (discussed 

further in Chapter 7). 

3.7.2. Forecasting Accuracy 

Mean Squared Error (MSE) is used in this research to measure forecast error and to 

compare the results for each approach. Whereas the Bullwhip Ratio utilises the 

variance of orders and demands, it is quite natural to use MSE, as it incorporates the 

variance of the forecast error. Mathematically, 

( )2

1

1ˆ ˆ
n

MSE L L

t t t

t

f D D
n =

= −∑                                                                                         3-13 

where ˆ MSE

tf is the lead time mean squared error. 

The MSE approach has the disadvantage of heavily weighting outliers, as the errors 

are squared. In the simulation experiment (see Chapter 7), the theoretical demand is 

generated in a controlled environment and outliers are not expected. However, this is 

not necessarily the case when empirical data are addressed (see Chapter 9), where 

MSE may not prove to be a reliable measure of forecast error. Another problem with 

MSE is its scale dependency which does not allow comparison of the forecast error 

across multiple time series with different levels which may occur in the empirical 

data.  

Fildes (1992) and Armstrong and Fildes (1995) argue that no single forecast error 

measure will capture the necessary complexity of the error distribution (particularly 

for empirical data). Therefore, there is a need to examine more than one error 

measure. Further, they recommend using dimensionless error measures, i.e. those 

invariant to scalar transformations. In our empirical analysis, we also use the 

dimensionless Mean Absolute Percentage Error (MAPE) and compare the results of 

MSE with MAPE (see Chapter 9). 
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We use the following mathematical expression for MAPE. 

1

ˆ
1ˆ 100

L L
n

t tMAPE

t L
t t

D D
f

n D=

−
= ×∑                                    3-14 

where ˆ MAPE

tf is the lead time mean absolute percentage error. 

A disadvantage of MAPE is the problem of division by zero. This will not be a 

problem in the empirical analysis of this research as we cleaned the data and one of 

the criteria for selection of time series was no periods of zero demand.  

Many other forecast error measures have been proposed in the literature such as 

Mean Error (ME), Symmetric Mean Absolute Percentage Error (sMAPE) and Mean 

Absolute Scaled Error (MASE). Mean Error (ME) will only be helpful when there is 

a systematic error or bias in the forecast, which is not the focus of this research. In 

terms of percentage errors, sMAPE resolves the issue of division by zero introducing 

the division of the error by the average of the actual observation and the forecast. 

However, although sMAPE is symmetric in the interchange of forecasts and actuals, 

it is asymmetric in its treatment of positive and negative errors (Goodwin and 

Lawton, 1999). Another percentage error, MASE, is based on the in-sample mean 

absolute error from a benchmark forecast method such as the naïve method. A 

disadvantage of MASE is that the in-sample MAE may make MASE vulnerable to 

outliers in the historical time series (Kolassa and Schütz, 2007). This discussion 

shows that there is a potential of using more complex percentage error measures than 

MAPE but they are not without their problems. To satisfy the requirements of this 

research, MAPE is chosen as it is the simplest scale-independent measure.  

3.7.3. Inventory Holdings and Costs 

Boylan and Syntetos (2006) argue that if we fix the inventory rule, the inventory 

holdings and the inventory costs become accuracy-implication performance metrics 

for the forecasting process. Therefore, we quantify the benefits of sharing demand 

information by comparing the average inventory holdings and average inventory 

costs for various approaches (see Chapter 5) and assuming the OUT inventory policy 

in all cases. 
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3.7.3.1. Average Inventory Holdings  

The average inventory holdings can be approximated by the following equation (Lee 

et al, 2000, based on Silver and Peterson, 1985): 

1

1

( )
( )

2

L
t

t t t i

i

E Y
I T E Y

+

+
=

= − +∑ɶ                            3-15 

where ɶtI  is the approximate average inventory and  tT is the order up to level of the 

manufacturer. 

As this is an approximate equation, we simulate average inventory holdings and 

compare the average inventory holdings for different scenarios. 

Lee et al (2000) assumed an AR (1) demand process at the retailer and used equation 

3-15 to derive the following equation (3-16) for the relative decrease in inventory 

due to sharing demand information (see detailed discussion on the paper in sub-

section 5.3.1). They compare the inventory holdings for the No Information Sharing 

(NIS) approach, where supply chains do not share demand information, with 

Demand Information Sharing (DIS), where demand information is shared among the 

supply chain members. The relative decrease in the inventory holdings (∆I = (I-I’)/I) 

of DIS (average inventory I’) and NIS (average inventory I) is mathematically shown 

to be:  

V'
1-

V
I=

1
2k (1- ) V

τ
σ ρ

∆
+

                                        3-16 

where V’ and V are the variances of the lead time forecast in the case of DIS and 

NIS approaches respectively. ρ is the autocorrelation coefficient and σ is the standard 

deviation of the noise term in the AR (1) process, while k is the safety factor. 

Based on the above equation, the authors present the following results: i) ∆I is 

increasing in ρ, ii) ∆I is increasing in σ/τ and iii) ∆I is increasing in k. They also 

show that the percentage reduction in inventory is increasing in L, the lead time from 

the supplier to the manufacturer.  
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In this thesis we will also look at the impact of the four factors (demand parameters, 

noise in retailer’s demand, safety factor and lead time) on the percentage reduction in 

inventory and thus on the value of sharing demand information. 

3.7.3.2. Average Inventory Costs 

Lee et al (2000) derive an expression for the average inventory costs for the NIS and 

DIS approaches for an AR (1) demand process and show that: 

Inventory Cost (NIS) > Inventory Cost (DIS) 

Deriving an equation to calculate the average costs for an ARIMA (p, d, q) process is 

mathematically very complex; thus we compare this performance metric via 

simulation (discussed further in Chapter 7). 

In the simulation and empirical analysis, we simulate the inventory holdings and, 

based on this, subsequently calculate the inventory cost for each period. The 

inventory cost is then averaged across all the periods. This is further discussed in 

Chapter 7.  

3.8. Conclusions 

In Chapter 2, we discussed four major assumptions in the papers mathematically 

investigating the Bullwhip Effect: demand process, forecasting methods, inventory 

policy and performance metrics (bullwhip measures). In this chapter, we presented 

an overview of the supply chain model adopted in this research and discussed these 

four assumptions. 

The demand process in this research is modelled as an ARIMA (p, d, q) process. We 

argue that the existing literature of demand information sharing, assuming ARIMA 

models, has various problems and gaps. A stream of research papers, using restrictive 

assumptions, claims that there is no value in sharing demand information. Secondly, 

the mathematical analysis for non-optimal forecasting methods is limited to an AR 

(1) process. Finally, empirical evidence from the M1 and M3 competitions shows the 

competitive performance of the ARIMA methodology. Thus, it is appropriate to 

model the demand in terms of the ARIMA framework in this research.  
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Various papers assume only one demand process and thus the effect of the demand 

process on the value of demand information sharing has not been explored. In the 

simulation experiment conducted in this thesis, nine ARIMA (p, d, q) processes are 

assumed, enabling an investigation of the demand process dependent behaviour of 

the value of demand information sharing.  

In terms of forecasting methods, we assume MMSE, SMA and SES. The inclusion of 

non-optimal forecasting methods (SMA and SES) is based on the familiarity, use and 

satisfaction of these methods.  

The most restrictive assumption that is adopted in this thesis is the OUT inventory 

policy. An OUT inventory policy is a common theme in nearly all papers in this 

stream of research and thus consistency with them will facilitate critical analysis of 

the current literature. The aim and objectives, as given in Chapter 1, do not focus on 

the investigation of inventory policies. Therefore, looking at the effect of inventory 

policies on the value of demand information sharing has been left as a topic for 

further research. 

Finally, we present four performance metrics, namely Bullwhip Ratio, forecast error, 

inventory holdings and inventory costs, to be used in the research to quantify the 

value of information sharing. Forecast error is measured by Mean Squared Error 

(MSE) and Mean Absolute Percentage Error (MAPE). We compare these 

performance metrics for the different supply chain approaches discussed in Chapter 5 

and, based on the results, we assess the value of sharing demand information in 

supply chains. 
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4. Upstream Demand Translation 

4.1. Introduction 

Upstream demand translation is a term used to describe how a demand process at a 

supply chain member is mathematically translated to its upstream member. Studying 

the upstream translation of demand provides insights into the relationships between 

the order process and the original ARIMA demand process. The demand process at 

each stage contributes to the order process at the next stage of the chain, so upstream 

demand translation gives an entire depiction of the demand processes and their 

parameters.  

Upstream translation of demand is important in terms of recognising and evaluating 

the forecasting challenges faced by upstream nodes. By deriving mathematical 

relationships, various papers (e.g. Graves, 1999; Chen et al, 2000a; Hosoda and 

Disney, 2006) have analysed the Bullwhip Effect and the value of information 

sharing in supply chains.  

We first discuss upstream demand translation when supply chain links employ 

optimal forecasting methods. A method is said to be optimal if the forecasting 

method has minimum mean squared error (see section 3.3) and thus we also refer to 

an optimal forecast as an MMSE forecast in this thesis. In section 4.2, we present a 

literature review of papers discussing upstream demand translation using an ARIMA 

framework and an optimal forecasting method. Based on this framework, we discuss 

multi-stage demand translation. 

Next, we consider some non-optimal forecasting methods (see section 3.3 for details 

on the rationale for using non-optimal methods). Alwan et al (2003) is the only paper 

that considers upstream translation in the case of non-optimal forecasting methods. 

One of the limitations of their paper is the assumption of an AR (1) demand process. 

Secondly, their analysis is limited to two-echelon supply chains. Finally, when they 

discuss the upstream characterisation for SES, they assume that the supply chain 

links have an infinite data history.  
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In this chapter, we generalise upstream demand translation for non-optimal 

forecasting methods to ARMA (p, q) processes for a multi-stage supply chain. We 

assume a finite data history when we consider demand translation for the SES 

method as this ‘finite representation’ is a more realistic assumption than the 

alternative representation, which assumes an infinite data history.  

4.2. Optimal Forecasting Methods 

For optimal forecasting methods, we divide the literature review into stationary and 

non-stationary demand processes. 

4.2.1. Upstream Translation of Stationary Processes 

Various papers have analysed the mathematical relationship between demand and 

orders of a supply chain link using an optimal forecasting method. Lee et al (2000) is 

one of the first studies to examine the upstream translation of demand when an 

MMSE forecasting method is used by the supply chain members (see detailed 

discussion on the paper in sub-section 5.2.1). They assume that the demand at the 

retailer (downstream member) follows an AR (1) process and that the supply chain 

links employ an Order up to (OUT) inventory policy.  

The AR (1) demand process at the downstream member is:  

1t t td dτ ρ ε−= + +
                  4-1 

Lee et al (2000) show mathematically that this demand process will translate into the 

following demand process at the upstream member: 

ρ ρ ρ
τ ρ ε ε

ρ ρ

+ +

− −

− −
= + + −

− −

2 1

1 1

1 (1 )

1 1

L L

t t t tY Y                 4-2 

This is an ARMA (1, 1) process with L being the lead time from the upstream to the 

downstream member. The following figure illustrates the translation of demand 

processes, as shown by Lee el al (2000). 
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Figure 4-1 Demand Translation as shown by Lee et al (2000) 

Alwan et al (2003) and Hosoda and Disney (2006) consider a three echelon supply 

chain and make the same assumptions about the demand process and inventory 

policy. Alwan et al (2003) take a mathematical approach, while Hosoda and Disney 

(2006) adopt discrete control theory and simulation methodologies. Both papers, 

using these different methodologies, confirm the result of Lee et al (2000) that an AR 

(1) process will translate into an ARMA (1, 1) process. Moreover, both papers show 

that the orders placed further upstream in the supply chain will also follow an 

ARMA (1, 1) process. Thus, if the demand process at any supply chain member 

follows an ARMA (1, 1) process, the order placed by them will also follow the same 

process, as shown in the following figure: 

 

Figure 4-2 Multi-Stage Translation 

(Alwan et al, 2003; Hosoda and Disney, 2006) 
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The papers then look at the upstream translation of the constant term, the 

autoregressive and the moving average terms of the demand process. They show that 

the constant term and autoregressive parameters keep their original values when 

translated upstream. On the other hand, the values of the moving average parameters 

change at every upstream echelon and are functions of the autoregressive parameters 

and the lead times. This is shown in the following figure (Figure 4-3) for ARMA (1, 

1) processes at both supply chain links where Rθ and Mθ are the moving average 

parameters for the retailer and the manufacturer respectively, L is the lead time from 

the supplier to the manufacturer and Lρ means ρ  to the power of L. 

 

Figure 4-3 Upstream Translation of Demand Parameters for ARMA (1,1) 

(Alwan et al, 2003; Hosoda and Disney, 2006) 

Zhang (2004b) obtained general results on the upstream translation of demand for an 

ARMA (p, q) demand process. He showed the existence of an ARMA-In-ARMA-

Out (AIAO) property linking the demand processes between any two stages of the 

supply chain. According to the AIAO property, ARMA demands at any supply chain 

link generate ARMA orders for the subsequent upstream link, when the ordering 

decisions are based on an OUT inventory policy and an MMSE forecasting method.   

Suppose the ARMA (p, qR) demand process can be represented as: 

( )( ) ( )R

t tB d Bρ θ ε=
                 4-3 

τ  

τ  

Demand 
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at upstream 

member 

Demand 
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ρ  

ρ  

( )(1 ) /(1 )

( )(1 ) /(1 ) 1
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R L

ρ θ ρ ρ θ
θ

ρ θ ρ ρ
− − − +

=
− − − +
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where qR denotes the number of moving average terms in the ARMA process at the 

retailer. 

According to the AIAO property, the order generated from such a demand will 

follow an ARMA (p, q
M

) process represented by: 

=( )( ) ( )M

t tB Y B aρ θ
                   4-4 

where qM = max (p, qR-L) and 
ta is the noise term, at time t, in the manufacturer’s 

demand and t ta βε= . β is the factor by which all the noise parameters in the process 

increase and  
0

L

j

j=

=∑β ψ   where { }, , ,...ψ ψ ψ1 2 3 are weights in the Infinite Moving 

Average Representation 
0

ψ ε
∞

− −
=

=∑t t j t j

j

d and 
1

p
R

k j k j k

j

−
=

= −∑ψ ρ ψ θ . 

The upstream translation of demand for an ARMA (p, q) process is shown in the 

following figure: 

 

Figure 4-4 Upstream Demand Translation for ARMA (p, q) (Zhang, 2004b) 

The mathematical analysis by Zhang (2004b) agrees with the findings of Alwan et al 

(2003) and Hosoda and Disney (2006) that the constant term and the autoregressive 

parameter remain the same in the upstream members. Further, Zhang (2004b) 

generalises the upstream translation of the vector moving average parameter (Θ ) as 

shown in the following figure (Figure 4-5) where kδ is the factor by which the kth 
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moving average parameter of the manufacturer increases and is given by 

1

1

( )
k

j L k j L k

j

k

ρ ψ ψ

δ
β

−

+ − +
=

−

=
∑

 

 

Figure 4-5 Upstream Demand Translation of Moving Average Parameters 

(Zhang, 2004b) 

The AIAO property identified by Zhang (2004b) is based on the assumption that the 

demand process is invertible. Gaur et al (2005) extended this analysis by discussing 

the retailer’s order translation when the retailer’s demand follows a non-invertible 

ARMA (p, q) process. We argued in section 3.2 that it is not feasible to use the non-

invertible representation of ARMA (p, q) and the invertible representation should 

instead be used. Hence, for upstream demand translation of ARMA (p, q), we 

consider only the result of Zhang (2004b). 

4.2.2. Upstream Translation of Non-Stationary Processes 

Graves (1999) looked at the upstream translation of an ARIMA (0, 1, 1) process. He 

also assumed an OUT inventory policy. The forecasting method employed in the 

supply chain model is the Exponentially Weighted Moving Averages (EWMA) 

method which is the optimal method for an ARIMA (0, 1, 1) process. 
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The ARIMA (0, 1, 1) demand process is of the form: 

− −− = + −1 1

R

t t t td d τ ε θ ε
                  4-5 

Graves (1999) showed that the order generated from the above demand will also 

follow an ARIMA (0, 1, 1) demand process represented as: 

− −− = + −1 1

M

t t t tY Y a aτ θ
                  4-6 

where 1 1 θ ε= + −[ ( )]R

t ta L  and 
1

1 1[ ( )]

R
M

RL

θ
θ

θ

−
=

+ −
. 

Thus, if the demand process at a downstream member is an ARIMA (0, 1, 1) process, 

and the supply chain links utilise the optimal forecasting method and an OUT policy, 

the demand process at all upstream members will also be ARIMA (0, 1, 1). 

 

Figure 4-6 Multi-Stage Demand Translation for ARIMA (0, 1, 1) (Graves, 1999) 
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Gilbert (2005) obtained general results on demand translation in supply chains for an 

ARIMA (p, d, q) process. He showed that, if the demand process at the retailer 

follows an ARIMA (p, d, qR) process, then the order process to the manufacturer will 

be ARIMA (p, d, q
M

) where q
M

 = max (p+d, q
R
 -L) and L is the lead time from the 

manufacturer to the retailer. 

An ARIMA (p, d, qR) demand process can be represented as: 

∇ =( ) ( ) ( )d R

t tB d Bρ θ ε
                                                                         4-7 

or ϕ θ ε=( )( ) ( )R

t tB d B  

An alternative representation is: 

( )( )t td Bψ ε=  

So: 
( )

( )
( )

R
B

B
B

θ
ψ

ϕ
=  

We derive the equations to calculate { }1 2, ,..., Lψ ψ ψ  later in this sub-section. 

Gilbert (2005) showed that, on using the optimal forecasting method and an OUT 

policy, the demand process at the upstream link will be translated as: 

( ) ( ) ( )d M

t tB Y B aρ θ∇ =
                  4-8 

where t 1 2 and 1 ...t o o La K Kε ψ ψ ψ= = + + + +  

The coefficients of the moving average parameters 1 2, ,...,M M M

qθ θ θ can be expressed 

as:  
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1
1 1

2 1 1
2 2

                                                                                             

                                                                      

ψ
θ ϕ

ψ ϕψ
θ ϕ

+

+ +
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= +

−
= + +

M L

o

M L L
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1 1 2 2 1 1

        

.
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.

...                                   
ψ ϕψ ϕ ψ ϕ ψ

θ ϕ+ + − + − − +−
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q q
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We assume nine ARIMA (p, d, q) models in simulation (see sub-section 7.3.1). We 

now derive equations to calculate 1 2 3, ,ϕ ϕ ϕ and 1 2, ,..., Lψ ψ ψ  from the above general 

equations given by Gilbert (2005). We restrict the derivations to 1 2 3,  and ϕ ϕ ϕ  as it is 

shown in sub-section 7.3.1 that, based on the selection of models for the 

simulation, , 0 for n > 3n n =θ ϕ . 

( ) ( ) dB Bϕ ρ= ∇  

where 2

1 21ϕ ϕ ϕ= − − −( ) ...B B B  

Based on the above, we can derive the following equations for 1 2,ϕ ϕ and 3ϕ : 

1 1

2 2 1

                                                                                                                 4-9

( 1)
                                                            

2

d

d d
d

ϕ ρ

ϕ ρ ρ

= +

−
= − −

1
3 3 2

                              4-10

( 1) ( 1)( 2)
                                                           4-11

2 6

d d d d d
d

ρ
ϕ ρ ρ

− − −
= − + +
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Since
( )

( )
( )

R B
B

B

θ
ψ

ϕ
=

1 1 1

2 2 1 1 2

                                                                                                           4-12

                                                                  

R

R

ψ ϕ θ

ψ ϕ ψ ϕ θ

= −

= + −

3 3 1 2 2 1 3

4 1 3 2 2 3 1

5 2 3 3 2 4 1

3 3 2 2

                             4-13

                                                                                    4-14

.

.

.

R

L L L L

and

ψ ϕ ψ ϕ ψ ϕ θ

ψ ψ ϕ ψ ϕ ψ ϕ

ψ ψ ϕ ψ ϕ ψ ϕ

ψ ψ ϕ ψ ϕ ψ− − −

= + + −

= + +

= + +

= + + 1 1                                                                                  4-15ϕ

   

See proof of Equations 4-9 – 4-15 in Appendix 4A. 

We present the following figure (Figure 4-7) to show the links between the research 

papers on the upstream translation of demand in the case of an optimal forecasting 

method. 
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Figure 4-7 Upstream Demand Translation (Optimal Forecasting Method) 

4.2.3. Multi-Stage Demand Translation 

Based on the result of Gilbert (2005), we now present the following figure (Figure 4-

8) to show the demand translation in a multi-stage supply chain for an ARIMA (p, d, 

q) process at the most downstream link. 
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Figure 4-8 Multi-Stage Demand Translation for ARIMA (p, d, q) 
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cumulative lead time from that link to the consumer. It also shows that if 
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process. If q ≤ L, then max (p + d, q –L) = 0. In this case the demand process 

ARIMA (0, 0, q) at the retailer will translate into an order process ARIMA (0, 0, 0) 

or a random process at the manufacturer. As we assume qR ≤ L in the experiment 

(with one exception: q
R
=2, L=1(see Chapter 7)), the MA (q) process in the 

simulation translates into a random process. The multi-stage translation for an MA 

(q) demand process is shown in the following figure (Figure 4-9): 

Figure 4-9 Multi-Stage Demand Translation for MA (q) 

This is an important corollary of Gilbert (2005), as sharing demand information 

using the DIS approach (as advocated in the literature; see section 5.2) will not be 

valuable when q ≤ L for MA (q) demand processes. 
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4.3. Non-Optimal Forecasting Methods 

Various papers (e.g. Chen et al, 2000a; Chen et al, 2000b; Zhang, 2004a; 

Stamatopoulos et al, 2006) have discussed the effect of non-optimal forecasting 

methods on upstream demand propagation. All these papers restrict their analysis to 

the effect of forecasting methods on order variability. Although they derive 

expressions for the demand process at the upstream member, they do not represent 

them in the form of an ARMA model. 

Chen et al (2000a) examined the ratio of upstream to downstream demand variance, 

or the Bullwhip Ratio, when the demand pattern at a retailer follows an AR (1) 

process. They showed that when the retailer uses a Simple Moving Average method 

to forecast their lead time demand there is an increase in variability. This increase in 

variability is a function of three parameters: the number of historical terms (n) used 

in the Simple Moving Average, the lead time (L), and the autoregressive parameter 

( ρ ).  

Chen et al (2000b) performed a similar analysis on an AR (1) demand process based 

on Single Exponential Smoothing. They concluded that the increase in variability is 

an increasing function of α, the smoothing parameter, an increasing function of L, the 

lead time, and a decreasing function of ρ , the autoregressive parameter.  

Zhang (2004a) compared the Bullwhip Effect for an AR (1) demand process for 

SMA, SES and an MMSE optimal forecasting method. He showed that the MMSE 

forecasting method results in lowest variability and lowest inventory. 

Using an AR (1) demand process, Stamatopoulos et al (2006) argued that previous 

studies have only incorporated SES with a fixed smoothing constant. They compare 

the increase in variability when a best exponential smoothing method is chosen. A 

‘best’ exponential smoothing method is one that minimises the mean square error. 

They show that this method results in lower variability than SES (fixed smoothing 

constant) and SMA, and thus can be used as an alternative to an MMSE forecasting 

method. 

Alwan et al (2003), in addition to comparing the Bullwhip Effect for different 

forecasting methods, also examined demand propagation for an AR (1) demand 
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process in the case of non-optimal forecasting methods. They employ two non-

optimal forecasting methods, SMA and SES, and study the upstream translation of 

demand when these two methods are used by the supply chain links.  

They assume an AR (1) process as shown in equation 4-1. First, they look at the 

upstream demand translation when the supply chain links use the SMA method as 

given by equation 3-6 (see section 3.3). They mathematically show that if the 

downstream member employs the SMA of the n most recent demands, an AR (1) 

process will translate into an ARMA (1, n) process at the upstream member given by: 

1

M

t t t t nY Y a aτ ρ θ− −= + + −
                           4-16 

where θ =
+

M L

L n
and ε=

+t t

L
a

L n
 

Alwan et al (2003) then look at upstream demand translation when the supply chain 

links use the SES forecasting method. They assume that an infinite data history 

( , , ,...t t td d d− −1 2 ) is available at the retailer. In this case, the retailer can use the 

‘infinite representation’ of SES: 

α α
∞

+ −
=

= −∑1
0

ˆ (1 ) jt t j
j

D d       

They show that an AR (1) process at the retailer (equation 4-1) will translate into an 

ARMA (1, ∞ ) process: 

τ ρ θ
∞

− −
=

= + + −∑1

1

M

t t t j t j

j

Y Y a a                            4-17 

where 
−−

=
+

2 1(1 )

1

j
M

j

L

L

α α
θ

α
and = +( 1)t ta Lα ε  

The upstream translation of demand in the case of non-optimal forecasting methods 

as discussed in Alwan et al (2003) is shown in the following figure (Figure 4-10). 
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Figure 4-10 Upstream Translation for Non-Optimal Methods 

 (Alwan et al, 2003) 

Alwan et al (2003) is an important paper as it is the only one that discusses the 

upstream translation of demand when non-optimal forecasting methods are used. 

Secondly, this paper has also shown that upstream demand translation depends on the 

forecasting method used by the supply chain links. One of the limitations of the 

paper is that it only considers the upstream translation of an AR (1) demand process. 

Secondly, their analysis is limited to two echelon supply chains. Another limitation 

of Alwan et al (2003) is the assumption of the availability of an infinite data history 

at the retailer. 

We generalise the results of Alwan et al (2003) for an ARMA (p, q) process. Thus, in 

the next section, we present a complete picture of upstream translation for an ARMA 

(p, q) process for multi-stage supply chains using two non-optimal forecasting 

methods. When we analyse upstream translation for SES, we consider the availability 

of a finite data history at the supply chain links. 
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4.4. Upstream Translation for an ARMA (p, q) Process 

In sub-section 4.4.1, we analyse the upstream demand translation when the supply 

chain links utilise the SMA forecasting method. Then, in sub-section 4.4.2, we 

present the analysis for the case of SES. 

4.4.1. Upstream Propagation for Simple Moving Averages 

When a Simple Moving Average method is used to forecast the lead time demand for 

an ARMA (p, qR) demand process (see equation 4-7) at the downstream member, the 

order to the upstream member follows an ARMA (p, n + q
R
) process given by the 

following: 

t

M

t aBYB )()( θρ =                             4-18 

where ( )M Bθ  is the moving average operator for the manufacturer, of the 

order = +M Rq n q , and 1
 

= + 
 

t t

L
a

n
ε . 

The proof is given in Appendix 4B. 

The following figure illustrates the ARMA (p, q) upstream translation when the 

downstream link employs the SMA method. 

 

Figure 4-11 Upstream Demand Translation for SMA 
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4.4.2. Upstream Propagation for Single Exponential Smoothing  

Alwan et al (2003) showed that when SES is employed on an AR (1) process, it 

propagates into an ARMA (1, ∞) process. This result was based on an infinite 

representation of SES. In real world applications, it is not possible to have a time 

series with an infinite data history. In this sub-section, using a finite representation of 

SES, as in equation 3-9, we generalise the results for an ARMA (p, q) demand 

process.  

When the Single Exponential Smoothing forecasting method is used to forecast the 

lead time demand for an ARMA (p, qR) demand process (equation 4-7) at the 

downstream member, the order on the upstream member approximately follows an 

ARMA (p,  t – 1) process: 

t

M

t aBYB )()( θρ =                             4-19 

where ( )M Bθ  is the moving average operator for the manufacturer and is of the 

order = −1Mq t , and t is the current time period. 

The approximation is due to the presence of an extra term on the right hand side. For 

an ARMA (p, q) process, this extra term is: 

− −

=

− − + −∑1

1 0 0

2

[ (1 ) ( ) (1 ) ]
p

t t i

i

i

L d d dα α α α ρ . It is obvious from the expression that, 

for 0 < α < 2, this extra term will tend to zero as t tends to infinity. 

The proof of the approximate equation 4-19 is given in Appendix 4C. 

The following figure illustrates the upstream ARMA (p,  q) demand translation when 

the downstream link employs SES. 
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Figure 4-12 Upstream Demand Translation for SES 

4.4.2.1. Infinite Representation of SES 

Alwan et al (2003) have used an infinite representation of SES for an AR (1) retailer 

model, assuming that an infinite data history is available. If we let t tend to infinity in 

expression 4-19 for an AR (1) demand process, it propagates into an ARMA (1,∞ ) 

process, with no extra term, which is the result of Alwan et al (2003). Thus, the result 

of Alwan et al (2003) is compatible and a special case of the result in sub-section 

4.4.2 above. 

4.4.3. Multi-Stage Propagation for Non-Optimal Methods 

If there are m stages in a supply chain and all links use the n most recent historical 

demands to forecast using SMA and SES forecasting methods, the demand 

propagation is as shown in the following figures (Figures 4-13 and 4-14). 
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Figure 4-13 Multi-Stage Upstream Demand Translation for SMA 

 

Figure 4-14  Approximate Multi-Stage Upstream Demand Translation for 

SES 

We showed in sub-section 4.4.2 that when the supply chain links employ a SES 

forecasting method, the upstream translation into an ARMA process is an 
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approximation. Therefore, the multi-stage upstream translation is also of an 

approximate nature. This approximation may become less accurate along the supply 

chain, because each link introduces another term. 

4.5. Conclusions 

In this chapter, we discussed the upstream demand translation of supply chains for 

optimal and non-optimal forecasting methods. Upstream demand translation shows 

the relationship between the demand and the order process at any supply chain link. 

The mathematical relationships established in the literature have provided insights 

into the progression of ARIMA processes through the supply chain. Many authors 

have quantified the Bullwhip Effect and the value of information sharing based on 

these relationships.  

Much progress has been made in the literature on upstream demand translation for a 

two stage supply chain. Although the upstream translation for ARIMA (p, d, q) has 

been established for an optimal forecasting method, the case of non-optimal 

forecasting methods is limited to an AR (1) demand process.  

In the case of an optimal forecasting method, Gilbert (2005) has presented the 

upstream demand translation for an ARIMA (p, d, q) process. We derive various 

equations (equations 4.9 – 4.15) from his mathematical results which we use in the 

simulation and empirical analysis. We specifically discuss demand translation for an 

MA (q) process where q ≤ L and L is the lead time; it translates into a random 

process and thus there will be no value of sharing demand information using DIS, a 

demand information sharing approach used in the literature to be discussed in 

Chapter 5. 

For non-optimal forecasting methods, we analyse upstream demand translation for an 

ARMA (p, q) process. We show that an ARMA (p, q
R
) will translate into ARMA (p, 

qR + n) when SMA is employed and into ARMA (p, t-1) approximately when SES is 

employed, where n is the number of terms in SMA and t is the current time period.  

Finally, we move the focus to the discussions of multi-stage upstream demand 

translation. None of the papers has explored multi-stage demand translation for non-
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optimal forecasting methods. In this chapter, we extended the analysis for upstream 

demand translation to ARMA (p, q) processes to non-optimal forecasting methods. 

Results have been established for multi-stage upstream translation for ARMA 

demands in the case of SMA and SES forecasting methods.  
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5. Demand Information Sharing Approaches 

5.1. Introduction 

The coordination of decisions among supply chain members is critical to the 

performance of supply chains. Coordination may be facilitated by some form of 

information sharing. Many papers can be found in the literature that explore the 

sharing of demand information in supply chains. As discussed in Chapter 3, we use 

an ARIMA methodology to represent demand in this research. Thus, in this chapter, 

we present a literature review of papers discussing sharing of demand information 

using the ARIMA framework. These papers can be divided into two streams: Sharing 

Demand Information and Downstream Demand Inference. 

The stream of papers analysing sharing demand information presents two supply 

chain strategies. The first strategy is not to share the downstream demand 

information. In such a strategy, the upstream members base their forecasts on the 

orders received from downstream members and do not require a formal information 

sharing mechanism. This is termed a No Information Sharing (NIS) approach in the 

literature. On the other hand, if a supply chain adopts a strategy of sharing demand 

information with the help of a formal information sharing mechanism, their forecasts 

are based on the downstream demand information. Two approaches, Demand 

Information Sharing (DIS) and Vendor Managed Inventory (VMI), have been 

analysed in the literature for such a strategy. 

Another stream of papers claims that, even in the absence of a formal information 

sharing mechanism, the upstream member can mathematically deduce the 

downstream demand information. This approach has been termed as Downstream 

Demand Inference (DDI), where the forecasts by the upstream members are based on 

the inferred downstream demand.  

In this chapter, we present a critical review of these streams of research and analyse 

the approaches discussed in the literature. Based on this analysis, we present two new 

approaches, No Information Sharing –Estimation (NIS-Est) and Centralised Demand 
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Information Sharing (CDIS). We argue that these two new approaches should 

improve the existing approaches found in the literature.  

5.2. Current Approaches of Sharing Downstream Demand  

The papers discussed in this section argue that it is beneficial for the upstream 

member to know or deduce the demand at the downstream member and to use it in 

their forecasts. We discuss the two streams as introduced in section 5.1 in the 

following sub-sections. 

5.2.1. Sharing Demand Information Approaches 

Several papers (e.g. Chen et al, 2000a; Lee et al, 2000; Yu et al, 2002; Raghunathan, 

2003; Cheng and Wu, 2005; Hosoda et al, 2008) quantify the value of sharing 

demand information by comparing various performance metrics (e.g. inventory 

holdings, inventory costs) resulting from the adoption of the two strategies discussed 

in section 5.1.  

Lee et al (2000) showed the value of sharing demand information in a two-echelon 

supply chain, comprising a retailer and a manufacturer. An AR (1) demand process is 

assumed at the retailer: 

1t t td dτ ρ ε−= + +
                   5-1 

where the notation is unchanged from previous chapters. 

For simplicity of exposition in this chapter, the constant term (τ ) will be dropped. 

This does not affect any of the arguments or conclusions presented. 

The supply chain model consists of a periodic review system where each site reviews 

its inventory level and places orders on the upstream link, if required, every period. 

The inventory policy used is the order up to level (OUT) policy. The study by Lee et 

al (2000) assumes that the manufacturer is aware that the retailer’s demand follows 

an AR(1) process and is also aware of the parameters τ  and ρ. It is supposed that the 

manufacturer retrieves this information from the retailer through periodic discussions 

or alternatively through the historic demand data.  
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On observing the AR (1) demand process, the retailer uses a Minimum Mean 

Squared Error (MMSE) method to forecast their lead time demand. Based on this 

forecast, they place an order on the manufacturer; the order process can be expressed 

as: 

2 1

1 1

1 (1 )

1 1

l l

t t t tY Y
ρ ρ ρ

ρ ε ε
ρ ρ

+ +

− −

− −
= + −

− −
              5-2 

where the notation is defined in Chapter 3. 

The order placed by the retailer is the demand of the manufacturer. Based on this 

demand, the manufacturer will make its forecast. The equation for the lead time 

forecast derived by the authors is: 

1 1
1 1 (1 )ˆ  

1 1

L l
L

t t tY Y
ρ ρ

ρ ε
ρ ρ

+ +
+  − −
= − − − 

                              5-3 

They first assume that the supply chain adopts a strategy of not sharing the demand 

information. For such a strategy, the authors introduce a No Information Sharing 

(NIS) approach whereby the manufacturer remains unaware of the demand (dt) at the 

retailer. The manufacturer makes its lead time forecast only on the basis of the order 

Yt received from the retailer. Thus, although 
tε  has been realised, it is unknown to 

the manufacturer and thus they assume its value to be zero. The manufacturer’s 

forecast for the NIS approach will become: 

[ ]
1

1 1ˆ  
1

L
L

t tY Y
ρ

ρ
ρ

+
+ −
=

−
                  5-4 

They calculate the inventory holdings and the inventory cost based on the above 

approach using equation 3-15. 

Then the authors suppose that the supply chain members adopt the strategy of 

sharing the demand information. In this case, a Demand Information Sharing (DIS) 

approach has been presented where the retailer now shares its demand (dt) with the 

manufacturer. The manufacturer, in this case, is now aware of the value of 
tε  and 

thus can utilise equation 5-3 to forecast their lead time demand. Inventory holdings 
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and inventory costs are again calculated for this approach using the same 

methodology as for the NIS approach.  

With the help of mathematical analysis and simulation, Lee et al (2000) compare the 

inventory holdings and inventory costs for the two approaches.  Their simulation 

results show that, under certain conditions, the manufacturer can achieve a 42% 

reduction in inventory cost.  

Although the supply chain model by Lee et al (2000) is quite simple: single retailer – 

single manufacturer, several papers show similar results for more complex models.  

Raghunathan (2003) and Cheng and Wu (2005) extend the above supply chain model 

to a multi retailer-single manufacturer case and generalise the results of Lee et al 

(2000) to the extended model. Cheng and Wu (2005) assume that the demands 

among the retailers are uncorrelated, while Raghunathan (2003) assumes that the 

demands among the different retailers are correlated. Both assume that the demands 

at different retailers share the same autocorrelation. The studies mathematically show 

that the manufacturer benefits in terms of inventory holdings when they share and 

utilise the retailers’ demand in their forecasts.  

The above studies assume that there is no unit ordering cost involved. Yu et al (2002) 

extended the model of Lee et al (2000) by introducing a unit ordering cost. They 

used a different cost minimisation model to calculate the inventory safety factor (k), 

based on the unit ordering cost (c) and a discount factor (β): 

1 (1 ) /β β−  − −
= Φ  + 

Lp c
k

p h
                           5-5 

where the discount factor β embodies the manufacturer’s time preference for money. 

As the unit cost is the same in both NIS and DIS, the introduction of the unit cost 

does not change the results of Lee et al (2000). Secondly, Yu et al (2002) also 

compare the two approaches of Lee et al (2000) with a Vendor Managed Inventory 

(VMI) approach. In this approach, the forecasts are the same but the retailer’s 

inventory replenishment decisions are made by the manufacturer. However, they did 

not find any inventory costs savings when they compared DIS with a VMI approach. 

Thus, the value of sharing demand information does not depend on which member 
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makes the replenishment decision. The reason that DIS yields lower inventory cost at 

the manufacturer than NIS is the use of less variable demand in their forecasts. As 

Yu et al (2002) assume sharing of demand information in both DIS and VMI, both 

give the same inventory cost. This agrees with Cheng and Wu (2005) who also 

include VMI in their analysis and find the same result. Thus, the above papers show 

that the main conclusion of Lee et al (2000), namely lower inventory cost by using 

the DIS approach, can also be applied to a multi retailer-single manufacturer supply 

chain and also to a supply chain when taking unit cost into account, and applying a 

discount factor. 

In order to test whether the results can be extended to a multi-echelon supply chain, 

Wu and Cheng (2003) mathematically analysed the same model as Lee et al (2000) 

but for a three level supply chain: Retailer-Distributor-Manufacturer. The authors 

also suppose that the supply chain adopts two approaches, NIS and DIS. They 

conclude that the results of Lee et al (2000) can be extended to a three echelon 

supply chain.  

The results in the above papers are based on mathematical and simulation analysis. 

Hosoda et al (2008) consider real data and investigate the benefit of sharing demand 

information in a soft drink supply chain. They consider three products and compare 

the standard deviation of the prediction errors (SDPE) for the two approaches, NIS 

and DIS. They conclude that sharing demand information results in better forecast 

accuracy for the manufacturer. Their numerical analysis, based on the data history of 

three products, shows that the manufacturer can reduce SDPE by 8 – 19% (a detailed 

critique of the paper is presented in Chapter 8). 

5.2.1.1. Discussion on NIS, DIS and VMI Approaches 

The previous sub-section noted that various authors have extended the model of Lee 

et al (2000) by relaxing assumptions. All the papers show that their conclusions 

regarding the value of demand information sharing are also applicable to more 

complex supply chain models. The extensions of the Lee et al (2000) model are 

summarised in the following figure: 
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Figure 5-1 Extensions of Lee et al (2000) Model 

The above figure shows that the supply chain model by Lee et al (2000), with 

somewhat restrictive assumptions, provided a basis for extended analysis by 

relaxation of assumptions. The papers in Figure 5-1 analysed the value of demand 

information sharing by considering three approaches: NIS, DIS and VMI. VMI and 

DIS share the same forecasting methodology and so there is no difference in the 

performance metrics of the two approaches in terms of inventory holdings and 

inventory costs. Thus, comparing inventory of either of them with NIS will quantify 

the value of demand information sharing. The replenishment policy in VMI is 

different from both NIS and DIS. As we do not focus on the effect of replenishment 

policies, we include only NIS and DIS in this research.   

For a supply chain to adopt a strategy of not sharing demand information, we find 

that an NIS approach has been presented in the literature. In this approach, there is no 

sharing of demand information among the supply chain members. Instead, the supply 

chain members base their forecasts on the orders received from the downstream link. 

Although the demand is realised at the retailer, the upstream member is unaware of 

this demand and assumes the value of noise in the retailer’s demand to be zero. 

On the other hand, when the supply chain adopts a strategy of sharing demand, a DIS 

approach has been presented where the downstream member shares its demand 
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information with the upstream member through some formal information sharing 

mechanism. The upstream member, in this case, is aware of the downstream 

member’s demands. Thus, on making their lead time forecast, they utilise the shared 

value of the noise in the retailer’s demand. 

5.2.2. Downstream Demand Inference  

We discussed in the previous sub-section that savings in inventory costs can be 

obtained if an upstream member utilises the downstream demand in their forecasts. 

In order to do so, the papers in the previous sub-section argue that the downstream 

member will have to share its demand information with the upstream member.  

In Chapter 4, we discussed upstream demand translation, which shows that the 

demand and order processes of any supply chain member are linked by a 

mathematical relationship. Based on this upstream translation of demand, and using 

strict model assumptions, various authors (Graves, 1999; Raghunathan, 2001; Li et 

al, 2003; Zhang, 2004b, Gilbert, 2005; Hosoda and Disney, 2006) maintain that the 

inverse translation is also possible when an MMSE forecasting method is employed. 

The upstream member can infer the demand present at the downstream member, 

owing to the existence of mathematically tractable relationships. Thus, these papers 

present another approach which we term ‘Downstream Demand Inference’ (DDI). 

In the DDI approach, the downstream member does not share its demand information 

with the upstream member. Instead, the upstream member tries to infer the retailer’s 

demand by utilising mathematical equations. These mathematical equations have 

been presented in chapter 4 (see equations 4-8 – 4-15). The equations reveal that, 

under certain assumptions, the orders at the upstream member contain complete 

information on the downstream member’s demands. Hence, under these assumptions, 

the manufacturer may exploit their orders to infer the actual consumer demand.  

Various authors have shown that, in certain circumstances, the manufacturer can 

infer the actual consumer demand by the orders received. Raghunathan (2001), using 

an AR (1) demand process at the retailer, has shown that the retailer’s order history 

to the manufacturer already contains information about the demand at the retailer. 

Therefore, the manufacturer can deduce the actual demand at the retailer by using the 
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order history if they are aware of the retailer’s demand process and its parameters. 

Thus, the author concludes that DIS is of no value to the manufacturer.  

Graves (1999) modelled an ARIMA (0, 1, 1) demand process and concluded that 

there is no benefit from providing the upstream stage with the actual demand values, 

if the upstream member is aware of the demand process and parameters at the 

downstream member.  

Hosoda and Disney (2006) have found the same results by using AR (1) and ARMA 

(1, 1) demand processes at the downstream member. Their study also concludes that, 

as the ordering process from the retailer to the manufacturer already contains 

complete market demand information, there is no benefit of DIS in terms of forecast 

accuracy. 

Zhang (2004b) has generalised the above conclusions for an ARMA (p, q) process, 

while Li et al (2003) and Gilbert (2005) generalised further for an ARIMA (p, d, q) 

process. All three studies argue that the manufacturer can infer the demand at the 

retailer without requiring the demand information from the retailer.  

5.2.2.1. Discussion on the DDI Approach 

In the previous sub-section, we reviewed the literature on another demand sharing 

approach: Downstream Demand Inference. This approach is based on the fact that 

under certain assumptions, the orders at any supply chain member contain complete 

information on the demands.  The upstream supply chain member can thus exploit 

their orders to infer the downstream demand. We present the following figure (Figure 

5-2) to summarise the links between papers discussing the DDI approach. 
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Figure 5-2 Papers Discussing the DDI Approach 

We observe that inferring the demand at the downstream link, or Downstream 

Demand Inference (DDI), is sensitive to the model assumptions. This has also been 

acknowledged in other studies. For example, Raghunathan (2001) suggests that 

information sharing has no value only if both the supply chain members are aware of 

the demand process at the downstream link. Similarly, Graves (1999) acknowledged 

that DIS is valuable if the upstream stage is not aware of the demand parameters of 

the customer demand process.  

Thus, the claim about no value in sharing demand information in the above papers 

(Graves, 1999; Raghunathan, 2001; Li et al, 2003; Zhang, 2004b; Gilbert, 2005; 

Hosoda and Disney, 2006) is dependent on the assumption that the manufacturer is 

aware of the process and the parameters of the retailer’s demand.  

We discussed in chapter 1 that, in this research, we relax many assumptions in the 

supply chain model to bring this work closer to reality. We show in Chapter 6, by 
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relaxing some assumptions, that Downstream Demand Inference (DDI) is not 

feasible. Therefore, in the simulation and empirical analysis of this research, we do 

not consider the DDI approach.  

5.3. New Approaches  

In section 5.2, we discussed various approaches that have been adopted in previous 

research on the value of sharing demand information. Two of the approaches 

discussed above, NIS and DIS, will be adopted in this research (see sub-section 

5.2.1.1 for reasons for selection of these approaches).  

We observe that the value of demand information sharing has been quantified in the 

literature by comparing the performance metrics of the NIS and DIS approaches. In 

this research, we argue that these two approaches can be further improved. Thus, we 

present two new approaches of sharing demand information. One is based on 

improving NIS; the other is based on improving DIS. These new approaches are 

discussed in the following sub-sections.  

5.3.1. No Information Sharing – Estimation (NIS-Est) 

Before introducing the NIS-Est approach, the NIS approach will be explained with 

the help of two demand process as examples. In the NIS approach, as discussed in 

the literature, the manufacturer assumes the value of the retailer’s noise to be zero, as 

it is not being shared.  

For example, consider an AR (1) process at the retailer. Lee et al (2000) have shown 

that such a demand process at the retailer will be translated to the following demand 

process at the manufacturer (see section 5.2).  

2 1

1 1

1 (1 )

1 1

l l

t t t t
Y Y

ρ ρ ρ
ρ ε ε

ρ ρ

+ +

− −

− −
= + −

− −
              5-6 

In section 5.2, we also discussed that the equation for the lead time forecast by the 

manufacturer for the above demand process will be: 
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1 1
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In the NIS approach, the value of the noise term ( tε ) is assumed as zero by the 

manufacturer. Thus, using a NIS approach, the manufacturer’s forecast will become 
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The manufacturer’s forecast in the NIS approach is based only on the previous order 

and autoregressive coefficient and not on the noise term as shown in equation 5-8. 

For any AR (p) process, the manufacturer’s forecast using the NIS approach will be 

based on the last p orders and the autoregressive coefficients only, while the noise 

terms will be assumed to be zero. 

Now we consider the following MA (3) process: 

t t t t td τ ε θ ε θ ε θ ε− − −= + − − −1 1 2 2 3 3                  5-9 

Using the upstream demand translation formula by Gilbert (2005), as discussed in 

sub-section 4.2.2, such a demand process at the retailer will be translated to the 

following demand process at the manufacturer for a lead time of unity:  

( )t t t tY τ θ ε θ ε θ ε− −= + − − −1 2 1 3 21                5-10 

In the literature the NIS approach has been presented only for an AR (1) process as 

discussed in section 5.2. If the NIS approach is applied to the above MA (3) process, 

the values of the noise terms will be assumed to be zero by the manufacturer. Thus, 

using a NIS approach, the manufacturer’s forecast will simply be the mean of the 

process as shown in the following equation. 

τ=+1ˆ L

tY                   5-11 

For any MA (q) process, the manufacturer’s forecast using the NIS approach will be 

the mean of the process only while the noise terms in the retailer will be assumed to 

be zero. 
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Now a new approach, the NIS-Est approach, will be presented. We argue that, for an 

AR (1) process, the demand at the manufacturer (equation 5-6) can be easily written 

in terms of the manufacturer’s moving average terms shown as: 

1 1 1

M

t t t tY Y a aρ θ− −= + −                 5-12 

where ,t ta a −1 are the noise terms in the manufacturer’s demand process at time t and 

t-1 respectively and Mθ1 is the moving average parameter.  

The lead time forecast by the manufacturer in this case can be shown as: 
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In the NIS-Est approach, although there is no information sharing among the supply 

chain members, the manufacturer can still estimate the moving average terms in its 

demand and utilise the estimated values of these terms for its forecast. 

Now we analyse the NIS-Est approach for the MA (3) process. The demand process 

at the manufacturer (equation 5-10) can be written in the following form: 

M M

t t t tY a a aτ θ θ− −= + − −1 1 2 2                            5-14 

In the NIS-Est approach, the manufacturer can still estimate the moving average 

terms in its demand and forecast using these estimated terms. The forecast using the 

NIS-Est approach will include the mean of the process and the moving average terms 

compared with the forecast only being the mean of the process in the NIS approach 

(equation 5-11). 

There are two methods by which the manufacturer can mathematically estimate the 

moving average terms, namely Recursive Estimation and Estimation by Forecast 

Error (Box et al, 1994; Chatfield, 2003). We adopt the recursive estimation method 

and discuss the reason for selection of this method in Chapter 7. All other 

replenishment and ordering policies remain the same as in the NIS approach. 

We find that the value of sharing demand information has been discussed in the 

literature by comparing the demand information sharing approaches with the NIS 
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approach. For an MMSE forecasting method, we argue that, even with a strategy of 

not sharing demand information, the manufacturer’s forecasting approach can be 

improved by introducing estimation of the moving average terms at the 

manufacturer.  

Stage I of the simulation results (see section 8.2) show the reduction in inventory 

costs when the NIS-Est approach is used, as compared to the NIS approach. In stages 

II and III of the simulation and in the empirical analysis, the value of demand 

information sharing is analysed by considering the NIS-Est approach as the base 

case.  

Now, we move our discussion to the NIS approach for non-optimal forecasting 

methods. As for this approach, the manufacturer is not aware of the retailer’s 

demand, it will base its lead time forecast on the orders received from the retailer. 

The equations 3-6 and 3-9 presented in chapter 3 for the retailer’s forecasts are 

adopted here for the manufacturer to represent its SMA and SES forecasts using the 

NIS approach. 
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For non-optimal forecasting methods, there are no noise term estimation issues and 

the NIS-Est approach is not relevant. Therefore, the NIS-Est approach is limited to 

optimal forecasting methods. In simulation (see section 8.6) the value of demand 

information sharing for non-optimal forecasting methods is analysed by considering 

the NIS approach as the base case.  

5.3.2. Centralised Demand Information Sharing 

In the literature review presented in sub-section 5.2.1, we explored the DIS approach 

as discussed by various papers. These papers argue that if a supply chain follows a 

strategy of sharing demand information, they may use a DIS approach where the 

downstream member shares its demand information with the upstream member 
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through some formal information sharing mechanism. In this case, the manufacturer 

is aware of both its order (Yt) from the retailer and the actual demand (dt) at the 

retailer. In the DIS approach, as the manufacturer is now aware of the demand at the 

retailer, they can utilise it to calculate the value of the noise terms in the retailer’s 

demand. The manufacturer then uses the order (Yt) received from the retailer and the 

calculated noise terms at the retailer to forecast its lead time demand. 

For example, when the AR (1) demand process at the retailer (equation 5-1) is shared 

with the manufacturer, the manufacturer can calculate the value of the noise term 

from this shared demand. The manufacturer can then use equation 5-7 to forecast as 

now they are aware of the noise in the retailer’s demand. A similar argument stands 

for the case of the MA (3) demand process at the retailer. When this demand process 

is shared with the manufacturer, the manufacturer can calculate the noise terms from 

the retailer’s demand and use them in its lead time forecast.   

The literature review shows that the DIS approach results in lower inventory 

holdings and inventory costs due to the fact that the manufacturer benefits by 

forecasting with a true value of tε . In the case of a no information sharing strategy, 

this value of 
tε is either termed zero (NIS approach) or estimated (NIS-Est approach). 

In the DIS approach, the manufacturer uses the order (Yt) from the retailer in their 

lead time forecast (equation 5-7). The discussion on the Bullwhip Effect, in Chapter 

2, summarised evidence that the retailer’s order Yt is more variable than its demand 

dt. As the manufacturer is aware of the demand dt at the retailer, the DIS approach 

can be improved if the manufacturer uses dt instead of Yt in making their lead time 

forecast. This new improved approach is called the Centralised Demand Information 

Sharing approach (CDIS). In the CDIS approach, the manufacturer utilises the 

retailer’s demand dt and the noise in the retailer’s demand tε  instead of Yt and ta , the 

noise in the retailer’ Thus, in this approach the manufacturer’s forecast will be the 

same as the retailer’s forecast as both the retailer and the manufacturer utilise dt and 

tε to make their lead time forecast. The manufacturer’s forecast using the CDIS 

approach will be the same as the retailer’s NIS-Est forecast. This approach can be 

used with any ARIMA (p, d, q) process whereby both the retailer and the 

manufacturer will utilise dt instead of Yt and
11 ,...,,
+−− Rqttt εεε  instead 
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of
11 ,...,,
+−− M

qttt aaa . In the CDIS approach, the manufacturer will be utilising the 

NIS-Est approach adopted by the retailer. The noise terms at the retailer will be 

estimated and then the noise terms and the demand at the retailer will be used to 

forecast the lead time demand. 

We now move our discussion to the cases when non-optimal forecasting methods are 

used by the manufacturer to make their lead time forecast. As discussed in sub-

section 5.3.1, there are no demand parameter estimation issues for non-optimal 

methods. Thus, the DIS approach is not relevant when non-optimal forecasting 

methods are employed.  

When supply chain links share demand information, the CDIS approach can be 

utilised for non-optimal forecasting methods. As the manufacturer in this case is 

aware of the retailer’s demand, it will utilise the retailer’s demand in its lead time 

forecast. The forecast equations for SMA and SES in the case of the CDIS approach 

are:  

ˆ ˆ
n

L

t t t i

i

Y LY L d
n

−

+ −
=
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In the simulation for non-optimal forecasting methods (section 8.6), we compare the 

two approaches of NIS and CDIS to evaluate the value of demand information 

sharing. While in the NIS approach, the manufacturer forecasts using the orders 

received from the retailer, in the CDIS approach the manufacturer’s forecast is based 

on the shared retailer’s demand.  

5.4. Conclusions 

Sharing demand information has been advocated by many authors, to coordinate 

decision making among supply chain members. We reviewed four approaches 

suggested in the literature for sharing demand information, namely No Information 

Sharing (NIS), Demand Information Sharing (DIS), Vendor Managed Inventory 

(VMI) and Downstream Demand Inference (DDI).  
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We argue that the incorporation of the downstream demand in the upstream 

member’s forecast follows exactly the same rules in both VMI and DIS approaches. 

This is the reason why the papers analysing VMI conclude that there is no difference 

in the performance metrics of VMI and DIS in terms of inventory costs. VMI 

incorporates a different replenishment rule, but this is not the focus of this thesis and 

thus we do not consider VMI in this research. With regards to DDI, we show in 

Chapter 6 that this approach is not feasible when we consider more relaxed 

assumptions in the supply chain model. 

We further argue that the NIS and DIS approaches can be improved. In this chapter, 

we introduce two new approaches: NIS-Estimation (NIS-Est) and Centralised 

Demand Information Sharing (CDIS).  

We argue that when the supply chain members adopt the strategy of not sharing 

demand information, the NIS-Est approach will perform better than the NIS 

approach. The NIS-Est approach should work better than the NIS approach as it 

incorporates estimation of the noise term at the manufacturer.  

On the other hand, when the supply chain adopts a strategy of sharing demand 

information, the CDIS approach will be more beneficial than DIS. In this case, 

because the upstream member has access to the downstream demand, they can use 

the demand at the retailer and the noise in the demand at the retailer to make their 

lead time forecast. This should result in the manufacturer’s lead time forecast using 

CDIS being less variable than the DIS approach. 

We test these approaches with the help of simulation and empirical analysis. The 

simulation and the empirical results (Chapters 8 and 9) show that the results for the 

performance metrics are better for NIS-Est compared to NIS and better for CDIS 

compared to DIS. The analyses also indicate that CDIS results in the least inventory 

holdings, inventory cost, Bullwhip Ratio and forecast error compared to the other 

three approaches. 

The approaches used in this research for optimal forecasting methods are 

summarised in the following table. 
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Approaches for Optimal Forecasting 

Methods 

Operational Rules 

No Information Sharing (NIS)  • Retailer does not share its demand 
information with the manufacturer. 

• The manufacturer makes its forecast 
based on the orders from the retailer 
and assuming the noise term to be 
zero. 

No Information Sharing - Estimation 

(NIS - Est)  

• Retailer does not share its demand 
information with the manufacturer. 

• The manufacturer makes its forecast 
based on the orders from the retailer 
and by estimating its noise terms. 

Demand Information Sharing (DIS) • Retailer shares its demand 
information with the manufacturer.  

• The manufacturer makes its forecast 
based on the shared value of noise at 
the retailer. 

Centralised Demand Information Sharing 

(CDIS) 

• Retailer shares its demand 
information with the manufacturer.  

• The manufacturer makes its forecast 
by utilising the demand and the noise 
in the demand of the retailer. 

Table 5-1 Supply Chain Approaches for Optimal Forecasting Methods 

For non-optimal forecasting methods, there are no noise term estimation issues and 

thus the NIS-Est and DIS approaches are not relevant. In this case, we compare only 

NIS with the CDIS approach.  
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Approaches for Non-Optimal 

Forecasting Methods 

Operational Rules 

No Information Sharing (NIS)  • Retailer does not share its demand 
information with the manufacturer. 

• The manufacturer makes its forecast 
based on the orders from the retailer. 

Centralised Demand Information Sharing 

(CDIS) 

• Retailer shares its demand 
information with the manufacturer.  

• The manufacturer makes its forecast 
by utilising the demand of the 
retailer. 

Table 5-2 Supply Chain Approaches for Non-Optimal Forecasting Methods 

In the following table, we present the approaches used for the optimal and non-

optimal forecasting methods in this research. 

Forecasting Methodology Approaches used in the research 

Optimal Forecasting Method NIS, NIS – Est, DIS, CDIS 

Non-Optimal Forecasting Methods NIS, CDIS 

Table 5-3 Approaches for Optimal and Non-Optimal Methods 

In the simulation (Chapters 7 and 8) of this research, we compare all four approaches 

for the optimal forecasting method and the two approaches, NIS and CDIS, for the 

non-optimal forecasting methods in terms of the four performance metrics discussed 

in section 3.7. In the empirical analysis (Chapter 9) we exclude the NIS approach for 

optimal forecasting methods from the investigation, the reasons for which are 

explained in section 9.5. Further, as discussed in sub-section 3.7.2, in addition to 

Mean Squared Error (MSE) we also use mean absolute percentage error (MAPE) to 

calculate the forecast error in the empirical analysis.  
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6. Downstream Demand Inference 

6.1. Introduction 

In Chapter 4, we discussed upstream demand translation for an Order up to (OUT) 

inventory policy, examining the mathematical relationships between the demand and 

order processes in a supply chain link. We further discussed in sub-section 5.5.2 that, 

based on this upstream translation of demand, and using strict model assumptions, 

various authors (e.g. Graves, 1999; Raghunathan, 2001; Zhang, 2004b; Gilbert, 

2005) maintained that the inverse translation is also possible when the MMSE 

forecasting method is employed. They argued that the upstream member can infer the 

demand present at the downstream link, owing to the mathematical tractability of the 

relationships for the optimal forecasting method. We called this a Downstream 

Demand Inference (DDI) approach and presented a detailed discussion of it in sub-

section 5.2.2.1. If the inverse translation (DDI) is possible, there will be no value of 

sharing demand information in supply chains.  

In this chapter, we analyse the DDI approach using both optimal and non-optimal 

forecasting methods. We argue that the supply chain models presented in the above 

papers have very restrictive assumptions. These papers assume that the manufacturer 

is aware of the demand process and the demand parameters of the retailer even when 

they are unaware of the demand itself. The claim of no value in sharing demand 

information in these papers is sensitive to this assumption.  

In a real world scenario, supply chain links need to have a formal information 

sharing mechanism if they decide to share demand information between downstream 

and upstream members. On the other hand, there is no need to invest in a formal 

information sharing mechanism if the strategy of the supply chain link is not to share 

demand information. Thus, it is very unlikely that the supply chain links will invest 

in a formal information sharing mechanism just to share the information on demand 

process and parameters and not on the actual value of demand itself. 
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For an optimal forecasting method (section 6.3), we argue that, under more realistic 

assumptions, the DDI approach is not feasible. The upstream member cannot infer 

the downstream demand when they are unaware of the demand process and its 

parameters at the downstream link.  

Then we investigate the DDI approach when non-optimal forecasting methods 

(section 6.4) are employed. We show that for ARMA processes, in the case of SMA, 

the demand at the downstream link can be inferred. This is based on the assumption 

that the upstream member is aware of the number of historical terms (n) used in the 

SMA forecast. On the other hand, when supply chain links employ SES, DDI is not 

possible. 

6.2. Requirements for DDI 

We discussed in the previous section that papers advocating DDI have very 

restrictive supply chain model assumptions. We argue that, in real world supply 

chains, the upstream members are not aware of the demand process and the demand 

parameters at the downstream link, and thus relax these assumptions in this thesis 

(see Chapters 7 and 9).  

For DDI, the upstream member needs to first identify the demand process at the 

downstream link and then estimate the required parameters to calculate the demand. 

It is shown in this chapter that the identification of the demand process and inference 

of demand depends on the relationship between the number of autoregressive and 

moving average parameters and the degree of differencing at the upstream link’s 

demand process.  

These two aspects of demand inference will now be addressed.   

6.2.1. Identification of Demand Process 

Results on the upstream translation of demand indicate that, in some cases, the 

translation is unique: only one demand process at the retailer would translate into a 

given demand process at the manufacturer. On the other hand, in some cases this 

translation is not unique: various demand processes at the retailer would translate 
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into the same demand process at the manufacturer. In sub-section 4.2.2, we discussed 

that an ARIMA (p, d, qR) demand process at the retailer will translate into an 

ARIMA (p, d, max {p + d, qR - L}) demand process at the manufacturer. Suppose the 

demand process is ARIMA (1, 1, 3) at the manufacturer. If the lead time between the 

manufacturer and the retailer is one and the supply chain links utilise MMSE 

forecasting methods, such a demand process could only translate from an ARIMA (1, 

1, 4) process at the retailer. Thus, if a manufacturer identifies an ARIMA (1, 1, 3) 

process and its lead time is one, it can easily infer that the demand process at the 

retailer follows an ARIMA (1, 1, 4). On the other hand, suppose the demand process 

is ARIMA (1, 1, 2) at the manufacturer. Again, if we assume the lead time to be one, 

this demand process could propagate from various processes at the retailer, namely 

ARIMA (1, 1, 3), ARIMA (1, 1, 2), ARIMA (1, 1, 1) and ARIMA (1, 1, 0). In this 

case, the manufacturer will not be able to infer the demand process at the retailer.  

Accurate identification of the demand process at the downstream link depends on 

whether the propagation is unique. If only one demand process is possible at the 

downstream link, then accurate identification is feasible. On the other hand, 

identification is not feasible if a range of demand processes is possible at the 

downstream link. 

6.2.2. Calculation of the Demand 

In Chapter 4, we examined the upstream translation of the demand process. We 

discussed that the constant term and the autoregressive terms remain the same, while 

it is only the moving average terms that are changed. Figure 4-5 shows the 

relationship that exists between the moving average terms in the downstream and 

upstream demand processes. Based on this mathematical relationship, the upstream 

member can calculate the corresponding moving average term at the downstream 

member, e.g. 
R

1θ can be calculated from
M

1θ ;
R

2θ can be calculated from
M

2θ etc. 

Thus, calculation of the demand at the downstream member depends on the number 

of moving average terms at the link. If the upstream member has more than or equal 

to the number of moving average terms in the downstream link, then they can 

accurately calculate the demand at the downstream link. This is because the number 
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of equations at the upstream link would be equal to or greater than the number of 

unknowns at the downstream link. 

On the other hand, if the upstream member has fewer moving average terms, then it 

is not possible to calculate the demand at the downstream link. This is due to the 

presence of more unknowns than equations at the upstream link. Suppose the demand 

process at the retailer follows an ARIMA (1, 0, 5). If the lead time from the 

manufacturer to the retailer is 4, then according to the upstream translation of 

demand, the demand process at the manufacturer will be ARIMA (1, 0, 1). In this 

case the manufacturer has only one moving average term (i.e. one equation) as 

opposed to five moving average terms at the retailer (five unknowns) (see section 

4.2). Therefore, it would not be possible to deduce the demand at the downstream 

link. 

6.3. Optimal Forecasting Methods 

We first analyse the DDI approach when the supply chain members employ an 

optimal forecasting method. In sub-section 5.2.2, we presented a literature review of 

the papers claiming that DDI is possible and thus there is no value in sharing demand 

information. We observe that inferring the demand at the downstream link, or 

Downstream Demand Inference (DDI), is sensitive to the model assumptions. This 

has also been acknowledged in other studies, as noted in Chapter 5. Raghunathan 

(2001) suggested that information sharing has no value only if both the supply chain 

members are aware of the demand process at the downstream link. Similarly, Graves 

(1999) has also acknowledged that DIS is valuable if the upstream stage is not aware 

of the demand parameters of the customer demand process. Based on similar 

assumptions of known demand process and demand parameters, various other papers 

(Zhang, 2004b; Gilbert, 2005; Hosoda and Disney, 2006) show that there is no value 

in sharing demand information.  

We argued in sub-section 6.1 that the value of sharing demand information is 

sensitive to the assumption made in these papers. We show in this section, by 

relaxing the above two assumptions of known demand process and known demand 

parameters, that sharing demand information is valuable and Downstream Demand 

Inference (DDI) is not feasible. By presenting Uncertainty Principles, we state rules 
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about when the manufacturer can accurately identify the demand process at the 

retailer but not the demand.  The rules also show under what circumstances the 

manufacturer cannot even identify the demand process at the retailer.  

6.3.1. Uncertainty Principles 

PRINCIPLE I.  If the upstream member can identify the demand process at the downstream 

link, the demand at the downstream link cannot be exactly calculated. 

PRINCIPLE II. If the upstream member cannot identify the demand process at the downstream 

link, then the demand at the downstream link can be exactly calculated, if a certain model is 

assumed from a restricted subset of the possible models. 

According to the Uncertainty Principles stated above, an upstream member in the 

supply chain cannot infer the demand at the retailer even if they can identify the 

model present at the downstream link. In some cases, they cannot even identify the 

demand process at the retailer from a range of feasible models. Calculation of 

demand in this case is only possible if the upstream member assumes a demand 

process at the downstream member.  In order to prove the Uncertainty Principles, we 

first establish a rule for downstream demand calculation in the next sub-section, 

which is based on the requirements for DDI. 

6.3.2. Rule for Downstream Demand Calculation 

The discussion in section 6.2 reveals that, for demand inference, the upstream 

member needs to first identify the demand process and then calculate the demand at 

the downstream link. We discussed in sub-section 6.2.1 the circumstances under 

which the upstream member will be able to identify the demand process at the 

downstream member. In terms of the second requirement for DDI, which is the 

calculation of the demand, we present the following rule for the case of an optimal 

forecasting method. 

RULE FOR DOWNSTREAM DEMAND CALCULATION: An upstream member can 

accurately calculate the demand at the downstream member only  if q
R
≤ q

M
. 

The proof is given in Appendix 6A. 
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6.3.3. Proof of Uncertainty Principles 

As discussed in Chapter 4, Gilbert (2005) showed that for an OUT inventory policy 

and an MMSE forecasting method, an ARIMA (p, d, qR) demand process at the 

downstream link will always be translated into an ARIMA (p, d, qM) process at the 

upstream link where qM = max {p + d, qR – L}. We show in the following sub-

sections that Principle I applies when qM = qR – L and Principle II applies when qM = 

p + d. 

6.3.3.1. Proof of Principle I 

If p + d < q
R
 – L, then according to the upstream translation of demand, ARIMA (p, 

d, qR) will translate into ARIMA (p, d, qM) where qM = qR - L. Now we look at this 

translation from the perspective of the manufacturer. The manufacturer identifies its 

demand process as ARIMA (p, d, q
M

) and observes that p + d < q
M

. Based on the 

upstream translation of a demand we can present the following corollary, which 

follows immediately from the formula qM = max {p + d, qR - L}. 

COROLLARY 1. If the demand at an upstream link is ARIMA (p, d, q
M

) and p + d < q
M

, 

then the demand process at the downstream link is ARIMA (p, d, qM + L). 

 

 

Figure 6-1 DDI in case of p + d < q
M

. 

The translation of demand in this case is unique (see sub-section 6.2.1); therefore the 

upstream member can identify the demand process at the downstream link. On the 

other hand, it is evident that the retailer has more moving average terms (qM + L) 

than at the manufacturer (q
M

) since lead-time (L) is strictly positive (see section 3.1). 

ARIMA (p, d, qM) 

ARIMA (p, d, qM+ L) 

Manufacturer 

Retailer 
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Thus, the manufacturer is unable to accurately calculate the demand, as there are 

more unknowns than equations. Therefore, downstream demand inference in this 

case is not possible.  

Since p + d < q
M

, the upstream member can identify the demand process at the 

downstream member (Corollary 1). But they cannot calculate the demand at the 

downstream member (Rule for downstream demand calculation). This proves 

Principle I that if the demand process can be identified, then the demand values 

cannot be calculated. 

6.3.3.2. Proof of Principle II 

If p + d ≥ qR – L, then according to the upstream translation of demand, ARIMA (p, 

d, qR) will translate into ARIMA (p, d, qM) where qM = p + d. Looking at this 

translation from the perspective of the manufacturer, it identifies its demand process 

as ARIMA (p, d, qM) and observes that p + d = qM. Based on the upstream translation 

of demand we can present the following corollary which, again, follows immediately 

from the formula qM = max {p + d, qR - L}. 

COROLLARY 2. If the demand at an upstream link is ARIMA (p, d, qM) and p + d = qM, 

then the demand at the downstream link is ARIMA (p, d, qR) where qR ∈  {0,…, qM + L}. 
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Figure 6-2 DDI in the case of p + d = q
M

 

In Figure 6-2: 

A = {ARIMA (p, d, 0), ARIMA (p, d, 1) … ARIMA (p, d, qM)} 

B = {ARIMA (p, d, qM+1) … ARIMA (p, d, qM + L)} 

The translation of demand in this case is not unique (as illustrated by Figure 6-2). 

There are qM+L+1 possible demand processes at the retailer. Since L ≥ 1, this means 

that there are at least two possible processes, and the upstream member will not be 

able to identify the demand process present at the downstream member.  

If the upstream member assumes a demand process from the subset A, then they can 

exactly calculate the demand at the downstream link owing to the fact that, for 

demand processes in A, qR ≤ qM. The downstream member has the same or fewer 

moving average terms than the moving average terms (qM) at the upstream member. 

Thus, the number of equations at the upstream member will be more than or equal to 

the number of unknowns.  

On the other hand, if the upstream member assumes a demand process from the 

subset B, then they cannot exactly calculate the demand at the downstream link 

owing to the fact that for demand processes in B, qR> qM (Rule for downstream 

demand calculation). The downstream member has more moving average terms than 

A 

… ARIMA (p, d, q
M
+1) ARIMA (p, d, q

M
) … 

ARIMA (p, d, qM) Manufacturer 

ARIMA (p, d, 0) ARIMA (p, d, q
M
+L) ARIMA (p, d, 1) 

Retailer 

B 
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the moving average terms (qM) at the upstream member. Therefore, they will have 

more unknowns than available equations.  

We mentioned in section 6.2 that Raghunathan (2001) has argued that DDI is 

possible for an AR (1) process at the retailer. We will look at the author’s model in 

terms of the findings in this section. The demand process at the manufacturer, in his 

model, is ARMA (1, 1); therefore, it is case II of the study (i.e. p + d = qM). In the 

model it is assumed that the manufacturer is aware of the demand process at the 

retailer, which is AR (1). The retailer demand model lies in the subset A of Figure 6-

2 above because it has fewer moving average terms than the manufacturer. As 

mentioned earlier in this section, if the manufacturer assumes a demand process from 

subset A, they can accurately deduce the demand at the retailer. Thus, it is only due 

to the assumption of a known demand process (AR (1)) by the manufacturer that 

Raghunathan (2001) was able to conclude that DDI is possible. Similar arguments 

apply to the studies by Graves (1999) where an ARIMA (0, 1, 1) retailer demand 

process was assumed and Hosoda and Disney (2006) where AR (1) and ARMA (1, 

1) retailer processes were assumed. Thus, we demonstrate here the sensitivity of the 

assumption of a known retailer demand model in these studies. 

6.4. Non-Optimal Forecasting Methods 

In this section, based on the upstream translation of demand, we analyse the 

possibility of Downstream Demand Inference (DDI) for non-optimal forecasting 

methods.  

6.4.1. Downstream Demand Inference for Simple Moving Averages  

In Chapter 4, we showed that if the retailer employs Simple Moving Averages to 

forecast its lead time demand, an ARMA (p, qR) demand process would propagate 

into an ARMA (p, qM) process at the manufacturer, where qM = qR +n.   

 



M. Ali, 2008, Chapter 6  98 

 

 

Figure 6-3 Upstream Demand Translation for SMA 

6.4.1.1. Identification of Demand Process 

The upstream propagation of demand is unique when the SMA method is used. A 

unique demand process at the downstream member would translate into a given 

demand process at the upstream member, as shown in Figure 6-3. Thus, the 

manufacturer would always be able to identify the demand process present at the 

retailer, assuming that they know the number of terms used in the Simple Moving 

Average by the retailer. 

6.4.1.2. Calculation of the Demand 

In the case of SMA, the upstream member would be able to accurately calculate the 

demand at the downstream member. This is because the downstream member has 

fewer moving average terms (q
R
) than the moving average terms (q

R
 +n) at the 

upstream member, as shown in Figure 6-3 above. Therefore, the upstream member 

will have more equations than unknowns. 

Thus, DDI is feasible for ARMA processes when it is known that the SMA method is 

used and the manufacturer is aware of the number of terms (n) included in the 

average.  

ARMA (p, qR) 

ARMA (p, qR + n) 

M R

Manufacturer 

Retailer 

SMA Forecasting Method 
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6.4.2. Downstream Demand Inference for Single Exponential 

Smoothing 

In Chapter 4, we showed that if the SES method is used, then an ARMA (p, qR) 

demand process would propagate into an ARMA (p, qM) process at the manufacturer, 

plus another term, where q
M

 = (t - 1) and t is the number of periods of data history 

available to the manufacturer. 

 

Figure 6-4 Upstream Demand Translation for SES 

The above figure shows that the propagation of demand in the case of SES is not 

unique. There could be a range of demand processes present downstream, and the 

upstream member will not be able to identify the demand process at the downstream 

member.  

In Corollary 2 above (sub-section 6.3.3.2), we discussed a similar demand translation 

for the case of an MMSE forecasting method where q
R
 ∈ {0,…, q

M
 + L} and 

considered cases where the manufacturer makes assumptions about the demand. 

Although the principle of identification of demand processes for SES is the same, 

there are two issues that need consideration regarding the manufacturer making an 

assumption about the demand process. Firstly, a wider range of models could be 

present at the retailer in the case of SES as qR ∈  {0,…, t – 1 + L}. Secondly, the 

translation for SES is of an approximate nature. Deducing demand at the retailer, 

based on demand process assumption at the manufacturer is therefore more 

challenging for SES than for SMA.  

ARMA (p, qR) 

ARMA (p, t - 1) approx Manufacturer 

Retailer 

SES 
Forecasting Method 
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6.5. Conclusions 

There is a stream of research claiming that the upstream member can infer the 

demand at the downstream member. If this were so, then there would be no value in 

sharing demand information in supply chains.   

We argue that the papers concluding that there is no value of information sharing are 

based on the assumptions of a known demand process and parameters at the retailer. 

We argue that the value of information sharing is sensitive to these assumptions and 

that in a real world supply chain, an upstream member will not be aware of the 

demand process and parameters at the downstream member. The only way to be 

aware of demand process and parameters of the downstream link is through some 

formal information sharing mechanism. When members of a supply chain do share 

information though some formal information sharing mechanism it is unlikely that 

such a mechanism will be used to share information on demand process and 

parameters, but not on the actual value of demand itself. 

In this chapter, we analyse the DDI approach using more realistic assumptions. 

When we examine the optimal forecasting methods, we present Uncertainty 

Principles to show that it is not possible for the upstream member to infer the 

demand at the downstream member.  

We then move on to discuss the case when supply chain members employ non-

optimal forecasting methods. We show that when the supply chain links use SMA for 

forecasting their lead time demand, the upstream member can accurately infer the 

demand present at the downstream member owing to the unique propagation of the 

demand process. When the supply chain links employ SES, the upstream member 

would not be able to accurately infer the demand at the downstream member. This is 

owing to the non-unique demand process propagation in this case. 

When upstream members in a supply chain forecast using the actual consumer 

demand, this results in a reduction of the Bullwhip Effect. While various studies 

claim that this consumer demand can be inferred by the upstream members in the 

supply chain, we have shown that exact deduction of demand is not possible. For 
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accurate demand, the downstream member will have to share its demand with the 

upstream member via some formal information sharing mechanism.    
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7. Simulation Design 

7.1. Introduction 

A simulation model represents a situation on a computer in order to study how it has 

arisen or how it could be improved. The behaviour of a system can be studied by 

changing the factors affecting it. Robinson (2004) has defined simulation as 

“Experimentation with a simplified imitation (on a computer) of an operations 

system as it progresses through time, for the purpose of better understanding and/or 

improving the system”. 

7.2. Rationale for using Simulation 

The previous chapter discussed the effect of using different forecasting methods on 

Downstream Demand Inference and thus on the value of Demand Information 

Sharing in reducing the Bullwhip Effect. In this chapter, we use simulation to 

accomplish the following objectives: 

• In Chapter 5, we discussed a number of approaches to sharing demand 

information. We now wish to establish the best approach in terms of various 

performance metrics (mean squared forecast error, Bullwhip Ratio, inventory 

holdings and inventory cost). It is very complicated to mathematically 

calculate the Bullwhip Ratio and forecast error (see section 3.7); thus we 

require simulation to calculate these values. In terms of inventory holdings, 

equation 3-15 in sub-section 3.7.3.1 gives only the approximate value of the 

inventory holdings. The inventory costs obtained, therefore, are also 

approximate. Simulation helps in assessing the accuracy of the values of 

inventory holdings and costs. 

• We will also explore the sensitivity of the benefit of information sharing to 

various factors, namely lead time, autoregressive parameters, moving average 

parameters, demand variance, cost ratio and forecasting method parameters. 

• The analytical model shows that, for MA (q) processes, there is no value of 

the traditional DIS approach. The simulation experiment not only helps us to 

validate this rule but also quantifies the value of CDIS.  
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We use simulation in this research not only to test and validate the approximations 

but also as a bridge linking the analytical model to the empirical analysis.  

 

Figure 7-1   Role of Simulation in the Research Methodology 

Simulation gives a good understanding of how various factors affect the dynamics of 

the system, by changing one variable at a time. 

7.3. Simulation Design 

In this section, we will discuss some design issues including the range of the factors 

(lead time, demand parameters, cost ratio, demand variance and forecasting 

parameters) analysed in the simulation experiment. 

7.3.1. Demand Process 

The literature review (see sub-section 5.2.1) shows that the supply chain models used 

in most papers are restricted to one or two demand processes. To cover a wider range 

of ARIMA (p, d, q) models, we generate nine demand processes in the supply chain 

model. This will help us test models that are addressed in the broader literature. We 

restrict the model selection to p, d, q ≤ 2, as in practice demand can usually be 

represented by limiting the ARIMA process within this range (Montgomery and 

Johnson, 1976; Box et al, 1994; Zhang, 2004a).  

Mathematical 

Analysis 

Simulation Testing on 

Empirical Data 
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The following nine ARIMA (p, d, q) models are used in the simulation; ARIMA (1, 

0, 0), ARIMA (2, 0, 0), ARIMA (0, 0, 1), ARIMA (0, 0, 2), ARIMA (1, 0, 1), 

ARIMA (0, 1, 1), ARIMA (0, 2, 2), ARIMA (1, 1, 1) and ARIMA (1, 1, 2). 

The above nine models have been chosen, owing to their frequent occurrence in the 

real world (Roberts, 1982; Box et al, 1994). Another reason for the selection is that 

there is an optimal smoothing method for some of these models. Single Exponential 

Smoothing is an optimal forecasting method for ARIMA (0, 1, 1). Similarly, Holt’s 

method is an optimal forecasting method for ARIMA (0, 2, 2) and Dampened Holt’s 

method is an optimal forecasting method for ARIMA (1, 1, 2).  

7.3.2. Information Sharing Approaches used in Simulation 

In Chapter 5, we observed that supply chain links can adopt two strategies in terms 

of demand information sharing. Either they share the downstream demand 

information by a formal information sharing mechanism or they do not share the 

demand information at all. In this research, for the case of not having a formal 

information sharing mechanism, we discussed the use of two approaches: NIS and 

NIS-Est. On the other hand, we discussed the DIS and CDIS approaches in the case 

of a formal information sharing mechanism. NIS-Est and CDIS are new approaches 

introduced in this thesis which have not been examined via simulation previously. 

 

Strategy Demand Information Sharing Approaches 

No Information Sharing (NIS) No Formal Information 

Sharing mechanism No Information Sharing – Estimation (NIS-Est) 

Demand Information Sharing (DIS) Formal Information Sharing 

mechanism Centralised Demand Information Sharing (CDIS) 

Table 7-1 – Approaches in the Simulation Experiment 
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7.3.3. Stages of the Model 

The mathematical models found in the literature are restricted by various 

assumptions, which may not show the real value of information sharing. In this 

thesis, we argue that real world modelling requires less restrictive assumptions. In 

real world supply chains, the demand process and its parameters are not known and 

they need to be estimated (Cheng and Wu, 2005) and thus sharing demand 

information may be of value for the supply chain members (Gavirneni et al, 1999). 

Hence, the review of the literature reveals the need to incorporate more realistic 

assumptions into supply chain modelling. This may help in the analysis and 

quantification of a more pragmatic value of sharing demand information in supply 

chains.  

Moving away from a model having a number of restrictive assumptions directly 

towards a less stringent model creates a very complex and confusing environment. 

We would not be able to analyse the relationship between the value of sharing 

demand information and each of these assumptions and appreciate the magnitude of 

these effects individually. Therefore, we have developed three stages in the supply 

chain model to allow staged relaxation of model assumptions. In stage I, we assume 

that the demand process and its parameters are known. Then, in stage II, we assume 

that only the demand process is known. Finally, in stage III, both the demand process 

and demand parameters are not known. 

We have designed the simulation experiment in order to have a stage-wise 

comparison of the performance metrics of all the approaches to demand information 

sharing. We now present the structure of each of these three stages. 

7.3.3.1. Stage I 

In this stage, we assume that the manufacturer is aware of their own demand process 

and the demand parameters. In addition, they are also aware of the demand process 

and the demand parameters at the retailer.  

 

In this stage, the problem of deducing the demand at the retailer is analytically 

solvable and simulation is not required for the purpose of demand inference. One of 
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the performance metrics we use in this stage to quantify the value of sharing demand 

information is average inventory holdings. In Chapter 3, we have used an 

approximate equation (see equation 3-15) to calculate inventory at the manufacturer. 

Furthermore, the other performance metrics (inventory cost, Bullwhip Ratio and 

forecast error) also need to be calculated via simulation.  

 

Thus, simulation in this stage helps us to check the accuracy of the approximation for 

average inventory holdings and also to calculate the other performance metrics in 

order to quantify the value of sharing demand information. 

7.3.3.2. Stage II 

One of the limitations in the supply chain models presented in the literature is the 

assumption of known demand parameters. In stage II of the simulation experiment, 

we relax this assumption and use estimation procedures to estimate the demand 

parameters at both the manufacturer and the retailer. These estimated demand 

parameters are then used to deduce the demand at the retailer. Details of the 

estimation procedures used in the simulation are further discussed in sub-section 

7.3.5.  

 

In this stage, the manufacturer is aware of its own demand process and that of the 

retailer. However, they are unaware of the exact values of their own demand 

parameters and those of the retailer. 

7.3.3.3. Stage III 

Stage III has been designed to reflect more closely a real world scenario. In this 

stage, we relax the restriction of known demand processes. Thus, in this stage, the 

manufacturer is not aware of its demand process and demand parameters. They are 

also unaware of the demand process and demand parameters of the retailer. In Stage 

III, both supply chain links will identify their demand process as well as estimate 

their demand parameters.  
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7.3.4. Stages and Approaches for Non-Optimal Forecasting Methods 

In the previous sub-sections, we presented the four approaches and three stages for 

relaxation of assumptions in the simulation experiment. These approaches and stages 

are based on ARIMA process identification and parameter estimation.  

The staged relaxation has been designed in order to incorporate process identification 

and parameter estimation. In addition, both the NIS-Est and DIS approaches are 

based on estimation of parameters. However, non-optimal forecasting methods do 

not require demand parameter estimation or process identification. Therefore, the 

staged relaxation of assumptions is not required for non-optimal forecasting methods. 

In addition, the NIS-Est and DIS approaches are not relevant to non-optimal 

forecasting methods. Thus, we restrict the simulation of non-optimal methods to NIS 

and CDIS approaches for Stage I only. 

In the following table we summarise the stages and the approaches for the optimal 

and non-optimal forecasting methods. 

Forecasting 

Methodology 
Stages Approaches 

Optimal Method I, II, III NIS, NIS-Est, DIS, CDIS 

Non-Optimal Methods I NIS, CDIS 

Table 7-2   Stages and Approaches 

7.3.5. Estimation of Demand Parameters – Stage II 

One of the limitations discussed in the literature review on supply chain models is 

that the demand parameters are assumed to be known. By contrast, we have assumed 

in Stage II that these parameters are not known but need to be estimated by the 

supply chain links. Thus in the simulation the supply chain links will estimate the 

parameter vectors ,Ρ Θ and Et where: 

),...,,( 21 pP ρρρ= , ),...,,( 21 qθθθ=Θ and Et = 1 2( , ,..., )t t t qε ε ε− − − . 
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In the time-series literature (e.g. Koreisha and Pukkila, 1990; Box et al, 1994; 

Chatfield, 2003; Kapetanios, 2003) two procedures have been discussed to estimate 

the model parameters for an ARIMA (p, d, q) process: Least Squares (LS) and 

Maximum Likelihood (ML).  

For moderate and long data histories, the likelihood estimate gives a very close 

approximation to the least squares estimate (Box et al, 1994). There have been 

various studies (Hannan and Rissanen, 1982; Koreisha and Pukkila, 1990; Sabiti, 

1996; McKenzie, 1997; Kapetanios, 2003) suggesting that the accuracy of Ordinary 

Least Squares (OLS) is comparable to ML estimates. As the data histories employed 

in this research are of moderate length (up to 104 observations) we employ OLS; it is 

simpler to compute than ML, and will give very similar results. 

The autoarima function, of the C Library, has been used to perform estimation via 

the Ordinary Least Squares method in the simulation to estimate the parameters. 

7.3.6. Identification of Demand Process – Stage III 

In section 5.2, we saw that the papers discussing demand information sharing assume 

that the supply chain members are aware of their demand process. In addition, they 

assume that, even in the case where a No Information Sharing strategy is assumed, 

the upstream member knows the demand process at the downstream link. We argued 

in sub-section 7.3.3 that the demand process is not known in real world supply chains 

and needs to be identified. In stage III of the simulation experiment we relax the 

assumption of known demand processes. The supply chain links must identify the 

most appropriate ARIMA models to represent their demand processes. 

The final selection of the model is based on the idea of balancing the risks of under-

fitting and over-fitting and the model is chosen by minimising a penalty function. 

There are two criteria discussed frequently in the literature: the Akaike Information 

Criterion (AIC) and the Bayesian Information Criterion (BIC). 
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where 2σ̂ is the estimate of the variance of the noise term derived directly from the 

residuals of the ARIMA (p, d, q) fit and n is the effective number of observations 

given by n = N-d-p, where N is the total number of observations. 

The first term in the above equations is simply a penalty for under-fitting. On the 

other hand, the second terms are directly proportional to the number of ARMA 

parameters and is a penalty for over-fitting. For n ≥ 8, the penalty imposed for the 

number of estimated model parameters is greater in the BIC criterion than in AIC. 

Thus, the use of minimum BIC for model selection will result in a model whose 

number of parameters is no greater than that chosen by AIC. Harvey (1993) argues 

that there is evidence to suggest that AIC has a tendency to pick ARMA models that 

are over-parameterised compared to BIC and thus the BIC is a more satisfactory 

criterion than AIC. The BIC criterion is also used in well-known forecasting software 

packages, such as Forecast Pro (Goodrich, 2000). The autoarima function used in 

this research uses the BIC criterion to select the final ARIMA process for the given 

data series. 

7.3.7. Series Splitting Rules 

Process identification and parameter estimation require the specification of series 

splitting rules to be employed in the research. The time series is divided into two 

parts, namely the estimation and the performance measurement periods. As the 

discussion in this thesis relates specifically to the effect on the inventory of an 

upstream member (e.g. the manufacturer) we divide the first part into two sub-parts 

i.e. “retailer initial estimation period” and the “retailer and manufacturer estimation 

period”. Now we discuss these parts in detail. 
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Figure 7-2 – Series Splitting Rules 

7.3.7.1. Estimation Period 

In this period, the demand process is identified and the demand parameters are 

estimated at both the retailer and the manufacturer. In period 1a, we generate the 

retailer’s demand, from which the retailer estimates an initial set of parameters. In 

period 1b, we not only generate the retailer’s demand, but also the manufacturer’s 

demand with the help of the initial estimated parameters from 1a. Finally, the 

demand parameters for both the retailer and the manufacturer are estimated from 1b.  

In No Information Sharing approaches, the manufacturer is not aware of the demand 

series at the retailer and the process identification and parameter estimation takes 

place from its own demand series. As the manufacturer’s demand series is available 

only in period 1b, the identification and estimation takes place in period 1b in the No 

Information Sharing approaches. In order to make a fair comparison between the No 

Information and Information Sharing approaches, the retailer’s parameter estimates 

from 1a are not used for initialisation of parameter estimation in 1b.  

7.3.7.2. Performance Measurement Period 

The final estimates from the first period are utilised in the Performance Measurement 

period and there is no further updating of parameters in this period. These estimates 

are then utilised to test the forecasting and inventory performance of all approaches. 

In section 3.7, we discussed the four performance measures that will be used in the 

Retailer and 
Manufacturer 

Estimation 

Period 1a          Period 1b Period 2 

ESTIMATION 
PERFORMANCE 

MEASUREMENT 

Retailer Initial 

Estimation 
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simulation experiment: mean squared error, Bullwhip Ratio, inventory holdings and 

inventory cost.  

The splitting rules are not relevant in the case of non-optimal forecasting methods 

and in Stage I for optimal forecasting methods as there is no estimation involved in 

these two cases. However, in Stages II and III for optimal forecasting methods, the 

total time series of 100 periods are split into two equal parts of 50 each for the 

estimation and performance measurement periods. Further, the estimation period has 

been split into two equal parts of 25 periods for 1a and 1b, as shown in Figure 7-2.   

7.3.8. Demand and Order Generation 

In this section, we will discuss how the demand is generated at the retailer and how it 

propagates to the upstream members. 

7.3.8.1. Demand Generation  

In order to generate the demand at the most downstream link, i.e. the retailer, a 

standard normally-distributed random number is first generated by the Box-Muller 

method (Box and Muller, 1958). This is then multiplied by the standard deviation σ  

of the noise term to calculate the noise term tε . Demand is generated according to the 

specified values of p, d and q for the ARIMA (p, d, q) demand process using 

different ranges of the autoregressive parameters ( 1 2, ,..., pρ ρ ρ ) and moving average 

parameters ( 1 2, ,..., qθ θ θ ) to be discussed further in sub-section 7.3.10.1.  

7.3.8.2. Order Generation  

The simulation model assumes that the links in the supply chain use the order-up-to 

(OUT) policy to calculate the order-up-to level. This has already been discussed in 

detail in section 3.4. 

According to the OUT policy, the order to the next upstream link is the current 

demand plus any change in the order up to level. Thus, we use this equation to 
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generate the order to the next upstream link. This has already been discussed in detail 

in sections 3.5 and 3.6. 

7.3.9. Anti-Bullwhip Effect 

In section 2.4, we discussed the Anti-Bullwhip Effect (ABE) phenomenon. As the 

objective of this research is to minimise the amplification of demand variance (the 

Bullwhip Effect), ABE is out of the scope of the research. In the simulation 

experiment, for an optimal forecasting method, we simulate only the Bullwhip Effect 

(BE) region. In section 2.4, we presented a review of the papers discussing the 

bullwhip region for stationary ARIMA processes (Lee et al, 2000; Li et al, 2005; 

Hosoda and Disney, 2006; Luong and Phien, 2007).  For non-stationary processes 

used in simulation, we simulate within the stationary and invertibility regions, and 

then choose parameters exhibiting the Bullwhip Effect.  

The simulation results have shown that the ABE phenomenon does not occur for 

SMA and SES methods. The only exception is when SES is used for ARIMA (0, 1, 

1) as then SES becomes an optimal method for the demand process. In order for the 

simulation experiment to be consistent for all forecasting methods, we use the same 

range for SMA and SES methods as used for the MMSE method. 

7.3.10. Impact of Various Factors  

Earlier, we discussed the need to simulate nine different demand processes. In this 

section, we look at the factors that may affect the value of sharing demand 

information in supply chains. The mathematical analysis for AR (1) (Lee et al, 2000) 

suggests that noise in the retailer’s demand, the lead time from the supplier to the 

manufacturer, the demand parameters and the cost ratio (ratio of penalty to total cost) 

all affect the value of sharing demand information. Thus, we simulate the effect of 

these factors on all nine demand processes. When we use the SMA forecasting 

method, we also look at the effect of the number of terms used in the moving 

averages on the value of sharing demand information. In the case of SES, we look at 

the effect of the smoothing constant on the value of sharing demand information. 
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Factors Forecasting Methods 

Demand Parameter Vectors ( ,Ρ Θ ) 

Std Dev (σ) in the Retailer’s Demand 

Lead Time (L) from the Supplier to the 
Manufacturer 

Penalty Cost / Holding Cost  Ratio 

MMSE, SMA and SES 

Number of Terms (n) used in 

 Simple Moving Average 

SMA 

Smoothing Constant (α) SES 

Table 7-3 Factors affecting the Value of Demand Information Sharing 

In the following sub-sections we present the range of values for each of the above 

factors.  

7.3.10.1. Demand Parameters 

The regions of demand parameters selected in this research ensure that the demand 

processes are stationary and invertible. In addition, as discussed in the previous sub-

section, the regions of demand parameters are restricted to those that lie within the 

Bullwhip Effect (BE) region. Although, for non-optimal forecasting methods, the 

Bullwhip Effect is observed in the whole stationary and invertible region, the same 

parameter ranges have been used as in optimal methods for consistency (see sub-

section 7.3.9) 

In the following table (Table 7-4) we present the demand ranges used in the 

simulation experiment.  
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Demand 

Process 

Regions of values of Ρand Θ - based on the process 

being stationary, invertible and within the bullwhip 

region 

ARIMA (1, 0, 0) 0 < ρ  < 1 

ARIMA (2, 0, 0) 
10 2ρ< <  

20 1ρ< <  

ARIMA (0, 0, 1) -1 < θ  < 0 

ARIMA (0, 0, 2) 
 

02 1 <<− θ  

01 2 <<− θ  

ARIMA (1, 0, 1) 
 

1 1

1 1

ρ
θ

ρ θ

− < <

− < <

>

 

ARIMA (0, 1, 1) 

ARIMA (1, 1, 1) 

ARIMA (0, 2, 2) 

ARIMA (1, 1, 2) 
 

The bullwhip regions for non-stationary demand 
processes are unknown. Various parameter regions 
were simulated within stationary and invertibility 
regions and parameters were selected where 
amplification in demand variance was experienced. 

Table 7-4 Range of Demand Parameters (Box et al, 1994, Li et al, 2005) 

None of the papers discussed in the literature review of the ABE (see section 2.4) 

analyse the parameter regions for the Bullwhip Effect for the non-stationary 

processes. In order to resolve this issue, we simulate various parameter regions for all 

the non-stationary processes and select the parameter values where we find an 

amplification of the demand variance.  

7.3.10.2. Range of Values of Noise in the Retailer’s Demand 

We will assume that there is noise variance of 10, 50 and 100 in the demand 

generated. These values have also been used in Lee et al (2000) and Raghunathan 

(2001), while Li et al (2005) assumed the value to be 50. When we look at the effect 

of other factors on the value of information sharing, we assume the variance to be 50. 

The rationale for the above choice of range of variance of noise is based on the 

comparison with previous papers (Lee et al, 2000; Raghunathan, 2001; Li et al, 

2005). Real data may exhibit greater variability; the effects of such high variances 

are assessed in sub-section 9.7.4 of the empirical analysis. 
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7.3.10.3. Range of Lead Times from the Supplier to the Manufacturer 

We simulate Lead Times from the manufacturer to the retailer (l) and from the 

supplier to the Manufacturer (L) of 1, 6 and 12 periods. Lee et al (2000) and 

Raghunathan (2001) used simulation lead time values from 1 to 10 and kept 10 as 

constant when looking at the effect of other factors. When we look at the effect of 

other factors on the value of sharing demand information, we assume L =12. 

Lee et al (2000) has shown that l has a slight effect on the manufacturer’s inventory 

in the case of the DIS approach. Therefore, we only experiment by changing the 

value of ranging the value of L. In all replications, we assume that the retailer’s and 

the manufacturer’s lead times are equal i.e. l = L. One further scope for refinement of 

this research is to study the effect of l on the value of information sharing.  

7.3.10.4. Range of Values of the Cost Ratio 

As shown by Lee et al (2000), there is an effect of the Cost Ratio (as discussed in 

sub-section 3.7.3.1) on the value of sharing demand information for an AR (1) 

process. They assumed the value of the penalty cost to be 25 and that of the 

inventory holding cost to be 1. We use three values of the penalty cost, namely 2, 25 

and 50, to evaluate the effect of the cost ratio on the value of information sharing. 

When we look at the effect of other factors, we assume the penalty cost to be 25. 

7.3.10.5. Forecasting Method Parameters 

We have used three forecasting methods in the simulation program to forecast the 

lead time demand. These are the Minimum Mean Squared Error (MMSE) forecast, 

Single Exponential Smoothing (SES) and Simple Moving Averages (SMA). The 

MMSE forecast utilises the range of parameters which lie within the stationary, 

invertibility and bullwhip regions, as shown in Table 7-4.  

For non-optimal methods, we choose parameter ranges for forecasting methods based 

on expert recommendation. For SES, the range recommended for the smoothing 

parameter (alpha) is between 0 and 1 (Gardner, 1985; Gardner, 2006). Thus, we use 
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0.1, 0.3 and 0.8 in the simulation. When we look at the effect of other factors, we 

assume the smoothing constant to be 0.3.  

The range of number of terms in SMA is taken to be 3, 6 and 12 periods (Johnston et 

al, 1999; Boylan and Johnston, 2003). When we look at the effect of other factors, 

we assume the number of terms to be 6.  

7.3.11. Performance Metrics 

This has been discussed in detail in Chapter 3. The simulation program will result in 

calculating the values of the following performance metrics for the four approaches: 

• Forecast Error (Mean Square Error) 

• Bullwhip Ratio 

• Average Inventory Holdings 

• Average Inventory Costs 

The measurements of the above performance metrics have been discussed in detail in 

Chapter 3. In the empirical analysis we also use Mean Absolute Percentage Error 

(MAPE) and compare the MSE with the MAPE results.  

7.4. Technical Details 

The simulation code is written in Visual Studio.net. The simulation is designed in 

such a way that the length of the data series and the number of replications can be 

varied. We simulate 2000 data series of 100 observations for each demand model. 

The process is repeated every time the simulation experiment is run. The simulation 

is run a number of times to ascertain the effect of factors by assuming different 

values of these factors, as discussed in this chapter. The results for all performance 

metrics are recorded for the 2000 series and then averaged. 

In stages II and III, we use the autoarima function of the C Numerical Library 

(developed by Visual Numeric) for process identification and parameter estimation. 

The autoarima function automatically identifies the order of the ARIMA process and 
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determines the parameters of the process. We use the Grid-Search method of the 

autoarima function for process identification and parameter estimation. The Grid-

Search method in autoarima gives the option of specifying the range of the possible 

combinations of candidate values of p, d and q. The function then identifies the 

optimum values of p, d and q according to the BIC measure and returns these values 

in the form of an array. The function also estimates the constant term, the moving 

average parameters and the autoregressive parameters for the given time series based 

on an ordinary least squares method.  

7.5. Verification 

Davis (1992) defines verification as the process of ensuring that the model design has 

been transformed into a computer model with sufficient precision. Steps taken in 

order to verify the simulation model used in this research are summarised below: 

• The Visual Basic code has been read through to ensure that the right data and 

logic have been entered. 

• Visual checks have been carried out by stepping through the model at every 

event. This option is provided by default by the computer software Visual 

Basic.Net. 

• A selection of the time series generated by the simulation has been exported 

to Microsoft Excel where the mean and standard deviation of the series have 

been verified by using the built-in Excel functions. 

• The selection of demand parameters was made to ensure they lie within the 

Bullwhip Effect region. For each time series generated by the simulation 

experiment, the variances of the demand and order of the retailer were 

checked to verify that there is amplification in the demand variance. 

• The same supply chain model was designed in Microsoft Excel and inventory 

costs were compared for selected series. The results of both models were 

found to be exactly the same. 
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• The simulation experiment in Lee et al (2000) was replicated by using the 

same values of lead time, standard deviation in the noise and the 

autoregressive parameter in the simulation of this research. The results were 

then compared and the performance metrics of both the research were found 

comparable (see section 8.4).   

7.6. Conclusions 

In Chapter 5, we presented four demand information sharing approaches. We use 

four performance metrics in this simulation experiment, namely forecast error 

(MSE), Bullwhip Ratio, inventory holdings and inventory cost. Simulation is used in 

this research to establish comparisons between the different approaches in terms of 

the four performance metrics. The first reason to use simulation is that the first two 

performance metrics, mean squared forecast error and Bullwhip Ratio, are very 

complex to analyse mathematically. Secondly, the mathematical analysis in this 

research incorporates an approximate inventory holdings equation. As the inventory 

cost calculation is based on inventory holdings, the values of inventory costs are also 

of an approximate nature.  

The literature review shows that all papers restrict their simulation to one or two 

demand processes. In order to obtain more comprehensive results than previous 

authors, we simulate nine different demand processes. The mathematical analysis for 

AR (1) (Lee et al, 2000) suggests that noise in the retailer’s demand, the lead time 

from the supplier to the manufacturer, the demand parameters and the cost ratio 

affect the value of DIS. Thus, we look at the effect of these factors on all nine 

demand processes. When we use the SMA forecasting method, we also look at the 

effect of the number of terms used in the moving average on the value of information 

sharing. In the case of SES, we look at the effect of the smoothing constant used on 

the value of information sharing. We calculate the four performance metrics for all 

four information sharing approaches for three stages in the case of optimal methods. 

For non-optimal methods, we compare two approaches for only the first stage of the 

analysis (see Table 7-2). 
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8. Simulation Results  

8.1. Introduction 

Following the discussion on the design of the simulation experiment in the previous 

chapter, we dedicate this chapter to the presentation and discussion of the results of 

the experiments. The results for the MMSE forecasting method are presented for 

each of the three stages. Then we move on to the discussion for the two non-optimal 

forecasting methods. 

One of the main aims of this chapter is to provide insights into the performance of 

different approaches to demand information sharing. For the optimal forecasting 

methods, the performance of CDIS is compared with the two No Information Sharing 

approaches and the traditional Demand Information Sharing approach. In the case of 

non-optimal forecasting methods, the comparison is limited to CDIS and NIS, as 

NIS-Est and DIS are not relevant in this case (see sub-section 7.3.4). 

We also wish to look at the effect of various factors (lead time, demand variance, 

autoregressive parameters, moving average parameters, cost ratio and forecasting 

method parameters) on the value of sharing demand information. Finally, the 

analytical model (see sub-section 4.2.3.1) shows that for MA (q) processes, there is 

no value of the DIS approach. We not only validate this analytical result via 

simulation, but also quantify the value of demand information sharing by comparing 

the other approaches with the CDIS approach.  

We start the discussion of the results for the MMSE forecasting method by 

presenting a comparison between the three stages for each of the nine demand 

processes. We then proceed to a detailed discussion of the results of Stage I, where 

we show how the demand parameters, demand variability, lead time and cost ratio 

affect the value of CDIS by comparing it with the other three approaches, namely 

NIS, NIS-Est and DIS. The discussion on the results for Stages II and III is then 

presented and in this case we also look at the effect of the length of demand history, 

demand variability, process identification and parameter estimation method. We have 

discussed in Chapter 3 that the nature of MMSE forecasting in the ARIMA 
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methodology requires a NIS-Est approach and therefore the supply chain links 

should not utilise a NIS approach. In the next section, while presenting the results of 

Stage I, we will also establish that NIS always results in higher inventory costs 

compared to the other three approaches. Thus, we show the value of CDIS in Stages 

II and III by comparing it only with NIS-Est and DIS.  

The results for non-optimal forecasting methods are then presented. As discussed in 

Chapter 5, for non-optimal forecasting methods there are no noise term estimation 

issues and therefore the NIS-Est and DIS approaches are not relevant. The results for 

non-optimal forecasting methods are thus presented by comparing only NIS with the 

CDIS approach.  

8.2. Performance of CDIS for Optimal Forecasting Methods  

As mentioned above, when the supply chain links use the MMSE forecasting method 

(optimal forecasting method), there are different demand information sharing 

approaches. In order to discuss the performance of CDIS, we compare the reduction 

in inventory holdings, inventory costs and forecast error with the other approaches. 

Before moving on to a detailed discussion of the results, we present three rules 

regarding the performance of demand information sharing approaches that are based 

on the simulation results. These rules apply to the Bullwhip Effect regions for all 

demand processes used in the simulation experiment.  

8.2.1. Rules for Sharing of Demand Information 

In this chapter, we establish the following three rules based on the results of the 

simulation experiment. 

Rule 1: Supply Chains with No Information Sharing Strategy 

NIS-Est results in lower inventory cost than NIS for all demand processes 

investigated, except for pure moving average processes, in which case the 

inventory costs are the same. 
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The simulation results show that the NIS-Est results in lower inventory cost, 

averaged over all replications, than the NIS approach, except for pure moving 

average processes. For these processes, the inventory cost remains the same due to 

their conversion into a random process as discussed in sub-section 4.2.3.1. 

The NIS approach, as presented by various papers, involves the calculation of a 

forecast by assuming the noise term to be zero. On the other hand, we introduce the 

NIS-Est approach whereby the manufacturer estimates the noise term by its order 

history. In this case, by utilising an estimate of the noise term, the lead-time forecast 

results in reduced forecast error (as measured by MSE) and thus savings in inventory 

cost. 

Rule 2: Supply Chains with an Information Sharing Strategy 

In all demand processes investigated, CDIS results in lower inventory costs 

compared to DIS 

The simulation results in this chapter show that, for all nine demand processes, in the 

case of an information sharing strategy, CDIS results in lower inventory cost, 

averaged over all replications, than the DIS approach. 

In the DIS approach, the manufacturer makes its lead time forecast based on the 

value of the retailer’s noise term. On the other hand, in the CDIS approach, the 

manufacturer not only shares the demand but also utilises the retailer’s forecast in its 

lead-time forecast. In this way, the variability of the manufacturer’s lead time 

forecast decreases.  

Rule 3: Supply Chains with or without an Information Sharing Strategy 

In all demand processes investigated, CDIS results in lower inventory costs 

compared to NIS-Est 

The inventory cost in the case of CDIS is always less (averaged over all replications) 

than the inventory cost for an NIS-Est approach. Thus, the performance of CDIS in 

terms of inventory cost is the best among the four approaches discussed in the 

research. 
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These three rules are summarised in Figure 8-1 below. An approach is said to be a 

“winner” if, for all demand processes investigated, the average inventory cost is less 

than or equal to that of the alternative approach, averaged over all replications. 

 

Figure 8-1 Inventory Cost Comparison of Information Sharing Approaches 

8.2.2. Performance of CDIS 

Now we move on to the presentation of results to show that, for optimal forecasting 

methods, on average, CDIS results in the lowest MSE, Bullwhip Ratio, inventory 

holdings and inventory cost among all the approaches in all stages. Overall, in all 

simulation runs, irrespective of the demand process and demand parameters, we 

observe that CDIS results in the least inventory cost. 

Lee et al (2000) showed that, in the case of an AR (1) process at the retailer, there is 

value in information sharing. Lee et al (2000) compared the NIS and DIS approaches 

and concluded that DIS is valuable in terms of reduced inventory costs. The 

simulation results in section 8.4 show that the magnitude of savings, as found from 

this simulation, is comparable with the results of Lee et al (2000). The simulation 

design also permits comparisons among the two new approaches, NIS-Est and CDIS. 

Further, we also experiment allowing different model assumptions.   

In stage I, we assume that the retailer and the manufacturer are aware of the demand 

processes and the demand parameters. As discussed in Chapter 5, the value of CDIS 

derives from the fact that the manufacturer forecasts with the less variable consumer 
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demand. When we relax the assumption of known demand parameters in Stage II, we 

observe that the percentage reduction in inventory costs by using CDIS compared 

with the other three approaches is higher than in Stage I. This percentage reduction 

increases further when, in Stage III, we also relax the assumption of known demand 

processes. Thus, the value of CDIS is highest in stage III, less in stage II and is least 

in stage I.  As discussed in sub-section 7.3.3, we perform staged relaxation in the 

study in order to look at the effect of different assumptions on the value of CDIS. 

Stage II is one step away from the strict mathematical model, while Stage III has 

been designed to more closely reflect a real situation, where the supply chain links 

need to first identify the demand process and estimate their parameters before 

making the forecast. One of the reasons for the high value of CDIS in stages II and 

III, as established in this chapter, is inherent in the identification and estimation in 

ARIMA modelling. It is quite possible for the supply chain links to identify the 

wrong demand process and/or estimate demand parameters inaccurately.  Now, 

upstream translation of demand shows that the demand process always becomes 

more variable as it moves up the supply chain. Thus, in the case of DIS and CDIS, as 

the identification and parameter estimation is done through the retailer’s demand, the 

probability of more accurate identification and estimation is higher. Thus, forecasting 

with more precise demand process and parameters results in lower inventory costs. 

Compared to DIS, as the forecasting in CDIS is done through a less variable demand 

process, CDIS results in the lowest inventory cost in all stages. In the following table 

(Table 8-1), we present an average of percentage savings in inventory costs for all 

simulation runs for an AR (1) process for the three stages. We first find that CDIS 

results in the least inventory cost among all approaches. We also find that as we relax 

assumptions, moving towards a more realistic supply chain, the value of Centralised 

Demand Information Sharing increases.  

Stages Percentage savings in inventory cost by using CDIS 
compared with 

 NIS NIS-Est DIS 

Stage I 32.1 10.8  7.6 

Stage II - 63.0 25.8 

Stage III - 72.0 33.8 

Table 8-1 Comparison of three Stages for an AR (1) Process 
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As mentioned above, previous findings are limited to an AR (1) demand process at 

the retailer. In this research, we have simulated nine different demand processes (see 

sub-section 7.3.1 for details) to look at the effect of the demand process at the retailer 

on the value of CDIS. The percentage reductions in inventory cost are calculated by 

assuming the lead time to be 12 (see sub-section 7.3.10.3). The simulation results 

show that the value of CDIS is demand process dependent: the percentage inventory 

savings depends on the nature of the demand process. This is shown in Table 8-2 

below. 

Demand Process Percentage Reduction in Inventory Cost by using CDIS 
 compared to 

 NIS-Est DIS NIS-Est DIS NIS-Est DIS 

 Stage I Stage II Stage III 

AR (1) 10.8  7.6 63.0 25.8 72.0 33.8 

AR (2) 41.0 11.7 71.4 38.2 74.4 41.0 

MA (1) 2.3 48.8 31.5 53.8 35.0 

MA (2) 7.5 59.6 21.5 63.0 28.8 

ARMA (1, 1)  4.9  4.4 49.6 35.8 58.3 41.2 

ARIMA (0, 1, 1) 39.9 17.8 46.5 22.3 63.3 45.4 

ARIMA (1, 1, 1) 58.6 27.8 72.2 57.2 84.2 61.0 

ARIMA (1, 1, 2) 57.7 21.4 74.4 34.6 86.7 52.5 

ARIMA (0, 2, 2) 79.3 48.1 81.4 49.8 83.0 58.0 

Table 8-2 Demand Process Dependent value of CDIS in three stages 

Table 8-2 shows the demand process dependent behaviour of CDIS. In stationary 

processes, the pure autoregressive demand processes yield higher percentage savings, 

by using CDIS, compared to moving average or mixed processes. Pure moving 

average processes result in very low improvement. The results for percentage 

reduction in using CDIS compared to DIS and NIS-Est are the same for the pure 

moving average processes for stage I. The reason is the conversion of these processes 

into a random process as discussed in sub-section 4.2.3.1, yielding the same results 

for DIS and NIS-Est. 
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From Table 8-2, we also observe that the savings in inventory costs are greater when 

the demand process is non-stationary (compared to stationary processes). A higher 

value of the difference operator results in higher savings in inventory costs. In terms 

of stationary processes, more autoregressive parameters in the model result in higher 

savings in inventory cost. There is more cost savings in an AR (2) process compared 

to the AR (1) demand process. To summarise, the model dependency property of the 

value of CDIS shows that the percentage reduction in inventory cost in CDIS 

compared to other approaches is an increasing function of the number of 

autoregressive parameters, p, and the difference parameter, d, for the ARIMA models 

investigated. 

We also observe from Table 8-2 that the percentage savings in Stages II and III are 

substantially greater than those in Stage I. Thus, when the demand process and 

demand parameters are known to the supply chain members, the value of CDIS is 

less. On the other hand, when we move towards more realistic models (Stages II and 

III), the value of CDIS becomes higher.  

Detailed results for MSE, bullwhip ratio, inventory holdings and inventory costs, for 

each of the three stages are given in Appendices 8A, 8B and 8C. These results show 

that the CDIS approach performs better than the other three approaches in terms of 

all four performance metrics. The values of the performance metrics for non-

stationary processes are higher than for stationary processes, owing to the choice of 

demand parameters that may lead to strong trends in the demand series. 

8.3. MSE and the Bullwhip Ratio 

We have discussed in the previous section that, on average, CDIS always results in 

the least inventory cost among the different information sharing approaches in all 

stages. In this section, we will look at two major factors linked with the inventory 

performance of CDIS, namely MSE and the Bullwhip Ratio. The percentage 

reduction in MSE, Bullwhip Ratio and inventory cost by utilising CDIS compared to 

DIS and NIS-Est for an MMSE method is given in Tables 8-3 and 8-4 below. Please 

note that in the two tables we abbreviate Bullwhip Ratio as BR and Inventory Cost as 

IC. 
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Percentage Reduction in Performance Metrics by utilising  
CDIS instead of DIS 

Simulation - Stage I Simulation - Stage II Simulation - Stage III 

Demand 
Process 

MSE BR IC MSE BR IC MSE BR IC 

AR(1) 11.8   9.5   7.6 26.8 35.6 25.8 43.1 41.1 33.8 

AR(2) 15.5   9.8 11.7 41.2 25.8 38.2 54.2 49.1 41.0 

MA(1)   8.0   9.4   2.3 32.5 19.5 21.5 41.8 39.4 35.0 

MA(2)   7.1   9.8   7.5 32.5 45.8 35.8 45.0 38.1 28.8 

ARMA 
(1,1) 

  6.5 3.8   4.9 32.6 33.3 31.5 56.1 51.1 41.2 

ARIMA 
(0, 1, 1) 

22.5 21.6 17.8 25.0 25.9 22.3 60.1 58.8 45.4 

ARIMA  
(1, 1, 1) 

25.2 18.7 27.8 56.3 63.2 57.2 59.6 64.1 61.0 

ARIMA  
(1, 1, 2) 

22.2 18.0 21.4 36.9 29.8 34.6 49.1 60.4 85.2 

ARIMA 
 (0, 2, 2) 

52.7 39.3 48.1 51.2 52.6 49.8 40.1 42.1 58.0 

Table 8-3 Performance of CDIS compared with DIS  

Lee et al (2000), using an AR (1) demand process and assuming the demand process 

and parameters to be known, have shown the existence of a relationship between the 

inventory costs and conditional variance of the lead time demand (conditioned on 

known demand, dt). They compare the inventory costs and conditional variance of 

the lead time demand between the NIS approach and the DIS approach. This shows 

that by utilising an NIS approach, the manufacturer will have a higher conditional 

variance in the lead time demand, which results in higher values of inventory costs. 

When the manufacturer forecasts using the alternate DIS approach, the variability in 

the lead time demand forecast reduces, which results in a lower inventory cost.  

In Table 8-3 above, we compare the percentage reductions in MSE, Bullwhip Ratio 

and inventory costs between the CDIS and the DIS approach for all nine demand 

processes. The results of the AR (1) process shows that high percentage reductions in 

MSE and Bullwhip Ratio are associated with high reduction in inventory costs, 

giving similar results as Lee et al (2000). Table 8-3 shows that for any individual 

demand process, apart from ARIMA (0, 2, 2), any increase in percentage reductions 
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in MSE or BR results in increased percentage reductions in the inventory cost, 

although not with the same magnitude. Thus, our staged relaxation of assumptions 

methodology shows that when the forecast error or the variability in the demand 

decreases due to demand information sharing, the inventory cost will also decrease.  

When the associations are compared across different demand processes, we observe 

that the magnitude with which the percentage reductions in MSE and BR are 

transferred to inventory cost also depends on the demand process. In sub-section 

8.2.2 the demand process dependent behaviour of the value of CDIS was discussed. 

This behaviour is also observed in the Tables 8-3 and 8-4 where the magnitudes of 

transfer of reductions in forecast error and demand variability to inventory cost 

depends on the demand process.  

Percentage Reduction in Performance Metrics by utilising  
CDIS instead of NIS-Est 

Simulation - Stage I Simulation - Stage II Simulation - Stage III 

Demand 
Process 

MSE BR IC MSE BR IC MSE BR IC 

AR(1) 
9.8 11.5 10.8 52.5 65.3 63.0 83.6 90.0 72.0 

AR(2) 
18.0 7.8 41.0 29.8 36.5 71.4 96.7 85.6 74.4 

MA(1) 
7.1 9.4 2.3 52.8 42.5 48.8 61.9 51.2 53.8 

MA(2) 
7.1 9.8 7.5 63.7 62.5 59.6 81.9 71.9 63.0 

ARMA 
(1,1) 

8.0 3.8 4.4 39.4 52.8 49.6 75.8 62.9 58.3 

ARIMA 
(0, 1, 1) 

31.2 29.5 45.6 36.5 25.9 46.5 61.9 41.2 63.3 

ARIMA  
(1, 1, 1) 

31.4 44.2 56.9 66.0 39.6 72.2 75.8 65.0 84.2 

ARIMA  
(1, 1, 2) 

39.2 37.5 58.6 68.4 65.8 74.4 48.7 65.7 86.7 

ARIMA 
 (0, 2, 2) 

61.0 48.5 57.7 72.6 75.8 81.4 45.2 58.0 83.0 

Table 8-4 Performance of CDIS compared with NIS-Est  

Next, we will discuss the simulation results for each of the three stages. 
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8.4. Simulation Results of Stage I 

In this section, we present the simulation results for Stage I for the optimal 

forecasting methods. The results for non-optimal forecasting methods are presented 

in section 8.6. 

In the table below (Table 8-5), we present the percentage reduction in the inventory 

cost by using CDIS, compared to the three other approaches (NIS, NIS-Est and DIS) 

for all the nine processes. The inventory cost for MA (1) and MA (2) is the same for 

the three approaches NIS, NIS-Est and DIS (see sub-section 4.2.3.1). 

Percentage reduction in inventory cost 

by CDIS compared with 

Demand Process 

NIS NIS-Est DIS 

AR (1) 32.1 10.8   7.6 

AR (2) 58.0 41.0 11.7 

MA (1) 2.3 

MA (2) 7.5 

ARMA (1, 1) 32.0   4.9   4.4 

ARIMA (0, 1, 1) 72.1 45.6 17.8 

ARIMA (0, 2, 2) 83.6 79.3 48.1 

ARIMA (1, 1, 1) 89.0 58.6 27.8 

ARIMA (1, 1, 2) 87.4 57.7 21.4 

Table 8-5: Percentage Reduction in Inventory Cost by using CDIS  

The comparisons with the two No Information Sharing approaches show that sharing 

demand information can result in huge savings in inventory cost. The comparison 

with DIS shows that further significant savings in inventory costs can be achieved by 

using the CDIS approach. Similarly, the comparison between NIS and NIS-Est 

shows that NIS-Est results in lower inventory cost than the traditional No 

Information Sharing approach (NIS), with the exception of the pure MA processes.  

Lee et al (2000) quantified the value of information sharing by comparing NIS with 

the DIS approach (see section 5.2). We replicated their simulation design by 

assuming the same values in the experiment (standard deviation (σ) = 50, Lead Time 

from the manufacturer to the retailer (l) = 5, Lead Time from the supplier to the 
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manufacturer (L) = 10, autoregressive parameter (ρ) = 0.1 – 0.9) (see Lee et al 

(2000:636)). The following table (Table 8-6) shows a comparison of the results. 

Percentage Reduction in Inventory Cost in DIS 

compared with NIS 

 

ρ  
Lee et al (2000) Replication 

0.1 1% 1% 

0.3 3% 3% 

0.5 7% 9% 

0.7 22% 21% 

0.9 41% 45% 

Table 8-6: Replication of Lee et al (2000)  

Lee et al (2000) do not present the percentage inventory reductions in a tabular form 

and in Table 8-6 we have used approximate values from Figure 3 in their paper. The 

above table indicates that the results from the replication approximately agree with 

the results of Lee et al (2000).  

8.4.1. Effect of Demand Parameters 

The simulation results show that the performance of CDIS depends on the value of 

the demand parameters. As the objective of this research is to counter the 

amplification of demand variance, we experiment only with the demand parameters 

falling within the Bullwhip Effect region. We observe that when there is 

amplification of demand variance, CDIS always results in cost savings. 

We discussed, in sub-section 7.3.8, that the values of parameters considered for non-

stationary processes in this research are based on simulating different parameter 

regions. No research has yet established the parameter regions for the Bullwhip 

Effect for non-stationary ARIMA processes. Therefore, we restrict the analysis of the 

effect of demand parameters to the discussion of stationary processes. We discuss in 

Chapter 10 that one of the avenues of further research is to mathematically analyse 

the bullwhip regions for non-stationary ARIMA processes.  
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The following figure (Figure 8-2) shows the effect of the autoregressive parameter 

on percentage savings in inventory costs by using CDIS compared to the three other 

approaches for an AR (1) process. We observe that when there is very high 

autocorrelation in the demand (ρ = 0.9), the average percentage savings in inventory 

cost compared to NIS-Est is 35% and savings compared to DIS is 20%. Hence, when 

the value of the autocorrelation coefficient is very high, centralising demand 

information is very valuable for forecasting future demands and providing greater 

inventory cost savings. The results agree with the simulation findings reported earlier 

by Lee et al (2000), comparing DIS with NIS, that the percentage inventory 

reduction increases with increasing values of the autoregressive parameter (see Table 

8-6). 
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Figure 8-2: Percentage Savings in Inventory Cost for an AR (1) Process by using 

CDIS 

A similar pattern was observed for an AR (2) process, showing that higher values of 

the autoregressive parameters (ρ1 and ρ2) result in greater inventory cost savings, as 

exhibited in Appendix 8F. The results in Appendix 8F for the MMSE forecasting 

method show that as the values of the autoregressive parameters increase, the value 

of CDIS also increases. Table 8-7 (page 132) shows a similar pattern for the ARMA 

(1, 1) process. We observe that as the value of ρ  increases, the value of CDIS also 

increases. Thus, we conclude from the above that the value of CDIS is an increasing 

function of the value of the autoregressive parameter, ρ . 

In Figure 8-3 and Table 8-7, we look at the effect of the moving average demand 

parameter, θ, on the performance of CDIS compared to the DIS approach. No 
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previous research has investigated the effect of the moving average parameter on the 

value of demand information sharing. The new simulation results show that there is 

an inverse phenomenon for the moving average parameters in MA (q) as compared 

to the autoregressive parameter.  In the case of a moving average parameter, we 

observe that the percentage reduction in inventory cost is a decreasing function of the 

moving average parameter. Thus, centralising demand information is more beneficial 

at lower values of the moving average parameter. This result is exhibited in the 

following figure, Figure 8-3, for an MA (1) process where we have experimented 

with θ < 0 to confine ourselves to the Bullwhip Effect region (see sub-section 7.3.1 

for details). 
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Figure 8-3: Percentage Savings in Inventory Cost for an MA (1) Process by 

using CDIS instead of DIS 

A similar phenomenon has been observed for an MA (2) process, where the 

percentage savings in inventory cost reduces with the increasing value of both the 

moving average parameters 1θ  and 2θ , as shown in the MMSE results in the first 

table in Appendix 8G. The magnitude of this effect is more marked for an MA (2) 

process than an MA (1) process, where the effect of the moving average parameter is 

slight (see Figure 8-3). 

With the mixed autoregressive moving average stationary process, ARMA (1, 1), 

similar results have been observed. The value of CDIS increases with the increasing 

value of the autoregressive parameter, ρ , and decreases with the increasing value of 

the moving average parameter, θ . This is illustrated in the following table (Table 8-

7): 
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ρ  θ  

            

-0.9 -0.5 -0.1 0.1 0.5 0.9 

-0.9  1.6 1.7 1.8 5.4 23.1 

-0.5   1.0 1.1 4.4 20.1 

-0.1    1.0 3.9 19.4 

 0.1     2.5 18.1 

 0.5      15.3 

Table 8-7: Percentage Savings in Inventory Cost for ARMA (1, 1) by using 

CDIS instead of DIS 

Table 8-7 shows the percentage decrease in inventory cost when CDIS is utilised 

instead of DIS for the parameter region following ρ > θ. This region satisfies the 

conditions of stationarity and invertibility and exhibits the Bullwhip Effect. It is 

obvious from Table 8-7 that the value of CDIS is a function of the demand 

parameters and increases with increasing ρ  and decreasing θ . However, the effect is 

not strong, except for high values of the autoregressive parameter.  

8.4.2. Effect of Standard Deviation  

In this sub-section, we discuss the effect of standard deviation of the noise in the 

retailer’s demand on the performance of the CDIS approach. In the following table 

(Table 8-8), we compare the percentage reductions in the inventory cost of CDIS 

with the other three approaches. In calculating the inventory costs, we experiment 

with values of standard deviation in the retailer’s demand noise in the range from 25 

to 100.  
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Percentage Savings in Inventory Cost 

using CDIS compared with 

Demand Process Standard 

Deviation of 

Noise 
NIS NIS-Est DIS 

  25 49.4 10.9   3.9 

 50 62.2 10.8   7.6 

AR (1) 

100 74.7 11.7 16.7 

  25 53.8 34.8 11.2 

  50 58.0 41.0 11.7 

AR (2) 

100 71.7 55.7 15.8 

  25   0.9 

  50   2.3 

MA (1) 

100   7.8 

  25   0.4 

  50   7.5 

MA (2) 

100 25.4 

  25 23.2   3.6   4.2 

  50 41.0   4.9   4.4 

ARMA (1, 1) 

100 46.9 11.3   9.4 

  25 71.1 36.1 15.6 

  50 75.4 39.9 17.8 

ARIMA (0, 1, 1) 

100 81.3 48.7 24.4 

  25 76.0 40.8 40.4 

  50 83.6 79.3 48.1 

ARIMA (0, 2, 2) 

100 88.9 92.6 91.0 

  25 86.1 21.4 25.3 

  50 89.0 58.6 27.8 

ARIMA (1, 1, 1) 

100 91.7 64.3 47.5 

  25 85.3 56.6 20.7 

  50 87.4 58.6 21.4 

ARIMA (1, 1, 2) 

100 90.8 67.0 36.7 

 

Table 8-8 Effect of Standard Deviation on the Performance of CDIS 

The above table shows that the cost savings can be substantial when the value of 

standard deviation is large. When the standard deviation of noise in the demand is 

high, it is quite logical that more safety stock will be required to counteract this 

variability. Lee et al (2000), using an AR (1) process at the retailer, showed 
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analytically and via simulation that percentage savings in the case of DIS, compared 

to NIS, are an increasing function of standard deviation. We observe a similar 

phenomenon for the savings in the case of CDIS, compared to other approaches, for 

all nine demand processes in the study. 

8.4.3. Effect of Lead Time 

The effect of the lead time from the supplier to the manufacturer has also been 

discussed by Lee et al (2000) for an AR (1) process. The mathematical and 

simulation results in their study show that the value of information sharing increases 

with increasing lead time. Our simulation results confirm the findings of Lee et al 

(2000) and show that the same relationship holds for all the nine demand processes. 

The following figures 8-4 and 8-5 show the percentage savings in inventory cost for 

stationary and non-stationary demands for three different values of lead times.  
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Figure 8-4 Savings in Inventory Cost for Stationary Processes by using CDIS 

instead of DIS 

Figure 8-4 above shows that the savings in terms of inventory costs increase with 

lead time. In sub-section 8.4.1, we discussed that the savings for an AR (2) process 

are greater than for an AR (1) process. Figure 8-4 also shows that the effect on lead 

time for an AR (2) process is more pronounced for longer lead-times, compared to an 

AR (1) process. A similar result was observed in the previous sub-section when the 

effect of variability was discussed. In the same sub-section, we showed that the value 

of CDIS increases with the number of autoregressive parameters: it is more in AR (2) 

compared to AR (1). The above results show that the effect of lead time and 
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variability is amplified when the demand process has more autoregressive 

components.  
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Figure 8-5: Savings in Inventory Cost for Non-Stationary Processes by using 

CDIS instead of DIS 

Figure 8-5 also shows that the value of information sharing increases with the lead 

time. The effect of the number of autoregressive parameters is not the same as for 

stationary processes, and is worthy of further investigation (see sub-section 8.4.1).  

Thus, centralised demand information sharing proves to be more beneficial when the 

lead time between the supplier and the manufacturer is large. This is logical, as the 

forecasts for smaller lead times would be less variable, compared to those for longer 

lead times, thus making centralised demand less critical (Lee et al, 2000; Chandra 

and Grabis, 2005). 

8.4.4. Effect of Cost Ratio 

In the simulation experiment, we vary the Cost Ratio in order to examine how the 

percentage reductions in inventory costs are affected by it.  

It is worth mentioning here that none of the previous studies have looked at the effect 

of the Cost Ratio using simulation. Lee et al (2000) discussed this issue for an AR (1) 

process and showed mathematically that the percentage inventory reduction by using 

DIS instead of NIS is an increasing function of this ratio. The simulation results of 

this thesis are compatible with these findings. We also look at the effect of the Cost 
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Ratio for all nine demand processes and show that a similar pattern can be observed 

in all processes.  

We look at the percentage savings in inventory cost by utilising CDIS compared with 

the traditional Demand Information Sharing (DIS) approach and observe that the 

percentage savings in inventory cost are an increasing function of this cost ratio. 

Thus, when the penalty cost is very high compared to the holding cost, Centralised 

Demand Information Sharing results in higher percentage reductions in the inventory 

costs. This is shown in the following table (Table 8-9): 

Demand Process Cost Ratio(
p

p h+
) 

Percentage Savings in 

Inventory Cost 

2/(2+1)   2.1 

25/(25+1)   5.9 

AR (1) 

50/(50+1)   6.1 

2/(2+1)   8.3 

25/(25+1)   8.8 

AR (2) 

50/(50+1) 13.9 

2/(2+1)   0.6 

25/(25+1)   1.2 

MA (1) 

50/(50+1)   1.6 

2/(2+1)   1.1 

25/(25+1)   6.9 

MA (2) 

50/(50+1)   8.2 

2/(2+1)   1.0 

25/(25+1)   1.9 

ARMA (1, 1) 

50/(50+1)   1.9 

2/(2+1)   8.5 

25/(25+1) 18.6 

ARIMA (0, 1, 1) 

50/(50+1) 22.7 

2/(2+1)   3.9 

25/(25+1) 49.6 

ARIMA (0, 2, 2) 

50/(50+1) 90.9 

2/(2+1) 19.5 

25/(25+1) 20.9 

ARIMA (1, 1, 1) 

50/(50+1) 27.3 

2/(2+1)   9.5 

25/(25+1) 11.5 

ARIMA (1, 1, 2) 

50/(50+1) 21.1 

Table 8-9 Effect of Cost Ratio on the Performance of CDIS compared to 

DIS 
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The above table also indicates that the magnitude in savings for non-stationary 

processes is higher than for stationary processes.  

8.5. Simulation Results for Stages II and III 

Now we move on the presentation of results for Stages II and III. The purpose of the 

staged relaxation is to investigate the effect of different model assumptions (known 

demand process and known demand parameters) on the value of CDIS. Thus, while 

discussing Stages II and III, we do not experiment with different estimation and 

identification processes.  

As discussed in Chapter 3, the nature of the MMSE forecast in an ARIMA 

framework requires the estimation of the noise in the demand. Hence, in order to 

remain consistent with the forecasting approach in the ARIMA methodology, the 

supply chain members do not use the NIS approach.  Moreover, we have also shown 

via the simulation results of Stage I that NIS always results in a higher value of 

inventory costs compared to NIS-Est except for MA (1) and MA (2), where the 

results are the same. Thus, in discussing the results of states II and III, we will 

compare CDIS with DIS and NIS-Est only.  

8.5.1. Value of CDIS in Higher Stages 

In this sub-section, we discuss the reasons for higher values of savings by using 

CDIS in stages II and III. The rationale for the comparison of CDIS with NIS-Est is 

different than the comparison with DIS. We will look at these differences one by 

one. 

8.5.1.1. Comparison with NIS-Est 

When we are analysing the value of CDIS compared to NIS-Est, we are interested in 

knowing what happens when the supply chain links identify and estimate the process 

and its parameters correctly and when they do so incorrectly. This is because the 

inventory cost in the case of NIS-Est depends on the accuracy with which the 

manufacturer performs the identification and the estimation processes. On the other 

hand, as the forecasting in CDIS is dependent on the retailer’s demand, the inventory 
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cost in this case depends on how accurately the identification and estimation 

processes have been performed at the retailer. 

When the manufacturer identifies and estimates its demand process and parameters 

correctly, we observe that there is less value of using the CDIS approach compared 

to when it does so incorrectly. This is because the former case then resembles a Stage 

I environment, where the manufacturer’s forecasting incorporates the correct demand 

process and parameters.  

Conversely, when the manufacturer is inaccurate in its identification and estimation 

process, the value of CDIS is greater (compared to the first case). The rationale is 

simply the incorporation of inaccurate demand parameters and process in its lead-

time forecast when using NIS-Est.  

To test this phenomenon, the simulation experiment was run for an AR (1) process 

and the results were divided into two groups depending on whether the 

manufacturer’s identification and estimation was accurate or not. After observing the 

results (Table 8-10), a similar grouping was done for the retailer (Table 8-11). 

The results for an AR (1) process (Stage III) are shown in the following table (Table 

8-10) to show the effect of the manufacturer’s identification process.  

Identification  by the 

Manufacturer 

Comparison with NIS-Est 

Accurate 69% Value of CDIS is lesser 

Inaccurate 77% Value of CDIS is greater 

Table 8-10 Percentage Savings in Inventory Cost of CDIS for 

Manufacturer’s Process Identification Capability 

If we look at the identification process at the retailer (Table 8-11), we find that its 

accuracy will result in increased value of CDIS compared to inaccurate identification 

of process. 

We summarise these findings in the following table (Table 8-11): 
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Identification by the 

Retailer 

Comparison with NIS-Est 

Accurate 81% Value of CDIS is greater 

Inaccurate 70% Value of CDIS is lesser 

Table 8-11 Percentage Savings in Inventory Cost of CDIS for Retailer’s 

Process Identification Capability 

In summary, as the performance of NIS-Est depends on the identification by the 

manufacturer, the inventory costs decrease when the manufacturer performs better 

identification. Thus, on comparing CDIS with NIS-Est, we observe that better 

identification by the manufacturer will result in less value of CDIS. 

On the other hand, we observe that the performance of CDIS depends on the 

identification of the retailer. Thus, better identification by the retailer will result in 

greater value of CDIS. 

8.5.1.2. Comparison with DIS 

When we are analysing the value of CDIS compared to DIS, the identification 

process at the manufacturer does not matter. Thus, we only look at the two cases 

when the retailer’s identification and estimation process is accurate, and when it is 

inaccurate. This is because, both in DIS and CDIS, the manufacturer does not 

estimate its parameters. Conversely, it calculates these estimates by the upstream 

characterisation of demand formulae. 

Accurate identification and estimation will yield better performance of both DIS and 

CDIS. This has been confirmed by the simulation results as shown in Appendix 8H. 

It should be noted that the difference in performance is less marked than in Table 8-

11. This would again resemble a Stage I environment, where the retailer forecasts, 

knowing the actual demand process. However, forecasting using less variable 

demand in CDIS results in its better performance as already shown in Stage I. On the 

other hand, we observe that when the retailer inaccurately identifies the process and 
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its parameters, the inventory cost of both approaches would increase as shown in 

Appendix 8H. As already discussed, this is because the performance of CDIS and 

DIS depends on better identification of the demand process and its inaccurate 

parameters and incorrect identification leads to higher inventory. Again, we observe 

that there is still value in CDIS, owing to the utilisation of a less variable demand in 

its forecasting process. 

8.5.2. Effect of Demand History 

With ARIMA modelling, longer history facilitates better identification and parameter 

estimation of unchanging demand processes. Thus, when a longer history is 

available, the manufacturer can more accurately identify the process and estimate its 

demand processes. This leads to the manufacturer having less benefit from CDIS as 

the demand history increases. This phenomenon was tested in the simulation 

experiment by varying the length of history available to the manufacturer and the 

results are shown in the following table for an AR (1) demand process. 

Percentage Reduction in Inventory Cost by utilising 

CDIS with NIS-Est 

Length of 

History 

STAGE II STAGE III 

24 64.1 73.1 

48 63.0 72.0 

72 57.6 60.9 

144 51.2 57.2 

Table 8-12 Effect of Length of History for an AR (1) Process 

When comparing CDIS and NIS-Est, the benefit comes from the fact that in NIS-Est, 

the manufacturer has to identify the process and estimate its parameters. Longer 

history facilitates better identification and thus the value of CDIS decreases. 

It was established in sub-section 8.5.1.2 that the accuracy of identification does not 

affect the comparison between CDIS and DIS, as longer history will facilitate both 

CDIS and DIS.  
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The above table also shows that although the value of CDIS becomes lower as the 

length of history increases, the effect of length of history is not very large. This is 

because the increased history length is available to both the retailer and the 

manufacturer (see section 7.3 for the details on the estimation procedure for both 

supply chain links). 

8.5.3. Effect of Demand Variability 

The effect of demand variability on the value of CDIS is analysed in this sub-section. 

The standard deviation of the demand is varied for an AR (1) process and the 

percentage reduction in inventory cost by using CDIS compared to NIS-Est and DIS 

is then calculated. The results are shown in Table 8-13 below.  

Percentage Reduction in Inventory Cost by 
utilising CDIS 

STAGE II STAGE III 

Standard 
Deviation 

NIS-Est DIS NIS-Est DIS 

25 55.5 22.2 70.0 33.1 

50 63.0 25.8 72.0 33.8 

100 68.9 37.7 76.7 34.6 

Table 8-13 Effect of Standard Deviation on Value of CDIS for an AR (1) 

Process 

In sub-section 8.4.2, the effect of standard deviation of noise on the value of CDIS 

was investigated and it was found that the percentage reduction in inventory cost 

increases with the increasing value of the standard deviation in the noise. The above 

table (Table 8-13) shows that the value of CDIS increases with the increasing value 

of standard deviation in the demand. This is because, the higher the variability, the 

more difficult it is to identify the demand process and estimate its parameters. 

Secondly, as we have discussed in sub-section 8.3.2, more safety stock needs to be 

kept to counter higher variability. Thus, we observe that the value of CDIS is an 

increasing function of the standard deviation in the retailer’s demand.  
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8.5.4. Effect of Process Identification 

In sub-section 8.5.1, we have shown that the value of CDIS is less when the 

manufacturer identifies the process accurately. Table 8-10 and Table 8-11 quantify 

how much on average the value of CDIS is reduced when accurate identification 

occurs. Thus, if the manufacturer utilises a better identification method than the one 

used in the simulation, the value of CDIS will be lesser. But as shown in Tables 8-10, 

8-11, 8-12 and 8-13 even accurate process identification will result in having some 

value in CDIS.  

8.6. Simulation Results for Non-Optimal Forecasting Methods 

In the previous section, we presented the results of the simulation experiment for the 

three stages when supply chain links utilise an optimal forecasting method. In this 

section, we will present the results when non-optimal forecasting methods are 

employed by the supply chain links. As discussed in Chapter 3, in practice many 

forecasters choose to use non-optimal forecasting methods, such as SMA and SES, 

based on familiarity, simplicity and ease of use of these methods. 

The simulation results show that, compared to the NIS approach, CDIS results in 

reduction of average inventory, inventory costs and forecast error. As discussed for 

optimal forecasting methods, we present the results by looking at the impact of 

various factors on the absolute values and percentage reduction of the performance 

metrics. 

The objective of this simulation experiment is to evaluate the value of centralised 

demand information sharing. We emphasise the performance of CDIS and not the 

forecasting methods themselves. Stamatopoulos et al (2006), using an AR (1) 

demand process and the SES forecasting method, have shown that the Bullwhip 

Ratio decreases when the forecasting parameter (α) is optimised. As discussed in the 

previous chapter, we look at a range of forecasting parameters for both the methods, 

which may not be the optimised parameter for the given conditions. Thus, the reader 

should bear in mind that the following results provide a comparison between CDIS 

and NIS and not between the performances of the two forecasting methods, SMA 

and SES.  
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8.7. MSE and Bullwhip Ratio 

In section 8.3, we showed that, for any individual process, MSE and the Bullwhip 

Ratio are two major factors linked with reduced inventory cost of CDIS in the case of 

optimal forecasting methods. We now consider the relationship between MSE, 

Bullwhip Ratio and inventory cost in the case of non-optimal forecasting methods. 

The results are given in the following table (Table 8-14). 

Percentage Reduction in the following variables by utilising CDIS against 
NIS 

SMA SES 
Demand 
Process 

MSE 
Bullwhip 

Ratio 
Inventory 

Cost 
MSE 

Bullwhip 
Ratio 

Inventory 
Cost 

AR(1) 65.7 55.2 46.4 71.5 70.6 65.6 

AR(2) 65.3 54.2 44.9 73.7 62.1 60.3 

MA(1) 62.2 65.3 58.0 66.6 72.1 68.8 

MA(2) 70.8 63.6 57.5 70.8 64.5 63.9 

ARMA 
(1,1) 

53.5 39.5 29.3 62.0 76.2 71.0 

ARIMA 
(0, 1, 1) 

52.0 34.8 23.1 64.8 59.4 60.9 

ARIMA 
(1, 1, 1) 

61.1 53.6 47.7 72.0 78.0 70.9 

ARIMA 
(1, 1, 2) 

64.2 54.0 45.1 75.3 63.8 60.1 

ARIMA 
(0, 2, 2) 

57.1 42.1 31.7 76.6 62.2 61.2 

Table 8-14 Contribution towards the Performance of CDIS compared with 

NIS 

Table 8-14 shows that for any individual process, an increase in the percentage 

reduction in MSE or Bullwhip Ratio will result in the increase in the percentage 

reduction in the inventory cost. This is the same result as observed for the optimal 

forecasting methods. Although the results are process dependent, they are less 

sensitive to demand process than was the case for optimal forecasting methods. 
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8.7.1. Effect of Demand Parameters 

In sub-section 8.3.1, we analysed the effect of demand parameters for the stationary 

processes when optimal forecasting methods are employed. We discussed, in the 

previous chapter, that the issue of parameter regions for the Bullwhip Effect is not 

relevant in the case of non-optimal forecasting methods. However, in order for the 

simulation design to be consistent for all forecasting methods, we restrict the analysis 

of non-optimal methods to stationary processes. For optimal forecasting methods, we 

observed that the percentage reduction in inventory costs by using CDIS is an 

increasing function of the autoregressive parameters for AR (1) and AR (2) demand 

processes. We observe that an inverse phenomenon exists in the case of non-optimal 

processes where, for an AR (1) process, the larger the value of ρ , the smaller is the 

percentage reduction in inventory costs.  
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using CDIS compared to NIS
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Figure 8-6: Effect of Autoregressive Parameter in the case of SES 
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Figure 8-7: Effect of Moving Average Parameter in the case of SES 
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Chen et al (2000a) using SMA, and Chen et al (2000b) using SES methods, 

mathematically showed that, for an AR (1) demand process, the Bullwhip Ratio 

decreases with increasing values of the autocorrelation coefficient. We observe the 

same effect in the simulation results (see Figures 8-6 and 8-8). Thus, the simulation 

results are consistent with the mathematical findings of the above two papers. We 

also observe the same effect in an AR (2) process for both SMA and SES where the 

value of CDIS decreases with increasing values of 1 2 and ρ ρ (Appendix 8F). 

We now discuss the effect of the moving average parameters, 1 2 and θ θ , on the value 

of sharing demand information. We observe that the moving average parameter has 

no effect on the value of CDIS (see Figures 8-7 and 8-9) for an MA (1) process.  
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Figure 8-8: Effect of Autoregressive Parameter in the case of SMA 
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Figure 8-9: Effect of Moving Average Parameter in the case of SMA 

The same results have been obtained for an MA (2) process where we observed that 

the percentage reduction in inventory costs by using CDIS compared to NIS remains 
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the same irrespective of the value of the moving average parameters (see Appendix 

8G). 

In the literature, we find that none of the previous papers have looked at the effect of 

the moving average parameters on the value of CDIS. The same gap was also 

discussed for optimal forecasting methods. The simulation results (Figure 8-7, Figure 

8-9 and Appendix 8G) show that the value of CDIS is not affected by the moving 

average parameters. 

8.7.2. Effect of Standard Deviation 

The simulation results show that the reduction in the manufacturer’s inventory costs 

by using CDIS instead of NIS is an increasing function of the standard deviation of 

the noise term in the retailer’s demand. This is the same result as already observed 

for optimal forecasting methods. Thus, the effect of standard deviation in the 

retailer’s noise has the same effect on the performance of CDIS, irrespective of the 

forecasting method employed.  

The average inventory cost reductions for SMA and SES are shown in the following 

two tables (Tables 8-15 and 8-16). 
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Demand process Standard 
deviation of 

noise 

Reduction in inventory cost in 
using CDIS compared to NIS 

25 45.8% 

50 46.4% 
AR(1) 

100 47.0% 

25 44.1% 

50 44.9% 
AR(2) 

100 45.2% 

25 29.1% 

50 29.3% 
ARMA (1, 1) 

100 29.5% 

25 56.8% 

50 57.5% 
MA(1) 

100 57.3% 

25 41.6% 

50 58.0% 
MA(2) 

100 60.1% 

25 19.8% 

50 23.1% 
ARIMA (0, 1, 1) 

100 43.0% 

25 20.8% 

50 47.7% 
ARIMA (1, 1, 1) 

100 74.1% 

25 29.7% 

50 45.1% 
ARIMA (1, 1, 2) 

100 74.5% 

25 33.0% 

50 31.7% 
ARIMA (0, 2, 2) 

100 59.8% 

Table 8-15 Effect of Variability on the Percentage Reduction in Inventory 

Cost for SMA by using CDIS instead of NIS  
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Demand process Standard 
deviation of 

noise 

Reduction in inventory cost in 
using CDIS compared to NIS 

25 53.4% 

50 65.6% 
AR(1) 

100 68.9% 

25 43.5% 

50 60.3% 
AR(2) 

100 63.7% 

25 60.7% 

50 68.8% 
ARMA (1, 1) 

100 71.4% 

25 49.9% 

50 63.9% 
MA(1) 

100 70.9% 

25 65.1% 

50 71.0% 
MA(2) 

100 70.0% 

25 50.8% 

50 60.9% 
ARIMA (0, 1, 1) 

100 61.6% 

25 43.7% 

50 70.9% 
ARIMA (1, 1, 1) 

100 75.5% 

25 46.0% 

50 60.1% 
ARIMA (1, 1, 2) 

100 71.1% 

25 38.8% 

50 61.3% 
ARIMA (0, 2, 2) 

100 74.7% 

Table 8-16 Effect of Variability on the Percentage Reduction in Inventory 

Cost for SES by using CDIS instead of NIS  

Tables 8-15 and 8-16 report the percentage savings in inventory cost when σ varies 

from 25 to 100 for both SMA and SES. We observe that the percentage savings in 

inventory cost increases as σ increases. Thus, both tables suggest that CDIS enables 

the manufacturer to reduce the inventory cost and the percentage reduction is higher 

for larger values of standard deviation in the noise term of the demand process.  
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8.7.3. Effect of the Lead Time 

In this section, we look at the effect of the lead time from the supplier to the 

manufacturer. The simulation results show that the manufacturer’s average 

inventory, inventory costs and forecast errors (MSE) are all increasing functions of 

lead time.  This is again similar to what has already been observed for an optimal 

forecasting method. Thus, there are more benefits of using Centralised Demand 

Information Sharing when lead times are large, irrespective of the forecasting 

method employed. Figure 8-10 and Figure 8-11 show the impact of lead time on the 

percentage reduction in inventory for SMA and SES forecasting methods 

respectively.  
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Figure 8-10 Effect of Lead Time on Percentage Reduction in Inventory Cost 

for SMA by using CDIS instead of NIS  
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Figure 8-11 Effect of Lead Time on Percentage Reduction in Inventory Cost 

for SES by using CDIS instead of NIS  
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The above figures suggest that CDIS provides relatively small savings when the lead 

time is small but relatively large savings when it is large. The rationale for this effect 

is the same as that discussed for an optimal method. The forecast for a shorter lead 

times would be less variable compared to the one with longer lead time, thus making 

centralised demand less critical (see Lee et al (2000), Chandra and Grabis (2005) for 

details).  

8.7.4. Effect of the Cost Ratio 

In this section, we look at the impact of the cost ratio (penalty to the total cost ratio) 

on the percentage savings by using CDIS instead of NIS. The simulation results 

suggest that a higher cost ratio results in higher reduction in absolute values of 

average inventory and inventory costs. In terms of the impact of cost ratio on the 

percentage reduction, we observe an interesting phenomenon. For all stationary 

demand models, the percentage reduction in average inventory and inventory costs 

either increases slightly or remains constant. On the other hand, for non-stationary 

demand processes, the percentage reduction in the average inventory and inventory 

costs decreases with the increasing cost ratio. This is shown in Table 8-17 and Table 

8-18. 
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Demand 
Process 

Forecasting 
Method 

Cost Ratio 

(
p

p h+
) 

Percentage 
Reduction in 

Inventory Cost 

2/(2+1) 45.1% 

25/(25+1) 46.4% 
SMA 

50/(50+1) 46.4% 

2/(2+1) 63.6% 

25/(25+1) 65.6% 

AR(1) 

SES 

50/(50+1) 65.6% 

2/(2+1) 44.0% 

25/(25+1) 44.9% 
SMA 

50/(50+1) 44.8% 

2/(2+1) 58.3% 

25/(25+1) 60.3% 

AR(2) 

SES 

50/(50+1) 60.3% 

2/(2+1) 57.2% 

25/(25+1) 58.0% 
SMA 

50/(50+1) 58.1% 

2/(2+1) 60.1% 

25/(25+1) 68.8% 

ARMA (1, 1) 

SES 

50/(50+1) 69.5% 

2/(2+1) 56.1% 

25/(25+1) 57.5% 
SMA 

50/(50+1) 57.7% 

2/(2+1) 58.9% 

25/(25+1) 63.9% 

MA(1) 

SES 

50/(50+1) 71.7% 

2/(2+1) 27.9% 

25/(25+1) 29.3% 
SMA 

50/(50+1) 29.5% 

2/(2+1) 69.4% 

25/(25+1) 71.0% 

MA(2) 

SES 

50/(50+1) 71.1% 

Table 8-17 Effect of Cost Ratio on the Percentage Reduction in Inventory 

Cost for Stationary Demand Processes 
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Demand Process 
Forecasting 

Method 

Cost Ratio 

(
p

p h+
) 

Percentage 
Reduction in 

Inventory Cost 

2/(2+1) 33.9% 

25/(25+1) 23.1% 
SMA 

50/(50+1) 22.5% 

2/(2+1) 84.2% 

25/(25+1) 60.9% 

ARIMA (0, 1, 1)

SES 

50/(50+1) 48.0% 

2/(2+1) 75.7% 

25/(25+1) 47.7% 
SMA 

50/(50+1) 45.3% 

2/(2+1) 74.6% 

25/(25+1) 70.9% 

ARIMA (1, 1, 1)

SES 

50/(50+1) 43.2% 

2/(2+1) 64.8% 

25/(25+1) 45.1% 
SMA 

50/(50+1) 43.5% 

2/(2+1) 70.5% 

25/(25+1) 60.1% 

ARIMA (1, 1, 2)

SES 

50/(50+1) 44.4% 

2/(2+1) 52.4% 

25/(25+1) 31.7% 
SMA 

50/(50+1) 28.9% 

2/(2+1) 71.1% 

25/(25+1) 61.2% 

ARIMA (0, 2, 2)

SES 

50/(50+1) 48.5% 

Table 8-18 Effect of Cost Ratio on the Percentage Reduction in Inventory 

Cost for Non-Stationary Demand Processes 

Table 8-17 shows that in the case of stationary processes, the percentage reduction in 

inventory cost either increases or remains constant with increasing value of σ. This is 

in contrast with the non-stationary process (Table 8-18) where the percentage 

reduction in inventory cost decreases with increasing value of σ.  

It is noticeable from Tables 8-17 and 8-18 that there is a marked difference between 

the results of SMA and SES. The choice of forecasting parameters for both SMA and 

SES, as discussed in sub-section 7.3.10.5, results in approximately the same average 
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age of the data used in the forecast (Johnston and Boylan, 2003). However, the 

distribution of the weights on historical data used in the methods is quite different, as 

shown in Table 3-2. This may be one factor leading to the greater value of CDIS in 

SES, but more detailed analysis is required to assess this. 

In this research, we have not mathematically analysed the effect of cost ratio. In 

addition, in the literature review of non-optimal forecasting methods, we did not find 

any paper looking at the effect of cost ratio on the value of demand information 

sharing. Thus, we find this an interesting avenue for further research and this is 

further discussed in Chapter 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



M. Ali, 2008, Chapter 8  154 

 

8.7.5. Effect of Smoothing Constant in SES 

Here we discuss the effect of the smoothing constant, alpha, in SES on the 

percentage reduction of average inventory cost. Table 8-19 shows that the percentage 

reduction in inventory cost is an increasing function of the smoothing constant.   

Demand 

Process Alpha 

Percentage Reduction in 

Inventory Cost 

0.1 28.3% 

0.3 65.6% 
AR(1) 

0.8 74.8% 

0.1 21.4% 

0.3 60.3% 
AR(2) 

0.8 87.3% 

0.1 46.8% 

0.3 63.9% 
MA(1) 

0.8 88.4% 

0.1 45.3% 

0.3 71.0% 
MA(2) 

0.8 88.1% 

0.1 14.3% 

0.3 68.8% 
ARMA(1, 1) 

0.8 84.2% 

0.1 56.5% 

0.3 60.9% 
ARIMA(0, 1, 1)

0.8 65.8% 

0.1 59.7% 

0.3 70.9% 
ARIMA(1, 1, 1)

0.8 87.0% 

0.1 58.9% 

0.3 60.1% 
ARIMA(1, 1, 2)

0.8 82.1% 

0.1 54.7% 

0.3 61.2% 
ARIMA(0, 2, 2)

0.8 72.1% 

Table 8-19 Effect of the Value of the SES Smoothing Constant on the 

Percentage Reduction in Inventory Cost 

The upstream translation of demand (as discussed in chapter 4) shows that the 

manufacturer’s history contains information about the retailer’s demand. Higher 

values of the smoothing constant means there is a lower weighting on the history and 

thus more value of CDIS. 
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8.7.6. Effect of Number of Terms in SMA 

The simulation results show that percentage reduction of average inventory, 

inventory costs and forecast errors are a decreasing function of the number of SMA 

terms. The rationale of the impact of number of SMA terms is similar to the impact 

of the smoothing constant in SES. 

Impact of n on % cost reduction
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Figure 8-12 Effect of the Number of Terms in SMA on CDIS for Stationary 

Demand Processes 
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Figure 8-13 Effect of the Number of Terms in SMA on CDIS for Non-

Stationary Demand Processes 

Various papers (e.g. Lee et al, 2000; Raghunathan, 2001) have shown that the 

manufacturer’s demand history contains information about the retailer’s demand. 

Thus, when the manufacturer forecasts with more demand history, they are already 
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utilising the information about the retailer’s demand and there is less benefit from 

sharing the retailer’s demand information.  

Figure 8-13 also shows that the savings for ARIMA (0, 1, 1) are lower than for other 

models, since SES is the optimal method for an ARIMA (0, 1, 1) process.  

8.8. Conclusions 

In this chapter, we have presented the results of the simulation experiment. The 

simulation results show that, on average, Centralised Demand Information Sharing 

always results in the least inventory cost, irrespective of the forecasting method. We 

have also examined various factors: the demand parameters, demand variability, lead 

time and forecasting parameters and have shown that CDIS has some value 

irrespective of these factors.  

Based on the results of the simulation experiment within the Bullwhip Effect regions, 

three rules have been established in terms of the performance of the demand 

information sharing approaches. The first rule refers to supply chains with a “No 

Information Sharing Strategy” and it is established that in all cases, the NIS-Est 

approach results in lower inventory cost than the NIS approach. For supply chains 

with an “Information Sharing Strategy”, the second rule states that the CDIS 

approach results in lower inventory cost than the DIS approach. Finally, the third rule 

states that the CDIS approach results in lower inventory cost than NIS-Est. Thus, the 

CDIS approach, on average, has the lowest inventory cost over all replications. 

In contrast to previous studies where only one demand process was utilised in 

simulation, we have experimented with nine different demand processes. The results 

were different for optimal and non-optimal forecasting methods.  

For optimal forecasting methods, it was observed that the value of CDIS is model 

dependent. The value of CDIS was found to be higher for non-stationary demand 

processes compared to stationary processes. In terms of demand parameters, it was 

observed that the value of CDIS is an increasing function of the autoregressive 

parameters, 1ρ and 2ρ , and a decreasing function of the moving average parameters 

1θ and 2θ .  
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For non-optimal forecasting methods, the value of CDIS is less sensitive to the 

choice of demand process. In terms of the demand parameters, it was found that the 

value of CDIS is a decreasing function of the autoregressive parameters 1ρ and 2ρ . 

However, the moving average parameters 1θ and 2θ had no effect on the value of 

CDIS. 

The staged relaxation approach has shown that the value of CDIS is dependent on the 

model assumptions. The value of CDIS was least in Stage I, higher in Stage II and 

highest in Stage III. Thus, the results show that on relaxing the assumptions (a move 

from a strict mathematical model towards a real life scenario) the value of CDIS 

increases.  

The simulation results showed that, for any individual demand process, MSE and 

Bullwhip Ratio are associated with inventory cost savings. Higher percentage 

reductions in MSE or Bullwhip Ratio will result in higher reductions in the inventory 

cost, although not with the same magnitude. This was observed both for optimal and 

non-optimal forecasting methods.   

We argued in Chapter 5 that utilising the demand and forecast of the downstream 

member in the CDIS approach will be beneficial to the upstream member in terms of 

the four performance metrics. The simulation results have shown that the CDIS 

approach results in the lowest forecast error, Bullwhip Ratio, inventory holdings and 

inventory cost among the four approaches discussed in this research. 
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9. Empirical Analysis 

9.1. Introduction 

In this chapter, we assess the empirical validity of the theoretical and simulation 

findings in this research. We developed the operational rules for the supply chain 

model in Chapters 3 and 7. These rules were then tested in the simulation experiment 

and results were presented in Chapter 8. Although some model assumptions were 

relaxed, other assumptions were retained (eg unchanging ARIMA processes with 

constant parameters over time). In this chapter, model assumptions are relaxed even 

further, by testing results on empirical data.  

There are numerous papers giving empirical evidence of the Bullwhip Effect’s 

existence (see sub-section 2.3.1). However, the literature review of papers modelling 

the value of demand information sharing (see section 5.2) shows that, with few 

exceptions, the papers are based on mathematical and simulation analysis. There has 

been very little empirical evidence to support these analyses. Hosoda et al (2008) 

quantify the value of sharing demand information in a cold drink supply chain but 

look at only three product series. Wong et al (2007) quantify the value of information 

sharing in a toy supply chain. Although they analyse 46 data series, the analysis is 

restricted to quantifying the value of information sharing in terms of reduced 

Bullwhip Effect. The empirical work presented in this chapter is therefore of some 

significance, as the analysis is based on 1773 fast moving products. 

We analyse two year weekly sales data of a European grocery supermarket. For 

confidentiality reasons, the supermarket and their customers remain anonymous. A 

description of the dataset is provided in section 9.3. 

9.2. Rationale for Empirical Analysis 

Empirical analysis serves the following purposes in this research: 

• Empirical analysis is performed to validate the theoretical and simulation findings 

in earlier chapters. The simulation findings show that the CDIS approach results 



M. Ali, 2008, Chapter 9  159 

 

in the least inventory cost among the supply chain members. We are interested in 

finding out whether the empirical analysis agrees with these earlier findings on 

the performance of CDIS. 

• In the simulation experiment we also looked at the effect of various factors on the 

value of CDIS, namely lead time, demand parameters, demand variability, cost 

ratio and forecasting parameters. The empirical analysis will assess the effect of 

these factors in a real world scenario. 

9.3. Data Series 

The real demand data series acquired for this empirical research consist of two years 

of weekly sales data of a European grocery supermarket. The data provided was 

cleaned, leaving only fast moving products, and 3001 series were selected. The 

criterion for selection of fast moving products was an average demand of at least 100 

units per month over two years with no periods of zero demand. Ignoring products 

having periods of zero demand cleaned the data for intermittence.  

The forecasting and inventory rules presented in Chapters 3 and 7 have been 

established specifically for non-seasonal time series. The next step, therefore, was 

scanning monthly data for seasonality. Monthly data was used for this purpose, 

rather than weekly data, as it exhibited more stable seasonal patterns. For seasonal 

scanning, we used the Grid Search method of the autoarima function of the C 

Numerical Library (see details of the autoarima function in section 7.4) and set the 

seasonal parameters as 4, 6 and 12 in the grid search. This helped to identify any 

quarterly, biannual and annual seasonal patterns. Data series exhibiting seasonality 

were excluded from the detailed empirical analysis to follow, which left 1997 non-

seasonal time series. 

Further cleaning of data was performed for series with demand parameters lying 

within the Anti-Bullwhip Effect region (see Table 7-4 for details). This research 

focuses on reducing the amplification in demand variance in supply chains. Thus, 

data series where the demand parameters were within the Anti-Bullwhip regions (i.e. 

regions where the demand variance decreases) were ignored. There were 224 series 
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identified within such regions. This ensures that our empirical analysis is consistent 

with the simulation experiment.  

No information has been provided regarding the product description, product cost or 

any other details for the SKUs.  

9.4. Identification of ARIMA Models 

In total there are 1773 data series which match the definition of non-seasonal fast 

moving products lying within the bullwhip parameter region (see previous section for 

the detailed screening methodology). The grid method of the autoarima function (see 

section 7.4) was then used to identify the process on weekly data. This method 

requires specification of the range of values for p, d, q and s. The values of p, d and q 

refer to the coefficients in an ARIMA (p, d, q) process and s is the seasonality factor; 

its value depends on the seasonality pattern observed in the data history. We keep the 

value of s to be 1 in order to specify that the data series are non-seasonal. 

Process Parameter Range provided for Grid 

p 0,1,2 

d 0,1,2 

q 0,1,2 

s 1 

Table 9-1 Grid Range for Process Identification 

The ranges of p, d and q provided in the process identification, p, d, q ≤ 2, have been 

chosen for consistency with the design of the simulation experiment.  

 

 

  

 

 

 



M. Ali, 2008, Chapter 9  161 

 

The following tables give an overview of the properties of the empirical data. 

Stationary Series 1007 

Non-Stationary Series 766 

Total number of Series 1773 

 

Table 9-2 – Number of Stationary and Non-stationary Series 

Table 9-2 shows that the empirical data contains a good mix of stationary and non-

stationary data series with approximately 43% non-stationary and 57% stationary 

series. Further, we divide the empirical series into the demand processes as identified 

by the software (see sub-section 7.3.6 for details on the process identification 

process). 

Demand Process No. of series 

Random Process  

ARIMA(0,0,0) 113 

ARIMA(0,1,0)   76 

Stationary Process  

AR(1) 295 

AR(2) 246 

ARMA(1,1)   76 

MA(1)   76 

MA(2)   71 

ARMA(2,1)   40 

ARMA(2,2)   29 

ARMA(1,2)   61 

Non-Stationary Process  

ARIMA(0,1,1)   17 

ARIMA(1,1,0) 195 

ARIMA(1,1,1)    5 

ARIMA(1,1,2)    5  

ARIMA(1,2,0)    3 

ARIMA(2,2,0)    2 

ARIMA(2,1,2)    4 

ARIMA(2,1,1)   12 

ARIMA(2,1,0) 447 

 

Table 9-3 Number of Series, by ARIMA Processes 
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Table 9-3 above shows that, for some ARIMA processes, only a few series have been 

identified and thus in-depth analysis cannot be performed for those processes. 

However, these series are not excluded from aggregate analyses,  as in Table 9-36 

and Appendices 9D and 9E. We analyse twelve demand processes where at least 20 

series have been identified. The above table (Table 9-3) shows that, using the 

criterion of at least 20 series, there are sufficient numbers of series for all random 

and stationary demand processes to permit in-depth analysis. In terms of non-

stationary processes, apart from ARIMA (1, 1, 0) and ARIMA (2, 1, 0), very few 

series have been identified in the empirical data for the other processes, and these 

processes with few series will not be analysed in depth. A large number of series has 

been identified for ARIMA (2, 1, 0); as higher order processes of the form ARIMA 

(p, 1, 0) where p ≥ 3 were not investigated, it is impossible to be certain that such 

series of higher orders were not present.  

9.5. Design of Empirical Analysis 

The design of the empirical analysis follows the simulation experiment design as 

discussed in detail in Chapter 7. Following the methodology in the simulation 

experiment, we utilise both optimal and non-optimal forecasting methods in the 

empirical analysis.  

Based on the simulation results, we presented three rules regarding the performance 

of approaches to Demand Information Sharing in the Bullwhip Effect region (see 

sub-section 8.2.1). We showed, in Rule 1, that if a supply chain follows a strategy of 

not sharing demand information, NIS-Est results in lower inventory cost compared to 

the NIS approach. We have also discussed in detail in sub-section 7.3.4 that in order 

to maximise the benefits of the ARIMA methodology, a supply chain member should 

not utilise the NIS approach. Thus, similar to the approach in stages II and III in 

simulation, we compare only three approaches in the empirical analysis, namely NIS-

Est, DIS and CDIS.  

On the other hand, in the case of non-optimal forecasting methods, NIS-Est and DIS 

are not relevant. Thus, using the same approach as in simulation, we compare NIS 

and CDIS for non-optimal forecasting methods in the empirical analysis. For optimal 
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forecasting methods, the same series splitting approach is employed as for the stages 

II and III of the simulation experiment. The series is broken into two equal parts of 

52 periods each and the first part of the series is used for estimation and the second 

part for performance measurement. The estimation part is divided into two equal 

parts of 26 periods each (see sub-section 7.3.7).  

Consistent with the simulation experiment, we use Mean Squared Error (MSE), 

Bullwhip Ratio, inventory holdings and inventory cost as the performance metrics. 

As discussed in section 3.7, we also calculate the Mean Absolute Percentage Error 

(MAPE) in the empirical analysis. As no information on product cost, lead time or 

inventory model has been provided, we will make similar assumptions for the 

inventory costs as made in the simulation experiment (see section 7.3 for details on 

the selection of these values). Using these performance metrics, we evaluate which 

of the approaches, as presented in Chapter 5, results in least inventory cost.  

9.6. Results of Empirical Analysis for Optimal Forecasting 

Methods 

Following the discussion in the previous section on the design of the empirical 

analysis, we move on to the presentation and discussion of the results of the analysis.  

We start the discussions by looking at the performance of CDIS for different demand 

processes for the optimal forecasting methods. In doing so, we also compare the 

results of empirical analysis with those of the simulation. We then move on to the 

discussion of the effect of demand parameters, demand variability, cost ratio and 

manufacturer’s lead time on the value of CDIS.  

The results of the empirical analysis clearly show that the Centralised Demand 

Information Sharing (CDIS) approach always results in less inventory cost than DIS 

and NIS-Est. This finding is in accordance with the results of the simulation 

experiment. Thus, the rules established in Chapter 8 comparing CDIS with DIS and 

NIS-Est have been confirmed by the empirical analysis. 
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9.6.1. Demand Process Dependent Behaviour 

The simulation findings have shown that the value of CDIS is demand process 

dependent: the values of the performance metrics depend on the demand process. 

These findings are confirmed by the empirical analysis. 

In the following tables we not only present the findings from the empirical analysis 

but also compare them with the simulation results of the three stages. For comparison 

with simulation results, in Tables 9-4 and 9-5 we only present results for processes 

common to both simulation and empirical analysis. In Table 9-4, we show the 

percentage reduction in the inventory cost by using CDIS instead of NIS-Est, while 

the comparison with DIS is presented in Table 9-5. In Appendix 9A, we present the 

results of all performance metrics for all the demand processes with at least 20 series 

and we proceed to discuss the results of other performance metrics in sub-sections 

9.6.2 and 9.6.3. In Appendix 9A, the twelve processes which have a sufficient 

number of data series for analysis (section 9.4) show a demand process dependent 

behaviour. 

Demand Process Percentage Reduction in Inventory Cost by using CDIS instead 

of NIS-Est 

 Simulation  

Stage I 

Simulation 

Stage II 

Simulation 

Stage III 

Empirical 

Analysis 

AR (1)       10.8       63.0       72.0       41.1 

AR (2)       41.0       71.4       74.4       16.6 

MA (1)         2.3       48.8       53.8       34.8 

MA (2)         7.5       59.6       63.0       22.8 

ARMA (1, 1)         4.9       49.6       58.3       48.6 

Table 9-4   Percentage Savings in Inventory Cost for Stationary Processes by 

using CDIS instead of NIS-Est 
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Demand Process Percent Reduction in Inventory Cost by using CDIS instead of 

DIS 

 Simulation 

Stage I 

Simulation 

Stage II 

Simulation 

Stage III 

Empirical 

Analysis 

AR (1)        7.6      25.8      33.8        6.2 

AR (2)      11.7      38.2      41.0        7.2 

MA (1)        2.3      31.5      35.8      15.5 

MA (2)        7.5      21.5      28.8        8.1 

ARMA (1, 1)        8.2      35.8      41.2      14.9 

Table 9-5  Percentage Savings in Inventory Cost for Stationary Processes by 

using CDIS instead of DIS 

The above tables clearly show the demand process dependent value of CDIS which 

was also revealed in the simulation analysis in Chapter 8.  We have discussed in 

detail the rationale for the increasing value of CDIS as the stages proceed in sub-

section 8.1.2. The objective of presenting the above tables is to give some insights 

into the comparison of the theoretical and empirical research. 

Firstly, consistent with the simulation findings, the results of empirical analysis also 

show that there is value in CDIS.  

The staged relaxation approach in the simulation experiment showed that the 

percentage reduction in inventory cost is highest in stage III, less in stage II and is 

least in stage I. This indicates that as we move away from a model with strict 

assumptions towards a one with more relaxed assumptions, the value of CDIS 

increases. For further comparison between the theoretical and empirical findings, we 

compare the results of the empirical analysis with those of Stage III of the 

simulation. In the simulation study, Stage III has been designed to most closely 

reflect a real life scenario (see details on this in Chapter 7). Thus the value of CDIS 

for the empirical data was expected to be closer to stage III. However, it is evident 

from Tables 9-4 and 9-5 that the value of CDIS is always higher in Stage III of the 

simulation experiment than in the empirical analysis.   

In the simulation study, we generated different demand processes in a controlled 

environment. This is in contrast to the empirical data which is more complex in terms 

of changes to parameters or to the model itself. One possible reason for the value of 
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CDIS being smaller in the empirical data could be the changing demand model or 

parameters. Further research is required to investigate the value of CDIS in the 

empirical data by updating the demand parameters and model in every period.  

9.6.2. Forecast Error Measures 

In Chapter 3, we discussed that one of the performance metrics of this research is 

forecast error. We also mentioned that where the distribution may not be well 

behaved (particularly for empirical data) a single forecast error measure may not 

capture the necessary complexity of the error distribution and that dimensionless 

error measures should be used (Fildes, 1992; Armstrong and Fildes, 1995). Thus, in 

the empirical analysis, we have also used Mean Absolute Percentage Error (MAPE) 

and compare the results of MSE with MAPE. 

In the following tables (Table 9-6 and Table 9-7), we present two comparisons in 

terms of the percentage reduction of forecast error by utilising CDIS instead of DIS 

and NIS-Est. In both tables, the first comparison is of the forecast error measure, 

MSE, between the simulation and empirical analysis. The second comparison is 

between the two error measures, MSE and MAPE, used in the empirical analysis. 

Empirical Analysis MAPE Demand 

Process 

Percentage 
Reduction in 

MSE 
(Simulation 
Stage III)  

Percentage 
Reduction 

in MSE 
(Empirical)  

 

 
DIS 

 
CDIS 

% 
reduction  

AR(1) 43.1   7.1 42.6 39.2 7.9 

AR(2) 54.2 19.1 41.9 37.5 10.4 

MA(1) 41.8   7.8 41.7 36.2 13.1 

MA(2) 45.0 12.8 38.2 32.5 14.9 

ARMA (1,1) 56.1 48.0 64.7 55.0 15.0 

Table 9-6 Comparison between MMSE Forecast Error Measures (DIS v 

CDIS) 
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Empirical Analysis MAPE Demand 

Process 

Percentage 
Reduction in 

MSE 
(Simulation 
Stage III)  

 

Percentage 
Reduction 

in MSE 
(Empirical)  

 

 
NIS-Est 

 
CDIS 

% 
reduction  

AR(1) 83.6 46.2 49.2 39.2 20.3 

AR(2) 96.7 32.4 47.5 37.5 21.3 

MA(1) 61.9 28.1 44.1 36.2 17.9 

MA(2) 81.9 29.7 43.2 32.5 24.8 

ARMA (1,1) 75.8 54.4 76.1 55.0 27.7 

Table 9-7  Comparison between MMSE Forecast Error Measures (NIS-Est v 

CDIS) 

The comparison between percentage reduction in MSE of simulation and empirical 

analysis shows that the MSE reduction is less in empirical analysis than in 

simulation. We observed the same phenomenon when we compared inventory cost 

between simulation and empirical analysis. We discuss this further in the next section 

(section 9.7).  

Next, we compare the two forecast errors, MSE and MAPE, which we have used in 

our empirical analysis. We observe that the percentage reduction in MSE is high 

compared to the percentage reduction in MAPE. This difference is inherent in the 

nature of these forecast measures as MSE is a squared measure while MAPE is not. 

Most importantly, we observe that the results of MAPE show improvements by using 

CDIS, consistent with the results of all other performance metrics (Appendix 9A). 

9.6.3. Performance of CDIS 

We have discussed in the previous section that, on average, CDIS always results in 

the least inventory cost among the different information sharing approaches. In this 

section, we will look at two factors linked with the inventory cost performance of 

CDIS, namely Forecast Error (in terms of MSE and MAPE) and the Bullwhip Ratio. 

We present results of the empirical analysis in terms of the Forecast Error (MSE and 

MAPE) and the Bullwhip Ratio in the following tables. 
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Percentage Reduction in the following variables by utilising CDIS 
instead of DIS 

Simulation Results – Stage 
III 

Empirical Analysis 

Demand 
Process 

MSE Bullwhip 
Ratio 

Inventory 
Cost 

MAPE MSE Bullwhip 
Ratio 

Inventory 
Cost 

AR(1) 43.1 41.1 33.8 7.9   7.1 23.3 6.2 

AR(2) 54.2 49.1 41.0 10.4 19.1 27.6 7.2 

MA(1) 41.8 39.4 35.0 13.1   7.8 32.2 15.5 

MA(2) 45.0 38.1 28.8 14.9 12.8 19.8 8.1 

ARMA 
(1,1) 

56.1 51.1 41.2 27.7 48.0 42.9 14.9 

Table 9-8 Performance of CDIS compared to DIS (Stage III Simulation and 

Empirical Analysis) 

Percentage Reduction in the following variables by utilising CDIS 
instead of NIS-Est 

Simulation Results – Stage 
III 

Empirical Analysis 
Demand 
Process 

MSE Bullwhip 
Ratio 

Inventory 
Cost 

MAPE MSE Bullwhip 
Ratio 

Inventory 
Cost 

AR(1) 83.6 90.0 72.0 20.3 46.2 44.8       41.1 

AR(2) 96.7 85.6 74.4 21.3 32.4 25.8       16.6 

MA(1) 61.9 51.2 53.8 17.9 28.1 28.9       34.8 

MA(2) 81.9 71.9 63.0 24.8 29.7 41.8       22.8 

ARMA 
(1,1) 

75.8 62.9 58.3 15.1 54.4 25.4       48.6 

Table 9-9 Performance of CDIS compared to NIS-Est (Stage III Simulation and 

Empirical Analysis) 

The simulation results (section 8.3) show that Forecast Error (in terms of MSE) and 

the Bullwhip Ratio are associated with inventory cost. It was found that for any 

individual demand process, the percentage reductions in MSE and Bullwhip Ratio by 

using CDIS are transferred to percentage reductions in inventory cost, although not 

with the same magnitude. 



M. Ali, 2008, Chapter 9  169 

 

The empirical results (Tables 9-8 and 9-9) show the same phenomenon as observed 

in the simulation experiment. Thus for any individual demand process, as a 

consequence of changed assumptions in modelling, we observe when the forecast 

error or the demand variability decreases due to demand information sharing, the 

inventory cost will also decrease. This is now established in both simulation and 

empirical analysis for optimal forecasting methods. 

9.6.4. Effect of Demand Variability 

In order to consider the effect of demand variability in the empirical analysis, we 

have looked at the effect of standard deviation in the demand on the value of CDIS. 

In the simulation experiment, demand variability was analysed by looking at the 

effect of standard deviation in the noise of the demand on the value of CDIS. Of 

course, the standard deviation in the demand increases with the standard deviation in 

the noise of the demand. It was also observed in the simulation that the inventory 

cost results recorded by varying the standard deviation in the noise of the demand 

were consistent with those observed by examining demand variability. As it is very 

time consuming to calculate the standard deviation in the noise of the demand for 

each of the 1773 series, we looked at the standard deviation of the demand.  

For some demand processes, due to smaller number of series, the effect of standard 

deviation could not be analysed. In section 9.4, we discussed that for in-depth 

analysis we will only consider the processes having at least 20 series. All processes 

with 20 series cannot be analysed here as analysis of demand variability requires 

breaking down the total number of series in three groups. Thus, we will only analyse 

those processes for the effect of demand variability where at least 60 series have 

been identified. The selection of processes with at least 60 series for in-depth 

analysis by breaking them down into three groups is consistent with our earlier rule 

of a minimum of 20 series for in-depth empirical analysis.  
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Reduction in inventory cost in using CDIS 
compared with Demand 

process 
Std dev of 
Demand 

Number of 
Series 

DIS NIS-Est 

0 – 25 169 1.0 30.6 

25 – 50 98 5.1 37.3 
AR(1) 

50 - above 28 9.4 48.2 

0 – 25 139 2.9  9.5 

25 – 50 63 2.0 30.3 
AR(2) 

50 - above 41 7.8 18.0 

0 – 25 49 14.4 22.1 

25 – 50 26 20.4 60.4 

ARMA 

(1, 1) 
50 - above 12 -0.3 33.3 

0 – 25 43 3.2 28.1 

25 – 50 12 9.8 30.1 
MA(1) 

50 - above 8 30.7 41.7 

0 – 25 43 18.7 19.6 

25 – 50 16 5.5 12.5 
MA(2) 

50 - above 11 -1.4 39.9 

0 – 25 45 5.2 33.4 

25 – 50 8 12.8 68.2 

ARMA 

(1, 2) 
50 - above 8 6.7 25.9 

0 - 25 69 11.8 59.1 

25 - 50 86 10.4 11.7 

ARIMA 

(1, 1, 0) 
50 - above 39 28.9 33.1 

0 - 25 206 22.0 22.4 

25 - 50 141 29.7 23.1 

ARIMA 

(2, 1, 0) 
50 - above 66 35.1 33.2 

0 - 25 83 0 72.1 

25 - 50 33 0 47.0 

ARIMA 

(0, 0, 0) 
50 - above 13 0 26.6 

0 - 25 40 16.3 60.3 

25 - 50 13 14.2 69.8 

ARIMA 

(0, 1, 0) 
50 - above 23 15.0 60.0 

Table 9-10   Effect of Demand Variability on the Value of CDIS 

The simulation results showed that percentage reduction in inventory cost, by 

utilising CDIS, is an increasing function of standard deviation in the noise of 

demand. We observe in the above table (Table 9-10) that the results are process 

dependent. The results of AR (1), MA (1) and ARIMA (2, 1, 0) show that the value 
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of CDIS increases with the increasing value of standard deviation in the demand. The 

empirical analysis for these three processes reinforces the earlier simulation results. 

On the other hand, this pattern is not observed for the other seven processes.  

The effect of demand variability in the simulation experiment was analysed by 

keeping the demand parameters constant. This is not the case for the empirical 

analysis and thus a possible reason for the inconsistency is the interaction between 

the demand parameters and the demand variability. This is further discussed in the 

next sub-section 9.6.5. 

9.6.5. Effect of Demand Parameters 

Now, we consider the effect of demand parameters on the value of CDIS. The 

simulation results in sub-section 8.3.1 showed that the performance of CDIS depends 

on the value of the demand parameters. In the empirical analysis, we look at each 

process individually and compare the simulation and empirical results. Using the 

same rationale as discussed in sub-section 9.6.4, we restrict discussion to the 

processes where at least 60 series were identified in the empirical analysis. As we are 

looking at the effect of autoregressive and moving average parameters in this sub-

section, ARIMA (0, 0, 0) and ARIMA (0, 1, 0) processes are not discussed. 

We discuss the remaining processes in two sub-sections. AR (1) and MA (1), having 

only demand parameter to estimate, are discussed in sub-section 9.6.5.1. Then, in 

sub-section 9.6.5.2, we discuss AR (2), MA (2) and ARMA (1, 1) as two demand 

parameters must be estimated for these processes. 

9.6.5.1. Single Parameter Processes 

We first look at the effect of demand parameters for processes where only one 

parameter is required to be estimated, i.e. AR (1) and MA (1). There were 294 series 

identified as AR (1) and 76 series as MA (1) in the empirical data. 

We divide the 294 data series identified as AR (1) into three groups based on the 

value of the autoregressive parameter 1ρ . The parameter range is selected so as to 
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have an appropriate number of series in each group. The results are shown in Table 

9-11 below. 

Reduction in inventory cost in using CDIS 

compared 

Demand 

process 
1ρ  

Number of 

Series 
DIS NIS-Est 

< 0.2 75 5.0 38.7 

0.2 - 0.4 137 6.3 39.4 
AR(1) 

> 0.4 82 8.1 44.1 

Table 9-11   Effect of 1ρ  on the Value of CDIS for AR (1) Process 

The simulation results showed that the value of CDIS is an increasing function of the 

autoregressive parameter. This result is confirmed in the empirical analysis for 

comparison of inventory cost with both DIS and NIS-Est approaches.  

Lee et al (2000), by simulating an AR (1) process, quantified the value of demand 

information sharing. They showed that this value is an increasing function of the 

autoregressive parameter, 1ρ . The simulation and empirical results in this research 

agree with the findings of Lee et al (2000). 

We now move the discussion to looking at the effect of the moving average 

parameters on the value of CDIS. We first look at an MA (1) process. 

Reduction in inventory cost in using CDIS 

compared 

Demand 

process 
1θ  

Number of 

Series 
DIS NIS-Est 

< -0.4 7 26.0 40.7 

-0.4 - -0.2 32 11.5 33.1 
MA(1) 

> -0.2 34 0.5 29.7 

Table 9-12   Effect of 1θ  on the Value of CDIS for MA (1) Process 

The above results are similar to the earlier findings in the simulation experiment. The 

simulation results showed that the value of CDIS decreases with the increasing value 

of the moving average parameterθ . This result is also exhibited in the empirical 

findings as shown in Table 9-12 above. Indeed, the effect of the moving average 

parameter is more pronounced in empirical analysis than in simulation. 
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In this sub-section, the effect of demand parameters on the value of CDIS for AR (1) 

and MA (1) processes have been discussed. We observe that the empirical findings 

are consistent with the earlier simulation results on the effect of autoregressive and 

moving average parameters on the value of CDIS. The value of CDIS is an 

increasing function of the autoregressive parameter, 1ρ , and a decreasing function of 

the moving average parameter 1θ . 

9.6.5.2. Double Parameter Processes 

The three processes AR (2), MA (2) and ARMA (1, 1) will be discussed separately in 

this sub-section as there are two demand parameters to be estimated for these 

processes. 

We first analyse the effect of the autoregressive parameters for an AR (2) process. 

The numbers in each box are the percentage reductions in inventory cost obtained by 

using CDIS, while the numbers in brackets are the number of series for each of the 

groups. The rationale for the division of groups is the same as discussed for the AR 

(1) process in the previous sub-section (9.6.5.1). 

2ρ  1ρ  

< 0.2 ≥ 0.2 

< 0.2 2.6 (35) 5.8 (66) 

≥ 0.2 3.3 (91) 16.6 (52) 

Table 9-13   Percentage Reduction in Inventory Cost by using CDIS compared 

to DIS for AR (2) Process 

The simulation results for AR (2) show that, as the value of the autoregressive 

parameters 1ρ and 2ρ  increases, the value of CDIS also increases. We observe that 

when the value of CDIS is calculated in comparison with DIS, the empirical results 

confirm the earlier simulation experiment findings. The value of CDIS in the above 

table (Table 9-13) is increasing both in 1ρ and 2ρ . 
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2ρ  1ρ  

< 0.2 ≥ 0.2 

< 0.2 38.5 (35) 18.3 (66) 

≥ 0.2 17.7 (91) 1.9 (52) 

Table 9-14   Percentage Reduction in Inventory Cost by using CDIS compared 

to NIS-Est for AR (2) Process 

In Table 9-14, the value of CDIS is calculated by comparing the inventory cost for 

CDIS with the inventory cost for NIS-Est. We observe that the value of CDIS is 

decreasing with the increasing value of both 1ρ and 2ρ . This is an opposite 

phenomenon as to what was revealed from our simulation experiment.  

We now analyse the MA (2) process to look at the effect of the moving average 

parameters on the value of CDIS. 

2θ  1θ  

< -0.2 ≥ -0.2 

< -0.2    5.6  (15) 9.1 (24) 

≥ -0.2 21.6 (12) 1.6 (18) 

Table 9-15   Percentage Reduction in Inventory Cost by using CDIS compared 

to DIS for MA (2) Process 

2θ  1θ  

< -0.2 ≥ -0.2 

< -0.2 3.1  (15) 7.4 (24) 

≥ -0.2 43.8   (12) 30.0  (18) 

Table 9-16   Percentage Reduction in Inventory Cost by using CDIS compared 

to NIS-Est for MA (2) Process 

The results of the simulation experiment for MA (2) process showed that the value of 

CDIS is a decreasing function of the value of both θ1 and θ2. The above tables (Table 

9-15 and 9-16) show that this pattern does not hold for the empirical analysis, when 

we look at the effect of the moving average parameters on the value of CDIS for 

comparisons with DIS and NIS-Est. The effect of autoregressive and moving average 

parameters are now analysed for the mixed ARMA (1, 1) process. The reduction in 
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inventory cost by using CDIS compared with DIS is given in Table 9-17, while the 

results when compared with NIS-Est are given in Table 9-18. 

1ρ  1θ  

-0.9 —  0.5 0.5 — 0.9 

-0.9 — -0.3 1.1 (11)  

-0.3 —  0.5 5.0 (11) 15.3 (24) 

0.5 —  0.9  56.6 (41) 

Table 9-17   Percentage Reduction in inventory Cost by using CDIS compared 

to DIS for ARMA (1, 1) Process 

Simulation results showed that when the autoregressive parameter 1ρ  increases, the 

value of CDIS will increase and this is also observed in empirical analysis. However, 

the simulation also showed that when 1θ  increases, the value of CDIS will decrease. 

This pattern is not observed in Table 9-17. 

1ρ  1θ  

-0.9 — 0.5 0.5 — 0.9 

-0.9 — -0.3 9.1 (11)  

-0.3 — 0.5 54.7 (11) 47.0 (24) 

0.5 — 0.9  6.2 (41) 

Table 9-18   Percentage Reduction in Inventory Cost by using CDIS compared 

to NIS-Est for ARMA (1, 1) Process 

The comparison with NIS-Est (Table 9-18) also shows that the pattern expected from 

the simulation results is not observed in the empirical analysis. However, the analysis 

presented in Tables 9-17 and 9-18 are limited to only two intervals for 1ρ and three 

intervals for 1θ due to small number of series observed for ARMA (1, 1). 

It is clear that, for double parameter processes, the empirical results do not all agree 

with the simulation findings. The empirical analysis often does not confirm the 

relationship observed in the simulation experiment. One reason for the difference in 

results in the empirical analysis could be that in the simulation experiment, the effect 

of demand parameters was considered by keeping the standard deviation of the noise 

constant. This is not the case with the empirical analysis where both the demand 
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parameters and the standard deviation in the noise vary in these groups. The dual 

effect of both demand parameters and standard deviation of the noise is a possible 

reason for the difference in results for some processes. In order to resolve this, 

investigation is required to assess the dual effect of the demand parameters and 

standard deviation of noise. Such an analysis should be based on larger data sets, 

which would enable interaction between variables to be analysed in depth, and non-

linear effects (such as those shown in Table 8-7) to be identified. 

9.6.6. Effect of Cost Ratio 

In the simulation experiment, the cost ratio was varied to investigate how the 

percentage reductions in the inventory costs are affected by the cost ratio. In Table 9-

19, we present the results of empirical analysis for the effect of cost ratio on the 

value of CDIS. 

Cost Ratio Percentage Savings in Inventory Cost by using CDIS compared to 

 DIS NIS-Est 

2/(2+1) 14.5 22.5 

25/(25+1) 29.5 53.0 

50/(50+1) 32.9 68.9 

Table 9-19   Effect of Cost Ratio on Percentage Reduction in Inventory Cost 

In the simulation experiment, it was found that the value of CDIS is an increasing 

function of the cost ratio. This result has now been validated by the empirical 

analysis. The results of simulation and empirical analysis have shown that the value 

of CDIS is high when the penalty cost is high compared to the inventory cost.  

9.7. Results of Empirical Analysis for Non-Optimal Forecasting 

Methods 

The results of the empirical analysis for the non-optimal forecasting methods are 

discussed in this section. The results clearly show that the Centralised Demand 

Information Sharing (CDIS) approach always results in less inventory cost than NIS. 

This finding is consistent with the results from the simulation experiment. Thus, the 
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rules established in Chapter 8 with respect to non-optimal forecasting methods have 

been confirmed by the empirical analysis. 

9.7.1. Results for Demand Processes 

We start this discussion by first looking at the value of CDIS for individual demand 

processes. The values presented in the following table compare the percentage 

reduction in inventory cost by using CDIS instead of NIS when the Simple Moving 

Average forecasting method is employed. As the purpose of the following table is to 

present a comparison between simulation and empirical analysis, only the results of 

ARIMA processes common to both in-depth simulation and empirical analysis are 

presented.  

Demand Process Percentage Reduction in Inventory Cost by using CDIS 
compared with NIS 

 Simulation Experiment Empirical Analysis 

AR (1) 46.4 42.3 

AR (2) 44.9 39.7 

MA (1) 58.0 58.0 

MA (2) 57.5 54.4 

ARMA (1, 1) 29.3 32.9 

Table 9-20 Results of Empirical Analysis compared with Simulation for SMA 

The above table shows that the results of empirical analysis are consistent with the 

results of the simulation experiment. Similar results can be observed when the Single 

Exponential Smoothing forecasting method is employed. The results are summarised 

in the following table. 

 Demand Process Percentage Reduction in Inventory Cost by using CDIS 
compared with NIS 

 Simulation Experiment Empirical Analysis 

AR (1) 65.6 71.7 

AR (2) 60.3 72.5 

MA (1) 68.8 74.3 

MA (2) 63.9 72.8 

ARMA (1, 1) 71.0 73.2 

Table 9-21 Results of Empirical Analysis compared with Simulation for SES 



M. Ali, 2008, Chapter 9  178 

 

Detailed results of all the performance metrics for both forecasting methods are 

presented in Appendices 9B and 9C. The patterns of the results of all the other 

processes not included in the above two tables (Tables 9-20 and 9-21) are consistent 

with the results of the above five processes.  

9.7.2. Forecast Error Measures 

One of the performance measures used in this research is Forecast Error (see sub-

section 3.7.2). The use of a dimensionless accuracy measure in empirical analysis 

was also discussed in the same sub-section and in sub-section 9.6.2. Thus, in the 

empirical analysis, we use Mean Absolute Percentage Error (MAPE) and compare 

the results of MSE with MAPE. 

In the following tables (Table 9-22 and Table 9-23), similar to optimal forecasting 

methods, we present two comparisons in terms of the percentage reduction of MSE 

by utilising CDIS instead of NIS. MSE of simulation is first compared with MSE of 

empirical analysis followed by comparison of MSE and MAPE in empirical analysis. 

Empirical Analysis MAPE Demand 

Process 

Percentage 
Reduction in 

MSE 
(Simulation)  

 

Percentage 
Reduction 

in MSE 
(Empirical)  

 

 
NIS 

 
CDIS 

% 
reduction  

AR(1) 41.7 39.0 64.9 47.0 20.6 

AR(2) 41.0 38.9 59.1 48.0 18.7 

MA(1) 52.9 42.7 62.1 42.1 32.2 

MA(2) 52.6 45.3 66.8 47.5 28.8 

ARMA (1,1) 27.6 35.4 49.2 37.8 23.0 

Table 9-22 Comparison between SMA  Forecast Error Measures (NIS vs. 

CDIS) 
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Empirical Analysis MAPE Demand 

Process 

Percentage 
Reduction in 

MSE 
(Simulation)  

 

Percentage 
Reduction 

in MSE 
(Empirical)  

 

 
NIS 

 
CDIS 

% 
reduction  

AR(1) 71.5 70.0 55.2 37.1 32.7 

AR(2) 73.7 70.8 59.1 48.0 34.6 

MA(1) 66.6 81.3 53.4 28.9 45.8 

MA(2) 70.8 64.2 56.6 39.3 29.4 

ARMA (1,1) 62.0 73.4 48.7 30.9 36.6 

Table 9-23 Comparison between SES  Forecast Error Measures (NIS vs. 

CDIS) 

In terms of the first comparison, between MSE of simulation and empirical analysis, 

we find that the empirical results are broadly consistent with simulation results. This 

is true for both forecasting methods: SMA and SES. Similar results were observed 

for the processes in terms of inventory costs (see sub-section 9.7.1).  

The second comparison is between the percentage reductions of MSE and MAPE in 

the empirical analysis. The percentage reduction in MSE is found to be higher 

compared to MAPE. This is similar to what was observed for the optimal forecasting 

methods (sub-section 9.6.2). The reason for this, as already mentioned for the 

optimal forecasting method, is that MSE is a squared measure while MAPE is not. 

Most importantly, consistent with the results of optimal methods, we observe that the 

results of MAPE show improvements by using CDIS, consistent with the results of 

all other performance metrics (Appendices 9B and 9C). 

9.7.3. Performance of CDIS 

In section 8.7, we analysed two factors linked with the performance of CDIS for non-

optimal methods. The simulation results showed that, for any demand process, 

percentage reductions in inventory costs on using CDIS approach were associated 

with percentage reductions in Forecast Error and Bullwhip Ratio.  

In the following tables (Table 9-24 and Table 9-25), we present the percentage 

reductions of the Forecast Error (MSE and MAPE), Bullwhip Ratio and inventory 

cost by using CDIS approach compared to NIS for SMA and SES methods. 
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Percentage Reduction in the following variables by utilising CDIS 
instead of NIS 

Simulation Results  Empirical Analysis 
Demand 
Process 

MSE Bullwhip 
Ratio 

Inventory 
Cost 

MAPE MSE Bullwhip 
Ratio 

Inventory 
Cost 

AR(1) 65.7 55.2 46.4 20.6 39.0 54.8 42.3 

AR(2) 65.3 54.2 44.9 18.7 38.9 50.0 39.7 

MA(1) 72.2 65.3 58.0 32.2 42.7 62.8 58.0 

MA(2) 70.8 63.6 57.5 28.8 45.3 62.8 54.4 

ARMA 
(1,1) 

53.5 39.5 29.3 23.0 35.4 35.5 27.9 

Table 9-24 Performance of CDIS for SMA 

Percentage Reduction in the following variables by utilising CDIS 
instead of NIS 

Simulation Results  Empirical Analysis 
Demand 
Process 

MSE Bullwhip 
Ratio 

Inventory 
Cost 

MAPE MSE Bullwhip 
Ratio 

Inventory 
Cost 

AR(1) 71.5 70.6 65.6 32.7 70.0 81.3 71.7 

AR(2) 73.7 62.1 60.3 34.6 70.8 79.7 72.5 

MA(1) 66.6 64.5 63.9 45.8 81.3 72.1 68.8 

MA(2) 70.8 76.2 71.0 29.4 64.2 64.5 63.9 

ARMA 
(1,1) 

62.0 72.1 68.8 36.6 73.4 76.2 71.0 

Table 9-25 Performance of CDIS for SES 

Tables 9-24 and 9-25 show that for any demand process, as a consequence of 

changed model assumptions, an increase in the percentage reduction in MSE and 

Bullwhip Ratio (by using CDIS compared to NIS) results in an increase in the 

percentage reduction in the inventory cost, although not with the same magnitude. 

This phenomenon has now been observed for optimal and non-optimal forecasting 

methods in both simulation and empirical analysis.  
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In addition, consistent with the simulation results, Tables 9-24 and 9-25 also show 

that non-optimal forecasting methods are less sensitive to demand process as 

compared to optimal methods.   

9.7.4. Effect of Demand Variability 

In the simulation experiment, we looked at the effect of demand variability by 

considering the standard deviation in the noise of the demand. We discussed in sub-

section 9.6.4 that the effect of demand variability in the empirical analysis has been 

measured by calculating the standard deviation of the demand. It is obvious that the 

standard deviation in the demand increases with the standard deviation in the noise of 

the demand. It was also observed in the simulation that the simulation results on 

inventory cost reductions obtained by varying the standard deviation in the noise of 

the demand were consistent with those obtained for demand variability. 

We present the effect of demand variability on the percentage reduction in inventory 

cost for the two non-optimal forecasting methods, SMA and SES in the following 

table (Table 9-26). 
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Reduction in inventory cost in using CDIS 
compared with NIS Demand 

process 
Std dev of 
Demand 

Number of 
Series 

SMA SES 

0 – 25 169 40.2 51.8 

25 – 50 98 44.6 61.7 
AR(1) 

50 – above 28 46.6 75.0 

0 – 25 139 38.1 80.5 

25 – 50 63 37.3 69.2 
AR(2) 

50 – above 41 48.5 71.5 

0 – 25 49 37.2 71.0 

25 – 50 26 39.5 75.2 

ARMA 

(1, 1) 
50 – above 12 28.4 71.8 

0 – 25 43 55.3 74.0 

25 – 50 12 57.2 74.1 
MA(1) 

50 – above 8 59.2 74.8 

0 – 25 43 52.1 73.6 

25 – 50 16 58.4 71.0 
MA(2) 

50 – above 11 49.5 74.2 

0 – 25 45 35.6 60.4 

25 – 50 8 48.0 88.2 

ARMA 

(1, 2) 
50 - above 8 32.2 58.4 

0 – 25 69 66.8 69.5 

25 – 50 86 66.8 77.1 

ARIMA 

(1, 1, 0) 
50 – above 39 70.5 68.3 

0 – 25 206 59.8 71.9 

25 – 50 141 66.6 72.1 

ARIMA 

(2, 1, 0) 
50 – above 66 72.5 77.2 

0 – 25 83 69.5 73.6 

25 – 50 33 66.2 69.9 

ARIMA 

(0, 0, 0) 
50 – above 13 66.2 70.0 

0 – 25 40 70.2 66.6 

25 – 50 13 59.9 65.2 

ARIMA 

(0, 1, 0) 
50 – above 23 69.2 76.2 

Table 9-26   Effect of Demand Variability on the Value of CDIS compared with 

NIS 

The simulation results revealed that percentage reduction in inventory cost on 

utilising CDIS, is an increasing function of standard deviation in the noise of demand 

or standard deviation in the demand (see sub-section 8.5.3). We observe in the above 
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table (Table 9-26) that the results are process dependent. The results of AR (1), MA 

(1) and ARIMA (2, 1, 0) show that the value of CDIS increases with the increasing 

value of standard deviation in the demand. The empirical analysis for these three 

processes reinforces the earlier simulation results. On the other hand, this pattern is 

not observed for the other processes i.e. AR (2), ARMA (1, 1), ARMA (1, 2), MA 

(2), ARIMA (1, 1, 0), ARIMA (0, 0, 0) and ARIMA (0, 1, 0). The same phenomenon 

was observed for the optimal forecasting method (sub-section 9.6.4) and the 

suggested reasons are the same as mentioned earlier. 

9.7.5. Effect of Demand Parameters 

In this sub-section, we analyse the effect of demand parameters on the value of CDIS 

for non-optimal forecasting methods. In the simulation experiment, we analysed the 

effect of demand parameters for the five stationary processes used in the research.  

For the empirical analysis, in this sub-section, the same processes are analysed.  The 

results are discussed in the following sub-sections. 

9.7.5.1. Single Demand Parameter 

AR (1) and MA (1) demand processes are discussed in this sub-section as both 

processes have only one demand parameter to estimate. The total number of series 

for both processes has been divided into three groups so that we have appropriate 

numbers of series in each group. The grouping is similar to that for optimal 

forecasting methods. 

Reduction in inventory cost in using 
CDIS compared Demand 

process 1ρ  
Number of 

Series 
SMA SES 

< 0.2 75 44.4 71.9 

0.2 – 0.4 137 43.9 71.6 
AR(1) 

> 0.4 82 39.6 71.0 

Table 9-27   Effect of 1ρ on the Value of CDIS for AR (1) Process 

For non-optimal forecasting methods, the simulation results showed an opposite 

trend compared to optimal forecasting methods. For both SMA and SES, it was 
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observed that the value of CDIS decreases with the increasing value of the 

autoregressive parameter, 1ρ . This result is confirmed in the empirical analysis for 

comparison of inventory cost for both SMA and SES methods.  

Chen et al (2000a; 2000b), by simulating an AR (1) process, quantified the value of 

demand information sharing. They showed that the value of sharing demand 

information decreases with the increasing value of the autoregressive parameter, 1ρ  

for both SMA and SES. The simulation and empirical results in this research confirm 

the findings of Chen et al (2000a; 2000b). 

We now move the discussion to looking at the effect of the moving average 

parameters on the value of CDIS and first look at an MA (1) process in this sub-

section. 

Reduction in inventory cost in using CDIS 
compared Demand 

process 1θ  
Number of 

Series 
SMA SES 

< -0.4 7 44.2 70.8 

-0.4 - -0.2 32 66.1 77.3 
MA(1) 

> -0.2 34 39.8 71.8 

Table 9-28   Effect of 1θ on the Value of CDIS for MA (1) Process 

It was discussed in sub-section 8.4.1 that none of the earlier papers have looked at 

the effect of the moving average parameter on the value of CDIS. In the simulation 

experiment, we found that the moving average parameter has no effect on the value 

of CDIS. This result is not contradicted in the empirical findings as shown in Table 

9-28 above, where for both SMA and SES, there is no consistent upward or 

downward trend, as 1θ  is varied. A limitation of the above table is the small number 

of series when 1 0.4θ < .  

In this sub-section, the effect of demand parameters on the value of CDIS for AR (1) 

and MA (1) processes has been discussed. It is observed that the empirical findings 

are consistent with the earlier simulation results on the effect of autoregressive and 

moving average parameters on the value of CDIS. The value of CDIS is an 

increasing function of the autoregressive parameter, 1ρ , while the value of CDIS for 
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non-optimal forecasting methods is neither an increasing nor decreasing function of 

the moving average parameter, 1θ . 

9.7.5.2. Double Demand Parameters 

The three processes AR (2), MA (2) and ARMA (1, 1) will be discussed in this sub-

section as there are two demand parameters to be estimated for each of these 

processes. 

The AR (2) process is considered first and the results are shown in Table 9-29 and 

Table 9-30. The numbers in each box are the percentage reduction in inventory cost 

by using CDIS compared to NIS, while the numbers in brackets are the number of 

series for each of these groups. The rationale for the division of group is the same as 

discussed for the AR (1) process in the previous sub-section (9.6.5.1). 

2ρ  1ρ  

< 0.2 ≥ 0.2 

< 0.2 40.8 (35) 22.1 (66) 

≥ 0.2 30.2 (91) 55.0 (52) 

Table 9-29   Percentage Reduction in Inventory Cost for AR (2) Process using 

SMA Method 

2ρ  1ρ  

< 0.2 ≥ 0.2 

< 0.2 68.6 (35) 80.0 (66) 

≥ 0.2 68.9 (91) 79.9 (52) 

Table 9-30   Percentage Reduction in Inventory Cost for AR (2) Process using 

SES Method 

The simulation results for AR (2) showed that the as the value of the autoregressive 

parameters 1ρ and 2ρ  increases, the value of CDIS decreases. We do not find this 

effect in the empirical analysis.  

We now analyse the MA (2) process to further look at the effect of 1θ  and 2θ  on the 

value of CDIS. 
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2θ  1θ  

< -0.2 ≥- 0.2 

< -0.2 55.6 (15) 49.1 (24) 

≥ -0.2 41.6 (12) 71.6 (18) 

Table 9-31   Percentage Reduction in Inventory Cost for MA (2) Process using 

SMA Method 

2θ  1θ  

< -0.2 ≥- 0.2 

< -0.2 81.3 (15) 67.9 (24) 

≥ -0.2 81.3 (12) 68.8 (18) 

Table 9-32   Percentage Reduction in Inventory Cost for MA (2) Process using 

SES Method 

The results of the simulation experiment for MA (2) process showed that the value of 

CDIS does not depend on the values of θ1 and θ2. 

The above tables (Table 9-31 and 9-32) do not contradict the simulation findings, as 

there is no consistent effect of the moving average parameters on the value of CDIS 

for both SMA and SES forecasting methods.  

The effect of autoregressive and moving average parameters are now analysed for 

the mixed ARMA (1, 1) process. The reduction in inventory cost by using CDIS 

compared with NIS is given in Table 9-33 for SMA and in Table 9-34 for SES. 

1ρ  1θ  

-0.9 — 0.5 0.5 — 0.9 

-0.9 — -0.3 39.0 (11)  

-0.3 — 0.5 22.1 (11) 20.4 (24) 

0.5 — 0.9  36.0 (41) 

Table 9-33   Percentage Reduction in Inventory Cost for ARMA (1, 1) Process 

using SMA 

Simulation results showed that when the autoregressive parameter 1ρ  increases, the 

value of CDIS will decrease. The simulation showed that there is no effect of 1θ  on 

the value of CDIS.  
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1ρ  1θ  

-0.9 — 0.5 0.5 — 0.9 

-0.9 — -0.3 73.0 (11)  

-0.3 — 0.5 73.5 (11) 69.2 (24) 

0.5 — 0.9  75.9 (41) 

Table 9-34   Percentage Reduction in Inventory Cost for ARMA (1, 1) Process 

using SES 

The empirical analysis (Table 9-33 and Table 9-34) does not show any pattern in 

terms of the effect of 1ρ  and 1θ  on the value of CDIS. For the moving average 

parameter, the result is consistent with the simulation findings. In terms of the 

autoregressive parameter, the simulation experiment showed that the value of CDIS 

decreases when the value of autoregressive parameter increases. The results of the 

empirical analysis do not agree with these findings. However, the analysis presented 

for AR (2) and MA (2) is limited to only two intervals for the demand parameters 

due to small number of series. Similarly, for ARMA (1, 1) the intervals are limited to 

only two intervals for 1ρ and three intervals for 1θ . 

It has been argued in sub-section 9.6.5 that the standard deviation of noise was kept 

constant in the simulation experiment when the effect of demand parameters was 

analysed, which is not the case in the empirical analysis. Thus, there is a need in the 

empirical analysis to investigate the interaction between the demand parameters and 

standard deviation of noise. However, as already discussed in sub-section 9.6.5, such 

an investigation, taking into account 1ρ , 2ρ and standard deviation in the noise 

should be based on larger data sets. 

9.7.6. Effect of Cost Ratio 

In the simulation experiment, the effect of the cost ratio on the value of CDIS was 

analysed. For non-optimal forecasting methods, the simulation results showed an 

interesting phenomenon. It was observed that the percentage savings in inventory 

cost using CDIS compared to NIS increased with the increasing value of the cost 

ratio for stationary processes but decreased with the increasing value of cost ratio for 

the non-stationary processes. In order to validate this, a similar analysis was 
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performed on stationary and non-stationary processes on the empirical data. The 

results are given below in Table 9-35.  

Percentage Savings in Inventory Cost by using CDIS 
compared to NIS 

Demand 
Process 

Cost Ratio 

SMA SES 

2/(2+1) 46.8 70.4 

25/(25+1) 52.9 75.5 

Stationary 
Processes 

50/(50+1) 54.6 77.1 

2/(2+1) 55.8 73.6 

25/(25+1) 55.6 71.5 

Non-
Stationary 
Processes 

50/(50+1) 54.9 70.9 

Table 9-35   Effect of Cost Ratio for Non-Optimal Methods 

Table 9-35 shows that the empirical results agree with the simulation findings about 

the effect of cost ratio on the value of CDIS. For stationary processes, the value of 

CDIS is an increasing function of the cost ratio. The phenomenon is totally opposite 

when the demand process is non-stationary. For such demand processes, the value of 

CDIS decreases with increasing value of the cost ratio, although the effect is not 

strongly marked (see Table 9-35). 

9.7.7. Effect of Forecasting Parameters 

Here we discuss the effect of the forecasting parameters on the value of CDIS for the 

two non-optimal forecasting methods. For SMA, we look at the effect of the length 

of the moving average and, for SES, we look at the effect of the smoothing constant. 

9.7.7.1. Effect of the Smoothing Constant in SES 

The following figure (Figure 9-1) shows the percentage reduction in the inventory 

cost by employing the CDIS approach instead of NIS, when we consider the effect of 

the smoothing constant in SES for an AR (1) process.  
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Figure 9-1  Effect of Smoothing Constant on CDIS for an AR (1) Process 

The above figure clearly indicates that the value of CDIS is an increasing function of 

the smoothing constant in SES in the empirical analysis, which is in close agreement 

with the simulation experiment.  

The upstream translation of demand, as discussed in detail in Chapter 4, shows that 

the manufacturer’s demand history contains information about the retailer’s demand. 

Thus, when a higher value of the smoothing constant is used, it shows less weighting 

has been put on the demand history. This results in more value of CDIS. 

The same effect of the smoothing constant has been observed when all demand 

processes were analysed by changing the value of alpha. The results are presented in 

Appendix 9D. 

9.7.7.2. Effect of Number of Terms in SMA 

The following figure (Figure 9-2) shows the effect of number of terms (n) in SMA 

for an AR (1) process on the percentage reduction in the inventory cost by employing 

the CDIS approach instead of NIS.  
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Figure 9-2 Effect of Number of Terms in SMA on CDIS for an AR (1) 

Process 

It is evident from the above figure that the value of CDIS decreases as the value of 

the number of terms (n) in SMA increases. These results are consistent with the 

findings in the simulation experiment.  

The rationale for this effect is similar to that for the SES method. A higher value of n 

means that more demand history has been taken into account by the manufacturer in 

its forecasting. As the manufacturer’s history contains information about the 

retailer’s demand, more history means less value in CDIS. 

The same effect of the smoothing constant has been observed when all demand 

processes were analysed by changing the value of alpha. The results are presented in 

Appendix 9E. 

9.7.8. Effect of Lead Time 

The empirical results show that the percentage reduction in inventory cost is an 

increasing function of the lead time from the supplier to the manufacturer. This has 

already been established by Lee et al (2000) for optimal forecasting methods and is 

consistent with the simulation results. 

Table 9-36 shows the percentage reduction in inventory cost by using CDIS 

compared to NIS-Est (for an MMSE forecasting method) and compared to NIS (for 

the two non-optimal forecasting methods, SMA and SES). 
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Average Percentage Savings over all Demand 

Processes in Inventory Cost by using CDIS for  

Lead Time 

MMSE SMA SES 

1 8.6 5.7 6.4 

6 21.9 26.4 48.1 

12 25.6 42.6 72.6 

 

Table 9-36  Effect of Lead Time on the Percentage Savings in Inventory Cost 

The above table clearly indicates that there is more value in centralising the demand 

information when the lead time between the supplier and the manufacturer is large. 

This is true irrespective of the forecasting method employed in the supply chain. 

There are more benefits of centralising the demand information when lead times are 

longer. This is quite logical, as the forecast for shorter lead times would be less 

variable compared to the one with longer lead time, thus making centralised demand 

less critical (see details in sub-section 8.4.3). 

9.8. Conclusions 

In this chapter we have presented the results of the empirical analysis. The purpose 

of the empirical analysis was to assess the empirical validity and utility of the 

findings suggested by the theoretical and simulation exercises.  

In the preceding sections, three forecasting methods, MMSE, SMA and SES, were 

employed and the performance metrics were calculated. The assumptions and supply 

chain model used in the empirical analysis have been chosen to be consistent with 

the simulation experiment, as discussed in Chapter 7. 

CDIS outperformed all other approaches irrespective of the forecasting method used. 

This empirical evidence validates the findings from the simulation experiment as 

detailed in Chapter 8. The design of the empirical analysis also confirms that the 

operational rules for the two approaches, NIS-Est and CDIS, can be applied to a real 

world scenario. 

Similar to the simulation findings, we observed that the value of CDIS is quite 

consistent when non-optimal forecasting methods are employed. In the case of the 
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MMSE method, the value exhibits a demand process dependent behaviour and this 

behaviour is consistent with the findings in the simulation experiment. 

In the empirical analysis, we found that for some processes, the effect of demand 

variability and the effect of demand parameters were not consistent with the 

simulation experiment. We discussed in sub-section 9.6.4 that one of the reasons may 

be the interaction between the demand parameters and demand variability. In the 

simulation experiment, we analysed one factor while keeping the others constant, 

which was not the case with the empirical analysis. An investigation of the 

interaction between demand parameters and demand variability should be based on a 

larger data set. Other factors that would require analysis include changes in demand 

model and demand parameters over the performance measurement period. This 

investigation remains an area for further research. 

The effect of forecasting parameters and the manufacturer’s lead time was also 

investigated in the empirical analysis. The results showed that the value of CDIS 

decreases when more history is utilised in the forecasting method. Further, it was 

also shown that the value of CDIS increases with increasing values of the lead time 

from the manufacturer to the retailer. In terms of cost ratio, for optimal forecasting 

methods, the value of CDIS is an increasing function of the cost ratio. The same 

relationship has been observed for non-optimal forecasting methods but only when 

the demand is stationary. When the demand is non-stationary and non-optimal 

methods are used, the value of CDIS decreases with increasing cost ratio. These 

results are consistent with the simulation findings. 

Given the above empirical analysis, we conclude that the Centralised Demand 

Information Sharing (CDIS) approach, as advocated in Chapter 3 (theory) and 

Chapter 8 (simulation), is robust and clearly reduces the inventory cost against the 

other two approaches NIS-Est and DIS. 
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10. Conclusions, Implications and Further Research 

10.1. Introduction 

In this chapter, the main threads of the research presented in the thesis are drawn 

together and the principal conclusions are summarised in a concise form. The main 

limitations of the work are assessed and, where appropriate, avenues of further 

research are suggested. 

In order to achieve the above task, we divide this chapter into three sections. We first 

present the main contributions from this Ph.D. thesis and then summarise and 

conclude our findings arising from each of our methodological approaches: theory, 

simulation and empirical analysis. The next section is devoted to a discussion on the 

managerial implications of the conclusions arising from this research. Finally, we 

discuss the limitations of the research and some areas of further research.  

The overall research aim of this thesis is to analyse the value of demand information 

sharing in supply chains, based on more realistic assumptions than in previous 

research. 

The objectives of this research, as already stated in Chapter 1 of this thesis, are as 

follows: 

1. To critically analyse and improve the current demand information sharing 

approaches discussed in the literature. 

2. To extend the upstream translation of demand to a general ARMA (p, q) 

process for non-optimal forecasting methods.  

3. To analyse the Downstream Demand Inference (DDI) approach and reflect on 

the implications for the value of sharing demand information.  

4. To evaluate the performance of demand information sharing approaches with 

the help of simulation experiments, in the light of relaxed model assumptions.  
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5. To analyse the effect of lead time, demand variance, autoregressive parameters, 

moving average parameters, cost ratio and forecasting method parameters on 

the value of demand information sharing approaches.  

6. To test the empirical validity and utility of the theoretical and simulation results 

on a large set of real world data..  

All the above objectives have been achieved and the contributions of the thesis are 

summarised in the next section. 

10.2. Summary and Conclusions 

10.2.1. Contributions of the Thesis 

The contributions of the thesis are as follows: 

• Two new demand information sharing approaches, NIS-Est and CDIS, have 

been developed in this research (Objective 1). 

o When supply chain links adopt a strategy of not sharing demand 

information, we show with the help of simulation that NIS-Est will 

always result in lower inventory cost than the traditional NIS 

approach, except for pure moving average processes, in which case 

the inventory costs are the same. Thus, we introduce a new 

benchmark for quantifying the value of demand information sharing. 

o On the other hand, when supply chain links adopt a strategy of sharing 

demand information, we show, with the help of simulation and 

empirical analysis that CDIS will result in lower inventory cost than 

the traditional DIS approach presented in the literature. 

• The multi-stage mathematical translation for the upstream translation of 

demand for non-optimal forecasting methods has been generalised to ARMA 

(p, q) processes (Objective 2). This extension helps us in proving the value of 

the Downstream Demand Inference (DDI) approach for demand information 

sharing (Objective 3). 
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• Based on more realistic assumptions, we have shown that Downstream 

Demand Inference (DDI) is not feasible for MMSE and SES forecasting 

methods. We have also shown that DDI is possible for ARMA demand 

processes when the SMA forecasting method is employed and the upstream 

link is aware of the number of historical terms used in SMA and the demand 

parameters at the downstream link (Objective 3). 

• We show that there are benefits when an upstream member in a supply chain 

forecasts uses the demand information of the downstream member. The 

benefits arise from reduction in forecasting errors, resulting in reduction of the 

Bullwhip Effect and lower inventory holdings and inventory costs (Objectives 

4 and 6). 

• The traditional DIS approach showed that there is no value of sharing demand 

information when the demand follows an MA (q) process. With the help of 

simulation and empirical analysis, we have proved that there is value of sharing 

demand information when the CDIS approach is used (Objectives 4 and 6). 

• We quantify the value of demand information sharing for the two non-optimal 

forecasting methods, SMA and SES. It was shown that, for the nine ARIMA 

processes used in simulation and twelve ARIMA processes in empirical 

analysis, there is value of sharing demand information when non-optimal 

forecasting methods are utilised. The results from empirical analysis support 

the simulation results (Objectives 4 and 6). 

• With the help of simulation and empirical analysis, we have analysed the effect 

of various factors such as lead time, demand variance, demand parameters, cost 

ratio and forecasting method parameters on the value of sharing demand 

information.  The simulation results have shown that the value of CDIS 

increases with increasing lead time, demand variance, autoregressive 

parameters and the smoothing constant used in SES. On the other hand, the 

value of CDIS decreases with increasing value of the moving average 

parameter and the historical terms used in SMA. The effect of cost ratio on the 

value of CDIS depends on the forecasting method used. In the case of optimal 

methods, the value of CDIS is an increasing function of the cost ratio. On the 
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other hand, for non-optimal forecasting methods, the value increases with 

increasing cost ratio for stationary demand processes but shows an opposite 

trend for non-stationary demand processes. The empirical findings agree with 

all the above simulation results for lead time, forecasting parameters and cost 

ratio; however, the empirical findings did not agree with the simulation results 

for demand variance and demand parameters for most ARIMA processes 

(Objective 5 and 6). 

10.2.2. Conclusions from the Theoretical Part of the Thesis 

10.2.2.1. Upstream Demand Translation 

In the literature, we observe that the analysis of the Bullwhip Effect and the 

evaluation of sharing demand information have been achieved by deriving 

mathematical relationships between demand processes at downstream and upstream 

links in the supply chain. These mathematical relationships on upstream demand 

translation have been derived for an ARIMA (p, d, q) process in the case of MMSE 

forecasting methods. The demand translation for a MA (q) process for q ≤ L, where 

L is the lead time, was specifically discussed as it translates into a random process. 

For such a process, the traditional DIS approach to demand information sharing will 

not yield any benefits. By utilising the CDIS approach, supply chain links will 

benefit from demand information sharing even when the demand process is MA (q) 

(q ≤ L). 

In terms of non-optimal forecasting methods, the literature on upstream demand 

translation is limited to an AR (1) demand process. As one of the objectives of this 

research is to quantify the value of demand information sharing for non-optimal 

forecasting methods, generalisations to an ARMA (p, q) process became imperative. 

We analysed the upstream demand translation for an ARMA (p, q) process for non-

optimal methods and showed that an ARMA (p, qR) will translate into ARMA (p, 

qR+n) when the SMA forecasting method is employed, where n is the number of 

terms in SMA. On the other hand, our analysis for the SES method showed that an 

ARMA (p, qR) method will approximately translate into an ARMA (p, t-1) process, 

where t is the current time period.  
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10.2.2.2. New Demand Information Sharing Approaches 

To forecast the future demand, an upstream member in the supply chain can utilise 

two strategies in terms of sharing demand information. The first strategy is not to 

share any downstream member’s demand information. In the literature, we find that 

two demand information sharing approaches have been discussed, namely No 

Information Sharing (NIS) and Downstream Demand Inference (DDI). On the other 

hand, Vendor Managed Inventory (VMI) and Demand Information Sharing (DIS) 

approaches have been proposed in the literature when the supply chain links adopt 

the strategy of sharing demand information.  

10.2.2.2.1. The No Information Sharing Strategy 

Lee et al (2000) discussed the NIS approach, where the downstream member does 

not share demand information with the upstream member. Although the demand at 

the downstream member has been realised, the upstream member is unaware of it 

and they forecast on the basis of the order they have received, assuming the noise 

term to be zero.  

We argue that, for an optimal forecasting method, the upstream member can estimate 

the noise term in its own demand, even when the downstream demand is not being 

shared. Based on this argument, we introduce a new approach, No Information 

Sharing –Estimation (NIS-Est). In this new approach, the forecast of the upstream 

member is still based on the orders from the downstream member, but the noise term 

is estimated and not equated to zero. The estimation can be performed by two 

methods, namely Recursive Estimation and Estimation by Forecast Error (Box et al, 

1994, Chatfield, 2003). All other replenishment and ordering policies of the NIS-Est 

approach remain the same as in the NIS approach.  

The introduction of the NIS-Est approach provides a new base case for quantification 

of the value of demand information sharing. Various papers (e.g. Lee et al, 2000; 

Raghunathan, 2001; Yu et al, 2002) have quantified the value of information sharing 

by comparing the demand information sharing approaches with NIS. In this research, 

a new approach has been presented for the no information sharing strategy which is 

also used as a base case to quantify the value of demand information sharing.   
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Stage I of the simulation experiment showed that using the NIS-Est approach, 

compared to NIS, results in lower Mean Squared Forecast Error and Bullwhip Ratio 

and ultimately in lower inventory holdings and inventory cost. The reason for better 

performance of NIS-Est is the additional estimation process incorporated in this 

approach. In stages II and III of simulation and in the empirical analysis, the value of 

demand information is quantified based on comparison with NIS-Est. 

For non-optimal forecasting methods, there are no noise term estimation issues. 

Therefore, the NIS-Est approach is limited to optimal forecasting methods. 

10.2.2.2.2. The Information Sharing Strategy 

Supply chain links can utilise two approaches, VMI and DIS, in the case of a strategy 

of sharing demand information. The VMI and DIS approaches utilise the same 

forecasting process and the difference is only in the replenishment policy. This is the 

reason there is no difference in the forecast variance of the two approaches and the 

reason for their comparison in the literature is to discuss another means of 

replenishment policy (Yu et al, 2002). As the focus of this research is not on 

replenishment policies, we restrict the discussions to the DIS approach. 

The DIS approach for optimal forecasting methods, as presented in the literature, 

incorporates sharing the downstream demand information with the upstream 

member. The forecasting methodology in the DIS approach incorporates the use of 

the orders from the downstream member instead of their demand. As discussed in 

Chapter 5, the downstream member’s orders are more variable than their demand. 

Thus, the DIS approach can be improved by using an approach based on the 

incorporation of demand instead of the orders. This new approach is called the 

Centralised Demand Information Sharing (CDIS) approach. 

For non-optimal forecasting methods, there are no noise term estimation issues and 

therefore the DIS approach is limited to optimal forecasting methods. When the 

supply chain links adopt a Demand Information Sharing Strategy, they can utilise the 

CDIS approach. The manufacturer in such a case will be aware of the retailer’s 

demand and will use these in its forecast rather than the orders from the retailer. 
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The results of simulation and empirical analysis in this research show that CDIS 

results in lower forecast error (MSE and MAPE), Bullwhip Ratio, inventory holdings 

and inventory cost than the DIS approach. The reason for the better performance of 

CDIS is the use of the downstream demand, which are less variable. 

10.2.2.3. Downstream Demand Inference 

The literature on value of demand information sharing in supply chains can be 

broadly divided into two streams. While one stream of papers argues that the supply 

chain links benefit by sharing demand information, the second stream maintains the 

opposite. Papers in the second stream of research argue that the upstream member 

can infer the demand at the downstream member and claim that there is no value in 

sharing demand information. Thus, they maintain that supply chain links do not need 

a formal information sharing mechanism. 

In this research, we perform a detailed analysis of these research streams and argue 

that papers claiming no value of demand information sharing are based on strict 

supply chain model assumptions. These papers assume that supply chain links are 

aware of the demand process and parameters at the downstream links. In this 

research, it is argued that the supply chain links will need a formal information 

sharing mechanism to share the information about the process and parameters with 

the downstream member. It is difficult to reason why, in the presence of such a 

formal mechanism, the supply chain links will choose to share information on 

ARIMA processes and parameters but not on the demand itself. Thus, the 

assumptions of known process and parameters are quite unrealistic.  

We assume in this research that the supply chain links are unaware of the demand 

parameters and processes. Using this assumption, we analyse Downstream Demand 

Inference (DDI) for the three forecasting methods used in this research: MMSE, 

SMA and SES. We show that when supply chain links employ MMSE and SES 

methods, DDI is not possible. On the other hand, when the supply chain links employ 

SMA method, the demand at the downstream member can be inferred.   

We show in this research, with the help of simulation and empirical analysis, that 

forecasting using the downstream member’s demand results in reduced demand 
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variance, forecast error, and ultimately lower inventory holdings and inventory cost. 

A stream of research papers argue that the downstream member’s demand can be 

inferred with the help of mathematical relationships that exist between demand and 

orders. We have shown in this research, using more realistic assumptions, that 

inference of the downstream member’s demand, or DDI, is not possible for some 

forecasting methods. For accurate demand, the downstream member will have to 

share its demand with the upstream member via some formal information sharing 

mechanism.    

10.2.3. Conclusions from the Simulation Part of the Thesis 

Simulation methodology is adopted in this research to establish comparisons between 

different demand information sharing approaches. Four performance metrics are used 

for such comparisons, namely mean squared forecast error, Bullwhip Ratio, 

inventory holdings and inventory cost.  

In the following sub-sections, we summarise the most important findings from the 

simulation experiment. 

10.2.3.1. Establishment of Rules 

The following three rules were established based on the results of the simulation. 

These rules apply to the Bullwhip Effect region for all demand processes used in the 

simulation experiment. 

Rule 1: NIS-Est results in lower inventory cost than NIS for all demand processes 

investigated, except for pure moving average processes, in which case the inventory 

costs are the same. 

Rule 2: In all demand processes investigated, CDIS results in lower inventory costs 

compared to DIS 

Rule 3: In all demand processes investigated, CDIS results in lower inventory costs 

compared to NIS-Est 
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Establishment of the above rules shows that when the supply chain adopts a strategy 

of not sharing demand information, the NIS-Est approach performs better than the 

NIS approach. On the other hand, in the case of the strategy of sharing demand 

information, CDIS performs better than DIS. The overall results show that the CDIS 

approach performs better than all the other three approaches, averaged over all 

simulation replications. We discussed in sub-section 10.2.2.2 that one of the reasons 

of better performance of CDIS is the use of less variable demand in the forecast.  

In terms of non-optimal forecasting methods, we have only two demand information 

sharing approaches, NIS and CDIS. The simulation results show that CDIS always 

results in lower forecast error, Bullwhip Ratio, inventory holdings and inventory 

cost.  

Thus, the simulation results show that the CDIS approach performs the best in terms 

of the four performance metrics, irrespective of the forecasting method employed. 

10.2.3.2. Dependence of Value of CDIS on Model Assumptions 

The simulation experiment was designed as a staged relaxation of assumptions. In 

Stage I, we assumed that the supply chain members are aware of their demand 

process and parameters. In Stage II, we relaxed the assumption of known demand 

parameters and assumed that the supply chain members have to estimate the demand 

parameters. Finally, Stage III was developed closer to a real life situation by 

assuming that the supply chain members have to identify the demand process and 

estimate the parameters.  

The simulation results show that the value of CDIS increases as the model 

assumptions are relaxed. The value of CDIS is highest in Stage III, not so high in 

Stage II and is least in Stage I. One of the reasons for higher values of CDIS in more 

relaxed models is inherent in the identification and estimation issues in ARIMA 

modelling. For unknown demand parameters in Stage II, and then unknown 

processes in Stage III, it is quite possible for supply chain links to inaccurately 

identify and estimate the process and the parameters. The simulation results show 

that the value of CDIS increases when the supply chain links perform inaccurate 

identification and estimation. Thus, one of the reasons for higher values of demand 
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information sharing at higher stages is because of inaccurate identification and 

estimation with more relaxed supply chain model assumptions. 

10.2.3.3. Demand Process Dependent Value of CDIS 

In previous studies (see Chapter 5), only one ARIMA demand process was 

considered to calculate the value of demand information sharing. In the simulation 

experiment of this research, we explored the value of demand information sharing for 

nine demand processes. The simulation results showed that the value of demand 

information sharing depends on the nature of the process. Overall, it was found that 

the value of demand information sharing is higher for non-stationary demand 

processes than for stationary processes. In stationary processes, the results showed 

that the value is higher for pure autoregressive process compared to moving averages 

or mixed processes.  

It was found from the simulation experiment results that the value of CDIS is an 

increasing function of the number of autoregressive parameters and the degree of 

differencing for the ARIMA models investigated. 

10.2.3.4. Effect of Demand Parameters 

The effect of demand parameters on the value of CDIS was explored for the 

stationary processes. The reason for not exploring the effect for non-stationary 

processes is due to the absence of the discussion of the bullwhip region for the non-

stationary processes in the literature. Mathematical exploration of bullwhip regions 

for non-stationary demand processes is thus an interesting area for further research.  

The simulation results showed that the value of CDIS is an increasing function of the 

autoregressive parameters. This result was shown earlier in Lee et al (2000) but only 

for an AR (1) demand process. None of the papers in the literature have explored the 

effect of the moving average parameters on the value of demand information sharing. 

The simulation results in this experiment show that the value of CDIS decreases with 

the increasing value of the moving average parameters. This was found in all the 

three stationary processes, MA (1), MA (2) and ARMA (1, 1), examined in this 
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research. This is an interesting finding and needs to be further explored for other 

demand processes.  

For non-optimal forecasting methods, we observed a different phenomenon. The 

value of CDIS decreases with the increasing value of the autoregressive parameter. 

Chen et al (2000b) found similar results when they mathematically explored the 

value of demand information sharing using an AR (1) demand process and the SES 

forecasting method. In terms of the moving average parameters, the simulation 

results show that there is no effect of the moving average parameter on the value of 

CDIS. 

10.2.3.5. Effect of Standard Deviation 

The effect of standard deviation in the noise of the demand on the value of demand 

information sharing was explored in the simulation experiment. The simulation 

results show that the value of CDIS increases with increasing standard deviation in 

the noise term of the demand. Thus, it was found from the simulation results that 

demands with more variability will result in higher savings from CDIS irrespective 

of the forecasting method or demand process. These results are consistent with 

findings of previous papers (e.g. Lee et al, 2000; Yu et al, 2002) showing that the 

value of CDIS is an increasing function of the value of standard deviation in the 

noise term of the demand. 

10.2.3.6. Effect of Lead Time 

Another factor that is explored in the simulation experiment is the lead time from the 

supplier to the manufacturer. The simulation results show that demand information 

sharing becomes more beneficial when the manufacturer’s lead time is large. This is 

quite logical, as the forecast for larger lead times will be more variable compared to 

the forecast for smaller lead times. This effect was observed in both optimal and non-

optimal forecasting methods.  
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10.2.3.7. Effect of Cost Ratio 

Cost Ratio is the ratio between the penalty cost and the total cost (holding cost + 

penalty cost). Lee et al (2000), using an AR (1) demand process and an MMSE 

forecasting method, have shown mathematically that the percentage reduction in 

inventory holdings is an increasing function of this ratio. It was found that none of 

the papers in the literature have explored this effect with the help of simulation. 

Three different values of the ratio were assumed in the simulation experiment and the 

results show a similar effect as identified by Lee et al (2000), but for all the nine 

processes. The simulation results, thus, show that the higher the cost ratio, the higher 

will be the value of demand information sharing. 

The effect of cost ratio is then explored for non-stationary forecasting methods. The 

simulation results show quite an interesting pattern. For stationary ARIMA 

processes, the value of demand information sharing either remains constant or 

increases with the increasing value of the cost ratio. In contrast, for non-stationary 

demand processes, the value decreases with increasing cost ratio.  

10.2.3.8. Effect of Demand History 

Longer demand history in ARIMA methodology facilitates better identification and 

estimation of demand process and parameters (Box et al, 1994). A longer demand 

history leads to the upstream member having lesser benefits from demand 

information sharing. The simulation results also show similar effects. When we move 

from a history of 24 periods to 144 periods, the value of CDIS tends to decrease. 

In sub-section 10.2.3.2, we discussed that there is more value in CDIS when the 

manufacturer identifies and estimates parameters inaccurately. The simulation results 

on the effect of demand history reinforce the earlier results as higher values of CDIS 

are observed when the demand history is shorter. 
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10.2.3.9. Effect of Forecasting Parameters for Non-Optimal Methods 

The effect of the smoothing constant,α , for the Single Exponential Smoothing (SES) 

method and the effect of the number of terms used in the Simple Moving Averages 

method, n, is analysed in this research.  

Some papers (Lee et al, 2000; Raghunathan, 2001) show that the upstream member’s 

demand already contains information about the downstream member’s demand. 

Thus, when the upstream member forecasts using more demand history, they are 

actually utilising more downstream member’s demand. This results in lower benefits 

from sharing demand information. 

The simulation results agree with this earlier finding and show that, when there is 

more weighting on the historical terms, the value of CDIS decreases. It was found 

that lower values of α in SES and higher values of n in SMA both result in lower 

benefits from demand information sharing. This is because both lower α and higher 

‘n’ put more weighting on the demand history. 

10.2.4. Conclusions from the Empirical Part of the Thesis 

The theoretical and simulation analyses in this research have established 

comparisons among the four information sharing approaches. Empirical analysis is 

performed to validate the earlier theoretical and simulation findings. Two year 

weekly sales data of a European Grocery Retailer was cleaned to remove all series 

except non-seasonal fast moving products exhibiting the Bullwhip Effect. In total, 

1773 data series were found to fit this definition and these were analysed. The design 

of the empirical analysis follows the simulation design and both optimal and non-

optimal forecasting methods were used. The information sharing approaches were 

compared using the same four performance metrics as in simulation: mean squared 

forecast error, Bullwhip Ratio, inventory holdings and inventory cost. In the 

empirical analysis, we also used the mean absolute percentage error (MAPE) in 

addition to MSE to measure the forecast error.  
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10.2.4.1. Performance of CDIS Compared with the Other Approaches 

The results of the empirical analysis validated the earlier findings that the CDIS 

approach results in the least inventory cost compared to the NIS-Est and DIS 

approaches. MSE and Bullwhip Ratio are two major factors that were identified in 

the simulation experiment to be associated with the better performance of the CDIS 

approach. This association was found to be strong in Stage I where the demand 

process and parameters are assumed to be known. This agrees with the mathematical 

results of Lee et al (2000) and Graves (1999) who, assuming known demand process 

and parameters, showed that an increase in percentage reduction of demand 

variability will lead to increase in percentage reduction of inventory cost. However, 

the staged relaxation of assumptions showed that the association was weaker for 

stages II and III. Thus, in stages II and III, an increase in percentage reduction in 

MSE or Bullwhip Ratio may not be transferred to the percentage reduction in 

inventory cost by the same magnitude. The empirical results were compared with the 

simulation results of Stage III which they broadly agreed with.  

The percentage savings in inventory cost reduction in the empirical analysis were not 

as high as those identified in the simulation experiment. The simulation results 

showed that we get a lower value of CDIS when the retailer inaccurately identifies 

and estimates the process and its parameters. The demand process in the simulation 

is generated in a controlled environment; real data may exhibit more complexities for 

example in terms of changes to parameters or to the model itself.  

10.2.4.2. Demand Process Dependent Value of CDIS 

The simulation results showed that, for the optimal forecasting methods, the value of 

CDIS depends on the nature of the process. These results were validated in the 

empirical analysis not only for the 6 demand processes used in simulation but for all 

12 demand processes analysed in the empirical analysis. 

10.2.4.3. Effect of Demand Parameters and Standard Deviation 

The simulation results showed that, for optimal forecasting methods, the value of 

CDIS increases with the increasing value of the autoregressive parameter. The 
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relationship is exactly the opposite when non-optimal forecasting methods are 

considered. In terms of the moving average parameter, simulation findings showed 

that the value of CDIS is a decreasing function of the moving average parameter for 

optimal forecasting methods. However, there is no effect of the moving average 

parameter on the value of CDIS for non-optimal forecasting methods. For the effect 

of standard deviation, it was found that the value of CDIS is an increasing function 

of the standard deviation in the demand. 

In the empirical analysis, it was found that, for processes where only one parameter 

needs estimation (AR (1) and MA (1)), the empirical results agree with the 

simulation findings. However, the empirical results do not agree with the simulation 

findings for the processes where two parameters need estimation (AR (2), MA (2) 

and ARMA (1, 1)).  

The effect of parameter estimation in the simulation experiment was analysed by 

keeping the standard deviation of the noise constant. One reason for difference in 

findings from the empirical analysis could be the dual effect of the demand 

parameters and the standard deviation. An analysis to investigate the dual effect and 

any non-linear effects should be based on larger data sets.   

10.2.4.4. Effect of Lead Time 

The empirical findings validated the simulation results that the value of CDIS is an 

increasing function of the lead time. Thus, there are more benefits of centralising the 

demand information when lead times are longer. This is quite logical, as the forecast 

for shorter lead times would be less variable than longer lead times, thus making 

information sharing less critical. 

10.2.4.5. Effect of Cost Ratio 

The results from the empirical analysis showed that the value of CDIS is an 

increasing function of the cost ratio for stationary processes. However, for non-

stationary processes, the value of CDIS decreases with the increasing value of the 

cost ratio. Similar results were found in the simulation experiment and thus the 
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empirical findings agree with the simulation results in terms of the effect of cost ratio 

on the value of CDIS. 

10.2.4.6. Effect of Forecasting Parameters for Non-Optimal Methods 

For SMA and SES, the empirical results show that when the manufacturer utilises 

more history in the forecasting method, the value of CDIS goes down. This is 

because the order from the retailer already contains some information about the 

retailer’s demand. When the manufacturer is utilising more history in its forecast, it 

is already using more demand information, resulting in a lower value of CDIS. Thus, 

in SMA, high values of the moving average term ‘n’ and in SES, lower values of the 

smoothing constant, α , will yield lower values of CDIS, as in both cases more 

history is being used in the forecast. These results are consistent with the findings 

from the simulation experiment. 

10.2.5. Summary of Conclusions of the thesis 

This thesis critically analyses the demand information sharing approaches and supply 

chain models presented in the literature. A stream of research papers propose the 

Downstream Demand Information (DDI) approach and claim that using the DDI 

approach will result in no value of demand information sharing. We argue in this 

thesis that the model assumptions made in these papers are clearly unrealistic. All 

models must make assumptions, but it is desirable that they are robust to deviation 

from these assumptions. It has been shown in this thesis that a slight change to the 

assumptions in the supply chain model of these papers leads to the opposite 

conclusion: DDI is not feasible. The remaining assumptions may also be criticised 

for their lack of fidelity to real world assumptions. Further relaxation would not 

change the conclusion that DDI is not feasible.  

This thesis has progressed on the basis of simulation, using both theoretically 

generated and empirical data. The challenge remains to establish more general 

theory, with less restrictive assumptions. This is further discussed in section 10.4. 
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10.3. Managerial Implications 

Many companies are embarking on strategies to share consumer sales data among 

supply chain members. This is a move away from being ‘customer centric’ towards 

being ‘consumer centric’. Previous case studies of such supply chains show how this 

increases forecasting accuracy, thus resulting in lower inventory costs and increased 

revenues. Reduction of inventory levels up to 50% (Disney and Towill, 2002) and 

reduction in inventory costs up to 40% (Ireland and Crum, 2006) have been reported. 

The high savings in cost justifies the implementation of systems and structures to 

support sharing of information. Mentzer (2001) argues that, although a great deal of 

discussion takes place on supply chain collaborations, the discussion on specifics on 

how it should be done is missing. This research analyses how supply chain 

collaborations should be conducted through demand information sharing.   

Four demand information sharing approaches have been compared in this research: 

NIS and NIS-Est approaches when the supply chain strategy is not to share demand 

information, and DIS and CDIS for a demand information sharing strategy. The 

theoretical and empirical analyses in this research show that sharing demand 

information results in lower forecast error, Bullwhip Ratio, inventory holdings and 

inventory cost for the upstream member. On comparing the two approaches for 

demand information sharing strategy, DIS and CDIS, the analysis shows that the 

CDIS approach performs best in terms of the four performance metrics.  

The above results imply that, in order to achieve reduced supply chain costs, 

organisations should share the consumer demand with their upstream members and 

should consider the CDIS approach as an alternative to the DIS approach. It is 

especially beneficial to share information, using CDIS, in supply chains with long 

lead-times to the upstream member, and which have high stock-out penalty costs. 

Since the magnitude of savings in real applications does not necessarily reflect those 

found from simulations on theoretically generated data, if organisations wish to 

quantify the benefit of CDIS, they should simulate its effect using their own supply 

chain demand data. The need for simulation is particularly acute for supply chains 

with three or more levels, or those with multiple entities at one level, as these were 

not investigated in the thesis. If simulations on real demand data confirm the benefit 
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of CDIS, and the approach is to be implemented, further detailed simulations on real 

data are needed for seasonal items or those for which the Anti-Bullwhip Effect may 

prevail, as these were not analysed in the simulation and empirical parts of the thesis 

The foundation of supply chain collaboration is information sharing (Lee et al, 

2000); decisions on collaborations are strongly based on what information should be 

shared. In the CDIS approach, the manufacturer produces their forecast by not only 

utilising the demand but also the forecast of the retailer. Thus, when organisations 

have in place a formal information sharing mechanism with their downstream 

members, they can share both the demand and the forecast and utilise both in their 

forecasting process. CDIS is operationally a better method as the forecasting process 

takes place once only, either at the retailer or the manufacturer. In fact, the forecast 

can be produced collaboratively by both the manufacturer and the retailer. Both 

members can bring in their expertise in the process and produce a better forecast 

using the actual consumer demand. Empirical research into 54 manufacturers in the 

Food and Consumer Package Goods (F&CPG) industry have shown that the highest 

profit margin companies are not simply exchanging information but using this as a 

vehicle for supply chain collaborations (Kulp et al, 2004). Finally, CDIS encourages 

companies to pay more attention to consumer demand, which may contribute to a 

more consumer-centric approach. 

This research focuses on the benefits of demand information sharing for the 

manufacturer or an upstream member in a supply chain. Previous studies have shown 

that when two supply chain links share information on the demand of the 

downstream member, it is the upstream member who gets the direct benefits from 

this information sharing (Simchi-Levi and Zhao, 2003; Kulp et al, 2004). These 

manufacturer benefits have been quantified in this research. However, various 

authors have suggested that, in return, the retailer can negotiate indirect benefits from 

the manufacturer in terms of cost and lead time reduction (Lee et al, 2000), VMI 

programs (Yu et al, 2002) or by getting subsidies for sharing information 

(Raghunathan, 2003). This issue has not been investigated in this thesis. 

Nevertheless, if the issue is resolved, both parties will benefit from this demand 

information sharing strategy.  
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Recently, a steady stream of research papers has argued that upstream members can 

extract the sales data from the history of orders they receives from retailers. It this is 

possible, no formal information sharing mechanism would be required to share sales 

data. In this research, adopting more realistic assumptions, we show that an upstream 

link in the supply chain cannot infer the consumer’s sales from its order history if the 

supply chain links utilise SES or MMSE forecasting methods. In the case of SMA 

and ARMA demand, the demand information can be extracted by the upstream 

member if the number of historical terms used in the SMA forecast is known to the 

upstream member. The business forecasting approach most organisations take is 

based on forecasting various demand forecasting units which may be stock keeping 

units (SKUs) or an aggregate of various SKUs (Holmstrom, 1998). The historical 

data for each of these demand forecasting units is analysed to determine the average, 

trend and seasonal demand components (e.g. SAP, 2004) and then the appropriate 

forecasting method is selected for each of these demand forecasting units based on 

the historical data. Thus, when a retailer places an order on the manufacturer of 

various products, the order generation process may involve different forecasting 

methods for different products e.g. SMA for some products and SES or MMSE for 

others. In order to know the retailer’s demand, the manufacturer, in the case of 

MMSE and SES, will have to make use of some formal information sharing 

mechanism. On the other hand, if the retailer has employed SMA for some products, 

the demand can be mathematically calculated. But if the manufacturer already has in 

place a formal information sharing mechanism (e.g. an integrated ERP solution) for 

information sharing, there is no need for them to use another mechanism 

(mathematical calculation) for products forecasted with the SMA method. They can 

simply use the information system to find the demand of such products at the retailer. 

Hence, we conclude that companies have to resort to formal information sharing 

systems to extract the consumer’s sales data and reduce the Bullwhip Effect.  
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10.4. Limitations and Further Research 

In this section, suggestions for future research are discussed from theoretical, 

simulation and empirical perspectives.  

In Chapter 2, we discussed a stream of research that focuses on evaluating the causes 

of the Bullwhip Effect. The literature review reflects four major causes, which are 

Demand Signal Processing, Rationing and Shortage Gaming, Batch Ordering and 

Price Fluctuations. This research analyses Demand Signal Processing in isolation. An 

avenue for further research would be to examine the interaction between these four 

causes of the Bullwhip Effect.  

One major limitation of the supply chain model in this thesis is the assumption of an 

Order up to (OUT) inventory policy. Although we have provided empirical evidence 

of usage of the OUT policy, it is obvious that companies resort to various different 

inventory policies. A major area of further research is to investigate the effect of 

inventory policies on the value of demand information sharing.  

The comparison of demand information sharing in this research is based on the 

assumption of a two stage supply chain with one entity at each stage. An interesting 

area of research would be to check whether the results are valid in more complex 

supply chain systems such as a multi-stage supply chain with more than one entity at 

each stage.  

Another limitation of this research is the assumption of non-seasonal demand. In 

practice, demand for certain products show seasonal variations. The time series of 

demand for such products exhibit a seasonal periodic component which repeats after 

every s observation (Chatfield, 2003). In order to generalise ARIMA demand models 

to deal with seasonality, Box et al (1994) have derived seasonal ARIMA or 

SARIMA models. Another interesting avenue for further research would be to 

analyse upstream demand translation for SARIMA models, and to assess the CDIS 

approach for such models.  

One of the limitations of the research is that we have limited the investigation of the 

effect of demand parameters on the value of CDIS to stationary ARIMA processes. 

The reason for this limitation is that the mathematical analysis of the Bullwhip region 
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in the literature is limited to stationary ARIMA processes. Thus, one important 

avenue for further research is to generalise the mathematical analysis of the Bullwhip 

region to all ARIMA (p, d, q) processes. 

As this research focuses on reduction in the demand variance amplification, the 

choice of parameters in the simulation experiment is limited to regions where the 

Bullwhip Effect takes place. Similarly, in the empirical analysis, all series that 

resulted in decrease in demand variability were ignored. However, in real life supply 

chains, a decrease in demand variability or Anti-Bullwhip Effect may occur (Li et al, 

2005). Thus, another avenue for further research would be to investigate the effect of 

demand information sharing when Anti-Bullwhip Effect occurs in supply chains. 

In chapters 3 and 7, we discussed the complexities of mathematically comparing the 

four demand information sharing approaches. Thus the performance of the demand 

information sharing approaches has been compared only in simulation and empirical 

analysis. Another future direction is to analyse the four approaches and compare the 

performance metrics mathematically. For example in Chapter 8, we observed that the 

effect of cost ratio is different for stationary and non-stationary processes. Thus, an 

interesting avenue would be to model the effect of cost ratio on the value of CDIS 

mathematically. This will also help in better understanding the reasons for better 

performance of the CDIS approach.  

The survey of forecast practice showed that most practitioners use non-optimal 

forecasting methods. Based on this survey, we examined two non-optimal 

forecasting methods, SMA and SES. As the survey revealed high usage of some 

other non-optimal forecasting methods as well, the value of CDIS can further be 

quantified by examining other non-optimal forecasting methods. The upstream 

translation of demand in the case of non-optimal forecasting methods have been 

generalised to an ARMA (p, q) demand process. Further research is required to 

generalise the upstream demand translation to ARIMA (p, d, q) demand processes.  

In sub-section 7.3.7, the series splitting rules were presented and it was discussed 

that the process identification and parameter estimation is performed on a one-time 

basis from the data on the first half of the series while the second half is used for 

performance measurement. We have also discussed in Chapter 9 that some series in 
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the empirical data may be subject to parameter and model changes. An avenue for 

further research could be to update the parameter and model at every time period 

during the performance measurement part. 

The existing supply chain models in the literature are based on various strict 

assumptions. Some severe limitations such as known demand process and known 

demand parameters have been broken in this research. The Centralised Demand 

Information Sharing (CDIS) approach, as presented in this thesis, results in reduced 

inventory costs when the demand is non-seasonal for a two stage supply chain 

utilising an OUT inventory policy. We now need to assess whether the CDIS 

approach results in cost savings for supply chain models with more relaxed 

assumptions.  
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Appendix 4A: Proof of Equations 4-9 – 4-15 

In this Appendix, for reasons of simplicity, we replace Rθ withθ . 
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n n 4

4 1 3 2 2 3 1

5 2 3 3 2 4 1

3 3 2 2 1 1

Now as in our simulation , =0 for n > 3, the equations for  onwards are reduced to 
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Appendix 4B: Upstream Propagation for SMA 

Suppose the demand (
td ) at the retailer follows an ARMA (p, q) process: 

1 1 2 2 1 1 2 2..... .....t t t p t p t t t q t qd d d dτ ρ ρ ρ ε θ ε θ ε θ ε− − − − − −= + + + + + − − − −                 (4B-1) 

and the forecasting method used by the retailer is the Simple Moving Average 

(SMA) of the n most recent demands given by: 
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The lead time demand forecast, ˆ L

tD , is given by: 
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Now, the order-up-to level is calculated by: 

ˆ L

t tS D z εσ= + 2  

where z is the safety factor and 2

εσ is the variance of the noise in the lead time 

demand. 

The order from the retailer to the manufacturer can be calculated by summing the 

demand at the retailer plus any change in the order-up-to level in the current period. 

t t t tY S S d−= − +1  
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t t t tY D z D z dε εσ σ−= + − − +2 2

1  

( )t t t n

L L
Y d d

n n
−= + −1               (4B-2) 

Substituting the expression for dt from equation 4B-1 into equation 4B-2, 



M. Ali, 2008, Appendix 4B  232 

 

( )

( )

... ...

... ...

t t t p t p t t t q t q

t n t n p t n p t n t n t n q t n q

L
Y d d d

n

L
d d d

n

τ ρ ρ ρ ε θ ε θ ε θ ε

τ ρ ρ ρ ε θ ε θ ε θ ε

− − − − − −

− − − − − − − − − − − − −

 = + + + + + + − − − − 
 

 − + + + + + − − − − 
 

1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

1

 

( )

( )

...

...

...

t t t n

p t p p t n p

t t t q t q

t n t n t n q t q n

L L
Y d d

n n

L L
d d

n n

L

n

L

n

τ ρ ρ

ρ ρ

ε θ ε θ ε θ ε

ε θ ε θ ε θ ε

− − −

− − −

− − −

− − − − − − −

    = + + − +    
    

    + + − +    
    

 + − − − − 
 

 − − − − − 
 

1 1 1 1

1 1 2 2

1 1 2 2

1

1

1  

Recalling equation (4B-2) and letting 1 t t

L
a

n
ε + = 

 
the equation for the order to the 

manufacturer becomes: 

( )

...

...

...

t t t p t p

t t t q t q

t n t n t n q t n q

Y Y Y Y

a a a a

L
a a a a

L n

τ ρ ρ ρ

θ θ θ

θ θ θ

− − −

− − −

− − − − − − −

= + + + +

+ − − − −

 − − − − − + 

1 1 2 2

1 1 2 2

1 1 2 2

              (4B-3) 

which is an ARMA (p, n+q) process. 

Therefore, if the demand at the retailer follows an ARMA (p, q) process, and the 

retailer uses the Simple Moving Average of the n most recent observations as the 

forecast, the order generated for the manufacturer will follow an ARMA (p, n+q) 

process. 
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Appendix 4C: Upstream Propagation for SES 

Suppose the demand at the retailer follows an ARMA (p, q) process given by: 

1 1 2 2 1 1 2 2..... .....t t t p t p t t t q t qd d d dτ ρ ρ ρ ε θ ε θ ε θ ε− − − − − −= + + + + + − − − −                           

and the forecasting method used by the retailer is Single Exponential Smoothing 

(SES) given by: 

( )ˆ ˆ
t t t

F d Fα α+ = + −1 1 . 

Assuming F1=d0 and solving the above equation recursively we get: 

( ) ( )

( ) ( )

ˆ ...t t t t

t t

F d d d

d d

α α α α α

α α α

+ − −

−

= + − + − + +

− + −

2

1 1 2

1

1 0

1 1

1 1
 

Calculating the lead time forecast 1
ˆ L

tF +  for SES: 

( ) ( )

( ) ( )

...
ˆ t t tL

t t t

d d d
F L

d d

α α α α α

α α α

− −

+ −

 + − + − + +
 =
 − + − 

2

1 2

1 1

1 0

1 1

1 1
        (4C-1) 

Now, the order-up-to level is calculated by: 

ˆ L

t tS F z εσ+= + 2

1  

where z is the safety factor and 2

εσ is the variance of the noise in the lead-time 

demand. 

The order from the retailer to the manufacturer can be calculated by summing the 

demand at the retailer plus any change in the order-up-to level in the current period. 

t t t tY S S d−= − +1  

ˆ ˆL L

t t t tY F z F z dε εσ σ+= + − − +2 2

1  

t

L

t

L

tt dFFY +−= +
ˆˆ

1  
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The order from the retailer to the manufacturer is: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

[ ... ]

[ ... ]

t t

t t t t

t t

t t t t

Y L d d d d d

L d d d d d d

α α α α α α α α

α α α α α α α α

−

− −

− −

− − −

= + − + − + + − + −

− + − + − + + − + − +

2 1

1 2 1 0

2 2 1

1 2 3 1 0

1 1 1 1

1 1 1 1  

Re-arranging the terms, we get: 

( ) ( )

( ) ( )

[ ( ) ( ) ( ) ...

( ) ( )]

t t t t t t t

t t

t

Y L d d d d d d

d d d d d

α α α α α

α α α α

− − − − −

− −

= − + − − + − − + +

− − + − − +

2

1 1 2 2 3

2 1

2 1 1 0

1 1

1 1
                (4C-2) 

])()1()()1(

...))(1()([

01

1

12

2

211

jtjjj

jt

jj

jt

jtjjtjjtjjtjjtj

ddddd

ddddLY

−
−−−−

−−−−−−−−

+−−+−−

++−−+−=

ρρρααρραα

ρρααρραρ
 

We note that using a similar argument to Alwan et al (2003), and substituting ARMA 

(p, q) expressions for dt, dt-1,…, d1 in the above, and summarising terms that equate to 

, ,...,t t p t pY Y Yρ ρ ρ− − −1 1 2 2  we get: 

... ( )

[( ) ] [( ) ( )]

... [ ( ) ( ) ( ) ( ) ( ) ( ) ...]

[ ( ) ( ) ( ) ]

t t t p t p t

t t

t t t

p
t t i

i

i

Y Y Y Y L

L L L L L

L

L d d d

τ ρ ρ ρ α ε

α θ α ε α θ α θ α α ε

α α θ α α θ θ α α θ θ ε

α α α α ρ

− − −

− −

− − −

− −

=

= + + + + + +

− + + − + − + −

− − − + + − − + − − +

+ − − + −∑

1 1 2 2

2 2 2

1 1 2 1 2

2 3 4

1 2 1 3 2 1

1

1 0 0

2

1

1 1 1

1 1 1 1

1 1

         (4C-3) 

which is an ARMA (p, t-1), plus another term, namely: 

[ ( ) ( ) ( ) ]
p

t t i

i

i

L d d dα α α α ρ− −

=

− − + −∑1

1 0 0

2

1 1  

Therefore, if the demand at the retailer follows an ARMA (p, q) process, and the 

retailer uses SES to forecast, the order generated for the manufacturer would follow 

ARMA (p, t-1) + other term. 
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Appendix 6A: Proof of Rule for Downstream Demand 

Calculation 

Suppose a manufacturer realises the following order from the retailer identified as an 

ARIMA (p, d, qM) demand process. 

( ) ( ) ( )ρ θ∇ =d M

t tB Y B a  

where 

( ) ...

( ) ...

2

1 2

2

1 2

1

1

ρ ρ ρ ρ

θ θ θ θ

= − − − −

= − − − −
M

M

p

p

M M M M q

q

B B B B

B B B B
 

1 2, ,..., pρ ρ ρ are the autoregressive parameters chosen to ensure stationarity. 

M
qttt aaa
−− ,...,, 1 are the noise terms in the manufacturer’s demand and 

1 2, ,...,θ θ θ M

M M M

q
are the moving average parameters in the manufacturer’s demand 

chosen to ensure invertibility. 

If qR > qM, the order at the retailer would be a unique ARIMA (p, d, qM + L) model: 

( ) ( ) ( )ρ θ ε∇ =d R

t tB d B  

where 

( ) ...

( ) ...
M

M

p

p

R R R R q L

q L

B B B B

B B B B

ρ ρ ρ ρ

θ θ θ θ +

+

= − − − −

= − − − −

2

1 2

2

1 2

1

1
 

where 1, ,...,t t t pd d d− −  are the observed demands at time period t, t-1,…, t-p, 

1 ( )
, ,...,ε ε ε− − +Mt t t q L

 are the noise terms. The noise terms are independent and 

identically distributed with mean zero and variance εσ
2 . 
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In order to calculate the demand at the retailer, the manufacturer would need to 

calculate the following moving average terms 1 2, ,...,θ θ θ
+M

R R R

q L
 and the following 

noise terms 1 ( )
, ,...,ε ε ε− − +Mt t t q L

.  

Zhang (2004b) has shown that for any ARMA (p, q) demand process, when qR > qM, 

the moving average terms at the retailer ( Rθ ) can be calculated by using the 

following relationship. 

θ θ+ = 0

R M

L s sK                 6A-1 

where s = 1, 2, 3, … , qM + L, L is the lead time from the supplier to the 

manufacturer and 0K is the amount with which the moving average term is amplified  

as defined in Chapter 4.  

The above relationship can easily be shown to exist for an ARIMA (p, d, q) using the 

moving average parameter equations in Gilbert (2005: 307). Looking at these 

equations it is obvious that the manufacturer has qM equations. However, the 

manufacturer has q
M

 + L unknown moving average terms. As the manufacturer has 

to calculate qM + L unknowns but only has qM equations, they are unable to 

accurately calculate all the moving average parameter terms. Using the same 

argument, we can show that the manufacturer would be unable to accurately 

calculate all the noise terms at the retailer. Thus, in this case the manufacturer is 

unable to calculate the demand at the retailer.  
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Appendix 8A: Results for Optimal Method: Stage I 

Mean Squared Error 

Percentage Reduction by 

using CDIS compared to 
Demand Process 

NIS DIS 

NIS-

Est CDIS  NIS  DIS NIS-Est 

AR(1) 
971 500 488 441 54.6% 11.8% 9.8% 

AR(2) 
451 297 306 251 44.4% 15.5% 18.0% 

ARMA(1,1) 
433 443 451 414 4.3% 6.5% 8.0% 

MA(1) 
109 109 109 100 8.0% 8.0% 7.1% 

MA(2) 
234 234 234 217 7.1% 7.1% 7.1% 

ARIMA(0,1,1) 
2144 1730 1949 1341 37.5% 22.5% 31.2% 

ARIMA(1,1,1) 
7651 4238 4621 3170 58.6% 25.2% 31.4% 

ARIMA(1,1,2) 
3469 1834 2347 1427 58.9% 22.2% 39.2% 

ARIMA(0,2,2) 
10177 7503 9133 3562 65.0% 52.7% 61.0% 

 

 

Bullwhip Ratio 

Percentage Reduction by 

using CDIS compared to 
Demand Process 

NIS DIS 

NIS-

Est CDIS  NIS  DIS NIS-Est 

AR(1) 
3.1 2.8 2.8 2.5 18.7% 9.5% 11.5% 

AR(2) 
2.3 2.0 2.0 1.8 21.5% 9.8% 7.8% 

ARMA(1,1) 
2.1 2.1 2.1 2.0 3.8% 3.8% 3.8% 

MA(1) 
1.2 1.2 1.2 1.1 9.4% 9.4% 9.4% 

MA(2) 
2.8 2.8 2.8 2.5 9.8% 9.8% 9.8% 

ARIMA(0,1,1) 
4.9 3.6 4.1 2.9 42.0% 21.6% 29.5% 

ARIMA(1,1,1) 
5.4 2.3 3.4 1.9 65.0% 18.7% 44.2% 

ARIMA(1,1,2) 
5.7 3.2 4.2 2.6 54.0% 18.0% 37.5% 

ARIMA(0,2,2) 
5.9 2.1 2.5 1.3 78.0% 39.3% 48.5% 
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Inventory Holdings 

Percentage Reduction by 

using CDIS compared to 
Demand Process 

NIS DIS 

NIS-

Est CDIS  NIS  DIS NIS-Est 

AR(1) 
1072 724 736 665 38.0% 8.2% 9.6% 

AR(2) 
3296 1428 2281 1095 66.8% 23.3% 52.0% 

ARMA(1,1) 
996 1813 1680 524 47.4% 71.1% 68.8% 

MA(1) 
478 478 478 466 2.6% 2.6% 2.6% 

MA(2) 
422 422 422 386 8.4% 8.4% 8.4% 

ARIMA(0,1,1) 
24169 3521 2921 1542 93.6% 56.2% 47.2% 

ARIMA(1,1,1) 
218840 27264 40900 16413 92.5% 39.8% 59.9% 

ARIMA(1,1,2) 
100814 17641 32983 11765 88.3% 33.3% 64.3% 

ARIMA(0,2,2) 
116069 27480 29906 16598    85.7%   39.6%   44.5% 

 

 

Inventory Cost 

Percentage Reduction by 

using CDIS compared to 
Demand Process 

NIS DIS 

NIS-

Est CDIS  NIS  DIS NIS-Est 

AR(1) 
1087 798 827 738 32.1% 7.6% 10.8% 

AR(2) 
3138 1493 2234 1318 58.0% 11.7% 41.0% 

ARMA(1,1) 
853 610 606 580 32.0% 4.9% 4.4% 

MA(1) 
537 537 537 525 2.3% 2.3% 2.3% 

MA(2) 
488 488 488 451 7.5% 7.5% 7.5% 

ARIMA(0,1,1) 
6853 2326 3515 1912 72.1% 17.8% 45.6% 

ARIMA(1,1,1) 
112299 25508 88971 18417 83.6% 27.8% 59.9% 

ARIMA(1,1,2) 
115527 16168 30696 12708 89.0% 21.4% 58.6% 

ARIMA(0,2,2) 
141698 34401 42208 17854 87.4% 48.1% 57.7% 
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Appendix 8B: Results for Optimal Method: Stage II 

Mean Squared Error 

Percentage Reduction 

by using CDIS 

compared to Demand Process 

DIS NIS-Est CDIS  DIS NIS-Est 

AR(1) 
964 1486 706 26.8% 52.5% 

AR(2) 
621 520 365.3 41.2% 29.8% 

ARMA(1,1) 
598 854 403.2 32.6% 52.8% 

MA(1) 
226 420 152.5 32.5% 63.7% 

MA(2) 
380 423 256.3 32.5% 39.4% 

ARIMA(0,1,1) 
1852 2187 1389 25.0% 36.5% 

ARIMA(1,1,1) 
6911 8882 3020 56.3% 66.0% 

ARIMA(1,1,2) 
4593 9171 2898 36.9% 68.4% 

ARIMA(0,2,2) 
7098 12642 3464 51.2% 72.6% 

 

Bullwhip Ratio 

Percentage Reduction 

by using CDIS 

compared to Demand Process 

DIS NIS-Est CDIS  DIS NIS-Est 

AR(1) 
3.9 7.2 2.5 35.6% 65.3% 

AR(2) 
2.6 3.0 1.9 25.8% 36.5% 

ARMA(1,1) 
3.3 3.8 2.2 33.3% 42.5% 

MA(1) 
2.0 4.3 1.6 19.5% 62.5% 

MA(2) 
2.8 3.2 1.5 45.8% 52.8% 

ARIMA(0,1,1) 
3.9 3.9 2.9 25.9% 25.9% 

ARIMA(1,1,1) 
4.9 3.0 1.8 63.2% 39.6% 

ARIMA(1,1,2) 
5.1 10.5 3.6 29.8% 65.8% 

ARIMA(0,2,2) 
6.1 12.0 2.9 52.6% 75.8% 
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Inventory Holdings 

Percentage Reduction 

by using CDIS 

compared to Demand Process 

DIS NIS-Est CDIS  DIS NIS-Est 

AR(1) 
1338 2157 906 32.3% 58.0% 

AR(2) 
2559 4891 1213 52.6% 75.2% 

ARMA(1,1) 
970 1373 652 32.8% 52.5% 

MA(1) 
719 1544 582 19.1% 62.3% 

MA(2) 
1564 1945 807 48.4% 58.5% 

ARIMA(0,1,1) 
4948 7841 3152 36.3% 59.8% 

ARIMA(1,1,1) 
63191 57094 19526 69.1% 65.8% 

ARIMA(1,1,2) 
22519 86364 15200 32.5% 82.4% 

ARIMA(0,2,2) 
41700 121282 17222 58.7% 85.8% 

 

Inventory Cost 

Percentage 

Reduction by using 

CDIS compared to 
Demand Process 

DIS 

NIS-

Est CDIS  DIS NIS-Est 

AR(1) 
1327 2662 985 25.8% 63.0% 

AR(2) 
2502 5406 1546 38.2% 71.4% 

ARMA(1,1) 
952 1273 652 31.5% 48.8% 

MA(1) 
878 1705 689 21.5% 59.6% 

MA(2) 
1382 1760 887 35.8% 49.6% 

ARIMA(0,1,1) 
4190 6086 3256 22.3% 46.5% 

ARIMA(1,1,1) 
48105 74061 20589 57.2% 72.2% 

ARIMA(1,1,2) 
23310 59551 15245 34.6% 74.4% 

ARIMA(0,2,2) 
39016 105301 19586 49.8% 81.4% 
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Appendix 8C: Results for Optimal Method: Stage III 

Mean Squared Error 

Percentage Reduction 

by using CDIS 

compared to Demand Process 

DIS NIS-Est CDIS  DIS NIS-Est 

AR(1) 
1293 4488 736 43.1% 83.6% 

AR(2) 
929 12888 425.3 54.2% 96.7% 

ARMA(1,1) 
1081 1961 474.5 56.1% 75.8% 

MA(1) 
559 855 325.6 41.8% 61.9% 

MA(2) 
473 1436 260 45.0% 81.9% 

ARIMA(0,1,1) 
3930 4115 1568 60.1% 61.9% 

ARIMA(1,1,1) 
8059 13455 3256 59.6% 75.8% 

ARIMA(1,1,2) 
6607 6556 3363 49.1% 48.7% 

ARIMA(0,2,2) 
9673 10573 5794 40.1% 45.2% 

 

Bullwhip Ratio 

Percentage Reduction 

by using CDIS 

compared to Demand Process 

DIS NIS-Est CDIS  DIS NIS-Est 

AR(1) 
5.9 11.7 3.5 41.1% 70.0% 

AR(2) 
5.7 8.4 2.9 49.1% 65.6% 

ARMA(1,1) 
6.3 8.4 3.1 51.1% 62.9% 

MA(1) 
3.3 4.1 2.0 39.4% 51.2% 

MA(2) 
2.4 5.3 1.5 38.1% 71.9% 

ARIMA(0,1,1) 
8.7 6.1 3.6 58.8% 41.2% 

ARIMA(1,1,1) 
11.3 12.6 4.2 64.1% 65.0% 

ARIMA(1,1,2) 
11.4 13.1 4.5 60.4% 65.7% 

ARIMA(0,2,2) 
7.8 10.7 4.5 42.1% 58.0% 
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Inventory Holdings 

Percentage Reduction 

by using CDIS 

compared to Demand Process 

DIS NIS-Est CDIS  DIS NIS-Est 

AR(1) 
1987 3784 1192 40.0% 68.5% 

AR(2) 
5388 10927 3125 42.0% 71.4% 

ARMA(1,1) 
1714 2033 974 43.2% 52.1% 

MA(1) 
791 1336 465 41.2% 65.2% 

MA(2) 
1359 2514 875 35.6% 65.2% 

ARIMA(0,1,1) 
5487 8949 3177 42.1% 64.5% 

ARIMA(1,1,1) 
61520 105034 21532 65.0% 79.5% 

ARIMA(1,1,2) 
31246 76225 15245 51.2% 80.0% 

ARIMA(0,2,2) 
76199 132876 32156 57.8% 75.8% 

 

Inventory Cost 

Percentage Reduction 

by using CDIS 

compared to Demand Process 

DIS NIS-Est CDIS  DIS NIS-Est 

AR(1) 
2089 4939 1383 33.8% 72.0% 

AR(2) 
5519 12719 3256 41.0% 74.4% 

ARMA(1,1) 
1856 2617 1091 41.2% 58.3% 

MA(1) 
1008 1418 655 35.0% 53.8% 

MA(2) 
1270 2443 904 28.8% 63.0% 

ARIMA(0,1,1) 
6870 10221 3751 45.4% 63.3% 

ARIMA(1,1,1) 
57567 142095 22451 61.0% 84.2% 

ARIMA(1,1,2) 
37568 134173 17845 52.5% 86.7% 

ARIMA(0,2,2) 
103521 255759 43479 58.0% 83.0% 
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Appendix 8D: Results for SMA 

Mean Squared Error Demand Process 

NIS CDIS 

Percentage Reduction 

by using CDIS 

compared to NIS 

AR(1) 
1759 603 65.7% 

AR(2) 
1566 543 65.3% 

ARMA(1,1) 
2239 1041 53.5% 

MA(1) 
995 377 62.2% 

MA(2) 
989 289 70.8% 

ARIMA(0,1,1) 
1042 500 52.0% 

ARIMA(1,1,1) 
1138 443 61.1% 

ARIMA(1,1,2) 
1650 591 64.2% 

ARIMA(0,2,2) 
2895 1242 57.1% 

 

 

Bullwhip Ratio Demand Process 

NIS CDIS 

Percentage Reduction 

by using CDIS 

compared to NIS 

AR(1) 
8.7 3.9 55.2% 

AR(2) 
8.4 3.8 54.2% 

ARMA(1,1) 
8.3 5.0 39.5% 

MA(1) 
8.7 3.0 65.3% 

MA(2) 
8.8 3.2 63.6% 

ARIMA(0,1,1) 
8.1 5.3 34.8% 

ARIMA(1,1,1) 
8.6 4.0 53.6% 

ARIMA(1,1,2) 
8.5 3.9 54.0% 

ARIMA(0,2,2) 
8.8 5.1 42.1% 
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Inventory Holdings Demand Process 

NIS CDIS 

Percentage Reduction 

by using CDIS 

compared to NIS 

AR(1) 
6587 1935 70.6% 

AR(2) 
5779 1830 68.3% 

ARMA(1,1) 
6785 2877 57.6% 

MA(1) 
4875 1261 74.1% 

MA(2) 
4797 1254 73.9% 

ARIMA(0,1,1) 
7525 3612 52.0% 

ARIMA(1,1,1) 
5035 1959 61.1% 

ARIMA(1,1,2) 
6031 2159 64.2% 

ARIMA(0,2,2) 
9235 3962 57.1% 

 

 

Inventory Cost Demand Process 

NIS CDIS 

Percentage Reduction 

by using CDIS 

compared to NIS 

AR(1) 
6588 3531 46.4% 

AR(2) 
5780 3185 44.9% 

ARMA(1,1) 
6790 4801 29.3% 

MA(1) 
4875 2048 58.0% 

MA(2) 
4797 2039 57.5% 

ARIMA(0,1,1) 
8956 6887 23.1% 

ARIMA(1,1,1) 
5035 2633 47.7% 

ARIMA(1,1,2) 
6033 3312 45.1% 

ARIMA(0,2,2) 
9584 6546 31.7% 
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Appendix 8E: Results for SES 

Mean Squared Error Demand Process 

NIS CDIS 

Percentage Reduction 

by using CDIS 

compared to NIS 

AR(1) 
1548 441 71.5% 

AR(2) 
1444 380 73.7% 

ARMA(1,1) 
1960 745 62.0% 

MA(1) 
1033 345 66.6% 

MA(2) 
953 278 70.8% 

ARIMA(0,1,1) 
854 301 64.8% 

ARIMA(1,1,1) 
1091 306 72.0% 

ARIMA(1,1,2) 
903 223 75.3% 

ARIMA(0,2,2) 
2895 1242 76.6% 

 

 

Bullwhip Ratio Demand Process 

NIS CDIS 

Percentage Reduction 

by using CDIS 

compared to NIS 

AR(1) 
9.7 2.9 70.6% 

AR(2) 
9.6 3.6 62.1% 

ARMA(1,1) 
9.1 2.5 72.1% 

MA(1) 
12.4 4.4 64.5% 

MA(2) 
12.6 3.0 76.2% 

ARIMA(0,1,1) 
11.8 4.8 59.4% 

ARIMA(1,1,1) 
9.2 2.0 78.0% 

ARIMA(1,1,2) 
12.8 4.6 63.8% 

ARIMA(0,2,2) 
10.5 4.0 62.2% 
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Inventory Holdings Demand Process 

NIS CDIS 

Percentage Reduction 

by using CDIS 

compared to NIS 

AR(1) 
7110 2169 69.5% 

AR(2) 
7986 3280 58.9% 

ARMA(1,1) 
7954 3261 59.0% 

MA(1) 
7865 1840 76.6% 

MA(2) 
6819 1282 81.2% 

ARIMA(0,1,1) 
10425 3617 65.3% 

ARIMA(1,1,1) 
15422 4657 69.8% 

ARIMA(1,1,2) 
18720 5597 70.1% 

ARIMA(0,2,2) 
10279 2734 73.4% 

 

 

Inventory Cost Demand Process 

NIS CDIS 

Percentage Reduction 

by using CDIS 

compared to NIS 

AR(1) 
8325 2864 65.6% 

AR(2) 
8265 3281 60.3% 

ARMA(1,1) 
8954 2794 68.8% 

MA(1) 
8008 2891 63.9% 

MA(2) 
7433 2156 71.0% 

ARIMA(0,1,1) 
11452 4478 60.9% 

ARIMA(1,1,1) 
17660 5139 70.9% 

ARIMA(1,1,2) 
21240 8475 60.1% 

ARIMA(0,2,2) 
12458 4834 61.2% 

 

 



M. Ali, 2008, Appendix 8G  247 

 

Appendix 8F: Effect of Autoregressive Parameters on the 

value of CDIS for AR (2) process 

 

Percentage Reduction in CDIS compared to 

DIS for MMSE (Stage I) 

2ρ  1ρ  

0.2 0.4 0.6 

0.2 0.6 9.5 15.8 

0.4 3.9 11.7  

0.6 6.1   

 

 

Percentage Reduction in CDIS compared to 

DIS for SMA 

2ρ  1ρ  

0.2 0.4 0.6 

0.2 67.8 66.0 58.3 

0.4 66.5 64.1  

0.6 52.0   

 

 

Percentage Reduction in CDIS compared to 

DIS for SES 

2ρ  1ρ  

0.2 0.4 0.6 

0.2 70.1 64.4 32.2 

0.4 43.2 33.7  

0.6 51.8   
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Appendix 8G: Effect of Moving Average Parameters on the 

value of CDIS for MA (2) process 

 

Percentage Reduction in CDIS compared to 

DIS for MMSE (Stage I) 

2θ  1θ  

-0.6 -0.4 -0.2 

-0.6 15.0 12.4 3.8 

-0.4 9.8 7.5 1.6 

-0.2 6.9 2.5 0.6 

 

 

Percentage Reduction in CDIS compared to 

DIS for SMA 

2θ  1θ  

-0.6 -0.4 -0.2 

-0.6 68.9 69.8 70.0 

-0.4 70.8 71.2 70.9 

-0.2 70.4 70.5 70.5 

 

 

Percentage Reduction in CDIS compared to 

DIS for SES 

2θ  1θ  

-0.6 -0.4 -0.2 

-0.6 69.9 70.8 70.5 

-0.4 69.8 70.8 70.9 

-0.2 70.8 71.2 70.5 
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Appendix 8H: Percentage Reduction in Inventory Cost by 

using CDIS compared to DIS in Stages II and III 

Identification & 

Estimation by the 

Retailer 

Percentage Reduction in inventory in 

using CDIS compared to DIS 

Accurate 45.8% Value of CDIS is greater 

Inaccurate 45.1% Value of CDIS is lesser 
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Appendix 9A: Results for Optimal Method 

Mean Squared Error 

Percentage Reduction by 

using CDIS compared to 
Demand Process 

No. of 

series 

DIS 

NIS-

Est CDIS  DIS NIS-Est 

ARIMA(0,0,0) 113  127  249  127  0.0% 49.0% 

ARIMA(0,1,0) 76  996 1681  884 11.2% 47.4% 

AR(1) 295  196  338  182  7.1% 46.2% 

AR(2) 246  191  229  155 19.1% 32.4% 

ARMA(1,1) 76  202  231  105 48.0% 54.4% 

MA(1) 76  142  182  131  7.8% 28.1% 

MA(2) 71  101  125   88 12.8% 29.7% 

ARMA(2,1) 40  157  232  128 18.5% 44.8% 

ARMA(2,2) 29  454  587  421  7.3% 28.3% 

ARMA(1,2) 61  670 1188  608  9.3% 48.8% 

ARIMA(1,1,0) 195  841 2087  421 49.9% 79.8% 

ARIMA(2,1,0) 447  644  837  295 54.1% 64.7% 

 

Mean Absolute Percentage 

Percentage Reduction by 

using CDIS compared to 
Demand Process 

No. of 

series 

DIS 

NIS-

Est CDIS  DIS NIS-Est 

ARIMA(0,0,0) 113 36.1 47.2 36.1 0.0% 23.5% 

ARIMA(0,1,0) 76 31.7 39.7 28.9 9.1% 27.2% 

AR(1) 295 42.6 49.0 39.2 7.9% 20.3% 

AR(2) 246 41.9 47.5 37.5 10.5% 21.1% 

ARMA(1,1) 76 64.7 76.1 55.0 15.0% 27.7% 

MA(1) 76 41.7 44.1 36.2 13.2% 17.9% 

MA(2) 71 38.2 43.2 32.5 14.9% 24.8% 

ARMA(2,1) 40 41.9 43.7 35.4 15.6% 19.1% 

ARMA(2,2) 29 34.3 46.5 32.1 6.5% 31.0% 

ARMA(1,2) 61 43.3 52.7 42.5 2.0% 19.4% 

ARIMA(1,1,0) 195 39.5 51.4 33.2 16.0% 35.4% 

ARIMA(2,1,0) 447 85.1 96.3 52.2 38.7% 45.8% 
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Bullwhip Ratio 

Percentage Reduction by 

using CDIS compared to 
Demand Process 

No. of 

series 

DIS 

NIS-

Est CDIS  DIS NIS-Est 

ARIMA(0,0,0) 113 2.4 4.0 2.4 0.0% 40.0% 

ARIMA(0,1,0) 76 2.0 2.8 1.6 19.5% 42.8% 

AR(1) 295 2.3 3.3 1.8 23.3% 44.8% 

AR(2) 246 2.3 2.3 1.7 27.6% 25.8% 

ARMA(1,1) 76 3.3 2.5 1.9 42.9% 25.4% 

MA(1) 76 1.9 1.8 1.3 32.2% 28.9% 

MA(2) 71 2.4 3.3 1.9 19.8% 41.8% 

ARMA(2,1) 40 3.4 4.9 2.9 13.8% 40.5% 

ARMA(2,2) 29 2.1 2.0 1.5 29.8% 26.2% 

ARMA(1,2) 61 3.8 4.9 2.8 26.3% 42.5% 

ARIMA(1,1,0) 195 2.2 3.3 1.9 12.7% 42.3% 

ARIMA(2,1,0) 447 4.8 4.9 2.9 39.2% 40.4% 

 

Inventory Holdings 

Percentage Reduction by 

using CDIS compared to 
Demand Process 

No. of 

series 

DIS 

NIS-

Est CDIS  DIS NIS-Est 

ARIMA(0,0,0) 113 267 442 267 0.0% 39.6% 

ARIMA(0,1,0) 76 12524 26325 11967 4.4% 54.5% 

AR(1) 295 389 748 375 3.6% 49.9% 

AR(2) 246 398 450 366 8.0% 18.7% 

ARMA(1,1) 76 863 1412 686 20.5% 51.4% 

MA(1) 76 262 410 245 6.5% 40.2% 

MA(2) 71 342 477 353 -3.1% 26.0% 

ARMA(2,1) 40 1046 1496 745 28.8% 50.2% 

ARMA(2,2) 29 1063 1252 952 10.5% 24.0% 

ARMA(1,2) 61 865 1389 696 19.5% 49.9% 

ARIMA(1,1,0) 195 2147 3976 2097 2.3% 47.2% 

ARIMA(2,1,0) 447 1782 1997 1139 36.1% 43.0% 
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Inventory Cost 

Percentage Reduction by 

using CDIS compared to 
Demand Process 

No. of 

series 

DIS 

NIS-

Est CDIS  DIS NIS-Est 

ARIMA(0,0,0) 113 308 461 308 0.0% 33.2% 

ARIMA(0,1,0) 76 14258 32694 12221 14.3% 62.6% 

AR(1) 295 454 723 426 6.2% 41.1% 

AR(2) 246 472 525 438 7.2% 16.6% 

ARMA(1,1) 76 991 1639 843 14.9% 48.6% 

MA(1) 76 453 587 383 15.5% 34.8% 

MA(2) 71 442 526 406 8.1% 22.8% 

ARMA(2,1) 40 1148 1636 830 27.7% 49.3% 

ARMA(2,2) 29 1165 1328 1041 10.6% 21.6% 

ARMA(1,2) 61 921 1541 763 17.2% 50.5% 

ARIMA(1,1,0) 195 3662 5556 2819 23.0% 49.3% 

ARIMA(2,1,0) 447 2090 2139 1528 26.9% 28.5% 
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Appendix 9B: Results for Single Exponential Smoothing 

All results in Appendix 9B show the percentage reduction in inventory cost by using 

CDIS instead of NIS. 

Mean Squared Error Demand Process 
No. of 

series 

NIS CDIS 

Percentage 

Reduction  

ARIMA(0,0,0) 113 306.5 100.1 67.3% 

ARIMA(0,1,0) 76 473.2 156.6 66.9% 

AR(1) 295 352.1 105.6 70.0% 

AR(2) 246 297.8 87.0 70.8% 

ARMA(1,1) 76 298.5 79.4 73.4% 

MA(1) 76 283.2 53.0 81.3% 

MA(2) 71 309.3 110.7 64.2% 

ARMA(2,1) 40 304.2 99.5 67.3% 

ARMA(2,2) 29 238.4 83.4 65.0% 

ARMA(1,2) 61 229.3 76.3 66.7% 

ARIMA(1,1,0) 195 387.2 124.5 67.8% 

ARIMA(2,1,0) 447 350.0 111.9 68.0% 

 

Mean Absolute 

Percentage Error 
Demand Process 

No. of 

series 

NIS CDIS 

Percentage 

Reduction  

ARIMA(0,0,0) 113 73.2 56.2 23.2% 

ARIMA(0,1,0) 76 69.2 37.9 45.2% 

AR(1) 295 55.2 37.1 32.7% 

AR(2) 246 52.3 39.4 34.6% 

ARMA(1,1) 76 48.7 30.9 36.6% 

MA(1) 76 53.4 28.9 45.8% 

MA(2) 71 56.6 40.0 29.4% 

ARMA(2,1) 40 52.1 31.8 39.0% 

ARMA(2,2) 29 59.8 47.1 21.2% 

ARMA(1,2) 61 61.2 45.5 25.6% 

ARIMA(1,1,0) 195 48.7 32.9 32.4% 

ARIMA(2,1,0) 447 59.6 26.8 55.0% 
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Bullwhip Ratio Demand Process 
No. of 

series 

NIS CDIS 

Percentage 

Reduction  

ARIMA(0,0,0) 113 14.6 3.1 79.0% 

ARIMA(0,1,0) 76 14.0 2.6 81.4% 

AR(1) 295 14.8 2.8 81.3% 

AR(2) 246 15.1 3.1 79.7% 

ARMA(1,1) 76 14.9 2.6 82.4% 

MA(1) 76 14.8 2.6 82.1% 

MA(2) 71 14.6 2.8 81.1% 

ARMA(2,1) 40 14.6 2.6 82.5% 

ARMA(2,2) 29 14.2 1.9 86.6% 

ARMA(1,2) 61 14.6 3.1 78.9% 

ARIMA(1,1,0) 195 14.9 3.0 80.2% 

ARIMA(2,1,0) 447 14.1 2.1 85.2% 

 

Inventory Holdings Demand Process 
No. of 

series 

NIS CDIS 

Percentage 

Reduction  

ARIMA(0,0,0) 113 8025 2149 73.2% 

ARIMA(0,1,0) 76 13477 3803 71.8% 

AR(1) 295 8895 2458 72.4% 

AR(2) 246 7818 2123 72.8% 

ARMA(1,1) 76 7897 2072 73.8% 

MA(1) 76 7488 1904 74.6% 

MA(2) 71 7965 2124 73.3% 

ARMA(2,1) 40 6781 1847 72.8% 

ARMA(2,2) 29 6138 1575 74.3% 

ARMA(1,2) 61 7202 1815 74.8% 

ARIMA(1,1,0) 195 9398 2661 71.7% 

ARIMA(2,1,0) 447 9170 2381 74.0% 
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Inventory Costs Demand Process 
No. of 

series 

NIS CDIS 

Percentage 

Reduction  

ARIMA(0,0,0) 113 8025 2181 72.8% 

ARIMA(0,1,0) 76 13477 3942 70.7% 

AR(1) 295 8900 2518 71.7% 

AR(2) 246 7818 2153 72.5% 

ARMA(1,1) 76 7897 2115 73.2% 

MA(1) 76 7488 1921 74.3% 

MA(2) 71 7965 2163 72.8% 

ARMA(2,1) 40 6781 1904 71.9% 

ARMA(2,2) 29 6138 1583 74.2% 

ARMA(1,2) 61 7202 1853 74.3% 

ARIMA(1,1,0) 195 9409 2804 70.2% 

ARIMA(2,1,0) 447 9172 2437 73.4% 
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Appendix 9C: Results for Simple Moving Averages 

All results in Appendix 9C show the percentage reduction in inventory cost by using 

CDIS instead of NIS. 

Mean Squared Error Demand Process 
No. of 

series 

NIS CDIS 

Percentage 

Reduction  

ARIMA(0,0,0) 113 425.7 187.3 56.0% 

ARIMA(0,1,0) 76 545.3 223.6 59.0% 

AR(1) 295 158.3 96.6 39.0% 

AR(2) 246 415.0 253.6 38.9% 

ARMA(1,1) 76 376.8 243.4 35.4% 

MA(1) 76 280.3 153.3 45.3% 

MA(2) 71 414.8 237.7 42.7% 

ARMA(2,1) 40 366.3 168.5 54.0% 

ARMA(2,2) 29 451.6 185.2 59.0% 

ARMA(1,2) 61 290.3 116.1 60.0% 

ARIMA(1,1,0) 195 514.9 216.3 58.0% 

ARIMA(2,1,0) 447 391.1 144.7 63.0% 

 

Mean Absolute 

Percentage Error 
Demand Process 

No. of 

series 

NIS CDIS 

Percentage 

Reduction  

ARIMA(0,0,0) 113 66.6 32.0 52.0% 

ARIMA(0,1,0) 76 66.0 41.0 37.9% 

AR(1) 295 64.9 47.0 20.6% 

AR(2) 246 59.1 48.0 18.7% 

ARMA(1,1) 76 49.2 37.9 23.0% 

MA(1) 76 62.1 42.1 32.2% 

MA(2) 71 66.8 47.6 28.8% 

ARMA(2,1) 40 57.2 40.0 30.0% 

ARMA(2,2) 29 55.3 27.7 50.0% 

ARMA(1,2) 61 58.6 40.1 31.5% 

ARIMA(1,1,0) 195 79.6 46.1 42.1% 

ARIMA(2,1,0) 447 64.5 27.5 57.4% 
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Bullwhip Ratio Demand Process 
No. of 

series 

NIS CDIS 

Percentage 

Reduction  

ARIMA(0,0,0) 113 8.9 2.8 69.0% 

ARIMA(0,1,0) 76 8.2 2.5 70.0% 

AR(1) 295 7.9 3.5 54.8% 

AR(2) 246 7.2 3.6 50.0% 

ARMA(1,1) 76 8.6 5.5 35.5% 

MA(1) 76 7.5 2.8 62.8% 

MA(2) 71 8.6 3.2 62.8% 

ARMA(2,1) 40 8.9 3.1 65.0% 

ARMA(2,2) 29 8.2 3.4 58.0% 

ARMA(1,2) 61 7.8 4.9 37.0% 

ARIMA(1,1,0) 195 8.6 3.3 61.0% 

ARIMA(2,1,0) 447 8.3 2.2 74.0% 

 

Inventory Holdings Demand Process 
No. of 

series 

NIS CDIS 

Percentage 

Reduction  

ARIMA(0,0,0) 113 11185 6375 43.0% 

ARIMA(0,1,0) 76 18003 8641 52.0% 

AR(1) 295 12002 6001 50.0% 

AR(2) 246 11199 6585 41.2% 

ARMA(1,1) 76 11012 6607 40.0% 

MA(1) 76 9986 3994 60.0% 

MA(2) 71 11403 4778 58.1% 

ARMA(2,1) 40 9605 5859 39.0% 

ARMA(2,2) 29 9223 5073 45.0% 

ARMA(1,2) 61 10252 6254 39.0% 

ARIMA(1,1,0) 195 13529 5411 60.0% 

ARIMA(2,1,0) 447 12901 7999 38.0% 
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Inventory Costs Demand Process 
No. of 

series 

NIS CDIS 

Percentage 

Reduction  

ARIMA(0,0,0) 113 11194 3557 68.2% 

ARIMA(0,1,0) 76 18993 6447 66.1% 

AR(1) 295 12068 6963 42.3% 

AR(2) 246 11296 6812 39.7% 

ARMA(1,1) 76 11771 7898 27.9% 

MA(1) 76 10747 4514 58.0% 

MA(2) 71 11432 5213 54.4% 

ARMA(2,1) 40 9644 3000 68.9% 

ARMA(2,2) 29 9246 2698 70.8% 

ARMA(1,2) 61 10468 3081 70.6% 

ARIMA(1,1,0) 195 13630 4487 67.1% 

ARIMA(2,1,0) 447 12977 3983 69.3% 
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Appendix 9D: Effect of Smoothing Constant on Percentage 

Reduction in Inventory Cost by using CDIS  

The following table indicates the average percentage reduction in inventory cost by 

using CDIS instead of NIS, averaged over all twelve demand processes analysed in 

the empirical analysis of this research.  

alpha Percentage Reduction in inventory Cost 

by using CDIS instead of NIS 

0.1 35.0% 

0.3 72.2% 

0.8 78.8% 
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Appendix 9E: Effect of Number of Terms in SMA on 

Percentage Reduction in Inventory Cost by using CDIS  

The following table indicates the average percentage reduction in inventory cost by 

using CDIS instead of NIS, averaged over all twelve demand processes analysed in 

the empirical analysis of this research.  

Number of Terms (n) Percentage Reduction in inventory Cost 

by using CDIS instead of NIS 

3 38.7% 

6 56.3% 

12 75.6% 

 


