
 
 
 
 
 
 
 
 

FORECASTING OF INTERMITTENT DEMAND 
 

 

 

 
by 

 

 

Argyrios  Syntetos 

 

 

A Thesis submitted for the degree of Doctor of Philosophy  

 
 

 

 

 

 

Business School   

Buckinghamshire Chilterns University College 

Brunel University 

 

 

July, 2001 

 



 ii

Summary 
 
This thesis explores forecasting for intermittent demand requirements.  
 
Intermittent demand occurs at random, with some time periods showing no demand. 
In addition, demand, when it occurs, may not be for a single unit or a constant size. 
Consequently, intermittent demand creates significant problems in the supply and 
manufacturing environment as far as forecasting and inventory control are concerned.  
 
A certain confusion is shared amongst academics and practitioners about how 
intermittent demand (or indeed any other demand pattern that cannot be reasonably 
represented by the normal distribution) is defined. As such, we first construct a 
framework that aims at facilitating the conceptual categorisation of what is termed, 
for the purposes of this research, “non-normal” demand patterns. 
 
Croston (1972) proposed a method according to which intermittent demand estimates 
can be built from constituent elements, namely the demand size and inter-demand 
interval. The method has been claimed to provide unbiased estimates and it is 
regarded as the “standard” approach to dealing with intermittence. In this thesis we 
show that Croston’s method is biased. The bias is quantified and two new estimation 
procedures are developed based on Croston’s concept of considering both demand 
sizes and inter-demand intervals. Consequently the issue of variability of the 
intermittent demand estimates is explored and finally Mean Square Error (MSE) 
expressions are derived for all the methods discussed in the thesis.  
 
The issue of categorisation of the demand patterns has not received sufficient 
academic attention thus far, even though, from the practitioner’s standpoint it is 
appealing to switch from one estimator to the other according to the characteristics of 
the demand series under concern. Algebraic comparisons of MSE expressions result 
in universally applicable (and theoretically coherent) categorisation rules, based on 
which, “non-normal” demand patterns can be defined and estimators be selected. 
 
All theoretical findings are checked via simulation on theoretically generated demand 
data. The data is generated upon the same assumptions considered in the theoretical 
part of the thesis.  
 
Finally, results are generated using a large sample of empirical data. Appropriate 
accuracy measures are selected to assess the forecasting accuracy performance of the 
estimation procedures discussed in the thesis. Moreover, it is recognised that 
improvements in forecasting accuracy are of little practical value unless they are 
translated to an increased customer service level and/or reduced inventory cost. In 
consequence, an inventory control system is specified and the inventory control 
performance of the estimators is also assessed on the real data. The system is of the 
periodic order-up-to-level nature. The empirical results confirm the practical validity 
and utility of all our theoretical claims and demonstrate the benefits gained when 
Croston’s method is replaced by an estimator developed during this research, the 
Approximation method.  
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CHAPTER 1 

 

INTRODUCTION 
 

1.1 Business context 
 

Intermittent demand appears at random, with some time periods having no demand at 

all. Moreover, demand, when it occurs, is not necessarily for a single unit or a 

constant demand size. In the academic literature, intermittent demand is often referred 

to as lumpy, sporadic or erratic demand. Intermittent demand items may be 

engineering spares (e.g. Mitchell, 1962; Hollier, 1980; Strijbosch et al, 2000), spare 

parts kept at the wholesaling/retailing level (e.g. Sani, 1995), or other items within the 

range of products offered by all organisations at any level of the supply chain (e.g. 

Croston, 1972; Willemain et al, 1994).  

 

Williams (1984) analysed the demand categorisation system employed by a public 

utility. The study covered approximately 11,000 products and the author found that 

only 5% of them were classified as “non-sporadic”. Vereecke and Verstraeten (1994) 

described the algorithms developed for the implementation of a new computerised 

inventory management system for spare parts in a chemical plant, in Belgium. The 

spare parts inventory contained about 34,000 different types of items and had a total 

value of approximately £17,740,000. Ninety per cent of the items were classified as 

lumpy. Similar figures have been reported elsewhere in the academic literature (e.g. 

Johnston, 1980; Dunsmuir and Snyder, 1989; Kwan, 1991). According to the “Pareto 

law” approximately 80% of the stock-keeping units (SKUs) contribute to 

approximately 20% of the sales. Moreover, these slower moving items are usually 

supported by more than 60% of the value of stock (see, for example, Johnston and 

Boylan, 1996).  

 

Intermittent demand creates significant problems in the manufacturing and supply 

environment as far as forecasting and inventory control are concerned. Silver (1970) 

noted that “Most useable inventory control procedures are based upon assumptions 

about the demand distribution (e.g., unit sized transactions or normally distributed 
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demand in a replenishment lead time) that are invalid in the case of an erratic item. If 

this is not the case, the procedures tend to be computationally intractable (p. 87)”. In 

addition, forecasting for intermittent demand has long been recognised, in the 

academic literature (e.g. Croston, 1972), as a very difficult business task. It is not only 

the variability of the demand size but also the variability of the demand pattern that 

make intermittent demand so difficult to forecast. 

 

The empirical data to be used for this research has been provided by Unicorn Systems 

(UK) Ltd. The organisation is a forecasting and inventory control software package 

manufacturer. Discussions with representatives from this company revealed the 

practitioners’ concern for better algorithms to deal with intermittence. 

 

In conclusion, managing intermittent demand items is a significant organisational 

problem. In an industrial context, the proportion of the stock range that is devoted to 

intermittent demand items is often considerable. Therefore, small improvements in a 

company’s system, regarding the intermittent demand items, may be translated to 

substantial cost savings. 

 

1.2 Theoretical background and research objectives 
 

Despite the significant benefits that small improvements in managing intermittence 

could offer to organisations, this area has attracted limited academic attention over the 

years. There is a considerable volume of literature on slow moving items. Little 

though has been written on improving the management of intermittent demand items. 

In addition, most papers that appear in this area focus on the control of inventories of 

intermittent demand SKUs, assuming that an appropriate estimator is used to forecast 

future demand requirements (e.g.  Silver, 1970; Ward, 1978; Schultz, 1987; Watson, 

1987; Dunsmuir and Snyder, 1989; Segerstedt, 1994). A limited amount of research 

has been conducted in the area of forecasting for intermittent demand. Few substantial 

contributions have been made in this area since Croston’s work in 1972. This research 

aspires to take forward the current state of knowledge on forecasting intermittent 

demand. It is recognised, though, that improved forecasting practices are not 

necessarily translated in an improved inventory control performance, which is what 
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matters from a practitioner’s perspective. Therefore, we1 wish, at the empirical part of 

the thesis, to assess not only the validity but also the utility of our findings, the latter 

referring to the inventory control implications of the theory developed in this 

research. 

 

Croston (1972) suggested building intermittent demand estimates from constituent 

elements, namely the inter-demand interval and the size of demand, when demand 

occurs. Croston’s concept has been claimed to be of great value to manufacturers 

forecasting intermittent demand. Despite the theoretical superiority of such an 

estimation procedure, empirical evidence suggests modest gains in performance when 

compared with simpler forecasting techniques; some evidence even suggests losses in 

performance.  

 

Croston (op. cit.) was concerned with estimating, in an unbiased manner, the mean 

intermittent demand level. However, as Johnston and Boylan (op. cit.) pointed out, he 

did not go further, to produce an estimate of the variability of demand which is 

equally important for inventory control purposes. 

 

It is common practice in industry to categorise demand patterns considering certain 

properties of the demand series, and consequently to select the forecasting method 

and inventory control model that perform “best” in this particular category. These 

categorisation schemes, though, are arbitrary in nature, and the values assigned to the 

criteria used are selected on a purely subjective basis. Some work in this area has been 

simulation-based (Johnston and Boylan, 1996) and lacking empirical testing of 

categorisation rules. Other work has been related to a specific industrial situation 

(Williams, 1984) and lacking universal applicability. 

 

 

 

 

 

                                                 
1 The use of the word “we” throughout the thesis is purely conventional. The work presented in this 
Ph.D. thesis is the result of research conducted by the author alone, albeit with support from an 
academic institution and a commercial organisation (see sub-section 1.4.1). 
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Finally, a problem that has received very limited attention in the academic literature is 

that of obtaining reliable forecasting accuracy results in an intermittent demand 

context. It is the very nature of intermittent demand data, and in particular the 

existence of some zero demand time periods, that creates considerable difficulties in 

selecting an appropriate accuracy measure. Nevertheless, those special properties of 

intermittent demand series seem to have been underestimated or ignored in the past by 

both practitioners and academicians. 

 

Given this background, the six main objectives of this research have been formulated 

as follows: 

 

1. To identify some of the causes of the unexpected poor performance of Croston’s 

method 

2. To develop new intermittent demand estimation procedures  

3. To derive results for the mean squared forecast error of a range of intermittent 

demand estimates  

4. To propose theoretically coherent categorisation rules that distinguish between 

intermittent and non intermittent demand 

5. To identify appropriate accuracy measures for application in an intermittent 

demand context 

6. To test the empirical validity and utility of the theoretical results on a large set of 

real world data. 

 

The conclusions of our research are discussed in chapter 12 of the thesis. 

 

1.3 Structure of the thesis 
 

This thesis is structured as follows: 

 

In chapter 2 the literature on managing intermittent demand items is overviewed, the 

detailed assumptions and methods employed in this research are discussed and some 

information regarding our empirical data is presented. Detailed review of the literature 

follows in the relevant chapters. 
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Some confusion is shared amongst academics and practitioners about how intermittent 

demand (or indeed any other demand pattern that cannot be reasonably represented by 

the normal distribution) is defined. Therefore, in chapter 3, we construct a framework 

to categorise  “non-normal” demand patterns. 

 

Croston’s method has been widely implemented in practice. It has been claimed to 

provide unbiased estimates of the mean demand, when demand is intermittent. In 

chapter 4 we show that Croston’s method is biased. The bias is quantified and two 

new, approximately unbiased, estimation procedures are developed, based on 

Croston’s idea of considering demand sizes and inter-demand intervals separately.  

 

In chapter 5 the issue of variability of the intermittent demand estimates is explored in 

detail. The variance of the estimates is derived for all the methods considered at that 

stage of the thesis. 

 

In chapter 6, Mean Square Error (MSE) expressions are derived for all estimators. 

The MSE is similar to the statistical measure of the variance of forecast errors but not 

identical since bias is also taken into account. Algebraic comparisons of MSE 

expressions result in categorisation rules. According to these rules, different “non-

normal” demand patterns can be defined and estimators be selected. 

 

In chapter 7 a simulation experiment using theoretically generated data is developed 

to check the validity of all our approximate theoretical results. 

 

In chapter 8 the most commonly used accuracy measures are discussed. The most 

appropriate ones are selected for application in an empirical intermittent demand 

context.  

 

In chapter 9 an inventory control model is developed to be used later in the thesis 

(chapter 11) to assess the empirical utility (inventory control implications) of our 

theoretical findings.  
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The empirical validity and utility of our theoretical findings are analysed in chapters 

10 and 11 respectively. Finally, in chapter 12 the conclusions, recommendations and 

possible extensions of the thesis are discussed. 

 

All appendices appear at the end of the thesis. 

 

1.4 Methodology 
 

1.4.1 The context for academic research 

 

This Ph.D. has been supported financially by Buckinghamshire Chilterns University 

College and by Unicorn Systems (UK) Ltd. Despite the fact that an industrial 

organisation was involved in this project, the research cannot be characterised as 

“applied” (Saunders et al, 1997) in the sense that our main objectives have neither 

been negotiated with the software package manufacturer, nor they have been modified 

by them.  

 

The research carried out could be perceived as solely academic. However, it is argued 

that the conceptualisation, discussions and outcomes provide practical benefits to 

industry. In the development of forecasting methods and categorisation schemes, the 

focus has been on the production of universally applicable results within industry. 

Therefore, such procedures do have some relevance to the sponsoring organisation 

and it is anticipated that they will be utilised by them in the near future. 

 

1.4.2 A deductive approach 

 

Our methodological approach is purely deductive. Theoretical results are first 

generated upon well-specified assumptions. The approximate nature of the theoretical 

results necessitates the assessment of their validity on theoretically generated data. 

Upon verification of the good performance of our approximations, the results are 

checked on empirical data.   
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The structure of the thesis is presented schematically in figure 1.1. 
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CHAPTER 2 

 

METHODS AND LITERATURE OVERVIEW 
 

2.1 Introduction 
 

The purpose of this chapter is to provide an overview of the literature on forecasting 

intermittent demand. Detailed review of the literature, on specific research areas 

(including stock control), follows in the relevant chapters. This chapter also serves the 

purpose of clarifying the details of our methodological approach. In the previous 

chapter, broad methodological issues were discussed. In this chapter, our specific 

methods and assumptions are presented in detail. Finally, a brief introduction is made 

to the organisation that provided the empirical data to be used in this research. 

 

Unless demand occurs at every inventory review period and is of a fairly constant 

size, it always creates problems in the manufacturing and supply environment as far 

as forecasting and inventory control are concerned. Demand series of this type are 

often referred to as intermittent.  

 

Intermittent demand items are not necessarily low demand items, as the latter demand 

category implies low demand sizes (or very often unit-sized transactions), when 

demand occurs. A considerable amount of research has been conducted on managing 

low demand items. This category of demand is not addressed explicitly in the thesis, 

since different approaches may be needed for non-intermittent low demand items. 

 

This research focuses on improving current forecasting practices to deal with 

intermittent demand. It is assumed that a suitable inventory control model is in place, 

so that inventory control issues are not explicitly addressed in the thesis from a 

theoretical perspective. We do, though, consider the inventory control implications of 

our theoretical findings in chapter 11 of the thesis.  

 

Inventory control systems can broadly be categorised as periodic (re-order interval) or 

continuous (re-order level) systems. Implicit reference to inventory control 
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applications is made throughout the thesis by researching forecasting issues related to 

both types of  stock control systems. Nevertheless, it has been argued in the academic 

literature (see for example Sani, 1995; Silver et al, 1998), that periodic systems are 

the most suitable for intermittent demand items (see also chapter 9). Therefore, in this 

thesis, we focus on the implications of forecasting on periodic inventory control.  

 

This research refers to any stage of a given supply chain, focusing on single Stock 

Keeping Unit (SKU) forecasting processes. Aggregate or group forecasting issues are 

not discussed in the thesis.  

 

Moreover, we focus on medium and short-term forecasting applications1. Issues 

related to long-range forecasting are not addressed in the thesis.  

 

In a manufacturing context, no interactions are explored between the production 

planning process and the capacity requirements plans. Moreover only Make To Stock 

(MTS) manufacturing environments are considered, in which case the lead time is 

limited to the time that is required to deliver the products under concern. Further 

assumptions made throughout the thesis are the following: 

 

• Demand is assumed to be independent. We refer only to level 0 in the Bill of 

Materials (BoMs). Higher levels in the BoMs are not considered, with the obvious 

exception of the spare parts 

• Intermittent demand items do not attract the attention of the Marketing and Sales 

activities 

• It is cost-beneficial to keep the SKUs under concern in stock. The issue of 

whether or not an item should be kept in stock has received considerable attention 

in the academic literature (see for example Smith and Vemuganti, 1969; Croston, 

1974; Tavares and Almeida, 1983; Kwan, 1991) but is not pursued in this thesis 

• The data is not trended and has no seasonal components  

• There are no explanatory variables (e.g. atmospheric conditions) upon which we 

may rely to estimate the future behaviour of the demand data 

• Time is treated as a discrete variable. 

                                                 
1 A medium or short-range forecast generally has a time span of up to 18 months (see for example 
Slack et al, 1998). 
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2.2 Definition of intermittent demand 
 

Silver et al (1998) defined intermittent demand as “infrequent in the sense that the 

average time between consecutive transactions is considerably larger than the unit 

time period, the latter being the interval of forecast updating (p. 127)”. Intermittent 

demand is often referred to as sporadic. Johnston and Boylan (1996) have provided an 

“operationalised” intermittent demand definition: inter-demand interval greater than 

1.25 forecast review periods2. Therefore intermittence (sporadicity) refers to the 

demand incidences and not to the demand size when demand occurs. Nevertheless 

sporadicity has often been associated with lumpiness in the academic literature (Ward, 

1978; Schultz, 1987; Dunsmuir and Snyder, 1989). Lumpiness refers to intermittence 

coupled with erratic (irregular) demand sizes when demand occurs.  

 

An intermittent demand definition should not introduce any restrictions as to how 

demand sizes are distributed. Demand, when it occurs, may be unit-sized (low 

demand), constant (clumped demand) or highly variable (lumpy demand). These 

issues are discussed in chapter 3, where the literature is also reviewed in detail. For 

the moment it is sufficient to say that we treat intermittent demand as sporadic with 

no reference to the distribution of the demand sizes.  

 

2.3 Forecasting for intermittent demand items 
 

2.3.1 The stationary mean model (SMM) 

 

Under the Stationary Mean Model (SMM) assumption the mean demand level does 

not change over time and the optimum estimate of demand in any future time period 

is a simple arithmetic average of all previous demand data periods. The SMM is 

described by the following equation: 

 

                                                 
2 Operationalisation is the translation of abstract concepts into indicators or measures, enabling 
observations to be made (Popper, 1972). 
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εµ ttY +=             (2.1) 

 

where 

 

   is the current time period, t ,......2 ,1=t  

 Y   is the observed demand in the current time period t

µ   is the constant mean demand level  

ε t  is a random disturbance assumed to be drawn from a distribution with zero 

mean, 0)( =Ε ε t , and constant variance, VVar t =)(ε . 

 

This is also called the “global” constant mean model. To forecast Y  we shall have to 

assign a value to 

t

µ . The estimate of the level of demand that minimises the Mean 

Square forecast Error (MSE) is the following: 

 

1

1

1

−
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=′

−

=
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Y
Y

t

j
j

t            (2.2)  

 

(i.e. the sample mean based on all available data) 

 

where  is the (unbiased) estimate of the level of demand, for any future time 

period, made at the end of period 

Y t′

1−t .  

 

The Exponentially Weighted Moving Average (EWMA) and Moving Average (MA) 

estimators, to be discussed in the following sub-section, are also unbiased for the 

SMM but are not optimal. 

 

2.3.2 The steady state model (SSM) 

 

Under the Steady State Model (SSM) assumption the mean demand level varies 

stochastically through time and the optimum estimate of demand in any future time 

period is a simple Exponentially Weighted Moving Average (EWMA) of all previous 

demand data periods. The model starts with an observation equation: 
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εµ tttY +=            (2.3) 

 

where  

 

t  , Y , t ε t   are as defined in the previous sub-section  

µ t    is the unobserved mean demand level of the process at time t . 

 

The process level develops stochastically according to the system equation 

 

γµµ ttt += −1            (2.4) 

 

with ,  (constant value). 0)( =Ε γ t WVar t =)(γ

 

We also assume that 

 

0) ( =Ε εε st   st ≠∀ 

0) ( =Ε γγ st   st ≠∀ 

i.e. no auto-correlation of the error terms 

 

0) ( =Ε γε st   ,  t ∀ s ∀

i.e. no cross-correlation of the error terms. 

 

The above-described model is often referred to as the local constant mean model. It 

corresponds to a (0,1,1) model in the ARIMA (Autoregressive Integrated Moving 

Average) terminology: 

 

εθε 111 −− ++= tttt YY           (2.5) 

 

where θ1  is a constant, -1<θ1<1. 

 

The following updating procedure (EWMA or exponential smoothing) can be shown 

to minimise the one step ahead MSE for the SSM (Harrison, 1967): 
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εααα 1111 )1( −−−− +′=′−+=′ ttttt YYYY        (2.6) 

 

where  

 

α  is a smoothing constant, 10 ≤≤ α , and 

YY ttt ′−= −−− 111ε  (or the error at the observation level in period ). 1−t

 

For very low α  values the estimator implies stationarity whereas for very high values 

(say greater than 0.3) a higher level model (e.g. with a trend term) may be more 

appropriate. 

 

Subsequently the current level of demand is estimated as: 

 

Y tt ′=µ̂            (2.7) 

 

The application of EWMA assuming the SSM has been studied extensively over the 

years (Harrison, 1967; Johnston and Harrison, 1986; Johnston, 1993; Johnston and 

Boylan, 1994).  

 

Another approach, according to which there is a perfect correlation between the error 

terms at the observation and system levels (Snyder et al, 1999 a, b; Snyder et al, 

2000), is the following:  

 

Observation equation, εµ tttY +=  

 

System equation,  εµµ α ttt += −1 . 
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In the above set of equations there is a single source of error (SSOE) as opposed to 

the SSM where there are multiple sources of error (MSOE). The SSOE approach 

enables one to see directly the relevance of EWMA. Nevertheless, it has been 

criticised as not being a model, in the OR sense3 (Johnston, 2000), since it confuses 

the representation of the generation process with the estimation of the parameters in 

the model.  

 

Another estimator that is often used in practice, assuming a local constant mean 

model, is a  period simple moving average (MA). A suitable length of the average, 

for typical data, employing monthly revision, might be somewhere between 3 and 12 

points, and if using weekly revision, between 8 and 24 points (Johnston et al, 1999a). 

N

 

N

Y
Y

t

Ntj
j

t

∑
=′

−

−=

1

          (2.8) 

 

Even though the estimator implies that the level of demand varies through time, it was 

not until recently that its properties were explored under the SSM assumption 

(Johnston et al, 1999b).  

 

2.3.3 Modelling demand from constituent elements 

 

For situations without growth or seasonality the SSM has been claimed to be the 

simplest realistic model that can be used (Johnston et al, 1999b). It is difficult to think 

of a real situation where the mean demand level does not change over time. The 

widespread use of EWMA and MA is consistent with such a time-varying mean. Both 

methods are used extensively in practice to deal with intermittent demand.  

 

 

 

 

                                                 
3 A model, in the OR sense, is not just a set of equations but rather a mechanism based on which the 
future behaviour of a variable can be studied in detail. A model should offer the opportunity to gain 
insight on real data and derive properties of various estimators. It should provide the means of 
understanding the process and enable further developments to be made (see Johnston et al, 1986).  
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Exponential smoothing and moving averages consider the aggregate demand (demand 

per unit time period) and estimate how that moves through time. Both methods have 

been shown to perform well on empirical intermittent demand data (see chapter 4). 

Nevertheless, the “standard” forecasting method for intermittent demand items is 

considered to be Croston’s method (Croston, 1972; see for example Silver et al, 

1998). Croston built demand estimates from constituent elements, namely the demand 

size, when demand occurs, and the inter-demand interval.  

 

Croston’s estimator is, intuitively at least, superior to EWMA and MA. This particular 

method is currently used by best-selling statistical forecasting software packages (e.g. 

Forecast Pro) and it has motivated a substantial amount of research work over the 

years, not only in the area of forecasting (e.g. Schultz, 1987; Segerstedt, 1994; 

Willemain et al, 1994; Johnston and Boylan, 1996) but also in the area of inventory 

control for intermittent demand items (e.g. Dunsmuir and Snyder, 1989; Janssen, 

1998; Strijbosch et al, 2000).  

 

Croston (1972) showed that the EWMA method produces biased estimates of the 

mean level of demand in an intermittent demand context (see chapter 4). The model 

used by Croston in developing his method is based of the following assumptions: 

 

1. SMM for the demand sizes  

2. SMM for the inter-demand intervals  

3. No cross-correlation between demand sizes and inter-demand intervals 

4. Geometrically distributed inter-demand intervals 

5. Normally distributed demand sizes  

 

The last assumption is the only one that can be “relaxed”, in the sense that it does not 

affect the results given by the forecasting method. 

 

The implications of assuming the SMM and SSM in an intermittent demand context 

are discussed in sub-section 2.3.4. 

 

Croston suggested updating separately the demand sizes and inter-demand intervals 

with EWMA and he claimed that the ratio of the two estimates provides an unbiased 
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estimate of the local constant level of demand. An identical estimator, generated upon 

the assumption that the demand process can be modelled as Poisson rather than 

Bernoulli, has been presented by Johnston and Boylan (1996). The method is called 

the Size-Interval method and is discussed in detail in chapter 4.  

 

Croston’s method has been claimed to be of great value to organisations forecasting 

intermittent demand. Nevertheless, empirical evidence (Willemain et al, 1994) 

suggests modest gains in performance when compared with less sophisticated 

techniques; some evidence even suggests losses in performance (Sani and Kingsman, 

1997). An effort will be made in this research to identify some of the causes of this 

unexpected poor performance. For this to be done Croston’s method needs to be 

revisited, examined and tested in detail.  

 

2.3.4 The smoothing constant value 

 

For the greater part of this thesis, demand will be theoretically modelled based on the 

first four of Croston’s assumptions. One of the objectives of this thesis is to explore 

possible ways of improving the current standard practice (Croston’s method) in 

forecasting intermittent demand. Nevertheless, there is an inconsistency between 

Croston’s model and Croston’s method that needs at this stage to be discussed. 

Croston assumed a SMM but he proposed updating the size and interval estimates 

using EWMA. As stated at end of sub-section 2.3.1, EWMA is unbiased for the SMM 

but it is not the optimal predictor. 

 

Three arguments may be put forward to demonstrate that this inconsistency is not 

very restrictive (at least within the context of our research): a practical, a statistical 

and a methodological argument. 

 

A practical argument 

 

By using the EWMA estimator the forecast is always alert for any changes in the 

situation, which would reveal themselves through the forecast error (Johnston and 

Boylan, 1994). This is exactly the feature required if we are to forecast a constant 

mean model which is valid locally rather than globally.  
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It is clear that unless we can be absolutely sure that the SMM has applied in the past, 

and will continue to apply in the future, then it will be safer to use the weighted mean 

(EWMA) rather than the ordinary mean. Small smoothing constant values cause 

minor deviations from the SMM. 

 

A statistical argument 

 

By using EWMA we account for any small undetected changes in level. The changes 

cannot be detected because of the very nature of the data (few demand occurrences). 

To strengthen our point: unless we have demand histories of, say, 10 years, we cannot 

detect a SSM. That is, we cannot tell that the mean changes over time because we can 

hardly see that mean. Use of EWMA ensures that any real changes in the underlying 

demand level that cannot be practically detected (and theoretically be accounted for), 

because of the scarcity of data, will be reflected in the demand estimates.  

 

A methodological argument 

 

Theoretical results will be generated in the thesis, assuming that EWMA methods are 

used in conjunction with the stationary mean model assumption. The results will be 

tested on stationary theoretically generated data (chapter 7) but they will also be 

tested on real intermittent demand data that may not be stationary (chapter 10). The 

empirical results will allow us to gain insight as to what extent the model-estimator 

inconsistency is reflected in real world situations. 

 

The first argument necessitates the use of low smoothing constant values in this 

thesis. Burgin and Wild (1967) found that 2.0=α  is suitable for most weekly data but 

they implicitly recommended lower α  values for slow movers. Croston (1972) 

recommended the use of α  values in the range 0.05 - 0.2, when demand is 

intermittent. He also demonstrated, numerically, that for deterministic demands of 

size µ  occurring every p  (constant) review intervals, the EWMA forecast error 

reduces with the smoothing constant value. Finally he suggested that higher values of 

α , in the range of 0.2 - 0.3, may be found necessary only if there is a high proportion 

of items that is known to be non-stationary. Willemain et al (1994) conducted a 

forecasting accuracy comparison exercise between Croston’s method and EWMA on 
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empirical and theoretically generated data. The simulation results reported were based 

on 1.0=α . Sani (1995) conducted research with the purpose of identifying the best 

periodic inventory control model and best estimator in an intermittent demand 

context. EWMA and Croston’s method were simulated on real demand data using 

15.0=α . Johnston and Boylan (1996) simulated the performance of Croston’s 

method and EWMA for the purpose of establishing regions of superior forecasting 

accuracy. Results were reported for 15.0=α .  

 

In an intermittent demand context, low smoothing constant values are recommended 

in the literature. Smoothing constant values in the range 0.05 - 0.2 are viewed as 

realistic. From an empirical perspective, this range covers the usual values of practical 

usage whereas from a theoretical perspective it does not introduce significant 

inconsistencies between the EWMA and SMM. In consequence, this is the range of 

values that we focus upon, during this Ph.D. research. 

 

One way suggested in the literature to define an exponential smoothing system that is 

equivalent to an  period moving average, is to select the smoothing constant in 

such a way so that the estimates have the same age, or lag (Brown, 1963): 
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It is important to note that the equivalence given in equation (2.9) holds only under the 

stationary mean model assumption. If the SSM is assumed to best represent the 

underlying demand pattern then the equivalence is different (Johnston et al, 1999b). 

 

2.4 Alternative approaches to dealing with intermittence 
 

In addition to the forecasting methods discussed in the previous section, three other 

approaches to forecasting intermittent demand have been presented thus far in the 

academic literature. The first approach relies on the past data and is restricted to a 

specific planning and control environment (Early Sales method). The second 

approach incorporates subjective elements in the forecasting process, requires close 

departmental co-operation and is restricted to small industrial markets (Order 
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Overplanning). The last approach is the most computationally demanding and is based 

on employing parametric bootstrapping methods. 

 

2.4.1 The Early Sales method 

 

The “Accurate/Quick Response strategy” and the corresponding approach to 

forecasting, which is the Early Sales (EaSa) method, were developed in the early 90’s 

in order to formulate the production planning decisions (for reduced mark-

downs/stockouts and increased profit) in the apparel industry (Fisher et al, 1994; 

Fisher and Raman, 1996). The concepts apply also to any product line with similar 

characteristics (Kerke et al, 1990; Kurawarwala and Matsuo, 1996), namely: short 

product life cycle, long total production lead time, lack of historical demand data 

availability and lumpy demand because of sales occurring in a concentrated season. 

 

The EaSa method aims at exploiting information from actual orders that have already 

been received for future delivery. At the moment of generating the forecasts only 

demands of those customers having long delivery lead times are known with 

certainty. The balance of the demand is unknown. However it can be estimated 

provided some degree of correlation exists between the known and the unknown 

portion of the demand. The technique applies in contexts with seasonal demand, 

where early buyers provide important information on fashion and trends in the 

market, or in the case that sales of a volatile product occur in a concentrated season, 

which means that a manufacturer would need an unjustifiably large capacity to be 

able to make goods in response to actual demand. The method applies only to the 

above specified planning and control environments with no application to other lumpy 

demand situations.  

 

2.4.2 A “subjective” approach to forecasting intermittent demand 

 

The Make To Order (MTO) manufacturing environment is known to be characterised 

by high levels of lumpiness (e.g. Marucheck and McClelland, 1986). The Order 

Overplanning (OrOv) method has been reported to assist MTO manufacturers in 

dealing with lumpy demand. OrOv (Bartezzaghi and Verganti, 1995; Bartezzaghi et 

al, 1996; Verganti, 1996) is a forecasting method that aims at fully exploiting early 



 20

information that the prospective and regular customers generate during their 

purchasing process. OrOv uses as forecasting unit each single customer order instead 

of the overall demand for the Master Production Schedule (MPS) unit. So the forecast 

unit is distinguished from the MPS planning unit. The expected requirements for a 

module (that belongs to a particular order) are overestimated (because of the sources 

of uncertainty within the planning horizon, namely: order acquisition, actual due date, 

system configuration (number and types of apparatus) and apparatus configuration 

(modules)) by implicitly4 incorporating in them the slack necessary to handle those 

uncertainties, i.e. by means of introducing redundant configurations, so as to satisfy 

any request that may actually be received. The demand forecast for the MPS unit is 

obtained by adding up the requirements included in the individual forecast orders. In 

particular, if Q  is the estimated requirement for a module in a forecast order ij j  that 

is likely to be due in period i , and if this module belongs to m  different orders then 

the total forecast  for period  simply equals: 

i

Qi i

 

∑
=

=
mi

j
iji QQ

1
                               (2.10) 

 

In OrOv, forecasting is not the numerical result of an algorithm for smoothing 

historical data, but is an organisational process, closely linked to the purchasing 

practices of the customer. In fact the method relies upon the capabilities of Sales to 

anticipate future requirements by continuously gathering information from customers 

and to exchange this subjective information with Manufacturing. 

 

As shown in figure 2.1, inventory costs and obsolete parts are reduced since physical 

buffers are located at the lower level of BoMs and there is no need to stock end 

items/modules unless they have been ordered by the customers.  

 

 

 

 

                                                 
4 The size of the slack cannot be directly estimated but is an output variable together with the service 
level achieved. That is, the slack can be quantitatively defined only after the method has been 
implemented. 
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   PURCHASING PROCESS DRIVEN BY A TENDER   Due Date 

 
announcement short list  contract   configuration of configuration of 

    undertaken  the system  apparatus 

        (actual order) 
 

 Supply of critical components      Final 

      Production   Assembly          Delivery 

 

 

  Supply of non critical components 

 

   MANUFACTURING PROCESS OF THE COMPANY 

 

Figure 2.1. Order Overplanning (flow of the early information) 

 

Using OrOv means that exploitation of information on future requests that otherwise 

would be lost, now is feasible. Uncertainty variability is closely followed over time 

and slacks are planned only when specific market opportunities are foreseen. When 

periods without likely requests occur, neither requirements nor buffers are set. 

 

The benefits associated with the use of this method can be realised only in an 

industrial MTO context, when (a) there is a certain amount of information on 

customers future requests, and (b) there is a certain pattern of the information 

provided by the customers during their purchasing process. 

 

2.4.3 Parametric bootstrapping 

 

The bootstrap method introduced by Efron (1979) is a resampling method whereby 

information in the sample data is recycled for estimating the mean, variance, 

confidence intervals and other statistics. The bootstrap exploits the similarities of the 

sample to the population. In fact, it just reconstructs an approximate population by 

replicating the sample as many times as the computing capacity allows.5 Equivalently, 

the original sample is viewed as the population and a sampling process with 

replacement is introduced.  

                                                 
5 It has been suggested that the number of bootstrap replications required to obtain reasonable estimates 
is in the range 50 – 200 for most applications (Efron and Tibshirani, 1986). 
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Suppose we have a sample ).,,.........,( 21 xxx nx = which has been drawn randomly from 

an unknown distribution F ( x  is independent and identically distributed variable, iid). 

The problem is to estimate the unknown population parameter . A bootstrapped 

sample is drawn with replacement from the original observations and the parameter of 

interest is estimated, . This procedure is repeated  times and finally we 

approximate the distribution of the estimates of , , by the bootstrap distribution 

. The bootstrap point estimate for the mean and standard error 

(s.e.) of the parameter of interest to us can then be calculated as follows: 

yF

yFˆ 1 , k

yF yFˆ

)..,,.........,( ˆˆˆ  ,2 ,1 , yyy kFFF
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Even though the bootstrap sampling distribution often suffers from not being centred 

at the same place as the true sampling distribution, it displays about the same 

variability as the true sampling distribution. It is this remarkable property that permits 

the bootstrap to make confidence intervals of about the correct width. 

 

Few parametric bootstrapping approaches have appeared in the academic literature to 

deal with intermittent demand (e.g. Snyder et al, 2000; Willemain et al, 2000). Snyder 

(1999) used a parametric bootstrap method to approximate the lead time demand 

distribution. Assuming that the underlying demand pattern can be reasonably 

represented by the SSOE “model”, the following procedure may be applied:  

 

1. Calculate the variability of the intermittent demand sample data ( ) σ 2

2. Use the sample data to optimise the smoothing constant value and the seed value 

of the level of demand  
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3. Use Monte-Carlo random number generation methods to obtain values for the 

errors ε t  ( )σ 2 ,0~ N  

4. Use the SSOE “model” to generate a realisation  of future series 

values (where 

YY Ltt ++ ..,,.........1

L  is the lead time) 

5. Calculate the lead time demand:  ∑
=

+

L

i
itY

1

6. Repeat steps no. 3, 4 and 5 many times to approximate the lead time demand 

distribution 

7. Use the mean and the variance of the approximate lead time demand distribution 

for inventory control purposes. 

 

Two main drawbacks can be identified in the above approach: 

 

• The sampling error in estimating the model parameters is not taken into account. 

Therefore the bootstrap procedure is likely to yield values for the replenishment 

level or re-order point below those actually required. Snyder (1999) calculated  

replenishment levels for a specified fill-rate (proportion of demand satisfied 

directly from stock) using the bootstrap method discussed above. Theoretical 

levels were also calculated using the gamma probability distribution approach to 

inventory control (Snyder, 1984). For all four SKUs that were examined in detail, 

the “bootstrap” levels were considerably lower than the theoretically correct ones.  

 

• The computation time increases significantly. The bootstrap procedure discussed 

above is repeated, presumably, at the end of the following demand data period (for 

a periodic review system), or at the following demand occurring period (for a 

continuous review system) to update our estimates in the light of new information. 

No results have been presented in Snyder (1999) on the percentage increase in the 

computation time as compared to more standard approaches to updating estimates. 

 

2.5 Data used 
 

Unicorn Systems (UK) Ltd. is a software package manufacturer specialising in 

Forecasting and Inventory Management and Transportation Logistics. The company 

was established in 1989 under the name Unicorn Systems AB. In 1995 Unicorn 
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purchased the MURCO division of Data Sciences and in 1997 added OpenSlim 

(software) to its portfolio with the purchase of Slimstock Systems. Today it is part of 

Syncron Supply International (http://www.unicorn.se). Unicorn’s best sellers are 

Paragon (vehicle routing and scheduling) and MURCO (forecasting and inventory 

control). MURCO is primarily based upon algorithms developed by the late Professor 

J. Murdoch of the Cranfield Institute of Technology and is the software of interest to 

us in the context of this research.  

 

The monthly data provided by Unicorn Systems (UK) Ltd. come from the automotive 

industry and cover the demand history of 3,000 SKUs over a two year period (24 

demand data periods). All SKUs are treated as “single” units as opposed to being sold 

in packs of a certain size. 

 

All data files provided by Unicorn Systems have been treated in practice as 

intermittent. This does not mean that there are not significant differences between 

them with respect to the scale of the demand data, when demand occurs, and the 

length of the inter-demand intervals. The statistical properties of the empirical data 

used for this research are discussed in detail in chapter 10 of the thesis. 

 

The forecasting method currently employed by the software manufacturer, to deal 

with intermittence, is a 13 period simple moving average (MA). The method has been 

found, by the software manufacturer, to provide the best results on empirical data. No 

theoretical results will be derived in this research for the MA method. Nevertheless 

the 13 period MA will be tested on empirical data in chapters 10 and 11, as it is a 

commonly used method for forecasting intermittent demand. The forecasting and 

inventory control performance obtained for the MA will be viewed as a benchmark 

for the purpose of analysing the simulation results (see also chapter 9).  

 

From equation (2.9), under the stationary mean model assumption, a 13 period moving 

average corresponds to an EWMA procedure with 145.0
14
2
≈=α . In chapter 6 of the 

thesis Mean Square Error (MSE) pair-wise comparisons will result in rules that 

indicate under what circumstances one estimator performs better than another. Results 

will be generated for α  values in the realistic range 0.05 - 0.2 (see also sub-section 
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2.3.4). Nevertheless, one smoothing constant value only will need to be considered for 

the purpose of illustrating numerically the behaviour of the various estimators. The 

value chosen for that purpose is 0.145.  

 

2.6 Conclusions 
 

In this chapter an overview of the literature on forecasting intermittent demand 

requirements has been presented. Detailed review and critique of the literature in 

various research areas (including inventory control for intermittent demand items) 

will follow in the relevant chapters. Four main approaches to forecasting intermittent 

demand have been examined thus far in the academic literature: 

 

1. EWMA methods (including Croston’s method) 

2. Early Sales (EaSa) 

3. Order Overplanning (OrOv) 

4. Parametric Bootstrapping. 

 

The first approach is the one to be considered in this thesis. The application of EaSa 

and OrOv is restricted to specific planning and control manufacturing environments. 

The application of bootstrap methods becomes easier every year. Nevertheless, and 

despite the tremendous current computing capabilities, the method is, time-wise, 

extremely demanding.  

 

The assumptions to be made throughout this project have been explicitly stated in this 

chapter and specific methodological issues have also been addressed. We have 

discussed the theoretical inconsistency between Croston’s method and Croston’s 

model and we have selected the range of smoothing constant values that we focus 

upon during this Ph.D. research.  

 

Finally, an introduction has been made in this chapter to the company that provided 

the empirical data to be used in this research. The nature of the data has also been, 

briefly, discussed. Details regarding the data series and their statistical properties 

follow in chapter 10 of the thesis. 
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CHAPTER 3 

 

The Categorisation of “Non-Normal” Demand Patterns 
 

3.1 Introduction 
 

Williams (1984) noted that “ever since 19151, work has progressed on the control of 

stock of products whose demand is smooth and continuous; it has been found however 

that this work is not applicable to products whose demand is very sporadic or lumpy 

(p. 939)”. In addition, a similar statement could be made for the work that has been 

performed in the area of forecasting. Unless demand for an item occurs at every 

inventory review period and is of a fairly constant size, it is, in the majority of cases2, 

expected to cause significant problems as far as forecasting and inventory control are 

concerned. Infrequent demand occurrences and/or irregular demand sizes, when 

demand occurs, do not allow demand per unit time period or lead time demand to be 

represented by the normal distribution and demand in these cases will be referred to 

as non-normal for the purpose of this research. By using this nomenclature we do not 

mean to imply that all regular, non-sporadic, non-lumpy, demands are necessarily 

normally distributed. A different distribution may be more appropriate, although it is 

true to say that the normality assumption should reasonably cover the majority of real 

world cases (see for example Silver et al, 1998). 

 

A rather modest part of the Operational Research literature has been devoted to 

exploring non-normal demand patterns, modelling them under well stated 

assumptions and proposing certain theoretical solutions in order to overcome the 

associated irregularity (i.e. forecast accurately future requirements and/or control the 

stock efficiently3). Some confusion, however, has been noticed in the literature 

regarding the definitions of different non-normal demand patterns, in that different 

                                                           
1 The Economic Order Quantity (EOQ) formula is accredited to Harris F. W. (1915) Operations and 
Cost A. W. Shaw Company, Chicago, pp. 48-52. 
2 Exceptions to that rule could be, for example, an intermittent demand pattern where the inter-demand 
interval is known and constant or a demand pattern that can be represented by a Poisson arrival stream 
and unit-sized transactions. 
3 A limited number of papers appeared in the area of inventory control for non-normal demand items 
have explicitly addressed the issue of forecasting. 
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authors use different criteria in order to define a non-normal pattern. For example, 

low demand has been defined by the magnitude of demand over a lead time and by 

the magnitude of demand over a calendar year. In addition, the cut-off values are most 

often arbitrary in nature and therefore one could doubt the validity of a rule such as 

“A slow moving item is an item whose demand is less than ten units during the lead 

time”, as is often used in practice. This definition begs the question: why ten and not 

nine or eleven units during the lead time? 

 

Finally, it is important to note that the data, based on which alternative non-normal 

definitions are developed, usually refer to different demand contexts. Consequently, 

the definitions tend to be inconsistent with each other. For example, the slow moving 

items definition is unlikely be the same for a grocery wholesaler and a car parts dealer 

because the volume of demand, frequency etc. is not the same.  

 

3.1.1 Chapter structure 

 

In an inventory control context the objective in defining or categorising non-normal 

demand patterns is the proposal of the most appropriate forecasting and inventory 

control method for the situation under concern. It may, therefore, be beneficial to 

compare alternative methods for the purpose of establishing regions of superior 

performance and then to categorise the demand patterns based on the results. This 

approach appears in Johnston and Boylan (1996) and it is the approach followed in 

this thesis as well. 

 

In this chapter we approach the problem of categorising non-normal demand patterns 

from a theoretical perspective. Specific rules that enable such a categorisation will be 

developed in chapter 6. The rules developed in chapter 6 will be based on 

approximate cut-off values and the accuracy of those approximations will be tested in 

chapter 7, where a theoretically generated data simulation experiment is developed. 

Finally the rules will be further evaluated on real demand data in chapters 10 and 11. 

 

This chapter is structured as follows: 
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In section 3.2 we discuss the alternative non-normal demand patterns presented in the 

literature and in section 3.3 we present a theoretical framework to facilitate the 

conceptual distinction between non-normal demand patterns. The issue of 

categorisation is then addressed in section 3.4 and two categorisation schemes are 

discussed: one appeared in the academic literature and one is currently employed by a 

software package manufacturer. Finally the approach of Johnston and Boylan (1996) 

is further discussed in section 3.5 and the conclusions of the chapter are presented in 

section 3.6.  

 

3.2 The definition of alternative non-normal demand patterns 
 

3.2.1 Slow moving demand 

 

Slow moving items are often infrequent demand items. When a demand occurs it is 

just for a single unit or very few units. The demand stream in the case of slow 

movement can be reasonably modelled as a Bernoulli process if time is treated as 

discrete and a Poisson process if time is treated as continuous.  

 

A definition of slow moving items, discussed by Williams (1984), is the following: 

slow moving items are associated with low sporadicity and average demand during 

the lead time is less than ten units. In the same paper, Williams argued that there are a 

number of problems associated with the use of this definition in practice, since it does 

not comply with certain requirements that should always be considered when 

developing such rules (see sub-section 3.4.2). Nevertheless this definition was used 

by Sani (1995) in verifying that his real demand series did represent a slow moving 

demand pattern. 

 

Gelders and Van Looy (1978) defined a slow moving item as an item whose demand 

in a year is at most two units, while the cut-off value implicitly assigned to the annual 

demand in Tavares and Almeida (1983) is one unit. Kwan (1991) commented on the 

lack of consistency in definitions that had appeared in the literature for slow moving 
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items. For her own work, she used the British Steel definition, which was an annual 

demand rate of less than three units4. 

 

3.2.2 Intermittent demand 

 

Silver et al (1998) defined intermittent demand as “infrequent in the sense that the 

average time between consecutive transactions is considerably larger than the unit 

time period, the latter being the interval of forecast updating (p. 127)”. Intermittent 

demand is often referred to as sporadic demand. For intermittent demand items the 

observed demand during some periods is zero interspersed by periods with low or 

high, regular or irregular non-zero demand. Therefore intermittence (sporadicity) 

refers to the demand incidences and not to the demand size when demand occurs. 

Nevertheless sporadicity has often been associated with lumpiness in the academic 

literature (Ward, 1978; Schultz, 1987; Dunsmuir and Snyder, 1989).  

 

Johnston and Boylan (1996) provided a decision rule for intermittent demand (inter-

demand interval greater than 1.25 inventory review periods) specifying for the first 

time in this way, how sporadic the demand has to be in order to benefit from 

Croston’s method more than from exponential smoothing. The originality of their 

approach lies in the fact that the particular cut-off value was the outcome of a formal 

theoretical comparison of the two estimation procedures in order to establish regions 

of relative performance. Their paper is further discussed in section 3.5.  

 

Bartezzaghi et al (1996) argued that non-normal demand patterns in industrial 

markets emerge as the consequence of internal structural characteristics of the market. 

Intermittence or sporadicity in particular may emerge as the consequence of two 

market characteristics: 

 

Numerousness (number: ) of potential customers. n

 

Frequency ( ) of customer requests. How often the customers place an order. f

 

                                                           
4 The definition was communicated by British Steel to Kwan. 
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As  and decrease, intermittence increases. As mentioned above, the researchers 

were focusing on an industrial context (i.e. business-to-business markets) where both 

 and  can be reasonably estimated by the marketing (or sales) department. In a 

more general context, the combined effect of both factors could be interpreted as the 

demand arrival process (for example a Bernoulli arrival of demand with a specified 

probability of demand occurrence or a Poisson arrival stream with a specified mean 

n f

n f

λ ). 

 

A special case of intermittent demand is “clumped” demand (Ritchie and Kingsman, 

1985). In that case, demand occurs occasionally and is therefore sporadic, but when it 

occurs is of a constant size. Demand arrivals can be modelled as a Poisson stream and 

demand itself can be represented by the Poisson distribution, taking into consideration 

that transactions are not unit sized but rather they are for multiple items (for the same 

SKU) of a fixed “clump” size. The clump sizes may be determined by pack sizes 

(Package Poisson distribution, Vereecke and Verstraeten, 1994) or because demand 

naturally occurs in clumps (Clumped Poisson distribution, Ritchie and Kingsman, 

1985). Another possibility that has appeared in the literature is to find the mode of the 

transaction sizes (still assuming a Poisson arrival of demands) and to consider that as 

a hypothetical SKU (h-SKU) such that the demand, when recalculated in units of the 

h-SKU, is Poisson (Williams, 1984). 

 

3.2.3 Irregular/Erratic demand 

 

Demand irregularity does not refer to the demand pattern (how often demand occurs) 

but rather to the size of demand when demand occurs. Irregular demand is associated 

with a high variability of the size of demand, when demand occurs. Silver (1970) 

defines an erratic item as “one having primarily small demand transactions with 

occasional very large transactions (p. 87)”, and he specifically excludes the 

possibility of zero demand time periods. According to Silver et al (1998) an item is 

said to have an erratic demand pattern if the variability is large relative to the mean. 

Brown (1977) had operationalised this by saying that demand is erratic when the 

standard deviation of demand per unit time period is greater than the level of demand. 

Under this definition erratic demand may also be intermittent. 
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According to Bartezzaghi et al (1996) the main drivers of demand irregularity are the 

following: 
 

Heterogeneity ( h  of customers’ requests. Heterogeneous requests occur when 

the potential market consists of customers with considerably different sizes, 

e.g. few large customers coexist with a large number of small customers. 

 

)

Variety ) of customers’ requests. Variety occurs when a single customer’s 

 

s mentioned in the previous sub-section, this particular research was referring to a 

.2.4 Lumpy demand 

or lumpy demand items the observed demand during some periods is zero, 

 is generally recognised in the Operational Research literature (see for example 

( v

requests vary in size. 

A

business-to-business environment where there is the potential to reasonably estimate 

these factors. In a more general context the combined effect of h  and v  can be 

reflected in the coefficient of variation of the demand sizes. 

 

3

 

F

interspersed with irregular non-zero demand. This situation is graphically presented in 

Watson (1987). It is not only the variability of the demand size (irregularity) but also 

the variability of the demand pattern (intermittence) that make lumpy demand items 

so difficult to forecast. As mentioned in section 3.2.2 lumpy demand has often been 

associated with sporadic demand. But clearly lumpy demand is always sporadic while 

the opposite is not necessarily true. Nevertheless in Vereecke and Verstraeten (1994) 

lumpy demand items are defined as “items whose demand frequency is less than 4 

times a year (p. 379)”. 

 

It

Silver, 1970; Bartezzaghi et al, 1996; Silver et al, 1998) that lumpiness is often 

generated in the higher levels of a multi-echelon inventory system because of specific 

replenishment decisions, lot-sizing rules or even over-reactions of judgement on the 

part of the inventory controller at the lower levels in the Bill of Materials (BoMs). In 

any event the result is that a non-lumpy demand pattern at the ultimate consumer level 

can be turned into a very lumpy pattern at a higher level in the production or 
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distribution network. As discussed in chapter 2, unless demand at any level of this 

network is viewed as independent it is outside the scope of this research. 

 

In other cases lumpiness is also related to some exogenous variables, e.g. atmospheric 

he degree of lumpiness for a SKU will depend on both the degree of intermittence 

.3 A framework for categorising non-normal demand patterns 

 this section a theoretical framework is presented that aims at facilitating a 

rom the arguments discussed in sub-section 3.2.2 it becomes obvious that as demand 

s the coefficient of variation of demand sizes increases, irregularity (demand 

regular demand can be either intermittent or it may appear at every single period. 

conditions or even fashion that induces similar behaviour of customers (see for 

example Fisher and Raman, 1996). Those cases are also not examined by this 

research, since forecasting their demand translates to a different forecasting problem, 

namely estimating the effect of the exogenous variable. 

 

T

and that of irregularity. It is therefore both the demand arrival pattern (or inter-

demand interval) and the coefficient of variation of demand sizes that need to be 

considered in order to define an item as lumpy. 

 

3
 

In

conceptual categorisation of the non-normal demand patterns and overcoming the 

confusion noticed in the literature regarding the non-normal demand definitions. The 

theoretical framework (figure 3.1) reflects the synthesis of the arguments that have 

been appeared in the literature and discussed thus far in this chapter. 

 

F

arrives more intermittently, sporadicity (intermittence) increases. Therefore 

intermittence is related only to the demand arrival stream. It follows that a precise 

definition of intermittent demand should bear no relationship to any properties of the 

demand transaction sizes. 

 

A

erraticness) increases as well (see sub-section 3.2.3). Therefore, erraticness is 

associated only with the distribution of the demand sizes, when demand occurs.  

 

Ir
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An intermittent demand item is not necessarily a low demand item. Slow movement is 

umpy demand is both intermittent and irregular (sub-section 3.2.4). It follows that a 

inally a clumped demand item is an intermittent demand item which is also 

n intermittent demand item is not necessarily a lumpy or clumped demand item. The 

usually characterised, in practice, by the (low) volume of demand per unit time 

period. Low demand can be the effect of intermittence and/or small transaction sizes. 

Consequently, a low demand item is not necessarily intermittent.  

 

L

definition of lumpiness should refer to both demand incidence and transaction size. 

 

F

characterised by a constant or approximately constant transaction size (sub-section 

3.2.2).  

 

A

opposite is always true. 

 

 
  Intermittent demand   

Demand arrival         

process          

(Inter-demand   Non-sporadic demand      

interval)  

         Lumpy demand 

    Erratic demand 

Coefficient of          

variation of sizes 

    ≈ Constant sizes    Clumped demand 

Average demand size   

    Low demand 

 

Figure 3.1. Categorisation of “non-normal” demand patterns 

 

onsidering the above we can formally define the alternative non-normal demand C

patterns. 
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• An intermittent demand item is an item whose demand is zero in some time 

periods. 

• An erratic demand item is an item whose demand size is (highly) variable. 

• A lumpy demand item is an item whose demand is zero in some time periods. 

Moreover demand, when it occurs, is (highly) variable. 

• A slow moving item is an item whose average demand per period is low. This 

may be due to infrequent demand arrivals, low average demand sizes or both.  

 

3.4 Demand categorisation schemes 
 

3.4.1 A software package categorisation scheme 

 

In this section the categorisation scheme employed by Unicorn Systems (UK) Ltd. is 

briefly discussed. The criteria used in this categorisation scheme reflect, according to 

the manufacturer, a typical approach taken in the inventory control software industry 

to the categorisation problem. That is, even though the exact cut-off values used in 

their particular scheme may differ from the values employed in other software 

packages, the main principles employed can be viewed as typical within the industry5.  

 

The purpose of the categorisation scheme is to indicate which estimation procedure 

and inventory control method should be used.  

 

The demand per unit time period and the number of zero demand time periods are 

compared against the corresponding cut-off values to define lumpiness and slow 

movement of an SKU. Therefore, it is both the number of non demand occurring 

periods and the size of demand that are taken into consideration in order to classify 

demand as lumpy or slow. If demand has not been classified as lumpy or slow then it 

falls into the “normal” category. In this last case, if the variability of the demand sizes 

is greater than the specified cut-off value, the SKU is defined as erratic. Therefore, it 

is mainly the variability of the demand sizes that is considered in order to define an 

SKU as erratic. 

                                                           
5 The software package manufacturer does not claim that the categorisation scheme employed in their 
software is more sophisticated than the industry norm. Rather, the core categorisations are present 
within differing inventory software.  
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Outliers can be explicitly handled for the lumpy and normal demand categories and as 

such may or may not be considered for categorisation purposes depending on the user.  

 

The criteria used for categorisation purposes are dimensionless and the importance of 

this piece of information is further discussed in the following sub-section. 

 

To apply the categorisation rules there is a minimum requirement for 4 demand 

periods one of which has to be a demand occurring period. 

 

The major problem associated with the categorisation scheme under concern is that of 

a slow mover being classified as a lumpy SKU. In a slow moving demand pattern one 

outlier can cause the demand per unit time period to raise above the specified cut-off 

value and subsequently be classified as lumpy.  

 

Finally, it is important to note that none of the cut-off values assigned to the 

categorisation criteria is the product of a “scientific” approach but rather they have all 

been subjectively estimated. 

 

3.4.2 Williams’ categorisation scheme 

 

Williams (1984) analysed the demand categorisation system employed by a public 

utility. At the time, products were classified into three categories, using an “ad hoc” 

method: 

 

High sporadicity – one demand at least ten times the average weekly demand 

Low sporadicity – average demand during the lead time less than ten 

No sporadicity – neither of the above. 

 

Williams (op. cit., p. 940) identified some limitations of the above discussed 

categorisation scheme which are quoted below: 
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“1.  The definitions do not suggest obviously in what different ways to treat the 

different categories. 

2.  Neither condition is dimensionless; thus the “low” condition depends on the 

product’s unit of measurement, and the “high” condition uses demand per 

week (ignoring, say, lead time). 

3.  A few outliers can cause a non-sporadic product to fall into the “highly 

sporadic” category. 

4. 75% of the products had insufficient data to reliably classify them by this 

method – obviously a major problem. 

5. A very slow-moving item could be classified as “highly sporadic”(e.g. a 

product with demand of one unit every 11 weeks).” 

 

The limitations identified above reveal some theoretical and practical concerns 

regarding the validity of the particular categorisation scheme discussed in Williams 

(1984). Nevertheless, these theoretical and practical requirements should always be 

taken into account when developing rules for the purpose of distinguishing between 

alternative demand patterns. Considering the categorisation scheme presented in the 

previous sub-section, it becomes apparent that some of the limitations discussed by 

Williams (op. cit.) are still present in real world applications, 17 years after the 

publication of his paper. 

 

Subsequently, we suitably modify Williams’ theoretical and practical considerations 

into a generic set of requirements which is as follows: 

 

1. The categorisation scheme should suggest in what different ways to treat the 

resulting categories. The objective in categorising demand patterns is the 

identification of the most appropriate forecasting and inventory control methods 

to be applied to the different demand categories. As such, categorisation schemes 

should explicitly suggest which methods should be used under which 

circumstances. 

2. The criteria considered in developing the rules should be dimensionless so that 

categorisation decisions regarding a SKU are independent of the product’s unit of 

measurement or of demand over any time period other than the lead time or the 

review period. 
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3. Sensitivity to outliers should be taken into account. The categorisation scheme 

should not allow products to move from one category to the other when few 

extreme observations are recorded.  

4. The amount of data required to reliably classify demand patterns should also be 

considered. The decision rules should take into account the limited number of 

demand occurrences that characterise any intermittent demand pattern. 

5. Slow moving demand patterns should not be “allowed”  to be classified as lumpy.  

 

The last requirement can be further amended to cover more general cases: 

 

5. Logical inconsistencies should not allow demand for a SKU to be classified in an    

 unintended category. 

 

Williams (op. cit.) proposed a method of categorisation of demand patterns based on 

an idea that is called variance partition (we split the variance of the demand during 

lead time into its constituent parts). The purpose of categorisation was the 

identification of the most appropriate forecasting and inventory control methods for 

the resulting categories. 

 

Using Williams’ notation we denote by 

 

n : the number of orders arriving in successive units of time with mean n  and 

variance ( )nVar  (the number of orders arriving in successive units of time are 

independent and identically distributed random variables, IIDRVs)  

x : the size of these orders (transaction size) with mean x  and variance  (the 

sizes of the orders are IIDRVs) and 

( )xVar

L : the lead time duration with mean L  and variance ( )LVar : (the lead times are 

IIDRVs). 

 

Assuming that the three sets of random variables are independent of each other, we 

then have: 

 

( ) ( ) ( )n Varx VarnVar xY t
2+=         (3.1) 



 38

n xY t =                       (3.2) 

 

where ( )Y tVar  and  are the variance of demand in a time period and the expected 

demand in a unit time period respectively. 

( )Y tE

 

The variance of demand over a lead time is given by (3.3) and the expected lead time 

demand by (3.4). 

 

( ) ( ) ( ) ( )L Var  n Var Lx Varn LVar xnxY L
222 ++=       (3.3) 

 

n x L L YY tL ==           (3.4) 

 

while the squared Coefficient of Variation ( ) of the lead time demand is 

calculated as follows: 

CV 2

 

( ) ( ) ( ) ( )L
Ln

x
L

n
CVCVCVYCV L

2
22

2 ++=        (3.5) 

 

If demand arrives as a Poisson stream with a mean λ , and also assuming constant 

lead times, (3.5) becomes: 

 

( ) ( )
L

x
L

CVYCV L  
1 2

2

λλ
+=          (3.6) 

 

L 
1
λ

 indicates the number of lead times between successive demands (how often 

demand occurs or how intermittent demand is). The higher the ratio the more 

intermittent demand is. 

 

( )
L

xCV
 

2

λ
 indicates the lumpiness of demand. Lumpiness in this context depends on 

both the intermittence and the variability of the demand size, when demand occurs. 

The higher the ratio the more lumpy demand is. 
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Categorisation of the items takes place in accordance with the following matrix: 

 
   Lumpiness 
 

   ( )
L

xCV
 

2

λ
 

    0.5 
 
      A         C 
   

0.7    Intermittence 
      
            D1 

 
L 

1
λ

 2.8    B   

                                                        D2  
 
 
 
 

Figure 3.2. Williams’ categorisation scheme 

 

Category D2: Highly sporadic (lumpy). In that case we have few very irregular 

transactions.  

Category B: Slow moving 

Others: Smooth. According to Williams (1984), “The assertion is that products in 

category A – and possibly categories C and D1 – have an essentially smooth demand 

pattern, and that continuous-demand stock control techniques can be used (p. 942)”. 

 

3.4.3 Discussion of Williams’ categorisation scheme 

 

Consequently we assess Williams’ categorisation scheme against the practical and 

theoretical requirements proposed in sub-section 3.4.2.  

 

Williams verified that the categories resulting from his categorisation scheme have 

distinct demand patterns: 
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Category D2: no more than one demand occurrence during the lead time, Gamma 

distributed demand sizes (Williams, 1982; 1983) 

Category B: Poisson demand distribution  

Others: Gamma distributed demand per unit time period 

 

and he proposed appropriate EWMA forecasting updating procedures and inventory 

control methods in order to deal with their specific requirements. 

 

Both criteria employed for categorisation purposes are dimensionless: 

 

L λ :  e periodsno. of tim
periodtime

Incidences   
 

  

 

( )xCV 2 : 
units
units

2

2
 

 

“Buffer zones” were determined so that “borderline” products would not switch 

categories as the parameters vary from one side of the border to the other or  

categorisation would not be that easily affected by outliers. A buffer zone of  + 0.05 

was suggested. 

 

Initial estimates of the parameters required in the analysis can be calculated if just two 

demands have been recorded. As such Williams has taken into account the scarcity of 

observations that characterises categories B, D1 and D2. 

 

Finally the categorisation scheme proposed does not allow SKUs to be classified in a 

category other than the intended one. Williams attributed this to the dimensionless 

nature of the criteria and his implicit argument was that requirements 2 and 5 (see 

previous sub-section) are closely related to one another. At this stage though we need 

to add that the consistency associated with his categorisation scheme cannot be 

attributed only to the dimensionless nature of the criteria, as applied on their own, but 

also to the double rather than single dimensional approach to the categorisation 

problem and consequently to the fact that both irregularity and intermittence are 

considered.  
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Williams’ categorisation scheme meets all the theoretical and practical requirements 

that have been proposed in his paper. Nevertheless it is important to note that the cut-

off values assigned to the criteria have been arbitrarily chosen so that they make sense 

only for the particular situation that was analysed in the 1984 paper. This creates 

certain doubts about the potential applicability of the proposed categorisation scheme 

to any different possible context.  

 

The requirements proposed by Williams (1984) ensure the practical validity of a 

categorisation scheme for the particular situation under analysis. Furthermore a sixth 

requirement can be proposed that enables the applicability of a categorisation scheme 

to a wide variety of business contexts: 

 

6. Determination of the cut-off values should be non-arbitrary thereby enabling the 

general applicability of the categorisation scheme. 

 

The issue of meeting this requirement is explored in section 3.5 and in greater detail 

in chapter 6. 

 

3.5 A different approach to the demand categorisation problem 
 

Johnston and Boylan (1996) presented the Size-Interval method6 (SI) for forecasting 

intermittent demand requirements. The method was based on Croston’s concept of 

building demand estimates from constituent elements. The demand arrival process 

though was assumed to be Poisson rather than Bernoulli and consequently the inter-

demand intervals were taken as exponentially rather than geometrically distributed. 

Their method was compared with EWMA on theoretically generated demand data 

over a wide range of possible conditions.  

 

Many different average inter-demand intervals (negative exponential distribution), 

smoothing constant values, lead times and distributions of the size of demand 

                                                           
6 The method’s derivation is discussed in chapter 4. 



 42

(negative exponential, Erlang and rectangular7), were considered. The comparison 

exercise was extended to cover not only Poisson but also Erlang demand processes.  

 

The results were reported in the form of the ratio of the MSE of one method to that of 

the other. For the different factor combinations examined in this simulation 

experiment the SI method was superior to EWMA for inter-demand intervals greater 

than 1.25 forecast revision periods. This result provided an answer to the question 

raised by Segerstedt (1994): “When is it best to separate the forecasts like Croston 

suggests and when is it best with traditional treatment (i.e. simple exponential 

smoothing)? (p. 371)”.  

 

The average inter-demand interval used as a decision criterion can be assessed against 

Williams’ requirements that have been discussed in sections 3.4.2 and 3.4.3. 

 

The decision rule clearly indicates which estimation procedure should be used for 

each category. However, inventory control issues were not addressed. 

 

The criterion is clearly dimensionless: 

 

251.
iodreview per

siew periodno. of rev
>  

 

The rule is not affected by outliers since it deals only with intermittence (i.e. we refer 

only to the demand pattern, inter-demand intervals, rather than demand pattern and 

size of demand). 

 

As in the case of Williams’ categorisation scheme there is a minimum requirement of 

two demand incidences before the rule can be used. 

 

Finally the rule deals only with speed of movement and in that sense there are only 

two resulting categories and no logical inconsistencies can occur. 

                                                           
7 By considering these distributions a wide range of alternative shapes could be taken into account: 
From monotonically decreasing functions to unimodal positively skewed distributions to more normal 
type curves and finally to uniform functions. 
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Definition of intermittent demand in Johnston and Boylan (1996) results from a direct 

comparison of possible estimation procedures so that regions of relative performance 

can be identified. It seems more logical, indeed, working in the following way: 

 

1. Compare alternative estimation procedures 

2. Identify the regions of superior performance for each one of them 

3. Categorise the demand patterns based on the method’s comparative performance  

 

rather than arbitrarily classifying demand patterns and then testing which estimation 

procedure performs best on each particular demand category. 

 

The approach discussed above is the one adopted in this thesis. Because of its 

mathematically tractable nature, MSE is chosen for performing direct comparisons 

between existing and newly developed estimation procedures in chapter 6. The 

results, presented in the form of cut-off values assigned to the inter-demand interval 

and the squared coefficient of variation, enable us to specify regions of superior 

performance for each one of the methods considered. Non-normal demand patterns 

can then be defined based on the results. The combined use of both decision criteria 

will be assessed against Williams’ theoretical and practical requirements in chapter 6. 

 

3.6 Conclusions 

 
Unless demand for any item can be reasonably represented by the normal distribution, 

significant problems should be expected in the area of forecasting and inventory 

control. Although it is not difficult to think of some exceptions to the rule, demand 

sporadicity and/or irregularity most often result in demand patterns that are difficult to 

forecast and consequently manage. 

 

A certain confusion has been noticed in the academic literature as far as the 

definitions of the alternative non-normal demand patterns are concerned. Different 

authors use different criteria in order to define a specific demand pattern. Those 

criteria are hardly ever assessed against theoretical and practical considerations that 

should not be ignored if meaningful decision rules are to be constructed. Moreover, 
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arbitrary cut-off values are, in the majority of cases, assigned to those criteria making 

their application to a more general context problematic. 

 

The sources of non-normality were also discussed in this chapter for all possible non-

normal demand patterns. Understanding the sources of non-normality is essential 

because the management may try to act on the sources in order to reduce the level of 

non-normality.  

 

Consequently a theoretical framework was developed for the purpose of facilitating a 

conceptual distinction between non-normal demand patterns and intermittent, slow 

moving, erratic and lumpy demand items have been formally defined.  

 

Williams (1984) expressed some theoretical and practical concerns regarding the 

development of categorisation rules for the purpose of distinguishing between 

alternative demand patterns. Williams’ concerns are first drawn together to a generic 

set of requirements and, subsequently, they are amended to ensure that: 

 

1. Items are always classified in the intended categories 

2. The categorisation schemes developed are generally applicable. 

 

The choice of the most appropriate forecasting (and inventory control) methods is the 

purpose of conducting any definition/categorisation exercise. Therefore it seems more 

logical to first compare alternative estimation procedures for the purpose of 

identifying their regions of superior performance and then, based on the results, 

categorise the demand patterns, rather than working the other way around. Such 

comparisons between existing and newly developed estimation procedures are 

performed in chapter 6. The decisions about when each method performs best will be 

based on the inter-demand interval and the squared coefficient of variation of the 

demand sizes. Both criteria will be shown to meet Williams’ modified set of 

theoretical and practical requirements.  
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CHAPTER 41

 

The Bias of Intermittent Demand Estimates 
 

4.1 Introduction 
 

Intermittent demand appears at random, with some periods having no demand (see 

section 3.3). Moreover when a demand occurs the request is very often for more than 

a single unit. As such, intermittent demand creates significant problems in the 

manufacturing and supply environment as far as forecasting and inventory control are 

concerned. It is not only the variability of the demand pattern but also, in many cases, 

the variability of the demand size that make intermittent demand so difficult to 

forecast. 

 

In practice exponential smoothing is often used when dealing with intermittent 

demand. Exponential smoothing though places more weight on the most recent data, 

resulting, in the case of intermittence, in a series of estimates that are highest just after 

a demand occurrence and lowest just before demand occurs again.  

 

Croston (1972) proposed a method that builds demand estimates taking into account 

both demand size and the interval between demand incidences. Despite the theoretical 

superiority of such an estimation procedure, empirical evidence suggests modest gains 

in performance when compared with simpler forecasting techniques; some evidence 

even suggests losses in performance. 

 

In an effort to identify the causes of this forecast inaccuracy, as a first step towards 

improving Croston’s method, a mistake was found in Croston’s mathematical 

derivation of the expected estimate of demand. That mistake contributes towards the 

unexpectedly modest benefits of the method when applied in practice. Subsequently 

two new estimation procedures were developed that, theoretically, eliminate the 

forecast bias. 

                                                 
1 This chapter is based on Syntetos and Boylan (2001). 
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4.2 Chapter overview 
 

The estimation procedures that deal with intermittence can be divided into two 

categories: those that estimate the mean demand level directly (e.g. EWMA, Moving 

Average) and those that build mean demand level estimates from constituent elements 

(e.g. Croston’s method, Croston, 1972). In both cases the ability of the alternative 

estimation procedures to deal with intermittence is judged on the accuracy of the 

estimates produced by these procedures. Therefore we are interested in the expected 

estimate of demand per unit time period or lead time demand (i.e. is the method 

biased or not?) and the variability associated with the estimates of the mean level of 

demand (i.e. the sampling error of the mean). Moreover, depending on what type of 

stock control system is utilised, not necessarily all estimates produced by the 

forecasting methods under concern are of interest to us. That is, if a continuous (re-

order level) stock replenishment system is in place we are interested only in the 

estimates produced just after a demand occurrence (issue point) since only those 

estimates will be considered for replenishment purposes. On the other hand if a 

periodic (re-order interval or product group review) system is employed, all demand 

estimates are viewed as important. Therefore intermittent demand forecasting 

methods should be evaluated with respect to the accuracy of their estimates of the 

mean demand level for all points in time and for issue points only. 

 

At the time of structuring this thesis it was decided that a separate discussion of the 

bias and variance issues was the best option. The analysis associated with the bias and 

variance of intermittent demand forecasting has led to a large number of findings. In 

order to do justice to the outcomes, bias and variance have been presented separately. 

In this chapter we focus on the issue of bias in intermittent demand forecasting and in 

chapter 5 the issue of variance of intermittent demand estimates will be discussed. 

 

As discussed in chapter 2, the methodological approach taken in this thesis involves a 

mathematical analysis of the problem in hand, a theoretically generated data 

simulation, in order to check the accuracy of any approximated theoretical results and 

an empirical evaluation of the findings, to be conducted on real intermittent demand 

data series. The approximated results derived in this chapter are purely theoretical. 

The simulation experiment to be used for testing these results will be presented in 
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chapter 7. In the experiment, theoretical demand data will be generated based upon 

the assumptions considered in this chapter. Finally the empirical evaluation of our 

findings will be discussed in chapters 10 and 11.  

 

This chapter is structured as follows: 

 

We first refer to the use of exponential smoothing for forecasting intermittent 

demand. Croston’s method is presented followed by a discussion of the assumptions 

made in developing his model and the Size-Interval method developed by Johnston 

and Boylan (1996). 

 

Empirical evidence for Croston’s method is presented followed by a mathematical 

explanation of one factor contributing to the unexpectedly poor results found in 

practice. Croston’s method is found to be biased and the bias is approximated for all 

possible smoothing constant values. Finally two methods: the λ Approximation 

method and the Approximation method are developed that produce approximately 

unbiased estimates of the mean demand level. 

 

4.3 Theoretical background  
 

4.3.1 Croston’s critique of exponential smoothing 

 

Croston (1972), as corrected by Rao (1973), proved the inappropriateness of 

exponential smoothing as a forecasting method when dealing with intermittent 

demands and he expressed in a quantitative form the bias associated with the use of 

this method when demand appears at random with some time periods showing no 

demand at all. 

 

He first assumes deterministic demands of magnitude µ  occurring every  review 

intervals. Subsequently the demand Y  is represented by: 

p

t

 

⎩
⎨
⎧

=
+= 1    ,

   ,0 

npt

otherwise
tY

µ
            (4.1) 
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where n  = 0,1,2... and . 1≥p

 

Conventional exponential smoothing updates estimates every inventory review period 

whether or not demand occurs during this period. If we are forecasting one period 

ahead, Y , the forecast of demand made in period , is given by: t′ t

 

YYeYY ttttt ′′′ −− −+=+= 11 )1( ααα        (4.2) 

 

where α  is the smoothing constant value used, 10 ≤≤α , and  is the forecast error in 

period t . 

et

 

Under these assumptions, if we consider the demand estimates after demand occurs 

the expected estimate of demand per period is not µ / , i.e. the population expected 

value, but rather: 

p

 

( )
( ) β

µα
α

αµ
ppt

p
pY

−
=

−−
=′Ε

111
            (4.3) 

 

where αβ -1  = . 

 

Croston then refers to a stochastic model of arrival and size of demand, assuming that 

demand sizes, , are normally distributed, zt ( )σµ 2,N , and that demand is random and 

has a Bernoulli probability 1/  of occurring in every review period (subsequently the 

inter demand intervals, , follow the geometric distribution with a mean ). Under 

these conditions the expected demand per unit time period is: 

p

pt p

 

( )
pY t
µ

=Ε            (4.4) 

 

If we isolate the estimates that are made after a demand occurs, Croston showed that 

these estimates have the biased expected value: 

 
( ) )/( pY t βαµ +=Ε ′          (4.5) 
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The error, expressed as a percentage of the average demand, is shown to be ( )100 1α p −  

and reveals an increase in estimation error produced by the Bernoulli arrival of 

demands as compared with constant inter-arrival intervals. 

 

4.3.2 Croston’s method 

 

Croston, assuming the above stochastic model of arrival and size of demand, 

introduced a new method for characterising the demand per period by modelling 

demand from constituent elements. According to his method, separate exponential 

smoothing estimates of the average size of the demand and the average interval 

between demand incidences are made after demand occurs. If no demand occurs, the 

estimates remain the same. If we let: 

 

p t′  = the exponentially smoothed inter-demand interval, updated only if demand 

occurs in period t  so that ( ) ( ) ppp tt =Ε=Ε ′ , and 

z t′  = the exponentially smoothed size of demand, updated only if demand occurs in 

period t  so that ( ) ( ) zzz tt =Ε=Ε ′  

 

then following Croston’s estimation procedure, the forecast, Y  for the next time 

period is given by: 

t
/

 

p
zY

t

t
t /

/
/ =           (4.6) 

 

and, according to Croston, the expected estimate of demand per period in that case 

would be: 
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(i.e. the method is unbiased.) 

 

Now more accurate estimates can be obtained and an advantage of the method is that 

when demand occurs every period the method is identical to exponential smoothing. 
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Thus, it can be used not only for the intermittent demand items but for the rest of the 

Stock Keeping Units (SKUs) as well.  

 

Croston (1972) claimed that the variance of the demand estimates per time period is 

given by:  
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α µ        (4.8) 

 

Rao (1973) pointed out that the right hand side of equation (4.8) is only an 

approximation to the variance. In the following chapter we show that Croston’s 

equation (4.8) is not only inexact but also incorrect.   

 

Lead-time replenishment decisions take place only in the time periods following 

demand occurrence and are based on the equation: 

 

mzR ttt K+= ′           (4.9) 

 

where  

 

Rt  is the replenishment level to which the stock is raised, 

tm  is the estimated mean absolute deviation of the demand size forecast errors and  

K  is a safety factor. 

 

Schultz (1987) proposed a slight modification to Croston’s method, suggesting that a 

different smoothing constant value should be used in order to update the inter-demand 

interval and the size of demand, when demand occurs. This modification to Croston’s 

method has not been widely adopted, however, and it is not discussed further in this 

thesis.  
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4.3.3 Assumptions of Croston’s model 

 

Croston advocated separating the demand into two components, the inter-demand 

time and the size of demand, and analysing each component separately. He assumed a 

stationary mean model for representing the underlying demand pattern, normal 

distribution for the size of demand and a Bernoulli demand generation process, 

resulting in geometrically distributed inter-demand intervals.  

 

No theoretical arguments have been identified in the literature in support of a model, 

other than the stationary mean, for describing the underlying intermittent demand 

pattern. As discussed in detail in chapter 2, the Steady State Model (SSM), which is 

viewed as a more realistic model than the stationary mean, cannot be justified from an 

empirical perspective in an intermittent demand context because of the scarcity of 

demand occurrences. That is, we cannot check whether the mean of demand per time 

period varies stochastically over time or not because we can hardly estimate the mean 

accurately. A stationary mean model will be assumed for all the theoretical analysis 

conducted in this thesis.  

 

Three more assumptions implicitly made by Croston in developing his model are the 

following: independence between demand sizes and inter-demand intervals, 

independence of successive demand sizes and independence of successive inter-

demand intervals. As far as the last assumption is concerned it is important to note 

that the geometric distribution is characterised by a “memory less” process: the 

probability of a demand occurring is independent of the time since the last demand 

occurrence, so that this particular assumption can be theoretically justified. With the 

only exception of Willemain et al (1994) (this paper is discussed in section 4.4) no 

other academic research has been identified in the intermittent demand literature that 

is not implicitly or explicitly based on the assumptions of Croston’s model. 

 

4.3.4 The Size-Interval (SI) method 

 

If there is a random arrival of independent demands, the arrival process can be 

modelled as a Poisson stream. This idea was explored by Johnston and Boylan (1996). 

Their analysis was as follows: 
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If we set, 

 

W : the demand per unit time with mean W  and variance W  1 2

S : the order size with mean  and variance  S1 S 2

I : the inter-demand interval with mean  and variance  I1 I 2

N : the number of orders per unit time with mean  and variance  N1 N 2

 

then the demand in any period is the sum of the orders in that period and both the 

individual orders and the number of them in a given period are stochastic variables: 

 

∑
=

=
N

i
iSW

1
                    (4.10) 

 

Under the assumption that the order arrival process can be modelled as a Poisson 

stream and combining Clark’s calculated mean and variance of the distribution of the 

summation of a number of stochastic random variables (1957): 

 

SNW 111 =                        (4.11) 

 

( )SNSNW 1
2

2212 +=                    (4.12) 

 

Using Cox’s asymptotic equations (1962) for relating the number of orders ( ) to the 

more easily measurable inter-demand interval (

N

I ) counting from a random point in 

time rather than an initial event (i.e. demand occurrence): 
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where  is the third moment about the mean for the inter-order interval. I 3
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The authors proposed the following method (Size-Interval) for obtaining accurate 

(intermittent) demand per period estimates: 
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Thus, the forecasts can be generated from estimates of the mean and variance of the 

order size and the average inter-demand interval. 

 

The SI method was compared with EWMA on theoretically generated demand data 

over a wide range of possible conditions. Many different average inter-demand 

intervals (negative exponential distribution), smoothing constant values, lead times 

and distributions of the size of demand (negative exponential, Erlang and 

rectangular), were considered. The comparison exercise was extended to cover not 

only Poisson but also Erlang demand processes. The results were reported in the form 

of the ratio of the MSE of one method to that of another. For the different factor 

combinations tried in this simulation experiment the SI method was superior to 

EWMA for inter-demand intervals greater than 1.25 review periods and in that way 

the authors showed how intermittent demand needs to be in order to benefit from the 

SI method (based on Croston’s concept) more than the EWMA.  

 

At this stage it is important to note that the estimate of mean demand is identical 

between Croston’s method and SI method. Thus, later comments on bias of the 
p
z

t

t
/

/
 (or 

I
S

1

1 ) estimator hold for both methods. 
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4.4 Performance of Croston’s method 
 

Croston’s model is based on assumptions of independence (successive intervals are 

independent, successive demand sizes are independent and intervals and sizes are 

mutually independent) and normality of the demand size. The second assumption is 

important for inventory control purposes only (i.e. equation (4.9)). Willemain et al 

(1994) found correlations and distributions in real world data that violated Croston’s 

assumptions. So they conducted a comparative evaluation of exponential smoothing 

and Croston’s method under less idealised conditions using: 

 

(a) Monte Carlo Simulation. Theoretical demand data were generated for 

different scenarios (lognormal distribution of demand size2, cross-correlation 

between sizes and intervals, autocorrelated sizes and autocorrelated intervals) 

that violated Croston’s assumptions. The comparison with exponential 

smoothing was mainly based on the Mean Absolute Percentage Error 

(MAPE). 

(b) Industrial data, focusing on the MAPE for one step ahead forecasts. 

 

The researchers concluded that Croston’s method is robustly superior to exponential 

smoothing and can provide tangible benefits to manufacturers forecasting intermittent 

demand. A very important feature of their research, though, was the fact that 

industrial results showed very modest benefits as compared with the simulation 

results. 

 

Sani and Kingsman (1997) conducted, with the use of simulation, a comparison 

between alternative forecasting methods evaluating them with respect to the cost and 

service level resulting from their implementation. The analysis was carried out on real 

and simulated low demand data. The forecasting methods compared were: a 

modification of Croston’s method (Sani, 1995) as far as the variance, utilised for the 

replenishment levels calculation, is concerned; exponential smoothing updating every 

inventory review period and every 9 inventory review periods; an empirical 

                                                 
2 The demand size lognormal distribution seems to have a considerable appeal to practitioners even 
though  no theoretical arguments in its support have been presented in the academic literature. Forecast 
Pro XE versions 3 and 4 deals with intermittence by using Croston’s method under the assumption that 
demand sizes are lognormally distributed. 
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forecasting method developed by one of the dealers who provided some of the real 

demand data that was used and the 1 year (26 periods) moving average updating every 

period (2 weeks). Sani’s modification to Croston’s method is based on the following 

calculation of demand variance: 
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The proposed method of calculating the variance was motivated by the excessive 

replenishment stocking resulting from equation (4.9) and is based on the reasonable 

assumption (Kwan, 1991) that demand follows the negative binomial distribution and 

consequently the variance has to be greater than the mean3.  

 

The forecasting methods were compared across ten periodic inventory control 

methods (five empirically developed “simple” rules and five methods proposed in the 

academic literature). 

 

The results showed that the best forecasting methods in terms of cost (ordering, 

holding and shortage costs are considered) were the empirical forecasting method and 

the moving average followed by Croston’s method. When the service level was used 

as the performance criterion then the exponential smoothing updating every review 

period was the best method followed by the Croston forecast and the moving average. 

Overall the best forecasting method taking into account both cost and service level 

was concluded to be the 52 week moving average followed by Croston’s method.  

 

We may deduce from the work of Willemain et al and Sani and Kingsman that 

Croston’s method may outperform other intermittent demand estimators when results 

are generated on simulated data. When real data is used, there is some evidence that 

less sophisticated, in fact very simple, forecasting methods seem to provide more 

accurate results and lead to more effective inventory control. 

 

 

                                                 
3 The negative binomial distribution is a compound Poisson distribution and it is further discussed in 
chapter 5.  
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4.5 Expectation of the demand per time period 
 

4.5.1 Expected estimate of demand – Croston’s method 

 

The empirical evidence suggests that the theoretical superiority of Croston’s method 

is not reflected in the forecasting accuracy associated with the use of this method. The 

unexpectedly modest performance has not been explained by the method’s sensitivity 

to the assumptions made by Croston in developing his model (Willemain et al, 1994). 

The normality assumption that could strongly be rejected in a practical situation does 

not affect the accuracy of forecasts given by Croston’s method since any other 

distribution can be specified in order to estimate the mean size of demand when 

demand occurs.  

 

Subsequently, in an attempt to identify the causes of this unexpected forecasting 

performance, a mistake was found in Croston’s mathematical derivation of the 

expected estimate of demand per time period. 

 

We know (assuming that order sizes and intervals are independent) that  
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We denote by  the inter demand interval that follows the geometric distribution 

including the first success (i.e. demand occurring period) and by 

pt

pt

1  the probability of 

demand occurrence at period t . Now the case of 1=α  is analysed since it is 

mathematically tractable; more realistic α  values will be considered in the next sub-

section. Assuming that 1=α , so that pp tt =′  we then have:   
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Therefore:  
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So if, for example, the average size of demand when it occurs is µ  = 6, and the 

average inter-demand interval is  = 3, the average estimated demand per time period 

using Croston’s method (for 

p

α  = 1) is not µ
p
= =

6
3

2  but it is 6  * 0.549 = 3.295 (i.e. 

64.75% bias implicitly incorporated in Croston’s estimate). 
 

 

The maximum bias over all possible smoothing parameters is given by: 
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This is attained at α  = 1. For realistic α  values, the magnitude of the error is smaller 

and it is quantified in the next sub-section.  

 

4.5.2 An approximation of the bias implicitly incorporated in Croston’s 

estimates 

 

For α  values less than 1 the magnitude of the error obviously depends on the 

smoothing constant value being used. We show, in this section, that the bias 

associated with Croston’s method in practice can be approximated, for all smoothing 

constant values, by: ( )
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The bias can be conveniently expressed as a percentage of the average demand and it 

is easily shown to be: ⎟⎟
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The above approximation is proven as follows: 

 

We apply Taylor’s theorem to a function of two variables, ( )xg   

 

where: 

 

x  is the vector:  and ( xxx 21 ,= ) ( )xg ( )
x
xxxg

2

1
21, ==  (with zx t′=1  and ) px t′=2

( ) θ 11 =Ε x ,  and ( ) θ 22 =Ε x

θ  is the vector: ( θθ )θ 21 ,=  with ( ) ( ) == θθθ 21 ,gg
θ
θ

2

1   

 

This is the case for the problem under concern, with µθ =1  and p=θ 2 . 
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Considering the assumption about independence between demand sizes and inter-

demand intervals, equation (4.26) and the fact that the first moment about the mean is 

always zero, equation (4.23) becomes: 
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Assuming that the inter-demand interval series is not auto-correlated and that the 

inter-demand intervals ( ) are geometrically distributed with a mean of  and 

homogeneous variance

pt p

4 of )1( −pp , it follows that: 

 

( ) ( ) ( ) ( )1
222 −
−

=
−

== ′ ppVarVarVar ppx tt α
α

α
α  

 

Assuming that demand sizes ( ) are distributed with a mean, zt µ , equation (4.29) 

becomes: 
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Subsequently, the bias implicitly incorporated in Croston’s estimates is approximated 

by (4.32): 

 

( )
p

Bias
p

Croston 2
1

2
−

−
≈ µ

α
α                   (4.32) 

 

In chapter 7 we show by means of experimentation on theoretically generated data 

that, for 2.0≤α , the difference between the theoretical bias given by (4.32) and the 

                                                 
4The issue of variance in the geometric distribution is discussed in chapter 5. 
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simulated bias lies within a 99% confidence interval of 2.0± % of the mean simulated 

demand.  
 

4.6. The λApproximation method  
 

Since Croston’s method is biased we consider applying a factor to the estimates 

produced by his method so that the second order bias term is directly eliminated.  

 

We try to estimate the value of a parameter λ  so that: 
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By applying a factor λ  to Croston’s updating procedure of sizes and intervals and 

considering approximation (4.31) we then have: 
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We can then set an approximation to the bias equal to zero in order to specify the 

value of parameter λ : 
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Therefore we propose the following updating procedure for obtaining approximately 

unbiased intermittent demand estimates: 
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We call this method, for the purpose of this research, the λ Approximation method. 

The expected estimate of mean demand per period for the λ Approximation method is 

given by equation (4.36). 
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This approximation is not necessarily accurate when higher order terms are taken into 

account. 

 

4.7 The Approximation method 
 

From equation (4.34) we have: 
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But, as  ,∞→p
2

1 αλ −→  

 

Therefore a possible estimation procedure, for intermittent demand data series with a 

large inter-demand interval, is the following: 
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As in the case of the λ  approximation method, the smoothing constant value is 

considered for generating demand estimates. The heuristic proposed seems to provide 

a reasonable approximation of the actual demand per period especially for the cases of 

very low α  values and large  inter-demand intervals. We call this method, for the 

purpose of this research, the Approximation method. The expected estimate of mean 

demand per period for the Approximation method is given by equation (4.38). 
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This approximation is not necessarily accurate when higher order terms are taken into 

account. 

 

For the detailed derivation of (4.38) see Appendix 4.A. 

 

4.8 Conclusions 
 

Croston’s concept of building intermittent demand estimates from constituent 

elements, has been claimed to be of great value for organisations that deal with 

intermittent demand. Nevertheless when the method is tested on real demand data it 

shows very modest benefits. Moreover inferior performance has often been reported 

in the academic literature when the method is compared with less sophisticated 

methods such as exponential smoothing or the simple moving average. An attempt to 

explain one cause of this unexpected poor performance has been made in this chapter. 
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We first show that bias should always be expected when Croston’s method is applied 

in practice. We have quantified the maximum bias that can be implicitly incorporated 

in Croston’s estimates under the well-stated assumptions of his method. For α  = 1 the 

bias is given by (4.21). For the rest of the possible smoothing constant values the 

expected estimate of mean demand per period using Croston’s method can be 

approximated by (4.31).  

 

Moreover two new methods have been developed in this chapter based on Croston’s 

concept of an explicit consideration of the demand size, when demand occurs, and the 

inter-demand interval. The first method is developed by estimating the value of a 

parameter which is directly applied to Croston’s estimates in order to eliminate the 

bias. We call this theoretically unbiased method the λ Approximation method and its 

updating equation is given by (4.35). Subsequently, a heuristic is proposed based on 

the λ Approximation method. The heuristic is expected to work well for large inter-

demand intervals and/or low smoothing constant values. We call this method the 

Approximation method and its updating equation is given by (4.37). All our 

derivations/approximations are accurate to the second order term in Taylor series. 
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CHAPTER 5 

 

The Variance of Intermittent Demand Estimates 
 

5.1 Introduction 
 

In order to judge the ability of alternative estimation procedures to deal with 

intermittence we are interested in deriving the expected estimate of demand per unit 

time period or per lead time and the variance of the estimates produced by the 

forecasting methods under concern. In an inventory control context the replenishment 

quantities are determined by the forecasts of mean demand and the variance of the 

forecast errors. The latter consists of components relating to the variance of demand 

and the variance of the estimates of the mean demand level (i.e. the sampling error of 

the mean). 

 

The issue of bias in intermittent demand forecasting was discussed in the previous 

chapter, where two new, approximately unbiased, estimation procedures were 

developed. In this chapter we focus on the issue of variance of the demand estimates 

produced by the following methods: EWMA, Croston’s, λ Approximation and 

Approximation method.  

 

The results (exact or approximate) derived in this chapter are purely theoretical. A 

theoretically generated data simulation experiment will be developed in chapter 7 in 

order to assess the accuracy of all the approximations derived in this chapter. Finally 

the empirical evaluation of our findings will be discussed in chapters 10 and 11. 

 

This chapter is structured as follows: 

 

We first refer to the variability associated with the estimates produced by the 

exponential smoothing method. In section 5.3 the issue of variance in Croston’s 

method estimates is discussed. Croston, in developing his model, assumed that the 

inter-demand intervals follow the geometric distribution. However, by not correctly 

estimating the variance of inter-demand intervals, Croston failed to produce an 
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accurate approximation of the variance of the demand estimates produced by his 

method. Moreover it has been shown, in chapter 4, that Croston’s method is biased 

and in this chapter it is argued that the particular Stuart and Ord (1994) expression, 

used to derive the variance of Croston’s estimates in his original paper, cannot be 

applied directly in order to calculate variance results when bias exists. Subsequently, 

we produce a correct approximation to the variance of Croston’s estimates by 

considering the first three terms in a Taylor series. 

 

In sections 5.4 and 5.5 we approximate the variance of intermittent demand estimates 

generated by the λ Approximation and Approximation method respectively. Finally, 

the conclusions of this chapter are presented in section 5.6. 

 

5.2 The variance of EWMA estimates 
 

Croston (1972) referred to a stochastic model of arrival and size of demand, assuming 

that demand sizes are normally distributed, ( )σµ 2,N , and that demand is random and 

has a Bernoulli probability 1/  of occurring in every review period (consequently the 

inter demand intervals follow the geometric distribution with a mean, ). Under these 

conditions the expected demand per unit time period is: 

p

p
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In this case Croston claimed that when demand estimates are updated every period 

using exponential smoothing, the expected estimate of demand per period is: 
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i.e. the method is unbiased. 

 

The variance of demand per unit time period was given by Croston as: 

 

( )
p

pVar
p

Y t
σµ

2
2

2
1

+
−

=           (5.3) 



 67

and the variance of the estimates as: 

 

( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

−
−

=
−

=′ p
p

VarVar
p

YY tt
σµ

α
α

α
α 2

2
2
1

22
      (5.4) 

(where α  is the smoothing constant) 

 

assuming a stationary mean model and homogeneous variance of demand per unit 

time period. 

 

If we isolate the estimates that are made just after an issue (which are those that will 

be used for replenishment purposes by a continuous review stock control system) 

Croston showed that these estimates have the biased expected value: 
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and variance (as corrected by Rao, 1973): 
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where αβ −=1 . 

 

5.3 The variance of Croston’s estimates 
 

Croston suggested estimating the average interval between issues and the average size 

of an issue when it occurs and to combine those statistics to give an unbiased estimate 

of the underlying mean demand. 

 

If we let: 

 

pt  = the inter-demand interval that follows the geometric distribution with: ( ) ppt =Ε  

and, according to Croston,  
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( ) ( 1 2−= pptVar )           (5.7) 

 

p t′  = the exponentially smoothed inter-demand interval, updated only after demand 

occurs 

zt  = the demand size, when demand occurs, that follows the normal distribution, 

( )σµ 2,N , and 

z t′  =  the exponentially smoothed size of demand, updated only after demand occurs 

 

we then have: 
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The variance of the ratio of two independent random variables ,  is given in 

Stuart and Ord (1994) as follows: 
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For  and , considering equations (5.8), (5.9), (5.10) and (5.11), the variance 

of the estimates produced by using Croston’s method is calculated by (5.13) 
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assuming that the same smoothing constant value is used for updating demand sizes 

and inter-demand intervals and that both demand size and inter-demand interval series 

are not auto-correlated and have homogeneous variances. 

 

Rao (1973) pointed out that the right hand side of equation (5.13) is only an 

approximation to the variance. This follows since (5.12) is, in fact, an approximation. 

 

5.3.1 The variance of inter-demand intervals 

 

The number of independent Bernoulli trials (with a specified probability of success) 

before the first success is representing by the geometric distribution. An alternative 

form of the geometric distribution involves the number of trials up to and including 

the first success (demand occurring period). Considering the notation used in this 

chapter the variability of the geometrically distributed inter-demand intervals is 

, irrespectively of which form of the geometric distribution is utilised. 

Consequently (5.7) should be replaced by (5.14). 

p p( −1)
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5.3.2 The corrected variance of Croston’s method estimates 

 

By taking (5.14) into consideration, the variance of the demand per period estimates, 

using Croston’s method, would become: 
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indicating that the approximated variance of the estimates produced by Croston’s 

method is in fact greater than that calculated by Croston himself, equation (5.13)1. 

 

 

 

                                                 
1 Equation (10) in the original paper. 
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Nevertheless, approximation (5.15) is still not correct. In fact there is a fundamental 

problem in directly applying Stuart and Ord’s result, given by (5.12), for the purpose of 

deriving the variance of the forecasts produced by a biased estimator. 

 

This is proven as follows: 

 

We apply Taylor’s theorem to a function of two variables, ( )xg   
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where ( )
θ
θθ

2

1=g  is just the first term in the Taylor series and not necessarily the 

population expected value. 

 

For: 

 
( )[ ] ( ) εθ +=Ε gxg                    (5.17) 

 

where ε  is an error term, which according to Croston, can be neglected, we then 

have: 

 

( )[ ] ( ) ( )[ ]{ } ( ) ( )[ ] ≈Ε=Ε= −Ε− θgxgxgxgxgVar 2 2  
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If we set:  

 

=x1 z t′ , the estimate of demand size, with ( ) µ=Ε ′z t  

and , the estimate of the inter-demand interval, with =x2 p t′ ( ) pp t =Ε ′  

 

so that  ( ) Y txg ′=

 

it has been proven, in chapter 4, that: 

 

( )
pY t
µ

≠Ε ′  or ( )[ ] ( )θgxg ≠Ε  

 

Based on that, we argue that the error term in equation (5.17) cannot be neglected and 

therefore approximation (5.18) cannot be used to represent the problem in hand. 

 

Our argument is discussed in greater detail in Appendix 5.A, where we also derive a 

correct approximation (to the second order term) of the variance of Croston’s 

estimates. That variance expression is given by (5.19). 
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In chapter 7 we show, by means of simulation, that, across the whole range of control 

parameters to be considered, approximation (5.19) does not increase the accuracy of 

the calculated variance more than by only considering the first term of this 

approximation. In fact for certain regions of particular importance to us, 

approximation (5.19) performs worse. Taking that into account and in order also to 

simplify all the comparisons based on the MSE, to take place in chapter 6, we finally 

approximate the variance of Croston’s estimates by (5.20). 
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Simplification of the variance calculation will enable us, in chapter 6, to derive more 

tractable, and as it will be proven in chapter 7, more accurate decision rules based on 

which Croston’s method performance can be assessed in detail.  

 

The improvement in accuracy of approximation (5.20) over that given by (5.19) is 

assessed in detail in chapter 7. 

 

5.4 The variance of the λ Approximation method estimates     

 

The estimation equation for the λ Approximation method presented in the previous 

chapter is given by (5.21) 
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and the expected estimate produced by this method was shown in chapter 4 to be as 

follows: 
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In Appendix 5.C we perform a series of calculations in order to find the variance of 

the estimates of mean demand produced by the λ Approximation method. The 

variance is approximated by equation (5.23). 
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In chapter 7 we show, by means of simulation (as in the case of Croston’s method), 

that consideration of both terms of approximation (5.23) does not provide overall a 

more reliable estimate of the calculated variance than when only the first term of this 

approximation is considered. Exclusion of the fourth power term in approximation 

(5.23) is also expected to facilitate the MSE comparisons to be undertaken in chapter 6.  

By simplifying approximation (5.23) we will be able to derive meaningful decision 

rules that can be even further evaluated in order to assess the λ Approximation 

method’s performance. The variance of the λ Approximation method is finally 

approximated by (5.24) and the issue of simplifying the variance calculation is further 

discussed in chapter 7. 
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5.5 The variance of the Approximation method estimates 
 

The estimation procedure for the Approximation method introduced in the previous 

chapter is: 
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with  
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The variance of the estimates produced by the Approximation method is calculated as: 
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Considering approximation (5.20) we finally have: 
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The effect of choosing equation (5.19) or (5.20) in order to approximate the variance of 

the Approximation method is discussed in chapter 7, where the choice of equation 

(5.20) is justified.  

 

5.6 Conclusions 
 

In this chapter the issue of variance of the estimates produced by alternative 

intermittent demand forecasting methods has been considered.  

 

Croston assumed that the inter-demand intervals follow the geometric distribution 

including the first success (i.e. demand occurring period). We show, that by not 

correctly estimating the variance of inter-demand intervals and by assuming no bias in 

the estimates produced by his method, Croston fails to produce an accurate expression 

for the variance of those estimates. Subsequently a correct approximation to the 

variance is derived by applying Taylor’s theorem. This approximated variance is 

given by (5.20). 

 

In chapter 4, two new estimation procedures were developed for forecasting 

intermittent demand. In this chapter the variance associated with their estimates is 

derived. The approximated variances of λ Approximation method and Approximation 
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method are given by (5.24) and (5.28) respectively. Both approximations are accurate to 

the second order term in a Taylor series. 
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CHAPTER 6 

 

The Mean Squared Error of Intermittent Demand 

Estimates1

 

6.1 Introduction 
 

This chapter is based on Syntetos, Boylan and Croston (2000). The equation (6.15) in 

this chapter has also appeared in Strijbosch et al (2000). These two bodies of research, 

for all their similarities, have been conducted independently of each other.  

 

In this chapter, exponential smoothing, Croston’s method (see chapters 4 and 5), 

λ Approximation and the Approximation method will be compared (pair-wise 

comparisons) based on the theoretical Mean Squared Error (MSE) associated with 

their application over a fixed lead time of length L . The expressions for the bias and 

variance of Croston’s method will be those derived in chapters 4 and 5. The pair-wise 

comparisons will result in the derivation of theoretical rules that indicate under what 

conditions one method is theoretically expected to perform better than another. These 

theoretical rules will be based on the squared coefficient of variation and the average 

inter-demand interval of the intermittent demand series. The cut-off values to be 

assigned to both criteria will be the outcome of a numerical analysis to be conducted 

on the theoretical results. Having obtained the cut-off values, we can then specify 

regions of superior performance of one method over another. In chapter 7 a 

theoretically generated data simulation experiment will be developed for the purpose 

of checking the accuracy of the decision rules developed in this chapter as well as all 

the other approximated results derived in the thesis.  

 

 

 

 

                                                 
1 The author is indebted to Mr. J. D. Croston for his comments and constructive criticism regarding the 
material presented in this chapter. 
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The pair-wise comparisons to be conducted in this chapter will refer to issue points 

and all points in time as well. Croston (1972) has explored the theoretical properties 

of exponential smoothing, when dealing with intermittence. Croston showed that the 

performance of exponential smoothing is dependent upon which points in time are 

considered for generating forecasting accuracy results. When all points in time are 

considered the method is unbiased whereas a certain bias should be theoretically 

expected when issue points only (i.e. the estimates after demand occurrence) are taken 

into account. The performance of all other methods is not affected by which points in 

time we refer to. Hence, the results of any comparison between their MSEs will 

reflect performance differences in either context of application. Each method, though, 

will be separately compared against exponential smoothing for all and issue points in 

time only. 

 

Why is MSE the accuracy measure chosen for the theoretical comparison of the 

alternative methods considered in this chapter? The reason is that MSE is a 

mathematically tractable accuracy measure. MSE is similar to the statistical measure 

of the variance of forecast errors (which consists of the variance of the estimates 

produced by the forecasting method under concern and the variance of the actual 

demand) but not quite the same since bias can also be explicitly considered. 

 

The issue of bias in intermittent demand forecasting has been discussed in chapter 4, 

where we have also derived the expected estimate of demand per unit time period for 

all the estimation procedures developed (or corrected) during this research. Moreover, 

the variance of those estimates was derived in chapter 5. Being able to estimate the 

variance of the actual demand, we can then quantify the theoretical one step ahead 

MSE for all the forecasting methods, assuming that the demand population parameters 

are known. The relationship between the one step ahead MSE and the MSE over a 

lead time of fixed length L  is derived in this chapter assuming auto-correlated 

forecast errors over the lead time but not auto-correlated demand. 
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6.1.1 The MSE comparisons on real data 

 

Despite its attractive theoretical properties, MSE has some significant disadvantages 

when applied to real data, the most important being its scale dependent nature. The 

scale of the data often varies considerably among series. Then series with large 

numbers dominate the comparisons especially if quadratic loss functions, such as the 

MSE, are used to report error statistics. Moreover, MSE results are severely affected 

by the presence of outliers.  

 

The theoretical and practical considerations in choosing an accuracy measure for the 

purpose of conducting a large-scale empirical accuracy comparison exercise will be 

discussed in detail in chapter 8. In that chapter we recognise that MSE is not the most 

appropriate measure for an accuracy comparison exercise. Therefore, other accuracy 

measures will be selected for the purpose of comparing the alternative intermittent 

demand forecasting methods on real data series. MSE will be used for empirically 

testing the theoretical results derived in this chapter, rather than determining overall 

accuracy performance differences. 

 

6.1.2 Structure of the chapter 

 

This chapter is structured as follows: 

 

In section 6.2 the notation that will be used for deriving our results is presented. In 

section 6.3 the relationship between the variance of the forecast errors over a fixed 

lead time and the MSE is discussed for one step ahead forecasts. The standard results 

(e.g. Gilchrist, 1976) indicate that MSE is preferable to the variance of the forecast 

errors when bias is theoretically expected. In section 6.4 the variance of the forecast 

errors over a fixed lead time is derived, for biased and unbiased estimation 

procedures, assuming that, in both cases, the forecast errors are auto-correlated.  

 

Consequently in section 6.5 the lead time MSE is derived as a function of bias, 

variance of the one step ahead estimates and variance of demand itself. In section 6.6 

the results of section 6.5 are used to develop an expression for the MSE of the 

estimation procedures discussed in this thesis. In section 6.7, some important issues 
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related to the theoretical accuracy comparison exercise are discussed. The detailed 

MSE comparisons are conducted in Appendices 6.A – 6I of the thesis. The theoretical 

rules derived from the pair-wise MSE comparisons are presented and analysed in 

section 6.8. Summary results are presented in section 6.9 where certain categorisation 

related issues discussed in chapter 3 are also revisited. Finally the conclusions of the 

chapter are presented in section 6.10. 

 

6.2 Notation 
 

We set as: 

 

Y t′ :  The estimate (made at the end of period t ) of demand in any period κ+t  

(assuming stationary mean model), obtained by any of the estimation 

procedures discussed in this thesis,  

 

where L≤≤κ1  and L  is the forecast lead time 

 

Note: Y  does not change over the forecast horizon t′

 

Y ′ :  The expected estimate of demand in any time period 

 

Y kt+ :  The actual demand in period kt +  

 

Y :  The expected actual demand in any time period 

 

e kt+ : The forecast error in period kt +  
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6.3  The relationship between MSE and the variance of the forecast 

errors 
 

The following series of equations describe the relationship between MSE and 

variance of the forecast errors for one step ahead forecasts (i.e. 1=κ ) 

 

MSE   ( )YY tt 1
2

+−′Ε=

 

( ) ( ) ( ){ }        1
2YYYYYY tt +−+−′+′−′Ε=  

 

(assuming stationary mean model and therefore independence of terms) 

 

( ) ( ) ( )YYYYYY tt 1   2 2 2 
+−−′′−′ Ε++Ε=  

 

) ()( 2 DemandActualVarEstimatesVar Bias ++=       (6.1) 

 

The variance of the forecast errors can be derived as follows: 

 

) ( ErrorForecastVar  ( )YY ttVar 1+−′=  

 

( ) ( ){ }YYYY tt −′−−′ +Ε=   1
2  

 

if  Y  is an unbiased estimator: t′

 

( ) =Ε= +−′ YY tt 1
2 MSE        (6.2) 

 

and if Y t′  is a biased estimator: 

 

( ) ( ){ }YYYY tt −−′−′ +Ε=   1
2  

 

( ) ( )( )[ ] ( )YYYYYYYY tt ttE −′′′−′ +Ε+−−−Ε= +     1
2 

1
2 2  
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(assuming stationary mean model and therefore independence 

of terms) 

 

( ) ( )YYYY tt −′−′ +Ε+Ε=   1
2 2  

 

BiasMSEDemandActualVarEstimatesVar 2) ()( −=+=    (6.3) 

 

6.4 The variance of the lead time forecast error 
 

6.4.1 Theoretical arguments 

 

In many short-term forecasting systems, the variance of the cumulative lead time 

forecast error is taken as the sum of the error variances of the individual forecast 

intervals. 
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Assuming that the forecast errors are distributed with a constant variance V , equation 

(6.4) becomes: 
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κ            (6.5) 

 

Equations (6.4) and (6.5) are consistent with serially uncorrelated forecast errors. 

Nevertheless, it has been argued (Fildes and Beard, 1991) that for lead times greater 

than one period “the errors will typically be auto-correlated and this issue has 

received very limited attention (p. 13)”. Silver et al (1998) noted that the exact 

relationship between the variability of the forecast error during the lead time and that 

during the forecast interval “depends in a complicated fashion on the specific 

underlying demand model, the forecast updating procedure and the values of the 

smoothing constant used (p.114)”. Subsequently they argued that the relationship 

under concern should be established empirically. 
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Under the Steady State Model assumption, it has been shown (Johnston and Harrison, 

1986) that equation (6.5) neglects any correlation between the estimates of demand. 

This correlation exists, at least in part, because of the uncertainty in the estimate of 

the true underlying level of demand that is carried from one period to the other. This 

uncertainty does not consist only of the sampling error variance of the level (i.e. 

variance of the estimates) but of the variance of the mean demand (level) as well.  

 

If the underlying mean level does not change (as assumed in this research) then the 

stationary mean model is satisfactory. In this case, the variance associated with the 

level of demand becomes zero (Johnston and Boylan, 1994) and the uncertainty 

reduces to the sampling error of the mean. If bias exists, the estimates of demand 

should also be auto-correlated although now it is not only the sampling error of the 

mean but also the bias that is carried forward from one period to the other. Whether 

bias exists or not, it is unreasonable to suppose that the forecast errors over a lead 

time are uncorrelated, assuming a stationary mean model. 

 

By ignoring the auto-correlation term, we are most probably overstating the 

performance of the estimation procedure under concern since auto-correlations 

induced by bias or lumpiness are generally positive.  

 

The variance of the lead time forecast error, taking auto-correlation into account, can 

be calculated as follows: 

 

(We assume for simplicity that 2L = ) 

 

⎟
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κetVar   ( )ee ttVar 21 ++ +=

 
( ) ( ) ( )eeee tttt CovVarVar 2121 ,2 ++++ ++=    

    

assuming constant variance of the unit time period forecast errors, V  

 

( )eeCovV tt 21 ,22 +++=                     (6.6) 
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6.4.2 The covariance of forecast errors 

 

Subsequently we perform a series of calculations in order to quantify the covariance 

of the forecast errors.  

 
( ) ( ) ( ) ( )eeeeee ttttttCov 212121   , ++++++ ΕΕ−Ε=  

 

If Y  is a biased estimator (considering that the expected forecast error is the bias): t′

 

( ) =++ ee ttCov 21 , ( ) Biasee tt
2

21  −Ε ++         (6.7) 

 

The expectation of the product of the two forecast errors is calculated as follows: 

 

( )ee tt 21  ++Ε  ( ) ( )[ ]YYYY tttt ′′ −−Ε= ++ 21    

 
( ) ( ) ( ) ( )YYYYYYYY tttttttt ′′′′ Ε+Ε−Ε−Ε= ++++ 2121  

 

We assume:  

 

• no auto-correlation in the actual demand data series 

• no cross-correlation between estimates of demand (Y t′ ) and demand itself ( ). 

This assumption is not valid if we refer to Y

Y t Κ+

t′  and Y  (i.e. the demand in a 

particular time period and the subsequent forecast based on that demand figure are 

correlated). 

t

 

Therefore: 

 

( ) =Ε ++ ee tt 21  ( )YY tYY ′Ε+′− 22  2         (6.8) 

 

Two biased estimation procedures are discussed in this thesis: Croston’s method and 

EWMA (when issue points only are considered). The Approximation method (the 

derivation of its estimation procedure has been based on the λ Approximation 

method, chapter 4) is approximately unbiased for large p , inter-demand interval 
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values. Nevertheless when the method is applied on series with very low p  values 

(and large α  values) a certain bias is theoretically expected. 

 

We continue the derivation of the variance of lead time forecast error, for biased 

estimation procedures. 

 

( )Y t′Ε 2  can be calculated as follows: 

 

( ) ( )YYY tVart ′′′ +=Ε 22             (6.9) 

 

Considering (6.9), (6.8) becomes: 

 

( ) =Ε ++ ee tt 21  +′− YYY  22 ( )YY tVar ′′ +2 ( )EstimatesVarBias += 2               (6.10) 

 

Considering  (6.10), equation (6.7) becomes: 

 

( ) ( ) ( )EstimatesVarYVareeCov ttt =′=++ 21 ,                 (6.11) 

 

For the unbiased estimation procedures considered in this thesis (EWMA, all points in 

time; λ Approximation method) we have: 

 
( ) =Ε ++ ee tt 21  ( )Y tVar ′    

   

and consequently the covariance of the forecast errors is given by (6.11). 
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6.4.3  The variance of the lead time forecast error (assuming error auto-

correlation) 

 

Having calculated the covariance of the forecast errors, we now proceed to find the 

variance of the lead time demand forecast errors. 

 

Taking into account equation (6.11), equation (6.6) becomes: 

 

=⎟
⎠
⎞⎜

⎝
⎛ ∑

=
+

2

1κ
κeVar t ( )YVarV t′+ 22                             (6.12) 

 

If , then: 3L =

 

⎟
⎠
⎞

⎜
⎝
⎛
∑
=

+

3

1κ
κetVar  ( )eee tttVar 321 +++ ++=  

 
( ) ( ) ( ) ( ) ( ) ( )eeeeeeeee ttttttttt CovCovCovVarVarVar 323121321 ,2,2,2 +++++++++ +++++=

 

( )YVarV t′+=  63  

 

and if , then: 4L =

 

=⎟
⎠
⎞

⎜
⎝
⎛ ∑

=
+

4

1κ
κeVar t ( )YVarV t′+  124  

 

In fact equation (6.12) can be generalised to cover all possible lead times: 
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where  
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( ) 2,LC denotes the number of combinations of 2 out of L time period forecast errors. 

 

Finally, based on (6.14), equation (6.13) can be written as: 
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( ) ( )EstimatesVarndActualDemaLVar L2+=               (6.15) 

 

6.5 The lead time MSE  
 

The MSE over a lead time of duration L can be calculated as follows: 
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( ) ( )eeee ttjtit 21    ++++ Ε=Ε  

 

for all  and  and ji ≠ Li <≤1 Lj ≤<1   

 

Therefore: 

 

( ) ( eeLLLMSE ttTL 21..   1MSE ++Ε−+= )                  (6.17) 

 

where  is the Mean Squared Error of one step ahead forecasts. MSE 

 

For the biased intermittent demand estimation procedures discussed in this thesis 

(considering equations (6.1) and (6.10)), equation (6.17) becomes: 
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MSE TL ..  ( ) ( ){ } ( ) ( ){ }BiasYVarLLYVarBiasYVarL ttt
22 1 +′−+++′=  

 

( ) ( ) L222 YVarBiasLYVarL tt ++′=  

 

( ) ( ){ }Demand Var 2 ActualVarBiasLEstimatesLL ++=              (6.18) 

 

Consequently the lead time MSE for the unbiased forecasting methods becomes: 

 

( ) ( ){ }Demand Var.. ActualVarEstimatesLLMSE TL +=                (6.19) 

 

6.6 The MSE of intermittent demand estimation procedures 
 

In order to derive the MSE of the alternative estimation procedures discussed in this 

thesis, we have already quantified the expected one step ahead forecast error, for the 

biased estimation procedures (chapter 4) and the variance of the one step ahead 

estimates produced by all forecasting methods (chapter 5). The bias and the variance 

results are also summarised in this chapter, in sub-sections 6.6.2 and 6.6.3 

respectively. The variance of the actual demand is presented in sub-section 6.6.1. 

 

6.6.1 The variance of the actual demand 

 

Under the assumptions considered in this thesis, intermittent demand data series are 

regarded as stationary following a compound binomial2 distribution. The demand 

occurs as a Bernoulli process, with probability of demand occurrence . In this 

case the inter-demand intervals, , are geometrically distributed with a mean of . 

The variance of the inter-demand intervals in this case (see also chapter 5) is 

p/1

pt p

( ) ( )1−= ppVar pt . 

 

The size of demand, , is assumed to be arbitrarily distributed with a mean zt µ  and 

variance . Under these conditions the demand pattern can be represented (see also 

chapter 4) by (6.20) 

σ 2
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with: 

 

( ) ( )
ppp

p
zY tt

µ
=Ε+

−
=Ε

11
0                   (6.21) 

 

Consequently the variance of demand per unit time period is calculated as follows 

(see Croston, 1972, equation (6)): 
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6.6.2 The bias of intermittent demand estimation procedures 

 

The exponential smoothing method, when all points in time are considered, is an 

unbiased intermittent demand estimation procedure. The λ Approximation method 

developed in chapter 4 is an approximately unbiased forecasting method and therefore 

the bias associated with its application in practice is theoretically expected to be 

almost zero. 

 

The bias implicitly incorporated in Croston’s estimates was approximated in chapter 4 

by applying Taylor’s theorem. The bias is given by (6.23). 

 

( )
p

Bias
p

CROSTON 2
1

2
−

−
≈ µ

α
α                   (6.23) 

 

The Approximation method is approximately unbiased for large inter-demand 

intervals and low smoothing constant values. When those conditions are not satisfied, 

a small bias is expected. That bias is approximated by (6.24). 

                                                                                                                                            
2 Demand occurs as a Bernoulli process with the sizes of demand, when demand occurs, following an 
arbitrary distribution. 
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p
Bias IONAPPROXIMAT 22

µα
−≈                   (6.24) 

imates 

e mean demand level, whereas the Approximation method underestimates it. 

d does not equal the population expected value, 

 

The negative sign in approximation (6.24) indicates that bias is in the opposite 

direction to that associated with Croston’s method. Croston’s method overest

th

 

When issue points in time are considered (consequently we refer only to the estimates 

following a demand occurrence) the expected estimate produced by the exponential 

smoothing metho p/µ , but rather 

roston, 1972): 

 

(C
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here

 

 αβ −=1 . w

 

The bias expected by applying exponential smoothing to a stationary intermittent 

demand series that follows a compound binomial distribution, considering only the 

sue points, is given by (6.26). 
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.6.3 The variance of intermittent demand estimation procedures 

 case of 

termittence and considering all points in time, is given by Croston (1972): 
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The variance of the one step ahead exponentially smoothed estimates, in
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When issue points only are considered, the variance of the one step ahead estimates 

for exponential smoothing is calculated as follows (Croston, 1972, as corrected by 

Rao, 1973): 
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After correcting the theoretical expectation of the demand estimates produced by 

Croston’s method in chapter 4, the variance of the one step ahead estimates was 

derived in chapter 5 by applying Taylor’s theorem to a function of two variables. That 

variance is given by (6.29): 
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Moreover in chapter 5 the variance of one step ahead forecasts was also derived for 

the λ Approximation method and the Approximation method. Those variances are 

given by (6.30) and (6.31) respectively. 
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6.6.4 Estimation procedures for intermittent demand 

 

Considering the derivations of section 6.5 and the results presented in sub-sections 

6.6.1, 6.6.2 and 6.6.3, the exact or approximated MSE (over a fixed lead time of 

length L ) associated with alternative intermittent demand estimation procedures is 

calculated as follows: 
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when issue points only are considered. 
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6.7 Theoretical Comparison of the MSEs 
 

We start the analysis by assuming that the approximated or exact MSE of one method 

is greater than the approximated or exact MSE of one other method, and we try to 

specify under what conditions the inequality under concern is valid. The comparisons 

for all methods, with the only exception of EWMA, refer to all and issue points in 

time as well. The EWMA estimation procedure is compared with the other methods 

separately for all and issues points in time as the particular method’s performance 

depends on which points in time are considered.   

 

It is easy to show that the comparison between any two estimation procedures is only 

in terms of the bias and the variance of the one step ahead estimates associated with 

their application. That is, the length of the lead time and the variance of demand itself 

do not affect the final results. Suppose for example that methods A and B are 

compared: 

 
⇔> MSEMSE MethodBMethodA  

 

( ) ( ){ }>++ Demand Var 2 ActualVarBiasALEstimatesALL  

 

( ) ( ){ }⇔++ Demand Var 2 ActualVarBiasBLEstimatesBLL  

 

( ) ( ) >++ Demand Var 2 ActualVarBiasALEstimatesAL  

 

( ) ( )⇔++ Demand Var 2 ActualVarBiasBLEstimatesBL  

 

( ) >+ BiasAEstimatesA 2Var ( ) BiasBEstimatesB 2Var +  

 

In order now to demonstrate our approach in detail, let us consider an example. We 

compare the MSE of Croston’s method with that of the Approximation method over a 

lead time of length L  ( 1≥L ): 
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⇔> MSEMSE IONAPPROXIMATCROSTON   

 

(see Appendix 6.A of the thesis) 
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for , 1>p 10 ≤≤α  

 

The implications of (6.32) are discussed in sub-section 6.8.1. 

 

The theoretical rule developed above is expressed in terms of the squared coefficient 

of variation ( CV ) and the average inter-demand interval. In fact all the theoretical 

rules that will be developed in this chapter will have the same form. The theoretical 

rules can then be further analysed (considering different possible values of the control 

parameters: 

2

α , µ ,  and ) so that cut-off values can be determined. This 

numerical exercise will be conducted using Microsoft Excel 97 (Windows 95). 

p σ 2

 

All detailed pair-wise comparisons are conducted in Appendices 6.A – 6.I. of the 

thesis and only the decision rules (with similar form to that of inequality (6.32)) will be 

given in this chapter. 

 

Since most of the theoretical MSEs given in sub-section 6.6.4 are approximate rather 

than exact results, it is important to note at this stage that the theoretical rules 

presented in this chapter are also approximate.  

 

Moreover we need once more to consider that the rules reflect accuracy performance 

differences under the assumption of a Bernoulli demand generation process. 

Modelling the demand generation process as a Poisson or a condensed Poisson 

stream, the latter being a “censored” Poisson process in which every th event is 

“marked” (Chatfield and Goodhardt, 1973), the inter-demand demand intervals will 

follow the exponential and Erlang ( ) distribution respectively. In those cases the 

n

n
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theoretical conclusions on the alternative estimation procedures’ performance would 

not necessarily be the same. 

 

Finally, it is important to note that all the pair-wise comparison results are generated 

assuming that the same smoothing constant value is employed by all of the estimation 

procedures under concern. Summary results, to be presented in sub-section 6.9, and 

the whole analysis on theoretically generated data as well as the greater part of the 

analysis on real demand data will also be based on the same assumption. We 

recognise that the use of the same smoothing constant may put one or more methods 

at a relative advantage/disadvantage but the issue of sensitivity of the comparative 

performance results to the application of the same α  value has not been further 

explored, from a theoretical perspective. In the empirical part of the thesis some 

results will be generated with respect to the best α  value performance for each of the 

forecasting methods. 

 

6.8 Comparison results 
 

The purpose of this section is to identify the most accurate estimation procedure(s) for 

different possible values of the control parameters α , µ ,  and . The specific 

pair-wise comparison results will be studied in order to gain insight into the behaviour 

of alternative estimators operating in different conditions. Conclusive results 

regarding all methods, rather than two at the time, can then be generated and those 

results will be summarised in the following section. 

p σ 2

 

6.8.1 MSE Croston’s method – MSE Approximation method 

 

As discussed in the previous section: 
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The denominator of the right hand side of the inequality is always negative and it can 

be shown, numerically, that for  the numerator of the right hand side of the 

inequality is always positive and therefore the inequality holds (superior performance 

is theoretically expected by the Approximation method). 

32.1>p

 

For  the numerator becomes negative and the right hand side of the inequality 

becomes positive. In that case the right hand side of the inequality cannot take any 

values higher than 0.48.  

32.1≤p

 

• If  then  48.02 >CV MSEMSE IONAPPROXIMATCROSTON >

• If   then there is a  cut-off value (48.02 ≤CV p 32.11 ≤< p ) below which Croston’s 

method performs better (i.e. the inequality is not valid). For example if , 

then the cut-off value is 

15.02 =CV

20.1=p . For 20.11 ≤< p  Croston’s method performs 

better and for  the Approximation method performs better. 20.1>p

  

As the ratio CV  decreases, the  cut-off value increases, and for  the 

cut-off value is  therefore Croston’s method performs better for 

2 p 001.02 =CV

32.1=p 32.11 ≤< p .  

 

The above results are valid for 145.0
7
1
≈=α (see chapter 2) and approximately true for 

other realistic α  values (refer to table 6.1). At this stage, it is important to note that 

the present analysis does not indicate the magnitude of the MSE differences. That is, 

we establish that one method performs better than another under a specific set of 

conditions but we do not indicate by how much. Performance differences will be 

explored in the following chapter along with the validity of all rules as well as their 

sensitivity to different control parameter values. 

 

From the above analysis it is clear that there are four decision areas in which one 

method can be theoretically shown to perform better than the other. These areas are 

presented schematically in figure 6.1.  
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      value)off-(cut p
 
 
      
       
   1  2 
      
    CV 2

            value)off-(cut
3   4 

    
 
 

 

Figure 6.1. Decision areas 

 

All the pair-wise comparisons to be conducted in this section will result in a 

categorisation matrix of the above form. The exact cut-off values for the 

categorisation criteria will be different for each comparison but the following 

comments apply to all of them. 

 

For average inter-demand intervals and squared coefficients of variation above their 

corresponding cut-off values (area 1) we know with certainty which method is 

theoretically expected to perform better. The same happens when either of the criteria 

takes a value above its cut-off value, while the other takes a value below its cut-off 

value (areas 2 and 4). The only area that requires further examination is the one 

formed when both criteria take a value below their corresponding cut-off values (area 

3).  

 

In table 6.1 cut-off values that indicate regions of relative performance for Croston’s 

and the Approximation method are presented, for smoothing constant values in the 

realistic range 0.05 – 0.2 (refer to chapter 2).  
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α  smoothing constant value p  cut-off value CV 2 cut-off value 

0.05 1.32 0.49 

0.10 1.32 0.49 

0.15 1.32 0.48 

0.20 1.31 0.47 

 

Table 6.1. MSE Croston’s method – MSE Approximation 

 

In the first column of table 6.1 we give the α  smoothing constant values considered 

and in the second column the corresponding approximate  cut-off value above 

which the Approximation method always performs better. For average inter-demand 

intervals lower than the  cut-off value, the CV  cut-off values are presented in the 

third column, above which the Approximation method performs better.  

p

p 2

 

From table 6.1 we can conclude that for all smoothing constant values that are likely 

to be applied in practice the Approximation method should always perform better than 

Croston’s method for any  unit time periods and/or . Therefore 

figure 6.1 can now take the following form. 

32.1>p 49.02 >CV

 

  
      value)off-(cut 32.1=p  
 
 
      
       
   Approximation    Approximation 
      
     

49.02 =CV  
                value)off-(cut
              Approximation  
      
 
 

 

Figure 6.2. Decision areas (Croston’s method – Approximation method) 
 

At this stage the categorisation scheme is not complete. The area that corresponds to 

 and  has been left blank since neither method can be theoretically 32.1≤p 49.02 ≤CV
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shown to perform better in all cases. Only when the values of both criteria are known, 

can we decide on which method should be chosen. The same will be true for all other 

pair-wise comparisons to be conducted in this section. Nevertheless, a numerical 

analysis of the comparison results (see also following chapter) shows that in this area 

of indecision the method that performs worse in decision areas 1, 2 and 4 (Croston’s 

method in this particular comparison) turns out to outperform the other method 

(Approximation) for the majority of possible combinations of the control parameter 

values. When the opposite is the case (i.e. in the context of the current analysis, in the 

part of area 3 where the Approximation method still performs better) the MSE 

differences are so small that we are almost indifferent as to which method will be 

used.  

 

We conclude that for the pair-wise comparison under analysis it is reasonable to 

assign the area of indecision (area 3 in figure 6.1) to Croston’s method. Similarly, for 

all other comparisons between any two estimation procedures, the decision area 3 will 

be assigned to the method that performs worse in decision areas 1, 2 and 4. Clearly 

the derivation of a function, based on which the more accurate estimator can be 

identified, would be very welcome, but such an exercise is beyond the scope of this 

research. 

 

Finally figure 6.2 can take the form which is indicated below (see figure 6.3). 

 

Two important comments relating to the pair-wise comparison undertaken in this sub-

section are the following: 

 

• The bias of both methods does not differ significantly from one set of conditions 

to another while the variance of the estimates produced by the Approximation 

method is consistently lower than that of Croston’s method. 

• The pair-wise comparison results are insensitive to the smoothing constant value 

used. 
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      value)off-(cut 32.1=p  
 
 
      
       
             Approximation    Approximation 
      
     

 
49.02 =CV     

                value)off-(cut
    Croston    Approximation 

     
        
 
  

Figure 6.3. Cut-off values (Croston’s method – Approximation method) 
 

6.8.2 MSE EWMA – MSE Approximation method, issue points  

 

MSEMSE IONAPPROXIMATEWMA >  if and only if (see Appendix 6.B):  
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for , 1>p 10 ≤≤α . 

  

For  the numerator of the right hand side of (6.33) can be shown, numerically, 

to be always positive. Moreover we show in Appendix 6.B that the denominator is 

always negative. Under those conditions the inequality holds and superior 

performance is theoretically expected by the Approximation method.  

29.1>p

 

For  the numerator becomes negative and all right hand side of the inequality 

becomes positive (as the denominator is still negative). In that case the right hand side 

of the inequality cannot take any values higher than 0.48 and comments made to the 

previous sub-section apply to this comparison as well.  

29.1≤p
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The above results are valid for 145.0≈α . The analysis is now extended to cover more 

α  smoothing constant values that could be potentially used by practitioners. A table 

similar to that developed in sub-section 6.8.1 is presented in order to identify the 

regions of superior performance for the Approximation method. 

 

α  smoothing constant value p  cut-off value CV 2 cut-off value 

0.05 1.16 0.49 

0.10 1.24 0.49 

0.15 1.29 0.48 

0.20 1.33 0.47 

 

Table 6.2. MSE EWMA – MSE Approximation, issue points 

 

From table 6.2 it is clear that the  cut-off value is more sensitive to the smoothing 

constant value used, in comparison with the results presented in the previous sub-

section. It is important to note that sensitivity of the criteria cut-off values is noticed 

for all the pair-wise comparisons that involve the EWMA method. 

p

 

For all smoothing constant values that are likely to be applied in practice the 

Approximation method should always perform better than the EWMA method for any 

 unit time periods and/or . 33.1>p 49.02 >CV

 

Even more favourable results for the Approximation method will be obtained, when 

the two methods’ performance is compared on all rather than issue estimates only (see 

sub-section 6.8.4). 

 

The Approximation method emerges as a promising method to deal with 

intermittence. The bias implicitly incorporated in the estimates produced by this 

method is very small and so is the variance of those estimates. For large  values 

and/or very low 

p

α  values the method is approximately unbiased. It becomes evident 

though that even when those conditions cannot be justified the method’s performance 

is not severely affected.  
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6.8.3 MSE EWMA – MSE Croston’s method, issue points  

 

MSEMSE CROSTONEWMA >  if and only if (see Appendix 6.C):  
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for , 1>p 10 ≤≤α . 

 

It can be shown numerically that for 145.0≈α and  the numerator of the right 

hand side of (6.34) is always positive and as the denominator is always negative, 

superior performance is theoretically expected by Croston’s method. 

26.1>p

 

This is a very interesting result if we consider the fact that Johnston and Boylan 

(1996) found that Croston’s method performs better than EWMA for average inter-

order intervals greater than 1.25 review periods. 

 

In that paper Johnston and Boylan compared Croston’s method with EWMA on 

theoretically generated data under a wide range of simulated conditions (α  value, 

average inter-order interval, lead time length, demand sizes distribution, all and issue 

points in time). The inter-order intervals were assumed to follow the negative 

exponential or Erlang ( ) distribution. Based on MSE results the researchers 

concluded that Croston’s method performs better than EWMA when the average 

inter-order interval is in excess of 1.25 forecast review periods. 

n

 

This evidence shows that, when issue points in time are considered, the  cut-off 

value is not sensitive to the probability distribution of inter-order intervals. 

p

 

For  the numerator becomes negative and the right hand side of the inequality 

becomes positive. In that case the right hand side of the inequality cannot take any 

values higher than 0.21 which means that for 

26.1≤p

145.0≈α , if , Croston’s 

method still performs better than EWMA. 

21.02 >CV
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A table similar to that presented in previous sub-sections is developed here in order to 

indicate the average inter-demand interval and squared coefficient of variation cut-off 

values for possible smoothing constant values in the realistic range 0.05 – 0.2. 

 

α  smoothing constant value p  cut-off value CV 2 cut-off value 

0.05 1.10 0.08 

0.10 1.19 0.17 

0.15 1.27 0.23 

0.20 1.34 0.28 

 
Table 6.3.  MSE EWMA – MSE Croston, issue points 

 

For issue points in time, Croston’s method is expected to perform better than EWMA 

for  and/or 34.1>p 28.02 >CV . The validity of this rule is further discussed in the 

following chapter. 

 

6.8.4 MSE EWMA – MSE Approximation method, all points in time  

 

MSEMSE IONAPPROXIMATEWMA >   if and only if (see Appendix 6.D):  
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for , 1>p 10 ≤≤α . 

 

For  the numerator is always positive and as the denominator of the right hand 

side of the inequality is always negative (see Appendix 6.D), the inequality holds 

(superior performance is theoretically expected by the Approximation method) for all 

 values greater than 1.17. 

17.1>p

p

 

For  the numerator becomes negative and all the second part of the inequality 

becomes positive (as the denominator is still negative). In that case the second part of 

the inequality cannot take any values higher than 0.48 and all the aforementioned 

comments apply in this section as well. Those results are valid for 

17.1≤p

145.0≈α .  
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α  smoothing constant value p  cut-off value CV 2 cut-off value 

0.05 1.12 0.49 

0.10 1.15 0.48 

0.15 1.18 0.48 

0.20 1.20 0.47 

 

Table 6.4. MSE EWMA – MSE Approximation, all points in time 

 

From table 6.4 we can conclude that for smoothing constant values that are commonly 

applied in practice the Approximation method should always perform better than the 

EWMA method for any  unit time periods and/or .  20.1>p 49.02 >CV

 

For issue points only, the Approximation method was found to perform better than 

EWMA for any  and . This is an interesting result if we take into 

account the fact that EWMA is theoretically unbiased when all points in time are 

considered and therefore one may expect an improved performance of this estimation 

procedure in that context of application. The sampling error of the mean though, for 

issue exponentially smoothed estimates, is always lower than the error produced when 

all points in time are considered. The relationship between that difference and the bias 

of the method depends on all the control parameters.  

33.1>p 49.02 >CV

 

6.8.5 MSE EWMA – MSE Croston’ s method, all points in time  

 

MSEMSE CROSTONEWMA >  if and only if (see Appendix 6.E):  

 

p
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>
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2

2

µ
σ                     (6.36) 

 

But: 
p

p−
>

1
2

2

µ
σ  for , 1>p 10 ≤≤α . 

 

When all points in time are considered, Croston’s method is always expected to 

perform more accurately than EWMA. If we take into account the results of sub-

section 6.8.3 it becomes obvious that there is a comparative improvement in Croston’s 
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method performance when all points in time are considered. The theoretical 

explanation of this result is the deterioration of EWMA’s performance rather than a 

true improvement in Croston’s method performance. This result though is not 

consistent with the findings of Johnston and Boylan (1996). They concluded that 

independently of which points in time are considered, Croston’s method shows a 

superior performance to EWMA for inter-order intervals greater than 1.25 unit time 

periods. This is a matter that requires further examination but is beyond the scope of 

this thesis. 

 

This results of the last two pair-wise comparisons indicate that if a re-order interval 

inventory control system is utilised then one of the estimation procedures specifically 

designed to deal with intermittence could be utilised for all SKUs. With the results 

obtained so far that could be either Croston’s method or the Approximation method. 

For fast demand items the Approximation method’s performance is in general though 

inferior to that of Croston’s method.  The opposite is the case when more intermittent 

and/or more irregular demand patterns are considered. This issue is further discussed 

in the following chapter. 

 

6.8.6 MSE EWMA – MSE λ Approximation method, issue points  

 

We conjecture that  if and only if (see Appendix 6.F): MSEMSE IONAPPROXIMATEWMA λ>
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for , 101 ≤< p 10 ≤≤α . 
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This result has been illustrated graphically but not proven mathematically. However, 

since no counter-examples have been found in the stated ranges of  and p α , we will 

proceed on the assumption that the inequality is correct. 

 

It can be illustrated numerically that for 2.005.0 ≤≤α  and  the numerator of the 

right hand side of (6.37) is always positive. We also illustrate in Appendix 6.F that the 

denominator is always negative for 

40.1>p

101 ≤< p , 10 ≤≤α . Under these conditions the 

inequality holds and therefore superior performance is theoretically expected by the 

λ Approximation method for 1040.1 ≤< p .  

 

The  cut-off value (for CV 2 2.005.0 ≤≤α ) is 0.40. Similar results were obtained when 

Croston’s method and the Approximation method were compared to EWMA for issue 

points only.  

 

6.8.7 MSE EWMA – MSE λ Approximation method, all points in time  

 

We conjecture that  if and only if (see Appendix 6.G): MSEMSE IONAPPROXIMATEWMA λ>

 

( )

( )
p

pp

p

p

pp

p
p

11
2

11

11

22

2
1

2

2
1

22

2

4

2

2

2

2

−

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

+

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

>

⎟
⎠
⎞

⎜
⎝
⎛ −⎟

⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛ −

α
α

αα

α

α

α

µ
σ                 (6.38) 

 

for  , 101 ≤< p 10 ≤≤α . 

 

This result has been illustrated graphically but not proven mathematically. However, 

since no counter-examples have been found in the stated ranges of  and p α , we will 

proceed on the assumption that the inequality is correct. 
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In Appendix 6.G we illustrate that the denominator of the right hand side of the 

inequality is always negative for 101 ≤< p , 10 ≤≤α . For 2.005.0 ≤≤α  the  and 

cut-off values for this pair-wise comparison are 1.17 and 0.22 respectively. When 

all points in time are considered, EWMA may perform better than the 

p

CV 2

λ Approximation method only when both decision criteria take a value below their 

corresponding cut-off point.  

 

In the previous sub-section, where the λ Approximation method was compared with 

EWMA for issue points only, the average inter-demand interval and squared 

coefficient of variation cut-off values were found to be 1.40 and 0.40 respectively. 

Taking into account these results it is important to note that the comparative 

improvement of the λ Approximation is not as marked as it was for Croston’s method 

but is more substantial than that observed in the Approximation method. 

 

6.8.8 MSE Croston’s method – MSE λ Approximation method  

 

We conjecture that  if and only if (see Appendix 6.H): MSEMSE IONAPPROXIMATCROSTON λ>
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                (6.39) 

 

for , 101 ≤< p 10 ≤<α (for 0=α  the denominator of the right hand side of the 

inequality is always zero). 

 

This result has been illustrated graphically but not proven mathematically. However, 

since no counter-examples have been found in the stated ranges of  and p α , we will 

proceed on the assumption that the inequality is correct. 
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In Appendix 6.H we illustrate that the denominator of the right hand side of (6.39) is 

negative for 101 ≤< p  and 10 ≤<α . Moreover it can be illustrated, numerically, that 

for 2.005.0 ≤≤α  and  the numerator of the right hand side of (6.39) is always 

positive. Therefore the 

65.1>p

λ Approximation method is theoretically expected to perform 

better than Croston’s method for any 1065.1 ≤< p . 

  

For  the squared coefficient of variation cut-off value is 1.17. 65.1≤p

 

A consistently higher variance of the Croston’s method estimates coupled with the 

bias incorporated in those estimates result in the superior performance of the 

λ Approximation method.  

 

Nevertheless, note the very high cut-off value of both decision criteria. So far the 

squared coefficient of variation and average inter-demand interval cut-off values have 

not exceeded 0.49 and 1.40 respectively in any of the pair-wise comparisons. In the 

next sub-section we show that the Approximation method compares against Croston’s 

method much more favourably than the λ Approximation method does. 

 

6.8.9 MSE Approximation method – MSE λ Approximation method  

 

MSEMSE IONAPPROXIMATIONAPPROXIMAT λ>  if and only if (see Appendix 6.I):  
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for , 1>p 10 ≤≤α . 
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In Appendix 6.I we show that the denominator of the right hand side of (6.40) is 

positive for , 1>p 10 ≤≤α . It can also be shown numerically that for 2.005.0 ≤≤α  and 

 the numerator of the right hand side of the inequality becomes negative and 

as the denominator is always positive the inequality does not hold i.e. superior 

performance is theoretically expected by the Approximation method for all  values 

greater than 1.25. 

25.1>p

p

 

For  the right hand side of the inequality cannot take any values greater than 

0.48. Therefore if  then the inequality is not valid and superior performance 

is still theoretically expected by the Approximation method.  

25.1≤p

48.02 >CV

 

The Approximation method is by definition approximately unbiased only for large 

average inter-demand interval values. If this is not the case, the bias associated with 

that method’s application gives an advantage to the λ Approximation method even 

though the variance of the Approximation method’s estimates is comparatively lower. 

 

For inter-demand intervals greater than 1.25 the bias associated with the 

Approximation method estimates is almost negligible. Moreover, as has been noted in 

earlier comparisons, the variance of these estimates is very low. The variance of the 

Approximation method estimates is so low that the method turns out to perform even 

better than the λ Approximation method, from which it was derived. 

 

  
      value)off-(cut 25.1=p  
 
 
      
       
   Approximation    Approximation 
      
     

48.02 =CV  
             value)off-(cut
                   λ Approximation     Approximation 
    
 
 

Figure 6.4. Decision areas (λ Approximation – Approximation method) 
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6.9 Summary results 
 

In chapter 3 a theoretical framework was presented in order to facilitate a conceptual 

categorisation of alternative non-normal demand patterns and subsequently enable 

their formal definition. The definitions developed in chapter 3 were as follows: 

 

• Intermittent demand appears at random with some time periods having no demand 

• Erratic demand is (highly) variable. Erraticness relates to the demand size rather 

than demand per unit time period 

• Lumpy demand appears at random with some time periods having no demand. 

Moreover demand, when it occurs, is (highly) variable. 

• Slow demand is characterised by the low volume of demand per unit time period. 

This may be due to infrequent demand arrivals, low average demand sizes or both. 

 

If we denote by  the average inter-demand interval cut-off value obtained in any of 

the pair-wise comparisons and by  the corresponding squared coefficient of 

variation cut-off value, each of the categorisation schemes developed in this chapter 

has the following characteristics: 

x

y

 

The “ , ” condition tests for SKUs which are not very intermittent and 

erratic (i.e. faster moving products or products whose demand pattern does not raise 

any significant forecasting and inventory control difficulties).  

xp ≤ yCV ≤2

 

The “ xp > , ” condition tests for low demand items or intermittent demand 

patterns with constant, or more generally, no highly variable demand sizes (i.e. not 

very erratic).  

yCV ≤2

 

The “ xp > , ” condition tests for lumpy demand items, and finally yCV >2

 

the “ , ” condition tests for erratic (irregular) demand items with rather 

frequent demand occurrences (i.e. not very intermittent). 

xp ≤ yCV >2
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The four resulting demand categories are graphically presented in figure 6.5. 

 

 
       value)off-(cut p
 
 
      
       
   Erratic (but not               Lumpy 
   very intermittent)   
     CV 2

          value)off-(cut
‘Smooth’ demand           Intermittent 

              (but not very erratic) 
 
 
 

 
Figure 6.5. Categorisation of demand patterns 

 

So far we have generated accuracy comparison results that indicate which estimation 

procedure performs better for each of the four demand categories. The results though 

have been developed by considering only two methods at a time. Therefore, it is 

necessary to extend the analysis conducted so far in order to propose rules which are 

valid across all the methods considered in this chapter. 

 

The average inter-demand interval and squared coefficient of variation cut-off values 

that have been obtained in all the pair-wise comparisons are indicated below. The 

method that appears in italics is the one that theoretically performs better only in 

decision area 3. 
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Pair-wise comparison 

 

p  cut-off value 

 

CV 2 cut-off value 

Approximation-Croston 1.32 0.49 

Approximation- λ Approx. 1.25 0.48 

λ Approx.-Croston 1.65 1.17 

ISSUE POINTS  

Approximation-EWMA 1.33 0.49 

Croston-EWMA 1.34 0.28 

λ Approx.-EWMA 1.40 0.40 

ALL POINTS IN TIME  

Approximation-EWMA 1.20 0.49 

Croston-EWMA Croston always performs better than EWMA 

λ Approx.-EWMA 1.17 0.22 

 

Table 6.5. Cut-off values ( 2.005.0 ≤≤α ) 

 

When issue points in time only are considered (i.e. in the context of a re-order level 

inventory control system) the Approximation method performs better than all the 

other methods for  unit time periods and/or .  33.1>p 49.02 >CV

 

For  and  EWMA and Croston’s method are theoretically expected 

to perform best. In particular: 

33.1≤p 49.02 ≤CV

 

EWMA performs better than all the other methods considered, for average inter-

demand intervals less than or equal to 1.33 and a squared coefficient of variation 

taking values in the range [0 – 0.28] 

 

Croston’s method is expected to show superior performance for low average inter-

demand intervals (less than or equal to 1.33) and a moderate squared coefficient of 

variation (0.28 – 0.49].  

 

Note that the λ Approximation method does not perform better than all the other 

methods in any of the decision areas. 
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The categorisation of demand patterns, in case that issue point estimates only are 

considered, takes the final form, which is indicated below: 

 

 
     value)off-(cut 331.p =  
 
 
      
       
   Erratic (but not                 Lumpy 
   very intermittent)   
  49.02 =CV

     
                

       S(A)   
     

 Intermittent 
           (but not very 

28.02 =CV     erratic)  
       S(B) 

 
      

      

Figure 6.6. Categorisation of demand patterns (re-order level systems) 
 

The ‘Smooth’ demand decision area has now been divided into two sub-areas: 

Smooth A, S(A) and Smooth B, S(B), in order to account for the theoretical 

differences in the forecasting accuracy performance observed during our analysis. 

        

The recommended estimation procedures are as follows: 

 

Erratic:   Approximation method 

Lumpy:  Approximation method 

Intermittent:  Approximation method 

S(A):   Croston’s method 

S(B):   EWMA  

 

When all points in time only are considered (i.e. in the context of a re-order interval 

inventory control system) the Approximation method performs better than all the 

other methods for  unit time periods and/or .  32.1>p 49.02 >CV
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For  and , Croston’s method is theoretically expected to perform 

better than all the other methods. This result is, at least intuitively, not what one might 

expect. Based on the analysis conducted so far, this result is attributed to the large 

variance associated with the estimates produced by EWMA. The discussion on the 

poor EWMA performance, when all points in time are considered, is continued in the 

following chapter.  

32.1≤p 49.02 ≤CV

 

The categorisation of demand patterns, in the case that all point estimates are 

considered, takes the final form indicated below. Note that once more the 

λ Approximation method does not perform better than all the other methods in any of 

the decision areas. 

 

 
      value)off-(cut 32.1=p  
 
 
      
       
   Erratic (but not               Lumpy 
   very intermittent)   
  

49.02 =CV     
        ‘Smooth’ demand             Intermittent  value)off-(cut
              (but not very erratic) 
 
 
 

Figure 6.7. Categorisation of demand patterns (re-order interval systems) 
 

The recommended estimation procedures are as follows: 

 

Erratic:   Approximation method 

Lumpy:  Approximation method 

Intermittent:  Approximation method 

Smooth:  Croston’s method 

 

One of the most interesting results of the analysis conducted so far is the poor 

performance of the λ Approximation method, even when it is compared against the 

Approximation method, considering that the latter estimation procedure was derived 
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in chapter 4 only as a special case of the former. The λ Approximation is theoretically 

unbiased but the relatively large sampling error variance of the mean does not allow 

this estimation procedure to perform as well as expected. In fact the variance of the 

estimates appears, in this chapter, to play a more important role than the bias in 

determining overall accuracy performance results.  

 

The λ Approximation method is outperformed by the Approximation method even for 

average inter-demand intervals as low as 1.25 review periods. For high average inter-

demand intervals both methods are approximately unbiased. As the value of  

reduces, the bias associated with the Approximation method increases but the 

variability of the estimates remains very low. On the contrary the very small (or zero) 

bias associated with the 

p

λ Approximation method remains the same but so does the 

large variance of the estimates. It is only for 25.1≤p  review periods that the 

λ Approximation method may perform more accurately than the Approximation 

method. But in that region Croston’s method and/or EWMA are expected to show 

superior performance. As such the λ Approximation method is not theoretically 

expected to perform better than all the other methods in any of the decision areas that 

can be formed in the categorisation matrices 6.6 and 6.7. 

 

It is also important to note that when the λ Approximation method is compared with 

Croston’s method, the resulting cut-off points are very high (the λ Approximation 

method is theoretically expected to show superior performance for  and/or 

squared coefficient of variation ). The categorisation rule in that case reduces 

effectively to  since squared coefficient of variation values greater than 1.17 

can be expected (and they have been reported in the literature, Willemain et al, 1994) 

only for lumpy rather than just erratic demand patterns. But in that particular area 

( ) the overall superiority of the Approximation method has been established.  

65.1>p

17.1>

65.1>p

65.1>p

 

When the λ Approximation method was developed, we aimed at eliminating the bias 

contained in Croston’s estimates without considering the effect that such a bias 

elimination would have on the forecast variance. Unfortunately, the results presented 

thus far in this chapter indicate that the variance of the method estimates is relatively 
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large, resulting in the relatively poor forecasting accuracy performance of this 

estimation procedure.  

 

The purpose of this section is to identify the most accurate estimation procedure(s) for 

different combinations of the control parameter values. One of the main objectives of 

this Ph.D. as a whole is to introduce estimation procedures which, at least 

theoretically, outperform Croston’s method. As mentioned above, the 

λ Approximation method is not expected to perform better than all the other methods 

in any of the possible factor combinations. The λ Approximation method will be 

considered in the following chapter (chapter 7) when its application on theoretical 

data will be simulated, for the purpose of verifying its poor forecasting accuracy 

performance. Consequently, upon verification of the poor performance of the 

λ Approximation method, and in order also to simplify the real data simulation 

experiment, to take place in chapters 10 and 11, this estimation procedure will be 

disregarded from chapter 8 onwards. 

 

6.9.1 Modified Williams’ criteria  

 

The two categorisation schemes developed in this section (figures 6.6 and 6.7) are 

now assessed against the theoretical and practical requirements proposed by Williams 

(1984) as modified in sub-sections 3.4.2 and 3.4.3. To recap, the requirements are as 

follows:  

 

1. The categorisation scheme should suggest in what different ways to treat the 

resulting categories. The objective in categorising demand patterns is the 

identification of the most appropriate forecasting and inventory control methods to 

be applied to the different demand categories. As such, categorisation schemes 

should explicitly suggest which methods should be used under which 

circumstances. 

2. The criteria considered in developing the rules should be dimensionless so that 

categorisation decisions regarding a SKU are independent of the product’s unit of 

measurement or of demand over any time period other than the lead time or the 

review period. 
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3. Sensitivity to outliers should be taken into account. The categorisation scheme 

should not allow products to move from one category to another when few 

extreme observations are recorded.  

4. The amount of data required to reliably classify demand patterns should also be 

considered. That is, the decision rules should take into account the limited number 

of demand occurrences that characterise any intermittent demand pattern. 

5. Logical inconsistencies should not allow demand for a SKU to be classified in an   

      unintended category. 

6. Determination of the cut-off values should be non-arbitrary thereby enabling the 

general applicability of the categorisation scheme. 

 

The categorisation schemes clearly suggest which estimation procedure should be 

used. In fact, as it has already been shown, categorisation of the demand patterns 

results from a structured forecasting accuracy comparison between alternative 

estimation procedures. The categorisation rules do not indicate what type of inventory 

control approach should be taken but rather a set of categorisation rules can be chosen 

depending on whether the inventory system is re-order level or re-order interval. In 

this research we are exploring the possibility of improving intermittent demand 

forecasting practices assuming that an appropriate inventory control system is already 

in place. This is based on the assumption that there are no significant interactions 

between estimation procedures and inventory control models (so that the combination 

of estimator A and inventory model x performs better than the combination of 

estimator B and the same model x, even though the estimator A is in fact the same or 

less accurate than estimator B). Sani (1995) found no evidence of such interaction.  

 

With respect to the second requirement developed by Williams (1984) both decision 

criteria are clearly dimensionless: 
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Even though the categorisation rules have been derived based on a theoretical analysis 

of the MSE, their robustness on other accuracy measures will also be tested, in 

chapter 10. The MSE is known to be “unduly” influenced by outliers whereas outliers 

do not affect other error measures that will be used in our real data simulation 

experiment for generating results. The sensitivity of the categorisation rules to 

extreme observations is further discussed in chapters 10 and 11. It is important to note 

that Williams (1984) proposed using “buffer zones” so that “borderline” SKUs would 

not switch categories as the parameters vary from one side of the border to the other 

or categorisation would not be that easily affected by outliers. Nevertheless an 

“ongoing” application of the categorisation scheme (at the end of every review period 

re-categorisation occurs and the appropriate estimation procedure is chosen) will not 

be considered in chapters 10 and 11. Rather the properties of each demand data series 

will be used in order to define demand for the corresponding SKU, the best estimation 

procedure (considering forecasting and/or inventory control performance) will be 

recorded and the results will be checked for consistency against the categorisation 

schemes developed in this chapter.  

 

As far as Williams’ fourth criterion is concerned, there is an absolute minimum 

requirement of two demand occurrences before the categorisation rules can be applied 

in practice assuming that the first recorded zero or non-zero demand follows an issue 

point. If we start from a random point in time, then the minimum requirement 

increases to three demand occurring periods so that the average inter-demand interval 

can be determined. At this stage it is worth noting that even though two (or three) 

demand occurrences allow the application of the categorisation scheme, the sampling 

error of the demand size variance estimates will be very large if there are few 

observations. 

 

The categorisation schemes developed in this section explicitly consider both the 

demand pattern and size of demand, when demand occurs. That characteristic 

eliminates any eventual logical inconsistencies and does not allow SKUs to be 

classified in a category other than the intended one. Finally the cut-off values assigned 

to the decision criteria are the product of structured MSE pair-wise comparisons and 

as such the categorisation schemes proposed are generally applicable.  
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6.10 Conclusions 
 

In this chapter the corrected Croston’s method, EWMA and the two estimation 

procedures that have been developed during this research are compared based on their 

lead time MSE performance. The MSE is similar to the statistical measure of variance 

of the forecast errors but not quite the same since bias is also taken into account. MSE 

is a mathematically tractable accuracy measure and allows significant theoretical 

insight to be gained.  

 

Traditionally, the cumulative lead time MSE is taken as the sum of the MSEs of the 

individual forecast intervals. By estimating the demand variance in that way, we 

neglect any correlation between the estimates of demand. This correlation is generated 

by the sampling error of the mean and the bias (if any) that is carried forward from 

one period to the next. The correct expression of the MSE, over a fixed lead time, for 

biased and unbiased estimation procedures, has been derived in this chapter under the 

stationary mean model assumption.   

 

Consequently, using results generated in chapters 4 and 5 and derivations given by 

Croston (1972) we quantify the MSE of all the estimation procedures discussed in this 

thesis. Pair-wise lead time MSE comparisons are then conducted for the purpose of 

deriving theoretical rules that indicate under what conditions one method is 

theoretically expected to perform better than another. These theoretical rules are based 

on the squared coefficient of variation and the average inter-demand interval of the 

intermittent demand series. The cut-off values assigned to both criteria are the 

outcome of a numerical analysis conducted on the theoretical results. Having obtained 

the cut-off values we then specify regions of superior performance of one method 

over the other. When all pair-wise comparison results have been collected we then 

extend the analysis in order to indicate overall superiority, specifying under what 

conditions one method is theoretically expected to perform more accurately than all 

the other methods.  

 

Finally two categorisation schemes are developed: one referring to a re-order level 

and the other to a re-order interval situation. The results indicate that the 

Approximation method performs better than all the other estimation procedures for 
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non-smooth demand patterns. For the smooth demand category, EWMA and 

Croston’s method are found to perform best when issue points in time only are 

considered and Croston’s method is the only recommended procedure when all point 

estimates are taken into account. The λ Approximation method does not outperform 

all the other estimation procedures in any of the decision areas. 
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CHAPTER 7 

 

A Simulation Experiment Using Theoretically Generated 

Data 
 

7.1 Introduction 
 

In this chapter a simulation experiment using theoretically generated data will be 

developed for the purpose of assessing the accuracy of all the approximated results 

derived during this research. 

 

The use of simulation in extending Operational Research and Management Science 

theory has been widely recognised in the academic literature (e.g. Meier et al, 1969; 

Ignall and Kolesar, 1979; Law and Kelton, 2000). Moreover issues related to the 

symbiosis of simulation and mathematical modelling have also attracted the attention 

of many researchers (e.g. Adam and Dogramaci, 1979; Santhikumar and Sargent, 

1983). 

 

Even though the exact use of a simulation model developed along with an analytic 

model1 depends on the context of application, a simulation model often aims at 

representing elements and relationships of the system under study that make the 

analytic model mathematically intractable. In the case of this research, although we 

have only dealt with mathematically tractable problems, the analysis has resulted in 

solutions of an approximate nature. Therefore, the simulation model developed in this 

chapter is intended to assess the accuracy of those approximate mathematical results 

rather than representing a part of the system that cannot be modelled otherwise.  

 

 

 

 

                                                 
1 The terms “analytic” and “mathematical” are used interchangeably for the purpose of this research in 
contrast with other academic work in which both analytic and simulation models/results are described  
as mathematical models/results (e.g. Bakir, 1994). 
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In chapter 4 the issue of bias in intermittent demand forecasting was analysed while in 

chapter 5 we derived the sampling error variance of the estimation procedures 

considered in this thesis. In both cases the final results were approximations2.  

 

Subsequently, in chapter 6, the MSE associated with alternative forecasting methods 

was obtained. The MSE results were used for establishing regions of superior 

performance of every estimator over one other and over all other estimators. The MSE 

results are of an approximate nature and, as such, the decision rules developed are 

also approximate. Moreover certain simplifying assumptions were made in chapter 6 

in order to enable the development of meaningful categorisation schemes. Therefore, 

it is important to know the extent to which those assumptions can affect the validity of 

the rules proposed. 

 

By simulating the performance of the alternative estimation procedures on theoretical 

data, which has been generated upon the assumptions considered in the mathematical 

analysis, we obtain bias, variance and MSE results which are close to the population 

expected values but not quite the same since sampling variation exists. This sampling 

variation can be reduced if we consider a sufficiently large number of simulated 

demand time periods (say 20,000). Further reduction of the sampling variation can be 

achieved if the simulation model runs, for each specific set of conditions, more than 

once (say 5 times) so that average results can be obtained3. Those results can then be 

compared against the mathematical results and conclusions about the accuracy of the 

approximations can be drawn. 

 

The simulation model will cover a wide range of possible situations. It will be based 

on the assumption that demand occurs as a Bernoulli process and therefore the 

geometric distribution represents the inter-demand intervals. Many distributions have 

been proposed in the academic literature for representing the demand sizes, when 

demand occurs. Computational considerations dictate that only one such distribution 

can be selected for the purpose of our simulation experiment.  

                                                 
2 The only exact results that we have discussed so far refer to EWMA, in which case the results were 
derived by Croston (1972). The only EWMA result derived in this thesis has been the lead time MSE 
(for all and issue points in time) which was an exact result as well. 
3 Equivalently, the model could also run just once considering, say, 100,000 demand time periods. 
Nevertheless, this approach cannot be further considered because of the current Excel limitations. 
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Consequently, issues related to the sensitivity of the results to the assumed demand 

size distribution will not be addressed in this thesis. In this chapter we will argue that 

the lognormal distribution is the most appropriate for the purpose of our simulation 

exercise because, amongst other reasons, it allows the coefficient of variation (or 

squared coefficient of variation) to take values above unity.  

 

The control parameters of the simulation experiment will be: the average inter-

demand interval, the mean and variance of the size of demand, the smoothing constant 

value and the length of the lead time. Results will be generated for both all and issue 

points in time only. 

 

7.1.1 The mathematical-simulation model relationship 
 

Before using the simulation results for any possible application, the simulation model 

needs first to be verified and validated. Verification is to be distinguished from 

validation since the former refers to internal consistency or correct logic of the model 

while the latter to the degree that the model corresponds to the real system. Exact 

analytic results can be used in the verification of simulation models. In that case the 

control parameters of the simulation model can be set to correspond with the analytic 

model so that we can judge the correctness of the simulation’s model logic by 

comparing the output of the simulation model to the exact theoretical results of the 

analytic model. Therefore the analytic results are used in order to check the 

correctness of the simulation results. Once the correct structure of the simulation 

experiment has been confirmed, the simulation results (other than those that have 

been verified by referring to the analytic model) can be used to assess the accuracy of 

any approximate analytic results. This is precisely the way that we are going to work 

in this chapter.  

 

The simulation model will be developed based on the main assumptions that have 

been considered in this thesis so far. Consequently exact theoretical results (and in 

particular Croston’s derivations regarding the EWMA bias) will be used in order to 

verify the simulation model. Once the model has been verified, the simulation results 

can then be used to assess the accuracy of the corresponding approximate analytic 

results. If the simulation model does not exhibit the properties that hold for the 
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analytic model we have reasons to question the accuracy of the approximation under 

concern.  

 

Fortunately, the simulation results indicate good accuracy of our theoretical 

approximations. The empirical validity and utility of our theoretical results will be 

tested in chapters 10 and 11. 

 

7.1.2 Chapter structure 
 

A simulation model is a dynamic or an operating model of a system or problem entity 

that “mimics” the operating behaviour of the system or problem entity and contains its 

functional relationships (Santhikumar and Sargent, 1983). 

 

A number of logical systematic processes have been designed to support the 

development of a simulation model (e.g. Watson and Blackstone, 1989; Law and 

Kelton, 2000). One such process was developed by Hoover and Perry (1989) and will 

guide the structure of this chapter: 

 

Formulating the problem and planning the study. Before beginning to develop a 

simulation model, it is very important to have well defined objectives and to decide 

how the model will be used in the decision making process. As far as our simulation 

experiment is concerned, both issues have already been discussed in the beginning of 

this chapter’s introductory section. 

 

Collecting the data. To build the conceptual model the researcher should have 

sufficient data in order to develop the mathematical and logical relationships in the 

model so that it adequately represents the problem entity for its intended use. If for 

any possible reason real data is not used, theoretical data has to be generated. A 

literature overview on theoretically generated data simulation experiments is 

presented in section 7.2. For the simulation experiment described in this chapter 

demand will be built from constituent elements (demand sizes and inter-demand 

intervals). The assumed incidence and demand size distributions are discussed in 

section 7.3 while the actual generation process is described in Appendix 7.B. 
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Validation. Since any model is only an abstraction of the real system under study, the 

analyst should always retain a healthy scepticism about how the model represents the 

system. Validation is a confirmation that a model is a credible representation of the 

system. All the assumptions made during our mathematical analysis are still employed 

for the purpose of this simulation exercise and the validity associated with them has 

already been discussed in the previous chapters. In this chapter we will argue that 

demand sizes should be represented by the lognormal distribution and the validity of 

this new assumption will be explored in section 7.3. 

 

Construction of the conceptual model. Technical details about our simulation model 

are given in section 7.4. 

 

Verification. Verification is the process of determining whether the computer coding 

of the model corresponds to the model logic or not. The issue of verification is 

discussed in sub-section 7.6.1. 

 

Determining the control parameters of the simulation. In section 7.5 the control 

parameters and the values assigned to them are presented. The selection of the 

particular values is explained in Appendix 7.C. 

 

Analysing the output data. The results of our simulation experiment are analysed in 

sections 7.6, 7.7 and 7.8 where we directly compare them with our theoretical 

approximations. Finally the conclusions of the chapter are presented in section 7.9. 

 

7.2 Simulation using theoretical data 
 

7.2.1 Literature overview 
 

Croston (1972) used theoretically generated data in order to demonstrate the improved 

forecasting accuracy and consequent inventory control savings of employing his 

method over traditional EWMA when dealing with intermittence. Croston’s 

assumptions used for generating demand data were the same as those employed in 

developing his method. The control parameters used in his simulation experiment 

were the following: 
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• The mean of the geometrically distributed inter-demand intervals 

• The mean and variance of the normally distributed demand sizes 

• The smoothing constant value. 

 

Results were generated for one step ahead forecasts considering the estimates made 

immediately after a demand occurrence.   

 

Bretschneider (1986) compared the MAD and MSE smoothing approaches in 

estimating the variance of the forecast error for the simple exponential smoothing 

forecasting method. The simulation was conducted on theoretically generated demand 

data using three types of underlying structure for both demand mean and variance: 

constant, discrete step changes and ramp changes in level. The control parameters 

were the mean and standard deviation of the demand distribution. 

 

Willemain et al (1994) found correlations and distributions in real world data that 

violated Croston’s assumptions. Therefore, they compared EWMA and Croston’s 

method under less idealised conditions. Theoretical demand data was generated for 

scenarios that violated Croston’s assumptions. The control parameters used in the 

demand generation process were the following: 

 

• The mean and standard deviation of the demand size distribution. Demand sizes 

were assumed to follow the lognormal distribution 

• The average inter-demand interval. Inter-demand intervals were assumed to 

follow the geometric distribution 

• Demand size and inter-demand interval auto-correlation coefficients 

• Size-interval cross-correlation factors. 

 

In addition industrial data was considered in order to test the validity of the results. 

The smoothing constant value was introduced as a control parameter for both sets of 

data and results were generated for the one step ahead estimates produced by the two 

methods. (Following Croston’s scenario, the issue point estimates were considered 

only for the theoretical set of data. For the real demand data series, the accuracy 

comparison results were based on all point estimates.) 
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Croston’s method was found to perform better than EWMA and the researchers 

concluded that this method can indeed provide tangible benefits to manufacturers 

forecasting intermittent demand. 

 

Sani (1995) conducted research with the purpose of identifying the most appropriate 

inventory control policy and forecasting method when low demand items are 

considered. Selected inventory control methods and demand estimation procedures, 

presented in the academic literature or used by practitioners, were compared on both 

theoretically generated and real demand data. The real data files represented the 

demand history of 30 car spare parts and 54 agricultural machinery spare parts. The 

parameter settings used in order to derive the theoretical data was only a part of the 

factorial grid (288 parameter settings) used in deriving the Power Approximation 

method (Ehrhardt, 1979). In particular the control parameters used in the demand 

generation process were the following: 

 

• Distribution of demand per period. Demand was not generated from constituent 

elements. It was rather assumed that demand per period can be reasonably 

represented by the Negative Binomial or Poisson distribution 

• Variance to mean ratio 

• Mean demand per period. 

 

The lead time was also introduced as a control parameter. The smoothing constant 

value used for EWMA and Croston’s method was set to 0.15 and all the points in time 

were considered for generating results. 

 

Additional control parameters that were introduced in order to obtain inventory 

control results were: 

 

• The ordering cost 

• The unit shortage cost 

• The unit holding cost. 

 

Sani argued that even though simulation based on real data increases the credibility of 

the final results, real data may not cover all the situations that can possibly exist. 
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Moreover real world data may not be always available or, in case of availability, may 

not be sufficient for carrying out the particular simulation exercise.  

 

Nevertheless, although theoretically generated data may cover a wide range of 

possible situations, they give equal weight to all the situations explored. In addition, 

theoretical data take no account of other situations that may actually occur (e.g. there 

may be SKUs that do not follow the hypothesised distribution(s)). Therefore it is 

desirable, in order to reach any definitive conclusions, to develop a simulation model 

and run it on both theoretically generated and real demand data. 

 

Johnston and Boylan (1996) compared Croston’s method with EWMA assuming that 

demand occurs as a Poisson process. The possibility of a condensed Poisson demand 

generation process was also taken into account. The demand sizes were assumed to 

follow the negative exponential, Erlang or rectangular distribution. Apart from the 

inter-demand interval distribution (and the corresponding average values selected) 

and the distribution of demand sizes (with specified mean and variance values) other 

control parameters taken into account were the smoothing constant value, the length 

of the lead time and the points in time considered for generating results.  

 

7.2.2 Design of simulation 
 

The control parameters introduced in a theoretically generated data simulation 

experiment can be divided in two categories. The first set of control parameters refers 

to the demand generation process. The selection of appropriate control parameters at 

this stage depends on the assumptions upon which demand is modelled. In the case of 

our simulation experiment we want to model demand from constituent elements 

assuming stationarity of demand sizes and inter-demand intervals and size-interval 

independence. Specific distributions will be assumed for representing demand sizes 

and inter-demand intervals and meaningful control parameters to be introduced are 

the following: 

 

1. Mean and variance of the demand sizes 

2. Mean of the inter-demand intervals. 
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Considering the assumptions based on which the simulation model will be developed, 

control parameters that explore different auto-correlation and cross-correlation 

structures (as per Willemain et al, 1994) are not applicable in this simulation study. 

Similarly the generation of the demand data from constituent elements does not allow 

the experimentation with control parameters that consider the aggregate demand in a 

period and model how this moves or develops through time (as per Sani, 1995).   

 

The second set of parameters refers to the process of generating results and depends 

on the objectives of the simulation experiment. In our case we want to generate only 

forecasting accuracy results (rather than forecasting accuracy and inventory control 

results). The objective of the simulation experiment is to check the accuracy of our 

analytical results in different contexts of application (re-order level or re-order 

interval systems), assessing the effect of the lead time and the sensitivity of our 

analytical results to different smoothing constant values. Therefore the additional 

control parameters are required to be the following: 

 

3. Lead time 

4. Smoothing constant value 

5. Points in time considered. 
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7.3 The distribution of demand incidence and demand size 
 

7.3.1 The demand incidence distribution 
 

In an intermittent demand context, three demand generation processes have been 

presented in the literature. In table 7.1 we present the three demand processes along 

with the corresponding inter-demand interval distributions. 

 

 Demand generation process Inter-demand interval 

distribution 

     Discrete Bernoulli Geometric 

Poisson Negative exponential 
Continuous  }

 
Condensed Poisson Erlang-2 

 

Table 7.1. Demand generation processes and the corresponding distributions of 

inter-demand intervals 

 

The Erlang-2 distribution may be derived by considering a “censored” Poisson 

process in which only every second event is recorded. Chatfield and Goodhardt 

(1973) named this distribution “condensed Poisson” because its variance is less than 

its mean.  

 

In the past the exponential, geometric and Erlang-2 distributions have been 

extensively considered for representing the inter-purchase time distribution for 

individual consumers or households. The Inverse Gaussian distribution can also be 

considered. Theoretical arguments and empirical evidence in support of those 

distributions for representing the time between two consecutive purchasing occasions 

for individual customers or households are summarised in Boylan (1997).  

 

Unfortunately, although there is quite extensive theory in support of the exponential 

or the geometric distribution for representing the time interval between total demand 

generated by all customers, the empirical evidence in support of these distributions is 

very limited.  
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Kwan (1991) conducted research with the purpose of identifying the theoretical 

distributions that best fit the empirical distributions of demand sizes, inter-demand 

intervals and demand per unit time period for low demand items. Statistical tests were 

performed on a number of distributions, using two sets of real world data which 

contained the demand history of 85 spare parts. 

 

The results, reported at a significance level of 5%, showed that the Erlang-2 inter-

demand distribution did not fit the demand histories of any of the 85 spare parts. The 

geometric distribution fitted 20% of her sample of SKUs. This compared 

unfavourably to the negative exponential distribution, which fitted 42% of the SKUs. 

 

The geometric distribution was found to be a reasonable approximation to the 

distribution of inter-demand intervals, for real demand data, in Dunsmuir and Snyder 

(1989) and Willemain et al (1994). 

 

Janssen (1998) developed a  periodic review model (where ) , ,( QsT T  is the review 

period, s  the re-order point and  the order quantity) for the control of intermittent 

demand items assuming that demand per unit time period can be reasonably 

represented by a compound Bernoulli distribution. The Bernoulli demand generation 

process was tested on a set of empirical data obtained from a Dutch wholesaler of 

fasteners. In particular the sample variance of the inter-arrival times:  was 

compared against the theoretical variance for the geometric distribution: 

Q

σ̂ 2
p

)1( −pp  

(where p , the average inter-demand interval, was estimated from the sample average: 

p ). This was done for three classes of items: 

 

• C-class: one or more customer orders in two weeks 

• D-class: one or more customer orders in one month 

• E-class: one or more customer orders in one quarter  

 

For each class a regression analysis, without intercept in the model, was performed, 

which resulted in: 
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• C-class: σ̂934.0)1( 2
ppp =− , adjusted 97.02 =R  

• D-class: σ̂941.0)1( 2
ppp =− , adjusted 95.02 =R  

• E-class: σ̂966.0)1( 2
ppp =− , adjusted 96.02 =R  

 

The results indicated that the Bernoulli demand generation process indeed might be a 

reasonable approximation for intermittent demand processes. 

 

The empirical evidence, such as it is, does not support the Erlang-2 distribution for 

representing the inter-demand intervals. There is some evidence to support both 

geometric and negative exponential distributions. In this thesis, the geometric 

distribution will be assumed, since this is consistent with Croston’s model (discussed 

earlier in chapters 4 and 5).  

 

7.3.2 The demand size distribution 
 

Preliminary analysis conducted on the real data files, to be used in chapter 10 for the 

purpose of this research, indicated that not only the variance to mean ratio but also the 

demand size coefficient of variation may take values higher than one. The same was 

noted with the industrial data used in Willemain et al (1994), where the coefficient of 

variation for the demand sizes was reported to be in the range: 0.34 –1.84.  

 

Therefore a realistic distribution for representing the demand sizes would be one that 

allows the coefficient of variation to vary considerably. This is not only a theoretical 

but a practical requirement also, since the squared coefficient of variation cut-off 

values developed in the previous chapter were not in all cases less than one. A part of 

the simulation experiment will be devoted to exploring the accuracy of all the 

decision rules derived in chapter 6 as well as the categorisation schemes developed in 

that chapter regarding all estimation procedures. Hence, a distribution that allows a 

wide range of the coefficient of variation values is an important practical 

consideration. 

 

Croston (1972) suggested the use of the normal distribution for representing the 

demand sizes when demand occurs. No empirical evidence has been presented in the 

literature to support the use of the normal distribution for this purpose. Moreover, the 
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generation of demand sizes based on the normal distribution necessitates the use of a 

very small variance as compared to the mean size of demand so that negative demand 

values are avoided. Therefore the normal distribution cannot be used for representing 

the demand sizes. In fact the normality assumption for intermittent demand sizes has 

never appeared in the academic literature since 1972 with the only exception being 

Croston (1974) where the issue of whether or not a low demand item should be kept 

in stock is discussed. 

 

Since the normality assumption does not appear to be realistic, another distribution 

must be chosen for generating the demand sizes in our simulation experiment.  

 

7.3.2.1 Three continuous demand size distributions 
 

Johnston and Boylan (1996) simulated the demand sizes as following the negative 

exponential, Erlang or continuous rectangular distribution. By doing so, a wide range 

of possible alternative distribution shapes were taken into account, from 

monotonically decreasing functions to unimodal positively skewed distributions to 

more normal type curves and finally to uniform functions.  

 

The three distributions are discussed in Appendix 7.A of the thesis. All three of them 

cover a wide range of variance to mean ratios but none of them can be further 

considered since they require the standard deviation to be equal or less than the mean. 

 

7.3.2.2 Two discrete demand size distributions 
 

Kwan (1991) argued that Croston’s normality assumption cannot be valid in the case 

of a low demand item. When demand is very low, the sizes of demand, when demand 

occurs, will be low integer values. According to Kwan, the assumption that those 

values fit a continuous distribution, normal, is not reasonable. Consequently the 

distributions that were evaluated for the purpose of her research were: truncated 

Poisson, truncated Pascal and constant demand sizes of one unit. The truncated Pascal 

distribution was found to be the best, fitting 58% of the SKUs considered in her 

sample. The truncated Poisson distribution fitted only 27% of those SKUs. 
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The truncated Poisson distribution requires the variance to be always equal to the 

mean. The truncated Pascal distribution requires the variance to exceed the mean. 

Both distributions do not allow the standard deviation to take any value above the 

mean (see Appendix 7.A). 

 

7.3.2.3 The lognormal distribution 
 

Willemain et al (1994) found evidence in real world data that suggested the use of the 

lognormal distribution for representing the demand sizes. The lognormal distribution 

is also used by Forecast Pro, XE, versions 3 and 4 (Business Forecast Systems, Inc., 

Users Manual, 1997) when Croston’s method is applied to intermittent demand data. 

 

Boylan (1997) argued that a demand distribution should be assessed based on three 

criteria: 

 

• A priori grounds for modelling demand 

• The flexibility of the distribution to represent different types of demand 

• Empirical evidence. 

 

To satisfy the first criterion, a distribution must be explainable in terms of an 

underlying mechanism. We clearly cannot provide an a priori justification for using 

the lognormal distribution and we also recognise that for discrete demand, this 

distribution is only an approximation to the distribution of demand. Nevertheless, 

considering the flexibility of the lognormal distribution (the squared coefficient of 

variation for the lognormal distribution is derived at the end of this sub-sub-section) 

and the empirical evidence that exists in its support we finally decide to use that 

distribution for representing the demand sizes.  

 

It is important to note at this stage that the Gamma (rather than Erlang) and truncated 

Negative Binomial (rather than truncated Pascal) distributions are as flexible as the 

lognormal distribution. No evidence have been put forward in the academic literature 

in support of the truncated NBD for representing the size of demand. In contrast, the 

Gamma distribution has been highlighted in the academic literature in regard to the 

representation of demand sizes. For example, Williams (1982) developed 
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approximations for the re-order point s  in  policies (where  is the order 

quantity) assuming that gamma-distributed sized orders arrive stochastically with no 

more than one during the lead time. Dunsmuir and Snyder (1989) and Strijbosch et al 

(2000) developed intermittent demand inventory control models in which positive 

demand during the lead time was assumed to be gamma distributed. Nevertheless, 

although empirical evidence has been presented in support of the Gamma distribution 

for modelling demand per unit time period/lead time demand (e.g. Burgin and Wild, 

1967), this is not so when demand sizes are considered.  

) ,( Qs Q

 

The probability density function of the lognormal distribution is given by (7.1). 
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The range of the lognormal variate σ NmL ,:  or σµ NNL ,:  is [ )∞,0 . 

 

The scale parameter  is the median. The alternative parameter 0>m µN  is the mean 

(location parameter) of log L . 

 

m  and µN  are related by: ( )µNm exp=  or mN  log=µ  

 

The shape parameter 0>σ N  is also the standard deviation (scale parameter) of log L . 

 

We denote by µ  the mean in the lognormal distribution and by  the variance. σ 2

 

⎟
⎠
⎞

⎜
⎝
⎛= σµ Nm 2

2
1exp           (7.2) 

 

( 1  22 −= ωωσ m )           (7.3) 

 

where ( )σω N
2exp  =  

 

Consequently the squared coefficient of variation is calculated as follows: 
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From (7.4) it follows that the CV  can take any value below or above unity. 2

 

We conclude that the lognormal distribution meets our requirements in terms of 

flexibility and empirical support and therefore it will be utilised for representing the 

demand sizes in our simulation experiment. 

 

To summarise, in this section we discussed alternative distributions that potentially 

could be used for representing demand incidences and demand sizes. Considering the 

purpose of our simulation experiment and certain theoretical and practical 

requirements for selecting an appropriate distribution, demand will be modelled as a 

compound Bernoulli process, i.e. with a fixed probability that there is positive 

demand during a time unit, otherwise demand is zero. The sizes of demand, when 

demand occurs, will be assumed to be lognormally distributed. The algorithms that 

will be used for the purpose of generating the demand data series are presented in 

Appendix 7.B.  

 

7.4 Technical details 
 

The code needed for performing our simulation exercise was written in Visual Basic 

(embedded in Microsoft Excel 97, Windows 95). The control parameters and the 

specific values assigned to them are discussed in section 7.6. Willemain et al (1994) 

generated, for each of the scenarios (set of conditions) that they considered in their 

research, data series long enough to contain 1,000 pairs of demand sizes and intervals. 

They claimed that for series of that length, five replications would be sufficient in 

order to keep the sampling variation to an acceptable level.  

 

In our simulation experiment, each simulation run will consist of 20,000 simulated 

demand time periods. As such we simulate  actual demand occurrences, 

where

20,000/p 

p  is the mean inter-arrival period. The largest value to be assigned to the p  

control parameter (see section 7.6) is 10. Therefore we generate series with at least 

2,000 demand occurrences. Following Willemain et al (1994), for each specific set of 
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conditions the simulation model will run 5 times. The values related to each of the 

simulation results of interest to us (e.g. the bias incorporated in Croston’s estimates) 

will be recorded and consequently the average value will be obtained for each of those 

results. For example, for a specific set of conditions, the simulated Croston’s bias is 

taken to be the average bias produced in the 5 simulation runs. This average value is 

then compared with the theoretically expected value in order to determine the 

accuracy of our approximation. Both the length of the simulation and the number of 

“replications” (simulation runs for a specific combination of the control parameter 

values) are expected to reduce the sampling variation considerably. 

 

The initial estimate of all forecasting methods is taken to be the population expected 

value. The updating procedure for all the forecasting methods is given in chapter 4. 

The “transient interval” is set, in all simulation runs, to 100. That is, the first 100 

simulated demand time periods are not considered for generating any results. As such 

we finally consider only 190019 +-L,  simulated demand time periods (where  is the 

lead time considered in the particular simulation run). 

L 

 

7.5 The control parameters 
 

As discussed in section 7.2 the control parameters to be used for our simulation 

exercise are the following: 

 

• Average inter-demand interval. Assuming geometrically distributed inter-demand 

intervals, the expected inter-demand interval ( ) is specified  p

• Mean and variance of demand sizes. Assuming lognormally distributed demand 

sizes the mean and variance are specified 

• Points in time considered. Since EWMA’s performance depends on which points 

in time are considered, we distinguish between all and issue points in time only 

• Lead time  

• Smoothing constant value.  

 

The values assigned to all the control parameters are presented in the summary table 

7.2. The selection of the particular values is explained in Appendix 7.C. 
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Factors 
 

System parameters: Levels Number of levels

Inter-demand interval distribution Geometric (mean: ) p
1.1, 1.3, 1.5, 1.7, 1.9, 2, 4, 6, 8, 10 
 

10 

Demand size distribution 
 
 
 

Lognormal L  ( µ ,σ ) 
L  (2, 3), L  (10, 10),  
L  (2, 1.5), L  (10, 6), L  (10, 3) 
L  (2, 0.25), L  (10, 0.25) 
 

7 

Points in time considered All –  Issue points in time 
 

2 

Lead time length  1, 3, 5, 12 
 

4 

α  smoothing constant value 0.05, 0.1, 0.15, 0.2 4 
 

 

Table 7.2. The simulated conditions 

 

There are 2,240 possible combinations of the control parameter values but the model 

will run only for 1,120 sets of conditions since the issue points in time estimates do 

not need to be re-generated, i.e. when all points in time estimates have been produced 

the estimates made when demand occurs can be isolated without having to re-run the 

model. Five replications will be applied to each of the 1,120 unique combinations of 

the parameter values. Thus, the model will finally run 5,600 times. 

 

7.6 Simulation results. The bias of intermittent demand estimates  
 

In this section, the simulation results are analysed in terms of the bias associated with 

the application of intermittent demand estimators on theoretically generated data. No 

bias expressions for the EWMA method have been derived in this thesis. 

Nevertheless, the standard exact results (Croston, 1972), regarding this method’s 

application, are also tested against the simulation results to verify our simulation 

model.   

 

A possible way of checking the accuracy of our approximations is to consider the 

signed difference between the theoretically expected bias (EB) and the average bias 

obtained over five replications via simulation (SB), and express that as a percentage of 

the SB.   
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100%
SB

SBEBError −
=                               (7.8) 

 

However, the EB of some of the estimation procedures considered in the simulation 

experiment equals zero. Consequently the %Error results for these estimators will 

always equal -100%. Moreover, the calculation of the %Error results based on (7.9) is 

not possible since, for the theoretically unbiased estimators considered in this chapter, 

the ratio cannot be defined.   

 

100%
EB

EBSBError −
=                              (7.9) 

 

Finally an additional problem arises when using either (7.8) or (7.9) for calculating 

accuracy performance results for the theoretically biased estimators: in many cases 

the EB or SB take values very close to zero. In those cases the magnitude of the 

%Error will not reflect the true accuracy of the approximations. 

 

Hence, we consider finding a different way of assessing the accuracy of our bias 

approximations. The simulated bias has been recorded as: Forecast minus (-) Demand 

(a (+) sign indicates that the forecasting method under concern overestimates the 

mean demand level whereas a (–) sign that it underestimates it). For methods that 

theoretically overestimate the mean demand level, an appropriate accuracy measure is 

the following: 

 

100%
MSD

SBEBError −
=                   (7.10) 

 

where EB is the positive theoretically expected bias, SB the mean simulated (+ or -) 

bias and MSD is the mean simulated demand per period as calculated in the simulation 

experiment, for a particular combination of the control parameters, over five 

simulation runs (replications).  

 

For methods that underestimate the mean demand level, (7.10) will be adjusted to take 

into account the negative sign of the bias: 
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100%
MSD

SBEB
Error

+
=                   (7.11) 

 

In both (7.10) and (7.11) the error of our approximations is expressed as a percentage of 

the mean simulated demand. The accuracy measure is not dependent on the scale of 

the theoretically generated demand data series and it can be averaged across all series 

of interest to us to calculate summary results (Avg.%Error). For a biased estimation 

procedure, on a single series (combination of control parameters) evaluation, a %Error 

= +(-)1% tells us that our approximation over (under)-estimates the true relative bias 

by 1% of the actual demand. For unbiased estimators the %Error results should always 

appear with a negative sign indicating that we underestimate the true (positive or 

negative) bias. Nevertheless, a plus/minus notation is employed, utilising (7.11) with 

0=EB , to indicate whether demand is over (+) or under (-) estimated.  

 

To check the statistical significance of the results, the following condition will be 

tested (significance level = 0.01, t = 2.576): 

 

100. 576.2100100. 576.2
MSD

es
MSD

SBEB
MSD

es
<

−
<

−                 (7.12) 

 

where: 

 

SB  is the average simulated bias obtained across all control parameter combinations 

..es  is the standard error of the mean ( SB ) 

EB  is the average theoretically expected bias, and 

MSD  is the average simulated demand. 

 

So if, for example, the 99% confidence interval for the ratio 100
MSD

SBEB −  is given by 

the range % to % the approximation will be said to be accurate to 

% of the mean simulated demand (significance level = 0.01)

15.0− 15.0+

15.0± 4.  

 

                                                 
4 The confidence limits will be reported to the second decimal place. 
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It is important to note that the above hypothetical result will be true only for the range 

of the control parameter values considered in the simulation experiment. If other 

control parameter values were taken into account the results would not necessarily be 

the same. Nevertheless, it is important to note that the parameter values have been 

selected as representative of many real world applications. As such, the results relate 

directly to a potential application of the estimators under concern in a real system. 

 

7.6.1 Verification of the simulation model 
 

As discussed in the introductory section of this chapter, exact theoretical results will 

be used in order to assess the correctness of the simulation model’s logic. In 

particular, Croston’s derivations regarding the EWMA bias on all and issue points in 

time will be checked against the corresponding simulation bias to allow for an 

assessment of the degree of accuracy of the simulation output. Once the accuracy of 

the results produced by the simulation has been established (i.e. the theoretically 

expected results lie within the specified confidence limits) we can then run the 

simulation model and use the simulation results of interest to us in order to assess the 

accuracy of our theoretical approximations.  

 

Croston (1972) derived the exact theoretically expected bias, implicitly incorporated 

in EWMA estimates, when issue points in time are considered (equation (7) in the 

original paper). The estimator is expected to be exactly unbiased, when all points in 

time are taken into account. Both results have been generated upon the same 

assumptions that we have considered for building our simulation experiment. Demand 

sizes, in Croston’s case, were assumed to be normally rather than lognormally 

distributed, but this assumption does not affect the method’s expected performance.  

 

For both all and issue points in time only, the difference between the theoretically 

expected bias and the simulated bias lies within the specified 99% confidence limits. It 

is important to note that when issue points only are considered (1,120 simulated 

scenarios) there is not even one case in which EWMA is found to underestimate the 

mean demand level, as theoretically expected. The accuracy of the theoretically 

expected bias result shows no sensitivity to changes of any of the control parameter 

values and this is true for both all and issue points in time only. 
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Considering the above results we may conclude that the simulation model’s logic is 

correct, i.e. the model has been verified. The simulation results can now be used to 

assess the accuracy of the corresponding approximate analytic results. If the 

simulation model does not exhibit the properties that hold for the analytic model we 

have reasons to question the accuracy of the approximation under concern.  

 

7.6.2 Croston’s method 
 

In sub-section 4.5.2, Taylor’s theorem was applied to a function of two variables in 

order to derive the bias implicitly incorporated in Croston’s estimates. The first three 

terms of the Taylor series were considered and the bias was approximated by (4.32).  

 

There are only 65 occasions (out of the 2,240 tested) where Croston’s method appears 

to underestimate the mean demand level. The difference between the theoretical 

(approximate) bias given by (4.32) and the simulated bias lies within a 99% confidence 

interval of ± 0.20% of the mean simulated demand. This is true when all 2,240 control 

parameter combinations are taken into account.  

 

When results are generated on all points in time (1,120 simulated conditions) the bias 

approximation has also been found to be accurate to within the specified 99% 

confidence limits ( 0.27% of the mean simulated demand). However this is not so 

when results are generated on issue points only. In this last case the difference 

between the theoretically estimated and simulated bias is found to be statistically 

significant at the 1% significance level (confidence limits: 0.26% of the mean 

simulated demand). This issue is further discussed later in this sub-section. 

±

±

 

The average percentage error results (Avg.%Error), across all combinations, for a 

specific p  value, are indicated in table 7.3, for all and issue points in time only. 
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 Value of   p All points in time Issue points only 
1.1 0.05 0.08 
1.3 0.09 0.22 
1.5 0.12 0.28 
1.7 0.19 0.29 
1.9 0.19 0.30 
2 0.19 0.17 
4 -0.19 1.31 
6 -0.35 2.05 
8 -0.38 2.83 

10 -0.30 2.55 
 

Table 7.3. Croston’s method. Average percentage error results (  value) p

 

The results indicate that for a specific combination ( L , ,  , ασµ , all points in time) for 

 we tend to slightly overestimate the true bias of Croston’s method whereas for 

 we tend to slightly underestimate it. The differences are quite consistent across 

all possible factor combinations. Consequently, it may be reasonable to assume that 

for  the sum of the Taylor series’ terms, that have not been considered in 

generating our theoretical approximation, is negative whereas for  it is positive.  

2≤p

2>p

2≤p

2>p

 

For  the results are similar between all and issue points in time, the very small 

difference being attributed to the increased sampling variation associated with the 

results obtained for issue points only. For  the difference between all and issue 

point results increases.  

2≤p

2>p

 

When issue points in time are considered, the sampling variation increases with the 

average inter-demand interval value and as such the absolute Avg.%Error is also 

expected to increase. Nevertheless, we cannot claim that the observed differences 

between the theoretically expected and simulated bias for Croston’s method (issue 

points only, ) can be attributed only to the sampling variation. The results 

demonstrate that, in a re-order level context, as the average inter-demand interval 

value increases the accuracy of Croston’s method bias approximation decreases. 

2>p

 

When issue points only are considered and for 2≤p  (672 simulated scenarios) the 

difference between the theoretical bias given by (4.32) and the simulated bias lies 

within a 99% confidence interval of ± 0.27% of the mean simulated demand. When 
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results are generated on issue points only and for  (448 simulated scenarios) the 

difference between the theoretical and simulated bias is found to be statistically 

significant (99% confidence limits: 

2>p

± 0.88% of the mean simulated demand). The 

above results indicate the reduced accuracy of (4.32) in a re-order level context and for 

average inter-demand intervals greater than 2 periods. 

 

The average percentage error results across all combinations for a specific α  value are 

indicated in table 7.4, for all and issue points in time only.  

 

α  value All points in time Issue points only 
0.05 -0.01 1.06 
0.1 -0.05 0.92 

0.15 -0.03 0.95 
0.2 -0.05 1.12 

 

Table 7.4. Croston’s method. Average percentage error results (α  value) 

 

The approximation of the bias, implicitly incorporated in Croston’s estimates, is 

shown to be insensitive to the smoothing constant value used.  

 

The Avg.%Error results for different lead time lengths are presented in table 7.5. When 

all points in time are considered, the results are similar for all L  values. For issue 

points only the Avg.%Error of the approximation reduces with the lead time. The more 

forward demand data periods are considered for generating error results, the less the 

effect of the sampling variation will be.  

 

L  value All points in time Issue points only 
1 -0.03 1.72 
3 -0.04 1.14 
5 -0.04 0.81 

12 -0.04 0.37 
 

Table 7.5. Croston’s method. Average percentage error results ( L  value)  

 

Finally, the Avg.%Error of the approximation appears to be insensitive to the squared 

coefficient of variation of the demand sizes.  
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CV 2  value All points in time Issue points only 
0.000625 -0.07 1.00 
0.015625 -0.05 1.16 

0.09 -0.03 0.96 
0.36 -0.04 1.05 

0.5625 -0.03 1.18 
1 -0.01 0.93 

2.25 -0.04 0.79 
 

Table 7.6. Croston’s method. Average percentage error results ( CV  value)  2

 

Overall, the simulation results indicate the: 

 

• good accuracy of the approximation of Croston’s bias, for all points in time 

• good accuracy of the approximation of Croston’s bias, for issue points only and 

small average inter-demand intervals ( 2≤p ). The approximation is found to be 

less accurate for higher values of p . 

 

At this stage it is important to note that the p  cut-off value determination in chapter 6 

should be relatively unaffected by the reduced accuracy of Croston’s method bias 

approximation for . This is because all the 2>p p  cut-off values determined in 

chapter 6 were less than 2. However, the forecasting accuracy of the λ Approximation 

and Approximation method needs to be checked carefully since their derivation in 

chapter 4 was based on our approximation to Croston’s bias. 

 

Finally, we should also note that considering further terms in the Taylor series could 

eventually increase the accuracy of Croston’s bias approximation at the expense 

though of the mathematical tractability that is ensured when the first three terms only 

are considered.  

 

7.6.3 λ Approximation method 
 

The λ Approximation method was designed to eliminate the bias implicitly 

incorporated in Croston’s estimates. In the previous sub-section we showed that the 

true (simulated) Croston’s bias may be over or under-estimated by its theoretical 

approximation derived in chapter 4. When Croston’s bias is overestimated 
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(+Avg.%Error results) we account for a bias greater than the true one and in 

consequence the λ Approximation method is intuitively expected to underestimate the 

mean demand level. The opposite should be the case when Croston’s bias is 

underestimated. In table 7.7 the Avg.%Error results are presented for the 

λ Approximation method for all and issue points in time, for different average inter-

demand intervals. The results, unless zero, indicate that the true absolute bias is 

underestimated. The sign indicates whether or not demand is over or under-estimated. 

 

The results should be compared with those presented for Croston’s method in table 

7.3.  

 

Value of  p All points in time Issue points only 
1.1 0.04 0 
1.3 0.10 -0.02 
1.5 0.12 -0.03 
1.7 0.09 -0.01 
1.9 0.09 0 
2 0.10 0.13 
4 0.43 -1.08 
6 0.52 -1.87 
8 0.53 -2.68 

10 0.43 -2.41 
 

Table 7.7. λ Approximation method. Average percentage error results (  value) p

 

When all combinations are considered, the difference between the theoretically 

expected zero bias and the simulated bias lies within a 99% confidence interval of 

0.02% of the mean simulated demand. The same is the case when results are 

generated on all the simulated conditions that refer to a re-order interval context.  

±

 

When results are generated on issue points only and for 2≤p , the difference between 

the theoretical and simulated bias lies within the specified 99% confidence limits 

( 0.02% of the mean simulated demand). However, this is not so for issue points only 

and  (99% confidence limits: 

±

2>p ± 0.14% of the mean simulated demand). 

 

Overall, the results are very similar to those presented for Croston’s method. In 

particular, the accuracy of the approximation is insensitive to the length of the lead 
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time, the squared coefficient of variation and the smoothing constant value used. 

Moreover, the results indicate a connection between the accuracy of Croston’s method 

bias approximation and the resulting bias of the λ Approximation method. That is, the 

growth in bias of the λ Approximation method for higher value of  in a re-order 

level context can be attributed to the corresponding decline in accuracy of Croston’s 

bias approximation. 

p

 

7.6.4 Approximation method 
 

The difference between the theoretically expected bias for the Approximation method 

and the corresponding simulated bias lies within a 99% confidence interval of ± 0.40% 

of the mean simulated demand. This is true when all the simulated scenarios are taken 

into account. There are only 31 cases where the Approximation method overestimates 

the mean demand level.  

 

The simulation results for this method can largely be explained (as in the case of the 

λ Approximation method) in terms of the way the method was derived. When 

Croston’s bias approximation overestimates the true bias we do account for a bias 

greater than the one given by simulation. Consequently the simulated bias for the 

Approximation method appears to be greater than the theoretically expected one (i.e. 

we underestimate the true bias given by this method). The opposite is the case when 

Croston’s simulated bias is underestimated. In the following tables the Avg.%Error 

results are presented for different α , L , CV  and   values, for all and issue points in 

time only. Note the sign of the Avg.%Errors which is in all cases different from that 

given in Croston’s results (sub-section 7.7.2). 

2 p

 

α  value All points in time Issue points only 
0.05 0.03 -1.03 
0.1 0.08 -0.88 

0.15 0.09 -0.88 
0.2 0.12 -1.03 

 

Table 7.8. Approximation method. Average percentage error results (α  value)  
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L  value All points in time Issue points only 
1 0.08 -1.66 
3 0.08 -1.09 
5 0.08 -0.76 

12 0.08 -0.33 
 

Table 7.9. Approximation method. Average percentage error results ( L  value)  

 

CV 2  value All points in time Issue points only 
0.000625 0.07 -1.00 
0.015625 0.07 -1.14 

0.09 0.06 -0.93 
0.36 0.09 -0.99 

0.5625 0.09 -1.11 
1 0.08 -0.85 

2.25 0.13 -0.70 
 

Table 7.10. Approximation method.  

Average percentage error results ( CV  value)  2

 

Value of  p All points in time Issue points only 
1.1 0 -0.03 
1.3 -0.03 -0.16 
1.5 -0.06 -0.22 
1.7 -0.12 -0.23 
1.9 -0.12 -0.24 
2 -0.13 -0.11 
4 0.22 -1.28 
6 0.36 -2.02 
8 0.41 -2.79 

10 0.33 -2.50 
 

Table 7.11. Approximation method. Average percentage error results (  value) p

 

The statistical significance of the results has been checked separately for all and issue 

points in time only. The 99% confidence limits are as follows: 

 

1. all points time (1,120 scenarios): ± 0.60% of the mean simulated demand 

2. issue points only,  (672 scenarios): 2≤p ± 0.64% of the mean simulated demand  

3. issue points only,  (448 scenarios): 2>p ± 0.32% of the mean simulated demand 
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The mean difference between the simulated and expected bias lies within the 

confidence limits in the first two cases, but not in the third case. 

 

The accuracy of the bias approximation is insensitive to all the control parameters 

introduced in our simulation experiment with the exception of the lead time length 

and the average inter-demand interval, when issue points only are considered. The 

sensitivity to the L  value (for issue points only) has already been explained in terms 

of the sampling variation that increases as the L  value decreases. Moreover, the 

growth in bias of the Approximation method for higher value of  can be attributed 

to the corresponding decline in accuracy of Croston’s method bias approximation. 

p

 

7.6.5 Conclusions 
 

In this section the accuracy of the bias approximations that have been derived during 

this research, has been tested against simulation results. The approximations are found 

to be insensitive to the squared coefficient of variation of demand sizes, the α  

smoothing constant value used and the lead time length (when all points are taken into 

account). The accuracy of the approximations increases with the lead time length 

when issue points only are considered. This is because the effect of the sampling 

variation reduces as the L  value increases. For the control parameters and the range of 

the simulated values considered in the experiment, the bias approximations developed 

in this thesis are found to be accurate to within the specified 99% confidence limits. 

This is true when results are generated on 

 

• all simulated scenarios  

• control parameter combinations referring to a re-order interval context 

• simulated conditions referring to a re-order level context, average inter-demand 

interval less than two. 

 

When issue points only are considered, the accuracy of our approximation to 

Croston’s bias (4.32) deteriorates for average inter-demand intervals greater than 2 

review periods. In fact the difference between the theoretical and simulated bias is 

found to be statistically significant (at the 1% level) in the corresponding simulated 

scenarios. The reasons of the decline in accuracy of our expression (4.32) are not yet 
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clear. However, the simulation results have shown that this decline in accuracy affects 

the bias of the λ Approximation and Approximation method. As such, both methods 

may not work as well in re-order level as in re-order interval systems. The issue of 

bias will be further considered in chapter 10, where empirical results will be generated 

for the methods discussed in this chapter5.  

 

7.7  Simulation results. The variance of intermittent demand 

estimates 
 

In this section we check the accuracy of all variance expressions derived in chapter 5 

of the thesis. The error results, difference between the theoretically expected variance 

(EV) and the simulated variance (SV), are now expressed as a percentage of the SV: 

 

100%
SV

SVEVError −
=                   (7.13) 

 

The usual approach to demonstrate statistical significance of the variance results 

would be to consider the SV as  (chi-square) distributed and then to perform a test 

using: 

χ 2

 

EV
SVn *)1(2 −

=χν  

 

where: 

 

n  is the sample size (i.e. 900,19=n , for all points in time and  for issue 

points only) and   

pn /900,19=

χν
2  is the chi-square variable with 1−= nν  degrees of freedom. 

 

 

 

                                                 
5 Empirical results will not be generated for the λ Approximation method for reasons explained in the 
previous chapter. 
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The chi-square variable is additive6 and as such statistical results could be generated 

for each particular combination of the control parameters, across all five replications, 

or overall accuracy results across all combinations of the control parameter values 

considered in this simulation experiment. Nevertheless, the chi-square variable tends 

to the normal for large sample sizes, which is the case in the current analysis. 

Therefore, the results can be tested for statistical significance using an approach 

similar to that considered in the previous section. 

 

The statistical significance of the results is checked by testing the following condition 

(significance level = 0.01, t = 2.576): 

 

100. 576.2100100. 576.2
SV

es
SV

SVEV
SV

es
<

−
<

−                 (7.14) 

 

where: 

 

SV  is the average simulated variance obtained across all control parameter 

combinations 

..es  is the standard error of the mean ( SV ) and 

EV  is the average theoretically expected variance 

 

7.7.1 Croston’s method 
 

In section 5.3 the variance of Croston’s estimates was approximated by: 
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considering the first three terms in a Taylor series. 

 

 

                                                 
6 The sum of k independent chi-squared variates is also a chi-square variate: 
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In order to enable the derivation of meaningful categorisation rules, in chapter 6, we 

finally approximated the variance of Croston’s estimates by: 
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promising at that stage to explore in detail the accuracy differences between (7.15) and 

(7.16) in this current chapter. 

 

The first important finding is that the difference between the simulated variance and 

the variance given by either (7.15) or (7.16) lies within a 99% confidence interval of 

17.3% of the simulated variance. On average, approximation (7.15) underestimates 

the true variance by 0.01% whereas approximation (7.16) by 3%. The above results are 

valid when all 2,240 combinations of the control parameters are taken into account. 

The Avg.%Error results for both approximations are presented in table 7.12, for 

different  values, for all and issue points in time. 

±

p

 

Value of  p All points in time Issue points only 
 approx. (7.15) approx. (7.16) approx. (7.15) approx. (7.16) 

1.1 6.14 5.31 6.15 5.32 
1.3 4.44 2.81 4.35 2.73 
1.5 3.34 1.11 3.56 1.33 
1.7 2.22 -0.46 2.43 -0.25 
1.9 2.96 -0.08 3.21 0.15 
2 0.78 -2.42 1.07 -2.14 
4 -4.07 -8.53 -3.89 -8.38 
6 -7.46 -12.27 -6.94 -11.80 
8 -6.09 -11.09 -5.38 -10.40 

10 -3.72 -9.08 -3.38 -8.81 
 

Table 7.12. Croston’s method. Average percentage error results (  value) p

 

The results generated in the previous section have indicated that the accuracy of 

Croston’s bias approximation deteriorates for issue points only and . To derive a 

variance expression, the expected estimate of demand per period needs to be taken 

into account.  

2≥p
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Consequently, the statistical accuracy of the variance expressions has been also 

checked, separately, for all and issue points in time only, distinguishing between 

average inter-demand intervals less than or equal to two review periods and greater 

than two review periods. In all cases, both (7.15) or (7.16) are found to be within the 

specified 99% confidence limits. These limits, expressed as a percentage of the 

simulated variance are as follows:  

 

• all points in time, all  values: p ± 24.46% 

• all points in time, : 2≤p ± 25.90% 

• all points in time, : 2>p ± 33.47% 

• issue points only, all  values: p ± 24.49% 

• issue points only, : 2≤p ± 25.92% 

• issue points only, : 2>p ± 33.58% 

 

The fact that the difference between the simulated variance and expected variance, 

given by either (7.15) or (7.16), lies within the specified 99% confidence interval 

indicates that the accuracy of the variance approximations is not affected by the 

reduced accuracy of Croston’s method bias approximation in a re-order level context 

and for .  2>p

 

For  approximation (7.15) overestimates the true variance of Croston’s estimates 

whereas for  it underestimates it. The extra term that distinguishes (7.15) from 

(7.16) is always positive, being between 1.5%-2% of the true variance when , and 

between 4%-6% of the true variance when . By not considering this extra term 

(i.e. using approximation (7.16)) we obtain, for 

2≤p

2>p

2≤p

2>p

2≤p , an Avg.%Error of 1.1% whereas 

the Avg.%Error given by (7.15) is 3.4%. For  (7.15) underestimates the true 

variance and by not considering the extra positive term we underestimate the variance 

by even more. For  the Avg.%Error given by (7.15) and (7.16) is -5% and -10% 

respectively.  

2>p

2>p
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Overall, both approximations are reasonably accurate. The decision about which one 

should be chosen depends on both tractability and overall degree of accuracy 

required. In the case of this research, approximation (7.16) is viewed as the more 

appropriate one to use for two reasons: 

 

• Simplification of the variance calculation enables us to derive tractable decision 

rules based on which Croston’s method performance can be assessed in detail  

• The theoretical MSE performance differences are particularly sensitive to the 

average inter-demand interval values. For  the MSE differences are very well 

marked whereas for  it is difficult to decide which method performs best. As 

such, and in order to assess the accuracy of the theoretical categorisation rules on 

the simulated data, increased accuracy is required for 

2>p

2≤p

2≤p . 

 

Nevertheless, it is important to note that (7.15) could be usefully employed in 

inventory systems requiring estimation of the forecast variability, particularly for 

higher values of p , because of its accuracy superiority over (7.16) in this region.  

 

The selection of (7.16) is further justified in the following section where we show that 

all the MSE categorisation rules derived in chapter 6 are accurate.  

 

In the following tables we present the Avg.%Error obtained by using (7.16) for different 

L , CV 2  and α  values. 

 

L  value All points in time Issue points only 
1 -3.45 -3.20 
3 -3.46 -3.23 
5 -3.47 -3.24 

12 -3.50 -3.26 
 

Table 7.13. Croston’s method. Average percentage error results ( L  value)  
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CV 2  value 

All points in time Issue points only 

0.000625 -3.49 -3.17 
0.015625 -2.27 -1.68 

0.09 -2.46 -2.05 
0.36 -4.27 -4.12 

0.5625 -3.23 -3.00 
1 -4.79 -4.51 

2.25 -3.79 -4.06 
 

Table 7.14. Croston’s method. Average percentage error results ( CV  value)  2

 

α  value All points in time Issue points only 
0.05 -0.09 0.10 
0.1 -3.30 -3.18 

0.15 -4.75 -4.40 
0.2 -5.75 -5.42 

 

Table 7.15. Croston’s method. Average percentage error results (α  value)  

 

The variance approximation appears to be insensitive to changes of L  and CV 2 . The 

Avg.%Error increases in absolute terms with the smoothing constant value. It would be 

reasonable to suppose that as the α  value increases, the future Taylor terms that have 

not been considered in deriving the variance approximation become more substantial 

and, subsequently, the accuracy of the approximation deteriorates.  
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7.7.2 The λ Approximation method 
 

The variance of the estimates produced by the λ Approximation method is 

approximated by (7.17). 
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Nevertheless, it was decided, in chapter 5, that the fourth power term of 

approximation (7.17) should be excluded. This enabled more meaningful comparison 

results to be obtained in chapter 6. Finally the variance of the estimates was 

approximated by (7.18).  
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The validity of our decision is assessed in detail in this sub-section. 

 

The results regarding the performance of the two approximations are very similar to 

those already discussed in the previous sub-section. The difference between the 

simulated variance and the variance given by either (7.17) or (7.18) is found to lie 

within the specified 99% confidence limits for all the cases analysed. These limits, 

expressed as percentage of the simulated variance, are as follows: 
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• all simulated scenarios: ± 17.29% 

• all points in time, all  values: p ± 24.45% 

• all points in time, : 2≤p ± 25.70% 

• all points in time, : 2>p ± 33.27% 

• issue points only, all  values: p ± 24.47% 

• issue points only, : 2≤p ± 25.72% 

• issue points only, : 2>p ± 33.37% 

 

On average approximation (7.17) underestimates the true variance by 0.17% whereas 

approximation (7.18) by 3.1%. This is true when all 2,240 combinations of the control 

parameters are taken into account. The Avg.%Error results for both approximations are 

presented in table 7.16, for different  values, for all and issue points in time. p

 

p  value All points in time Issue points only 
 approx. (7.17) approx. (7.18) approx. (7.17) approx. (7.18) 

1.1 6.78 5.76 6.79 5.77 
1.3 4.67 2.75 4.58 2.66 
1.5 3.33 0.78 3.56 1.00 
1.7 2.00 -1.01 2.21 -0.80 
1.9 2.62 -0.75 2.87 -0.51 
2 0.39 -3.13 0.68 -2.85 
4 -4.61 -9.25 -4.43 -9.09 
6 -7.92 -12.83 -7.38 -12.35 
8 -6.45 -11.53 -5.74 -10.84 

10 -4.02 -9.46 -3.68 -9.18 
 

Table 7.16. λ Approximation method. Average percentage error results (  value) p

 

For  approximation (7.17) overestimates the true variance of the 2≤p λ Approximation 

method estimates whereas for  it underestimates it. The extra term that 

distinguishes (7.17) from (7.18) is always positive, being between 1%-2.5% of the true 

variance when , and between 5%-6% of the true variance for . By not 

considering this extra term (i.e. using approximation (7.18)) we obtain, for 

2>p

2≤p 2>p

2≤p , an 

Avg.%Error of 0.8% whereas the Avg.%Error given by (7.17) is 3.4%. For  (7.17) 

underestimates the true variance and by not considering the extra positive term we 

2>p
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underestimate the variance by even more. For  the Avg.%Error given by (7.17) 

and (7.18) is -5.8% and -10.5% respectively.  

2>p

 

The selection of (7.18) instead of (7.17) for representing the variance of the estimates is 

justified in terms of the increased accuracy required for very low average inter-

demand interval values. The Avg.%Error results obtained across the different control 

parameter values are very similar to those presented in the previous sub-section. The 

variance approximation is insensitive to the lead time length and squared coefficient 

of variation of the demand sizes. The accuracy of the approximation deteriorates as 

the smoothing constant value increases. 

 

Before we close this sub-section it is important to note that (7.17) should be preferred 

to (7.18) for employment in stock control systems requiring estimation of the forecast 

variability, particularly for higher values of p , because of its accuracy superiority in 

this region.  

 

7.7.3 Approximation method 
 

The variance of the estimates produced by the Approximation method is given by 
(7.19) 
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where ⎟
⎟
⎠

⎞
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⎝
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p
z

t

tVar  is the variability of Croston’s estimates and can be approximated by 

(7.15) or (7.16). The latter approximation has been chosen and our decision is now 

justified. 

 

The results are very similar to those presented in sub-sections 7.7.1 and 7.7.2 and they 

are summarised in the following two tables. 
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p  value All points in time Issue points only 
 using (7.15) using (7.16) using (7.15) using (7.16) 

1.1 6.14 5.31 6.15 5.33 
1.3 4.44 2.81 4.36 2.74 
1.5 3.34 1.11 3.56 1.33 
1.7 2.22 -0.46 2.43 -0.26 
1.9 2.97 -0.09 3.21 0.15 
2 0.78 -2.42 1.07 -2.15 
4 -4.07 -8.54 -3.90 -8.39 
6 -7.46 -12.27 -6.94 -11.81 
8 -6.10 -11.09 -5.38 -10.41 

10 -3.72 -9.09 -3.38 -8.81 
 

Table 7.17. Approximation method. Average percentage error results (  value) p

 

 Avg.%Error 
 using (7.15) using (7.16) 

2≤p  3.39% 1.11% 
2>p  -5.11% -10.05% 

all  values p -0.01% -3.35% 
 

Table 7.18. Approximation method. Summary (%) results 

 

Both approximations are, overall, accurate to ± 16.97% of the simulated variance (see 

equation (7.14)). The approximations are also statistically accurate when results are 

generated, separately, for all and issue points in time only, distinguishing between 

 and . In all cases, the difference between the simulated variance and the 

theoretical variance obtained by using either (7.15) or (7.16) lies within the specified 

99% confidence limits. These limits, expressed as a percentage of the simulated 

variance, are as follows: 

2≤p 2>p

 

• all points in time, all  values: p ± 23.99% 

• all points in time, : 2≤p ± 25.37% 

• all points in time, : 2>p ± 32.76% 

• issue points only, all  values: p ± 24.01% 

• issue points only, : 2≤p ± 25.39% 

• issue points only, : 2>p ± 32.86% 
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The accuracy of the approximations is not sensitive to any of the control parameters 

with the exception of the smoothing constant value. The Avg.%Error results obtained 

across the different control parameter values are very similar to those presented in the 

sub-section 7.7.1. 

 

Even though the use of (7.16) is more meaningful for categorisation purposes,  (7.15) 

should offer better results in real applications when the forecast variability needs to be 

estimated.  

 

7.7.4 Conclusions 
 

In this section, the variance approximations derived thus far in this research have been 

tested against simulation results. When all the simulated scenarios are taken into 

account, the difference between the simulated variance and the corresponding 

theoretically expected variance(s) is found, for all methods, to lie within a 99% 

confidence interval of 17% of the simulated variance. The results presented in the 

previous section indicated that the accuracy of the bias approximations derived in this 

thesis reduces considerably in a re-order level context when the average inter-demand 

interval exceeds two review periods. However, the above mentioned limitation has no 

effect on the accuracy of the approximate variance expressions.  

±

 

For Croston’s, λ Approximation and Approximation method the variance expressions 

were simplified in chapter 5 by not considering a part of the expressions. By doing so, 

meaningful categorisation rules were derived in chapter 6 and (as shown in this 

section) increased accuracy is achieved for 2≤p  where the MSE differences between 

alternative estimators are not very well-marked. However, the full variance 

expressions could be usefully employed by stock control systems requiring an 

estimation of the forecast variability for higher inter-demand intervals, since in that 

region the simplified expressions do not perform so well.  

 

Finally, it is important to note that all the approximations are very well behaved 

across all the control parameters considered in the simulation experiment. Some 

sensitivity though is indicated to changes in the smoothing constant value and this 
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could be attributed to the further Taylor terms that have not been considered in 

deriving the variance approximations.  

 

7.8 Simulation results. The MSE of intermittent demand estimates 
 

In this section, the accuracy of the theoretically expected MSEs, for the methods 

considered in this research, is tested against simulation results. In addition, we check 

the accuracy of all the categorisation rules derived in chapter 6. The Avg.%Error is 

calculated as follows: 

 

100%
SMSE

SMSEEMSEError −
=                   (7.20) 

 

where EMSE is the theoretically expected MSE (see chapter 6) for the estimation 

procedure under concern, and SMSE is the MSE obtained via simulation. The 

confidence limits are expressed as a percentage of the SMSE.  

 

7.8.1 Accuracy of the approximations 
 

The simulation results, regarding the accuracy of the approximations, are summarised 

in table 7.19. In the second column we indicate the Avg.%Error (percentage by which 

the theoretically expected MSE under (-) or over (+) estimates, on average, the 

simulated MSE, for different control parameter combinations). In all cases, all the 

approximations (or exact results) are found to be within the specified confidence 

limits. These limits, expressed as a percentage of the simulated MSE, are given in the 

third column of the table.  
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estimator 

 
points in time 

 
inter-demand 

interval 

 
Avg.%Error 

99%  
confidence 

limits 
all simulated scenarios -0.08% ± 10.77% 

all p  values -0.02% ± 15.22% 

2≤p  0.42% ± 17.74% 

 
 

all 

2>p  -0.68% ± 19.03% 

all p  values -0.13% ± 15.23% 

2≤p  0.45% ± 17.74% 

 
 

 

Croston 

 
 

issue 

2>p  -1.01% ± 19.05% 

all p  values 0.38% ± 15.095 

2≤p  0.25% ± 18.08% 

 
 

all 

2>p  0.58% ± 20.85% 

all p  values 0.16% ± 14.76% 

2≤p  0.24% ± 18.41% 

 

 

 

EWMA 
 
 

issue 

2>p  0.03% ± 22.93% 

all simulated scenarios -0.11% ± 10.74% 

all p  values -0.03% ± 15.20% 

2≤p  0.37% ± 17.67% 

 
 

all 

2>p  -0.63% ± 18.90% 

all p  values -0.19% ± 15.20% 

2≤p  0.39% ± 17.67% 

 
 

 

λ Approximat. 

 
 

issue 

2>p  -1.06% ± 18.92% 

all simulated scenarios -0.14% ± 10.57% 

all p  values -0.04% ± 14.96% 

2≤p  0.29% ± 17.42% 

 
 

all 

2>p  -0.55% ± 18.83% 

all p  values -0.23% ± 14.96% 

2≤p  0.29% ± 17.42% 

 
 

 

Approximation 

 
 

issue 

2>p  -1.00% ± 18.85% 

 

Table 7.19. MSE simulation results 
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The results indicate that the Avg.%Error, across all the simulated scenarios, is in the 

range -0.07%, +0.38%. Considering that the simulated MSE can be as high as 2,700 it 

is obvious that the approximations7 perform well. When all control parameter 

combinations are taken into account, the difference between the simulated and 

theoretically expected MSE lies, for all methods, within a 99% confidence interval of 

10% of the simulated MSE.  ±

 

The results presented in section 7.6 indicated that the accuracy of the bias 

approximations derived in this thesis deteriorates in a re-order level context for 

average inter-demand intervals greater than two review periods. The MSE expressions 

consist of three components: the variance of demand, variance of the estimates and a 

bias squared term. The results presented in table 7.19 indicate that the accuracy of the 

approximate MSE expressions derived in this thesis is not affected by the above 

discussed limitation. 

 

The accuracy of the MSE expressions is not sensitive to any of the control parameters 

used, for EWMA. Some sensitivity to the smoothing constant value has been 

observed for the remaining three estimation procedures (the approximations 

deteriorate as the smoothing constant value increases).  

 

7.8.2 Categorisation rules 
 

In this sub-section we check the accuracy of the categorisation rules developed in 

chapter 6. We first consider the categorisation rules that resulted from the pair-wise 

comparisons and then we assess the accuracy of the categorisation rules regarding all 

methods’ performance.  

 

The categorisation rules developed in chapter 6 are summarised in the following table. 

The method that appears in italics is the one that theoretically performs better only 

when both criteria take a value below their corresponding cut-off point. 

 

                                                 
7 The MSE expressions for the EWMA estimator (all and issue points in time) are exact rather than 
approximate results. Nevertheless, these exact results are also tested against the simulation results to 
assess the extent to which our findings are affected by sampling variation. 
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Pair-wise comparison p  cut-off value CV 2 cut-off value 

Approximation-Croston 1.32 0.49 

Approximation- λ Approx. 1.25 0.48 

λ Approx.-Croston 1.65 1.17 

ISSUE POINTS  

Approximation-EWMA 1.33 0.49 

Croston-EWMA 1.34 0.28 

λ Approx.-EWMA 1.40 0.40 

ALL POINTS IN TIME  

Approximation-EWMA 1.20 0.49 

Croston-EWMA Croston always performs better than EWMA 

λ Approx.-EWMA 1.17 0.22 

 

Table 7.20. Cut-off values ( 2.005.0 ≤≤α ) 
 
For each pair-wise comparison the conditions under which one method is theoretically 

expected to perform better (or worse) than the other are identified and the simulated 

MSEs given by the two methods under concern are compared. We report whether or 

not the expected MSE performances are confirmed by the simulation results, and also 

the percentage increase (decrease) of the MSE when using one estimation procedure 

instead of the other.  

 

In particular, for every pair-wise comparison the simulation results are divided into 

two sets: one referring to all the simulated conditions when corresponding cut-off 

value and/or 

>p

>CV 2  corresponding cut-off value (set A, recommended method: say 

estimator ) and the other to all the remaining simulated conditions (set B, 

recommended method: say estimator ). The results will be reported in the form of 

the MSE average percentage increase (decrease) achieved by employing estimator  

instead of estimator  in both sets. 

x

y

x

y
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The Avg.%Difference is expected to be negative for data set A and positive for data set 

B. The results are summarised for all pair-wise comparisons in table 7.21. 
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Pair-wise comparison 

Set A 
>p cut-off value 

and/or 
>CV 2 cut-off value 

Set B 
≤p cut-off value 

and 
≤CV 2 cut-off value 

Approximation-Croston -1.48 2.82 

Approximation- λ Approx. -1.00 4.35 

λ Approx.-Croston -0.63 0.43 

ISSUE POINTS  

Approximation-EWMA -20.36 0.94 

Croston-EWMA -18.80 0.47 

λ Approx.-EWMA -19.60 -0.97 

ALL POINTS IN TIME  

Approximation-EWMA -13.07 1.58 

Croston-EWMA -11.50 

λ Approx.-EWMA -12.10 -2.68 

 
Table 7.21. Simulation (%) results (pair-wise comparisons) 

 

The results for data set B indicate that the differences between the MSEs are small. 

The differences are very well marked for most comparisons for data set A. This 

appears not to be the case for the first three pair-wise comparisons. A further analysis 

of the results, though, indicates that: 

 

• The Approximation method performs better than Croston’s method in 1,984 out of 

the 1,984 cases covered in data set A 

• The Approximation method performs better than the λ Approximation method in 

1,964 out of the 1,984 combinations of the control parameters tested 

• The λ Approximation method performs better than Croston’s method in 1,585 out 

of the 1,664 cases explored.  

 

The categorisation rules were developed in chapter 6 in such a way that one 

estimation procedure always (theoretically) performs better in, what we now call for 

the purpose of this chapter, data set A. Therefore, one should expect consistent 

differences in all the cases covered by data set A. The estimator selected for data set B 

was an approximate solution, since in the case that both criteria take a value below 

their corresponding cut-off value, no estimator can be shown, theoretically, to perform 

better in all cases. Moreover the categorisation schemes proposed in chapter 6 
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covered all possible smoothing constant values in the realistic range 0.05 – 0.2. 

Obviously that also introduces a certain degree of uncertainty in the proposed rules. 

Recall, from chapter 6, that this uncertainty will only be reflected in the area formed 

when both  and Cp V 2  take a value below the specified cut-off point. It may be for 

those reasons that the λ Approximation method is found to perform better than 

EWMA in data set B, when the opposite is theoretically the case. 

 

Apart from the unexpectedly good performance of the λ Approximation method, 

when compared with the EWMA, all other results appear to be consistent with the 

theory. That provides further justification for the selection of approximations (7.16) 

and (7.18) in calculating the variance of the estimates given by Croston’s 

Approximation and λ Approximation method. As discussed in the previous section, 

approximations (7.15) and (7.17) do not perform particularly well for low average inter-

demand interval values, the area in which increased accuracy is required for 

categorisation purposes. 

 

In chapter 6, two categorisation schemes were proposed covering all estimation 

procedures. Both schemes were the result of a synthesis of all the pair-wise decision 

rules. The validity of those schemes is now assessed on the simulation results. For 

each of the decision areas we first identify the corresponding conditions 

(combinations of the control parameters) that have been covered in this simulation 

experiment. Subsequently, the MSE given by the theoretically expected superior 

estimator is compared with that of all the other forecasting methods and the 

Avg.%Difference, across all the relevant combinations, is reported. Each difference is 

expressed as a percentage of the MSE given by the theoretically inferior estimator. 

Negative signs indicate that the simulation results are consistent with the theory. The 

results are summarised in the following table. 
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ALL POINTS IN TIME 

Superior estimator Croston Lambda EWMA 

Approximation -1.52 -0.97 -13.53 

 Approximation Lambda EWMA 

Croston -2.79 -0.97 -4.78 

    

ISSUE POINTS ONLY 

 Croston Lambda EWMA 

Approximation -1.44 -0.95 -20.36 

 Approximation Lambda EWMA 

Croston -0.09 -0.14 -3.24 

 Croston Approximation Lambda 

EWMA -0.49 -2.60 -0.27 

 

Table 7.22. MSE comparison results (%) 

 

All the results are consistent with what is expected from the theory. The 

categorisation schemes proposed in chapter 6 are found to yield simulation results 

consistent with the theory despite the approximations that were introduced in 

specifying the criteria cut-off values. The validity of the categorisation schemes will 

also be assessed on empirical data in chapter 10.  

 

The relatively poor performance of the λ Approximation method has been established 

theoretically in chapter 6. The simulation results verify this poor performance and 

provide further justification for the decision made in chapter 6 (see section 6.9), to 

disregard this method for the rest of the thesis.   

 

7.9 Conclusions 
 

In this chapter a simulation experiment using theoretically generated data was 

developed for the purpose of assessing the accuracy of all the approximated results 

derived during this thesis. Demand has been assumed to occur as a Bernoulli process 

and the demand sizes, when demand occurs, were assumed to be lognormally 

distributed. The control parameters used were: the average inter-demand interval, the 

coefficient of variation of the demand sizes, the smoothing constant value, the lead 
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time length and the points in time considered for generating results (all, issue points 

only). The control parameter values used for running the model were selected as 

representative of a range of  “real world” applications. The number of values assigned 

to the control parameters reflects the compromise that we tried to achieve between the 

detailed investigation of the problem in hand and the size of the simulation 

experiment. 

 

The simulation results indicate that the bias approximations developed during this 

research are reasonably accurate especially when all points in time are considered. For 

the control parameters and the range of the simulated values considered in the 

experiment, the bias approximations developed in this thesis are found to be accurate 

to within the specified 99% confidence limits. This is true when results are generated 

on 

 

• all simulated scenarios  

• control parameter combinations referring to a re-order interval context 

• simulated conditions referring to a re-order level context, average inter-demand 

interval less than two. 

 

When issue points only are considered, the accuracy of our approximation to 

Croston’s bias deteriorates for average inter-demand intervals greater than two review 

periods. The reasons of this decline in accuracy are not yet clear. However, the 

simulation results have shown that this decline in accuracy affects the bias of the 

λ Approximation and Approximation method. Overall, the results appear to be more 

“firm” when all points in time are considered.  

 

The decline in accuracy of the bias approximations for issue points only and average 

inter-demand intervals that exceed two review periods does not affect the accuracy of 

the approximate variance and MSE expressions derived in the thesis. The difference 

between the simulated variance and the corresponding theoretically expected 

variance(s) is found, for all methods, to lie within a 99% confidence interval of ± 17% 

of the simulated variance. For Croston’s, λ Approximation and Approximation 

method the variance expressions were simplified in chapter 5 by not considering a 

part of the expressions. By doing so, meaningful categorisation rules were derived in 
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chapter 6 and, as demonstrated in this chapter, increased accuracy is achieved for 

 where the MSE differences between alternative estimators are not very well-

marked. The approximations are very well behaved across all the control parameters 

considered in the simulation experiment. Some sensitivity though is indicated to 

changes in the smoothing constant value and this is true for all three estimators. 

2≤p

 

The difference between the simulated and theoretically expected MSE is found, for all 

methods, to lie within a 99% confidence interval of ± 10% of the simulated MSE. The 

pair-wise categorisation rules are found to be accurate. Few small discrepancies from 

what is theoretically expected are attributed to the approximations introduced during 

the theoretical development of the rules. The categorisation schemes that refer to all 

methods are also found to be accurate. Whatever the limitations, the simulation results 

indicate the improvement achieved when the theoretically recommended estimator is 

utilised. Finally the relatively poor performance of the λApproximation method has 

been confirmed in this chapter and this provides further justification for a decision 

made earlier in the thesis, namely to disregard this method for all future chapters. 
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CHAPTER 8 

 

Accuracy Measures for Intermittent Demand Estimates 

 

8.1 Introduction 
 

The objective of this chapter is to select specific accuracy measures to be used for 

comparing alternative intermittent demand estimation procedures. It is to consider the 

objectives of such a comparison exercise and to choose accuracy measures and testing 

procedures that contribute towards meeting those objectives. Certain forecasting 

methods will be considered in chapter 10 in order to generate one step and one lead 

time ahead forecasts on 3,000 real intermittent demand data series. Subsequently these 

methods will need to be evaluated with respect to forecasting accuracy. Clearly, 

accuracy measures need to be chosen for that purpose, to enable meaningful 

comparisons to be made.  

 

The main objectives of the comparison exercise are to identify which method is 

generally the most accurate and to specify under what conditions one method 

performs better than another or than all the rest of the methods. Identification of 

specific rules for selecting a method is one of the main objectives of the thesis as a 

whole. Certain decision rules have been derived so far, based on a mathematical 

analysis of the MSE. The theoretical conclusions have also been confirmed by means 

of simulation on theoretical data. It is therefore our intention to check whether the 

results can be replicated in a real forecasting application or not. For this to be done 

there is no need to restrict our analysis only to the MSE. Other error measures can 

also be considered in order to identify the extent to which MSE results are reflected 

by other criteria.   

  

Moreover approximated theoretical results on bias, generated in chapter 4, have also 

been tested by means of the experiment discussed in chapter 7. Therefore it is 

important, at this stage, to assess whether these theoretical results can be replicated in 

practice or not. 
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To summarise, the main objectives of the accuracy comparison exercise are: 

 

1. To check in practice the validity of the theoretical results on bias generated in 

chapter 4  

2. To check in practice the validity of the theoretical results on Mean Square Error 

generated in chapter 6 

3. To generate results on the conditions under which one method is more accurate 

than others 

4. To determine which is the most accurate forecasting method 

 

Therefore this chapter is oriented towards selecting a set of accuracy measures and 

methods that, collectively, will capture the information required in order to meet the 

above objectives.  

 

8.2 Experimental structure 
 

The accuracy measures and methods selected in this chapter will be used to evaluate 

alternative forecasting methods’ performance across 3,000 real intermittent demand 

data series. A simulation experiment, details of which are presented in chapter 9, will 

be used to assess, in a dynamic way, how existing and newly developed estimation 

procedures would have performed if they had been applied in practice. The 

experiment simulates each method’s performance on each one of the SKUs for one 

step ahead and one lead time forecasts considering all points in time and issue points 

only. That is, each method will be applied to a particular demand series, the forecasts 

will be generated and accuracy results of a certain type, that indicate the particular 

method’s performance, will be obtained across time for the demand series under 

concern (aggregation over time for a particular demand series). The same will be 

repeated for all demand data series. Summary accuracy results will then be obtained 

across all series (aggregation over series following the aggregation over time for a 

particular series) for all methods and the results will be checked for statistical 

significance.  

 

In the past a slightly different experimental structure has been employed in most of 

the forecasting accuracy competitions. Performance results are generated by time 
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period across all series (aggregation over series for a particular time period) and then 

they are summarised across all time periods (aggregation over time following the 

aggregation over series for a particular time period), i.e. we do not focus on a 

particular file, SKU in our case, but rather on different forecast horizon estimates 

across all series. Moreover it has been argued (Fildes, 1992) that alternative 

forecasting methods’ performance should be evaluated by series (across all time 

periods) and by time period (across all series). The reasoning behind this argument is 

that summary error statistics calculated in both alternative ways can provide us with a 

better summary description of the underlying distribution of the error measures. 

Although this is true, clearly in our case we want to associate the alternative methods’ 

forecasting accuracy directly to specific demand data series characteristics.  

 

As stated in the previous section it is not our intention to conduct a pure forecasting 

accuracy comparison for the purpose of simply identifying which is the most accurate 

estimation procedure. We rather try to develop an experiment which will yield insight 

into the final results, whatever those results may be. That is, once the summary error 

statistics are available, an effort will be made to link the results directly to specific 

series characteristics. It is for this reason that we discard the forecasting evaluation by 

time period across all series and employ only the experimental structure proposed in 

the beginning of this section. 

 

8.3 Research concerns 
 

Although specifying the objectives of the forecasting accuracy comparison exercise 

and deciding on the specific structure of the simulation experiment is an important 

step towards deciding which accuracy measures should be used, there are two more 

important issues that need to be considered before reaching any definitive 

conclusions. 

 

Despite the fact that all the real demand data series considered in this research can be 

broadly categorised as “intermittent”, because of the very fact that they have been so 

treated by a commercial software package, there are still significant scale differences 

between them, particularly with respect to the size of demand when it occurs. 

Therefore the mean demand per unit time period may differ significantly from one 



 172 
 

series to another. Scale differences need to be considered when selecting an accuracy 

measure so that we do not end up concluding that a forecasting method is superior to 

all the others simply because it performed well on very few data series. In addition if 

data in the different series are not expressed in the same unit of measurement, caution 

should be taken in selecting unit free accuracy measures. Relative accuracy measures 

are often used in order to overcome these problems. 

 

Selecting accuracy measures in an intermittent demand context poses extra difficulties 

to the researcher because of the very nature of intermittent demand. The fact that there 

are some zero demand time periods in all the series, does not allow one to consider 

some of the most commonly used accuracy measures. In addition many outliers 

appear in the more lumpy demand files, which makes the selection process even more 

difficult.  

 

Taking into account the main objectives of the forecasting accuracy comparison, the 

structure of the simulation experiment and the number and theoretical properties of 

the demand data series considered in this research it will be argued, in this chapter, 

that the following accuracy measures should be used: 

 

1. Mean Signed Error (ME) 

2. Wilcoxon Rank Sum Statistic (RSS) 

3. Mean Square Forecast Error (MSE)  

4. Relative Geometric Root Mean Square Error (RGRMSE) 

5. Percentage of times Better (PB) 

 

The Percentage of times Better (PB) and the Wilcoxon Rank Sum Statistic (RSS) will 

be evaluated for statistical significance by employing non-parametric tests. Non-

parametric tests require no specific population assumptions to be made but they 

always sacrifice power in terms of using all available information (in the sense that 

they consider “relationships” between the errors rather than the error sizes 

themselves) to reject a false null hypothesis.  

 

The PB reports the proportion of times that one method performs better than one or all 

other methods. The RSS will not be used for a direct accuracy comparison but rather 
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for indicating which methods consistently underestimate or overestimate the level of 

demand. 

 

The rest of the accuracy measures consider the size of all errors in order to generate 

results, which can then be tested for statistical significance using parametric tests.  

 

What follows is the theoretical background for selecting these five accuracy measures 

along with a detailed discussion of their advantages, disadvantages and application in 

the simulation experiment. All accuracy measures to which we will refer throughout 

this chapter are defined in Appendix 8.A at the end of the thesis unless they are 

discussed and mathematically defined in the body of the chapter. 

 

8.4 Literature review 
 

Many empirical and theoretical studies have been conducted in the past that aimed to 

develop an understanding of the advantages and disadvantages of various forecasting 

methods (for example: Slovic, 1972; Armstrong, 1978; Makridakis and Hibon, 1979). 

More recently, empirical and experimental studies have taken the form of a 

“forecasting competition” where expert participants analysed and forecasted many 

real life time series coming from entirely different populations (M-Competition: 

Makridakis et al, 1982; M2-Competition1: Makridakis et al, 1993; M3-Competition: 

Makridakis and Hibon, 2000).  

 

In the latest M3-Competition fully automated software packages, with an “expert 

selection” facility, were also considered. The major findings are summarised below: 

 

1. Statistically sophisticated or complex methods do not necessarily produce more 

accurate forecasts than simpler ones 

2. The performance of the various methods is very much dependent upon the length 

of the forecasting horizon and the category of data (yearly, quarterly etc) 

                                                 
1 The M2-Competition was designed and carried out in such a way as to resemble the actual procedure 
used in budget (aggregate) forecasting by business firms. That is, extra inside information was also 
available to improve the predictive accuracy of quantitative methods. 
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3. Combining the forecasts of a few methods improves overall forecasting accuracy 

over and above that of the individual forecasting methods used in the 

combination. 

 

Fildes (1992) conducted empirical research on a large group of series (263) coming 

from the same company and referring to the same variable. The paper concludes that 

exponential smoothing and “naïve” models, previously thought to be robust 

estimation procedures (also confirmed by the M-Competition), forecast poorly for the 

particular set of time series under analysis. Therefore the author suggests that 

forecasters should carry out a detailed evaluation of the data series, rather than relying 

on results from any of the earlier competitions. 

 

The M-Competitions have attracted widespread interest. Nevertheless, one could 

argue that they did not meet their original objective (Makridakis et al, 1984), namely 

to facilitate the process of selecting alternative forecasting methods when a great 

number of series is considered. This is because the results regarding the performance 

of alternative methods are not particularly conclusive. 

 

It has been claimed (Chatfield, 1992), that the greatest benefit of the M-Competition 

has been not the results as such, but the “by-products” in making us think more 

clearly about such issues as error measures and replicability. In addition to answering 

the question “which is the best forecasting method?” for the situation under concern, 

the researcher or practitioner now also needs to ask “how should we compare 

alternative forecasting methods?” in a way that ensures the validity required for our 

results. Therefore the additional problem of selecting an accuracy measure for the 

purpose of conducting forecasting accuracy comparisons has also emerged.  

 

8.4.1 Accuracy measures: theoretical concerns 

 

There are many theoretical issues that should be considered in the choice of an error 

measure. In this sub-section these issues are discussed in detail.  
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Relativeness 

 

The first important theoretical but also practical consideration is whether or not the 

accuracy measure under concern is relative in the sense that scale and unit of 

measurement differences are taken into account. The scale of the data often varies 

considerably among series. In that case, series with large numbers dominate the 

comparisons especially if quadratic loss functions (e.g. MSE) are used to report error 

statistics. Moreover scale dependence can be a severe weakness for an error measure 

applied to business problems in that the unit of measurement in which a series is 

recorded is often arbitrary. Unless accuracy measures are unit-free it is possible that 

we end up comparing “apples and oranges” (Chatfield, 1988) in a way that makes 

little sense. 

 

In the case of this research all demand data series are expressed in the same unit of 

measurement. We do not face the problem of distinguishing between pack-sizes and 

“single” units (see also section 2.5). Therefore we are only concerned with scale 

differences among data series and from now on “relativeness” should be interpreted as 

“scale independence” rather than “scale and unit of measurement independence”.  

 

Amount of change 

 

In general, comparisons are more difficult across series where large changes occur 

over the forecast horizon. In that case one approach would be to employ an accuracy 

measure that discards any information about the amount of change (e.g. the Percent of 

times Better measure or the Mean Absolute Percentage Error) or introduce a relative 

error measure and compare the forecast error of one method against that from another 

standard method (most commonly the random walk/naïve 1 method). This issue of 

sensitivity to changes becomes less of a problem when we refer to one step ahead 

forecasts. Changes in the underlying demand pattern are much more likely to affect 

longer horizon forecasts. 
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Outliers 

 

The accuracy measure must be robust from one situation to another but also must not 

be unduly influenced by outliers. When outliers are present in the data series under 

concern, care should be taken in order to avoid measures that give considerably more 

weight to larger errors than smaller ones (e.g. quadratic loss functions). 

 

Outliers create particular problems when the objective is to select from among a set of 

forecasting methods. It is less of a problem when we try to calibrate a model. The 

effect of outliers can be reduced by “trimming”, discarding very high and very low 

errors. Using median error measures is an extreme way of trimming as it removes all 

values higher and lower than the middle value. Another way of dealing with outliers 

is “winsoring”, replacing extreme error values by certain limits (Armstrong and 

Collopy, 1992). This procedure though, as Makridakis (1993) pointed out, creates the 

serious problem of non-continuous scales and begs the question of how those limits 

will be selected (if not in an entirely arbitrary way). 

 

Division by zero 

 

Computational considerations dictate that, whatever measure is used, the possibility of 

division by zero must never exist. This is the main problem associated with 

percentage error measures that are relevant only for ratio-scaled data  (i.e. data not 

including zeroes).  

 

8.4.2 Accuracy measures: practical concerns 

 

Practical concerns in selecting an accuracy measure include the following: 

 

1. How widely the accuracy measure is understood. Not all the accuracy measures 

are straightforward in their interpretation 

2. What is the particular accuracy measure’s relationship to decision making?  

 

Those issues will have a great effect on the analysis of the simulation results that 

takes place in chapter 10. Obviously the greater the interpretability of the accuracy 
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measure(s) and the stronger the relationship with decision-making, the more insight 

we may gain into the accuracy differences between the alternative estimation 

procedures.  

 

8.5 Accuracy measures for intermittent demand 
 

It is the very nature of intermittent (demand) data, and in particular the existence of 

some zero demand time periods, that creates additional difficulties in selecting an 

appropriate accuracy measure. Nevertheless, those special properties of intermittent 

demand series seem to have been underestimated or in fact completely ignored in the 

past by both practitioners and academicians. 

 

8.5.1 Commercial software packages 

 

In the latest M3 competition (Makridakis and Hibon, 2000) fully automated software 

packages, with an “expert selection” facility, were considered along with specific 

methods/estimators. Forecast Pro from Business Forecast Systems, Inc. was found to 

perform well.  

 

On a single demand series analysis, Forecast Pro (XE, Versions 3 and 4) provides the 

user with two sets of statistics. The first refers to “within sample” evaluations2 and the 

second to “out-of-sample” rolling evaluation statistics3.  

 

For the first set of statistics the Mean Absolute Percentage Error (MAPE) is 

calculated among other accuracy measures. In the case of intermittence, computation 

of the MAPE is allowed by excluding all the APEs that are associated with zero 

demand time periods.  

 

For the second set of statistics, the MAPE and Geometric Mean Relative Absolute 

Error (GMRAE) are computed among other error measures. The Relative Absolute 

                                                 
2 Statistics are generated for the demand time periods used to initialise our forecasts, in case that the 
user selects the method to be used, or identify the most appropriate model, select a forecasting method 
and initialise the forecasts in case that the “expert selection” option is chosen. 
3 Summary statistics are generated for the remaining demand data periods for all possible alternative 
forecast horizons. 
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Error (RAE) compares the absolute error of a given method to that from the random 

walk or naïve 1 forecast, which is the demand in the previous time period. In case of 

intermittence of course this accuracy measure does not give any meaningful results if 

we consider the case of consecutive zero demand time periods. For “out-of-sample” 

evaluations, Forecast Pro adds a small amount to all zero demands and calculates 

MAPEs and GMRAEs which cannot be interpreted (both measures appear to be equal 

to an error message). 

 

Based on the above we may conclude that the issue of assessing forecasting 

performance in an intermittent demand context has not been well addressed by a 

leading software vendor. 

 

8.5.2 Academic literature 

 

Willemain et al (1994) compared exponential smoothing and Croston’s method using: 

 

(a) Monte Carlo Simulation. Theoretical intermittent demand data were generated 

for different scenarios that violated Croston’s assumptions. The comparison 

with exponential smoothing was made with respect to MAPE, Median APE 

(MdAPE), Root Mean square Error (RMSE), and Mean Absolute Deviation 

(MAD) for issue points in time only.  

(b) Industrial intermittent data, focusing on the MAPE for one step ahead 

forecasts (for all points in time). 

 

For the theoretically generated data the Mean and Median Absolute Percentage Error 

were computed by considering the mean demand per unit time period as was set in the 

demand generation process. No information though is revealed about how the 

researchers calculated the MAPE when the industrial data, containing some zeroes, 

was considered. The only comment made by the authors was the following: “…We 

focused our attention on the MAPE for one-step-ahead forecasts, comparing 

forecasted values per period with actual values, both zero and non-zero (p. 535)”. 

 

One other paper identified in the academic literature that considers accuracy measures 

for the purpose of comparing alternative intermittent demand estimation procedures is 
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that of Johnston and Boylan (1996). In that case the Relative Arithmetic Mean Square 

Error (RAMSE) was selected for the purpose of comparing the Size-Interval method 

and EWMA on theoretically generated demand data. Relative accuracy measures are 

discussed in section 8.9 whereas MSE itself is presented in section 8.8 of this chapter. 

 

It is important to note that in both papers no justification is given by the authors for 

their choice of the accuracy measures that were finally used in their research. 

 

8.6 Notation 
 

L : The lead time,  1≥L

 

Y Lt′ , :  The estimate (made in period ) of demand in period t Lt + , obtained by any of 

the forecasting methods considered.  

 

Y Lt+ :  The actual demand in period Lt +  

 

e Lt+ : The forecast error in period Lt +  

 

n : The number of demand time periods considered for the purpose of comparison  

 

L-r - m  =n  

 

where   

 

m  is the total number of demand time periods contained in any of the series and  

r  is the number of periods that were used for initialisation purposes, i.e. not 

considered for generating results. 
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8.7 Accuracy measures for indicating bias 
 

The first objective of the accuracy comparison exercise as defined in section 8.1 of 

this chapter, is to determine whether specific methods consistently underestimate or 

overestimate the level of demand, i.e. to indicate whether the estimation procedures 

under concern are biased, and if so in which direction. Two accuracy measures have 

been selected for reporting bias results: the Mean Signed Error (ME) and a modified 

version of the Wilcoxon Rank Sum Statistic (RSS). Their choice is justified in the 

sub-sections that follows.  

 

8.7.1 The Mean signed Error (ME) 

 

The ME is defined as: 

 

( )
nn

LtME eYY LtLt +Σ
=

+Σ
=

′− , , n  ......., 2, 1,   =t        (8.1) 

 

For a particular demand series the ME associated with an estimation procedure is 

calculated by adding all the forecast errors generated by this method’s application in 

practice, considering their sign, and dividing the sum of the errors by the number of 

forecasts made. The sign of the ME can be either plus (+) or minus (-) indicating that 

the forecast method underestimates or overestimates, respectively, the level of 

demand for the particular demand data series. Subsequently, the ME associated with 

the estimation procedure is calculated across time for all other demand data series. An 

arithmetic average is then used to calculate the average ME across all series. The 

same is repeated for all other estimation procedures.  

 

Note that the ME, as all the other accuracy measures, is calculated in a dynamic way. 

That is, we assess what would have been the bias associated with a particular method 

if this method had been used in generating forecasts for the particular demand data 

series.  

 

Having calculated the average ME associated with all estimation procedures, for a 

particular estimator we can then develop the following hypotheses: 
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H0 : The average ME is zero, i.e. the estimation procedure is unbiased 

H1 : The average ME is not equal to zero, i.e. the estimation procedure is biased 

 

We cannot assume that the population of the MEs is normal or that the population 

variance is known. However, because our sample size is very large (equal to the 

number of demand data series considered) the test statistic for testing whether the 

independently drawn sample of MEs comes from a population with a mean: 0  =µ , can 

be the t-test: 

 

κ
σ
µ

ˆ
−

=Τ
x            (8.2) 

 

where: 

 

 x is the average ME obtained by a particular method across all series 

 σ̂ is the standard deviation of the MEs 

 κ is the number of demand data series considered and 
0  =µ  

 

The ME meets all the practical considerations in choosing an accuracy measure for 

indicating bias in intermittent demand estimates. In particular it is very easy to 

calculate, it has a straightforward interpretation and it can be used in a dynamic way 

in order to indicate which methods consistently underestimate or overestimate the 

mean demand level. From a theoretical point of view, the accuracy measure can be 

developed for all data rather than ratio-scaled data only and it is not unduly influenced 

by outliers as the original sign of the error is considered. 

 

The main disadvantage of the ME is that it is not a relative error measure in the sense 

that when MEs are averaged across all series, the series with large numbers (which 

potentially will appear to have the largest errors) may, in theory, dominate the final 

result, i.e. the average ME for a particular method. In practice it is not expected that 

scale differences will have a great effect on the average ME calculated for each of the 

forecasting methods, because the sign of the MEs is considered when we 
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arithmetically average them across series. Nevertheless the validity associated with 

our results can be increased by repeating our analysis for “scaled MEs”. That is, the 

originally calculated MEs, per method, per series, can be divided by the average 

demand per unit time period (for the series under concern) so that scale dependencies 

are eliminated. The t-test, equation (8.2), can then be applied to the new, scale 

independent, sample of MEs, in order to check the originally obtained results. 

 

In addition, in order to account for a potentially skewed distribution of the MEs, a 

non-parametric procedure is introduced in the following section, that considers only 

the relationship between the MEs, in order to generate results, without taking into 

account the actual size of them. Results in that case will be generated based on the 

median, rather than the arithmetic mean, as the most appropriate measure of location 

in the distribution of the MEs. 

  

At this stage it is important to note that the ME can also be used in order to compare 

alternative intermittent demand estimation procedures (pair-wise comparisons) across 

series. In that case the null and the alternative hypotheses can be developed as 

follows: 

 

H0 : The average ME given by method  equals the average ME given by method 

, i.e.  methods  and  have the same degree of bias 

 1x

 2x  1x  2x

H1 : The average ME given by method  is greater (or less) than the average ME 

of method , i.e. method  is more (less) biased than method . 

 1x

 2x  1x  2x

 

The sample size allows us to test the difference between the two population means by 

using the t-test (one sided): 

 

( )σσ
κ

ˆˆ
1
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xxt           (8.3) 

 

where: 
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 xi is the average ME obtained by method across all series expressed in an absolute 

form, i.e. ignoring its sign, 

 i

 iˆ 2
σ is the variance of the MEs generated by method in all series and  i

 κ is the number of demand data series considered. 

 

A comparison of the average ME produced by alternative estimation procedures 

would have a very straightforward interpretation and it would contribute towards 

meeting the fourth objective of the accuracy comparison exercise (see also section 

8.8). The difference between the absolute average ME given by any two methods 

indicates how much more (or less) biased is one method in comparison with another. 

Obviously the problem of scale dependence still needs to be considered and this is 

why the t-test will be also applied to scaled MEs. Moreover, in section 8.9 of this 

chapter another accuracy measure, the PB, is selected, so that the results given by the 

ME, when it is used for a direct comparison of alternative estimators, can be checked 

for consistency. 

 

8.7.2 The Wilcoxon Rank Sum Test (RST) 

 

Ranking is a non parametric procedure for conducting comparisons between two or 

more than two (forecasting) methods. The Sign Test, Wilcoxon Rank Sum Test 

(Wilcoxon, 1949), Mann-Whitney U-Test, Wald-Wolfowitz Runs Test, are examples 

of non-parametric ranking tests for conducting pair-wise comparisons (Harnett and 

Soni, 1991). The first two are equivalent to the t-test for matched-pairs whereas the 

latter two correspond to the t-test, difference between the means of two independently 

drawn samples4. The Kruskal-Wallis Test is often used to indicate if there is a 

significant difference between more than two methods.  

 

As discussed in section 8.3 of this chapter, the main advantage of non-parametric tests 

is that no assumptions are required for the population probability distribution. 

Moreover the test statistic associated with most methods can be standardised, 

allowing the use of the more familiar normal distribution (Stekler, 1991). The main 

                                                 
4 In Wilcoxon (1947) another version of the test appears equivalent to the t-test, difference between 
population means.  
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disadvantage of non-parametric tests is that they always sacrifice power in terms of 

using all available information to reject a false null hypothesis. 

 

Although it will be argued later on in this chapter that ranking non parametric 

procedures cannot (or it is preferable not to) be used for direct pair-wise comparisons, 

it was found that a different interpretation of the Wilcoxon Rank Sum Test could be 

employed in order to determine which methods consistently under or overestimate the 

level of demand.  

 

The null hypothesis tested by the Wilcoxon Test is that the median difference between 

two populations equals zero. The test considers the magnitude of the difference 

between each matched pair. These magnitudes are then ranked according to their 

absolute value. Then each of these ranks is given either a positive (+) sign or a 

negative (-) sign, depending on whether the error produced by method A was larger 

than the error produced by method B (the plus sign) or vice-versa (the minus sign).  

 

Now, if the null hypothesis is true, we would expect the sum of the ranks with the 

plus signs to be approximately equal to the sum of the ranks with minus signs. The 

inference, if the two sums differ by very much, would be that the two populations 

(methods) are not identical.  

 

If we let  equal the sum of the positive ranks and T  equal the sum of the absolute 

value of the negative ranks, the test statistic T is defined as the minimum of  and 

; that is 

T+ −

T+

T− { ΤΤ −+ }=Τ ,min . An interpretation of the test, that matches our specific 

requirements for reporting bias results, would be the following: 

 

• Calculate the Mean Signed Error (ME) for a particular method on each one of the 

time series considered in the same way as we did in sub-section 8.7.1. 

• Rank the errors according to their absolute value. There is no need to assign a plus 

or minus sign since the original ME sign can be used. 

• Calculate the sum of the ranks for the positive and negative MEs 

• :  The median of the estimates produced by the particular method is zero H0

H1 :  The median of the estimates produced by the particular method is non-zero. 
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To test the null hypothesis  or  can be compared with critical values (Wilcoxon, 

1949). Alternatively if the sample size is at least 8 (Harnett and Soni, 1991), a 

normally distributed statistic, 

T+ T−

Z , can be formulated as: 

 

( )

( )( )121
24
1

1
4
1

1

++

+−
=

κκκ

κκW
Z          (8.4) 

 

where: 

 

W 1  is the sum of the ranks of one set, and 

κ is the total number of errors (data series) considered 

 

The test does not consider the size of the forecast errors produced by the estimation 

procedure under concern but rather the sign of those errors. Nevertheless we can now 

check whether the results obtained by the ME itself, applied as a descriptive measure, 

can be replicated or not. Comparison of the results obtained by the two accuracy 

measures will eventually indicate any scale dependencies in calculating the average 

ME itself and will validate our conclusions at minimum computational effort. 

 

8.8 The empirical validity of the categorisation rules 
 

The second objective of the accuracy comparison exercise, as defined in section 8.1 of 

this chapter, is to check in practice the validity of the theoretical results generated in 

chapter 6. That is, we want to assess the extent to which the theoretical categorisation 

rules developed earlier in the thesis reflect real world scenarios. The rules were 

derived based on a mathematical analysis of the MSE because of the theoretical 

properties of this particular accuracy measure. As a consequence, the first obvious 

candidate accuracy measure for meeting our objective is the MSE itself. Other 

accuracy measure(s) though, that could not have been considered during the 

theoretical part of the thesis, can now also be employed, in order to establish the 

credibility of the categorisation rules/schemes proposed. In the following sub-sections 

the MSE and its alternatives are discussed. 
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8.8.1 Mean Square Forecast Error (MSE) 

 

The MSE is defined as: 
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As discussed in previous chapters, equation (8.5) is similar to the statistical measure of 

the variance of forecast errors but not quite the same since it does take bias into 

account.  

 

Although the MSE has desirable statistical properties, it also has significant 

disadvantages. Absolute error measures, like the MSE, when they are summarised 

across series are not easily interpreted unless the data series can be thought of as a 

sample from a well-defined population of series. The MSE statistics are scale 

dependent and without the necessary homogeneity of the population the MSE is 

uninterpretable (Fildes, 1983; Gardner, 1983; Newbold, 1983).  

 

Chatfield (1992) argued that once we have applied the same forecasting method to a 

group of series, it could be disastrous to average raw MSEs across series, as MSE is 

scale dependent. This was done with the M-Competition (Makridakis et al, 1982) 

results, and, according to Chatfield, the MSE results from this competition should be 

disregarded. 

 

In the context of our real data simulation experiment MSE will not be used for 

generating summary results across all series. Our approach will rather be as follows: 

The MSE associated with each method will be calculated for each demand series. 

Demand series characteristics will also be calculated and reported as part of the 

simulation output along with each method’s MSE performance. Therefore, for any 

specific series we will be able to link the relationship between different methods’ 

accuracy to the mean and variance of the demand sizes (when demand occurs) and the 

mean inter-demand interval. Moreover, for every specific series the theoretically 

expected superior estimator can also be identified. A chi-square test can then be 
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employed in order to compare expected and observed frequencies for each of the 

decision areas formed by the categorisation rules proposed in chapter 6. 

 

The approach discussed above should generate reliable results about the extent to 

which our categorisation rules apply to a real situation. Nevertheless, there is no 

reason at this stage why we should restrict our analysis to the MSE results only. Other 

error measure(s) can also be employed, which are not so sensitive to the presence of 

extreme observations (outliers), and which can also be averaged across series in order 

to supply us with summary error statistics. More conclusive results can then be 

generated about the conditions under which one method performs better than one or 

all other methods. 

 

For example, the ME could be used in order to generate accuracy results for all 

methods on each series. All the data series can then be divided in four or five sets, 

depending on the theoretical categorisation rule or scheme under consideration, and 

summary results can then be generated, and consequently tested for statistical 

significance, for each one of those sets of data. The statistically significant superiority 

of the theoretically expected best estimator, on each of the decision areas, will 

obviously increase significantly our trust in the categorisation rules.  

 

8.9 The forecast error 
 

The last two objectives of the accuracy comparison exercise, as defined in section 8.1 

of this chapter, are to determine which is the most accurate forecasting method and to 

specify under what conditions one method performs better than one or all other 

methods. As discussed above, the latter objective is associated with testing whether 

the chapter 6 results can be replicated for other accuracy measures or not. For this to 

be done, certain accuracy measures need to be selected from the plethora that have 

been proposed in the academic literature.  

 

The fourth objective of the comparison exercise (determine which is the most accurate 

forecasting method) will be met by generating results, across all series, using the 

accuracy measure(s) chosen. Conclusions will be reached only after testing the results 

for statistical significance. In order to meet the third objective (identify the conditions 
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under which one method is more accurate than others), the analysis will be repeated 

for different sub-samples that correspond to theoretically designated decision areas.  

 

Before considering accuracy measures for the purpose of comparing alternative 

methods in an intermittent demand context, it would be wise to determine which ones 

can be computed, taking into account that there are some zero demand time periods. 

As stated in sub-section 8.4.1, computational considerations dictate that, whatever 

measure is used, the possibility of division by zero must never exist.  

 

Accuracy measures can broadly be categorised as: 

 

• Absolute: the forecast error in a particular time period is expressed in an absolute 

or square form.  

 

• Relative to a Base: the forecast error produced by the method under consideration 

in a particular time period is related to some benchmark, usually the forecast error 

produced by the naïve 1 method ( =′Y Lt , Y t 1− ) for the same time period. 

 

• Relative to another method: the forecast error for a particular time period 

produced by one method is related to that produced by one other method for the 

same time period.  

 

• Relative to the series: the forecast error produced for a particular time period is 

related to either the actual demand in the time period under concern, the forecast 

itself or an arithmetic (equal weight) average of both.  

 

(This is an adaptation of a categorisation scheme originally proposed, in a 

significantly different form, by Makridakis and Hibon, 1995.) 

 

Once the errors have been expressed in one of these forms, arithmetic means, 

geometric means or medians are used to summarise the errors for all the time periods 

in a particular time series.  
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In table 8.1 some of the accuracy measures that appear most often in literature and/or 

most commonly used in practice are categorised, based on the above discussed 

scheme, and their relevance to an intermittent demand context is also indicated. For 

the purpose of deciding whether an accuracy measure is relevant to an intermittent 

demand context or not, we consider the accuracy measures’ suitability for non-ratio 

scaled data. 

 

 Relevance to Intermittent Demand 

 Yes No 

 

 

 

Absolute 

 

ME 

MAE 

MSE 

RMSE 

Ranks 

 

 

 

Relative to a Base (naïve 1) 

 

 U-Statistic 

Batting Average 

GMRAE 

MdRAE 

 

 

Relative to another method 

 

RGRMSE 

RARMSE 

% Better 

Ranks 

 

 

Relative to the series 

 

MAPEFF 

MAPEsym  

MAPE 

MdAPE 

 

Table 8.1. Accuracy measures  

 

ME:   Mean Signed Error 

MAE:    Mean Absolute Error^ 
MSE:    Mean Square Forecast Error 

RMSE:    Root Mean Square Error 

Ranks:    Ranking non-parametric test procedure 

U-Statistic:   Theil’s U-Statistic^ 
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Batting Average McLaughlin’s Batting Average^ 
GMRAE:   Geometric Mean Relative Absolute Error^ 
MdRAE:   Median Relative Absolute Error^ 
RGRMSE:   Relative Geometric Root Mean Square Error 

RARMSE:   Relative Arithmetic Root Mean Square Error 

% Better:   Percentage of times Better 

MAPE:   Mean Absolute Percentage Error 

MdAPE:   Median Absolute Percentage Error^ 
MAPEFF:   Mean Absolute Percentage Error From Forecast 

MAPEsym :   Symmetric Mean Absolute Percentage Error 

^For a definition see Appendix 8.A 

 

From table 8.1 it is apparent that not all accuracy measures can be considered since 

some of them cannot even be defined in an intermittent demand context. All “relative 

to the series” accuracy measures, in which the errors are related to the actual demand,  

need to be excluded from our analysis, since demand will very often be zero. In the 

same way all “relative to a base” accuracy measures (Theil’s U-Statistic, Batting 

Average, Geometric Mean Relative Absolute Error, Median Relative Absolute Error) 

need to be excluded since the forecast error produced by the naïve 1 method could 

very often be zero as well.  

 

8.9.1 Absolute accuracy measures 

 

The absolute error measures, although they can be computed, cannot be considered 

further, since when averaged across many time series they do not take into account 

the scale differences between them (see also sub-section 8.8.1).  

 

When those measures are averaged across series they can very often lead the analyst 

to unreliable conclusions. Chatfield (1988), in a re-examination of the M-Competition 

data (Makridakis et al, 1982), showed that five of the 1001 series considered in the 

competition dominated the RMSE rankings. The remaining 996 series had little 

impact on the RMSE rankings of the forecasting methods. 

 

The only exception to the exclusion of absolute measures may be the ME, the 

selection of which was discussed in sub-section 8.7.1. Based on the arguments 
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presented earlier, it is decided to use the ME not only for reporting bias results but 

also for directly comparing alternative intermittent demand estimation procedures. 

 

8.9.1.1 Ranks 

 

Ranking itself as an accuracy measure is a non parametric procedure (see also sub-

section 8.7.2). Rankings do not refer to a single method, as the rest of the absolute 

measures do, and in that sense sometimes appear attractive in generating conclusions 

about alternative methods’ performance. In the case of this research all pair-wise 

comparison ranking tests could have been used in order to indicate if there is a 

significant accuracy difference between the two methods under concern.  

 

The errors produced by the two forecasting methods expressed in an absolute form 

(Mann-Whitney U-Test, Wald-Wolfowitz Runs Test) or the absolute difference 

between the absolute errors produced by the two methods (Sign Test, Wilcoxon Rank 

Sum Test) would be ranked in ascending order and an appropriate test statistic would 

be employed in order to determine statistically significant difference. In the former 

case the non parametric tests could be characterised as “absolute” in the sense that 

they do not consider the relationship between the error produced by the forecasting 

methods under concern and therefore are not considered further for the accuracy 

comparison exercise. In the latter case the tests could be characterised as “relative to 

another method” since it is the absolute difference between the errors rather than the 

absolute errors themselves that are pooled and ranked. Nevertheless another non 

parametric procedure, the Percentage of times Better, is generally regarded as more 

intuitive and it is the non parametric procedure to be finally selected for reporting 

accuracy performance results. 

 

8.9.2 Accuracy measures relative to the series 

 

As stated in the beginning of section 8.9, accuracy measures “relative to the series” 

cannot be defined in the context of this research when demand appears in the 

denominator (MAPE, MdAPE) since demand will very often be zero. Nevertheless 

the MAPE is discussed in order to consider the evolution of two relatively new 

accuracy measures that appear in the literature, the  and the MAPEFF. MAPEsym
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8.9.2.1 The Mean Absolute Percentage Error (MAPE) 

 

The MAPE is defined as: 

 

100*100*

,

nn

Lt

MAPE Y
e

Y
YY

Lt

Lt

Lt

Lt

+

+

+
Σ

=

+
Σ

=

′−

, n  ......., 2, 1,   =t      (8.6) 

 

MAPE is probably the most widely used unit and scale free method (Armstrong and 

Collopy, 1992). MAPE is a relative measure that takes into consideration the unit of 

measurement and the scale of the data and expresses forecast errors as a percentage of 

the actual data. This is its biggest advantage as it allows us to average all MAPEs 

associated with a particular method across many time series. In fact MAPE adds 

control for any scale dependencies to the MAE.  

 

The biggest disadvantage of the MAPE is that is relevant only for ratio scaled data 

(series that do not contain zero demand time periods). Therefore in an intermittent 

demand context, we would not be able to calculate the MAPE associated with the use 

of a method in any of the series.  

 

Another disadvantage is that the MAPE lacks a statistical theory similar to that, for 

example, associated with the MSE. MAPE has been rejected for comparison purposes 

by Fildes (1992) on statistical grounds. The sampling distribution for the MAPE 

measured across series is often badly positively skewed and the accuracy measure 

suffers from being particularly affected by observations close to zero (Gardner, 1983). 

 

MAPE puts a heavier penalty on forecasts that exceed the actual demand rather than 

on those that are less than the actual demand (Makridakis, 1993). For example the 

MAPE is bounded on the low side by an error of 100% but there is no bound on the 

high side. This asymmetry can be expressed in a different way. MAPE gives smaller 

percentage errors when actual demand is larger than the forecast, than when actual 

demand is smaller than the forecast. If, for example, actual demand for period is 6 

units and the forecast equals 4 units then the Absolute Percentage Error (APE) is 

33.3%. However when actual demand is 4 units and the forecast equals 6 units, the 

t
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APE equals 50%. This difference in absolute percentage errors can create problems 

when the actual demand is very small and the forecast is big because the APE can 

become extremely large.  

 

8.9.2.2 The Symmetric Mean Absolute Percentage Error (MAPEsym)  

 

The problems of asymmetry can be corrected (Makridakis, 1993) by introducing the 

Symmetric Mean Absolute Percentage Error ( ). MAPEsym

 

The  is defined as: MAPEsym
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Expression (8.7) does not add to the statistical support of MAPEs. Nevertheless, even 

though it was not Makridakis’ intention when he introduced the , the 

corrected accuracy measure can be used for data containing zeroes.  

MAPEsym

 

The  seems to have many desirable properties. It is relative, it accounts for 

any changes in the underlying demand pattern that occur over the forecast horizon, it 

is not unduly affected by outliers, it is easily computed and interpreted and, most 

importantly for the purpose of this research, is relevant not only for ratio-scaled data.  

MAPEsym

 

Nevertheless, some problems arise in applying the  to compare alternative 

intermittent demand estimation procedures. Considering that the greatest percentage 

of the observations in any of the demand data series included in our sample is zero 

(i.e. no demand data periods) the  for those periods turns out to be 2 (or 200%) 

irrespective of which estimation procedure has been utilised. Therefore, when this 

accuracy measure is used, the comparison of the intermittent demand forecasting 

methods can refer to the non-zero demand time periods only. The alternative 

methods’ forecasting performance in the zero demand time periods cannot be allowed 

to affect the final results, since all methods appear to perform equally.  

MAPEsym

APEsym
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Moreover, although the modified MAPE is symmetric when Y  and Y  are 

interchanged, the measure creates a new problem of asymmetry which is more likely 

to be of practical concern than the problem resulting from the interchange (Goodwin 

and Lawton, 1999). The MAPE does not treat single errors above the actual value any 

differently from those below it. So if actual demand is 4 units, errors of +2 and -2 units 

both result in an APE of 50%. The  does treat them differently. So in the 

same example the errors of +2 and -2 units would result in s of 40% and 66% 

respectively. 

Lt′ , Lt+

MAPEsym

APEsym

 

The important thing to note is that not only an error of -x units results in a different 

 from an error of +x units but the rate of increase in the , as the APE 

increases, depends also on the sign of the original error. For positive actual and 

forecast values (as is always the case for a demand data series) the  has an 

upper bound of 200%. However while this bound is reached when the forecast value 

equals zero for positive errors, for negative errors it is only approached as the forecast 

error tends to minus infinity (Goodwin and Lawton, 1999): 

APEsym APEsym

MAPEsym

 

n.,1,2,......        t ,0 ,
1

2
200

     =<
+

= +

+

+
ewhen

e
YMAPE Lt

Lt

Lt
sym       (8.8) 

 

Considering the disadvantages of the  discussed above, it has been decided 

not to use this measure in the accuracy comparison exercise.  

MAPEsym

 

8.9.2.3 The Mean Absolute Percentage Error From Forecast (MAPEFF) 

 

In an internal decision making context the forecasts obtained by any estimation 

procedure may be viewed as the potential plan the decision makers may choose to 

implement. In such an environment the out-of-sample Absolute Percentage Error 

should represent the average extent to which the plan will not be realised, and/or 

additional action by the company will be required. It has been argued (Pearson and 

Wallace, 1999) that for a business assessment of the forecast performance, the 

relevant benchmark is the plan (i.e. the forecast itself) rather than the actual demand. 
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Hence, the forecast error should be calculated as the percent variation from the 

forecast and not the actual demand or an average of both (as per Makridakis, 1993). 

 

The MAPEFF is defined as: 
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According to this approach, the purpose of using an accuracy measure is not to see 

how close the forecasts are to the actual values but rather to assess how close the 

performance is to the plan that has been set.  

 

Moreover Pearson and Wallace (1999) argued that many papers that recommend an 

accuracy measure “tend to focus on the mechanisms of computation as if they were 

mutually exclusive from the context of application (p. 2)”. In fact, though, the context 

of application should be capable of leading the choices for computation, rather than 

permitting the mathematical consequences of the computation to lead the choice.  

 

According to the authors, many companies have adopted the MAPEFF despite the 

fact that forecasting textbooks and all forecasting software packages examined by 

them use the traditional Percentage Error (PE) definition. Moreover the Kahn (1998-

1999) survey of sales forecasting performance measures found that the MAPE is the 

most popular statistic for measuring error. However, of the 26 firms using MAPE as 

the error statistic, he found that 12 calculate MAPE with actual in the denominator, 10 

with the forecast in the denominator, and 2 use MAPEs calculated in both ways. 

 

The main criticism that the authors received at the 19th International Symposium of 

Forecasting was the lack of a common base for comparison purposes. The assertion 

was that, regardless of its shortcomings, the traditional MAPE gives a common base 

for evaluating alternative forecasting methods, whereas the base in MAPEFF will be 

different for each method used. Another argument was that the outside analyst does 

not know the alternative plans (sets of forecasts produced by alternative estimation 
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procedures) considered by management during the selection process and therefore the 

focus is not on what was the best among the plans considered. 

 

In addition four more problems can be identified in a potential application of the 

MAPEFF in this research: 

 

1. One general problem related to the use of MAPEFF is that it puts a heavier 

penalty on forecasts that underestimate the actual demand (pessimistic plans) 

rather than on those that overestimate it (optimistic plans). The asymmetry can be 

expressed in a way parallel to that described in the case of the . If for 

example our forecast (i.e. the short range plan) for period is 6 units and the 

demand turns out to be 4 units then the APEFF is  33.3%. However when forecast 

is 2 units and the demand when it is realised equals 4 units, the APE equals 100%. 

Figure 8.1 illustrates the behaviour of the APE,  and APEFF for specific 

errors expressed in a signed form as a percentage of the actual demand. 

MAPEsym

 t

APEsym

 

2. MAPEFF would be particularly meaningful from a marketing and sales 

perspective where the forecast is in fact the target and marketing and sales 

activities are oriented towards influencing external demand and eventually 

meeting this target. Demand generated from customers can be influenced by 

promotional activities. Moreover in that case we most probably refer to an 

aggregate forecasting level where forecasts generated focus on estimating demand 

in the medium term for a group of products rather than in the short term for an 

individual SKU.  

 

In the intermittent demand context, in particular, one could argue that the SKUs 

under concern are amongst the slowest movers and are not generally the focus of 

marketing activity. Forecasts are routinely generated and will almost always be 

independent of any plans developed in the sales or marketing department. 

 

3. The MAPEFF should be considered inappropriate for forecasting accuracy 

comparisons when biased estimation procedures enter the comparison, which is 

clearly the case in this research. 
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4. As in the case of the , a potential application of the MAPEFF can refer 

to the non-zero demand time periods only. The APEFF would equal 1 (or 100%) 

for all zero demand time periods, irrespective of which estimation procedure had 

been utilised. Therefore the alternative method’s performance in the zero demand 

time periods cannot be allowed to affect the final results since all methods would 

appear to perform equally.  

MAPEsym

 

Based on the above it has been decided not to use MAPEFF as an accuracy measure 

in the forecasting accuracy comparison exercise. 
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Figure 8.1. The asymmetry of accuracy measures relative to the series 

 

8.9.3 Accuracy measures relative to another method 

 

Accuracy measures relative to another method are widely used for pair-wise 

comparisons indicating how much better or how many times one method performs 

more accurately than another does. Descriptive error measures take into account the 

actual size of the forecast error in order to indicate how much better one method 

performs in comparison with one other. Non parametric tests would consider only the 

relationship between the absolute forecast errors produced by the two estimation 

procedures under concern in order to indicate whether the difference in the number of 
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times that each method shows superior performance is statistically significant or not. 

For the purposes of this research, Ranks and “Percentage of times Better” could be 

used as the basis of non-parametric procedures. The Percentage of times Better (PB) 

is preferred as it can be more easily interpreted (Makridakis, 1993) and is generally 

regarded as a more intuitive non parametric procedure (Makridakis and Hibon, 1995). 

 

The PB will tell us how many times a method performs better than another but not by 

how much. For this to be done a descriptive accuracy measure needs to be selected. 

The entire set of relative to a base, relative to the series and absolute accuracy 

measures (with the exception of ME) have been rejected for reasons given in the 

preceding sections. Therefore descriptive, relative to another method, accuracy 

measures will now be considered. 

 

The relative to another method accuracy measures express the error produced by an 

estimation procedure as a fraction of the error generated by another procedure. In a 

particular time series, the error can be expressed in an absolute, signed, squared, or 

absolute percentage form and summarised by using arithmetic means, geometric 

means or, more rarely, medians. (In the case that a geometric summarisation occurs 

the signed errors cannot be considered.) The same is repeated for the other methods 

over that series and the errors are expressed (pair-wise comparisons) in a relative 

form, e.g. the Geometric MSE given by method A divided by that given by method B 

will form the Relative GMSE. In the following sub-section the RGRMSE is presented 

as a means of discussing the advantages and disadvantages associated with all relative 

to another method accuracy measures. 

 

8.9.3.1 Relative Geometric Root Mean Square Error (RGRMSE) 

 

The RGRMSE for methods A and B in a particular time series is defined as: 
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Fildes (1992) discussed extensively the theoretical properties of the RGRMSE. His 

analysis is as follows: 

 

Assume that the squared errors produced by a particular method at different points in 

time (for a particular series) are of the form: 
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where:  

 

u Lt+  are assumed to be positive and can be thought of as errors due to the particular 

time period affecting all methods equally, while the  are the method’s (M) 

specific errors. 

ε 2
, LtM +

 

According to Fildes, such a model corresponds to the case where the data and 

subsequently the errors are contaminated by occasional outliers. In that case MSE and 

RMSE could potentially be dominated by the errors due to the particular time period 

and subsequently, comparison of any two forecasting methods would also be unduly 

affected. Fildes shows that the use of a geometrically (rather than arithmetically) 

averaged RMSE (GRMSE) expressed in a relative way (RGRMSE of one method 

compared to another) is independent of the . u Lt+

 

Considering (8.10) and (8.11), the RGRMSE for methods A and B can also be defined 

as: 

 

==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∏

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∏

=
+

=
+

n

t
LtB

n

t
LtA

e

e

n

n

RGRMSE

1
2

,

1
2

,

2
1

2
1

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∏

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∏

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∏

= +

+

=
++

=
++

=
n

t LtB

LtA

n

t
LtLtB

n

t
LtLtA n

n

n

u

u

1 ,

,

1
2

,

1
2

,
1

2
1

2
1

  

  

ε

ε

ε

ε
            (8.12) 

 

whereas the R(A)RMSE (Relative Arithmetic Root Mean Square Error) is given by: 
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which is not independent of the . u Lt+

 

At this stage, we argue that it is the introduction of the Relative Geometric (rather 

than relative arithmetic) summarisation of the errors and not the error expression 

form, i.e. RMSE, that ensures independence of the . In other words, the RGMSE 

and RGMAE would have exactly the same effect as RGRMSE, leaving us only with 

the errors produced by the methods under concern without any specific time period 

influences. This was not noticed by Fildes (1992). 

u Lt+

 

In the past the RARMSE (Relative Arithmetic Root Mean Square Error) has been 

often used in order to indicate the improvement ratio of employing one method over 

one other, in an across series accuracy comparison exercise. Fildes, though, with a 

simple example, demonstrates that this accuracy measure does not take into 

consideration scale differences so that one method may appear to be the best simply 

because it performed well on a series with very large observations.  

 

If a forecasting method has an error (expressed in any possible form) on one series 

10% higher than an alternative and on another 10% lower, the GRMSEs are equal 

when they are averaged across these two series. If for example for series 1 method A 

has an error of 110 compared to method B at 100 while on series 2, method A has an 

error of 1000 compared to method B that has an error of 1100 then: 
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We conclude that a relative geometric, rather than relative arithmetic, summarisation 

of errors ensures minimising the effect of any outliers in a single series evaluation as 

well as any scale dependencies in an across series accuracy comparison exercise. 

Independently of how the errors are expressed (absolute or squared form), a relative 

arithmetic accuracy measure is always affected by extreme series observations and/or 

is scale dependent. The use of a relative geometric accuracy measure is to be 

preferred.  

 

Moreover, we have argued that it is the relative geometric summarisation of the errors 

and not the error expression form that ensures certain desirable properties of an error 

measure. Therefore, any Geometric Relative measure could be employed for the 

purpose of this research. The RGRMSE though has been shown in Fildes (op. cit.), by 

using real data, to have a very well-behaved distribution across series. In addition this 

accuracy measure was found to be, as theoretically expected, not seriously affected by 

outliers in a single series analysis. Fildes claimed also that the GRMSE and RGRMSE 

per series can be modelled by the lognormal distribution, which is an intuitively 

appealing assumption, confirmed by real data analysis conducted in his research. 

Therefore considering its “independence” and its desirable statistical properties it has 

been decided to use the RGRMSE for reporting summary error results in this research.  
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where the  per series, for method i  is calculated as: GRMSE si,
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For an across series evaluation where the s produced by a particular 

method in all demand data series are reported, the geometric mean of them could be 

also found by calculating the arithmetic mean of the natural logarithms of the 

s and then taking the antilogarithm of this arithmetic mean. Considering the 

large number of series, the arithmetic mean itself will be (from the central limit 

theorem) normally distributed. As such it is reasonable to assume that the geometric 

mean can be represented as lognormal.  The validity of the latter assumption can be 

also verified as follows: If the GRMSE s are lognormally distributed and 

independent (which is the case as it was shown in Fildes’ paper), their geometric 

mean is also a lognormal variate.  

GRMSE si,

GRMSE si,

si,

 

The sample size allows us to use the t-test (sub-section 8.7.1), in order to assess 

whether or not the difference between the arithmetic means of the s 

produced by two methods differs significantly from zero. Testing whether or not that 

difference deviates significantly from zero is equivalent to testing whether or not the 

RGRMSE across series is significantly different from one.  

GRMSEi,slog

 

8.9.3.2 The Percentage of times Better (PB) 

  

PB is defined as the percentage of times (observations) that one method performs 

better than one other. For a particular time series the errors (expressed in any possible 

form) produced by two methods in each time period would be directly compared 

without considering the actual error difference in order to identify the percentage of 

times that one method performs better than the other. Alternatively, if the comparison 

exercise involves many time series, the summarised errors produced by the two 

methods in a series would be directly compared and the PB would be calculated 

across series. 

 

The PB is an easy measure to calculate, with a simple interpretation. It will also be 

shown, later in this section, that the results given by the PB method can easily be 



 203 
 

checked for statistical significance. From a theoretical perspective, the method 

accounts for any changes in the underlying demand pattern, is relative, is not affected 

by outliers and can be defined for all data. 

 

For intermittent demand data, PB is particularly meaningful since all series and all 

data periods within each series are considered in order to generate results. The 

accuracy measure provides precise information about the percentage of times that one 

method performs better than one other or, to be discussed later, than all the other 

methods, irrespectively of whether demand did or did not occur in the time period.  

 

In the context of this research, we will apply this accuracy measure in order to 

generate results across all demand data series. For this to be done, we need to use one 

or more descriptive accuracy measures that will provide us with results about the 

alternative methods’ performance in each one of the series. Accuracy measures that 

are not affected by outliers should be chosen for this purpose. So far we have argued 

for the robustness of the ME and the GRMSE generated per series. Consequently, 

these error measures will be used for generating PB results.  

 

For the purpose of this comparison exercise the PB is applied as follows: 

 

• Calculate the GRMSE (and ME) per series for methods A and B 

• Compare the GRMSEs (and absolute MEs) for each one of the series across all 

series  

κ : total number of series (3,000) 

κ1 : number of series that method A performs better than method B 

κ 2 : number of series that method B performs better than method A 

κ
κ1

1 =p : sample proportion of series that method A performs better than method B 

κ
κ 2

2 =p : sample proportion of series that method B performs better than method A 

• Formulate the hypotheses 

H0 :   ππ 21 =

H1 :   ππ 21 >

where  are the corresponding population proportions ππ 21   ,
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• Conduct a statistical test to compare the percentage better (PB) of one method 

against the null hypothesis that both methods have a 0.5 (50%) probability of 

performing better than the other method. The binomial distribution can be used to 

calculate the appropriate probabilities with: 

 
0.5   success) ofty (probabili =p   

κ : number of trials 

κ 1 : number of successes 

 

The binomial variate B: κ ,  can be approximated by the normal variate with mean p

pκ and standard deviation )1( pp −κ  provided that 5)1( >− ppκ  and or if 0.9  1.0 ≤≤ p

( ){ } 101,min >− pp κκ (Evans et al, 1993) which is the case in our simulation experiment. 

 

The test statistic, Z , can be formulated as follows: 
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which is equivalent to the population proportion test statistic using the normal 

distribution. 

 

If we set  we then have: p11 κκ =
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The statistically significant results generated by the PB measure, applied on GRMSEs 

per series, will indicate whether any scale dependencies have affected the statistically 

significant results given by the RGRMSE. In a similar fashion, the statistically 

significant results generated by the PB measure, applied on MEs, will indicate 

whether any scale dependencies have affected the statistically significant results given 
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by the ME accuracy measure (used for a direct accuracy comparison rather than for 

reporting bias). 

 

The PB measure reports the proportion of times that one method performs better than 

one other method. When more than two estimators are involved in the accuracy 

comparison exercise, we may also report the proportion of times that one method 

performs better than all other methods, i.e. the proportion of times that each method 

performs best. In this case the measure is referred to as Percentage Best (PBt) rather 

than Percentage Better. 

 

To test the statistical significance of the results, the Z  test statistic (difference 

between population proportions) can be used referring to all methods rather than 

focusing on pair-wise comparisons. In this case, the GRMSE (or ME) per series can 

be calculated for all methods across all series and if we now set: 

 

κ 1 : number of series that method A performs better than all other methods (i.e. 

method A gives the lowest GRMSE/lowest absolute ME) 

κ 2 : number of series that method B performs better than all other methods 

 

we then have: 

 

κ
κ 1

1 =p , proportion of series that method A performs better than all other methods,  

κ
κ 2

2 =p , proportion of series that method B performs better than all other methods 

 

H0 :   ππ 21 =

H1 :   ππ 21 >

 

where  are the corresponding population proportions. ππ 21   ,

 

The test statistic, Z , can then be formulated as follows: 
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−
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κ

                   (8.18) 

 

where: 

 

22
2121 pppp

p
+

=
+

=
κ
κκ

 

 

8.10 Conclusions 
 

In this chapter we identified appropriate accuracy measures for the purpose of 

comparing alternative existing and new intermittent demand estimation procedures 

over a large number of demand data series. The objectives of the comparison exercise 

and the experimental structure of the simulation (to be described in detail in chapters 

9 and 10) are clearly defined in order to enable the identification of specific accuracy 

measures and methods that collectively will capture the information required. 

 

The Mean (Signed) Error (ME) and a modification of the Wilcoxon Rank Sum 

Statistic (RSS) are the accuracy measures chosen in order to meet the first objective of 

the accuracy comparison exercise, namely to determine whether the theoretical results 

obtained in chapter 4 concerning the bias of alternative estimation procedures, can be 

replicated in practice or not. The ME is a descriptive absolute accuracy measure and 

therefore suffers from scale dependency. Nevertheless it is expected to perform quite 

robustly since the sign of the errors is used in obtaining the final average. The 

Wilcoxon Rank Sum Test (RST) is a ranking non-parametric procedure and will be 

used in order to check the validity of the ME results. 

 

The Mean Square Error (MSE) was the obvious accuracy measure to be chosen in 

order to meet the second main objective of the accuracy comparison exercise, namely 

to determine the validity of the theoretical rules proposed in chapter 6. In the context 

of our real data simulation experiment, the MSE will not be used for generating 

summary results across all series. It will rather be employed in order to determine the 

extent to which the theoretical categorisation rules reflect real world scenarios. For 

this to be done, a chi-square test will be used so that we can compare expected and 
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observed frequencies of superior MSE performance across theoretically designated 

decision areas. 

 

The difficulties associated with selecting accuracy measures, for the purpose of 

comparing alternative intermittent demand estimation procedures, have often been 

underestimated in the past by both practitioners and academicians. In order to 

facilitate the selection process for meeting objectives 3 and 4 (i.e. which is the most 

accurate forecasting method and under what circumstances one method performs 

better than another) the most common accuracy measures (descriptive and non 

parametric) are categorised based on the following scheme: 

 

• Absolute 

• Relative to a base (most commonly the forecast obtained by the naïve 1 method) 

• Relative to another method 

• Relative to the series (in which case the error could be expressed as a percentage 

of the actual demand, the forecast or an arithmetic, equally weighted, average of 

both). 

 

The accuracy measures within the categories that are relevant to an intermittent 

demand context are further discussed and evaluated, and the Mean Error (ME), 

Relative Geometric Root Mean Square Error (RGRMSE) and Percentage Better (PB) 

accuracy measures are finally selected. The ME is now applied for a direct 

comparison between alternative estimation procedures rather than indicating bias 

results for one method at a time. The RGRMSE has desirable properties in terms of its 

scale independence and robustness to outliers. The PB is a non-parametric procedure 

and reports the proportion of series on which one method performs better than one or 

all other methods. In the latter case, the measure is referred to as Percentage Best 

(PBt). The comparisons on a single series in order to obtain the PB and PBt results are 

based on the ME and GRMSE given by the methods considered. 

 

Finally in this chapter it is demonstrated that: 

 

• The Mean Absolute Percentage Error From Forecast (MAPEFF) is not suitable for 

intermittent demand data  
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• Goodwin and Lawton’s (1999) critique of the use of the Symmetric Mean 

Absolute Percentage Error ( MAPE ) also applies to the MAPEFF sym

• Fildes’ (1992) argument applies to all relative geometric measures rather than the 

Relative Geometric Root Mean Square Error (RGRMSE) only.  
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CHAPTER 9 

 

Inventory Control for Intermittent Demand Items 

 

9.1 Introduction 
 

The purpose of this chapter is to propose an inventory control procedure suitable for 

the evaluation of forecasting methods for intermittent demand. This stock control 

method will be used in chapter 11 to generate service level and inventory holding 

results, regarding the performance of alternative estimation procedures on real 

demand data. To develop such an approach, the nature of our real demand data sample 

and the information available for each SKU need to be considered in detail. 

Moreover, existing stock control approaches for dealing with intermittence (drawn 

from the literature or used by practitioners) will be critically reviewed. This will allow 

a decision on their degree of relevance to this research but it will also assist in 

developing our understanding about issues of particular importance to managing the 

inventories of intermittent demand items.  

 

A number of theory based conclusions have been derived thus far in this thesis with 

respect to forecasting intermittent demand. The practical validity of these conclusions 

will be assessed in the following chapter where forecasting performance will be 

simulated on real demand data. The results of this simulation exercise will indicate the 

extent to which our theoretical conclusions hold for real world cases. Expected 

forecasting accuracy improvements, though, are not always reflected in an inventory 

control situation. In addition, even if an improvement is achieved by employing the 

most accurate estimation procedure, the degree of improvement is unknown. It is 

essential to develop an appropriate inventory control simulation to allow for an 

evaluation of the empirical utility of our theoretical findings. 

 

In this chapter, it will be argued that a periodic review system of the ( ) form 

(every periods enough is ordered to raise the inventory position up to ) is the 

most appropriate for the purpose of this research from a conceptual, computational 

and practical perspective also. The system will have the following characteristics: 

ST  ,

T S
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demand not satisfied directly from the stock is fully backordered; the variability of 

demand over the lead time plus one review period is estimated by using the smoothed 

MSE approach; the distribution of demand over lead time plus review period is 

represented by the Negative Binomial Distribution (NBD). Moreover three 

managerial constraints are chosen for generating results: a specified customer service 

level, a specified shortage fraction per unit value short and a specified emergency 

delivery fraction per unit value short. 

 

9.1.1 Data used 

 

The intermittent demand data set available for simulation comes from the automotive 

industry and consists of 3,000 files. Each file consists of 24 demand time periods, 

demand being recorded monthly. The data has been provided by a forecasting and 

inventory control software package manufacturer (Unicorn Systems (UK) Ltd.). The 

exact nature (product description) of the SKUs has not been specified and no 

information has been revealed as to which part of the supply chain we refer to. The 

only other information accompanying the data sample is the following: 

 

• An estimate of the annual inventory holding charge per unit value (25%) 

• An estimate of the backorder cost per unit value short (28%) 

• The lead time, which is approximately 3 months. 

 

All three estimates refer to the whole data sample. No unit cost information is 

available for any of the SKUs. 

 

In this chapter we are oriented towards selecting an inventory control method suitable 

for the evaluation of alternative estimation procedures on the particular demand data 

sample.  

 

Our decision will be influenced by the following factors: 

 

(a) Nature of the demand files 
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(b) Information for each file. The lack of unit cost information for our data sample is 

a major constraint and many intuitively appealing options will have to be 

disregarded. 

(c) Objectives of this chapter. We endeavour to select a method that has a theoretical 

foundation but also corresponds to real world practices. The stock control method 

will be used for the purpose of comparison only and in that sense does not have to 

be theoretically optimal. That is, as long as the selected method enables 

meaningful comparisons to be made and as long as results can be generated for the 

empirical sample, the method can be further considered even though it may not be 

theoretically the best. 

 

9.1.2 Notation 

 

We denote by: 

 

T :  review period (1 month) 

 

R : review period expressed as a fraction of the year (in our case R  = 1/12). 

It follows that the expected number of reviews in a year is  R/1

 

D :  average annual demand in units 

 

A :  ordering cost (£) 

 

c:  unit cost (£) 

 

L :  lead time (number of unit time periods) 

 

( )xp :  probability density function of demand x over TL+  

 

P2 : fraction of demand satisfied directly from stock 

 

B1 :  shortage cost per occurrence of stockout (£) 
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B2 :  shortage cost per unit value short (%) 

 

cB2 : shortage cost per unit (£) 

 

B3 :  overnight delivery premium charge per unit value (%) 

 

cB3 : extra acquiring cost per unit (£) 

 

I :  holding charge/year/item (%) 

 

Ic : expected annual inventory holding cost per unit (£) 

 

9.1.3 Chapter structure 

 

This chapter is structured as follows: 

 

First we discuss the main issues involved in the development of an inventory control 

system and we justify our decisions in the context of this research. For each important 

decision that needs to be made towards developing our inventory control system, the 

possible approaches are identified and one or more are selected considering: (a) the 

nature of our real demand data files, (b) additional information available for each one 

of those files and (c) the objectives of this chapter. In particular, in section 9.2, we 

review the literature on managing the stock of intermittent demand items and we 

specify the type of the system to be employed for the purpose of our research 

(periodic of the ( ) form). In section 9.3 we discuss some issues related to setting 

the numerical values of the control parameters required in the inventory control 

system to decide when and how much to order. In section 9.4 we focus our attention 

on the calculation of the safety stock to be kept in the system. Finally a statistical 

distribution is selected, in section 9.5, in order to represent demand over lead time 

(plus one review period). 

ST  ,

 

Having specified all the details of the system that will be employed we derive, in 

section 9.6, the conditions that allow the optimisation of the replenishment level under 
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different managerial constraints imposed on the system. In section 9.7 technical 

details of the simulation experiment are discussed. In particular we refer to the initial 

conditions used (initial estimates, starting stock etc), the updating procedure of the 

control parameters, the content of the simulation output and the tests employed for 

demonstrating statistical significance. Finally the conclusions of the chapter are 

presented in section 9.8.  

 

9.2 The inventory control process 
 

The fundamental purpose of any inventory control system is to provide answers to the 

following four questions (Brown, 1967): 

 

1. How should the stock status records be maintained? 

2. How often should the test for re-ordering be tried? 

3. When should a replenishment order be placed? 

4. How large should the replenishment order be? 

 

There are essentially only two ways of “posting” the stock status records. One is to 

add receipts and to subtract demand as they occur. In this case, each transaction 

triggers an immediate updating of the status and in consequence this type of control is 

known as “transactions reporting” (Silver et al, 1998). The second method of updating 

the stock status records is to do it periodically, that is, an update interval (T ) elapses 

between two consecutive moments at which the stock level is known.  

 

Once the stock status records have been updated, the inventory control system can 

then check the stock status against one or more control numbers so that a decision can 

be made about when and how much to order. 

 

It is important to note at this stage that a continuous recording of each transaction 

does not necessarily imply a continuous review of the stock requirements. Porteus 

(1985) commented that: “What really matters is not how the inventory levels are 

monitored but the relationship between recognising that an order should be placed, 

placing the order, and receipt of that order. Many, if not most, transactions reporting 

systems are equivalent to periodic review systems (p. 145)”. For example, if the 
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inventory records are up to date on line continuously but the orders to a given supplier 

are issued at the end of the day (or theoretically at the end of any unit time period) 

then the system is one of periodic review with inventory levels being reviewed once a 

day.  

 

9.2.1 Periodic versus Continuous review of the inventory level 

 

Items may be produced on the same piece of equipment, purchased from the same 

supplier or shipped using the same transportation mode. In any of these situations, co-

ordination of replenishments may be attractive (Silver et al, 1998). In such a case 

periodic review is appealing since all items in the co-ordinated group can be given the 

same review interval. Sani (1995) argued that re-order interval or product group 

review systems are the most commonly used in practice for intermittent demand 

items. Consequently, he explored various periodic inventory systems proposed in the 

academic literature and/or used by practitioners, to determine the most appropriate 

ones for the demand patterns under concern. The “simple” systems (i.e. lacking 

theoretical support) considered for his research were of the periodic ( ) form (to be 

discussed later in this section) and employed by car and agricultural machinery spare 

parts dealers. These were the same dealers that provided the real demand data used in 

Sani’s research.  

Ss  ,

 

The major advantage of continuous review is that, to provide the same level of 

customer service, it requires less safety stock (hence, lower inventory holding costs) 

than periodic review. This is because in a periodic review system, safety stock is used 

to compensate for any uncertainties regarding demand over the lead time plus one 

inventory review period. Under continuous review, the safety stock is calculated by 

considering lead time demand requirements only. 

 

Moreover, for intermittent demand items very little costs are incurred by continuous 

review as updates are only made when a transaction occurs. The relationship between 

ordering cost and inventory holding charge could be further explored so as to decide 

on the appropriateness of each type of system. Nevertheless, in an intermittent 

demand context the inventory review period is relatively small in comparison to the 

average inter-order interval. Periodic review may be more effective than continuous 
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because spoilage or pilferage can be more easily detected. In transactions recording 

no such automatic review takes place without a transaction occurring.  

 

Although a periodic review system can be theoretically justified for application in an 

intermittent demand context, the decision about employing this type of system for the 

purpose of this research is also dictated by the type of data available for simulation. 

Our intermittent demand data series consist of monthly demand data, which cover the 

demand history of two years. The data is collected on a monthly basis so that one 

month can be viewed as the inventory review period ( 1=T ). At the end of every 

period the stock status will be reviewed and consequently compared against a control 

parameter so as to decide how much to order.  

 

Considering the nature of the real demand data, there are two possible cases that could 

be analysed for the purposes of our research: 

 

1. Consideration of forecasts on all points in time and periodic review of inventory 

2. Consideration of forecasts on issue points only and periodic review of inventory 

 

The former scenario is compatible and it will be simulated while the latter is not 

compatible and it will not be further considered for the purposes of our research. If the 

stock level is to be checked in every period there is little point in not considering the 

updated forecasts at the end of every period. The forecast review period will be taken 

to be one month so that the forecasts are updated at the end of each period by any of 

the estimation procedures considered. Forecasting accuracy results will be generated 

for both all and issue points in time only while the stock control performance of the 

estimators will be analysed only for all points in time. 

 

9.2.2 Inventory control systems 

 

The two most commonly encountered continuous review systems are of the ( ) or 

( ) form. After each transaction, the available stock (i.e. inventory position = stock 

on hand + on order – backorders) is compared with a control number, , variously 

called an order point, a base stock or a minimum (Brown, 1959). If the inventory 

position is less than  (or in some cases at or below ) a replenishment order is 

Qs  ,

Ss  ,

s

s s
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released. The replenishment order can be for a standard order quantity  or 

alternatively enough may be ordered to raise the inventory position to the value , 

the replenishment level. If all demand transactions are unit-sized, the two systems are 

identical because the replenishment requisition will always be made when the 

inventory position is exactly at  (so that 

Q

S

s QsS += ). If the demand sizes vary, then 

the replenishment quantity in the ( ) system also varies. In this latter case 

optimisation of  and  occurs in parallel recognising that cost interactions exist 

between the two control parameters. Alternatively the parallel optimisation may be for 

 and Q  (rather than  and ) in which case the ( ) and ( ) systems are also 

equivalent in that the replenishment level can be determined as  (see for 

example Wagner, 1975).  

Ss  ,

s S

s s S Qs  , Ss  ,

QsS +=

 

In a periodic review context the inventory decision rules most usually take the form of 

a ( ) or ( ) system, the former being the one to be employed in this research. 

Under the regime of both policies, every T  periods (constant inventory review 

interval) enough is ordered to raise the inventory position up to the replenishment 

level. The difference between the two systems is that the ( ) system requires the 

inventory position to be less than or equal to  (or in certain cases strictly less than 

) before an order is placed. Therefore the ( ) system always results in higher 

ordering costs since even a unit-sized transaction during the review interval will 

trigger a replenishment requisition, whilst the ( ) system will only place an 

order if the cumulative demand, over review period, exceeds some minimum level. 

The review interval, for both systems, can be optimised by classical economic lot size 

computations, meaning that the EOQ can also be expressed as a time supply 

ST  , SsT  , ,

SsT  , ,

s

s ST , 

SsT  , ,

T  (see 

for example Brown, 1982). The ( ) can be viewed as the periodic 

implementation of the ( ) system, as the ( ) reduces to ( ) for .  

SsT  , ,

Ss  , SsT  , , Ss  , 0=T

 

In the optimisation of the control parameters process (see section 9.6) the results 

obtained from the ( ) system can be easily transferred to a ( ) system by 

substituting  for , 

ST  , Qs  ,

s S L  for TL +  and  for  (where  is the annual 

demand). The ( ) combination does not take into account the variability of 

demand and hence should not be applied in a probabilistic demand context.  

Q DR D 

QT  ,
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In the sub-sub-sections that follow, the literature on inventory control for intermittent 

demand items is reviewed, with the purpose of specifying more precisely the periodic 

inventory control model that will be used in the simulation experiment. The main 

approaches to managing intermittent demand stocks will be discussed, mainly with 

respect to their relevance to our research and the objectives of this particular chapter. 

 

9.2.2.1 The (T, s, S) policies 

 

The ( ) inventory control systems have been claimed, on the basis of theoretical 

arguments, to be the best for the management of low and intermittent demand items 

(Sani, 1995). The superiority of such systems has also been demonstrated by means of 

simulation on real demand data (Sani and Kingsman, 1997). From a practical 

perspective, though, the computational effort to find the best ( ) pair in a ( ) 

system is prohibitive unless we are dealing with an item where the potential savings in 

the Total Inventory Costs (TIC ) are significant (Silver et al, 1998). This is not the 

case for the SKUs considered for the purpose of this research. 

SsT  ,,

Ss  , SsT  ,,

 

Many ( ) policies have been developed in the academic literature, some giving 

optimal solutions (e.g. Veinott and Wagner, 1965) and some not (e.g. Wagner, 1975; 

Naddor, 1975; Ehrhardt, 1979; Ehrhardt and Mosier, 1984; Porteus, 1985). The 

problem in all cases is to specify the  values for a single item inventory in which 

unfilled demand is backlogged (see also sub-section 9.4.1). There is a constant review 

period 

SsT  ,,

Ss   ,

T  and a fixed lead time L . Demand during review periods is independent 

and identically distributed. At the end of each review period, costs I  and  (or 

) are incurred for each unit on hand or backordered respectively. Most of the 

justification of the heuristics, and claims for their value, are based on the use of 

generated data with known properties. Nevertheless none of them is simple enough to 

be of potential benefit to practitioners. Many policies of this form are in fact used in 

practice (Sani, 1995). However, the values of the control parameters are often chosen 

arbitrarily. 

B2

B3 

 

Sani (1995) conducted research to identify the most appropriate periodic inventory 

control policies for intermittent demand items. The inventory control methods were 
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evaluated on 84 real data files, considering alternative intermittent demand estimation 

procedures. The results (also summarised in Sani and Kingsman, 1997) showed that: 

 

• For low demand items (below 20 units per year), Naddor’s heuristic (Naddor, 

1975) is the best, both on costs and service level 

• For medium demand items (20-40 per year) the Power Approximation (Ehrhardt 

and Mosier, 1984) is the best, both on costs and service level 

• For high demand items (above 40 per year) the Normal Approximation (Wagner, 

1975) is best, both on costs and service. 

 

The ( ) system performed well only when the ordering costs were not considered 

for comparison purposes. The three heuristics require knowledge only of the mean 

and variance of the demand distribution. Ehrhardt (1979) noted that: “The 

computation of an optimal policy (but also of some heuristic procedures) requires the 

complete specification of the demand distribution, and this level of demand 

information is particularly unrealistic in practical settings. Most managers would be 

very fortunate if they had accurate knowledge of only the first two moments of the 

demand distribution (p.777)”. Naddor’s heuristic and the Normal Approximation have 

been developed based on normality assumptions and they require knowledge of the 

unit cost that is not available for the files considered in this research. 

ST  ,

 

The Power Approximation was developed assuming that demand can be represented 

by the Poisson or Negative Binomial distribution. The heuristic does not require 

knowledge of the unit cost and it is clearly the least demanding ( ) model from a 

computational perspective. Nevertheless, these advantages are outweighed by the fact 

that the heuristic has been developed considering a  cost criterion (shortage cost 

per unit value short) and it does not allow comparisons to be made across other 

management specified system constraints (see section 9.4). Clearly the selected 

method needs to allow for a greater flexibility on the alternative conditions that will 

be simulated. Considering also that the ( ) policies are treated in Silver et al 

(1998) under the heading: “Managing the most important (class A) inventories” the 

Power Approximation (and all the other order point – order up to level policies 

discussed in this section) will not be further considered. 

SsT  ,,

B2

SsT  ,,
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9.2.2.2 The (T, S) policies 

 

Hadley and Whitin (1963) noted the considerable differences, in the computational 

effort required, to generate results for the ( ) system and the ( ) or ( ) 

policies (the latter policy is discussed in the following sub-sub-sections). 

Subsequently they asked the question “under what circumstances will the order up to 

 policy be essentially optimal, i.e. under what circumstances will the average 

annual cost differ so little from the average annual costs of the periodic ( ) or 

( ) policies that is not worthwhile to make the computations for the last two 

policies? (p. 281)” The answer depends on the relative magnitudes of the review and 

ordering costs. When the review costs are high relative to ordering costs, an order up 

to  policy should be almost optimal. The authors noted that in many real world 

situations the review costs are considerably higher than the costs of placing an order. 

Hence, one would expect to find that in many practical situations one could use the 

( ) model without great deviations from optimality. When the opposite is the case 

(i.e. the ordering costs are high relative to the review costs) the authors suggested 

considering the possibility of switching to a transactions reporting system. 

ST , SsT  ,, QsT  ,,

S

Ss  ,

Qs  ,

S

ST ,

 

It is worthwhile mentioning that ordering costs are significantly lower in 2001 than 

they were in 1963 (when the particular book was published). The review costs have 

also declined, but is almost certain that review costs are still higher than ordering 

costs. Therefore, Hadley and Whitin’s conclusions regarding the periodic order up to 

level systems are valid also in modern business contexts 

 

Sani (1995) developed a stock control model that reflected the main characteristics of 

a real inventory system. The model is of the ( ) form where an overnight 

emergency delivery is offered in the case of a stockout. The model was used to 

conduct a sensitivity analysis of the inventory costs and customer service levels 

achieved by employing the real system. In particular, using the model, an analysis was 

carried out in order to investigate: 

ST ,

 

1. The effect of the overnight emergency deliveries on cost and service level 

2. The sensitivity of costs to changes in the replenishment level, S  

3. The effect of the review period, T . 
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Demand was assumed to follow the negative binomial distribution and the mean and 

variance of demand were calculated from the data, rather than being estimated from a 

forecasting method. Sani argued that the ( ) system represents many real world 

cases and is intuitively and computationally more appealing to practitioners than the 

( ) system. Sani also argued that investigation of sensitivity issues necessitates 

the use of an optimal system, one that has been explicitly developed based on 

minimising the total expected costs. Optimal systems enable us to see how much the 

optimal cost increases or decreases with any change to the control parameters. 

Optimal systems should be preferred to heuristics which “are normally developed 

based on some inventory and mathematical techniques to determine the control 

parameters. The parameters are not determined based on the minimal cost (p. 144)”. 

Moreover, heuristics are always developed considering a specified managerial 

constraint, whereas optimal systems allow experimentation with different cost or 

service type restrictions imposed on the system by managers. Sensitivity results 

should be expressed as deviations from an optimal value, provided that this value can 

be obtained with “reasonable” computational effort so that practitioners can also see it 

as “optimal”.  

ST ,

SsT  , ,

 

In the case of our research, we are also interested in assessing the sensitivity of 

inventory control results to changes in the control parameter values. These changes 

occur as a consequence of utilising different estimation procedures, whereas in Sani’s 

research the changes were simply the result of experimentation with different possible 

inventory parameters. Nevertheless, an argument, similar to that made by Sani, can 

also be put forward in this research in order to justify the selection of an optimal 

system. In our case, all cost results (costs resulting from different estimation 

procedures) will be optimal if an optimal inventory system is utilised, and the lowest 

optimal cost can be regarded as a benchmark. Not all optimal systems, though, 

accurately reflect real world practices, either because of the restrictive assumptions 

upon which they are based or, as discussed above, because they are computationally 

prohibitive. In that respect, the standard ( ) system seems to be the most 

appropriate one for conducting a sensitivity analysis in order to demonstrate potential 

gains or losses in a realistic situation. 

ST ,
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9.2.2.3 The (S-1, S) policies 

 

The ( ) can be viewed as the periodic implementation of the ( ) policy or a 

special case of the ( ) for 

ST  , Ss  ,

S sT   ,, 1−= Ss . In this case the system is usually denoted by 

( ). Schultz (1987) discussed a periodic (SS  ,1− SS  ,1− ) policy for the control of 

intermittent demand items. At the end of every review period the inventory position 

(inventory on hand plus on order less the number of units backordered) is checked 

against the “base stock” level 1−S . If the inventory position is less than or equal to 

, an order is placed to bring the inventory position up to ; otherwise, no order 

is placed. This model covers the inventory system against the possibility that one 

demand will occur during the lead time plus review period. Necessary assumptions in 

this model’s implementation are the following: 

1−S S

 

1. Lead times are small as compared to the average inter-demand interval 

2. The cost of re-ordering is small relative to the cost of holding sufficient inventory 

to meet more than one order 

 

The first assumption is clearly very restrictive. In the case of our research the lead 

time is 3 inventory review periods. Experimentation with other fictitious lead times 

will also be undertaken in the simulation experiment. However, since the forecast 

review period is the same as the inventory review period, the forecast lead time 

cannot be assumed to be less than one inventory review period. Hence, the ( SS  ,1− ) 

policies should not be used for generating results in this research. 

 

9.2.2.4 Approaches to the re-order point calculation 

 

Dunsmuir and Snyder (1989) developed a method for determining the re-order point 

(consistent with a specified customer service level) in an intermittent demand context. 

The model is of the ( ) form. The distinguishing feature of the method is the use 

of a probability distribution with a spike at zero to represent the relative frequency of 

periods with no transactions. Demand is assumed to occur as a Bernoulli process. The 

size of demand when demand occurs and the standard deviation of the demand sizes 

are estimated from the past data when a transaction occurs. The probability of demand 

QsT  , ,
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occurrence, , (frequency of occurrences per specified time period, e.g. a month) is 

also estimated based on the time elapsed between transactions. Consequently we can 

estimate the mean and variance of demand per unit time period as well as the mean 

(

px

µ y ) and variance ( ) of demand over a lead time for both constant and variable 

lead times. The probability of demand occurring during the lead time, , is 

calculated based on  (for the case of variable lead times, the gamma distribution is 

assumed in order to represent their length). Finally the mean (

σ 2
y

p y

px

µ +y ) and variance 

( ) of the positive lead time demand can be estimated based on , σ 2
+y p y µ y , . σ 2

y

 

The probability of positive demand during the lead time is approximated by a gamma 

density function. Based on this assumption and findings that appeared in Snyder 

(1984) the authors modified Brown’s formula (1959, 1967): 

 

∫ −=− ∞
=sx dxxpsxPQ )()()1( 2  

 

in order to incorporate the effect of the joint probability that demand will occur during 

the lead time and it will be of a size, say ξ . Finally only µ y , µ +y ,  are required in 

order to calculate the re-order point. 

σ 2
+y

 

The above described method is the first to appear in the literature that is explicitly 

developed based on Croston’s approach to dealing with intermittence. The method is 

intuitively appealing and straightforward in its application. Nevertheless the proposed 

model can be used only in conjunction with a relevant estimation procedure, i.e. one 

that explicitly considers sizes and intervals. Methods that consider aggregate demand 

and model how this moves over time (e.g. EWMA) become redundant. The purpose 

of selecting an inventory control model in this chapter is to assess whether or not 

forecasting accuracy differences are reflected in an inventory control context. The 

theoretical properties of EWMA have already been discussed and we clearly want to 

generate inventory control results for this estimation procedure. Moreover we will 

argue, in a later section of this chapter, for the inclusion of a Moving Average method 

in our simulation experiment. Both methods could not be used if the above described 

approach was utilised. In consequence the Dunsmuir and Snyder approach cannot be 
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further considered. Nevertheless, it is important to note that an interesting avenue of 

further research would be to compare the forecasting methods developed in this 

thesis, based on Croston’s concept, with alternative inventory policies, including that 

of Dunsmuir and Snyder (1989). 

 

One other, intuitively appealing, approach to the calculation of the re-order points, in 

an intermittent demand context, has appeared in Segerstedt (1994). In this case a 

model was developed based on an explicit consideration of the demand size, inter-

demand interval and lead time. The three variables were assumed to be gamma 

distributed. Segerstedt’s approach cannot be further considered for the reasons 

discussed earlier in this sub-sub-section. From a methodological perspective, the 

exclusion of this method can be justified also in terms of the demand distributional 

assumptions based on which it was developed (see also sub-section 9.5) and the 

assumed variability of the lead time. Our discussion on re-order point policies is 

continued in the following sub-sub-section. 

 

9.2.2.5 Consideration of the deficit 

 

The re-order point calculation in a lumpy demand context necessitates an explicit 

consideration of the distribution of the “deficit”. The deficit is the amount by which 

the inventory position drops below the  value.  s

 

The exact distribution of the deficit is quite complex, depending in general on the 

difference between s  and Qs +  (or ) and the probability distribution of transaction 

sizes (Silver et al, 1998). Different approaches to the calculation of the re-order point, 

when the deficit is taken into account, can be found in: Silver (1970), Ward (1978), 

Watson (1987), Janssen (1998), Janssen et al (1998), Strijbosch et al (2000). 

S

 

Consideration of the deficit implies (Silver et al, 1998) that we deal with the most 

important (class A) inventories. In consequence all the relevant approaches that have 

been presented in the literature will be disregarded for the purposes of this research. 

At this point it is important to note that our decision reflects, to a certain extent, the 

Silver et al preference towards using simpler methods for class C (or even B) items. 

Moreover, we recognise that intermittent demand SKUs may be expensive and as 
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such they may be classified as A items. Nevertheless, it is true that relatively simple 

methods are most commonly used in practice to deal with the categories C (and B) of 

inventories. In addition, it is also true that most of the intermittent demand items are 

usually classified as C (or more rarely as B) stock. Therefore, we may conclude that, 

from a practitioner’s standpoint, simple inventory control models are required to 

manage intermittent demand stocks. 

 

In the last two sub-sub sections, the literature on re-order point inventory control 

models for intermittent demand has been reviewed. The models were discussed with 

respect to their degree of relevance to our research. None of them was found to be 

consistent with the purposes of our simulation experiment and as such they will not be 

further considered in this chapter.  

 

9.2.2.6 Conclusions 

 

Having decided on the periodic nature of our inventory model (in sub-section 9.2.1), 

an attempt was made in this sub-section to specify the model more precisely.  

 

Considering the information available for simulation purposes, the ( ) model is 

the most appropriate one for meeting the objectives of this chapter. The model is 

simple, close to optimal and reflects to a great extent real world practices. 

Nevertheless it is important to note that the selection of the model did not result only 

from its comparative advantages over other models. It was also, in a sense, the natural 

consequence of the fact that other theoretically more advanced models had to be 

disregarded, owing to the objectives of this chapter and the information available for 

meeting those objectives.  

ST  , 

 

In particular, the ( ) models cannot be further considered because of the 

restrictive assumptions associated with their application. As far as the periodic order 

point - order up to level and order point inventory models are concerned, specific 

limitations have been identified but a general argument may also be put forward in 

order to justify their exclusion from the simulation experiment: both types of models 

SS  ,1 −
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are more suited, from a computational perspective, to class A of inventories1. The 

contribution of SKUs to sales can typically be described by the Pareto rule, meaning 

that approximately 80% of the SKUs contribute to approximately 20% of the turnover. 

Although some intermittent demand items may not fall within that 80% of the SKUs 

(because their price is very high) it is true to say that most of the sporadic demand 

items will eventually be classified as C (or even B) items. Relatively simple 

techniques are recommended in the literature and applied by practitioners to deal with 

the B and C items and in that respect the ( ) model is the one to be preferred for 

our simulation. 

ST  , 

 

9.3 The inventory management system 
 

In a ( ) inventory control system the objective is to optimiseST  , 2 the value of the 

control parameters T  and . Brown (1967) distinguishes between inventory control 

and inventory management systems. The former refers to a day-to-day physical 

operation of the approach chosen, whilst the latter to the process of setting the 

numerical values of the control parameters required in the inventory control system to 

decide when and how much to order. As stated in the previous section the value of 

S

T  

is optimised by converting the EOQ to a time supply. The  value is calculated as 

follows: 

S

 

σ LT   ++ +′= kYS LT           (9.1) 

 

where: 

 

Y LT′ +   is the forecast (estimate of the level) of demand over one inventory review 

period plus the fixed lead time L  

σ LT+   is the standard deviation of the lead time forecast error, i.e. the estimate of the 

variability of demand over one review period plus lead time, and 

 k  is a safety factor. 

                                                 
1 The order point models necessitate the consideration of the deficit, which in turns often suggests that 
we deal with the class A stock. 
2 Strictly speaking, optimisation applies to the consideration of a cost criterion (see sub-section 9.4.2). 
The control parameters are “determined” rather than “optimised” when service criteria are used. 
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If we denote by  the estimate made by any forecasting method at the end of period 

, of demand in period t , under the stationary mean model assumption: 

Y t′ 

1 −t

 
( ) YY tLT LT ′′ +=+              (9.2) 

 

This is also true for the steady state model, although not assumed in this thesis. 

 

Equation (9.2) will be used in order to obtain an estimate of demand over lead time 

plus review period for all methods that will be evaluated in our simulation 

experiment, including Croston’s method. Croston suggested working in terms of 

guarding against one occurrence of a demand during the lead time (or lead time plus 

the review period). Thus he recommended using the latest estimate of the demand size 

( ) as the estimate of demand over  (or z t′ L TL + ): 

 

zY tLT ′′ =+              (9.3) 

 

Sani (1995) argued that when annual demand is very low, and the forecast review 

period is very short, as in the case of his research, there would be many periods with 

no demand at all. Croston’s suggestion, in that case, would lead to significant extra 

stockholding. In addition one could also argue that if the average inter-demand 

interval is small in comparison with TL +  there could be more than one demand 

occurrences during that period. In that case Croston’s suggestion would lead to a 

significant understocking.  

 

The standard deviation of the lead time forecast error is traditionally calculated3 as: 

 

σσ tLT +=+LT           (9.4) 

 

where  σ t  is the standard deviation of the one step ahead forecast error.  

 

                                                 
3 This is true neither for the stationary mean model (see chapter 6) nor for the steady state model 

assumption (Johnston and Harrison, 1986). 
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The standard deviation of the one step ahead forecast error can be calculated by using 

either the MAD or MSE smoothing approach:  

 

MSEtt  =σ              (9.5) 

 

where  ( ) ( )MSEYYMSE tttt 1
2 1 −−+= ′− αα

 

or 

 

MADtt  25.1≈σ           (9.6) 

 

where ( )MADYYMAD tttt 11 −−+′−= αα . 

 

In the above calculations, α  is the smoothing constant value used and Y  the actual 

demand in period t . Moreover, approximation (9.6) is based on the assumption that 

forecast errors are normally distributed. Nevertheless the ratio of the mean absolute 

deviation to the standard deviation is (within sampling error) almost constant for 

many distributions, being for example 0.75 for negative exponential and 0.85 for the 

rectangular probability density function (see for example Johnston, 1975). 

t

 

The MSE smoothing approach to estimating the forecast variance was recommended 

by Brown (1982). Bretschneider (1986) showed that the MSE approach is more 

efficient than the MAD approach even in the presence of some outliers. In chapter 6 it 

was shown that MSE also takes into consideration the issue of bias, and as such, it is 

the accuracy measure chosen for estimating the demand variance in our simulation 

experiment. 

 

Nevertheless in chapter 6 we showed that by estimating the variance of demand based 

on equations (9.4) and (9.5) the true variability is understated, since the auto-correlation 

of the forecast errors is not taken into account: 

 

( ) ( ){ } 2
 YBiasYMSE ttLover VarVarL ++= ′ ,  

ignoring the auto-correlation of the forecast error      (9.7) 
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( ) ( ){ } 2
 YLBiasYMSE ttLover VarLVarL ++= ′ ,  

considering the auto-correlation of the forecast errors (chapter 6)   (9.8) 

 

Now, we also showed that, for an accuracy comparison exercise, consideration of 

either (9.7) or (9.8) does not result in different conclusions about the conditions under 

which one method performs better than one or all other methods. (That does not mean 

of course that we will not generate one lead time as well as one step ahead MSE 

results in our simulation experiment, in order to verify our theoretical conclusions.) 

Intuitively this is likely to be the case also in an inventory control context. 

Nevertheless we are still interested in analysing each individual method’s stock 

control performance over lead time (plus review period). In addition, the explicit or 

implicit consideration of the auto-correlation terms is also required for ensuring the 

theoretical consistency of the thesis. Therefore, it has been decided to estimate the 

lead time (plus one review period) MSE directly rather than calculating the one step 

ahead MSE and then estimating the variability of the lead time (plus review period) 

demand.  

 

There are two approaches in order to calculating the MSE over . The first 

approach, which is the one adopted for the purpose of this research, requires the 

replacement of equations (9.4) and (9.5) by equations (9.9) and (9.10): 

TL +

 

MSE LTt ++ = ,LTσ           (9.9) 

 

where: 

 

( ) ( )MSEYYMSE LTtLTt

t

LTti
ii +−+ −+
⎭
⎬
⎫

⎩
⎨
⎧

∑ ′−=
+−−=

,1

2

, 1
1

αα                (9.10) 

 

That is, exponential smoothing will be used in order to update directly the lead time 

(plus review period) MSE at the end of every inventory review period.  
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The second approach is to directly estimate the MSE by considering the expressions 

derived in chapter 6 (sub-section 6.6.4). For example, the lead time MSE for EWMA 

(all points in time) is as follows: 

 

=MSE EWMA
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Based on (9.11) we could estimate the variability of demand over lead time plus one 

review period by utilising (9.12): 

 

=+MSE EWMALTt ,, ( ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

−
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

−

−
++

′
′

′
′

′
′
′

′
′

′
pz

p
p

pz
p

p

t

t

t

t t
t

t

t
t

t

LTLT σσ
α

α 2
2

2

2
2

2

11
2

        

(9.12) 
 

where p t′ , z t′  and σ ′ t  are the estimates of the inter-demand interval, demand size 

and variability of sizes respectively made at the end of period 1 −t . The variability of 

the demand sizes could be estimated based on either (9.5) or (9.6) considering the sizes 

f demand when demand occurs instead of demand per unit time period. 

12), will not be 

onsidered for generating MSE results in our simulation experiment. 

over

o

 

This approach, namely consideration of an analytic expression and substitution of the 

parts of the expression by their corresponding estimates, has appeared in Sani (1995) 

and Strijbosch et al (2000). However, such an approach can be used only for 

estimation procedures that explicitly consider the size of demand, when demand 

occurs, and the inter-demand interval. As such results cannot be generated for EWMA 

and subsequently analytic expressions, similar to that given in (9.

c

 

Finally it is important to discuss Croston’s approach to estimating the variability of 

lead time demand. Croston recommended using the variance of the demand 

transaction sizes for the variance of demand  (or  L TL + ). Following Croston, 

the variance of the demand transaction sizes, )(ztVar , is estimated by using the MAD 

(Mean Absolute Deviation) of the forecast errors of the demand transaction sizes. 

Sani (1995) argued that when no demand occurs during the lead time Croston’s 
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approach would lead to significant extra stockholding. He consequently suggested the 

following method of estimating the variability of demand over TL + : 

 

( )
⎪⎭

⎪
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⎪
⎨
⎧

′
′

′
+≈+ p

z
p

zVarTLVar
t

t

t

t
LTt

1.1,max)(,  ,               (9.13) 

 

where  is estimated as proposed by Croston. )(ztVar

 

This approximation is based on the assumption that lead time demand follows the 

negative binomial distribution (NBD) and, as such, is of direct relevance to our 

research since the NBD will also be assumed for the purpose of conducting the real 

data simulation experiment. 

 

Nevertheless, by using approximation (9.13): 

 

• The bias of Croston’s method is not taken into consideration 

• The variability of the inter-demand interval estimates is not taken into 

consideration 

• The auto-correlation of the forecast errors over TL +  is not taken into 

consideration.  

 

Therefore, approximation (9.13) will not be further considered for the purposes of this 

research. 

 

In this sub-section some issues related to the optimisation of the replenishment level 

 in a periodic system of the ( ) form have been discussed. To optimise the 

replenishment level, an estimate of demand and its variability, over one review period 

plus lead time, is required. Considering the assumptions made in this thesis, as well as 

the structure and objectives of our simulation experiment, demand over 

S ST  ,

TL +  will be 

estimated based on (9.2) and demand variability based on (9.9) and (9.10). 
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9.4 The safety factor 
 

To specify the safety factor , decisions have to be made as to how we treat stock-

outs, what criterion to use in our system and which theoretical distribution best fits the 

demand data. The first two issues are discussed in this section whereas issues related 

to the assumed distribution will be separately considered in the following section 

(9.5). Note that under a discrete demand distribution assumption the optimum control 

parameter value is, most commonly, specified directly (see for example section 9.6). 

k

 

9.4.1 The assumption of backordering or lost sales 

 

When a customer places an order, the demand is subtracted from the quantity on hand. 

If the quantity on hand is less than the customer wants, the negative difference is 

recorded, and the demand is either backordered (to be filled from the next scheduled 

receipt), or referred to another branch or plant, if the customer needs the SKU 

immediately. Alternatively, the demand is cancelled. In some cases it may be just the 

difference between demand and stock on hand that is cancelled, whilst it is also 

possible that the whole order placed for the particular SKU is cancelled. In either 

case, demand is still added to the current forecast time period demand, in order that a 

record is in place from which a forecast can be made. Given that the two cases 

(backordering and lost sales) represent the two extremes of a continuum, it is unlikely 

that companies would operate at one or other extreme point at all times. Nevertheless 

most models developed in the literature refer to one or other of the “absolute” cases. 

Silver et al (1998) noted that “most of these models serve as reasonable 

approximations because the decisions that they yield tend to be relatively insensitive 

to the degree of backordering possible in a particular situation (p. 234)”. This is 

mainly because the high customer service levels, often specified, result in infrequent 

stockout occasions.  

 

The average stock in the system depends on the safety stock, which is the expected 

stock just before a new replenishment arrives. The safety stock in turn depends on 

how unfilled demand is treated. Obviously if backorders are allowed, the net stock (= 

stock on hand – backorders) can take positive as well as negative values, whereas if 

sales are lost, the stock on hand is always greater than or equal to zero. Moreover, 
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overnight deliveries at a premium charge to satisfy demand will have a different effect 

from satisfying demand from the next scheduled replenishment order. In the former 

case the average stock will be the same as in the lost sales situation, assuming that the 

units delivered overnight attract no inventory holding charges. 

 

The data sample used in our research comes from the automotive industry. In this 

industry, exclusive dealerships (at the wholesale-retail link) or long-term supplier- 

(industrial) customer relationships and co-managed inventory schemes (at the 

manufacturing side of the supply chain) could justify the assumption of a complete 

backordering case. In general it is fair to claim that the very nature of intermittent 

demand necessitates the assumption of the complete backordering case. That is, from 

a business perspective, there is likely to be little, if any, competition for the supply of 

an intermittent SKU. Therefore the number of stockpoints for the SKUs under 

concern cannot be large (if it is not just one). Demand for intermittent demand SKUs 

is most often “captive” and as such the complete backordering situation will be 

assumed for the purpose of developing the ( ) inventory control model in this 

chapter.  

ST  ,

 

9.4.2 The policy variables 

 

Different decision rules can be applied in deriving the safety stock, which is necessary 

for covering the system against the variability of demand. The safety stock is 

computed as the product of the standard deviation of the forecast error over review 

period plus lead time and a dimensionless safety factor. The decision rule for 

computing the safety factor contains a management policy variable. The value of the 

management policy variable controls the exchange of the capital investment in 

inventory for various measures of service. 

 

The two main approaches in establishing safety stocks are the following: 

 

1. Safety stocks based on the costing of shortages. This approach involves specifying 

a way of costing a shortage. Consequently the expected sum of ordering, holding 

and shortage cost is minimised. This approach is often referred to as a “cost 

perspective”.  
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2. Safety stocks based on service considerations. Recognising the difficulties 

associated with costing shortages, an alternative approach is to introduce a service 

related control parameter. This approach is often referred to as a “service level 

perspective”.  

 

Safety stocks can be established through the use of a common safety factor, so that the 

safety factor ( ) itself becomes the management policy variable. Moreover safety 

factors can also be calculated by considering a budget available for a collection of 

SKUs. The idea is to establish the safety stocks of individual items, so that for the 

budget given, the best possible aggregate service across the population of items is 

achieved. Equivalently, one selects the individual safety stocks to minimise a penalty 

function while meeting a desired aggregate service level. This thesis focuses on 

decision rules for individual SKUs rather than a collection of items and therefore 

aggregate rules will not be further considered. 

k

 

The specific criteria to be used for the purposes of our simulation experiment, along 

with the justification of their selection, are discussed in the following two sub-sub 

sections. 

 

9.4.2.1 Service measures 

 

Similar to specifying a common safety factor is to determine a probability of no 

stockout per replenishment cycle. In both cases, fast and slower moving products are 

covered with the same chances of a shortage during a replenishment cycle, without 

regard to how many such opportunities to run short exist in a calendar year (see for 

example Brown, 1967). 

 

Another popular service policy variable is a management specified Time Between 

Stockouts (TBS ). In the decision rule resulting from using this measure, the 

frequency with which an order is placed is taken into account. It is easy to show that 

as the number of replenishment cycles and/or the TBS  increase, so does the safety 

factor. Even though this particular decision rule is theoretically appealing, it is not 

particularly relevant to this research.  
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Slower moving items may have potentially severe shortage penalties when they are 

used to complete an order provided to an important customer. Shortages of items 

under concern can cause severe reductions in the usage of several faster moving 

items. Under those circumstances a safety factor is determined to provide a specified 

expected TBS . Large values of TBS  can be selected (from 5 to 100 years, Silver et al, 

1998) assuming that the inventory holding costs are very low. In the case of our 

research we are concerned with single item inventory decision rules. That is, we 

neglect the effect of our decisions, for a specific item, to the rest of the items in a 

group or order line. Moreover, the low inventory holding cost assumption is very 

restrictive. It is also important to note that even low TBS  values should result, in the 

case of this research (few demand occurrences), in virtually no stock out occasions 

and in consequence it will be very difficult, if not impossible, to generate comparative 

results with respect to service criteria. 

 

Another possible service criterion is the Ready-Rate (fraction of time during which 

the net stock = stock on hand – backorders, is positive), which serves mostly 

emergency purposes. This service criterion has had a wide application in the military 

context (see for example Silver, 1970) and it is not particularly relevant to the 

empirical data considered in this research. As such, the Ready-Rate criterion will not 

be used for generating simulation results. 

 

The most commonly used service measure in an intermittent demand context (see for 

example Kwan, 1991; Janssen, 1998; Strijbosch et al, 2000) is a specified fraction of 

demand ( ) to be satisfied directly from stock. The  service measure is also 

called the fill-rate. Based on the decision rule resulting from this measure (to be 

discussed in greater detail in section 9.6) we can specify the safety factor by 

considering the variability of demand over lead time plus one review period. The  

service measure is the only criterion used by the software manufacturer, that provided 

our empirical data set, in order to specify the safety factor . Due to the very few 

demand occurrences associated with our empirical data it will not be very easy to 

establish service level differences between the forecasting methods compared in the 

simulation experiment. Relatively low fill rate values (say 90% or 95%) may be 

proven useful in identifying performance differences between alternative forecasting 

methods with respect to a target service level. At this stage it is important to note that 

P2 P2

P2

k
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very high fill rate values are not commonly used in practice for intermittent demand 

items. That is, in an intermittent demand context the SKUs will most commonly be 

classified as C, or more rarely, as B items (see also sub-sub section 9.2.2.5). In that 

respect, it is generally reasonable to assume that the target service level in “real 

world” applications will not generally exceed 95%.  

 

The  service measure is the only service measure that will be employed for the 

purpose of this research due to its widespread usage and its relevance to our empirical 

data. Two values will be considered, in our simulation experiment, for this control 

parameter and those are 0.90 and 0.95. 

P2

 

9.4.2.2 Costing methods 

 

Deciding on an appropriate shortage fraction involves developing and consequently 

minimising a Total Cost of Inventory (TCI ) function. This function consists of the 

ordering, inventory holding and shortage costs. It is common to assume that the cost 

of placing an order is fixed, i.e. independent of the order size. The inventory holding 

cost is determined by considering the unit cost, the inventory holding charge per unit 

per year (which in turn is determined by the opportunity cost of capital tied up in 

inventory, the risk and costs of deterioration and obsolescence, the actual cost of 

storing this unit etc) and the expected number of units in stock at any point in time. 

The average stock in the system is affected by whether or not backorders are allowed. 

The shortage cost is derived after specifying the value of a chosen cost criterion: 

 

1. Minimise backordering cost per unit of time/minimise the average backlog level 

2. Minimise the cost/number of emergency overnight deliveries 

3. Minimise number of replenishment lots needing expediting/minimise the number 

of stockout occasions per unit of time 

4. Minimise number of backordered units 

 

The first shortage costing method requires a premium amount to be charged for every 

unit short for every period of time. As such it has a natural interpretation in the 

manufacturing environment when a machine cannot be used because of a particular 
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spare not being available when requested. This research is not restricted to that 

particular context and in consequence this criterion will not be further considered. 

 

The second shortage costing method applies to serving very important customers and 

necessitates a certain degree of co-ordination so that demand can be satisfied 

overnight from another depot at a premium charge (say ) per unit value. In such a 

case highly efficient order-picking and transportation systems fill emergency orders 

using stock from the best location. This system of giving good service without 

holding inventory is known, within the automotive industry, as VOR, Vehicle Off the 

Road (see for example Sani, 1996). This criterion is particularly relevant to our data 

sample (that comes from the automotive industry) and as such it will be considered 

for generating stock control results.  

B3

 

The last two costing methods are the most commonly used ones. The first assumes 

that the only cost associated with a stockout is a fixed value , independent of the 

magnitude or duration of the stockout. When the second one is used, we assume that a 

fraction  of unit value is charged per unit short, independently of the duration of 

the stockout. The cost per unit short of an item i  is , where  is the unit variable 

cost. A situation where this type of costing would be appropriate is where units are 

made during overtime production (Silver et al, 1998). Nevertheless, this criterion is 

relevant to other environments as well, in that managerial concerns about customers’ 

loss in goodwill and market share are often reflected in the  measure (Kwan, 1991; 

Janssen, 1998). 

B1

B2

cB i2 ci 

B2

 

The ,  and  criteria will be further considered in this chapter due to their 

widespread usage in practice and their relevance to our empirical data. The conditions 

that allow the optimisation of the replenishment level (for each one of the shortage 

criteria but for the  service measure also) will be derived in section 9.6. 

B1 B2 B3

P2
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9.5 The demand distribution 
 

9.5.1 Compound Poisson distributions 

 

With Poisson arrivals of transactions and an arbitrary distribution of transaction sizes, 

the resulting distribution of total demand over a fixed lead time is compound Poisson. 

The stuttering Poisson distribution, which is a combination of a Poisson distribution 

for demand occurrence and a geometric distribution for demand size, has received the 

attention of many researchers (for example: Gallagher, 1969; Ward, 1978; Watson, 

1987). Another possibility is the combination of a Poisson distribution for demand 

occurrence and a normal distribution for demand size (Vereecke and Verstraeten, 

1994). Quenouille (1949) showed that a Poisson-Logarithmic process yields a 

negative binomial distribution (NBD). When order occasions are assumed to be 

Poisson distributed and the order size is not fixed but follows a logarithmic 

distribution, total demand is then negative binomially distributed over time.  

 

Some work concerning variable lead times, intermittent demand and separate 

forecasts for the order size and the order intensity is also available in the literature. 

Demand has been modelled based on three components: order size, order intensity 

and lead time. For example, Nahmias and Demmy (1982) proposed the logarithmic-

Poisson-gamma model, while Bagchi (1987) considered the geometric-Poisson-

normal and the geometric-Poisson-gamma models. 

 

9.5.2 The “package” Poisson distribution 

 

Vereecke and Verstraeten (1994) presented an algorithm developed for the 

implementation of a computerised stock control system for spare parts in a chemical 

plant. Ninety per cent of the items were classified as lumpy with the remaining ten per 

cent consisting of slow or fast movers. The demand was assumed to occur as a 

Poisson process with a package of several pieces being asked for on each demand 

occurrence. The parameters of the distribution of the demand size could be calculated 

from the variance and the average of the demand history data of each item. The 

resulting distribution of demand per period was called “Package Poisson” distribution. 

The same distribution has appeared in the literature under the name “clumped 
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Poisson” distribution (Ritchie and Kingsman, 1985), for multiple item orders for the 

same SKU of a fixed “clump size”, or “hypothetical” SKU (h-SKU) Poisson 

distribution where demand is treated as if it occurs as a multiple of some constant ( ) 

(Williams, 1984). In an earlier work, Friend (1960) also discussed the use of a 

Poisson distribution for the demand occurrence, combined with demands of constant 

size. 

m

 

9.5.3 Compound binomial distributions 

 

With demand occurring as a Bernoulli process (i.e. the demand incidences follow the 

binomial distribution) and an arbitrary distribution of the demand sizes, the resulting 

distribution of total demand over a fixed lead time is compound binomial. When the 

order sizes are assumed to follow the Logarithmic-Poisson distribution (which is not 

the same as the Poisson-Logarithmic process that yields NBD demand) then the 

resulting distribution of total demand per period is the log-zero-Poisson (lzP, see for 

example Kwan, 1991). Alternatively the possibility of normally distributed demand 

sizes has appeared in the literature in Croston (1972, 1974). 

 

9.5.4 Empirical evidence 

 

Kwan (1991) conducted research with the purpose of identifying the probability 

distributions that best fit the distribution of demand sizes, inter-demand intervals and 

demand per unit time period when demand appears at random with some time periods 

showing no demand at all. Empirical tests were performed with the use of the chi-

square test on a number of distributions, using two sets of real world data which 

contained the demand history of 85 spare parts.  

 

Five distributions were considered for representing the demand per unit time 

period/lead time (or lead time plus review period) demand: Poisson, NBD, Hermite, 

log-zero-Poisson and Laplace.  

 

For a Poisson distribution of the demand per period and Gamma distributed lead times 

the resulting distribution of lead time demand is NBD (Taylor, 1961). The obvious 
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advantage of NBD over the Poisson distribution is that it allows a wide range of 

variance to mean ratios, since the variance is not required to be equal to the mean.  

 

Another compound Poisson distribution for representing the lead time demand is the 

Hermite distribution (Kemp and Kemp, 1965; Bagchi et al, 1983). The Hermite 

distribution is an exact distribution of the lead time demand if the demand per unit 

time is Poisson distributed and the lead time is normally distributed. 

 

The lzP distribution is, as discussed earlier, a compound binomial distribution. 

Kwan’s main argument to justify the use of this distribution rests on its flexibility. 

The lzP distribution can be used to represent demand patterns where the variance is 

greater, equal or less than the mean. 

 

Finally the Laplace or pseudoexponential distribution (Presutti and Trepp, 1970) was 

also considered by Kwan, based on a suggestion by Peterson and Silver (1979) 

suggestion that this distribution is the most appropriate for slow moving items with 

non-similar mean and variance. 

 

In Kwan’s research, the Negative Binomial distribution was found to be the best, 

fitting 90% of the SKUs, followed by the log zero Poisson.   

 

Boylan (1997) tested the goodness-of-fit of four demand distributions (NBD, lzP, 

Condensed Negative Binomial Distribution (CNBD) and gamma distribution) on real 

demand data. The CNBD arises if we consider a condensed Poisson incidence 

distribution (“censored” Poisson process in which only every second event is 

recorded) assuming that the mean rate of demand incidence is not constant, but varies 

according to a gamma distribution. Although this distribution has been derived for 

demand incidence (Chatfield and Goodhardt, 1973) it may also be used for demand as 

an alternative to the NBD, on the grounds of “flexibility” since it has a wider range of 

variance to mean ratios than the NBD. In particular, the CNBD extends the lower end 

of the range of the variance to mean ratio to 0.5.  

 

The empirical sample used for testing goodness-of-fit contained the six months 

histories of 230 SKUs, demand being recorded weekly.  
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The analysis showed strong support for the NBD. The results for the gamma 

distribution were also encouraging, although not as good for slow moving SKUs as 

the NBD. 

 

9.5.5 The Negative Binomial Distribution (NBD) 

 

Boylan (1997) proposed three criteria for assessing demand distributions (see also 

chapter 7): 

 

• A priori grounds for modelling demand 

• The flexibility of the distribution to represent different types of demand 

• Empirical evidence 

 

To satisfy the first criterion, a distribution must be explainable in terms of an 

underlying mechanism. Considering the assumptions made in this thesis a compound 

binomial distribution (lzP) could be utilised for modelling the demand over lead time 

plus review period. The lzP is also very flexible in the sense that the variance to mean 

ratio can take any possible value. 

 

Kwan (1991) tested the lzP for the first time in an inventory control application. The 

results of her research showed that, despite its greater flexibility, the lzP does not 

perform better than the NBD. In fact the control parameters given by the lzP result, in 

many cases, in inventory costs higher than those associated with the use of the NBD.  

 

The NBD is a compound Poisson distribution and therefore it can be theoretically 

justified for application in an intermittent demand context in terms of the underlying 

Poisson demand generation process.  

 

Another possible distribution (not taken into account in Kwan’s thesis) for 

representing demand is the gamma distribution. The NBD is the discrete analogue of 

the gamma. Boylan (1997) noted that “although not having a priori support, the 

gamma is related to a distribution which has its own theoretical justification (p. 

168)”. The gamma covers a wide range of distribution shapes, it is defined for non-

negative values only and it is generally mathematically tractable in its inventory 
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control applications (Burgin and Wild, 1967; Burgin, 1975; Johnston, 1980). 

Nevertheless if it is assumed that demand is discrete, then the gamma can be only an 

approximation to the distribution of demand. Moreover no empirical evidence exists 

in support of the gamma distribution for representing intermittent demand.  

 

The NBD seems to be the best choice for representing demand in our simulation 

experiment. The theoretical results that have been developed so far in this thesis are 

based on the assumption that demand arrives as a Bernoulli process. In the simulation 

experiment all our derivations will be tested against real data forecasting accuracy 

results. The generation of the bias and MSE simulated results though requires no 

assumptions about the underlying demand distribution. The NBD assumption is 

necessary only for estimating the inventory cost and service level resulting from the 

application of an estimation procedure in real data.  

 

The compound Bernoulli process can be seen as the discrete time variant of the 

compound Poisson process. As the probability of success (demand occurrence) tends 

to zero, the binomial variate tends to the Poisson variate. (Strictly speaking the sample 

size needs also to tend to infinity so that the Poisson variate becomes the limiting 

form of the binomial one.) Therefore for small time units the compound Bernoulli 

process is an approximation to a compound Poisson process (see for example Boylan, 

1997; Janssen et al, 1998). Nevertheless, in the case of our research, demand has been 

recorded monthly and as such we cannot claim that the above discussed 

approximation is necessarily valid. In addition, in chapter 7 the lognormal distribution 

was assumed in order to represent the demand sizes, when demand occurs, whereas 

the use of NBD implies demand sizes that follow the logarithmic distribution.  

 

Hence, we recognise that there is a theoretical inconsistency between what has been 

assumed so far in the thesis and the assumption that demand per unit time period/lead 

time demand follows the negative binomial distribution. Nevertheless, it is important 

to note that: 

 

• Use of any non-compound distribution cannot, theoretically at least, be justified 

since such distributions bear no relationship to the observed frequency of periods 

without demands 
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• No other compound Poisson distribution, apart from NBD, is known to have been 

used in an inventory control context 

• No other compound Binomial distribution, apart from lzP, is known to have been 

used in an inventory control context. 

 

As such, and assuming that the lzP is unlikely to be considered by practitioners for 

inventory control purposes, the NBD still seems to be our best option. The next step is 

obviously the mathematical (or even intuitive) justification of another compound 

Bernoulli distribution. Alternatively, consistency between Croston’s methodology and 

current theory on statistical distributions can be achieved only by modifying the 

estimation procedures, that have been either developed or corrected in this thesis, so 

that they reflect a Poisson rather than a Bernoulli demand generation process. Clearly 

both approaches are beyond the scope of this research. 

 

Of course one could argue that explicit consideration of the sizes and intervals in an 

inventory control context would resolve all theoretical inconsistencies. Dunsmuir and 

Snyder (1989) proposed a method for determining re-order points consistent with a 

specified customer service level. The distinguishing feature of that method is the 

explicit consideration of the positive lead time demand and the probability that 

demand occurs in the lead time so that the spike at zero is accurately estimated. 

Nevertheless, their approach cannot be considered for the purpose of our research, for 

reasons stated in sub-sub-section 9.2.2.4. 

 

Subsequently, the negative binomial distribution is adopted, to generate probabilities 

in our empirical data simulation experiment, in lieu of any better alternative. 

 

9.6 The (T, S) system development 
 

In this section the optimum replenishment level is derived for a ( ) system for 

each of the four selected policy variables: , ,  and , assuming that demand 

not satisfied directly from the stock is backordered. It is assumed that demand is 

satisfied from the next replenishment quantity or in the following day by placing an 

emergency order. Moreover demand over 

ST  ,

B1 B2 B3 P2

TL +  is discrete and represented by the 

NBD. 
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Additional necessary assumptions are the following: 

 

1. Ordering cost is independent of the order size 

2. Cost of carrying out a review is ignored 

3. Unit cost  is a constant  c

4. L  is constant 

5. A unit acquired through emergency has no holding cost 

 

Hadley and Whitin (1963) noted that the difference between the backordering and lost 

sales case is the on hand inventory, ( )Sxf , , just before the replenishment arrives. 

 

For the backordering case:  

 

( ) xSSxf −=,   for           0≥x

 

whereas for the lost sales case: 

 

( )
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The expected amount of on hand inventory just before a procurement arrives is: 
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∞
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 , 

x
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The average replenishment quantity in the ( ) system is: ST  ,
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Therefore the stock drops from: 
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after a replenishment quantity arrives, to 
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( ) (∑
∞

=0
 ,

x
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just before a replenishment quantity arrives again. 

 

The average stock level is calculated as follows (assuming a linear consumption of the 

inventory): 
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and the expected annual inventory holding cost ( ) IC
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The expected annual ordering cost (OC ) is calculated as: 

 

R
AOC =                     (9.16) 

 

9.6.1 Cost of shortage per unit value short ( ) B2

 

The expected number of units short in a replenishment cycle is: 
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and the expected annual shortage cost ( ) is given by (9.18): SC
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The total annual inventory cost (TCI ) is calculated as follows: 
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Since  is a constant, considering only the part of equation (9.19) which is a function 

of , we obtain the expected annual relevant cost of inventory : 
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The optimisation condition under the  criterion is the following (see, for example, 

Kwan, 1991):  

B2
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If ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−> 0,1max)0(

2B
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then the optimal replenishment level should be set to zero and no stock is carried for 

that particular item. 
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9.6.2 Penalty cost per stockout occasion ( ) B1

 

The probability of a stockout in a replenishment cycle is: 
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and the expected annual shortage cost (SC) is calculated as follows: 
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The expected annual relevant cost of inventory ( )STCI  in that case becomes: 
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        (

he optimisation condition under this cost criterion is the following (see, for example, T

Kwan, 1991): 
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ven though identifying the optimal re-order level under this shortage criterion 

.6.3 Emergency delivery cost per unit value short ) 

he shortage function in this case is the same as for the criterion while the 

he  is calculated as follows: 

E

requires very little computation time, its application on our data sample is not possible 

since the unit cost, c , is not given. Therefore, this criterion will not be used for 

generating results in our simulation experiment. 

 

9 ( B3

 

T B2  

expected annual inventory cost is the same as in the lost sales case (assuming that the 

units delivered to meet the demand backordered attract no inventory holding cost).  

 

 ( )STCIT
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he optimisation condition under the criterion is as follows (see, for example, 

3
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Sani, 1995): 
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 an item is of very low demand, so that  is so large that it is greater than If )0(p

B
B3 , S  should be set equal to zero and th ore no stock should be kept for that 

h and occurs, a VOR order should be placed. 

 

IR 3+
eref

item. W en a dem

.6.4 Specified customer service level ) 

e define customer service level ( ) as the fraction of demand satisfied directly 

9 ( P2

 

W P2

from the shelf.  

 

demandTotal
shelffromsatisfiedDemand

P  
   

2 =                  (9.28) 

 

If DR  is the average size of a replenishment and Ψ is the expected number of units 

short during a replenishment cycle (equation (9.17)) we then have: 

 

( )PDR
DR

DR
P 22 1−=Ψ⇒

Ψ−
=                  (9.29) 

 

 follows that the smallest S that can maintain the system with service level not less 

21 )                 (9.30) 

 

It

than P2 , is the optimal re-order level. 

 

( ) ≥− P ( ) (∑ −
∞

+= 1Sx
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9.7 The simulation model 

he information available for the demand data sample that will be used for our 

, 

 

T

research (see also sub-section 9.1.1) is the following: 

 

%282 =B , 3=L  I %25=

 

f course other values can also be considered for each one of those control 

he lead time in particular can be set to: 1, 3, and 5 periods as in the theoretically 

O

parameters so that we account for a wider range of possible real world scenarios. 

Similarly, certain values can also be hypothesised for the B3  and P2  criteria for 

which an estimate is not available.  

 

T

generated data simulation experiment (the 12=L  case cannot be simulated due to the 

few demand data periods available for gene  results, see also sub-section 9.7.3). 

Two values will be considered for the P2  criterion and those are 0.90 and 0.95 (see 

also sub-sub-section 9.4.2.1). Regarding the 

rating

I , B2  and B3  criteria, the values are 

specified “indirectly” as follows:  

 

he optimisation condition for the  criterion is given by (9.17). To simulate the 

e t

T B2

situation we can either assign a valu o I  and B2  or alternatively assign a value to 

B
IR1− . The latter approach enables u  to i plicitly consider many possible 

The 

2

combinations of the  ratio and is the one to be considered for generating results. 

s m

BI 2/

B
IR1−  is called, for the purpose of this research, the “target value”. In the case of 

2

the  criterion we work in a similar way. In that case, the target value equals B3
B

B
IR 3

3

+
  

(9.19) ies (see ). The control parameter values considered for both the  and  polic

are given in table 9.1 along with the values assigned to the other control parameters 

introduced in our simulation experiment.  

 

B2 B3
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α       0.05 to 0.2 step 0.05 

      1 to 5 step 2 L

B2  policy, target value = 
B
IR1−    0.93 to 0.96 

2

step 0.03 

B3  policy, target value = 
B

B
IR 3

3

+
  0.95 to 0.98 step 0.03 

      0.90 to 0.95 step 0.05 P2

 

where I is the annual inventory holding charge. 

 

48.096.01
22
=⇔=−

BB
IIR (for 08.012/1 ≈=R ) 84.093.01

22
=⇔=−

BB
IIR , 

63.095.0
33

3 ≈⇔=
+ BB
B I

IR
, 24.098.0

33

3 ≈⇔=
+ BB
B I

IR
 (for 08.012/1 ≈=R ) 

 

Table 9.1. The inventory control parameter values 

 

he target values have been specified after consultation with Unicorn Systems (UK) 

 figures 9.1 and 9.2 we indicate the control parameter (

T

Ltd. They are viewed, from a practitioner’s perspective, as realistic, covering a wide 

range of real world inventory control systems. 

 

In I , B2 , B3 ) values implicitly 

d p

 si

considered in our simulation experiment for the B2  an  3  olicy respectively. 

Similar values have been considered, for conducting mulation on real (intermittent) 

data, in Kwan (1991) and Sani (1995).  

 

B
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Figure 9.1. Control parameter values (  policy) 

 

Figure 9.2. Control parameter values (  policy) 
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9.7.1 The optimum replenishment levels 

he ) system will be separately simulated for the  and  criteria. In all 

er  a he

 

T ( ST  , B2 , B3 P2

cases the probability density function is necessary in ord  to pply t  corresponding 

optimal solutions. Under the assumption that demand follows the negative binomial 

distribution, Prichard and Eagle (1965) assist the calculation of the probability that a 

demand of certain size will occur as follows: 

 

( ) ⎟
⎠
⎞

⎜
⎝
⎛=

−
+

Z
p

Z
TL

10
1

µ

                   (9.31) 

 

nd a
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                (9.32) 

 

here: w

 

........3 ,2 ,1=x  

µ LT+  is the expected demand over LT +  

 is the variability of demand over LT , and +σ LT+

µ
σ TL+

2

TL

Z
+

=  

 

he proof of this recursive formula is given in Kwan (1991).  

he simulation will be performed in a dynamic way. We will explore what would 

T

 

T

have happened if any of the estimation procedures had been used in association with 

the ( ST  , ) model in practice. Hence, µ TL+  and σ 2
TL+  will be estimated based on the 

forecasts produced by the estimation procedures and the smoothed MSE over TL +  

(see section 9.3) rather than the actual mean and variance of the intermittent de  mand

series under concern: 
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( ) YLTY tLTTL ′+=′= ++   µ  and 

 

MSE LTtLT ++ = ,
2σ             

where: 

LTtLTt

t

LTti
ii +−+ −+
⎭
⎬
⎫

⎩
⎨
⎧

∑ ′−=
+−−=

,1

2

, 1
1

αα          

 

A significant restriction associated with the use of the NBD is the fact that  must 

e greater than

 

 

( ) ( )MSEYYMSE

σ 2
TL+

b  µ TL+ . That is, the estimate of the variance of demand over lead time 

erage estimator (SMA) 

stems (UK) Ltd., when dealing 

ith intermittence, is a Simple Moving Average method (SMA). The method requires 

orecasting practices in US 

orporations and found moving averages to be the most familiar and most used 

plus review period must be greater than the estimate of the mean demand over the 

same period if the probabilities are to be calculated. No theoretically justified 

remedies to this problem have been identified and the author resorts to the method 

employed by Kwan (1991): if the variance is less than the mean, the variance is taken 

to be 1.05 times the mean.  

 

9.7.2 A Simple Moving Av

 

The estimation procedure employed by Unicorn Sy

w

specification of only one control parameter, namely the length of the moving average 

(number of periods to be considered). It has been reported that for systems employing 

monthly forecast revisions, the length of the SMA is most commonly somewhere 

between 3 and 12 points, whereas for weekly revisions it is between 8 and 24 points 

(Johnston et al, 1999a). In the particular software package the number of periods is set 

to 13 (independently of the length of the review period). This value has been reported, 

by the software manufacturer, to provide the best results. 

 

Sanders and Manrodt (1994) conducted a survey of f

c

quantitative technique. Similar results are reported in Hughes (2001) with respect to 

the electronics and financial industries in Scotland and in Kogetsidis and Mathews 
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(1998) with respect to British companies in general. It is important to note that the 

theoretical properties of SMA under the stationary mean model assumption have been 

well known for decades (e.g. Gilchrist, 1976) whereas its theoretical properties for 

employment with a steady state model have just recently been explored (Johnston et 

al, 1999b). No theoretical results have been presented in the academic literature 

regarding the application of moving averages in an intermittent demand context. 

 

Sani (1995) reported that moving averages are used in many real world cases in order 

 deal with intermittence. Sani and Kingsman (1997) found that the simple moving 

d its theoretical properties have not 

een explored in the context of our research. Nevertheless, it can still be included in 

ethod in practice the last 13 periods of demand data are 

ecessary. The first estimate will be produced at the end of period 13, and this will be 

d 13, we need to 

now the last

to

average performs significantly better than EWMA or even Croston’s method in an 

intermittent demand context (see also chapter 4).  

 

The SMA has not been discussed in this thesis an

b

the simulation experiment since it reflects a popular industry approach to forecasting 

intermittent demand. The length of the Moving Average can be set to 13 (MA(13)) 

and the method can be viewed as a benchmark for the purpose of analysing the 

simulation results. That is, we will explore how much better or worse other methods 

perform in comparison with the estimation procedure currently employed by a 

commercial software package. 

 

9.7.3 Initial conditions 

 

In order to apply this m

n

the estimate of demand in period 14. The exponential smoothing forecasting process 

can also be initiated by considering the average demand per unit time period (for the 

first 13 periods). The first exponentially smoothed estimate (of demand in period 14) 

is the average demand over the first 13 periods. In a similar way, the first 

exponentially smoothed estimate of demand size and inter-demand interval can be 

based on the average corresponding values over the first 13 periods. 

 

In order to calculate the first estimate of the MSE at the end of perio

 TL +  estimates of demand. So if, for example, the lead time is 3 k
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periods, and the review period is 1 period, the one step ahead estimates made at the 

end of months 10, 11 and 12 are required. Those estimates will also be 

approximated by the average demand over the first 13 periods. Ideally, we would 

prefer to split all the demand data series into three parts. The first would be used to 

initialise the estimates of the level, the second to obtain an initial estimate of the MSE 

(using an out-of-sample rather than an in-sample estimator of the level) and the third 

to generate the out-of-sample results to be used for comparison purposes. 

Nevertheless, given the short data series available for simulation, the above discussed 

approximation is the most reasonable that we can make. Demand sizes and inter-

demand intervals estimates will be approximated in the same way. 

 

If no demand occurs in the first 13 periods, the initial EWMA and

 9, 

 Moving Average 

stimates are set to zero and the inter-demand interval estimate to 13. As far as the 

 Schrage (1992) discussed the application of a deterministic ( ) model 

ith constant lead times and a shortage cost per unit value per unit of time. The initial 

l

will be considered for the purpose of our simulation 

xperiment are: Croston’s method, Approximation method, EWMA, MA(13). For 

e

demand size is concerned, it is more reasonable to assign an initial estimate of 1 rather 

than 0. 

 

Iyer and SsT ,,

w

stock in that case was assumed to be equal to the first replenishment leve that was 

calculated. Despite the fact that we refer to a probabilistic demand context, this 

simplified assumption still seems reasonable. For the purpose of our research it will 

also be assumed that no orders are due to arrive at any point in time. 

 

9.7.4 Updating of parameters 

 S  

 

The estimation procedures that 

e

Croston’s method and the Approximation method, the estimates are updated only at 

the end of the periods when demand occurs. If no demand occurs, the estimates 

remain the same. When EWMA and Moving Average are utilised, the estimates are 

updated at the end of every period, independently of whether demand has occurred or 

not during this particular period. Once the one step ahead estimates have been 

produced they are multiplied by TL +  (stationary mean model assumption) so that an 

estimate of demand during lead time plus one review period can be generated. The 



 255

MSE (over the lead time plus re  period) associated with the application of an 

estimation procedure in practice is updated at the end of every period ( MSE LTt +, , 

equation (9.10)). The MSE updating procedure will be the same for all methods, 

including the moving average one.  

 

The application of the moving avera

view

ge method is consistent with a different dem

ariability estimation procedure, namely one that averages the squared error over the 

and 

v

last N (13) periods. Nevertheless, it is important to note that with this simulation 

exercise we wish to explore inventory control differences between alternative 

methods of estimating the mean demand level and not between alternative approaches 

of estimating the variability of demand. In that respect we want to introduce a 

standard way of updating the variability of the forecast error, so that all inventory 

control performance differences can be attributed to the forecasting accuracy of the 

estimators. As such the variability of the forecast error given by the moving average 

method will be updated based on (9.10) and consequently the inventory control results 

given by the MA method will vary with the smoothing constant value. 

 

The estimated mean and variance of demand over TL +  are incorporated in the 

richard and Eagle formulae (equations (9.31) and ) so that the optimum P (9.32)

replenishment level S  can be derived. No safety factor needs to be calculated since 

the optimum S  is derived directly by satisfying inequalities (9.21), (9.27) and (9.30) for 

the B2 , B3  and P2  iterion respectively. Each time that the mean and variance of 

demand over 

cr

TL +  are updated, a new replenishment level is also calculated. 

 

The net stock (stock on hand – backorders) at the end of the previous period plus any 

ceipts during this period are used to satisfy the demand occurring at any point 

sin

re

during the current month/week. Therefore an implicit assumption that we make is that 

orders are received at the very beginning of the current month so that the current end 

of the period net stock = net stock at the end of the previous period + receipts during 

this period – demand during this period. If there are no backorders, the net stock 

equals the stock on hand. If there are backorders, the net stock is negative. Under the 

B2  policy we proceed with the following period calculations using the negative net 

stock. If the B3  criterion is used, the net stock at the end of the period is set to zero, 

ce unfilled demand will be satisfied in the following day from an emergency order. 
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In the same way, the amount to be ordered (scheduled end of the review period order 

rather than emergency order) equals S  - inventory position, where the inventory 

position is the net stock plus any order to arrive in the following TL +  periods. For 

the B2  policy the net stock may be positive, negative or zero, whereas for the B3  

criterion the net stock cannot be less than zero.  

 

Under the P2  policy, the effect of satisfying unfilled demand from the next scheduled 

p ishment quantity will be evaluated. 

gnificance of the result

 included in 

mpirical data sample. Therefore, no inventory cost results can be generated in the 

ation is viewed as a major restriction. 

his is because we cannot assess th  consequences of employing one estimator 

Service 

evel (CSL) achieved  (percentage of units satisfied directly from stock) by using the 

 end of period

re len

 

9.7.5 Simulation output and statistical si s 

 

The unit cost information is not available for any of the SKUs our 

e

simulation exercise. Volume differences can be considered instead, regarding the 

number of units kept in stock for the alternative estimators assessed in our 

experiment. Customer Service Level (CSL) results will also be generated and they can 

be related directly to performance differences as far as the number of units 

backordered is concerned.  

 

The lack of availability of the unit cost inform

T e cost

instead of one or all others and as such, we cannot fully demonstrate the empirical 

utility of our theoretical findings. Nevertheless, the inventory holding and CSL results 

should allow us to comment on performance differences between the alternative 

estimators and derive conclusions that will be of a significant practical value. 

 

We record the average monthly number of units in stock and the Customer 

L

estimator under concern on each of the real demand data series, for all the control 

parameter combinations. 

 

The stock on hand at the  t , which is the starting stock for the period 

 ( ) reduces or increases to the stock on hand at the end of the period 1+ OH t 1+t  t
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(OH t 1+ ). Therefore it is reasonable to assume that the average stock hold during 

 is: 

 

period 1+t

2
1

1  OHOHStockHoldingAverage tt
t

+
+

+
=                 (9.33) 

Subsequently, the average number of it e period can be 

alculated as follows: 

 

un s in stock over any tim

c

 

n
periodperStockHoldingAverage

OHOHOH nt
nt

ti
it

2

2
    

1

1
+

−+

+=
++

=
∑

              (9.34) 

 

where 

stom  service level ( ) achieved, by the estimator under concern, is 

alculated based on (9.35): 

11=n . 

 

The cu er CSL

c

 

ndTotal Dema
BackorDemandTotalCSL  -  

=
ders                  (9.35) 

where Total Demand and Backorders is the total numbe  of u ts dem

ackordered respectively over all the time periods ( ) that are taken into account in 

995) argued (and in the case of the latter research 

emonstrated empirically) that the normality assumption cannot be met when stock 

 

r ni anded and 

b n

the simulation experiment.  

 

Kwan (1991) and Sani (1

d

control results are considered. Kwan (1991) tested the effect that different demand 

distributional assumptions have on the stock control of slow moving items. Sani 

(1995) compared alternative forecasting and inventory control methods in an 

intermittent demand context. In both cases it was suggested that non-parametric 

procedures should be used to test whether or not the stock control performance 

differences are statistically significant.  
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In particular, Kwan (1991) used the Sign test, while Sani (1995) tested the statistical 

 has been argued, in the academic literature (see chapter 8), that the Percentage 

he Percentage Best measure can provide us with valuable information about which 

the best possible attainable performance over a number of series. 

significance of his results by employing the Percentage Best (PB) measure, Wilcoxon 

test (Wilcoxon, 1947) and the Kruskal-Wallis test. The Kruskal-Wallis test is a 

generalisation of the Wilcoxon rank sum test and is used in testing whether the means 

of more than two populations are the same or not. The test is an alternative non-

parametric procedure to the F test for testing equality of means in one-way Analysis 

Of Variance (ANOVA). As such, the test cannot be used to test whether there is a 

significant difference between two estimators. The Sign test and the Wilcoxon rank 

sum test are non-parametric equivalents to the t-test for matched pairs and the t-test 

for independent samples respectively.  

 

It

Better and Percentage Best (PBt) are more intuitive non-parametric measures and they 

are easier to interpret than ranking non-parametric procedures. Sani (1995) 

demonstrated that the Percentage Best measure gives similar results to the Wilcoxon 

test in an inventory control context. In his research, the PBt measure resulted in 

straightforward ordering as to which method performs best, second best etc. Finally, 

the PBt is likely to be of greater importance (than the PB), from a practitioner’s 

perspective, since each method is tested against all other estimators. As such, we 

choose the PBt measure for generating pair-wise comparison results. We will test the 

hypothesis that the two methods under concern perform identically. The alternative 

hypothesis is that one estimator performs better than the other in terms of (a) 

percentage of times (series) that it results in the lowest number of units in stock, (b) 

percentage of times (series) that it results in the highest service level. The Z-test 

statistic (difference between population proportions, see sub-sub-section 8.9.3.2, 

equation (8.18)) will be used to test the statistical significance of the results.   

 

T

method performs better/best but not by how much. Therefore, a relative measure 

needs to be introduced, to indicate the performance differences in descriptive terms. 

An appropriate measure (and particularly relevant to the purposes of our research) is 

the “Average Percentage Regret (APR)” introduced in Sani and Kingsman (1997). 

The APR measures the regret of using a particular method (estimator) compared to 
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In the context of our research, and when results are generated with respect to the 

average number of units in stock, the APR of using estimator x , across all series, is 

given by (9.36): 

 

n

n S
∑
i i

iix

x
Mn

Mn
=

−

=
1

,

                  (9.36) 

 

where: 

particular demand data series considered 
 

resulted from the employment of 

estimator 

StockAPR

 

i  is the 

n 000,3=

ix ,  is the average number of units in stock S

x  on series , and 

t series. 

 

 the APR is the amount each estimator falls short 

f the maximum possible CSL across all series: 

i

Mni  is the lowest average number of units in stock achieved (by one of the estimators 

considered) on the par icular 

When results are generated on CSL,

o

 

n

n ixi CSLMx
∑

− ,

i i
x

Mx=
=

1                   (9.37) 

 

where: 

s the CSL (%) resulted from the employment of estimator 

CSLAPR

 

CSL ix ,  i x  on series , and 

 is the maximum CSL achieved (by one of the estimators considered) on the 

particu

 

simple and clear idea of the relative performance of each estimator 

nd it was argued (Sani and Kingsman, 1997) to be particularly meaningful from a 

i

Mxi

lar series. 

The APR gives a 

a

practitioner’s perspective. As such, this measure will be used for generating 

comparative descriptive results in our simulation experiment. The interpretation of 
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this measure is very straightforward. The measure indicates how much better each 

estimator could perform in comparison with the best possible attainable performance. 

The method with the least APR is obviously the one that should be preferred in 

practice. 

 

9.8 Conclusions 

 control model of the ( ) form has been developed in this 

hapter. The model will serve the purpose of assessing the empirical utility of our 

 available for 

imulation. The model has the following characteristics: all demand not satisfied 

(9.21) 

 a specified emergency delivery fraction per unit value short, equation (9.27)  

 volume differences, regarding 

e average number of units in stock for each of the estimators considered, and the 

 

A periodic inventory ST  ,

c

theoretical findings. That is, the thesis has focused so far on the issue of forecasting 

intermittent demand and how the forecasting accuracy can be improved. However, we 

recognise that improvements in forecasting accuracy are not of great practical 

importance unless they are reflected in an inventory control situation.   

 

The periodic nature of our model is dictated by the empirical data

s

directly from stock is backordered and met from the next scheduled replenishment 

quantity or from an emergency delivery on the following day; the variability of 

demand over lead time plus review period is estimated by using the smoothed MSE 

approach; the demand over lead time plus one review period is approximated by the 

NBD; the managerial constraints imposed on the system are:  

 

• a specified shortage fraction per unit value short, equation 

•

• a specified customer service level, equation (9.30). 

 

Comparative results will be generated with respect to

th

Customer Service Level (CSL) achieved. No inventory cost results will be generated 

due to the limited information available for our empirical data sample. Two accuracy 

measures will be employed for comparison purposes: the Percentage Best (PBt) and 

the Average Percentage Regret (APR). 
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CHAPTER 10 

 

Empirical Analysis - Forecasting 
 

10.1 Introduction 
 

The purpose of our empirical analysis is to assess the practical validity and utility of 

the main theoretical findings of this research. It is to discuss the extent to which the 

theory developed in chapters 3, 4, 5 and 6, but also elsewhere in the academic 

literature and in particular in Croston (1972), holds for a large number of real world 

cases. For this to be done a simulation experiment will be conducted on 3,000 real 

demand data series that come from the automotive industry. The simulation 

experiment consists of two main modules: forecasting and inventory control. The 

former module will assist our efforts to assess the empirical validity of our theoretical 

findings while the latter will be used to check the empirical utility of the theory 

developed in this research. 

 

Using the first module the forecasting performance of Croston’s method, EWMA, 

Approximation method and the 13 period Moving Average (MA) will be simulated on 

the real demand data. Subsequently, the performance of the estimators will be 

analysed with respect to their bias and their forecasting accuracy. The issue of 

categorisation of intermittent demand patterns (under what conditions one method 

performs better than one or all other methods?) will also be explored, by using the real 

data set available for this research. The accuracy measures to be used for those 

purposes and the tests to be employed for demonstrating statistical significance of the 

results have been discussed in detail in chapter 8.  

 

The issue of the variability of the forecast errors is not explicitly addressed in our 

simulation experiment. By researching the validity of the theoretical rules developed 

in chapter 6 some conclusions can also be drawn regarding the variability of the 

forecast errors. 
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Using the second module, stock control results will be generated for all estimators. 

Some conclusions can then be drawn about the practical implications of the theory 

developed in this research. This thesis focuses on forecasting for periodic inventory 

control (see chapters 2 and 9). The model to be used for simulation purposes is of the 

periodic, order-up-to-level nature. The stock control model has been discussed in the 

previous chapter, where simulation details regarding both the inventory control and 

the forecasting module of our empirical data simulation experiment are also given 

(see section 9.7).  

 

At the time of analysing the empirical results it was decided that a separate discussion 

of the forecasting and inventory control findings was conceptually the best option. As 

mentioned above, the forecasting results relate to the empirical validity of our theory 

while the inventory control results to the utility of that theory in “real world” 

applications. Distinguishing between forecasting and inventory control results is also 

important for presentation purposes, because of the considerable size of the simulation 

output. Finally, the empirical analysis has led to a large number of findings across 

both areas. In order to do justice to the outcomes, forecasting and inventory control 

results will be presented separately. In this chapter we focus on the empirical validity 

of our results (forecasting module) and in chapter 11 the empirical utility of our 

findings (inventory control module) will be discussed. 

 

This chapter is structured as follows: in section 10.2, information regarding the real 

demand data series available for simulation is presented. In section 10.3 the 

simulation results are analysed with respect to the bias of intermittent demand 

estimates, while in section 10.4 the intermittent demand estimators are compared with 

respect to their forecasting performance. The issue of categorisation of “non-normal” 

demand patterns is explored in section 10.5 and, finally, the conclusions of this 

chapter are presented in section 10.6. 
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10.2 Real demand data series 
 

The data sample available for this research consists of the demand histories for 3,000 

SKUs. The data sample comes from the automotive industry and has been provided 

by Unicorn Systems (UK) Ltd. Some information regarding the company’s activities 

has been presented in section 2.5. Neither product description nor cost information 

has been given to us for any of the files. Each series covers the monthly demand 

history of a SKU over a two-year period. All series have been treated as intermittent, 

by Unicorn Systems, in practice. The average inter-demand interval ranges from 1.04 

to 2 months and the average demand per unit time period from 0.5 to 120 units. The 

average demand size, when demand occurs, is between 1 and 194 units and the 

variance of the demand sizes between 0 and 49,612 (the squared coefficient of 

variation ranges from 0 to 14). The statistics have been calculated considering all 24 

demand data periods. The sample contains slow movers, erratic and lumpy demand 

items as well as intermittent demand series with a constant (or approximately 

constant) size of demand, when demand occurs (see figures 10.2 and 10.3). The 

distribution of the real demand data files, with respect to their average inter-demand 

interval and the squared coefficient of variation, is indicated in figure 10.1. 
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Figure 10.1. The real demand series characteristics 
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The range of the squared coefficient of variation values is very wide. The demand 

files are well-suited to the testing of the categorisation results developed in this thesis 

since, as shown below, each of the categories are well represented in the sample. 

However, the sample does not include highly intermittent demand items and therefore 

our results cannot be assessed for such data. Considering the demand categorisation 

schemes developed in chapter 6, we indicate, in figures 10.2 and 10.3, the number of 

files that fall within each of the designated categories. 

 
 
      value)off-(cut 32.1=p  
 
 
      
       
   Erratic (but not               Lumpy 
   very intermittent)   
          441 files  314 files 49.02 =CV
              value)off-(cut
  

‘Smooth’ demand             Intermittent 
              (but not very erratic) 
       1271 files     974 files 
 
 

 

Figure 10.2. Categorisation of empirical data series (re-order interval systems) 
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    Smooth A   
     822 files  Intermittent 

           (but not very 
28.02 =CV     erratic)  

   Smooth B 
    449 files    974 files 

    
      

 

Figure 10.3. Categorisation of empirical data series (re-order level systems) 
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As mentioned above, the product description of the SKUs has not been specified and 

no information has been revealed as to the part of the supply chain in which they 

reside. The only other information accompanying the data sample is the following: 

 

• An estimate of the annual inventory holding charge per unit value (25%) 

• An estimate of the backorder cost per unit value short (28%) 

• The lead time, which is approximately 3 months. 

 

All three estimates refer to the whole data sample. No unit cost information is 

available for any of the SKUs. 

 

Despite the fact that each series consists of 24 demand data periods, results will be 

generated only on the latest 11 periods. The MA method has not been discussed in this 

thesis and no theoretical derivations have been made regarding this method’s 

performance on intermittent demand data. Nevertheless, a 13 period MA is currently 

used by Unicorn when dealing with intermittent demand. That is, this particular 

method has been used in practice to deal with the “non-normal” nature of the series 

available for this research. As such, the method’s performance can be viewed as a 

benchmark against which the performance of the other estimators can be compared. 

The Moving Average method has been shown empirically to outperform EWMA and 

Croston’s method in an inventory control context (Sani and Kingsman, 1997). The 

use of this method for simulation purposes necessitates the exclusion of the first 13 

periods data for generating results. That is, to initialise the particular method’s 

application, the first 13 period demand data need to be used. The other estimators can 

be initialised by withholding fewer demand data periods. Nevertheless, for 

consistency purposes it has been decided to initialise all methods’ application by 

using the same number of periods. Therefore, the “out of sample” comparison results 

will refer to the latest 11 monthly demand data.   
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10.3 The bias of intermittent demand estimates 
 

In this section the empirical results are analysed with respect to the biased or unbiased 

nature of the estimators considered in our simulation experiment. Results are first 

presented for the Mean signed Error (ME) accuracy measure by employing the t-test 

(for the population mean). To account for any potential scale dependencies and a 

potential asymmetric shape of the error distribution the original analysis is repeated 

for “scaled MEs” and a non-parametric test, the Wilcoxon test, is also employed. 

Statistically significant results at the 1% level are emboldened while significance at 

the 5% level is presented in italics.  

 

10.3.1 ME results 

 

The most obvious accuracy measure to be employed for testing the biased or unbiased 

nature of an estimator is the Mean signed Error (ME). The ME has been defined in 

sub-section 8.7.1, where details regarding the ME results generation process are also 

given. The ME is a scale dependent accuracy measure. The ME distribution though, 

across series, is expected to be fairly symmetric (or at least not as badly skewed as the 

distribution of other absolute error measures) since the original sign of the error is 

retained when summary results are generated. The mean and variance of the Mean 

Errors (MEs) across all 3,000 files for the 13 period Moving Average method 

(MA(13)) and all smoothing methods (for all α  smoothing constant values and lead 

times considered in the simulation experiment) are presented in Appendix 10.A of the 

thesis. The test statistic, for testing whether the independently drawn sample of MEs 

comes from a population with a mean 0  =µ , is the t statistic (see equation (8.2)). The 

critical values of the t statistic for rejecting the null hypothesis, that the estimation 

procedure under concern is unbiased, are (+,-) 1.96 and (+,-) 2.57 for the 5% and 1% 

significance level respectively. The bias has been recorded as: Forecast minus 

Demand, so that a plus (+) sign indicates that we overestimate the demand level 

whereas a minus (-) sign shows that we underestimate it. The results obtained for each 

of the three smoothing estimation procedures are presented in the following tables for 

different α  values. The results regarding the performance of the MA(13) are 

presented only in the first table.  
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α  = 0.05 All Points in Time Issue Points Only 

 L.T.=1 L.T.=3 L.T.=5 L.T.=1 L.T.=3 L.T.=5 

EWMA 1.59 1.99 2.25 2.59 4.02 4.74 

Croston 2.38 2.66 2.91 2.44 3.89 4.66 

Approxim. 0.18 0.67 1.04 0.31 1.89 2.72 

MA(13) 2.42 2.44 2.20 3.72 4.81 5.09 

 

Table 10.1. t-test for the population mean, α  = 0.05 

 

α  = 0.1 All Points in Time Issue Points Only 

 L.T.=1 L.T.=3 L.T.=5 L.T.=1 L.T.=3 L.T.=5 

EWMA 2.19 2.66 2.93 4.13 5.56 6.20 

Croston 3.24 3.42 3.62 3.00 4.53 5.29 

Approxim. -1.82 -0.95 -0.32 -1.84 0.16 1.16 

 

Table 10.2. t-test for the population mean, α  = 0.1 

 

α  = 0.15 All Points in Time Issue Points Only 

 L.T.=1 L.T.=3 L.T.=5 L.T.=1 L.T.=3 L.T.=5 

EWMA 2.64 3.16 3.49 5.73 7.04 7.54 

Croston 4.20 4.19 4.31 3.66 5.19 5.90 

Approxim. -4.28 -2.81 -1.79 -4.36 -1.82 -0.52 

 

Table 10.3. t-test for the population mean, α  = 0.15 

 

α  = 0.2 All Points in Time Issue Points Only 

 L.T.=1 L.T.=3 L.T.=5 L.T.=1 L.T.=3 L.T.=5 

EWMA 2.96 3.53 3.84 7.34 8.44 8.74 

Croston 5.22 4.93 4.96 4.36 5.84 6.46 

Approxim. -7.10 -4.87 -3.35 -7.13 -3.98 -2.29 

 

Table 10.4. t-test for the population mean, α  = 0.2 

 

The ME results, for α  = 0.05, are consistent with the theory presented in this thesis. At 

the 1% significance level, the EWMA method is shown to be unbiased when all points 
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in time are considered whereas the method is biased when forecasting performance is 

simulated on issue points only. Croston’s method is biased (at the 5% significance 

level for 1=L  and at the 1% significance level for 1>L )  independently of which 

points in time are taken into account for generating results. The Approximation 

method is unbiased, at the 5% level, in all but one of the simulated conditions. For 

issue points only, the method performs slightly worse than it does for all points in 

time and, when the lead time is set to 5 periods, the method is significantly biased at 

the 1% level. The MA(13) method is unbiased, at the 1% level, for all points in time. 

The method is shown to be biased, at the 1% level, when issue points only are 

considered.  

 

For all points in time, and as the smoothing constant value increases, the performance 

of the EWMA method deteriorates. In fact for 1.0≥α , the method can now be shown 

to be unbiased (at the 1% significance level) only when one step ahead forecasts are 

generated and for α  = 0.1. For all other simulated scenarios the method is shown to be 

biased. This finding is not consistent with the theory developed by Croston (1972). 

The empirical evidence suggests that the EWMA systematically overestimates the 

mean demand level. Results to be presented in the following sub-section support this 

statement. The unexpectedly poor performance of EWMA, observed in this sub-

section, is clearly an issue that requires further examination. We will not attempt to 

resolve this theoretical inconsistency in the rest of this thesis but in the following 

sections and sub-sections we will attempt to provide some empirical insight regarding 

the EWMA’s performance that may be of interest to researchers who will take this 

issue forward.  

 

For issue points only and for a specified lead time length, the bias of EWMA 

increases with the smoothing constant value and this is consistent with the theory. The 

same is shown to be the case for Croston’s method, for both all and issue points in 

time only (see Appendix 10.A, tables 10.A.1 – 10.A.4).  

 

For α  = 0.1 the Approximation method is still unbiased at the 5% level and the sign of 

the ME indicates that, in the majority of cases,  the method slightly underestimates the 

level of demand, as theoretically expected. As the smoothing constant value increases 

the Approximation method underestimates the mean demand level by even more. The 
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Approximation method is theoretically, approximately, unbiased for “low” smoothing 

constant values. The simulation results indicate that the deterioration in bias as α  

increases may be more rapid, in practice, than was anticipated by the theoretical 

results. The ME results also indicate that, for “higher” α  values (0.15, 0.2), the 

method’s performance improves according to the t-test as the lead time length 

increases. This is because the variability of the forecast errors produced by the 

Approximation method naturally increases significantly with the lead time but the 

average ME itself does not necessarily increase. In fact the absolute average ME may 

remain the same or even be reduced as the lead time increases.  

 

Overall, we can conclude that Croston’s method is biased, in all simulated conditions, 

as was expected in theory. EWMA is biased for issue points only (as expected) but, 

for 1.0≥α , it is also biased for all points in time. This result is inconsistent with 

theory and requires further research. The Approximation method is unbiased for low 

values of α  ( 1.0≤α ) but shows a faster deterioration in bias for higher α  values than 

was expected from our theoretical investigation. The MA(13) is unbiased, at the 1% 

significance level, for all points in time whereas the method is biased when issue 

points only are considered. No theoretical results have been developed in this thesis 

(or elsewhere in the academic literature) regarding the performance of MA(13) (or in 

general of the moving average estimator) in an intermittent demand context. 

Nevertheless, and if Croston’s model is assumed, the MA(13) is theoretically 

expected to perform as the EWMA estimator, i.e. a certain bias should be expected 

when issue points only are considered whereas the estimator is theoretically unbiased 

in a re-order interval context. In that respect the ME results presented for the MA(13) 

are consistent with the theory according to the t-test, at the 1% significance level. 

 

10.3.2 Scale independent ME results 

 

As discussed in chapter 8, the main disadvantage of the ME is that it is not a relative 

error measure. Therefore, the analysis of the simulation output is repeated for “scaled 

MEs”. The originally calculated MEs, per method, per series, are divided by the 

average demand per unit time period (for the series under concern) so that scale 

dependencies are eliminated. The t-test, equation (8.2), can then be applied to the new, 

scale independent, sample of MEs, in order to check the originally obtained results. In 
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addition, in order to account for a potentially skewed distribution of the MEs, a non-

parametric ranking test, the Wilcoxon test, is introduced, that considers only the 

relationship between the MEs, in order to generate results, without taking into account 

the actual size of them. The test has been discussed in detail in sub-section 8.7.2. The 

sample size (3,000 series) allows us to test the statistical significance of the results by 

using the normally distributed Z  test statistic (see equation (8.4)). The critical values 

for rejecting the null hypothesis that the estimator under concern is unbiased are as 

discussed in the previous sub-section. The plus (+) sign indicates that the method 

under concern overestimates the demand level, whereas the minus (-) sign that it 

underestimates it. We first present the scaled ME results and then the Wilcoxon test 

results. 

 

α  = 0.05 All Points in Time Issue Points Only 

 L.T.=1 L.T.=3 L.T.=5 L.T.=1 L.T.=3 L.T.=5 

EWMA 4.48 5.20 5.56 7.55 10.33 11.12 

Croston 6.84 7.36 7.63 7.51 10.31 11.27 

Approxim. 2.93 3.72 4.23 4.03 6.75 7.91 

MA(13) 6.79 6.88 6.26 10.30 13.00 12.62 

 

Table 10.5. t-test for the population mean (scaled MEs), α  = 0.05 

 
α  = 0.1 All Points in Time Issue Points Only 

 L.T.=1 L.T.=3 L.T.=5 L.T.=1 L.T.=3 L.T.=5 

EWMA 5.29 6.23 6.56 10.61 13.82 14.07 

Croston 8.30 8.68 8.78 8.26 11.40 12.15 

Approxim. -0.79 0.53 1.48 0.38 3.43 4.95 

 

Table 10.6. t-test for the population mean (scaled MEs), α  = 0.1 
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α  = 0.15 All Points in Time Issue Points Only 

 L.T.=1 L.T.=3 L.T.=5 L.T.=1 L.T.=3 L.T.=5 

EWMA 5.85 7.00 7.34 13.91 17.46 16.98 

Croston 10.07 10.20 10.03 9.26 12.68 13.13 

Approxim. -5.35 -3.17 -1.52 -3.77 -0.40 1.74 

 

Table 10.7. t-test for the population mean (scaled MEs), α  = 0.15 

 

α  = 0.2 All Points in Time Issue Points Only 

 L.T.=1 L.T.=3 L.T.=5 L.T.=1 L.T.=3 L.T.=5 

EWMA 6.14 7.54 7.89 17.35 21.12 19.75 

Croston 12.01 11.81 11.30 10.43 14.07 14.15 

Approxim. -10.70 -7.38 -4.76 -8.37 -4.70 -1.67 

 

Table 10.8. t-test for the population mean (scaled MEs), α  = 0.2 

 

When the scaled MEs are considered, the EWMA, Croston’s method and MA(13) are 

shown to be always biased independently of the simulated scenario. The original error 

distribution for these methods appears to be positively skewed. By reducing the scale 

dependencies the average ME decreases. At the same time, though, there is a 

considerable reduction of the variability of the MEs, across series. As such, it 

becomes easier to demonstrate the biased nature of these methods. Similar comments 

can be made for the Approximation method when α  is set to 0.05. For higher 

smoothing constant values and in the simulated cases that the Approximation method 

has been already shown to be biased (negative bias), the original error distribution is 

negatively rather than positively skewed. By reducing the scale dependencies the 

average ME reduces in absolute terms but there is also a considerable reduction of the 

variability of the MEs across series.  

 

The t test statistic value obtained on the scaled MEs is greater, for most methods, than 

the value obtained on the originally calculated MEs (or lower in case that the original 

value is negative). This is not true for the statistically significant results obtained in 

the previous sub-section for the Approximation method, when the average ME is 

negative. In those cases the performance of the Approximation method seems to 
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improve when results are generated on the scaled MEs. The Approximation method 

performs particularly well for α = 0.1 and 0.15. As mentioned above, for α = 0.05 we 

greatly overestimate the mean demand level, the correction to Croston’s estimates 

being insignificant in volume terms. For α = 0.2 we greatly underestimate the mean 

demand level and, as discussed in the previous sub-section, the estimator is biased 

with the exception of the method’s performance in a re-order level context when the 

lead time length equals 5 periods. The results presented in tables 10.5 – 10.8 indicate 

that the Approximation method is, overall, the least biased of the four methods 

discussed in this chapter and this matter will be further assessed later in this sub-

section but also in section 10.4. 

 

Apart from the discrepancies between the original ME and scaled ME results when 

α = 0.05, the scale differences have not affected considerably the validity of the 

comments made in the previous sub-section. (Please note that the MA(13) which is 

now found to be biased was, in the previous sub-section, shown to be unbiased only at 

the 1% significance level.) This is because the sign of the MEs is taken into account 

when we arithmetically average them across series and as such the scale dependence 

does not, as expected, have a great effect on the average ME calculated for each of the 

estimators considered. Overall the original ME results are proven to be fairly accurate, 

without being particularly affected by scale differences among the real demand series. 

This is regarded as a significant finding since empirical evidence is now provided, in 

an intermittent demand context, to justify the fact that the ME, despite its absolute 

nature as an error measure, does not suffer from the serious scale dependence problem 

that other absolute measures like the Mean Squared Error (MSE) or Root Mean 

Squared Error (RMSE) do. Nevertheless, it is important to note that the results 

generated on the scaled MEs have given more confidence in our conclusions. The 

original results that have been affected by the scale dependence problem have been 

highlighted and we can now comment with more certainty on the biased (or unbiased) 

nature of alternative estimators.  

 

We conclude that the results obtained by the ME are fairly reliable without being 

particularly affected by scale dependencies. Nevertheless, the confidence in our 

conclusions can be increased by generating scaled ME results. From a computational 

perspective, the only new input that is required is the average demand per period 
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value, for each one of the series considered, and this piece of information will, most 

probably, be already available in any research exercise. 

 

The final test to be employed for assessing the biased (or unbiased) nature of the 

estimation procedures considered in this chapter is the Wilcoxon test. The Z test 

statistic values are presented, for different smoothing constant values, in tables 10.9 – 

10.12. 

 

α  = 0.05 All Points in Time Issue Points Only 

 L.T.=1 L.T.=3 L.T.=5 L.T.=1 L.T.=3 L.T.=5 

EWMA 3.37 4.78 5.97 6.05 8.80 10.12 

Croston 5.22 6.40 7.61 6.01 8.82 10.18 

Approxim. 1.57 3.14 4.49 2.32 5.57 7.22 

MA (13) 5.48 6.49 6.65 8.57 11.12 11.31 

 

Table 10.9. Wilcoxon test, α  = 0.05 

 
α  = 0.1 All Points in Time Issue Points Only 

 L.T.=1 L.T.=3 L.T.=5 L.T.=1 L.T.=3 L.T.=5 

EWMA 4.40 5.90 7.16 8.67 11.73 12.77 

Croston 6.78 7.78 8.85 7.07 9.93 11.26 

Approxim. -1.90 0.28 2.14 -1.08 2.74 4.83 

 

Table 10.10. Wilcoxon test, α  = 0.1 

 
α  = 0.15 All Points in Time Issue Points Only 

 L.T.=1 L.T.=3 L.T.=5 L.T.=1 L.T.=3 L.T.=5 

EWMA 4.67 5.65 6.01 9.68 12.63 12.31 

Croston 6.47 6.61 7.40 7.17 8.69 9.68 

Approxim. -4.88 -2.48 -0.47 -3.16 -0.02 1.80 

 

Table 10.11. Wilcoxon test, α  = 0.15 

 

 



 274

α  = 0.2 All Points in Time Issue Points Only 

 L.T.=1 L.T.=3 L.T.=5 L.T.=1 L.T.=3 L.T.=5 

EWMA 5.53 7.35 8.55 13.97 17.41 17.28 

Croston 10.12 10.65 11.12 8.89 12.34 13.30 

Approxim. -11.75 -7.39 -3.70 -10.32 -5.07 -1.19 

 

Table 10.12. Wilcoxon test, α  = 0.2 

 

The Wilcoxon test results confirm the unbiased nature of the Approximation method 

for α  = 0.1 and all points in time. For issue points only the estimator is unbiased when 

one step ahead forecasts are considered. The estimator is also unbiased for α  = 0.05 

and one step ahead forecasts, as well as for higher smoothing constant values when 

the lead time length is set to 3 or 5 periods. All other estimators are shown to be 

biased in all simulated cases.  

 

The EWMA error distribution is always badly positively skewed and as discussed in 

the previous sub-section this finding is not consistent with the theory. Our discussion 

on the forecasting performance of EWMA is continued in the following sections.  

 

The MA(13) is found to be biased at the 1% significance level and we may now 

comment on the biased nature of this particular estimator in both a re-order level and 

a re-order interval context. As discussed earlier in this section, if Croston’s model is 

assumed, the MA(13) is theoretically expected to perform as the EWMA estimator, 

i.e. to be biased when issue points only are considered and unbiased when results are 

generated on all points in time. In that respect, the poor performance of the MA(13), 

in a re-order interval context, is an issue that requires further examination. 

 

The Wilcoxon test results lead to exactly the same conclusions as the scaled ME 

results (with the exception of the unbiased nature of the Approximation method for α  

= 0.05 and lead time equals one). In all other cases the sign of the test statistic is the 

same and identical inferences can be made for the populations of the MEs obtained by 

alternative estimators across series. The Wilcoxon test results indicate that the 

Approximation method is, overall, the least biased of the four methods discussed in 

this chapter.  
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10.3.3 Conclusions 

 

In this section the performance of four intermittent demand estimators was analysed 

with respect to their biased (or unbiased) nature. The natural accuracy measure to be 

used for that purpose is the Mean signed Error (ME). The ME though is theoretically 

a scale dependent error measure. Therefore results were also generated on the scaled 

MEs (the original ME is divided by the average demand per unit time period for the 

series under concern) and a non-parametric procedure was also introduced that does 

not take into account the actual size of the errors. In summary the results demonstrate 

that: 

 

• Croston’s method is biased and this is consistent with the theory developed in this 

thesis 

 

• EWMA is biased, in a re-order level context, and this is consistent with the theory 

developed by Croston (1972) 

 

• EWMA is also biased in a re-order interval context and this issue requires further 

examination 

 

• The MA(13) method is biased in both a re-order level and a re-order interval 

context. The poor performance of MA(13), when all points in time are taken into 

account, is an issue that requires further research. 

 

• The Approximation method can be claimed to be unbiased for α  = 0.1. For α  = 

0.05 the method does not sufficiently correct for the bias implicit in Croston’s 

estimates, unless one step ahead forecasts are considered. For α  = 0.15, 0.2 the 

method performs well only in combination with longer lead times.  

 

The results discussed above will be re-considered in the following chapter where 

the performance of the Approximation method is analysed in terms of the service 

level resulting from its implementation in practice.  
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• Where bias had been theoretically anticipated, the sign of the bias is for all 

methods the theoretically expected one. 

 

• The ME as an accuracy measure is not particularly affected by scale differences 

amongst the series considered for generating results. Nevertheless, in the next 

section it is shown that the choice of the scaled or non-scaled ME measure, for 

comparison purposes,  affects the significance of the t-test results. 
 

10.4 The accuracy of intermittent demand estimates 
 

In this section the accuracy of the intermittent demand estimators considered in this 

chapter is tested, and comparative results are presented by using a range of accuracy 

measures. The Mean signed Error (ME) is first used to conduct pair-wise accuracy 

comparisons. Statistical significance is tested by using the t-test (difference between 

population means). The ME results have already been shown to be reliable without 

being particularly affected by the scale dependence problem. Nevertheless, to increase 

confidence in our conclusions the same exercise is repeated for scaled MEs.  

 

A relative error measure (introduced in chapter 8) is also employed in this section, 

namely the Relative Geometric Root Mean Square Error (RGRMSE), which, 

theoretically and empirically (Fildes, 1992) does not suffer from the scale dependence 

problem (when results are generated across many series). In chapter 8 it was also 

argued that the RGRMSE, generated in a particular series, is not affected by extreme 

observations (outliers). Therefore, in this section we present results on forecasting 

accuracy starting with an analysis of a scale dependent error measure and then 

progressively eliminate the scale dependencies as well as the effect of the outliers on 

the error distributions. 

 

In addition a non-parametric approach is also considered for generating results based 

on the Percentage Better and Percentage Best accuracy measures. Non-parametric 

tests sacrifice power in terms of using all available information to reject a false null 

hypothesis. This is because they consider relationships between the errors rather than 

the error sizes themselves. Nevertheless, they require no specific error population 
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assumptions to be made and as such they may provide further insight as to how the 

alternative estimators behave. 

 

At this point it is important to note that all smoothing methods are compared against 

MA(13) for different smoothing constant values. The performance of the moving 

average method is evaluated only for N (moving average length) = 13 and not for any 

other N value. In that respect, we put the class of simple moving average estimators at 

a relative disadvantage since a different (potentially more accurate) performance may 

be the case for the moving average, for a different moving average length. 

Nevertheless, the purpose of including the moving average method in this empirical 

experiment is to introduce a benchmark type of forecasting (and inventory control) 

performance against which the performance of other estimators can be assessed. All 

comments to be made in this section (but also in the following chapter) with respect to 

the performance of the MA(13) should not be misinterpreted as remarks regarding the 

performance of any other moving average length. 

 

The statistically significant results at the 1% significance level to be presented in this 

section are emboldened while statistical significance at the 5% level only is indicated 

in italics. 

 

10.4.1 Parametric tests 

 

10.4.1.1 ME results 

 

The average MEs across all series and the corresponding variances associated with the 

application of the estimators considered in this chapter on the real data are presented 

in Appendix 10.A. The t-test (difference between population means, equation (8.3)) has 

been used to test for the statistical significance of the pair-wise comparison results. 

We test the null hypothesis that both methods perform the same. The alternative 

hypothesis is that the first method performs less accurately that the second one (i.e. 

that the absolute average ME given by the first method is greater than the absolute 

average ME given by the second method). The critical values for rejecting the null 

hypothesis are 1.64 and 2.32 (one-sided test) for the 5% and 1% significance level 

respectively.  
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α  = 0.05  Croston-

EWMA 

EWMA- 

Approx. 

Croston-

Approx. 

MA- 

EWMA 

Croston- 

MA 

MA- 

Approx. 

L.T.=1 0.60 0.97 1.60 0.40 0.25 1.43 

L.T.=3 0.52 0.91 1.42 0.20 0.34 1.14 

All 

Points in 

Time L.T.=5 0.50 0.85 1.33 -0.11 0.62 0.75 

L.T.=1 -0.06 1.59 1.51 0.53 -0.59 2.21 

L.T.=3 -0.03 1.48 1.43 0.32 -0.36 1.85 

Issue 

Points 

Only L.T.=5 0 1.41 1.40 0.01 -0.01 1.47 

 

Table 10.13. t-test (difference between population means), α  = 0.05 

 

α  = 0.1  Croston-

EWMA 

EWMA- 

Approx. 

Croston-

Approx. 

MA- 

EWMA 

Croston- 

MA 

MA- 

Approx. 

L.T.=1 0.86 0.18 1.01 0.21 0.64 0.38 

L.T.=3 0.63 1.16 1.75 -0.12 0.74 1.03 

All 

Points in 

Time L.T.=5 0.55 1.82 2.34 -0.52 1.06 1.31 

L.T.=1 -0.70 1.55 0.83 -0.23 -0.46 1.30 

L.T.=3 -0.62 3.78 3.11 -0.47 -0.15 3.28 

Issue 

Points 

Only L.T.=5 -0.56 3.54 2.95 -0.85 0.28 2.71 

 

Table 10.14. t-test (difference between population means), α  = 0.1 

 

α  = 0.15  Croston-

EWMA 

EWMA- 

Approx. 

Croston-

Approx. 

MA- 

EWMA 

Croston- 

MA 

MA- 

Approx. 

L.T.=1 1.32 -1.38 -0.06 0.14 1.08 -1.13 

L.T.=3 0.87 0.13 0.98 -0.32 1.15 -0.19 

All 

Points in 

Time L.T.=5 0.69 1.13 1.80 -0.83 1.51 0.29 

L.T.=1 -1.32 0.80 -0.51 -1.01 -0.25 -0.24 

L.T.=3 -1.16 3.62 2.41 -1.24 0.11 2.25 

Issue 

Points 

Only L.T.=5 -1.05 4.95 3.84 -1.68 0.62 3.23 

 

Table 10.15. t-test (difference between population means), α  = 0.15 
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α  = 0.2  Croston-

EWMA 

EWMA- 

Approx. 

Croston-

Approx. 

MA- 

EWMA 

Croston- 

MA 

MA- 

Approx. 

L.T.=1 1.92 -3.38 -1.41 0.15 1.52 -2.79 

L.T.=3 1.20 -1.16 0.04 -0.44 1.55 -1.50 

All 

Points in 

Time L.T.=5 0.91 0.27 1.16 -1.06 1.93 -0.79 

L.T.=1 -1.97 -0.14 -2.05 -1.79 -0.01 -1.88 

L.T.=3 -1.68 3.03 1.33 -1.98 0.38 0.89 

Issue 

Points 

Only L.T.=5 -1.50 4.55 3.00 -2.46 0.96 2.02 

 

Table 10.16. t-test (difference between population means), α  = 0.2 

 

No significant differences between the estimators are indicated for α  = 0.05. As the 

smoothing constant value increases the superior performance of the Approximation 

method becomes apparent when issue points only are considered. Moreover it is 

important to note that as the α  value increases the Approximation method performs 

significantly better than other estimators when the lead time is set to 3 or 5 periods 

(i.e. not for one step ahead forecasts). This is also the case when all points in time are 

taken into account.  

 

For all points in time the Approximation method does not perform as well as it does 

when issue points only are considered, with the exception of the simulated scenarios 

referring to α  = 0.1. For α  = 0.05 the forecasting accuracy improvements achieved 

when the Approximation method is employed are not statistically significant. The 

results also indicate that α  = 0.2 is a prohibitively large smoothing constant value for 

the Approximation method unless long forecasting lead times are the case.  

 

The comparative results generated considering the bias of the alternative estimators 

indicate that the EWMA performs better than Croston’s method, when all points in 

time are considered, and this is consistent with the theory. Even though the 

differences are not statistically significant (in all but one simulated scenarios), 

EWMA performs consistently better than Croston’s method in a re-order interval 

context. The opposite is the case when issue points only are considered. The same 

comments can be made when we consider the comparison between Croston’s method 

and MA(13). The Moving Average method seems to perform better than EWMA for 
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α   0.1, with statistically significant differences obtained when issue points only are 

taken into account.  

≥

 

Before we close this sub-sub-section, we view as important to conduct an additional 

ME comparison of the estimators discussed in this chapter considering their best α  

value performance. Our empirical analysis focuses on “out of sample” comparisons 

only, and the few (if any) demand occurrences during the “transient” interval have not  

allowed the optimisation of the α  values used for the smoothing estimators 

(Approximation method, Croston’s method, EWMA). By considering the same α  

value for comparison purposes, we may have put some smoothing estimators at a 

relative advantage/disadvantage. Therefore, in order to investigate more thoroughly 

the ME performance differences between all the estimators discussed in this chapter, 

pair-wise comparisons are conducted considering the best ME performance of each 

smoothing estimator with respect to the smoothing constant value. That is, for every 

lead time length (and for both all and issue points in time only) the best ME 

performance (lowest absolute ME) of each smoothing estimator, across the four 

simulated α  values, is recorded and the t-test (difference between population means, 

equation (8.3)) is then used to test the statistical significance of the pair-wise 

comparison results.  

 

The best performance is identified by considering all 3,000 series contained in our 

empirical sample since optimisation in a real world system will, most probably, occur 

across a number of files and not for individual SKUs. The MA(13) is still considered 

for comparison purposes even though the average length has not been “optimised”. 

 

The smoothing constant values for which each (smoothing) estimator performs best  

are indicated in the following table, for all the simulated scenarios (see also Appendix 

10.A of the thesis). 
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Best smoothing constant value  

EWMA Croston Approximation 

L.T. = 1 0.05 0.05 0.05 

L.T. = 3 0.05 0.05 0.05 

 

All points 

in time L.T. = 5 0.05 0.05 0.1 

L.T. = 1 0.05 0.05 0.05 

L.T. = 3 0.05 0.05 0.1 

 

Issue points 

only L.T. = 5 0.05 0.05 0.15 

 

Table 10.17. Best α value performance – lowest (absolute) ME 

  

The bias of EWMA and Croston’s method becomes minimum for α  = 0.05 and this is 

true for all the scenarios considered in our experiment. As the lead time increases, the 

best α  value for the Approximation method increases as well (see also sub-section 

10.3.1). The t-test results of the best α  value analysis are presented in table 10.18.  

  

best α    Croston-

EWMA 

EWMA- 

Approx. 

Croston-

Approx. 

MA- 

EWMA 

Croston- 

MA 

MA- 

Approx. 

L.T.=1 0.60 0.97 1.60 0.40 0.25 1.43 

L.T.=3 0.52 0.91 1.42 0.20 0.34 1.14 

All 

Points in 

Time L.T.=5 0.50 1.39 1.88 -0.11 0.62 1.31 

L.T.=1 -0.06 1.59 1.51 0.53 -0.59 2.21 

L.T.=3 -0.03 2.83 2.76 0.32 -0.36 3.28 

Issue 

Points 

Only L.T.=5 0 3.12 3.09 0.01 -0.01 3.23 

 

Table 10.18. t-test (difference between population means), best α value 

 

The results presented in the above table indicate no significant bias differences, 

between the estimators considered in this chapter, in a re-order interval context, with 

the exception of the Approximation – Croston pair-wise comparison for L.T. = 5. For 

all points in time, the Approximation method performs better than any other estimator 

but not significantly so. When issue points only are taken into account the 

Approximation method performs best and the superior performance of the 

Approximation estimator is statistically significant.  
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The control parameter regarding the application of the Moving Average estimator (i.e. 

the moving average length) has not been “optimised” for the purposes of this 

comparison exercise. In that respect the MA(13) – Croston and MA(13) – EWMA 

pair-wise comparison results are rather surprising since no significant differences are 

indicated in any of the simulated scenarios. In fact, MA(13) performs better than 

EWMA for L.T. = 5 and all points in time but also better than Croston’s method for all 

the scenarios referring to a re-order interval context. 

 

10.4.1.2 Scaled ME results 

 

Results have also been generated considering the scaled MEs and they are 

subsequently presented in tables 10.19 – 10.22.  

 

α  = 0.05  Croston-

EWMA 

EWMA- 

Approx. 

Croston-

Approx. 

MA- 

EWMA 

Croston- 

MA 

MA- 

Approx. 

L.T.=1 1.91 0.96 2.80 0.91 1.18 1.93 

L.T.=3 1.72 0.95 2.62 0.69 1.14 1.67 

All 

Points in 

Time L.T.=5 1.59 0.88 2.44 0.20 1.46 1.10 

L.T.=1 0.15 2.38 2.49 1.17 -0.98 3.67 

L.T.=3 0.20 2.41 2.57 1.01 -0.78 3.52 

Issue 

Points 

Only L.T.=5 0.24 2.21 2.43 0.50 -0.25 2.78 

 

Table 10.19. t-test (scaled MEs, difference between population means), α  = 0.05 

 

α  = 0.1  Croston-

EWMA 

EWMA- 

Approx. 

Croston-

Approx. 

MA- 

EWMA 

Croston- 

MA 

MA- 

Approx. 

L.T.=1 2.63 2.99 5.36 1.09 1.59 4.01 

L.T.=3 2.14 3.88 5.82 0.54 1.60 4.37 

All 

Points in 

Time L.T.=5 1.81 3.51 5.22 -0.20 2.00 3.31 

L.T.=1 -1.33 7.08 5.61 -0.15 -1.18 6.90 

L.T.=3 -1.31 7.16 5.71 -0.47 -0.84 6.66 

Issue 

Points 

Only L.T.=5 -1.13 6.39 5.19 -1.02 -0.13 5.38 

 

Table 10.20. t-test (scaled MEs, difference between population means), α  = 0.1 
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α  = 0.15  Croston-

EWMA 

EWMA- 

Approx. 

Croston-

Approx. 

MA- 

EWMA 

Croston- 

MA 

MA- 

Approx. 

L.T.=1 3.78 -0.15 3.43 1.37 2.22 1.16 

L.T.=3 2.86 2.42 5.07 0.50 2.23 2.76 

All 

Points in 

Time L.T.=5 2.24 4.01 6.11 -0.49 2.66 3.42 

L.T.=1 -2.88 6.93 3.93 -1.68 -1.10 4.93 

L.T.=3 -2.87 11.88 8.77 -2.11 -0.67 9.22 

Issue 

Points 

Only L.T.=5 -2.47 10.77 8.18 -2.62 0.18 7.91 

 

Table 10.21. t-test (scaled MEs, difference between population means), α  = 0.15 

 

α  = 0.2  Croston-

EWMA 

EWMA- 

Approx. 

Croston-

Approx. 

MA- 

EWMA 

Croston- 

MA 

MA- 

Approx. 

L.T.=1 5.23 -4.12 1.08 1.71 2.97 -1.98 

L.T.=3 3.80 -0.36 3.31 0.54 2.93 0.20 

All 

Points in 

Time L.T.=5 2.83 2.08 4.80 -0.69 3.37 1.30 

L.T.=1 -4.52 6.09 1.52 -3.36 -0.84 2.26 

L.T.=3 -4.47 11.44 6.78 -3.86 -0.33 6.71 

Issue 

Points 

Only L.T.=5 -3.75 12.88 8.99 -4.26 0.61 8.15 

 

Table 10.22. t-test (scaled MEs, difference between population means), α  = 0.2 

 

The scaled ME results confirm the results obtained on the original MEs but more of 

the accuracy differences identified earlier in this section are now statistically 

significant. The superior performance of the Approximation method is clearly 

demonstrated when issue points only are considered. The same is the case when we 

refer to a re-order interval context. The estimator under concern performs 

significantly better than Croston’s method in almost all simulated cases. The same is 

true for the Approximation – EWMA and the Approximation – MA(13) pair-wise 

comparisons. It is only for α  = 0.2 and one step ahead forecasts that the MA(13) and 

EWMA perform significantly better than the Approximation method. Croston’s 

method is shown to perform significantly worse than the EWMA method for all 

points in time, while the opposite is the case for issue points only, especially for 

higher smoothing constant values. Croston’s method is also shown to perform 

significantly worse than the MA(13) in a re-order interval context while the 
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superiority of Croston’s method for issue points only is not statistically significant. 

The MA(13) method still performs better than EWMA for issue points only. No 

significant differences are indicated between them in a re-order interval context. 

 

The results obtained on the scaled MEs demonstrate very clearly the differences in 

bias between the estimators considered in this chapter. Overall, there are not great 

discrepancies between the ME and scaled ME results in terms of which method 

performs better or worse. Statistical significance though is now more easily 

demonstrated and as such more conclusive results can be generated across all 

estimators as opposed to the pair-wise comparison level. Considering the scaled ME 

results, the estimators considered in this chapter can be ordered as follows in terms of 

their bias (the first method being the one with least bias): 

 

All points in time   Issue points only 

1. Approximation   Approximation 

2. EWMA    Croston’s method 

3. MA(13)    MA(13) 

4. Croston’s method   EWMA 

 

(The overall measure of bias is calculated for each estimator as an equally weighted 

average of the absolute scaled MEs across all the control parameter combinations.) 

 

At this point we view as important to assess the validity of the above proposed 

ordering scheme when the best smoothing constant values are considered for 

comparison purposes. As such, an additional scaled ME comparison exercise of the 

estimators discussed in this chapter is performed considering the best α  value 

performances.  

 

The best α  values, with respect to the scaled ME (lowest scaled absolute ME) are 

indicated, for all the control parameter combinations and smoothing methods 

considered in our experiment, in table 10.23 (see also sub-section 10.3.2).  
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Best smoothing constant value  

EWMA Croston Approximation 

L.T. = 1 0.05 0.05 0.1 

L.T. = 3 0.05 0.05 0.1 

 

All points 

in time L.T. = 5 0.05 0.05 0.1 

L.T. = 1 0.05 0.05 0.1 

L.T. = 3 0.05 0.05 0.15 

 

Issue points 

only L.T. = 5 0.05 0.05 0.2 

 

Table 10.23. Best α value performance – lowest (absolute) scaled ME 

 

In all simulated cases the bias of EWMA and Croston’s method becomes minimum 

for α  = 0.05. When all points in time are taken into account, the scaled ME associated 

with the Approximation method becomes minimum for α  = 0.1. In a re-order level 

context, as the lead time increases, the best α  value for the Approximation method 

increases as well. The t-test results of the best α  value analysis are presented in the 

following table. 

 

best α    Croston-

EWMA 

EWMA- 

Approx. 

Croston-

Approx. 

MA- 

EWMA 

Croston- 

MA 

MA- 

Approx. 

L.T.=1 1.91 2.78 4.68 0.91 1.18 4.01 

L.T.=3 1.72 3.45 5.15 0.69 1.14 4.37 

All 

Points in 

Time L.T.=5 1.59 3.00 4.59 0.20 1.46 3.31 

L.T.=1 0.15 5.33 5.39 1.17 -0.98 6.90 

L.T.=3 0.20 7.65 7.74 1.01 -0.78 9.22 

Issue 

Points 

Only L.T.=5 0.24 7.33 7.51 0.50 -0.25 8.15 

 

Table 10.24. t-test (scaled MEs, difference between population means),  

best α  value 

 

The scaled ME results confirm the results obtained on the original MEs (see table 

10.18) but the superiority of the Approximation method (in both a re-order level and a 

re-order interval context) is now better marked. No significant differences are 

indicated in the MA(13) – EWMA and MA(13) – Croston pair-wise comparisons. 

EWMA performs better than Croston’s method in all simulated cases but the 
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performance differences are statistically significant only in the re-order interval 

context.  

 

When all points in time are considered, the best smoothing constant value analysis (on 

MEs and scaled MEs) results in an ordering scheme that is the same as the one 

presented earlier in this sub-sub-section. When issue points only are taken into 

account the Approximation method still performs best, followed by Croston’s method 

and EWMA. The latter estimators perform very similarly and their performance is 

slightly better than that of MA(13). 

 

10.4.1.3 RGRMSE results 

 

In this section accuracy results are generated by considering the RGRMSE measure. 

Results with a value less than 1 indicate that the second method performs better than 

the first (i.e. the GRMSE associated with the second method across series is lower 

than the GRMSE that corresponds to the first one). The error results per series (per 

method) are generated based on the GRMSE associated with the application of each 

one of the estimators on the series under concern. To test the statistical significance of 

the results the natural logarithm of the GRMSE per file is calculated for all methods 

and the t-test (difference between population means) is used on the new series of 

logGRMSEs. For more details on the validity of the assumptions behind such an 

approach as well as the results generation process please refer to sub-sub-section 

8.9.3.1. In brackets we present the test statistic value. 
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α  = 0.05  Croston-

EWMA 

EWMA- 

Approx. 

Croston-

Approx. 

MA- 

EWMA 

Croston- 

MA 

MA- 

Approx. 

L.T.=1 0.99 

(0.45) 

0.99 

(0.34) 

0.98 

(0.79) 

0.94 

(2.77) 

1.05 

(-2.30) 

0.93 

(3.11) 

L.T.=3 0.99 

(0.43) 

0.99 

(0.46) 

0.98 

(0.90) 

0.97 

(1.24) 

1.02 

(-0.79) 

0.96 

(1.71) 

 

 

All 

Points in 

Time L.T.=5 0.99 

(0.44) 

0.99 

(0.36) 

0.98 

(0.80) 

0.98 

(0.83) 

1.01 

(-0.38) 

0.97 

(1.19) 

L.T.=1 1.00 

(0.06) 

0.98 

(0.65) 

0.98 

(0.71) 

0.94 

(2.65) 

1.06 

(-2.59) 

0.93 

(3.31) 

L.T.=3 1.00 

(-0.12) 

0.98 

(0.91) 

0.98 

(0.78) 

0.98 

(1.02) 

1.03 

(-1.14) 

0.95 

(1.94) 

 

 

Issue 

Points 

Only L.T.=5 1.00 

(0.11) 

0.98 

(0.75) 

0.98 

(0.86) 

0.98 

(0.70) 

1.02 

(-0.59) 

0.96 

(1.46) 

 

Table 10.25. t-test (GRMSE, difference between population means), α  = 0.05 

 

α  = 0.1  Croston-

EWMA 

EWMA- 

Approx. 

Croston-

Approx. 

MA- 

EWMA 

Croston- 

MA 

MA- 

Approx. 

L.T.=1 0.99 

(0.37) 

0.98 

(0.78) 

0.97 

(1.16) 

0.93 

(3.03) 

1.06 

(-2.65) 

0.92 

(3.82) 

L.T.=3 0.99 

(0.57) 

0.97 

(1.08) 

0.96 

(1.65) 

0.97 

(1.22) 

1.02 

(-0.64) 

0.95 

(2.31) 

 

 

All 

Points in 

Time L.T.=5 

 

1.00 

(0.16) 

0.97 

(1.10) 

0.97 

(1.25) 

0.98 

(0.64) 

1.01 

(-0.46) 

0.96 

(1.75) 

L.T.=1 1.01 

(-0.25) 

0.97 

(1.31) 

0.98 

(1.06) 

0.94 

(2.74) 

1.07 

(-3.00) 

0.91 

(4.08) 

L.T.=3 1.00 

(-0.17) 

0.96 

(1.67) 

0.96 

(1.49) 

0.98 

(0.87) 

1.03 

(-1.05) 

0.94 

(2.56) 

 

 

Issue 

Points 

Only L.T.=5 1.00 

(-0.14) 

0.96 

(1.61) 

0.96 

(1.47) 

0.99 

(0.54) 

1.02 

(-0.68) 

0.94 

(2.18) 

 

Table 10.26. t-test (GRMSE, difference between population means), α  = 0.1 
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α  = 0.15  Croston-

EWMA 

EWMA- 

Approx. 

Croston-

Approx. 

MA- 

EWMA 

Croston- 

MA 

MA- 

Approx. 

L.T.=1 0.99 

(0.31) 

0.97 

(1.40) 

0.96 

(1.71) 

0.94 

(2.84) 

1.06 

(-2.51) 

0.91 

(4.26) 

L.T.=3 0.99 

(0.47) 

0.97 

(1.40) 

0.96 

(1.86) 

0.98 

(0.91) 

1.01 

(-0.43) 

0.95 

(2.32) 

 

All 

Points in 

Time 

L.T.=5 1.01 

(-0.36) 

0.95 

(1.91) 

0.96 

(1.53) 

1.00 

(-0.05) 

1.01 

(-0.31) 

0.95 

(1.87) 

L.T.=1 1.01 

(-0.46) 

0.95 

(2.06) 

0.96 

(1.60) 

0.95 

(2.39) 

1.07 

(-2.87) 

0.90 

(4.51) 

L.T.=3 1.01 

(-0.48) 

0.95 

(2.20) 

0.96 

(1.72) 

0.99 

(0.46) 

1.02 

(-0.96) 

0.94 

(2.70) 

 

Issue 

Points 

Only 

L.T.=5 1.02 

(-0.88) 

0.93 

(2.57) 

0.96 

(1.68) 

1.00 

(-0.14) 

1.02 

(-0.76) 

0.94 

(2.47) 

 

Table 10.27. t-test (GRMSE, difference between population means), α  = 0.15 

 

α  = 0.2  Croston-

EWMA 

EWMA- 

Approx. 

Croston-

Approx. 

MA- 

EWMA 

Croston- 

MA 

MA- 

Approx. 

L.T.=1 0.99 

(0.59) 

0.96 

(1.78) 

0.95 

(2.36) 

0.94 

(2.77) 

1.05 

(-2.16) 

0.90 

(4.59) 

L.T.=3 0.99 

(0.25) 

0.95 

(2.21) 

0.94 

(2.44) 

1.00 

(0.13) 

1.00 

(0.12) 

0.94 

(2.36) 

 

All 

Points in 

Time 

L.T.=5 1.01 

(-0.56) 

0.93 

(2.80) 

0.94 

(2.21) 

1.03 

(-1.15) 

0.98 

(0.58) 

0.96 

(1.66) 

L.T.=1 1.01 

(-0.41) 

0.94 

(2.60) 

0.95 

(2.19) 

0.95 

(2.16) 

1.06 

(-2.60) 

0.90 

(4.85) 

L.T.=3 1.02 

(-0.94) 

0.92 

(3.19) 

0.95 

(2.25) 

1.01 

(-0.44) 

1.01 

(-0.51) 

0.93 

(2.79) 

 

Issue 

Points 

Only 

L.T.=5 1.04 

(-1.30) 

0.91 

(3.61) 

0.94 

(2.29) 

1.04 

(-1.36) 

1.00 

(0.04) 

0.94 

(2.28) 

 

Table 10.28. t-test (GRMSE, difference between population means), α  = 0.2 

 

The results indicate quite conclusively that the Approximation method performs 

significantly better than the MA(13). The Approximation method performs better than 
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EWMA and Croston’s method in all simulated cases but the accuracy differences 

become significant only for higher smoothing constant values (0.15, 0.2). This result is 

not entirely consistent with the results presented in the previous sub-sections. 

Considering the bias results, we might have expected to see some greater advantage of 

using the Approximation method for α  = 0.1 but we were not expecting to see a 

relative advantage for α  = 0.2. No significant differences are indicated between 

Croston’s method and EWMA, although the GRMSE (across series) associated with 

Croston’s method is consistently lower than that of the EWMA for issue points only, 

while the opposite is the case for all points in time. Croston’s method and EWMA 

perform significantly better than MA(13) and this result does not agree with the 

findings presented in the previous sub-sub-sections. When the effect of outliers is 

taken out, the MA(13) method does not outperform any of the other estimators 

considered in this chapter. The methods can now be ordered as follows in terms of 

their forecasting accuracy: 

 

All points in time   Issue points only 

1. Approximation   Approximation 

2. EWMA    Croston’s method 

3. Croston’s method   EWMA  

4. MA(13)    MA(13) 

 

(The overall measure of accuracy is calculated for each estimator as an equally 

weighted average of the GRMSEs across all the control parameter combinations.) 

 

The above ordering is accurate for all simulated scenarios, with the exception of  α  = 

0.15 and 0.2 (L.T. = 3, 5) where no significant differences are indicated in the MA(13) - 

Croston and MA(13) - EWMA pair-wise comparisons. This issue is further discussed 

in the following sub-section. 

 

The ordering of the methods discussed above is also valid when the best α  value 

performance (lowest GRMSE across series) is considered for all the smoothing 

estimators. The best α  values and the t-test results are presented in tables 10.29 and 

10.30 respectively. 
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Best smoothing constant value  

EWMA Croston Approximation 

L.T. = 1 0.1 0.1 0.2 

L.T. = 3 0.05 0.05 0.2 

 

All points 

in time L.T. = 5 0.05 0.1 0.15 

L.T. = 1 0.1 0.1 0.2 

L.T. = 3 0.05 0.05 0.2 

 

Issue points 

only L.T. = 5 0.05 0.15 0.15 

 

Table 10.29. Best α value performance – lowest GRMSE across series 

 

best α    Croston-

EWMA 

EWMA- 

Approx. 

Croston-

Approx. 

MA- 

EWMA 

Croston- 

MA 

MA- 

Approx. 

L.T.=1 0.99 

(0.37) 

0.97 

(1.51) 

0.96 

(1.88) 

0.93 

(3.03) 

1.06 

(-2.65) 

0.90 

(4.59) 

L.T.=3 0.99 

(0.43) 

0.97 

(1.09) 

0.96 

(1.52) 

0.97 

(1.24) 

1.02 

(-0.79) 

0.94 

(2.56) 

 

 

All 

Points in 

Time L.T.=5 0.99 

(0.35) 

0.97 

(1.02) 

0.96 

(1.38) 

0.98 

(0.83) 

1.01 

(-0.46) 

0.95 

(1.87) 

L.T.=1 1.01 

(-0.25) 

0.96 

(1.72) 

0.97 

(1.47) 

0.94 

(2.74) 

1.07 

(-3.00) 

0.90 

(4.51) 

L.T.=3 1.00 

(-0.12) 

0.96 

(1.65) 

0.96 

(1.52) 

0.98 

(1.02) 

1.03 

(-1.14) 

0.94 

(2.70) 

 

 

Issue 

Points 

Only L.T.=5 1.00 

(-0.05) 

0.95 

(1.73) 

0.96 

(1.68) 

0.98 

(0.70) 

1.02 

(-0.59) 

0.94 

(2.47) 

 

Table 10.30. t-test (GRMSE, difference between population means), best α  value 

 

10.4.1.4. Conclusions (parametric tests) 

 

The results obtained on the ME, scaled ME and RGRMSE measure indicate that, in 

both a re-order interval and a re-order level context, the Approximation method is the 

most accurate estimator. When higher smoothing constant values are considered, the 

gain in accuracy is particularly marked for longer lead times.  
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When all points in time are considered, EWMA is shown to perform more accurately 

than Croston’s method. Even though the differences are not statistically significant 

(and this is true only when the RGRMSE is considered), EWMA performs 

consistently better than Croston’s estimator. This finding does not agree with the 

empirical results presented in Willemain et al (1994). In that paper EWMA and 

Croston’s method were compared by means of simulation on 32 real demand data 

series, in a re-order interval context. The accuracy measures used, for comparison 

purposes, were the MAPE (Mean Absolute Percentage Error), MdAPE (Median 

Absolute Percentage Error), RMSE (Root Mean Squared Error) and MAD (Mean 

Absolute Deviation). Even though the accuracy differences were not as marked as 

when the methods were compared on theoretically generated data, Croston’s method 

was shown to outperform EWMA.  

 

The above discussed inconsistency clearly indicates the importance of the selection 

process of accuracy measures and provides some justification for devoting an entire 

chapter of this thesis to identifying the most appropriate error measures to be used for 

comparison purposes in an intermittent demand context. 

 

An important finding is also considered to be the poor performance of the MA(13) 

estimator. Sani and Kingsman (1997) have given some empirical support for the 

simple moving average method. The MA(13) seems to be fairly robust to the presence 

of outliers. When the effect of the extreme observations though is not considered, this 

method is the least accurate one. 

 

For issue points only, Croston’s method performs better than EWMA and this is in 

accordance with the theory (at least as far as the bias measure is concerned). As 

discussed above, the MA(13) method is shown to be the least accurate estimator when 

the RGRMSE measure is considered. This is not true when bias (or scaled bias) 

results are generated. In that case MA(13) performs better than EWMA and this is 

particularly true for higher smoothing constant values. This difference can also be 

attributed to a significant improvement of the performance of EWMA when the 

effects of outliers are reduced and this is what intuitively one should expect, 

especially for issue points only. 

 



 292

In this sub-section results have also been generated on all three accuracy measures 

considered (ME, scaled ME and GRMSE) with respect to the best α  value 

performance of the smoothing estimators. The results demonstrate the superiority of 

the Approximation method in both a re-order level and a re-order interval context. 

When all points in time are taken into account EWMA performs better than Croston’s 

method. The opposite is the case when results are generated on issue points only. The 

MA(13) is always the least desirable estimator but this is what we intuitively expected 

since the average length has not been “optimised” on our empirical data sample.  

 

10.4.2 Non-parametric tests 

 

Percentage Better (PB) and Percentage Best (PBt) results have also been generated 

considering the absolute ME (i.e. ignoring the sign) and RGRMSE per series 

associated with each of the estimation procedures discussed in this chapter. The PB 

measure refers to pair-wise comparisons (proportion of times that one method 

performs better than the other, i.e. proportion of series that the ME or GRMSE of one 

method is lower than that of the other). The statistical significance of the results is 

checked by using equation (8.17). The PBt measure indicates the proportion of times 

that one method performs better than all other estimation procedures. Statistical 

significance is also checked on a pair-wise basis (see sub-sub-section 8.9.3.2, 

equation (8.18)). 

 

10.4.2.1 Percentage Better results (ME, RGRMSE) 

 

The Percentage Better results are presented, for different smoothing constant values, 

in Appendix 10.B. In tables 10.B.1 – 10.B.4 we present the Z-test statistic value 

(difference between population proportions) when results are generated on the ME. In 

brackets we present the number of files that the absolute ME of the first method is 

greater than that of the second method. Positive values for the test statistic indicate 

that the second method performs better than the first. The critical values are as 

discussed in the previous section. Some ties occur in the Croston – EWMA pair-wise 

comparison (i.e. ). No ties occur in any of the other pair-wise 

comparisons. For the Croston – EWMA comparison, in brackets we present the 

number of times that EWMA performs better and the total number of series 

MEME CrostonEWMA=
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considered (i.e. 3,000 minus (-) no. of ties). The number of times (series) that ties 

occur changes with the lead time but not with the smoothing constant value.  

 

In tables 10.B.5 – 10.B.8 results are presented for the case that the RGRMSE per 

series is considered for generating the PB results. The results can be generated either 

by considering the RGRMSE per series (values less than or greater than 1) or by 

directly comparing the GRMSE per series obtained for the two estimators under 

concern.  

 

The PB results on MEs indicate that: 

 

• The Approximation method is significantly better than Croston’s method. This is 

not true for α  = 0.2  and one step ahead forecasts in which case the latter 

estimator performs (not significantly) better than the former. 

 

• The Approximation method performs better than EWMA only when results are 

generated on issue points  

 

• The Approximation method performs significantly better than MA(13) for α  = 

0.15, 0.2 but the opposite is the case for α  = 0.05 and α  = 0.1. 

 

• The MA(13) method performs better than Croston’s method for α  = 0.05 and α  = 

0.1. The opposite is the case for the remaining smoothing constant values 

 

• The MA method performs better than EWMA only for α  = 0.05 

 

• EWMA performs better than Croston’s method in all simulated cases. 

 

The MA(13) performs very well when PB results are generated on the MEs. This is 

what one would expect from the theory for all points in time but not for issue points 

only (see also previous section). 

 

The Percentage Better results on GRMSEs indicate that the Approximation method 

performs significantly better than all other three estimation procedures. In fact there 
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are only two cases (in the Approximation – MA(13) comparison) where the 

Approximation method  does not perform significantly better than one other method. 

EWMA is significantly better than Croston’s method in the majority of the simulated 

cases, for all points in time. When issue points only are considered Croston’s method 

is always better than EWMA. The MA(13) method does not perform particularly well. 

Both Croston’s method and EWMA outperform MA(13) in all cases for α  = 0.05, 0.1 

as well as for α  = 0.15, 0.2 when one step ahead forecasts are considered.  

 

We have attempted to synthesise the results discussed above to generate an ordering 

of the performance of all estimators. For each particular combination of the control 

parameter values, the estimators were ranked in terms of the number of pair-wise 

comparisons that outperform any of the other estimators considered (the first method 

being the best). The results are as follows: 

 

RGRMSE 

All points in time    Issue points only 

1.   Approximation    Approximation 

   α = 0.05, 0.1, (0.15, 0.2, 1 step ahead forecasts) 

2. EWMA     Croston 

3.   Croston     EWMA 

4.  MA(13)     MA(13) 

    α = 0.15, 0.2 (L.T. = 3, 5) 

2. MA(13)     MA(13) 

3. Croston     Croston 

4.  EWMA     EWMA  

 

(The above ordering is not valid for α = 0.1, L.T. = 5 (all points in time) where 

Croston’s method performs better than EWMA and α = 0.1, L.T. = 5 (issue points 

only) where MA(13) and EWMA perform identically.) 

 

There is a remarkable consistency between the results generated based on the 

RGRMSE (across series) applied as a descriptive measure and the Percentage Better 

results generated on the GRMSE per series. In sub-sub-section 10.4.1.3 summary 

results were presented regarding the comparative forecasting accuracy performance of 
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the alternative estimators, based on the RGRMSE, and few simulated scenarios were 

identified where the accuracy differences were not very well marked. The Percentage 

Better results confirm the validity of those conclusions and demonstrate considerable 

accuracy differences in the scenarios discussed above.  

 

Mean signed Error 

All points in time    Issue points only 

  α = 0.05 α = 0.1    α = 0.05  α = 0.1 

1.  MA(13) EWMA   MA(13) Approx. 

2.  EWMA MA(13)   Approx. EWMA 

3.  Approx. Approx.   EWMA MA(13) 

4.  Croston Croston   Croston Croston 

     α = 0.15, 0.2  

1.  EWMA     Approx. 

2.       Approx.     EWMA 

3.  Croston     Croston 

4.  MA(13)     MA(13)   

 

(The above ordering is not valid for α = 0.1, L.T. = 1 (issue points only) where the 

ordering is as follows: 1. EWMA 2. MA(13) 3. Approximation 4. Croston.) 

 

The same is not true when we compare the results given by the ME applied as a 

descriptive measure across series and the Percentage Better results generated based on 

the ME given by alternative estimators in a single series. In fact the two sets of results 

are considerably different. It is reasonable to suppose that the results generated in a 

single series, considering the bias accuracy measure, may be particularly sensitive to 

extreme observations. In that respect, isolating the ME results, for each of the series 

considered, in order to compare alternative estimators on a pair-wise comparison level 

may not be very good practice. The above discussed inconsistency possibly also 

indicates the importance of the high bias SKUs in comparing the alternative 

estimators considered in this chapter. Similarly, it would be reasonable to attribute the 

consistency between the two sets of RGRMSE results to the “relative” nature of the 

accuracy measure under concern. Finally, the scale dependence problem may also 
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help to explain why RGRMSE results are not completely consistent with the bias 

results. We have more to say on this issue in the following sub-sub-section. 

 

10.4.2.2 Percentage Best results (ME, GRMSE) 

 

The Percentage Best results (Z-test statistic value, difference between population 

proportions) on GRMSE are presented in the following tables, for different smoothing 

constant values.  

 

α  = 0.05  Croston-

EWMA 

EWMA- 

Approx. 

Croston-

Approx. 

MA- 

EWMA 

Croston- 

MA 

MA- 

Approx. 

L.T.=1 7.09 4.83 11.84 -7.68 14.62 -2.86 

L.T.=3 4.37 7.25 11.55 -11.02 15.26 -3.82 

All 

Points in 

Time L.T.=5 3.98 8.35 12.24 -12.72 16.54 -4.44 

L.T.=1 3.77 13.71 17.31 -13.69 17.28 0.03 

L.T.=3 2.47 14.20 16.55 -15.89 18.22 -1.74 

Issue 

Points 

Only L.T.=5 3.03 13.61 16.50 -16.64 19.48 -3.14 

 

Table 10.31. Percentage Best results (GRMSE), α  = 0.05 

 

α  = 0.1  Croston-

EWMA 

EWMA- 

Approx. 

Croston-

Approx. 

MA- 

EWMA 

Croston- 

MA 

MA- 

Approx. 

L.T.=1 5.35 9.71 14.93 -1.15 6.49 8.57 

L.T.=3 6.11 10.27 16.20 -4.61 10.65 5.71 

All 

Points in 

Time L.T.=5 2.05 9.08 11.09 -8.35 10.37 0.73 

L.T.=1 3.95 17.80 21.49 -6.47 10.37 11.52 

L.T.=3 3.50 17.97 21.22 -11.13 14.51 7.03 

Issue 

Points 

Only L.T.=5 1.79 17.16 18.84 -11.96 13.68 5.37 

 

Table 10.32. Percentage Best results (GRMSE), α  = 0.1 

 

 

 

 

 



 297

α  = 0.15  Croston-

EWMA 

EWMA- 

Approx. 

Croston-

Approx. 

MA- 

EWMA 

Croston- 

MA 

MA- 

Approx. 

L.T.=1 5.36 10.35 15.57 1.54 3.83 11.86 

L.T.=3 6.67 7.81 14.35 -4.17 10.79 3.66 

All 

Points in 

Time L.T.=5 4.00 8.97 12.88 -7.50 11.43 1.48 

L.T.=1 3.47 19.61 22.82 -6.54 9.96 13.31 

L.T.=3 2.73 17.84 20.38 -12.27 14.89 5.75 

Issue 

Points 

Only L.T.=5 3.40 17.76 20.92 -12.62 15.87 5.31 

 

Table 10.33. Percentage Best results (GRMSE), α  = 0.15 

 

α  = 0.2  Croston-

EWMA 

EWMA- 

Approx. 

Croston-

Approx. 

MA- 

EWMA 

Croston- 

MA 

MA- 

Approx. 

L.T.=1 7.58 10.35 17.71 3.81 3.79 14.08 

L.T.=3 5.05 9.97 14.88 -7.96 12.91 2.03 

All 

Points in 

Time L.T.=5 2.21 10.29 12.44 -11.84 13.98 -1.58 

L.T.=1 5.35 20.16 25.06 -5.24 10.52 15.14 

L.T.=3 2.49 18.32 20.62 -14.32 16.68 4.15 

Issue 

Points 

Only L.T.=5 2.58 18.63 21.00 -16.58 18.99 2.13 

 

Table 10.34. Percentage Best results (GRMSE), α  = 0.2 

 

The number of times that one method performs better that all other methods are 

indicated in Appendix 10.C (tables 10.C.1 – 10.C.4). Ties occur when Croston’s 

method and EWMA perform identically.  

 

The Percentage Best results on the GRMSE indicate that the Approximation method 

performs significantly better than all other three estimators. (The Approximation 

method is outperformed only by MA(13), for α  = 0.05.) The MA(13) performs better 

than Croston’s method and EWMA and finally EWMA performs better than 

Croston’s method. Those findings are valid for the majority (if not all) of the 

simulated scenarios.  

 

Very similar conclusions are obtained when the Percentage Best results on bias are 

analysed. In fact, the only significant difference is that the Approximation method is 
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outperformed by the MA(13) for both α  = 0.05 and α  = 0.1 (all points in time). The 

Percentage Best results on ME are presented in tables 10.35 – 10.38. The number of 

times that one method performs better that all other methods are indicated in 

Appendix 10.C (tables 10.C.5 – 10.C.8). Ties occur when Croston’s method and 

EWMA perform identically.  

 

α  = 0.05  Croston-

EWMA 

EWMA- 

Approx. 

Croston-

Approx. 

MA- 

EWMA 

Croston- 

MA 

MA- 

Approx. 

L.T.=1 4.02 5.64 9.58 -37.01 40.10 -32.27 

L.T.=3 4.31 5.63 9.87 -32.72 36.22 -27.88 

All 

Points in 

Time L.T.=5 3.08 6.71 9.74 -28.26 30.91 -22.13 

L.T.=1 8.69 10.77 18.85 -35.31 41.77 -25.77 

L.T.=3 9.64 11.78 20.71 -30.50 38.11 -19.61 

Issue 

Points 

Only L.T.=5 9.79 12.18 21.29 -25.82 33.99 -14.20 

 

Table 10.35. Percentage Best results (ME), α  = 0.05 

 

α  = 0.1  Croston-

EWMA 

EWMA- 

Approx. 

Croston-

Approx. 

MA- 

EWMA 

Croston- 

MA 

MA- 

Approx. 

L.T.=1 10.79 0.60 11.38 -10.42 20.81 -9.83 

L.T.=3 9.95 2.93 12.81 -9.57 19.20 -6.67 

All 

Points in 

Time L.T.=5 8.45 3.74 12.11 -9.05 17.27 -5.35 

L.T.=1 14.60 11.70 25.44 -9.10 23.06 2.64 

L.T.=3 14.66 12.52 26.26 -7.61 21.74 4.98 

Issue 

Points 

Only L.T.=5 14.60 14.14 27.64 -8.16 22.17 6.08 

 

Table 10.36. Percentage Best results (ME), α  = 0.1 
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α  = 0.15  Croston-

EWMA 

EWMA- 

Approx. 

Croston-

Approx. 

MA- 

EWMA 

Croston- 

MA 

MA- 

Approx. 

L.T.=1 14.25 -2.32 11.99 8.59 5.79 6.29 

L.T.=3 11.48 2.17 13.59 4.47 7.08 6.63 

All 

Points in 

Time L.T.=5 9.43 4.26 13.59 -0.21 9.63 4.05 

L.T.=1 18.94 12.04 29.92 7.13 12.20 18.97 

L.T.=3 17.27 15.32 31.27 4.22 13.29 19.38 

Issue 

Points 

Only L.T.=5 15.26 16.69 30.61 -1.52 16.68 15.23 

 

Table 10.37. Percentage Best results (ME), α  = 0.15 

 

α  = 0.2  Croston-

EWMA 

EWMA- 

Approx. 

Croston-

Approx. 

MA- 

EWMA 

Croston- 

MA 

MA- 

Approx. 

L.T.=1 12.15 -1.77 10.42 14.75 -2.69 13.04 

L.T.=3 10.03 3.18 13.15 8.64 1.42 11.77 

All 

Points in 

Time L.T.=5 7.60 6.83 14.30 0.51 7.10 7.33 

L.T.=1 19.15 11.51 29.71 12.41 7.17 23.48 

L.T.=3 16.77 16.26 31.74 8.68 8.42 24.48 

Issue 

Points 

Only L.T.=5 14.65 18.01 31.29 0.40 14.27 18.39 

 

Table 10.38. Percentage Best results (ME), α  = 0.2 

 

Considering the Percentage Best results, on the RGRMSE, the estimators discussed in 

this chapter can be ordered based on the following scheme. For each particular 

combination of the control parameter values, the estimators were ranked in terms of 

the number of pair-wise comparisons that outperform any of the other estimators 

considered. The first method is the best. 

 

All points in time         Issue points only 

 α  = 0.05  α  = 0.1, 0.15, 0.2 α  = 0.05 α  = 0.1, 0.15, 0.2 

1. MA(13)  Approx.  MA(13) Approx.  

2. Approx.  MA(13)  Approx. MA(13)  

3. EWMA  EWMA  EWMA  EWMA 

4. Croston  Croston  Croston Croston 

 



 300

The above ordering is also valid for the Percentage Best results on ME but with the 

following differences: 

 

• The MA(13) performs better than the Approximation method for α  = 0.1, all 

points in time 

• The EWMA estimator performs better than the Approximation method for α  = 

0.15, 0.2,  L.T. = 1, all points time 

• The EWMA estimator performs better than MA(13) forα  = 0.2,  issue points only. 

 

The Percentage Best results are probably more meaningful than the Percentage Better 

results since, ultimately, only the best method will be used following the 

categorisation approach developed in the thesis. What matters from a practitioner’s 

perspective is the accuracy in determining the first place (best estimator) rather than 

the accuracy associated with the determination of the lower places. In addition, the 

Percentage Best measure has resulted in a straightforward ordering of the estimators 

considered in this chapter, with respect to their forecasting accuracy, while the same 

was not the case when the PB measure was used. Finally, it is important to note that 

the PBt results appear to be insensitive to the descriptive accuracy measure chosen for 

generating results in each of the series included in the empirical sample. In the 

previous sub-sub section we showed that the PB results on ME and RGRMSE were 

not consistent with each other.  

 

10.4.2.3 Conclusions (non-parametric tests) 

 

In this section a non-parametric approach was taken, to assess the forecasting 

accuracy of the alternative estimators discussed in this chapter. Percentage Better and 

Percentage Best results have been generated, across series, to evaluate the alternative 

methods’ performance with respect to the number of times (series) that each estimator 

performs better than one other or all other methods. 

 

To generate the results the ME and RGRMSE (per series) have been used, to indicate 

better or best performance in each single series. The PB results generated based on the 

RGRMSE per series are consistent with the RGRMSE results obtained across series. 

The same was not the case when the bias measure was used. Isolating the ME results 
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for each of the series considered in order to compare alternative estimators on a pair-

wise comparison level may not be very good practice since the results are particularly 

sensitive to the presence of extreme observations (see also sub-sub-section 10.4.2.1). 

 

It has been argued, in the literature, that the Percentage Better is an easily interpreted 

and a very intuitive non-parametric approach to generate comparative forecasting 

accuracy results (see chapter 8). The Percentage Better accuracy measure has been 

recommended for use not only on a pair-wise comparison level but also for generating 

overall (across all estimators) accuracy results (Makridakis and Hibon, 1995): “The 

percentage better measure requires (as a minimum) the use of two methods…..If more 

than two methods are to be compared the evaluation can be done for each pair of 

them (p. 7).”  

 

Nevertheless, the empirical evidence presented in this section demonstrates that the 

use of the Percentage Better measure for more than two estimators leads to rather 

complex ordering schemes. In addition, the PB results are heavily dependent upon 

which accuracy measure is used to obtain results in a single series. The Percentage 

Best measure is more meaningful, from a practitioner’s perspective, as evidence has 

been provided for its insensitivity to the descriptive measure chosen. As such it is 

recommended for use in large-scale empirical exercises. 

 

The results generated in this sub-section indicate that statistically significant accuracy 

differences obtained based on a descriptive accuracy measure across series are not 

necessarily reflected on the number of times (series) that one estimator performs 

better than one or all other estimators. Results should always be generated based on 

parametric and non-parametric tests and this should increase confidence in the 

conclusions.  

 

The Approximation method is shown in this sub-section to be the most accurate 

estimator. The MA(13) does as well especially when Percentage Best results are 

generated. EWMA performs significantly better than Croston’s method and this is not 

what one should expect from the theory especially for all points in time (see chapter 

6). The MA(13) is fairly robust to the presence of outliers. When the effect of the 

extreme observation is “taken out” the estimator under concern does not perform so 
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well. Overall, the most striking finding is considered to be the considerable 

improvement (as compared to the results given in the previous sub-section) in the 

performance of the MA(13). 

 

10.4.3 Conclusions 

 

In this section EWMA, Croston’s method, MA(13) and the Approximation method 

were compared with respect to their forecasting accuracy. Results have been 

generated by considering parametric and non-parametric tests. In the former case the 

ME, scaled ME and RGRMSE descriptive measures were considered, while in the 

latter case Percentage Better and Percentage Best results have been generated based 

on the ME and RGRMSE per series. Parametric results have also been generated 

considering the best α  value performance of the smoothing estimators, with respect 

to all the descriptive measures used for comparison purposes. The best smoothing 

constant value was “optimised” across all 3,000 series available for simulation and 

that corresponds to real world practices. The findings of this section can be 

summarised as follows: 

 

• The Approximation method can be claimed to be the most accurate estimator  

 

• EWMA performs better than Croston’s method in a re-order interval context and 

this is true when both parametric and non-parametric procedures are used to 

generate results 

 

• EWMA performs less accurately than Croston’s estimator when issue points only 

are considered. This superiority of Croston’s method is not reflected on the 

number of series that Croston’s method performs better. 

 

• The MA(13) method is robust to the presence of outliers. It compares very 

favourably with the smoothing methods for low α  values. The opposite is true as 

the α  value increases and this is, intuitively, what one should expect. The 

MA(13) does very well; in fact it can be claimed to be as accurate as the 

Approximation method, with respect to the number of times that it gives the 

lowest error. 
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• Different accuracy measures can lead to different conclusions in an intermittent 

demand context  

 

• The ME results generated in a single series are particularly sensitive to the 

presence of extreme observations 

 

• The Percentage Best (PBt) measure should be preferred to the Percentage Better 

(PB) measure because of its relevance to the choice of the best forecasting method 

and the fact that it gives more consistent results.  

 

• The RGRMSE is a very well behaved accuracy measure. 

 

10.5 The categorisation of “non-normal” demand patterns 
 

A chi-square test was decided to be the most appropriate way of assessing the validity 

of the theoretical rules proposed in chapter 6. The average inter-demand interval and 

the squared coefficient of variation of the demand sizes were generated for all 3,000 

files and the theoretical rules were used to indicate which method is theoretically 

expected to perform better (in the case of pair-wise comparisons) or best (when the 

overall categorisation rules are considered) in each one of those files. The rules were 

developed based on a theoretical analysis of the MSE, associated with each one of the 

estimators, and therefore MSE results are first generated for comparison purposes 

(other measures and tests will also be considered later in this section to assess the 

empirical validity of the theoretical rules). It is important to note that the MA(13) 

method is not considered at this stage of the empirical analysis, since no theoretical 

results have been derived regarding this method’s performance1. The null hypothesis 

developed is that the performance of the methods is independent of what is expected 

from the theory. For the pair-wise comparisons (2 rows x 2 columns contingency 

table, see figure 10.4), the critical values for rejecting the null hypothesis (1 degree of 

freedom) are 3.84 and 6.63 for the 5% and 1% significance level respectively.  

 

 

                                                           
1 The MA(13) will be considered later in this section when the empirical validity of the categorisation 
rules is assessed by means of parametric rather than non-parametric tests. 
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Figure 10.4. Chi-square test (pair-wise comparisons) 

 

The categorisation rules that can be tested on the empirical data refer to the Croston-

Approximation (see sub-section 6.8.1), EWMA-Approximation (see sub-sections 

6.8.2 and 6.84) and Croston-EWMA (see sub-sections 6.8.3 and 6.8.5) pair-wise 

comparisons. The theoretical cut-off values are indicated in table 10.39. 

 

Pair-wise comparison p  cut-off value CV 2 cut-off value 

Approximation-Croston 1.32 0.49 

ISSUE POINTS  

Approximation-EWMA 1.33 0.49 

Croston-EWMA 1.34 0.28 

ALL POINTS IN TIME  

Approximation-EWMA 1.20 0.49 

Croston-EWMA Croston always performs better than EWMA 

 

Table 10.39. Cut-off values ( 2.005.0 ≤≤α ) 

 

The chi-square test cannot be utilised for the Croston-EWMA comparison when we 

refer to a re-order interval context. In that case Croston’s method is always (on every 

demand data series) expected to perform better than EWMA, independently of the 

demand data series characteristics. As such, the Z-test statistic for the population 

proportion (see equation (8.17)) will be used to test whether or not the number of files 

on which Croston’s method performs better (i.e. MSECroston MSEEWMA< ) is significantly 

greater from the number of files on which EWMA performs better (i.e. 

). The critical values for rejecting the null hypothesis are 1.64 

and 2.32 for the 5% and 1% significance level respectively.  

MSEMSE CrostonEWMA<
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At this point it is important to note that in certain cases the MSE given by Croston’s 

method equals the MSE given by the EWMA estimator. Obviously this equality does 

not raise any difficulties as to how the corresponding series will be treated when we 

consider the Approximation – EWMA and the Approximation – Croston pair-wise 

comparisons. The same is true when the EWMA – Croston comparison is considered 

in a re-order interval context since Croston’s method is always, theoretically,  

expected to perform better than EWMA. For the EWMA – Croston pair-wise 

comparison (when issue points only are considered) the ties need to be taken into 

account and the contingency table takes the form indicated in figure 10.5. The critical 

values for rejecting the null hypothesis (2 degrees of freedom) are 5.99 and 9.21 for 

the 5% and 1% significance level respectively.  

 

  Theory (chapter 6)  
  x method better than 

y method 
y method better than 

x method 
 

x method better 
than 

y method 

 
 

  
row 1 sum 

y method better 
than 

x method 

   
row 2 sum 

Si
m

ul
at

io
n 

Ties   row 3 sum 
  column 1 sum column 2 sum 3,000 files 
 

Figure 10.5. Chi-square test (EWMA – Croston, issue points only) 

 

At this stage it is important to note that the number of ties is large enough to allow an 

expected frequency of at least 5 to appear in each “cell” (corresponding shaded 

demand categories).  As such the chi-square test can be used for testing goodness-of-

fit.  

 

In testing the overall categorisation rules, ties occur when: 

 

MSEMSEMSE ApproxEWMACroston .<=  

 

When the lead time equals one and for all points time ties never occur. For the rest of 

the scenarios covered in the simulation experiment there is always a certain number of 

ties. For testing the categorisation rules regarding all methods’ performance in a re-
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order interval system (figure 10.2) a 3x2 (2 degrees of freedom) or 4x2 (3 degrees of 

freedom) table will be used depending on whether or not ties occur. The contingency 

table has the form indicated in figure 10.6. When we refer to a re-order level context 

(see figure 10.3) ties always occur and the contingency table (4x3, 6 degrees of 

freedom) is as indicated in figure 10.7. 

 

  Theory (chapter 6)  
  Approx. better than 

Croston and EWMA 
Croston better than 

Approx. and EWMA 
 

Approx. best   row 1 sum 

Croston best   row 2 sum 
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m
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n 

Ties   row 4 sum 

  column 1 sum column 2 sum 3,000 files 
 

Figure 10.6. Chi-square test (re-order interval systems) 
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Approx. best    row 1 sum 

Croston best    row 2 sum 

EWMA best    row 3 sum 
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m
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  column 1 sum column 2 sum column 3 sum 3,000 files 
 

Figure 10.7. Chi-square test (re-order level systems) 

 

The critical values for rejecting the null hypothesis are as follows: 

 

degrees of freedom   5% significance level  1% significance level 

1    3.84      6.63  

2    5.99      9.21 

 3    7.81                 11.30 

 6    12.6                 16.80 
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10.5.1 MSE rules 

 

The  test statistic values are indicated, for different smoothing constant values, in 

tables 10.40 – 10.43. In brackets we present the number of files that the methods 

perform as expected. The shaded area refers to the Croston – EWMA pair-wise 

comparison, in a re-order interval context, and the values presented are the Z-test 

statistic values for the population proportion. Statistically significant results at the 1% 

level are emboldened while significance at the 5% level is presented in italics. 

x2

 

α  = 0.05  Croston- 
EWMA 

EWMA- 
Approx. 

Croston- 
Approx. 

Overall categorisation rules 

L.T.=1 0.33 
(1509) 

0.84 
(1633) 

16.45 
(1634) 

9.19  
(979) 

L.T.=3 5.29 
(1645) 

1.10 
(1691) 

15.77 
(1631) 

12.80  
(1111) 

 
 
All 
Points in 
Time L.T.=5 4.35 

(1619) 
4.41 

(1726) 
13.18 
(1624) 

20.47  
(1160) 

L.T.=1 1.53 
(1628) 

33.60 
(1713) 

19.32 
(1644) 

7.49 
(1185) 

L.T.=3 3.24 
(1660) 

33.53 
(1717) 

24.85 
(1669) 

19.46 
(1239) 

 
 
 
Issue 
Points 
Only 

L.T.=5 16.13 
(1568) 

23.44 
(1688) 

19.08 
(1655) 

25.58 
(1221) 

 

Table 10.40. chi-square test results, α  = 0.05 

 

α  = 0.1  Croston- 
EWMA 

EWMA- 
Approx. 

Croston- 
Approx. 

Overall categorisation rules 

L.T.=1 3.83 
(1605) 

6.96 
(1709) 

20.75 
(1653) 

1.60  
(1081) 

L.T.=3 10.11 
(1777) 

17.98 
(1827) 

17.22 
(1640) 

11.94  
(1238) 

 
All 
Points in 
Time 

L.T.=5 9.02 
(1747) 

19.02 
(1826) 

13.02 
(1625) 

17.43 
(1271) 

L.T.=1 2.05 
(1745) 

62.73 
(1777) 

28.78 
(1675) 

20.27 
(1305) 

L.T.=3 2.67 
(1775) 

46.79 
(1754) 

27.10 
(1679) 

26.18 
(1315) 

 
Issue 
Points 
Only 

L.T.=5 15.76 
(1676) 

37.52 
(1730) 

20.45 
(1663) 

25.79 
(1291) 

 

Table 10.41. chi-square test results, α  = 0.1 
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α  = 0.15  Croston-
EWMA 

EWMA- 
Approx. 

Croston-
Approx. 

Overall categorisation rules 

L.T.=1 6.83 
(1687) 

17.34 
(1753) 

30.56 
(1688) 

6.20  
(1160) 

L.T.=3 13.04 
(1857) 

53.58 
(1925) 

28.27 
(1678) 

13.05 
(1339) 

 
All 
Points in 
Time 

L.T.=5 13.04 
(1857) 

44.66 
(1913) 

16.79 
(1644) 

22.20 
(1364) 

L.T.=1 2.03 
(1844) 

84.28 
(1813) 

39.15 
(1703) 

38.55 
(1381) 

L.T.=3 2.56 
(1871) 

88.41 
(1825) 

40.86 
(1718) 

40.03 
(1403) 

 
Issue 
Points 
Only 

L.T.=5 15.80 
(1787) 

51.18 
(1761) 

27.50 
(1687) 

35.62 
(1371) 

 

Table 10.42. chi-square test results, α  = 0.15 

 

α  = 0.2  Croston-
EWMA 

EWMA- 
Approx. 

Croston-
Approx. 

Overall categorisation rules 

L.T.=1 8.47 
(1732) 

28.99 
(1802) 

53.58 
(1744) 

16.22 
(1230) 

L.T.=3 14.83 
(1906) 

84.10 
(1991) 

31.96 
(1694) 

20.86 
(1405) 

 
All 
Points in 
Time 

L.T.=5 15.12 
(1914) 

60.77 
(1949) 

18.70 
(1654) 

21.37 
(1418) 

L.T.=1 2.95 
(1931) 

114.68 
(1854) 

50.44 
(1734) 

53.29 
(1406) 

L.T.=3 4.52 
(1947) 

139.07 
(1886) 

57.60 
(1758) 

61.80 
(1467) 

 
Issue 
Points 
Only 

L.T.=5 15.22 
(1846) 

18.54 
(1965) 

35.15 
(1706) 

43.34 
(1406) 

 

Table 10.43. chi-square test results, α  = 0.2 

 

The results generated on MSEs indicate the practical validity of the rules proposed in 

chapter 6. The performance of the methods is clearly not independent of what the 

categorisation rules suggest. This is true at a pair-wise comparison level (with the 

only exception of the EWMA – Croston comparison for issue points only and when 

the lead time is 1 or 3 periods) and when the overall rules (regarding all methods’ 

performance) are considered.  

 

In particular, the results demonstrate the empirical validity of the Approximation – 

EWMA and Approximation – Croston pair-wise comparison rules in both a re-order 

interval and a re-order level context. The results regarding the EWMA - Croston 
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comparison are also consistent with the theory when all points in time are considered. 

For issue points only the particular pair-wise categorisation rules have been 

empirically validated only for L.T = 5.  

 

The MSE is similar to the statistical measure of the variance of the forecast errors but 

not identical since bias is also taken into account. The issue of the variability of the 

forecast errors is not explicitly addressed in this chapter. By researching the validity 

of the MSE theoretical rules developed in chapter 6 and by analysing the bias results 

generated in the previous section some conclusions can also be drawn regarding the 

variability of the forecast errors. The Percentage Better (PB) results on bias presented 

in sub-sub-section 10.4.2.1 can be used for comparison with the chi-square analysis 

results on the pair-wise categorisation rules. The Percentage Best (PBt) results on ME 

presented in sub-sub-section 10.4.2.2 could also be compared with the chi-square 

analysis results on the overall categorisation rules. Nevertheless, the PBt results 

involved also the MA(13) estimator which is not considered at this stage of the 

research (see also sub-section 10.5.2).  

 

In order to check the validity of the Croston – EWMA categorisation rule in a re-order 

interval context, the t-test for the population proportion (PB measure) has been used 

instead of the chi-square test since Croston’s method is expected to perform better in 

all demand data series. The t-test results show significant differences in favour of 

Croston’s method. Nevertheless, the PB results on bias indicate that EWMA performs 

better than Croston’s method in all simulated cases. This inconsistency could be 

attributed to the increased variability of the forecast error associated with EWMA.  

When issue points only are considered, the pair-wise categorisation rule under 

concern has been validated only for L.T. = 5. For the rest of the lead time lengths 

considered in our experiment the rule has not been validated even though there is 

always a substantial number of series where the methods perform as expected. Again 

there is some evidence to support the assertion that the variability of the estimates 

produced by Croston’s method is lower than that of the EWMA estimator.  

 

Regarding the EWMA – Approximation pair-wise comparison, the PB results on bias 

indicate that the former estimator performs better than the latter in all simulated cases, 

in a re-order interval context. The corresponding categorisation rule has been 
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validated for all simulated scenarios and that could be attributed to the high sampling 

error of the mean of the EWMA estimator, when all points in time are taken into 

account. The results presented in this section for the Croston – Approximation pair-

wise comparison  are consistent with the PB results given in sub-sub-section 10.4.2.1 

and as such no further comments can be made regarding the variability of the forecast 

error. That is, the reduction in MSE (per series) achieved by the Approximation 

method may be the result of the bias reduction only. 

 

The comparison of the two sets of results discussed above indicates, implicitly, the 

high variability of the errors produced by the EWMA estimator. The decomposition 

of the empirical MSE into its constituent components (bias squared + variability of 

demand + variability of the estimates) would obviously enable the rigorous 

assessment of the contribution of these components to the empirical MSE. 

Nevertheless, no such results have been generated in our empirical study and this 

issue requires further simulations on real data. 

 

Returning to our discussion on the validity of the categorisation rules, the overall rules 

have been empirically validated in this section in both a re-order interval and re-order 

level context. This is viewed as a significant finding since one could argue that, from 

a practitioner’s perspective, what matters is the validity of the overall categorisation 

schemes rather than the accuracy of each one of the pair-wise categorisation rules. 

This issue will have certain implications in the tests performed in the following sub-

sections. 

 

10.5.2 Sensitivity of the categorisation rules 

 

The categorisation rules tested in this chapter have been developed based on a 

theoretical analysis of the MSE, associated with alternative intermittent demand 

estimators. This particular accuracy measure was chosen (in chapter 6), for theoretical 

comparison purposes, because of its mathematically tractable nature. In the previous 

sub-section, the empirical MSEs were considered to assess the validity of the 

theoretical rules. Nevertheless, the MSE is known to suffer in practice from being 

particularly sensitive to extreme observations (outliers).  
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There is no reason at this stage why we should restrict our analysis to the MSE results 

only. Other error measure(s), that are not so sensitive to the presence of outliers, can 

also be used to test our theory. More conclusive results can then be generated about 

the conditions under which one method performs better than one or all other methods. 

The natural choice for that purpose is the RGRMSE (per series) measure since it is 

related by definition to the MSE measure and it has been, theoretically (Fildes, 1992) 

and empirically (section 10.4), shown to be relative.  

 

Moreover, it is true to say that, from a practitioner’s perspective, what matters is the 

validity of the overall categorisation schemes rather than how accurate is each one of 

the pair-wise categorisation rules. That is, in real world application we are interested 

in which method performs best (rather than better) and under what conditions. 

Consequently, it has been decided to test the overall rules. Finally it is important to 

note that the rules indicate when each estimator is expected to perform best but not by 

how much. Parametric tests will be performed later in this section to assess the 

validity of the categorisation rules in “descriptive” terms. Method x is said to perform 

better than methods y and z in a particular file if: 

 

1, <=
GRMSE
GRMSERGRMSE

y

x
yx  and 1, <=

GRMSE
GRMSERGRMSE

z

x
zx . 

 

In the following table the chi-square test statistic value is indicated, for all simulated 

scenarios considered in the empirical experiment. In brackets we present the number 

of times (series) that the methods perform as expected. 
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RGRMSE  α  = 0.05 α  = 0.1 α  = 0.15 α  = 0.2 

L.T.=1 18.03 

(920) 

6.91 

(1031) 

10.85 

(1060) 

2.88 

(1072) 

L.T.=3 35.43 

(974) 

16.55 

(1082) 

21.07 

(1094) 

11.68 

(1125) 

 

 

All Points 

in Time 

L.T.=5 49.46 

(976) 

28.93 

(1074) 

24.33 

(1082) 

25.56 

(1129) 

L.T.=1 16.65 

(1126) 

20.79 

(1221) 

28.18 

(1253) 

30.64 

(1252) 

L.T.=3 22.31 

(1165) 

21.31 

(1220) 

21.68 

(1260) 

37.06 

(1317) 

 

 

Issue 

Points 

Only L.T.=5 42.33 

(1134) 

29.90 

(1212) 

40.51 

(1219) 

41.72 

(1246) 

 

Table 10.44. chi-square test results (RGRMSE) 

 

All results are statistically significant at 5% level with the only exception of the 

simulated scenario: L.T. = 1, α  = 0.2. The overall categorisation rules have been 

validated, using the RGRMSE measure, which is not sensitive to the presence of 

extreme observations (outliers). The MA(13) has not been included in the chi-square 

test because its theoretical properties were not investigated in the thesis. However, it 

is important to note that the MA(13) performs better than the Approximation method 

for α  = 0.05 when Percentage Best (PBt) results are generated on the empirical data 

considering the RGRMSE per series (see Appendix 10.C).  

 

10.5.3 Parametric tests 

 

The theoretical rules indicate under what conditions one method performs better than 

one or all other methods but not by how much. Therefore, some parametric tests need 

to be performed. The descriptive accuracy measure chosen for that purpose is the 

RGRMSE (across series). The RGRMSE is scale independent and not sensitive to the 

presence of extreme observations.  

 

As discussed in the previous sub-section, what matters from a practitioner’s 

perspective is the validity of the overall rules rather than how accurate is each one of 
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the pair-wise categorisation rules. As such, it has been decided to test only the overall 

rules (see figures 10.2, 10.3). The whole data set (3,000 series) has been divided in 

two (re-order interval systems) or three (re-order level systems) sub-sets depending on 

which method is theoretically expected to perform best. RGRMSE results have then 

been generated for each of the data sub-sets and all possible pair-wise comparisons2. 

Results with a value less than 1 indicate that the second method performs better than 

the first (i.e. the GRMSE associated with the second method across all the series 

contained in the particular sub-set is lower than the GRMSE that corresponds to the 

first one). The error results per series per method are generated based on the GRMSE 

associated with the application of each one of the estimators on the series under 

concern. To test the statistical significance of the results, the natural logarithm of the 

GRMSE per file is calculated for all methods and the t-test (difference between 

population means) is used on the logGRMSEs. 

 

The t-test results for all points in time are presented in table 10.453. The actual 

RGRMSE value for all the pair-wise comparisons (and simulated scenarios 

considered) are separately presented in Appendix 10.D of the thesis (table 10.D.1). 

The Approximation method is theoretically expected to perform best when p  

(average inter-demand interval) > 1.32 and/or CV 2  (squared coefficient of variation of 

the demand sizes) > 0.49. The corresponding data sub-set is termed “non-smooth” for 

presentation purposes. Croston’s method is expected to perform best in all other cases 

(smooth demand). Positive values for the test statistic indicate that the second method 

performs better than the first. 

 

 

 

 

 

 

 

                                                           
2 Parametric results are generated on a pair-wise comparison level and as such there is no reason why 
we should not also consider the MA(13) method. 
3 Some areas in table 10.45 have been shaded in order to make the information displayed easier to read. 
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Croston- 

EWMA 

EWMA- 

Approx. 

Croston- 

Approx. 

MA- 

EWMA 

Croston- 

MA 

MA- 

Approx. 
 

α (smoothing constant value) = 0.05 
non-smooth 0.54 0.38 0.92 2.90 -2.34 3.28 L.T.=1 
smooth 0.32 0.28 0.59 2.60 -2.28 2.89 
non-smooth 0.38 0.55 0.92 1.31 -0.92 1.87 L.T.=3 
smooth 0.52 0.34 0.86 1.12 -0.59 1.47 
non-smooth 0.67 0.19 0.86 0.98 -0.29 1.17 L.T.=5 
smooth 0.07 0.65 0.71 0.59 -0.51 1.24 

 α (smoothing constant value) = 0.1 

non-smooth 0.46 1.04 1.50 3.00 -2.51 4.05 L.T.=1 
smooth 0.23 0.37 0.60 3.13 -2.90 3.51 
non-smooth 0.65 1.15 1.79 1.43 -0.76 2.59 L.T.=3 
smooth 0.44 0.99 1.43 0.89 -0.44 1.89 
non-smooth 0.34 1.24 1.56 0.85 -0.50 2.10 L.T.=5 
smooth -0.12 0.89 0.76 0.30 -0.41 1.19 

 α (smoothing constant value) = 0.15 

non-smooth 0.43 1.51 1.93 2.99 -2.53 4.52 L.T.=1 
smooth 0.12 1.24 1.37 2.62 -2.50 3.89 
non-smooth 0.83 1.45 2.27 1.42 -0.58 2.88 L.T.=3 
smooth -0.10 1.33 1.23 0.09 -0.19 1.44 
non-smooth -0.34 2.34 1.97 0.24 -0.57 2.59 L.T.=5 
smooth -0.38 1.23 0.83 -0.50 0.10 0.74 

 α (smoothing constant value) = 0.2 

non-smooth 0.63 1.88 2.50 2.87 -2.20 4.79 L.T.=1 
smooth 0.52 1.64 2.17 2.64 -2.12 4.32 
non-smooth 0.41 2.48 2.87 0.70 -0.28 3.20 L.T.=3 
smooth -0.01 1.79 1.78 -0.78 0.77 1.03 
non-smooth -0.63 3.30 2.63 -0.73 0.08 2.59 L.T.=5 
smooth -0.45 2.01 1.56 -1.83 1.38 0.18 

 

Table 10.45. t-test (GRMSE, difference between population means),  

all points in time 

 

The results presented above indicate that the Approximation method performs better 

than all other estimators, in all simulated cases, for the non-smooth demand patterns 

and this is in accordance with the theory. This is also true for the Approximation – 

MA(13) pair-wise comparison, although no theoretical results have been developed 
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regarding the performance of the latter estimator in an intermittent demand context. 

Nevertheless, it is important to note that the performance differences are not 

significant in all cases.  

 

For the non-smooth demand patterns, the performance of the Approximation method 

improves as the smoothing constant value increases. In particular, for 15.0≥α  the 

superiority of the Approximation method is significant in almost all simulated cases. 

The rules developed in chapter 6 covered all possible smoothing constant values in 

the realistic range 0.05 – 0.2. The empirical parametric results presented thus far in this 

sub-section suggest that the rules are valid for higher α  values. 

 

For the smooth demand category Croston’s method is theoretically expected to 

perform best. The empirical results presented in table 10.45 do not support the theory. 

In fact Croston’s method is shown to be outperformed by EWMA in the majority of 

the simulated cases and by the Approximation method in all simulated scenarios. The 

empirical non-parametric results generated in this section indicate that there is some 

merit in considering Croston’s estimator for the smooth demand patterns.  No such 

empirical evidence has been found in this sub-section 

 

The pair-wise categorisation rules were developed in chapter 6 in a way that one 

estimation procedure always (theoretically) performs better in, what we now call for 

the purpose of this chapter, “non-smooth” data set4. Therefore, one should expect 

well-marked differences in all the cases covered by the data set under concern. The 

estimator selected for the “smooth” data set5 was an approximate solution, since in the 

case that both criteria (  and p CV 2 ) take a value below their corresponding cut-off 

value, no estimator can be shown, theoretically, to perform better in all cases.  

 

The overall rules were constructed by synthesising the pair-wise rules. Theoretically 

there are no doubts as to which estimator performs best in the “non-smooth” demand 

category but there is still uncertainty governing the area formed when both  and p

CV 2  take a value below their specified cut-off points. It may be for this reason that 

                                                           
4 This is the area that corresponds to quadrants 1, 2 and 4 in any of the categorisation schemes 
developed in chapter 6. 
5 This is the area that corresponds to quadrant 3 in any of the categorisation schemes developed in 
chapter 6. 
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Croston’s method does not perform better than EWMA and the Approximation 

method in the smooth demand category, in a re-order interval context. The 

theoretically coherent delineation of the “smooth” demand quadrant in the 

categorisation schemes discussed in chapter 6 would be an interesting avenue for 

further research. A graphical illustration of alternative possibilities follows in figure 

10.8. 

 
 
       valueoff-cut p
 
 
     possible optimum lines (functions)   
       
      
           non-smooth 
     CV 2

             valueoff-cut
  

              
               
         
 
            smooth 

 

Figure 10.8. Delineation of the “smooth” demand quadrant 

 

From a practitioner’s perspective, the “smooth” demand category does not raise any 

significant difficulties as far as forecasting and inventory control are concerned. 

Moreover, this research is not concerned with improving the management of  

“smooth” demand items. What will be, most probably, required in a real world system 

is a rule according to which the “non-smooth” demand patterns can be identified and 

an estimator, other than the one already in place, can be recommended to deal with 

the “non-normal” nature of the corresponding demand data series. In that respect, the 

re-order interval overall categorisation rules have been empirically validated by 

means of parametric tests. Clearly, further research is required to “refine” the cut-off 

points, but at this stage we can claim that for p  (average inter-demand interval) > 1.32 

and/or CV 2  (squared coefficient of variation of the demand sizes) > 0.49 the 

Approximation method performs better than all the other estimators considered in this 

chapter. This is true theoretically, but it has also been validated by means of 

simulation on theoretically generated data (see chapter 7) and by means of simulation 

on real data by using both parametric and non-parametric tests. 



 317

In a re-order level context, the conditions under which each estimator is expected to 

perform best are as follows: 

 

Approximation method: p  > 1.33 and/or CV 2  > 0.49 (non-smooth demand) 

Croston’s method:  ≤p  1.33 and  0.28 <  0.49 (smooth A category) ≤CV 2

EWMA:   ≤p  1.33 and ≤CV 2  0.28 (smooth B category). 

 

The parametric results regarding the validity of the categorisation rules in a re-order 

level context are similar to the results presented above in this sub-section. In 

particular, the Approximation method is shown to perform best in the “non-smooth” 

demand category. The performance of the estimator under concern improves with the 

smoothing constant value but now statistically significant differences are indicated for 

1.0≥α . The conclusions of the analysis are the same as those made before in this sub-

section. Therefore, the t-test results (as well as RGRMSE results) are separately 

presented in Appendix 10.D of the thesis (tables 10.D.2 – 10.D.5).  

 

10.5.4 Conclusions 

 

In this section the empirical validity of the categorisation rules proposed in chapter 6 

was tested on the real data sample available for this research. The chi-square test was 

first used to test whether or not the methods' performance is independent of what is 

expected from the theory. Results on each file are generated by using the Mean 

Squared Error (MSE) since the rules were developed based on that accuracy measure. 

The MSE though is known to suffer from being particularly sensitive to the presence 

of outliers. Therefore, the analysis of the results is repeated by considering the 

RGRMSE per series. One can argue that, from a practitioner’s perspective, what 

matters is the validity of the overall categorisation schemes and not the accuracy of 

each single pair-wise comparison rule. Consequently, and in order to simplify the 

results analysis process, the chi-square test results for the RGRMSE are developed 

only for the overall rules. 

 

The rules indicate under what conditions one estimator is expected to perform better 

than all other methods but not by how much (i.e. error differences in volume terms are 

not addressed). As such, parametric tests were also used in this section to test the 



 318

accuracy of the overall rules (across all series). The accuracy measure used for that 

purpose was the RGRMSE (across series) due to its scale independent nature and 

insensitivity to extreme observations (outliers).  

 

Our conclusions can be summarised as follows: 

 

• The pair-wise categorisation rules have been validated, with the only exception  of 

the EWMA – Croston rule, when issue points only are considered and for L.T. = 1 

or 3. The rules have been validated using non-parametric tests. 

 

• The validation of the rules demonstrates, implicitly, the high variability of the 

EWMA forecast errors. 

 

• In a re-order interval context the rule given in chapter 6 was that the 

Approximation method performs best for  

p  (average inter-demand interval) > 1.32 and/or  

CV 2  (squared coefficient of variation of the demand sizes) > 0.49. 

This has been validated by using both parametric and non-parametric tests. In the 

remaining demand patterns, non-parametric tests show that there is some merit in 

adopting Croston’s method but the parametric results do not support this finding.   
 

• In a re-order level context the rule given in chapter 6 was that the Approximation 

method performs best for  

p  > 1.33 and/or CV 2  > 0.49. 

This has been validated by using both parametric and non-parametric tests. In the 

remaining demand patterns, non-parametric tests show that there is some merit in 

adopting either Croston’s method (0.28 <  0.49) or EWMA (  0.28) but 

no such empirical evidence has been found when parametric tests are used.   

≤CV 2 ≤CV 2

  

• Some further research is required in the area of “categorisation for non-normal 

demand patterns”. In particular the theoretically coherent delineation of the 

“smooth” demand quadrant in the categorisation schemes discussed in chapter 6 

remains unaddressed. 
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10.6 Conclusions 
 

In this chapter the forecasting results of a real data simulation experiment have been 

presented. The purpose of the simulation exercise was to assess the empirical validity 

and utility of the main theoretical findings of this research. In this chapter we have 

discussed the empirical validity of our theoretical findings. Issues related to the utility 

of those findings are separately addressed in the following chapter.  

 

In the preceding sections Croston’s method, Approximation method, EWMA and a 13 

period Moving Average (MA(13)) have been examined with respect to their biased 

(or unbiased) nature and subsequently they have been compared with respect to the 

forecasting accuracy resulting from their implementation in practice. The 

categorisation rules developed in chapter 6 have also been validated with this 

simulation experiment. To meet the objectives of this chapter, a wide range of 

accuracy measures has been employed. We have argued theoretically, and in this 

chapter we have demonstrated empirically the importance of the selection of 

appropriate accuracy measures. Our conclusions reflect the synthesis of our empirical 

findings with respect to all the accuracy measures used for generating results, and 

they can be summarised as follows: 
 

• Croston’s method is biased and this is consistent with the theory developed in this 

thesis. Croston’s method has been shown to be biased mathematically (chapter 4), 

by means of simulation on theoretically generated data (chapter 7) and also using 

simulation on real data (in this current chapter). 
 

• The Approximation method is approximately unbiased over the range of α  values 

0.05 to 0.2, showing slight bias (in opposite directions) at the extremes of this 

range. The Approximation method is the least biased of the four estimators 

examined in this chapter. 
 
• EWMA and MA(13) are biased. The biased nature of both estimators in a re-order 

interval context is not what was theoretically expected and this issue requires 

further examination. 
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• Where bias had been theoretically anticipated, the sign of the bias is for all 

methods the theoretically expected one. 
 

• All the pair-wise categorisation rules developed in chapter 6 have been validated, 

with the exception of the EWMA – Croston rule in a re-order level context and 

when the lead time is one or three periods. The rules have also been validated by 

means of simulation on theoretically generated data in chapter 7. The validation of 

the rules indicates, implicitly, the high variability of the EWMA forecast errors. 
 

• The Approximation method performs best in the “non-smooth” demand category 

( p  > 1.32 and/or CV 2  > 0.49 in a re-order interval context; p  > 1.33 and/or CV 2  > 

0.49 in a re-order level context). This has been shown to be correct mathematically 

(chapter 6), by means of simulation on theoretically generated data (chapter 7) and 

by means of simulation on empirical data in this chapter (using both parametric 

and non-parametric tests).  

 

• Some further research is required in the area of “categorisation for non-normal 

demand patterns”. In particular the theoretically coherent delineation of the 

“smooth” demand quadrant in the categorisation schemes discussed in chapter 6 

remains unaddressed. 

 

• The unbiased nature of the Approximation method is reflected in the superior 

forecasting accuracy of this estimator when compared with the other methods 

considered in this chapter. 

 

• EWMA performs better than Croston’s method in a re-order interval context. 

When issue points only are considered the comparison results are inconclusive.  

 

• The MA(13) compares favourably with the smoothing methods for low (0.05) 

smoothing constant values. This estimator is also very robust to the presence of 

outliers. 

 

Our findings regarding the performance of the accuracy measures used for generating 

results can be summarised as follows: 
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• The Mean Signed Error (ME), generated across series, does not particularly suffer 

from the scale dependence problem. The ME though, in a single series evaluation, 

it is particularly sensitive to the presence of extreme observations (outliers). 

 

• Different accuracy measures can lead to different conclusions, in an intermittent 

demand context. 

 

• The Percentage Best measure should be preferred to the Percentage Better for 

large scale comparison exercises. 

 

• The Relative Geometric Root Mean Square Error (RGRMSE) is a very well 

behaved accuracy measure in an intermittent demand context. 
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CHAPTER 11 

 

Empirical Analysis – Inventory Control 
 

11.1 Introduction 
 

The purpose of this chapter is to assess the empirical utility of the main theoretical 

findings of this research. For this to be done the inventory control performance of 

Croston’s method, Approximation method, EWMA and a 13 period Moving Average 

(MA(13)) has been simulated on real demand data. The data comes from the 

automotive industry (3,000 SKUs) and details regarding our empirical data sample 

have been presented in the previous chapter. No theoretical results have been 

developed in this thesis regarding the application of MA(13) in an intermittent 

demand context. Nevertheless, the MA(13) is the estimator that has been used in 

practice to forecast demand for the SKUs covered in our empirical sample. As such 

the MA(13) performance can be viewed as the benchmark against which the 

performance of the other estimators can be compared.  

 

Owing to the nature of the demand data available for this research, we focus on 

intermittent demand forecasting for re-order interval, rather than re-order level 

inventory control systems (see chapter 9). The inventory control model to be used for 

simulation purposes is of the periodic, order-up-to-level nature. The stock control 

model has been discussed in chapter 9, where details regarding our empirical data 

simulation experiment are also given (see section 9.7).  

 

This chapter is structured as follows: in section 11.2 we recap the scenarios (control 

parameters and their corresponding values) considered for simulation purposes as well 

as the measures used for generating inventory control comparative results. In section 

11.3 the inventory control results are presented, for a service driven system (specified 

Customer Service Level – CSL), and in section 11.4 the case of a cost driven system 

is empirically analysed (specified cost criteria). The “overall” re-order interval 

categorisation rule developed in chapter 6 is tested on the inventory control results in 

section 11.5.  

  



 323

Chapter 11 concludes the empirical part of this thesis and, consequently, some overall 

comments are made, at the end of the chapter, regarding our real data simulation 

experiment. In particular, certain problems may arise in practical applications that 

have not been accounted for in our empirical analysis. These issues are discussed in 

section 11.6 whereas in section 11.7, with hindsight, we discuss our reflections on the 

experimental design and the empirical data limitations. Finally, the conclusions of this 

chapter are presented in section 11.8. 

 

11.2 Simulated scenarios 
 

In this chapter comparative inventory control results will be presented for a wide 

range of real world scenarios. The inventory control system, that has been used for 

simulation purposes, is of the periodic order-up-to-level nature ( ) system. At the 

end of every period 

ST  ,

T  (one month) the inventory position is raised to the 

replenishment level . Demand per unit time period/lead time demand is assumed to 

follow the Negative Binomial Distribution (NBD). The managerial constraints 

imposed on the system are:  

S

 

a specified shortage fraction per unit value short ( ) B2
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a specified customer service level ( ) P2

“optimisation” condition: ( ) ≥− PDR 21 ( ) (∑ −
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+= 1Sx
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where: 

 

R : review period expressed as a fraction of one year (in our case R  = 1/12).  

D :  average annual demand in units 
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I : annual inventory holding charge 

T :  review period (1 month) 

L :  lead time (number of unit time periods) 

( )xp :  probability density function of demand x over TL+  

 

The simulated control parameter values are as follows (see also section 9.7): 

 

Control parameter Values assigned 

α  0.05 to 0.2 step 0.05 

L  1 to 5 step 2 

B2  policy, target value = 
B
IR

2
1−  0.93 to 0.96 step 0.03 

B3  policy, target value = 
B

B
IR 3

3

+
 0.95 to 0.98 step 0.03 

P2  0.90 to 0.95 step 0.05 

 

Table 11.1. The inventory control simulated conditions 

 

Results are separately generated (and tested for statistical significance) for all three 

managerial policies. In total there are 72 simulated scenarios covered in our empirical 

experiment. Details regarding the results generation process can be found in chapter 9 

of the thesis. 

 

11.2.1 Performance measures 

 

We record the average monthly number of units in stock and the Customer Service 

Level (CSL) achieved  by using the estimator under concern on each of the real 

demand data series, for all the control parameter combinations. The CSL is defined as 

follows: 

 

demandTotal
BackordersDemandTotalCSL

 
 −

=                      (11.1) 

 

Since cost information is not available, no inventory cost results can be generated. 

Volume differences are considered instead, regarding the number of units kept in 
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stock for the alternative estimators assessed in this chapter. In addition, CSL results 

are generated and they can be related directly to performance differences as far as the 

number of units backordered is concerned. 

 

The Percentage Best (PBt) measure (see sub-section 9.7.5) will be used to generate 

pair-wise comparison results with respect to the inventory control performance of the 

estimators. We test the hypothesis that the two methods under concern perform 

identically. The alternative hypothesis is that the second method performs better than 

the first one in terms of (a) percentage of times that it results in the lowest number of 

units in stock or (b) percentage of times that it results in the highest service level. 

Positive values of the Z-test statistic (difference between population proportions) 

indicate statistical significance in favour of the second method. The critical values for 

rejecting the null hypothesis are 1.64 and 2.32 (one-sided test) for the 5% and 1% 

significance level respectively.  

 

The Percentage Best measure can provide us with valuable information about which 

method performs best but not by how much. Therefore, a relative measure is also 

introduced, to indicate the performance differences in descriptive terms. The accuracy 

measure considered does not indicate performance differences at a pair-wise 

comparison level bur rather it indicates the cost and service level “regret” associated 

with using a particular estimator, considering the best possible attainable 

performance. In particular, we calculate the Average (per series) Percentage Regret 

(APR, Sani and Kingsman, 1997) of using any of the estimators considered in this 

chapter (see sub-section 9.7.5). The estimator with the least APR is the one that 

should be preferred for real world applications. 

 

When results are generated with respect to the average number of units in stock, the 

APR of using estimator x , across all series, is given by (11.2): 

 

n

n

i i

iix

x
Mn

MnS

StockAPR
∑
=

−

=
1

,

                  (11.2) 

 

where: 
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i  is the particular demand data series considered 

000,3=n  

S ix ,  is the average number of units in stock resulted from the employment of 

estimator x  on series i , and 

Mni  is the lowest average number of units in stock achieved (by any of the estimators 

considered) on the particular series. 

 

When results are generated on CSL, the APR is the amount each estimator falls short 

of the maximum possible CSL across all series: 

 

n

n

i i

ixi

x
Mx

CSLMx

CSLAPR
∑
=

−

=
1

,

                  (11.3) 

 

where: 

 

CSL ix ,  is the CSL (%) resulted from the employment of estimator x  on series i , and 

Mxi  is the maximum CSL achieved (by any of the estimators considered) on the 

particular series. 
 

11.3 Inventory control results -  policy P2

 

In table 11.2 we present the average (across all files) customer service level (to the 

third decimal place) resulting from the implementation of alternative estimators on 

our empirical data sample, for both  values considered in our experiment. Note that 

the MA(13) results change with the smoothing constant value. This is because the 

updating procedure of the variability of the MA(13) forecast error is the same as that 

used for all the other estimators (see also sub-section 9.7.4): 

P2
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αα             (11.4) 

 

where: 
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Y i  and Y  are the actual demand and the forecast corresponding to period  

respectively, and  

i′ i

t  is the current time period. 

 

  P 2  = 0.90 P 2  = 0.95 

  EWMA Croston Approx. MA(13) EWMA Croston Approx. MA(13) 

L.T.=1 0.932 0.915 0.913 0.913 0.954 0.944 0.942 0.942 

L.T.=3 0.935 0.920 0.915 0.917 0.953 0.942 0.940 0.940 

 

α =0.05 

 L.T.=5 0.942 0.932 0.928 0.931 0.957 0.950 0.946 0.948 
L.T.=1 0.949 0.927 0.922 0.925 0.965 0.953 0.949 0.951 

L.T.=3 0.949 0.926 0.918 0.923 0.963 0.947 0.941 0.944 

 

α =0.1 

L.T.=5 0.952 0.936 0.928 0.934 0.964 0.953 0.947 0.951 

L.T.=1 0.958 0.936 0.929 0.934 0.972 0.959 0.954 0.957 

L.T.=3 0.956 0.931 0.920 0.928 0.968 0.951 0.943 0.948 

 

α =0.15 

L.T.=5 0.958 0.939 0.927 0.936 0.969 0.955 0.946 0.952 

L.T.=1 0.965 0.942 0.934 0.941 0.976 0.963 0.958 0.962 

L.T.=3 0.961 0.935 0.921 0.932 0.971 0.954 0.944 0.952 

 

α =0.2 

 L.T.=5 0.962 0.941 0.927 0.938 0.971 0.956 0.945 0.954 

Average 0.952 0.932 0.924 0.929 0.965 0.952 0.946 0.950 

 

Table 11.2. Customer Service Level results (  policy)P 2
1

 

Before we discuss the results presented in table 11.2 it is important to comment on the 

considerable number of ties that occur with respect to the CSL achieved on every 

series by the alternative estimators. Ties are the natural consequence of the small 

number of demand occurring periods considered for conducting the “out of sample” 

comparisons between the alternative methods. In the majority, if not all cases, ties 

occur when: 

 

CSLCSLCSLCSL MAApproxCrostonEWMA )13(. === . 

 

                                                           
1 Explanatory note: Some areas in this table, but also in most of the other tables to follow in this 

chapter, have been shaded in order to make the information displayed easier to read.  
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A high number of ties has also been observed when the stock holding results are 

generated (see the following tables). The number of files on which each method 

performs best and the number of ties occurring, for the  = 0.90, 0.95 managerial 

constraints (and all the resulting possible combinations of the control parameter 

values) can be found in Appendix 11.A of the thesis. Similar numbers of ties have 

been observed for the rest of the managerial constraints considered in our experiment 

( ,  - and their corresponding values). 

P2

B2 B3

 

The results presented in table 11.2 indicate that as the smoothing constant value 

increases the customer service level achieved by the alternative estimators (achieved 

CSL) increases as well. This is true for both theoretically specified CSL values (i.e. 

0.90, 0.95). The results also indicate that EWMA gives the highest CSL in all 

simulated conditions.  

 

For  = 0.90,  the CSL achieved by all estimators exceeds the target CSL for all the 

control parameter combinations. This is particularly true for the EWMA estimator in 

which case the percentage difference can be as high as 6%. Nevertheless, the fact that 

the EWMA offers the highest CSL does not imply that it is the best estimator. Under 

the  managerial policy the objective is to meet a specified CSL. Achieved CSLs 

over and above the theoretically specified ones are obviously desirable, but they will, 

most probably, occur at the expense of a higher number of units in stock. Our 

discussion on that issue is continued later in this chapter. For  = 0.90, the difference 

between achieved and desired CSL becomes minimum when the Approximation 

method is utilised. This result can be attributed to the approximately unbiased nature 

of the Approximation method which has been empirically demonstrated in section 

10.3. In a similar manner the higher CSL achieved by Croston’s method and EWMA 

is viewed as the natural consequence of the bias associated with their implementation 

in practice. This issue is further discussed in the following section. In the previous 

chapter, the MA(13) estimator was shown to perform comparatively well for low 

smoothing constant values when bias results were generated. That explains, partly at 

least, the very similar performance between the Approximation method and MA(13) 

estimator across both target service level values. 

P 2

P 2

P 2

 

  



 329

For  = 0.95, the achieved CSL is in all cases relatively close (plus or minus) to the 

desired one. This is not true for the EWMA estimator in which case the achieved CSL 

always exceeds the desired one, the percentage difference being between 0.3% and 

2.7%. When the target CSL is set to 0.95 the overall (across all 

P2

α  values) biased 

nature of Croston’s method and MA(13) in not reflected on the achieved CSL. 

  

The replenishment levels are calculated as a function of the estimate of demand over 

lead time plus one review period (corresponding level of demand + bias) and of the 

MSE (variability of the forecast errors + bias squared). The greater the bias associated 

with an estimator and the greater the variability of the corresponding forecast errors 

the higher the replenishment levels are going to be (i.e. actual replenishment level > 

theoretically correct replenishment level). As a result the positive discrepancy 

between the actual CSL and the theoretically desired one increases as well, most 

probably, at the expense of a very high number of units kept in stock. This issue is 

also further discussed in the following section. The average CSL (to the third decimal 

place) achieved by Croston’s method, Approximation and MA(13) is, 0.952, 0.946 and 

0.950 respectively. It is important to note that this average CSL reflects only the 

simulated conditions considered in our experiment, which nevertheless correspond to 

many real world applications.  

 

The results presented for both  values indicate that there is very little to choose 

between MA(13) and the Approximation method in terms of CSL. 

P2

 

Watson (1987) showed, by means of simulation on theoretically generated data, that 

demand-forecast fluctuations, in a lumpy demand context, can very often cause a 

significant (either positive or negative) shift in the CSL achieved as compared to the 

target CSL. The demand per unit time period was assumed to follow the stuttering 

Poisson distribution and the desired CSLs considered in that case were lower (0.7 – 

0.9) than those considered in our simulation experiment. In addition, the mean 

demand level was calculated directly from the data rather than being estimated in a 

dynamic way as in the case of this experiment. Those may be the reasons that our 

empirical results do not fully support Watson’s findings. The shifts do occur but (a) 

are not necessarily very large, at least in the case that  = 0.95 and for all the 

estimators apart from EWMA, (b) the shifts tend to occur in the same direction and 

P 2
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this is particularly true for  = 0.90. The relationship between the desired and 

achieved CSL in an intermittent demand context, and for any of the estimators 

discussed in this chapter, is obviously of great practical importance and this may be 

an interesting avenue for further research. 

P 2

 

The results presented thus far in this section indicate that all methods meet the target 

CSL. Strictly speaking, this is not true for the Approximation method and  = 0.95 in 

which case the achieved CSL is slightly below the theoretically specified one. Under a 

different managerial constraint imposed on the system (other than the  policy), 

detailed comparative results should be generated at this stage (with respect to the CSL 

achieved) to determine which estimator is the best, second best etc. In the context of 

this particular policy though, high CSLs, that exceed the theoretically specified ones, 

are not necessarily desirable, if we consider that high CSLs are achieved at the 

expense of a high number of units kept in stock. In fact the greater the discrepancy 

between achieved and specified CSL, the less our confidence will be in the particular 

estimator (since the system “returns” a CSL which is different from what has been 

theoretically specified). In that respect, the Approximation method and MA(13) 

perform best for  = 0.90 and 0.95 respectively. At this stage we view as important to 

evaluate performance differences with respect to the number of units kept in stock to 

support the CSL achieved by the alternative estimators.  

P 2

P 2

P 2

 

In tables 11.3 and 11.4 the non-parametric stock control results, with respect to the 

average number of units kept in stock, are presented for both  values considered in 

our experiment. For each simulated scenario we present the Z-test statistic value 

(difference between population proportions). Positive values of the Z-test statistic 

indicate differences in favour of the second method. The critical values for rejecting 

the null hypothesis are 1.64 and 2.32 for the 5% and 1% significance level respectively 

(one-sided test). Statistically significant results at the 1% level are emboldened while 

significance at the 5% level is presented in italics. 

P 2
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  Croston- 

EWMA 

EWMA- 

Approx. 

Croston- 

Approx. 

MA- 

EWMA 

Croston- 

MA 

MA- 

Approx. 

L.T.=1 7.77 8.46 15.90 -6.97 14.48 1.51 
L.T.=3 -12.03 28.49 18.09 -21.12 9.93 8.41 

 

α = 0.05 

L.T.=5 -19.99 37.77 21.66 -24.10 5.06 16.88 
L.T.=1 5.78 13.34 18.78 -4.64 10.34 8.81 
L.T.=3 -13.03 33.85 22.90 -16.84 4.12 19.06 

 

α = 0.1 
L.T.=5 -22.84 46.14 28.63 -19.55 -4.12 32.24 
L.T.=1 0.19 19.39 19.56 -7.74 7.92 11.98 
L.T.=3 -15.03 37.24 24.76 -14.90 -0.13 24.89 

 

α = 0.15 
L.T.=5 -22.52 47.95 31.11 -17.81 -5.86 36.08 
L.T.=1 -6.78 22.64 16.37 -13.24 6.61 9.93 
L.T.=3 -18.49 37.91 22.22 -17.45 -1.16 23.30 

 

α = 0.2 
L.T.=5 -22.49 47.29 30.43 -18.83 -4.58 34.37 

 

Table 11.3. PBt stock results,  = 0.90 P 2

 

  Croston- 

EWMA 

EWMA- 

Approx. 

Croston- 

Approx. 

MA- 

EWMA 

Croston- 

MA 

MA- 

Approx. 

L.T.=1 12.31 4.56 16.61 -3.03 15.17 1.53 

L.T.=3 -8.62 26.75 19.29 -20.38 12.46 7.12 

 

α = 0.05 

L.T.=5 -19.94 37.34 20.93 -24.33 5.30 15.89 

L.T.=1 9.59 9.03 18.28 0.45 9.15 9.47 

L.T.=3 -9.48 30.98 22.85 -15.13 5.92 17.28 

 

α = 0.1 
L.T.=5 -20.09 44.45 29.14 -18.26 -2.20 31.06 

L.T.=1 4.60 14.52 18.87 -3.51 8.07 11.10 

L.T.=3 -11.59 34.16 24.31 -13.81 2.34 22.14 

 

α = 0.15 
L.T.=5 -20.50 46.96 31.56 -16.75 -4.47 35.35 

L.T.=1 -2.62 17.65 15.16 -8.49 5.90 9.40 

L.T.=3 -15.34 35.73 22.54 -15.13 -0.23 22.75 

 

α = 0.2 
L.T.=5 -21.16 46.46 30.17 -17.04 -4.88 34.39 

 

Table 11.4. PBt stock results,  = 0.95 P 2

 

The results demonstrate the superior performance of the Approximation method in 

terms of number of units kept in stock. The Approximation method performs 
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significantly better than Croston’s method, EWMA and MA(13) at the 1% 

significance level for all the combinations of the control parameter values2. 

 

EWMA is the least desirable estimator and this is what intuitively one should expect 

from the results presented in table 11.2. The EWMA estimator results in the highest 

CSL but at the expense of the highest number of units kept in stock. We have more to 

say on this particular issue in the following section. The MA(13) performs 

significantly better than EWMA and Croston’s method and finally Croston’s method 

outperforms EWMA in the majority of the simulated conditions. Overall Croston’s 

method seems to perform better for higher smoothing constant values in combination 

with long lead times. The APR results are presented in tables 11.5 and 11.6. for all the 

estimators considered in the simulation exercise. 

 

  EWMA Croston Approx. MA(13) 

L.T.=1 19.42 7.69 6.30 6.44 
L.T.=3 18.01 7.44 5.05 6.59 

 

α = 0.05 

L.T.=5 12.40 7.07 4.31 6.10 
L.T.=1 35.12 9.24 7.76 6.91 
L.T.=3 33.92 9.20 6.14 7.01 

 

α = 0.1 
L.T.=5 25.07 9.98 4.87 7.79 
L.T.=1 53.11 10.75 9.76 8.49 
L.T.=3 51.97 11.65 7.86 9.26 

 

α = 0.15 
L.T.=5 37.14 12.49 6.38 9.65 
L.T.=1 72.54 11.94 12.13 9.93 
L.T.=3 71.18 13.99 10.76 11.85 

 

α = 0.2 
L.T.=5 50.22 15.38 8.90 12.03 

 

Table 11.5. APR stock results,  = 0.90 P 2

 

 

 

 

 

                                                           
2 In the Approximation – MA(13) pair-wise comparison there is only one case (L.T.=1, α = 0.05) 
where the superiority of the Approximation method is not statistically significant. 
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  EWMA Croston Approx. MA(13) 

L.T.=1 16.42 7.76 6.82 5.90 
L.T.=3 15.81 7.21 5.42 5.67 

 

α = 0.05 

L.T.=5 11.52 6.74 4.37 5.70 
L.T.=1 29.26 9.53 8.82 7.08 
L.T.=3 29.59 9.12 6.61 6.58 

 

α = 0.1 
L.T.=5 22.23 9.09 5.19 6.93 
L.T.=1 43.88 10.98 10.98 8.66 
L.T.=3 44.97 11.40 8.72 8.95 

 

α = 0.15 
L.T.=5 33.38 11.93 7.07 9.17 
L.T.=1 60.65 12.05 13.57 10.08 
L.T.=3 61.88 13.85 11.81 11.74 

 

α = 0.2 
L.T.=5 44.86 14.80 9.90 11.70 

 

Table 11.6. APR stock results,  = 0.95 P 2

 

When relative results are generated the MA(13) is shown to perform particularly well 

for one step ahead forecasts. In fact this estimator is now shown to perform better than 

the Approximation method for all the relevant simulated conditions. For higher lead 

times the Approximation method gives the lowest percentage regret. The very good 

forecasting performance of the Approximation method, for lead times greater than 

one, has already been discussed in section 10.4 of the previous chapter. The relative 

inventory control results presented in this section indicate that the forecasting 

accuracy improvements achieved when the Approximation method is used for lead 

times greater than one, are reflected in a very good stock control performance with 

respect to the average number of units kept in stock. The APR results confirm the 

poor performance of EWMA and Croston’s method. EWMA gives in all cases the 

highest percentage regret followed (in all cases) by Croston’s method.  

 

11.3.1 Best α  value analysis 

 

Before we close this section we view as important to generate some comparative 

inventory control results considering the best α  value performance of the smoothing 

estimators discussed in this chapter. By using the same smoothing constant value for 

comparison purposes we may have put some of the smoothing estimators (EWMA, 
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Croston’s method, Approximation method) at a relative advantage/disadvantage (see 

also sub-section 10.4.1). Therefore, we wish to conduct a best α  value analysis of the 

results with respect to the inventory control performance of the smoothing estimators. 

In this chapter the smoothing constant value is not only used for obtaining an estimate 

of the level of demand but also for estimating the MSE. Therefore, the best α  value 

performance can also be identified for the MA(13) estimator.  

 

As discussed before in this section, the CSL offered by any of the estimators 

considered in this chapter increases with the smoothing constant value. Subsequently, 

we also expect the average number of units kept in stock to increase with the α  value. 

Consideration of both CSL and stock holding results for optimisation purposes, 

though, is not feasible, at least not without our intervention and investigation of each 

of the simulated cases, due to lack of relevant information (i.e. trade-offs between 

CSL and stock). On average, all estimators meet, approximately, or even exceed, the 

specified CSL. The average CSL achieved by all estimators, for each of the 

smoothing constant values considered and for both  values, across the three 

simulated lead time lengths, is presented in the following table.  

P2

 

  EWMA Croston Approx. MA(13) 

α  = 0.05 0.936 0.922 0.919 0.920 

α  = 0.1 0.950 0.930 0.923 0.927 

α  = 0.15 0.957 0.935 0.925 0.933 

 

 

P2 = 0.90 

α  = 0.2 0.963 0.939 0.927 0.937 

α  = 0.05 0.955 0.945 0.943 0.943 

α  = 0.1 0.964 0.951 0.946 0.949 

α  = 0.15 0.970 0.955 0.948 0.952 

 

 

P2 = 0.95 

α  = 0.2 0.973 0.958 0.949 0.956 

 

Table 11.7. Average CSL achieved  

 

Under the  managerial policy the objective is to meet a specified CSL. In that 

respect all smoothing constant values are equally satisfactory (with respect to the 

CSL), when = 0.90, and the best (overall) smoothing constant value can be 

identified considering the stock holding performance of the estimators. For = 0.95 

P2

P2

P2
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all estimators, apart from EWMA, do not meet the specified CSL for low smoothing 

constant values (say, ) and identification of the best (overall) 1.0≤ α  value is not 

feasible for the reasons stated above in this section. (The issue of optimisation of the 

smoothing constant value is further discussed in the following section). Therefore, the 

best α  value analysis is conducted only for = 0.90. P2

 

In particular, we record, for each of the simulated scenarios considered in our 

experiment and each of the estimators discussed in this chapter, the smoothing 

constant value that results in the lowest average (across series) number of units in 

stock. The best smoothing constant value is found to be 0.05. This is true for the 

performance of all estimators in all simulated cases (lead time lengths) and this is 

what intuitively one should expect from the CSL results presented in table 11.7. As 

the smoothing constant value increases, the achieved CSL (for every estimator) 

increases as well, but so does the average number of units kept in stock. The worst α  

value, with respect to the average number of units kept in stock, is, in all cases, 0.2. 

 

The “optimal” smoothing constant values identified in the previous chapter, with 

respect to the ME performance of the smoothing estimators, are as indicated in the 

following table. 

 

Best smoothing constant value  

EWMA Croston Approximation 

L.T. = 1 0.05 0.05 0.05 

L.T. = 3 0.05 0.05 0.05 

 

All points 

in time L.T. = 5 0.05 0.05 0.1 

 

Table 11.8. Best α value performance – lowest ME across series 

 

The results presented in tables 11.7 and 11.8 indicate the strong linkage between the 

bias associated with an estimator and the estimator’s performance with respect to the 

CSL achieved.  

 

The results of the best smoothing constant value analysis, for P2 = 0.9  are as follows:  

 

0,

  



 336

 Croston- EWMA- Croston- MA- 

EWMA 

Croston- MA- 

Approx. 
 

EWMA Approx. Approx. MA 

L.T.=1 1  1.51 7.77 8.46 15.90 -6.97 4.48
L.T.=3 -  12.03 28.49 18.09 -21.12 9.93 8.41 

 

= 0.90 P2

L.T.=5 -19.99 37.77 21.66 -24.10 5.06 16.88 

 

Table 11.9. PBt stock results, best α  value  

 

 EWMA Croston Approx. MA(13)  

L.T.=1 19.42 7.69 6.30 6.44 
L.T.=3 18.01 7.44 5.05 6.59 

 

= 0.90 P2

L.T.=5 12.40 7.07 4.31 6.10 

 

Table 11.10. APR stock results, best α  value  

 

he results indicate the superiority of the Approximation method. The Approximation 

1.3.2 Conclusions 

 an inventory control context, where a target service level is specified, all the 

                                                          

T

estimator performs significantly better than all the other methods when the PBt 

measure is considered and it also gives the lowest APR. MA(13) is the second best 

estimator, performing better than Croston’s method and EWMA  when both non-

parametric and relative results are generated. Finally, Croston’s method performs 

better than EWMA. This is not true for one step ahead forecasts, when results are 

generated on the PBt measure. In that case EWMA outperforms Croston’s estimator.  

 

1

 

In

estimators discussed in this chapter perform particularly well, in terms of meeting the 

specified CSL. From a practitioner’s perspective, exceeding the target service level is 

desirable only if it is not happen at the expense of an increased number of units in 

stock. Since all methods meet the specified target3, comparative results have been 

generated in this section with respect to number of units kept in stock to support the 

CSL achieved by the alternative estimators. Relative and non-parametric results 

demonstrate the superiority of the Approximation method for lead times greater that 

 
3 This is not true for the Approximation method and  = 0.95 in which case the achieved CSL is 
slightly below the theoretically specified one. 

P2

  



 337

one. For one step ahead forecasts, the Approximation method performs best in terms 

of number of times that gives the lowest average stock, but this is not reflected in the 

percentage regret associated with this method’s application in practice. When the 

latter measure is used the MA(13) performs best. The APR is a relative measure and 

is scale independent. Therefore, we may suppose that the effect of outliers (contained  

in some of the series) works in favour of the MA(13) estimator and this agrees with 

findings presented in the previous chapter. EWMA and Croston’s method are clearly 

the least desirable estimators, the former estimator performing always worse that the 

latter. 

 

We conclude that the approximately unbiased nature of the Approximation method 

1.4 Inventory control results – cost criteria 

 this section the stock control performance of intermittent demand estimators is 

as

 table 11.11 we present the non-parametric results with respect to CSL given by 

emboldened while significance at the 5% level is presented in italics. 

(that has been empirically demonstrated in the previous chapter) is reflected in the 

superior inventory control performance of this estimator in a re-order interval system 

that operates under a service constraint. The CSL achieved by this estimator deviates 

slightly from the theoretically specified one and the method results in the lowest 

number of units in stock. The MA(13) is the second best estimator. This method also 

performs very well, particularly for one step ahead forecasts. Croston’s method and 

EWMA are found to be, overall, the least desirable estimators. 

 

1
 

In

analysed in the context of a specified cost criterion. In particular, we present the 

“relative” and non-parametric comparison results for the B2  policy and target value 

equal to 0.93. This particular target value is viewed  very realistic, from a 

practitioner’s perspective, since it relates directly to our empirical data sample and 

reflects real inventory control situations reported elsewhere in the academic literature 

(Kwan, 1991; Sani, 1995; see also section 9.7). The rest of the target values selected 

for simulation purposes are analysed in sub-section 11.4.1.  

 

In

alternative estimators. Positive values of the Z-test statistic indicate differences in 

favour of the second estimator. Statistically significant results at the 1% level are 
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  Croston- 

EWMA 

EWMA- 

Approx. 

Croston- 

Approx. 

MA- 

EWMA 

Croston- 

M

MA- 

A Approx. 

L.T.=1 26.14 -27.39 -3.78 24.93 2.51 -5.91 

L.T.=3 20.32 -22.22 -3.77 20.88 -0.98 -2.84 

 

α = 0.05 

L.T.=5 16.11 -17.52 -2.49 15.25 1.27 -3.70 

L.T.=1 29.39 -30.27 -2.66 30.91 -5.40 3.47 
L.T.=3 23.41 -24.72 -2.60 26.39 -7.17 5.30 

 

α = 0.1 

L.T.=5 19.66 -19.98 -0.57 22.48 -6.50 6.10 

L.T.=1 29.09 -29.77 -1.95 30.62 -5.40 4.01 

L.T.=3 23.25 -24.39 -2.20 26.30 -7.24 5.67 

 

α = 0.15 

L.T.=5 20.03 -20.23 -0.34 22.82 -6.50 6.27 

L.T.=1 27.80 -28.39 -1.58 29.43 -5.49 4.37 

L.T.=3 21.98 -22.77 -1.34 25.70 -7.98 7.03 

 

α = 0.2 

L.T.=5 19.59 -19.33 0.42 22.58 -6.73 7.03 

 

1.1  CS ts, icy ( valu 3) 

 

The averag ed and 

policies (and their corresponding values) and for all the control param

nce of EWMA is 

ignificantly higher than that of any other estimator. For all the control parameter 

y control results have been generated in a re-order interval context and as 

uch they can be directly related to the results presented in sections 10.3, 10.4 and 

2  pol target e = 0.9Table 1 1. PBt L resul  B

e (across all series) CSL achiev  by all estimators, for both B2  B3  

eter 

combinations can be found in Appendix 11.B of the thesis. The CSL given by all 

estimators, for all the control parameter combinations, when the B2  policy is 

considered and for a target value equal to 0.93, always exceeds 0.92. 

 

The results presented in table 11.11 indicate that the CSL performa

s

combinations considered in our experiment the EWMA always results in the highest 

customer service level. The Z-test statistic value, for all three pair-wise comparisons 

involving EWMA, is highly significant. The significantly greater number of times that 

the EWMA gives the highest CSL results is also translated to a substantial average 

percentage increase of the CSL achieved when EWMA is compared with all the other 

estimators (see table 11.B.1 in Appendix 11.B).  This issue is further discussed later in 

this section. 

 

The inventor

s
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10.5 (of the previous chapter), for all points in time. EWMA has already been shown 

to be a biased estimator but this is also true for Croston’s method and MA(13). In that 

respect, a better performance of the latter two estimators was expected when results 

are generated on the achieved CSL. In addition, the results presented in section 10.4 

demonstrate the relatively good performance of the EWMA estimator when ME 

(parametric and non-parametric) results are generated.  

 

There is some evidence to attribute the exceptionally good CSL performance of 

WMA not only to its biased nature but also to the substantial variability associated 

r. In tha

rrors produced by this 

method. 

Croston’s method performs significantly better than MA(13) for 

E

with the errors produced by this method4. In particular, the results presented in the 

previous chapter demonstrate that when the empirical MSE is taken into account, and 

for all points in time, EWMA performs worst, i.e. the MSE EWMA   is greater than that of 

any other method5. That agrees also with the theory generated in chapter 6, although 

the EWMA was then regarded as an unbiased estimato t particular chapter we 

commented on the very high variability of the EWMA estimates, in a re-order interval 

context. In summary, the CSL performance of EWMA can be attributed to:  

 

• The theoretically unexpected biased nature of the estimator 

 

• The theoretically expected high variability of the forecast e

 

1.0≥α . The 

pproximation method performs worse than Croston’s method although the 

r lead

outliers works in favour of MA(13) (see also previous section).  

                                                          

A

superiority of the latter estimator is not statistically significant for highe  times 

and/or smoothing constant values. Finally, the Approximation method performs 

significantly better than the MA(13) although this superiority is not reflected on an 

average (across series) percentage reduction of the “regret” associated with the former  

estimator (see table 11.12). In fact, the APR given by the Approximation method is 

always higher than that of the MA(13) which leads us to believe that the effect of 

 
4 As the bias and the variability of the forecast errors produced by an estimator increase, the 
replenishment levels also increase and so does the achieved CSL. 
5 This is not true for the EWMA – MA(13) comparison in which case no theoretical results have been 
developed and as such no empirical tests have been performed. 
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  EWMA Croston Approx. MA(13) 

L.T.=1 0.18 2.22 2.63 2.26 
L.T.=3 0.30 2.22 2.82 2.38 

 

α = 0.05 

L.T.=5 0.35 1.58 2.15 1.66 
L.T.=1 0.07 2.70 3.44 2.88 
L.T.=3 0.17 2.90 3.90 3.26 

 

α = 0.1 
L.T.=5 0.20 2.27 3.29 2.53 
L.T.=1 0.06 2.86 3.83 3.03 
L.T.=3 0.16 3.17 4.62 3.56 

 

α = 0.15 
L.T.=5 0.18 2.59 4.08 2.94 
L.T.=1 0.06 2.87 4.16 3.05 
L.T.=3 0.18 3.28 5.15 3.65 

 

α = 0.2 
L.T.=5 0.18 2.71 4.68 3.10 

 

T 1.12. A SL results policy (tar lue = 0.93) 

 

he Approximation method is theoretically and empirically approximately unbiased 

while the v ly, and as 

emonstrated in the previous chapter, empirically very low. That may explain the 

. In fact Croston’s method gives always a lower percentage regret, but the 

ifferences are small. This is also demonstrated in table 11.B.1 of Appendix 11.B 

able 1 PR C , B2  get va

T

ariability of the estimates produced by this method is, theoretical

d

relatively poor performance of the Approximation method when CSL results are 

generated.  

 

When the APR results are considered, Croston’s method performs slightly better than 

the MA(13)

d

where the average CSL results, across all series, are presented for all the estimators 

considered in this chapter. The results indicate that the CSL given by Croston’s 

method always exceeds that of MA(13) by no more than 0.4%. The Approximation 

method always gives the lowest average CSL, the difference with the CSL achieved 

by Croston’s method being between 0.4% - 1.8%. The EWMA always performs best. 

The CSL given by all methods exceeds the 92% in all simulated scenarios. We have 

calculated the difference between the CSL given by EWMA and the average CSL, 

across all three remaining estimators, achieved for all the control parameter 

combinations ( B2  policy, target value = 0.93). The difference is always between 1% 

and 3%.  
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In the following tables the stock holding PBt and APR results are presented for the 

B2  policy and target value equal to 0.93. 

 

  Croston- 

EWMA 

EWMA- 

Approx. 

Croston- MA- Croston- MA- 

Approx. EWMA MA Approx. 

L.T.=1 -16.29 30.77 18.94 -34.36 23.30 -4.75 
L.T.=3 -21.60 34.70 17.16 -33.15 15.20 2.04 

 

α = 0.05 

5 -  1L.T.= -21.93 39.48 22.41 28.10 8.10 4.70 
L.T.=1 -19.01 40.00 26.90 -28.31 12.4  4 15.28 
L.T.=3 -25.82 43.03 22.28 -25.92 0.13 22.16 

 

α = 0.1 
L.T.=5 -25.53 48.14 28.88 -21.68 -5.22 33.43 
L.T.=1 -19.07 47.05 35.07 -24.04 6.75 29.36 
L.T.=3 -26.34 47.99 27.70 -22.53 -5.16 32.26 

 

α = 0.15

-  

 
L.T.=5 -26.32 51.96 32.53 -18.60 10.41 41.17 
L.T.=1 -18.23 51.23 40.72 -22.32 5.58 36.31 
L.T.=3 -26.48 49.32 29.15 -22.06 -5.99 34.38 

 

α = 0.2 
L.T.=5 -25.60 52.93 34.54 -19.16 -8.71 41.68 

 

Table 11.13. PBt stock results, cy ( alu 3) 

 

 EWMA Croston Approx. MA(13) 

B2  poli target v e  = 0.9

 

L.T.=1 27.43 6.  4.02 792 .80 
L.T.=3 22.37 7.26 3.94 7.84 

 

α = 0.05 

5 L.T.= 14.17 6.89 3.26 6.73 
L.T.=1 49.97 7.57 2.52 6.97 
L.T.=3 42.70 8.66 2.81 7.44 

 

α = 0.1 
L.T.=5 28.67 9.35 2.67 7.69 
L.T.=1 75.13 9.04 1.85 7.95 
L.T.=3 64.95 11.08 2.54 9.20 

 

α = 0.15 
L.T.=5 43.82 12.32 2.59 9.62 
L.T.=1 102.98 10.93 1.67 9.59 
L.T.=3 88.46 13.57 2.84 11.27 

 

α = 0.2 
L.T.=5 60.11 15.76 3.08 12.23 

 

T .14. A ock resul policy (target value = 0.93

 

able 11 PR st ts, B2  ) 
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The result cted thus 

r in this section. In particular, EWMA is now shown to perform significantly worse 

A(13) performs better than Croston’s method even though the PBt 

sults are in favour of the latter estimator when the lead time is 3 or 5 periods and for 

s show what intuitively one should expect from the analysis condu

fa

than any other estimator. EWMA offers the highest CSL at the expense of a 

considerable amount of units kept in stock. In fact the percentage regret given by the 

EWMA estimator can be as high as 100%. We cannot comment further on the trade-

offs between CSL and amount of units kept in stock because of lack of relevant 

information.  

 

Overall, the M

re

1.0≥α . The Approximation method performs significantly better than all other 

estimators. 

The results 

 

presented thus far in this sub-section indicate clearly which is the best 

stimator when either CSL or number of units in stock are considered for comparison 

, across all series, at 

a pair wise comparison level; 

• or decrease of the number of units kept in stock, 

across all series, at a pair wise comparison level. In this case, the average number 

e

purposes. To facilitate the process of selecting the best estimator across both criteria 

the simulation output was analysed with respect to the following: 

 

• Average percentage increase or decrease of the CSL achieved

 

Average percentage increase 

of units in stock obtained by estimator, say x , in a particular series, is expressed 

as a percentage of the average stock holding associated with another estimator, 

say y . The percentages are averaged across series to indicate the average 

percentage increase or decrease in stock obtained by employing estimator x  

instead of y . 

 

In table 11.15 we present the average percentage differences for the  policy (target 

alue = 0.93) and all the corresponding control parameter combinations. For each 

pair-wise comparisons. Positive results indicate differences in favour of the second 

B2

v

simulated scenario we first indicate the average, across series, percentage increase or 

decrease in stock and then the average CSL percentage differences, for all possible 
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method (percentage decrease in stock or percentage increase in CSL). Negative results 

indicate differences in favour of the first estimator.  

 

   Croston- 

EWMA 

EWMA- 

Approx. 

Croston- 

App

MA- Croston- MA- 

rox. EWMA MA Approx. 

% stock -19.57 17.40 2.49 -18.92 -1.65 2.36  
L.T.=1 % CSL 1.78 -2.14 -0.37 1.90 -0.13 -0.24 

% stock -14.72 14.15 2.87 -14.00 -1.44 2.46  
L.T.=3 % CSL 1.60 -2.12 -0.52 1.88 -0.28 -0.24 

% stock -7.59 8.94 3.14 -7.25 -0.74 2.44 

 

 

 

α = 0.05 

.T.=5 

 

L % CSL 1.03 -1.49 -0.46 1.17 -0.13 -0.33 
% stock -  -28.39 26.92 18.49 1.91 0.94 0.14  

L.T.=1 % CSL 1.73 -2.19 -0.46 1.87 -0.15 -0.32 
% stock -  -32.76 31.69 26.18 4.90 0.40 3.66  

L.T.=3 % CSL 2.38 -3.28 -0.91 2.75 -0.37 -0.53 
% stock -  -19.34 18.26 18.79 5.56 0.72 4.06 

 

 

 

α = 0.1 

.T.=5 

 

L % CSL 1.74 -2.62 -0.88 1.98 -0.24 -0.64 
% stock -  -62.31 60.49 39.51 6.08 0.57 4.97  

L.T.=1 % CSL 2.59 -3.50 -0.91 2.76 -0.16 -0.74 
% stock -  -50.87 48.49 35.22 6.85 1.08 5.34  

L.T.=3 % CSL 2.68 -4.01 -1.33 3.04 -0.36 -0.98 
% stock -  -31.05 28.39 26.48 7.70 1.64 5.67 

 

 

 

α = 0.15 

.T.=5 

 

L % CSL 2.06 -3.39 -1.33 2.36 -0.30 -1.03 
% stock -  -85.27 82.66 47.17 7.62 0.82 6.40  

L.T.=1 % CSL 2.62 -3.85 -1.23 2.79 -0.18 -1.06 
% stock -  -69.23 65.66 42.12 8.16 1.44 6.47  

L.T.=3 % CSL 2.79 -4.54 -1.75 3.12 -0.34 -1.41 
% stock -  -42.56 38.37 32.57 9.43 2.27 7.01 

 

 

 

α = 0.2 

.T.=5 

 

L % CSL 2.21 -3.99 -1.78 2.53 -0.32 -1.46 

 

Table 11. 5. St  C olic t v  0.9

 

onsidering the pair-wise relative comparison results, Croston’s method is shown to 

outp

1 ock and SL % differences ( B2  p y, targe alue = 3) 

C

erform MA(13), for 05.0=α . For higher smo hing constant values we canot not 

etermine which estimator is better.  d
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All estimators perform, overall, better than EWMA. The CSL achieved by Croston’s 

method, Approximation and MA(13) is in all cases above 92%. EWMA offers an 

increase in customer service that can be as high as 3%. Nevertheless this CSL 

percentage increase is supported by a tremendous increase in the amount of stock that 

is kept in the system (the stock percentage increase can be as high as 85%). We cannot 

comment further on the trade-offs between CSL and amount of units kept in stock 

because of lack of relevant information. Nevertheless, it is important to note that there 

should only be few real situations where a few points increase in the CSL (2%-3% 

reduction in the number of units backordered) would actually reduce a cost function 

when there is such a tremendous increase in stock.  

 

The CSL achieved by the Approximation method is, for 1.0≤α , less than 1% lower 

than that achieved by Croston’s method or MA(13 he same time, the 

pproximation method offers a percentage decrease in stock which is between 2% 

). At t

A

and 5%. For 1.0>α  the CSL difference is between 1% - 1.5  the stock percentage 

decrease between 6% and 9%. The ratio between the annual inventory holding charge 

(

% and

I ) and the shortage fraction per unit value short ( B2 ) when the target value is 0.93 is: 

 

84.093.01
22
=⇔=−

BB
IIR  (for 12/1=R , see also section 9.7) 

 

Under the managerial policy, the expected number of units short in a 

replenishment cycle is given by (11.5) 

 is the probability density function of demand 

B2  

 

( ) ( )∑ −=
∞

+= 1Sx
xpSxhorto. u  sExpected n                   (11.5) 

 

nits

( )xp x over TL+(where ) 

 

nd the average number of units in stock by (11.6) a

 

2TL   DRSlevelstock +−= +µ                   (11.6) Average
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where is the expected dema d ver le  time lus on  revie  perion o ad  p e w d and D  is µ TL+  

the average annual demand in units. 

The total annual inventory cost ( ) is calculated as follows: 

 

 

TCI

R
TCI =

A
+⎟

⎠
⎜
⎝

+−+ + 2
SIc TLµ

⎞⎛ DR ( ) ( )∑
∞

+=

1
R

c              (11.7) 

where 

−
1

2
Sx

xpSxB     

 

A  is the ordering cost (£). 

 

he percentage decrease in stock achieved when one estimator is used instead of 

(11.7). The CSL has 

and (units) satisfied directly from stock. The 

ethod outperforms MA(13) for 

(For the above results please refer to section 9.6.) 

 

T

another relates directly to (11.6) or the second part of equation 

been recorded as percentage of dem

percentage decrease in CSL achieved when one estimator is used instead of another 

can be interpreted as the percentage increase in the number of units backordered. 

Subsequently, it relates to equation (11.5) or the third part of equation (11.7).  

 

Considering the above information, the Approximation method can be shown to 

perform best, i.e. give the lowest Total Cost of Inventory (see also sub-section 

11.4.1). Croston’s m 05.0=α . A very similar 

 Furthe

or all 

stimators. Unfortunately we are not able to do so due to the lack of unit cost 

performance is the case for the estimators under concern for higher smoothing 

constant values. EWMA is clearly the least desirable estimator and this is due to the 

high stock resulting from its implementation in practice. r investigation is 

clearly required to determine performance differences in cost terms. For this to be 

done though, the unit cost information is required. 

 

Moreover, we would also wish to determine actual performance differences when the 

best smoothing constant value (with respect to both CSL and stock) is utilised f

e

information. That is, if the unit cost information were available, the smoothing 

constant value that minimises a cost function could be selected for each estimator and 

then comparisons could be conducted with respect to the best α  value performances. 
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The best α  value with respect to CSL achieved is, for all estimators, 0.2. This is 

perhaps not true for the Approximation method and lead time  greater than one, in 

which case the CSL achieved is not very much sensitive to the smoothing constant 

value (see tables 11.B.1 and 11.B.2 in Appendix 11.B of the thesis). The estimators 

discussed in this chapter are expected to perform best, with respect to the number of 

units kept in stock, across all files, for very low smoothing constant values (say 0.05) 

and this has been empirically demonstrated for the P2  criterion in the previous 

section. When both CSL and stock are considered a decision on the best smoothing 

constant value for each estimator cannot be made, at least not in an automatic way 

(i.e. without our intervention and investigation for each one of the simulated 

scenarios). 

 

The results

s

 presented thus far in this section indicate the superiority of the 

pproxim tion method in a re-order interval context where the objective is to 

mulated conditions – summary results 

tion are valid for all the 

imulated scenarios that correspond to the  policy (target value = 0.96) as well as 

 

A a

minimise a cost function. In particular, comparative inventory control results have 

been generated with respect to the B2  criterion and a target value equal to 0.93. 

Considering both stock and CSL results the Approximation method is shown to 

outperform the other estimators considered in this chapter. Croston’s method and 

MA(13) are found, overall, to perform very similarly. EWMA performs worst and this 

is due to the very high number of units kept in stock to support the CSL achieved by 

this estimator. 

 

11.4.1 Other si

 

The comments that have been made thus far in this sec

s B2

the B3  policy (target value = 0.95, 0.98). As such the corresponding simulation results 

are presented in detail in Appendix 11.B of the thesis and only a few summary results 

will be given in this sub-section. Some justification for the selection of the particular 

target values has been given in section 9.7. The target values considered for 

simulation purposes are viewed as realistic, from a practitioner’s perspective, and they 

correspond to inventory control systems described elsewhere in the academic 

literature (Kwan, 1991; Sani, 1995). 
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EWMA is always shown to be the least desirable estimator for reasons discussed in 

the previous sub-section. Overall, Croston’s method and MA(13) perform very 

imilarly and this finding does not agree with the results presented in Sani and 

th h

s

Kingsman (1997). This issue is further discussed later in this section. The 

Approximation method performs very well, when both stock and CSL results are 

taken into account. In the following table we summarise the pair-wise comparison 

results (similar to those presented in table 11.15) for all the pair-wise comparisons 

involving the Approximation method, for the B2  (target value = 0.93, 0.96) and B3  

policy (target value = 0.95, 0.98). In particular we present the average stock and CSL 

percentage difference across all parameter combinations for each of the four specified 

managerial constraints. It is important to note that these average values reflect on  

the simulated conditions considered in our experiment. If other scenarios had been 

considered (i.e. other lead times or smoothing constant values) the results would not 

necessarily be the same. The ratio between the inventory holding charge and the 

shortage fraction ( B2  or B3 ) is also given, to enable an approximate quantification of 

the benefits gained when the Approximation method is utilised instead of the other 

estimators. Positive results indicate percentage differences in favour of the 

Approximation me od w ereas negative values indicate percentage differences in 

favour of the other estimator. 

 

 Approximation method compared with  

ly

 EWMA Croston MA(13) 

 Stock CSL Stock CSL Stock CSL 
B
I

2
 

B
I

3
 

B2  policy 

rget value = 0.93 

 

27. 9 5.5 99 4.2

 

5 

 

0.84

 
ta 25 -3.0

    

6 -0. 5 -0.7  

B2  policy 

target value = 0.96 23.14 -2.08 4.43 -0.73 3.09 -0.53 

 

0.48 
       

B3  policy 

target value = 0.95 25.08 -1.80 4.53 -0.60 3.41 -0.44 

 

0.63 

       

B3  policy 

target value = 0.98 20.03 -1.08 2.95 -0.38 1.45 -0.27 

 

0.24 

       

 

Table 11.16. Average percentage d  policies) ifferences ( B2 , B3
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For the  policy, the shortage function is the same as for the  criterion (equation 

(11.5)) whi  ( 8)

 B3 B2

le the average number of units in stock is given by 11.  

 

( ) ( )
2

   
0

DRxpxSlevelckAverage
S

x
+∑ −=

=
                            (11.8) 

 

sto

l annual inventory cost ( ) is calculated as follows: 

 

The tota TCI

( ) ( ) ⎟
⎠⎝ = 20R x

⎞
⎜
⎛ +∑ −+=  DRxpxSIcACI

S ( ) (∑ −+
∞

T )3
1 xpSxcB                 (11.9) 

(For the above results please refer to section 9.6) 

 

he percentage decrease in stock achieved when the Approximation estimator is used 

 second part of equation (11.7) and 

1.9) for the  and  policy respectively. The percentage decrease in CSL 

 p s  That is, the former estimator 

ives a lower Total Cost of Inventory (TCI, see equations (11.7) and (11.9)) for an 

                                                          

+= 1SxR

 

T

instead of another method relates directly to the

(1 B2 B3

achieved when the Approximation method is used instead of another method can be 

interpreted as the percentage increase in the number of units backordered/satisfied 

from an emergency delivery. Consequently, it relates to the third part of equation 

(11.7) and (11.9) for the B2  and B3  policy respectively. 

 

For the particular BI / 2  and BI / 3  ratios simulated with our experiment, the 

Approximation method erform  better than EWMA.

g

“average”6 SKU. The results indicate that the Approximation method should be, 

generally, preferred to EWMA in a cost driven system. We cannot obviously exclude 

the possibility that EWMA shows a superior performance; but, intuitively, for that to 

happen the shortage penalty fraction should be much greater than the inventory 

holding charge. It is possible that there are real world systems where there is a great 

difference between the shortage fraction and the stock holding charge. Nevertheless, 

the Approximation method should be expected to perform better than EWMA (lower 

TCI) in the majority of real world applications.  

 
6 The percentage increase/decrease values presented in table 11.16 are averages obtained across all 
3,000 SKUs. 
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The general superiority of the Approximation method is also evident in the 

Approximation – Croston and Approximation – MA(13) comparisons. Unless the 

shortage penalty fraction is much greater than the inventory holding charge, the 

 considered in our experiment) decreases, i.e. as the 

tio between the inventory holding charge and the shortage fraction under concern 

Approximation method is, intuitively, expected to perform better (i.e. give a lower 

TCI) than both other estimators. 

 

The Approximation method compares more favourably with all the other methods as 

the target value (for both policies

ra

increases. No empirical results have been generated for ratio values below 0.48 (for 

the B 2  policy) and 0.24 (for the B3  policy). Therefore, there is only enough empirical 

evidence to claim that the Approximation method should be preferred to EWMA, 

Croston’s method and MA(13) when: 

 

48.0
2
≥

B
I ,  for a cost driven system that operates under a specified shortage 

fraction per unit value short 

 

24.0
3
≥

B
I , for a cost driven system that operates under a specified emergency 

delivery premium charge per unit value short. 

 

The Approximation method may perform best for even lower values of the ratio 

between the in n, although this is just a 

peculation since no simulations have been conducted in this thesis for such values. 

ventory holding charge and the shortage fractio

s

Both 48.0/ 2 =BI  and 24.0/ 3 =BI  have been chosen rather arbitrarily and the true 

cut-off values may be lower. Moreover, as stated before in this section, further 

investigation is clearly required to determine performance differences in cost terms. 

For th  thoug cost information is required. 

 

 

 

is to be done h, the unit 
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11.5 The categorisation of “non-normal” demand patterns 

se rules and 

verall, regarding all methods’ application, rules) have been validated, as far as 

 

The theoretical categorisation rules developed in this research (pair-wi

o

forecasting is concerned, in chapter 10 of the thesis. The categorisation rule regarding 

all methods’ performance in a re-order interval context (periodic inventory control 

system) is the following: 

 

 For p  (average inter-demand interval) > 1.32 and/or  

CV 2  (squared coefficient of variation of the demand sizes) > 0.49 

In al

 Approximation method performs best for 

use Approximation method. 

l other cases use Croston’s method. 

 

p  In the previous chapter we found that the

> 1.32 and/or CV 2  > 0.49. That has been validated by using both parametric and non-

er

ss the validity of this rule in an inventory control context. 

ubsequently, CSL and stock holding results are generated regarding the application 

e managerial policy is a specified percentage of demand to be satisfied 

irectly from stock ( = 0.90, 0.95) the CSL achieved when the rule is employed for 

parametric tests. For the remaining demand patterns, non-parametric tests showed that 

there is some m it in adopting Croston’s method but the parametric results did not 

support this statement. 

 

We now wish to asse

S

of the rule in our empirical data sample and the performance of the rule is compared 

against the inventory control performance of both Approximation and Croston’s 

method. 

 

When th

d P2  

stock control purposes is given, for all the control parameter combinations, in the 

following table.  
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P2  = 0.90  = 0.95 P2 

L.T.=1 L.T.=3 L.T.=5 average L.T.=1 L.T.=3 L.T.=5 average 

α =0.05 0.914 0.918 0.931 0.921 0.943 0.940 0.948 0.944 

α =0.1 0.925 0.923 0.933 0.927 0.951 0.944 0.950 0.949 

α =0.15 0.933 0.926 0.934 0.931 0.956 0.948 0.951 0.952 

α =0.2 0.939 0.929 0.935 0.934 0.960 0.949 0.952 0.954 

 e 8 e 9 ov rall average = 0.92 ov rall average = 0.94

 

Table 11.17. Categorisation rule, C

 

The results prese esults given in 

ble 11.2 of this chapter. The average CSLs achieved by the Approximation method 

 = 0.95 

pproximation method     0.924         0.946 

   0    0

wh n the ategor le is used ( s always between 

e corresponding CSL for the Approximation method and Croston’s method. In 

r com

ries, percentage 

crease or decrease in stock and then the average CSL percentage differences, for the 

SL ( P2  policy) 

nted in the above table should be compared with the r

ta

and Croston’s method, for both P2  policies are as follows: 

 

    average CSL   P2  = 0.90  P2

A

Croston’s method    .932      .952 

 

The CSL achieved e c isation ru SLRule ), iC

th

particular, the CSLRule  (for any of the control paramete binations) is always 

slightly under the CSL resulting from Croston’s method and slightly above the CSL 

resulting from the Approximation method. The percentage differences are assessed in 

detail in the following table where we present the average percentage increase or 

decrease of the CSL achieved and number of units kept in stock, across all series, at a 

pair-wise comparison level (Rule – Approximation, Rule – Croston).  

 

For each simulated scenario we first indicate the average, across se

in

two pair-wise comparisons involving the categorisation rule. Positive results indicate 

differences in favour of the rule (percentage decrease in stock or percentage increase 

in CSL). Negative results indicate differences in favour of either Croston’s or the 

Approximation method. 
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Approx. - Croston - Approx. - Croston - 
Rule Rule Rule Rule 

 

P2  = 0 0.90 P2  = .95 

% stock -0.89 0.37 -0.63 0.24  

L.T. = 1 % CSL 0.17 -0.11 0.10 -0.10 
% stock -1.34 0.76 -1.07 0.50  

L.T. 3  = % CSL 0.26 -0.19 0.16 -0.13 
% stock -1.43 1.00 -1.11 0.95 

 

 

 

α  = 0.05 

 

 

L.T. 5 

 
 = % CSL 0.24 -0.15 0.20 -0.13 

% stock -1.35 0.10 -0.89 -0.12  

 = L.T. 1 % CSL 0.29 -0.25 0.19 -0.17 
% stock -2.13 0.59 -1.75 0.48  

L.T. 3  = % CSL 0.44 -0.32 0.32 -0.25 
% stock -2.73 1.71 -2.15 1.20 

 

 

 

α  = 0.1 

L.T 5 

 

. = % CSL 0.51 -0.32 0.38 -0.23 
% stock -1.52 -0.39 -0.97 -0.70  

L.T. 1  = % CSL 0.40 -0.31 0.25 -0.26 
% stock -2.83 0.51 -2.34 0.05  

L.T 3 . = % CSL 0.62 -0.51 0.49 -0.35 
% stock -3.57 1.66 -3.06 1.06 

 

 

 

α  = 0.15 

L.T. 5 

 

 = % CSL 0.68 -0.43 0.55 -0.36 
% stock -1.35 -1.21 -0.76 -1.74  

L.T 1 . = % CSL 0.47 -0.39 0.27 -0.28 
% stock -3.21 -0.45 -2.60 -0.82  

 = L.T. 3 % CSL 0.77 -0.59 0.59 -0.47 
% stock -4.28 1.06 -3.53 0.47 

 

 

 

α  = 0.2 

 

L.T. = 5 % CSL 0.87 -0.56 0.65 -0.44 
  

1.18. and C  differences ( p  

The results in  C ed when the 

ategorisation rule is used instead of the Approximation method. The difference never 

compared with Croston’s method the results indicate, overall, the 

etter performance of the rule, as far as the number of units kept in stock is 

P2  olicy)Table 1  Stock SL %

 

dicate the very small percentage increase in the SL achiev

c

exceeds 0.9%. The increase in CSL occurs at the expense of an increased number of 

units kept in stock when the rule is utilised. The stock holding percentage increase can 

be as high as 4%. 

 

When the rule is 

b
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concerned. The decrease in the number of units kept in stock results in a decreased 

CSL when the rule is utilised. 

 

For both P2  values, the CSL achieved by the rule meets approximately, or even 

xceeds, the theoretically desired CSL. Therefore, we focus on the stock holding 

mend the 

ategorisation rules proposed in chapter 6 of the thesis. In particular, in the next stage 

ifference results have also been generated for both cost 

olicies considered in our simulation experiment and they are presented in Appendix 

e

results in order to generate conclusions about the comparative performance of the 

categorisation rule. Overall, the rule performs better than Croston’s method and this is 

in accordance with the theory. Nevertheless, the rule does not outperform the 

Approximation method. In fact the opposite is the case but this is what we were 

expecting based on the analysis conducted in the previous chapter. The parametric 

results generated in sub-section 10.5.3 indicated that the Approximation method 

performs better than Croston’s method not only in the “non-smooth” but also in the 

“smooth” demand category. Therefore, it is not a surprise that the Approximation 

method outperforms the categorisation rule in an inventory control context. 

 

As discussed in the previous chapter, further research is required to a

c

of this research it is intended to produce a theoretically coherent delineation of the 

“smooth” demand quadrant. 

 

Stock and CSL percentage d

p

11.C of the thesis. The results demonstrate that the Approximation method performs 

better than the rule (i.e. the Approximation method results in a lower Total Cost of 

Inventory) for:  

 

48.0≥
I  and  24.0

3
≥

B
I

B2

  

 

for the  policy respectively. The Approximation method may perform 

etter for even lower values of the ratio between the inventory holding charge and the 

 

 and B2 B3

b

cost criterion under concern although this is just a speculation. More scenarios (target 

values) need to be simulated in order to assess the validity of such a claim. 
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11.6 “Real world” applications 
 

All the empirical results presented in this thesis have been produced in a dynamic 

thods would have performed if they had been 

pplied in “real world” situations. An exception has been the testing of the 

tical applications that have not been, 

eoretically and/or empirically, accounted for in this thesis. In particular, we have 

t revision) 

tervals. However, as Johnston (1993) noted, “……in practice, it may not be possible 

way, i.e. we have assessed how the me

a

categorisation rules, in which case the methods’ performance was assessed on data 

points that had also been considered in order to define demand (i.e. identify 

theoretically which method is expected to perform better/best). This ex-post 

evaluation of the rules was due to our objective which was solely to check the 

empirical validity and utility of the rules rather than simulate their “ongoing” 

application in practice (at the end of every review period re-categorisation occurs and 

the appropriate estimation procedure is chosen). 

 

Nevertheless, and despite the dynamic nature of our empirical analysis, we do 

recognise that certain problems may arise in prac

th

assumed that there are no problems in correctly recording the demand data, an 

assumption that is often violated in practice. Moreover, we have assumed that the 

empirical series are stationary in the mean and from a practitioner’s perspective this 

assumption may seem restrictive. Both issues are now discussed in detail. 

 

The employment of the forecasting methods discussed in this thesis necessitates the 

update of the mean demand level estimate at regular review (forecas

in

to stick to this constant pattern, due to holidays, computer malfunction etc, 

whereupon it may be necessary to amalgamate the data from several periods or to 

handle that collected across only a fraction of a normal review interval (p. 711)”. In 

the 1993 paper, Johnston showed how to modify the smoothing constant value used 

by the EWMA estimator in this problematic context of application. Practitioners often 

apply a correction factor to the observed issues to adjust them to those which would 

have been expected in a normal period (month in our case). EWMA is then applied to 

the adjusted data using the same α  value. This adjustment though can be shown to 

lead to inappropriate re-order (or replenishment) levels. 
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Following Johnston’s analysis, if  periods of data have to be combined together, 

where k  can be any real number greater than zero, then 

 k

the new smoothing factor, Α , 

to be d for this combined data, , in a recursive equation use Y t

 

YkYY ttt ′Α−+Α=′ + )1(/1                 (11.1 ) 

 

0

here  is the last EWMA estimate and (w  Y t′ Y t′ +1  the current estimate of the demand 

level) 

 

is computed from the relationship 

 

132)1(66 22 +−+−+ kkk αα
))1(36( 2 −+

=
kk αα .               (11.11) 

No similar adjustments have been proposed in the literature regarding the application 

of the moving average estimator. 

n is discussed in detail in chapter 2. Nevertheless 

termittent demand data may often not be stationary. In that case Croston (1972) 

Α

 

 

The work presented in this thesis has been postulated on the stationary mean model 

and the validity of this assumptio

in

suggested that higher smoothing constant values (in the range 0.2 - 0.3) should be used 

in order to deal with the non-stationary nature of the data. Some problems though can 

be identified in testing the stationarity of non-normal demand patterns. Suppose for 

example that the data exhibit a trend movement, however this is tested (for example 

by considering few (two in our case) average annual demands). How can we be sure 

that this is a genuine, say upwards, movement of the data and not the effect of one 

outlier? In the former case the α  value should be increased whereas in the latter case 

it should probably remain the same. Moreover, adaptive smoothing, that could also be 

considered, is known to introduce considerable instabilities (especially in the presence 

of outliers) in the system under concern and, generally speaking, automatic adaptive 

methods are not necessarily better than non-adaptive smoothing (Silver et al, 1998). 

Perhaps simulation of the estimator’s inventory control performance (considering the 

managerial constraint in use and across a wide range of typical α  values, say 0.05 - 

0.3 step 0.05) on a regular basis (say every six periods) on the most recent data is a 
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reasonable approach to identifying the best smoothing factor in the context of this 

research. Nevertheless, as Silver et al (1998) pointed out, a caref l testing should be 

undertaken with actual time series from the organisation under study before any 

automatic procedure (of that nature) is adopted. 

 

The ongoing application of the categorisation schemes developed in chapter 6 has not 

been simulated in the thesis. For such an applica

u

tion, Williams (1984) proposed using 

buffer zones” so that “borderline” SKUs do not switch categories as the parameters 

efore we close this chapter and thus the empirical part of the thesis, we view as 

ethods 

mployed to produce our empirical results. That is, with hindsight, we would like, at 

of-sample results only on the latest 11 observations thus enabling the 

onsideration of the MA(13). The particular moving average method has been used in 

“

vary from one side of the border to the other or categorisation is not that easily 

affected by outliers. The potential real world application of the categorisation rules 

developed in this thesis would also necessitate the determination of similar buffer 

zones. These zones ( 05.0±  in Williams’ categorisation scheme) can be determined 

only after a thorough examination of the available demand data and the alternative 

methods’ simulated performance. 

 

11.7 Experimental design limitations 
 

B

necessary to make some a posteriori comments regarding the data and the m

e

this point, to discuss our reflections on the experimental design and the empirical data 

limitations.  

 

The empirical data series consist of 24 demand observations. We have decided to 

produce out-

c

practice in order to deal with the intermittent nature of the demand data series 

available for simulation and consequently the performance of this method is treated as 

a benchmark. We do not regret the consideration of this estimator but we do recognise 

that the exclusion of the moving average method from the simulation experiment 

could potentially result in a larger out-of-sample data set. By not considering the 

MA(13), initialisation of the smoothing estimators could occur on fewer demand data 

periods. A larger out-of-sample demand data set would increase our confidence in the 

forecasting and inventory control empirical results.  
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It is true to say that, in the way the simulation experiment was designed, the 

initialisation effect is carried forward by all estimators on all out-of-sample point 

estimates. Therefore, some of the empirical findings could be attributed not only to 

ot be assessed for such data. Series 

ith average inter-demand interval values less than two could be viewed, from a 

e 

tiple orders in a period, i.e. a Poisson stream 

f orders, rather than a Bernoulli model of demand occurrence. This is obviously just 

the true forecasting and inventory control performance of the methods considered but 

also to the small number of out-of-sample data points. As discussed above, one 

possible way to reduce the initialisation effect would be the exclusion of the MA(13) 

from the simulation experiment. Alternatively, longer demand data series would 

enable us to generate out-of-sample results on more demand data points. In this latter 

case the effect of initialisation could also be approximated by considering different 

out-of-sample sizes. Unfortunately, our efforts to obtain such longer demand data 

series have not been fruitful. Longer histories of data are not necessarily available in 

real world applications which means that decisions often need to be made considering 

samples similar to the one used for this research. 

 

As discussed in section 10.2 our sample does not include highly intermittent demand 

items and therefore our theoretical results could n

w

practitioner’s perspective, as non-intermittent. Johnston and Boylan (1996) re-

conceptualised the term “intermittence”. Their approach is taken forward in this thesis 

by producing theoretically sound non-normal demand definitions and according to our 

theory, series with 2≤p  are certainly intermittent. Higher inter-demand interval 

values would obviously enable a more thorough investigation of the problem in hand 

and they would increase the validity of our results. Unfortunately, such series were 

not available for simu n. Intuitively, the performance differences identified in the 

empirical part of the thesis should be even more marked on series with higher p  

values. This is what one should expect from the theory presented in chapter 6. 

Nevertheless, this is merely speculation since no simulations have been conducted in 

this thesis for such values. In the next stage of research it is intended to test th

performance of alternative intermittent demand estimators on data sets that reflect 

better the variability found in practice.  

 

Given the small average inter-demand intervals considered in this research one might 

have expected the data to represent mul

latio

o
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a speculation and neither assumption has been tested on the real demand data. In our 

empirical experiment we do assume a Bernoulli process of demand occurrence. Such 

an assumption is dictated from a practical perspective because of the nature of the 

data available for analysis and from a methodological perspective for consistency 

purposes (see the theoretical part of the thesis). What we have been given is the 

monthly (accumulated) demand for every SKU rather than the individual transactions 

history. As such there is no means of checking the Poisson assumption unless some 

rather arbitrary adjustments are made to the discrete inter-demand interval data 

available for analysis so that the goodness-of-fit of the negative exponential 

distribution can be tested (see for example Johnston, 1975; Boylan, 1997). Moreover, 

we could, for simulation purposes, have assumed random arrivals (i.e. a Poisson 

stream) based on the calculated p  value. This would be meaningful if we were 

confident that the Poisson assumption is valid. However, this is not the case.  

 

Nevertheless, we do recognise that, if the order sizes and transaction times were 

available, our data may be fitted better by a Poisson distribution. Even in that case the 

mpirical results generated in chapters 10 and 11 are still valid for systems that 

 

recast error, in the empirical part of the thesis: 

+             (11.12) 

(see also sub-section 9.7.4 and section 11.3) 

 

e

consider the aggregate order size over a unit time period and treat time as a discrete 

rather than a continuous variable. If the demand arrivals though can be modelled as a 

Poisson stream and forecasting is treated as a continuous time problem our empirical 

results are no longer valid. At this point it is important to note that the theoretical 

work conducted in chapters 4, 5 and 6 can be easily extended to cover negative 

exponentially rather than geometrically distributed inter-demand intervals thus 

reflecting better the empirical demand data that represent multiple orders in a period. 

 

Before we close this section we should also mention that, with hindsight, it is 

regretted that the following equation was used in order to update the mean squared

fo
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where    

 and  are the actual demand and the forecast (produced at the end of period 

responding to period respectively, and 

    

i Y i′Y

 i  1−i ) cor

t  is the current time period. 

 

Ass

 

LTiiii

uming a stationary mean model:  

Y YYY ′′′′ −++++ ==== 121 ......... .          (11.13) 

herefore a more realistic calculation of the MSE would be the following: 

 

⎫⎧
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      (11.14) 

where (*) means multiplication. 

 

sing (11.12) to update the  is not a truly ex-ante procedure to calculating the 
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variability of the estimates over LT + . In practice the differences between (11.12) and 

1.14) should not be great. The former equation though is, intuitively at least, 

 this chapter EWMA, Croston’s method, Approximation method and MA(13) have 

espect to their empirical inventory control performance in a re-

rder interval context. Results have been generated for three possible managerial 

(1

expected to lead to consistently lower MSEs. 

 

11.8 Conclusions 
 

In

been compared with r

o

constraints: a service criterion (specified customer service level) and two cost policies 

(a shortage fraction per unit value short and an emergency delivery fraction per unit 

value short). The accuracy measures chosen for comparison purposes were the 

Percentage Best (PBt) and the Average Percentage Regret (APR). The latter is a 

relative measure that indicates the “regret” associated with using a particular 

estimator, considering the best possible attainable performance. Pair-wise percentage 
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difference results have also been generated to enable us to select the best estimator 

when both CSL and stock differences are considered.  

 

The results demonstrate the superiority of the Approximation method when both 

average number of units in stock and CSL results are taken into account. In the 

ontext of a service driven system the MA(13) also performs very well. In fact, 

 inventory 

olding charge and the shortage fraction is greater than 0.48 and 0.24 for the and 

EW

t errors. The 

ery high CSL given by EWMA occurs at the expense of a considerable amount of 

 the case when a cost constraint is imposed on the system. This 

sult does not agree with results presented in Sani and Kingsman (1997) where the 

c

MA(13) outperforms the Approximation method when the smoothing constant value 

is set to 0.05. Similar results were reported in the previous chapter (section 10.4) 

where the estimators were compared with respect to the forecasting accuracy resulting 

from their implementation in practice. EWMA and Croston’s method are the least 

desirable estimators, the latter performing, overall, better than the former.  

 

In a cost driven system the Approximation method can be shown to perform best (i.e. 

give the lowest Total Cost of Inventory) when the ration between the

h B2  

B3  policy respectively. MA(13) and Croston’s method perform, overall, 

approximately the same and EWMA is found  to be the worst estimator. 

 

MA gives in all cases the highest CSL. This result can be attributed to the biased 

nature of this estimator and the high variability of the EWMA forecas

v

stock. Even though no unit cost information is available to enable a detailed 

assessment of the trade-offs between CSL achieved and inventory cost associated 

with the implementation of EWMA in practice, the results clearly indicate that 

EWMA is the least desirable estimator. Similar findings have been reported in Sani 

and Kingsman (1997). 

 

Croston’s method is outperformed by MA(13) in the context of a service driven 

approach but this is not

re

superiority of the moving average method is very well marked. It is important to note 

that the moving average length considered in that case was different than the one 

employed for the purposes of our research. In particular a 26 period MA was 
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considered where each time period was two weeks. Nevertheless, a better 

performance of the MA(13) estimator was expected than that found in practice. 

 

In this chapter the empirical utility of the “overall” (re-order interval) categorisation 

le developed in chapter 6 has also been tested. The rule performs, overall, better 

sions of this chapter can be summarised as follows:  

lected in the superior 

inventory control performance (in a re-order interval context) of this estimator 

 

• m better than Croston’s 

method, as far as forecasting accuracy is concerned, in a re-order interval context. 

 

• .  

irable 

estimator. This agrees with findings of other researchers (Sani and Kingsman, 

 

• entory control performance of the MA(13) is, overall, very similar to that 

of Croston’s method and this does not agree with results presented elsewhere in 

 

• nt demand context can cause 

significant discrepancies between the achieved and theoretically specified CSL. It 

                                                          

ru

than Croston’s method but is outperformed by the Approximation method. Even 

though this finding does not agree with the theory it is what we may have expected 

based on the empirical analysis conducted in the previous chapter. In the next stage of 

this research it is intended to amend the categorisation rules proposed in chapter 6 of 

the thesis. 

 

The conclu
 
• The unbiased nature of the Approximation method is ref

when compared with other intermittent demand methods. 

EWMA has been found in the previous chapter to perfor

This superiority is not reflected in the periodic inventory control results.  

The MA(13) performs very well for low (0.05) smoothing constant values7

 

• EWMA is, from a periodic inventory control perspective, the least des

1997). 

The inv

the academic literature (Sani and Kingsman, 1997). 

The demand – forecast fluctuations in an intermitte

 
7 The smoothing constant is used to estimate the variability of the MA(13) forecast errors. 
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may be more cost-effective, in an intermittent demand context, to employ a cost 

policy as opposed to a service driven one (see also Watson, 1987). 

ause of lack of the unit cost information we have not been

 

Bec  able to fully 

emonstrate the empirical utility of our theoretical findings (i.e. generate inventory d

cost results). Performance differences have been identified but clearly further 

examination is required to quantify those differences in cost terms. 
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CHAPTER 12 

 

Contributions and Extensions of the Thesis 
 

12.1 Introduction 
 

In this chapter the main issues addressed in our research are briefly discussed and our 

contributions are summarised. Moreover, the limitations of our theoretical and 

empirical work are identified and avenues for further research are suggested. 

 

This research aspires to take forward the current state of knowledge on forecasting 

intermittent demand. 

 

The objectives of this research as stated in chapter 1 of the thesis are as follows: 

 

1. To identify some of the causes of the unexpected poor performance of Croston’s 

method 

2. To develop new intermittent demand estimation procedures  

3. To derive results for the mean squared forecast error of a range of intermittent 

demand estimates  

4. To propose theoretically coherent categorisation rules that distinguish between 

intermittent and non intermittent demand 

5. To identify appropriate accuracy measures for application in an intermittent 

demand context 

6. To test the empirical validity and utility of the theoretical results on a large set of 

real world data. 

 

All the objectives have been achieved and the contributions of the thesis are 

summarised in the following section. 
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12.2 Contributions 
 

Our contributions can be summarised as follows: 

 

• Croston’s method is shown to be biased mathematically. This is confirmed by 

simulation on theoretically generated data and on empirical data, thus explaining 

one factor underlying high Mean Squared Errors (MSEs). The bias of Croston’s 

method is also reflected in the achievement of Customer Service Levels (CSLs) 

above that required by the target CSL. (Objectives 1 and 6) 

 

• A new method, the Approximation method, is proposed based on Croston’s 

concept of building demand estimates from constituent elements. The 

Approximation method is approximately unbiased and this is proven 

mathematically and by means of experimentation on both theoretically generated 

and empirical data. (Objectives 2 and 6) 

 

• The Approximation method is shown on real data to perform significantly better 

(more accurately) than Croston’s method, EWMA and a 13 period Moving 

Average. The inventory control implications of this increased forecasting accuracy 

are also assessed in this thesis by considering the case of a periodic order-up-to-

level inventory control system. The Approximation method outperforms the other 

estimators in either a service or a cost driven system. (Objectives 2 and 6) 

 

• The approximate variance of Croston’s method estimates is corrected. Moreover, 

the approximate sampling error of the mean is derived for all the estimators 

discussed in the theoretical part of the thesis, thus enabling quantification of one 

factor underlying MSEs. The approximate variance expressions are validated by 

means of simulation on theoretically generated data. (Objective 3) 

 

• Assuming a stationary mean model, the lead time MSE is approximated for a 

range of intermittent demand estimates moving beyond the classical assumption of 

independence of the forecast errors over a fixed lead time. The accuracy of the 

approximate MSEs is validated by means of experimentation on simulated data. 

(Objective 3) 
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• A theoretical framework is proposed in this thesis that facilitates the conceptual 

categorisation of demand patterns that cannot be represented by the normal 

distribution (“non-normal” demand patterns). Subsequently, theoretically 

coherent and universally applicable categorisation schemes are proposed to assist 

the process of selecting estimators to deal with non-normal demand patterns. The 

rules are derived based on a mathematical analysis of the MSE associated with 

alternative estimators. The rules have been validated on theoretically generated 

data but also on real data using both parametric and non-parametric tests. 

(Objectives 4 and 6) 

 

• A range of accuracy measures is specified to enable an objective accuracy 

comparison of alternative estimators in an intermittent demand context. Our 

empirical work demonstrates the importance of the selection process of accuracy 

measures in an intermittent demand context. (Objectives 5 and 6) 

 

12.3 Summary of the theoretical part of the thesis 
 

In this section the main theoretical issues explored in this Ph.D. research are drawn 

together and our conclusions are discussed in more detail. 

 

12.3.1 The bias of intermittent demand estimates 

 

Intermittent demand appears at random with some time periods showing no demand at 

all. Moreover, demand, when it occurs, may not be for a single unit or a constant size. 

Consequently, intermittent demand creates significant problems in the manufacturing 

and supply environment as far as forecasting an inventory control are concerned.  

 

Exponentially Weighted Moving Averages (EWMA) and simple Moving Averages 

(MA) are very often used in practice to deal with intermittent demand. EWMA and 

MA consider the aggregate demand (demand per unit time period) and estimate how 

that moves through time. Both methods have been shown to perform well on 

empirical intermittent demand data. Nevertheless, the “standard” forecasting method 

for intermittent demand items is considered to be Croston’s method (Croston, 1972; 

see for example Silver et al, 1998). Croston built demand estimates from constituent 
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elements, namely the demand size, when demand occurs, and the inter-demand 

interval. The method is, intuitively at least, superior to EWMA and MA. Croston’s 

method is currently used by a best-selling statistical forecasting software package 

(Forecast Pro) and it has motivated a substantial amount of research work over the 

years. 

 

Croston’s method has been claimed to be of great value to organisations forecasting 

intermittent demand. Nevertheless, empirical evidence (Willemain et al, 1994) 

suggests modest gains in performance when compared with less sophisticated 

techniques; some evidence even suggests losses in performance (Sani and Kingsman, 

1997). The model used by Croston in developing his method is based on the following 

assumptions: 

 

1. Stationary Mean Model (SMM) for the demand sizes  

2. SMM for the inter-demand intervals  

3. No cross-correlation between demand sizes and inter-demand intervals 

4. Geometrically distributed inter-demand intervals 

5. Normally distributed demand sizes  

 

The last assumption is the only one that can be “relaxed”, in the sense that it does not 

affect the results given by the forecasting method. The above discussed model has 

also been assumed for the purposes of our research. 
 

In an effort to identify the causes of Croston’s method’s forecast inaccuracy, as a first 

step towards improving this estimator, a mistake was found in Croston’s 

mathematical derivation of the expected estimate of demand. That mistake contributes 

towards the unexpectedly modest benefits of the method when applied in practice.  

 

According to Croston’s method, separate exponential smoothing estimates of the 

average size of the demand and the average interval between demand incidences are 

made after demand occurs. If no demand occurs, the estimates remain the same. If we 

let: 
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p t′  = the exponentially smoothed inter-demand interval, updated only if demand 

occurs in period t  so that ( ) ( ) ppp tt =Ε=Ε ′ , and 

z t′  = the exponentially smoothed size of demand, updated only if demand occurs in 

period t  so that ( ) ( ) zzz tt =Ε=Ε ′  

 

then following Croston’s estimation procedure, the forecast, Y  for the next time 

period is given by: 

t
/
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/ =                        (12.1) 

 

and, according to Croston, the expected estimate of demand per period in that case 

would be: 
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(i.e. the method is unbiased.) 

 

In this thesis we prove mathematically that Croston’s method is biased. Using 

Taylor’s theorem the bias is approximated (to the second order term) by:  

 

( )
p

Bias
p

Croston 2
1

2
−

−
≈ µ

α
α                   (12.3) 

 

where α  is the smoothing constant value used. 

 

We also show by means of simulation on theoretically generated data, t r 

2.0≤

hat fo

α , the difference between (12.3) and the simulated bias lies within the specified 

99% confidence limits. The bias approximation is particularly accurate when the 

estimator is applied in a re-order interval context but also in a re-order level context 

for low average inter-demand interval values. Finally, Croston’s method is also shown 

to be biased on real intermittent demand data series, by employing both parametric 

and non-parametric tests. 



 368

Since Croston’s method is biased we consider applying a factor to the estimates 

produced by his method so that the second order bias term is directly eliminated. The 

factor λ  is: 

 

p2
1

2
1

α

α

λ
−

−
=                     (12.4) 

 

and the resulting, approximately unbiased, estimation procedure is called the 

λ Approximation method. As a special case of this method, a heuristic is also 

proposed, the Approximation method. The updating procedure for the Approximation 

method is as follows: 
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The heuristic provides a reasonable approximation of the actual demand per period 

especially for the cases of very low α  values and large  inter-demand intervals. 

When those conditions are not satisfied, a small bias is expected. That bias is 

approximated by  

p

 

p
Bias IONAPPROXIMAT 22

µα
−≈                    (12.6)

                  

The negative sign in the above approximation indicates the fact that bias is in the 

opposite direction to that associated with Croston’s method. Croston’s method 

overestimates the mean demand level, whereas the Approximation method slightly 

underestimates it. For 2.0≤α , the difference between the bias (lack of bias) 

approximations and the simulated bias is found, for both Approximation and 

λ Approximation method, to lie within the specified 99% confidence limits. When 

issue points only are considered, the accuracy of our approximation to Croston’s bias 

deteriorates for average inter-demand intervals greater than two review periods. The 

simulation results have shown that this decline in accuracy affects the bias of the 
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λ Approximation and Approximation method in the corresponding simulated 

scenarios.  

 

The λ Approximation method is approximately unbiased but the variability of the 

estimates produced by this method is relatively large. This is proven theoretically and 

by means of experimentation on simulated data. One of the objectives of this thesis is 

to propose new estimators that, at least theoretically, outperform Croston’s method. 

The λ Approximation method does not outperform any of the other estimators that are 

taken into account in the theoretical part of the thesis and, consequently, it has not 

been considered in our empirical analysis. 

 

12.3.2 The variance of intermittent demand estimates 

 

The issue of the variability of intermittent demand estimates has also been explicitly 

addressed in this thesis.  

 

We first correct the expression for the variance of Croston’s estimates that appeared 

in Croston’s paper (1972). Croston assumed that the inter-demand intervals follow the 

geometric distribution including the first success (i.e. demand occurring period). We 

show, that by not correctly estimating the variance of inter-demand intervals and by 

assuming no bias in the estimates produced by his method, Croston fails to produce an 

accurate expression for the variance of those estimates. Subsequently a corrected 

approximation to the variance is derived by applying Taylor’s theorem. 

 

The approximated variances of λ Approximation method and Approximation method 

are also derived. Both approximations are accurate to the second order term in a 

Taylor series. By means of simulation on theoretically generated data we show that 

the difference between the simulated variance and the corresponding theoretically 

expected variance lies, for all methods, within a 99% confidence interval of 17% of 

the simulated variance. The accuracy of the variance expressions is not affected by the 

bias-associated problems discussed in the previous sub-section. 

±
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12.3.3 The categorisation of “non-normal” demand patterns 

 

Unless demand for an item occurs at every inventory review period and is of a fairly 

constant size, it is, in the majority of cases, expected to cause significant problems as 

far as forecasting and inventory control are concerned. Infrequent demand 

occurrences and/or irregular demand sizes, when demand occurs, do not allow 

demand per unit time period or lead time demand to be represented by the normal 

distribution and demand in these cases is referred to as non-normal for the purpose of 

our research. 

 

A certain confusion has been noticed in the academic literature as far as the 

definitions of the alternative non-normal demand patterns are concerned. Different 

authors use different criteria in order to define a specific demand pattern. Those 

criteria are hardly ever assessed against theoretical and practical considerations that 

should not be ignored if meaningful decision rules are to be constructed. Moreover, 

arbitrary cut-off values are, in the majority of cases, assigned to those criteria making 

their application to a more general context problematic. 

 

Some work has appeared in the area of categorisation for non-normal demand patterns 

but this work has either been simulation based, lacking empirical validation (Johnston 

and Boylan, 1996) or it has been conducted on real data, but lacking universal 

applicability (Williams, 1984). We approach the categorisation problem as follows: 

 

We first construct a theoretical framework that facilitates the conceptual 

categorisation of non-normal demand patterns. Non-normal demand patterns can now 

be, formally, defined. The definitions developed are given below: 

 

• An intermittent demand item is an item whose demand is zero in some time 

periods. 

• An erratic demand item is an item whose demand size is (highly) variable. 

• A lumpy demand item is an item whose demand is zero in some time periods. 

Moreover demand, when it occurs, is (highly) variable. 

• A slow moving item is an item whose average demand per period is low. This 

may be due to infrequent demand arrivals, low average demand sizes or both.  
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Williams (1984) suggested, implicitly, some theoretical and practical requirements to 

be considered when developing rules for the purpose of distinguishing between 

alternative demand patterns. Williams’ criteria are first discussed in detail, then 

modified and finally are drawn together to a set of requirements which is as follows: 

 

1. The categorisation scheme should suggest in what different ways to treat the 

resulting categories. The objective in categorising demand patterns is the 

identification of the most appropriate forecasting and inventory control methods to 

be applied to the different demand categories. As such, categorisation schemes 

should explicitly suggest which methods should be used under which 

circumstances. 

2. The criteria considered in developing the rules should be dimensionless so that 

categorisation decisions regarding a SKU are independent of the product’s unit of 

measurement or of demand over any time period other than the lead time or the 

review period. 

3. Sensitivity to outliers should be taken into account. The categorisation scheme 

should not allow products to move from one category to another when few 

extreme observations are recorded.  

4. The amount of data required to reliably classify demand patterns should also be 

considered. That is, the decision rules should take into account the limited number 

of demand occurrences that characterise any intermittent demand pattern. 

5. Logical inconsistencies should not allow demand for a SKU to be classified in an       

unintended category. 

6. Determination of the cut-off values should be non-arbitrary thereby enabling the 

general applicability of the categorisation scheme. 

 

Williams’ modified criteria are taken into account when we construct our 

categorisation rules.  
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The ultimate objective of categorising demand patterns is to select the “best” 

estimator and/or inventory control model1 for each one of the resulting categories. In 

that respect it seems more logical indeed to: 

 

1. Compare alternative estimation procedures 

2. Identify the regions of superior performance for each one of them 

3. Define the demand patterns based on the method’s comparative performance  

 

rather than arbitrarily defining demand patterns and then testing which estimation 

procedure performs best on each particular demand category. 

 

The approach discussed above, appeared in Johnston and Boylan (1996) and is the 

one adopted in this thesis. Because of its mathematically tractable nature, the lead 

time Mean Square Error (MSE) is chosen for performing direct comparisons between 

existing and newly developed estimation procedures. (The MSE is similar to the 

statistical measure of the variance of the forecast errors but not identical since bias is 

also taken into account.) The results, presented in the form of cut-off values assigned 

to the mean inter-demand interval and the squared coefficient of variation, enable us 

to specify regions of superior performance for each one of the methods considered. 

Non-normal demand patterns can then be defined based on the results. 

 

In many short term forecasting systems the cumulative lead time MSE is taken as the 

sum of the MSEs of the individual forecast intervals but that implies independence of 

the forecast errors. In this thesis we argue that the auto-correlation terms cannot be 

neglected. Subsequently we derive the lead time MSE expression assuming auto-

correlated errors: 

 

MSE TL .. ( ) ( ){ }Demand Var 2 ActualVarBiasLEstimatesLL ++=  .   

 

 

 

                                                 
1 The issue of inventory control has not been explicitly addressed in this thesis, from a theoretical 
perspective. As such, no theoretical results have been generated regarding the performance of 
alternative stock control models. 
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We first construct pair-wise categorisation rules and then we synthesise the results to 

produce categorisation schemes that are valid across all estimators. The categorisation 

rules are assessed against Williams’ modified criteria. The categorisation of demand 

patterns, in case that issue point only estimates are considered, takes the form that is 

indicated below: 

 

 
     value)off-(cut 331.p =  
 
 
      
       
   Erratic (but not               Lumpy 
   very intermittent)   
  49.02 =CV

     
                

       Smooth A   
     

 Intermittent 
           (but not very 

28.02 =CV     erratic)  
       Smooth B 

 
      

      

Figure 12.1. Categorisation of demand patterns (re-order level systems) 
 

where p is the average inter-demand interval and CV 2  is the squared coefficient of 

variation of the sizes of demand.  

 

The recommended estimation procedures are as follows: 

 

Erratic:  Approximation method 

Lumpy:  Approximation method 

Intermittent:  Approximation method 

Smooth A:  Croston’s method 

Smooth B:  EWMA  

 

When all points in time are considered (i.e. in the context of a re-order interval 

inventory control system) the Approximation method performs better than all the 
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other methods for  unit time periods and/or . For  and 

 Croston’s method is theoretically expected to perform better than all the 

other methods.  

32.1>p 49.02 >CV 32.1≤p

49.02 ≤CV

 

 
      value)off-(cut 32.1=p  
 
 
      
       
   Erratic (but not               Lumpy 
   very intermittent)   
  

49.02 =CV     
        ‘Smooth’ demand             Intermittent  value)off-(cut
              (but not very erratic) 
 
 
 

Figure 12.2. Categorisation of demand patterns (re-order interval systems) 
 

The recommended estimation procedures are as follows: 

 

Erratic:   Approximation method 

Lumpy:  Approximation method 

Intermittent:  Approximation method 

Smooth:  Croston’s method 

 

For the non-smooth demand categories the Approximation method can be shown 

theoretically always to perform best. For the smooth demand patterns, the 

recommended estimator is an approximate solution since no method can be shown 

always to perform best. Both schemes are validated by means of simulation on 

theoretically generated data. When empirical demand data series are considered the 

schemes are validated when non-parametric tests are used. When parametric results 

are generated the Approximation method performs best in both smooth and non-

smooth demand categories. The same is the case when the utility of the re-order 

interval rule (figure 12.2) is assessed in a periodic inventory control context. 
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From a practitioner’s perspective, the “smooth” demand category does not raise any 

significant difficulties as far as forecasting and inventory control are concerned. 

Moreover, this research is not concerned with improving the management of  

“smooth” demand items. What will be required, most probably, in a real world system 

is a rule according to which the “non-smooth” demand patterns can be identified and 

an estimator, other than the one already in place, can be recommended to deal with 

the “non-normal” nature of the corresponding demand data series. In that respect, the 

overall categorisation rules have been empirically validated by means of parametric 

tests also. Clearly, further research is required to “refine” the cut-off points, but at this 

stage we can claim that the Approximation method performs best in a re-order 

interval context when: 

 

p   > 1.32 and/or CV 2  > 0.49  

 

and in re-order level context when: 

 

p   > 1.33 and/or CV 2  > 0.49.  

 

12.4 Summary of the empirical part of the thesis 
 

In this section the main issues considered in the empirical part of the thesis are 

discussed and our detailed conclusions are summarised. The empirical analysis has 

been conducted on 3,000 intermittent demand data series coming from the automotive 

industry. 

 
12.4.1 Accuracy measures 

 
In order to test the empirical validity of our theoretical findings, some accuracy 

measures need to be selected for application on real demand data. It is the very nature 

of intermittent (demand) data, and in particular the existence of some zero demand 

time periods, that creates significant difficulties in selecting an appropriate accuracy 

measure. Nevertheless, those special properties of intermittent demand series seem to 

have been underestimated or in fact completely ignored in the past by both 

practitioners and academicians.  
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The objectives of the empirical analysis and the experimental structure of the 

simulation are clearly defined in order to enable the identification of specific accuracy 

measures and methods that collectively capture the information required. 

 

The objectives of the simulation study are as follows: 

 

1. To check in practice the validity of the theoretical results on bias  

2. To check in practice the validity of the theoretical results on Mean Square Error  

3. To generate results on the conditions under which one method is more accurate 

than others 

4. To determine which is the most accurate forecasting method. 

 

In order to further facilitate the selection process the most common accuracy 

measures (descriptive and non parametric) are categorised based on the following 

scheme: 

 

• Absolute 

• Relative to a base (most commonly the forecast obtained by the naïve 1 method) 

• Relative to another method 

• Relative to the series (in that case the error could be expressed as a percentage of 

the actual demand, the forecast or an arithmetic, equally weighted, average of 

both). 

 

The accuracy measures within the categories that are relevant to an intermittent 

demand context are further discussed and evaluated and specific measures are finally 

selected.  

 

The accuracy measures used for generating results are the following: 

 

• Mean signed Error (ME) 

• Wilcoxon Rank Sum Statistic (RSS) 

• Mean Square Forecast Error (MSE)  

• Relative Geometric Root Mean Square Error (RGRMSE) 

• Percentage of times Better (PB) 
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• Percentage of times Best (PBt). 

 

The empirical analysis demonstrates the importance of the selection process of 

accuracy measures in an intermittent demand context. The following findings are also 

considered to be of practical importance: 

 

• The Mean signed Error (ME), generated across series, does not particularly suffer 

from the scale dependence problem. The ME though, in a single series evaluation, 

it is particularly sensitive to the presence of extreme observations (outliers) 

 

• Different accuracy measures can lead to different conclusions, in an intermittent 

demand context 

 

• The Percentage Best measure should be preferred to the Percentage Better 

measure for large scale comparison exercises 

 

• The Relative Geometric Root Mean Square Error (RGRMSE) is a very well 

behaved accuracy measure in an intermittent demand context. 

 

12.4.2 Empirical analysis – validity of the theory 
 

By simulating the forecasting performance of Croston’s method, Approximation 

method and EWMA on real data, we are able to test the empirical validity of the 

theory developed in this research. The performance of a 13 period Moving Average 

(MA(13)) is also simulated on the real data. No theoretical results have been 

developed in this thesis regarding the application of MA(13) in an intermittent 

demand context. Nevertheless, the MA(13) is the estimator that has been used in 

practice to forecast demand for the SKUs covered in our empirical sample. As such 

the MA(13) performance can be viewed as a benchmark against which the 

performance of the other estimators can be compared. 

 

The conclusions drawn from the empirical part of the thesis reflect the synthesis of 

our empirical findings with respect to all the accuracy measures used for generating 

results, and they can be summarised as follows: 
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• Croston’s method is biased.   

 

• The Approximation method is approximately unbiased over the range of α  values 

0.05 to 0.2, showing slight bias (in opposite directions) at the extremes of this 

range. The Approximation method is the least biased of the four estimators 

examined in this chapter. 

 
• EWMA and MA(13) are biased. The biased nature of both estimators in a re-order 

interval context is not what was theoretically expected and this issue requires 

further examination. 

 

• Where bias had been theoretically anticipated, the sign of the bias is for all 

methods the theoretically expected one. 

 

• All the pair-wise categorisation rules developed in chapter 6 have been validated, 

with the exception of the EWMA – Croston rule in a re-order level context and 

when the lead time is one or three periods.  

 

• The Approximation method performs best in the “non-smooth” demand category 

( p  > 1.32 and/or CV 2  > 0.49 in a re-order interval context; p  > 1.33 and/or CV 2  > 

0.49 in a re-order level context).  

 

• The unbiased nature of the Approximation method is reflected on the superior 

forecasting accuracy of this estimator when compared with the other methods 

considered in this experiment. 

 

• EWMA performs better than Croston’s method in a re-order interval context. 

When issue points only are considered the comparison results are inconclusive.  

 

• The MA(13) compares favourably with the smoothing methods for low smoothing 

constant values. This estimator is also very robust to the presence of outliers. 
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12.4.3 Empirical analysis – utility of the theory 

 

To assess the empirical utility of our theoretical findings, an inventory control system 

needs to be specified for simulation purposes. The system is of the periodic order-up-

to-level nature. The periodic nature of our model can be justified theoretically, but it 

is also dictated by the nature of the real demand data files available for this research. 

To specify the model in more detail we consider: 

 

(a) the nature of our real demand data files 

(b) additional information available for each one of those files and  

(c) the objectives of the simulation experiment. 

 

The system used for simulation purposes has the following characteristics: all demand 

not satisfied directly from stock is backordered and met from the next scheduled 

replenishment quantity or from an emergency delivery on the following day; the 

variability of demand over lead time plus review period is estimated by using the 

smoothed MSE approach; the demand over lead time plus one review period is 

approximated by the NBD; the managerial constraints imposed on the system are:  

 

• a specified shortage fraction per unit value short 

• a specified emergency delivery fraction per unit value short 

• a specified Customer Service Level (CSL). 

 
Comparative results are generated with respect to volume differences, regarding the 

average number of units in stock for each of the estimators considered, and the CSL 

achieved. No inventory cost results are generated due to the limited information 

available for our empirical data sample. Two accuracy measures are employed for 

comparison purposes: the Percentage Best (PBt) and the Average Percentage Regret 

(APR). 
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The empirical results can be summarised as follows:  

 

• The Approximation method should be preferred to EWMA, Croston’s method and 

MA(13) in a service driven system but also in a cost driven system when: 

 

48.0
2
≥

B
I ,  for a cost driven system that operates under a specified shortage 

fraction per unit value short ( ) B2

 

24.0
3
≥

B
I , for a cost driven system that operates under a specified emergency 

delivery premium charge per unit value short ( ) B3

 

where I  is the annual inventory holding charge. 

 

• EWMA is found to perform better than Croston’s method, as far as forecasting 

accuracy is concerned, in a re-order interval context. This superiority is not 

reflected in the periodic inventory control results.  

 

• The MA(13) performs very well for low (0.05) smoothing constant values2.  

 

• EWMA is, from a periodic inventory control perspective, the least desirable 

estimator. This agrees with findings of other researchers (Sani and Kingsman, 

1997). 

 

• The inventory control performance of the MA(13) is, overall, very similar to that 

of Croston’s method and this does not agree with results presented elsewhere in 

the academic literature (Sani and Kingsman, 1997). 

 
 
 
 
 
 
 

                                                 
2 The smoothing constant is used to estimate the variability of the MA(13) forecast errors. 
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12.4.4 Practical implications 

 

In this thesis we have demonstrated the theoretical coherence of using the average 

inter-demand interval and the squared coefficient of variation of the demand sizes for 

categorisation purposes. The recommended cut-off values have been shown to be 

reasonably accurate, although it is important to note that these values have been 

calculated considering only the MSE performance of four particular estimators 

(EWMA, Croston’s method, λApproximation and Approximation method). 

 

Moreover, all our conclusions, from the empirical part of the thesis, arise from the 

following assumptions: 

 

• Choosing from a specific set of forecasting methods (EWMA, Croston’s method, 

MA(13) and Approximation method) 

• Use of particular forecasting error measures (ME, MSE, RGRMSE, PB, PBt) 

• Use of a periodic order-up-to-level stock control system 

• Use of particular managerial policies ( , , ) with specific values assigned 

to them. 

P 2 B2 B3

 

The Approximation method has been shown, empirically, to perform best. 

Nevertheless, we cannot claim that this superior performance will be reflected in other 

data samples when one or more of the above prerequisites do not hold. Moreover, 

even if all our assumptions are valid for the practitioner we cannot be sure that the 

organisation’s data will reflect these assumptions as well as the data sample used for 

this research did in the empirical part of the thesis. 

 

Considering the above, we recommend: 

 

1. Re-designing categorisation systems to take account of the average inter-demand 

interval and squared coefficient of variation of the demand sizes (when demand 

occurs) 
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2. Setting the cut-off points in accordance with the recommendations made in this 

thesis (although we do accept that they may not be exact if other estimators are 

introduced and/or other accuracy measures are used) 

 

3. Simulating the performance of the Approximation method in the “intermittent”, 

“erratic” and “lumpy” demand quadrants and then using the Approximation 

method in practice if it outperforms the other candidate estimator(s) in terms of 

the accuracy measure(s) used and the accepted service/cost criteria. 

 

12.5 Further research 
 

In this section we summarise the limitations of the thesis and, where appropriate, we 

suggest avenues for further research.  

 

12.5.1 Theoretical work 

 

Our thesis is built around the model proposed by Croston (1972). Croston’s method 

has been claimed to be of great value to manufacturers forecasting intermittent 

demand. Nevertheless when the method is tested on real demand data it shows very 

modest benefits. This thesis focuses on correcting and improving Croston’s approach. 

For this to be done, Croston’s method and not the model, upon which the method was 

developed, is examined in detail. No attempts have been made in this thesis to 

experiment with different assumptions, other than those considered by Croston 

(1972).  

 

p e
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condensed Poisson rather than Bernoulli demand arrival process. Some work has been 

conducted in this area by Johnston and Boylan (1996). Further research, though, could 

prove useful in explaining some of the results in chapter 6 of the thesis that were not 

in accordance with results presented in the 1996 paper. 

 

Croston assumed a Stationary Mean Model (SMM) but he proposed updating the size 

and interval estimates using EWMA. The estimator under concern is unbiased for the 

SMM but it is not the optimal predictor. This inconsistency between Croston’s model 

and Croston’s method leads to two lines of investigation: 

 

1. Examination of intermittent demand estimators that employ exponential 

smoothing (or even EWMA itself) under the Steady State Model (SSM) rather 

than SMM assumption 

2. Examination of the theoretical properties of averaging methods (estimators that do 

not discount older data) that would be theoretically optimal for Croston’s model. 

 

The issue of modelling for intermittent demand is further discussed in the following 

sub-section. 

 

In this thesis a theoretical distribution of demand per unit time period/lead time had to 

be selected in order to generate empirical inventory control results. The distribution 

chosen for that purpose was the Negative Binomial Distribution (NBD) (see chapter 

9). The NBD though, implies a Poisson arrival stream while all our theoretical 

derivations have been based on the assumption of a Bernoulli demand arrival process.  

 

With demand occurring as a Bernoulli process (i.e. the demand incidences follow the 

binomial distribution) and an arbitrary distribution of the demand sizes, the resulting 

distribution of total demand over a fixed lead time is compound binomial. When the 

order sizes are assumed to follow the Logarithmic-Poisson distribution (which is not 

the same with the Poisson-Logarithmic process that raises a NBD) then the resulting 

distribution of total demand per period is the log-zero-Poisson (lzP). No other 

compound binomial distributions have appeared in the academic literature for 

inventory control purposes. Considering that the lzP is unlikely to be used by 
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practitioners, the next step is the mathematical (or even intuitive) justification of 

another compound Bernoulli distribution.  

 

In the empirical part of our work forecasting and inventory control results were 

generated for a 13 period Moving Average (MA(13)) estimator. This particular 

estimation procedure has been used in practice to forecast demand requirements for 

the SKUs covered in our empirical data sample. Nevertheless, no theoretical results 

have been developed in this thesis, nor in the academic literature, regarding the 

performance of the moving average estimator in an intermittent demand context. 

Considering the widespread usage of moving average estimators to deal with 

intermittence (see for example Sani, 1995) this is obviously a very interesting area for 

further research. 

 

In chapter 6 the validity of our theoretical derivations was checked by means of 

simulation on theoretically generated data. The demand data were developed based on 

the same assumptions considered in the theoretical part of the thesis. The approximate 

bias expressions developed in this thesis were found to be accurate in a re-order 

interval context. This was not the case when results were generated on issue points 

only. The theoretical bias of intermittent demand estimators in a re-order level context 

is an issue that requires further examination. 

 

The pair-wise categorisation rules were developed in chapter 6 in a way that one 

estimation procedure always (theoretically) performs better in the “non-smooth” data 

set3. The estimator selected for the “smooth” data set4  was an approximate solution, 

since in the case that both criteria (  and p CV 2 ) take a value below their 

corresponding cut-off point, no estimator can be shown, theoretically, to perform 

better in all cases.  

 

The overall rules were constructed by synthesising the pair-wise rules. Theoretically 

there are no doubts as to which estimator performs best in the “non-smooth” demand 

category but there is still uncertainty governing the area formed when both  and p

                                                 
3 This is the area that corresponds to quadrants 1, 2 and 4 in any of the categorisation schemes 
developed in chapter 6. 
4 This is the area that corresponds to quadrant 3 in any of the categorisation schemes developed in 
chapter 6. 
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CV 2  take a value below their specified cut-off points. The theoretically coherent 

delineation of the “smooth” demand quadrant in the categorisation schemes discussed 

in chapter 6 may be of great practical importance (see also chapter 10 and 11) and is a 

very promising area for further research. 

 

Moreover, it is important to note that the cut-off values assigned to both  and p CV 2  

criteria, when the overall rules are considered, have been calculated taking into 

account only the MSE performance of four particular estimators (EWMA, Croston’s 

method, λApproximation and Approximation method; see also sub-section 12.4.4). If 

other (more) estimators and/or accuracy measures had been considered, for theoretical 

comparison purposes, the cut-off values would not be necessarily the same.  

 

Finally, we should also mention that in this thesis we approached the categorisation 

problem from a forecasting rather than inventory control point of view. Categorisation 

schemes can potentially also be constructed by considering alternative inventory 

control models rather than forecasting methods.  

 

12.5.2 Intermittent demand models 

 

This thesis has been postulated on Croston’s model, with the exception of the 

normality assumption for representing the demand sizes. The assumptions upon which 

the model is based have not been tested on real data. The purpose of this thesis is to 

research the estimator used to forecast intermittent demand requirements rather than 

the hypothesised model. The empirical evidence, such as it is, is inconclusive 

regarding Croston’s assumptions. Consequently, we cannot claim that the findings of 

this thesis apply to all intermittent demand situations.  

 

The normality assumption is the only one that does not affect the method’s 

performance and consequently is the only one that has been modified in this thesis for 

simulation purposes (on theoretically generated data). The lognormal distribution was 

decided, in chapter 7, to the most appropriate for representing the size of demand (in 

the demand occurring periods), in terms of its flexibility and the empirical evidence 

that exists in its support. Nevertheless, the lognormal is a continuous distribution and 

therefore can be only an approximation to the true demand size. Empirical 
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experimentation with discrete demand size distributions is an interesting avenue for 

further research and it would contribute significantly in the process of specifying 

more realistic intermittent demand models.  

 

Croston’s model is a model representing the demand per unit time period. The model 

refers to the size of demand in the demand occurring periods rather than the size of 

the order in each individual transaction. In practice the demand size may be the 

cumulative order size in the corresponding period or the number of units required in 

one single transaction. Croston’s model does not enable us to see the “real time” 

interval between two consecutive transactions since time is treated as a discrete 

variable. In those respects, a model of the demand generation process (see below) is a 

more realistic representation of the process by which orders arrive on a stockist.  

 

The Size-Interval model proposed by Johnston and Boylan (1996) is a model for 

representing the actual demand generation process. The model considers the order 

sizes and the real time (continuous) intervals between consecutive transactions. The 

demand arrival stream is modelled as Poisson and it follows that the inter-order 

intervals are negative exponentially distributed. The demand per unit time period is 

now modelled as the sum of a stochastic number of order sizes. The Size-Interval 

model is more useful than that proposed by Croston in terms of understanding how 

demand is actually generated. 

 

The Bernoulli process can be seen as the discrete time variant of the Poisson process. 

For small time units the Bernoulli process is an approximation to the Poisson (see also 

sub-section 9.5.5). Nevertheless, in the case of our research, demand has been 

recorded monthly and as such we cannot claim that this approximation is necessarily 

valid. Theory and empirical evidence suggest that the two processes are 

indistinguishable for very low probabilities of demand occurrence (Poisson arrival 

rates). Therefore highly intermittent demands can be modelled equally well by the 

Bernoulli or the Poisson stream. The average inter-demand interval for the series 

contained in our empirical data sample never exceeds two periods. Therefore, the 

difference in goodness-of-fit may be more marked. 
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For less sporadic demand SKUs (like those considered for the purposes of our 

research) the empirical evidence suggests that both assumptions are realistic (see sub-

section 7.3.1). Therefore, we would expect some of the series used in our empirical 

experiment to be best fitted by the Poisson stream and some others by the Bernoulli 

model of demand occurrence. All our theoretical claims have been validated by means 

of experimentation on the empirical data and in that respect our theoretical results 

appear to be fairly robust to the underlying demand process, if time is treated, for 

forecasting purposes, as a discrete variable.  

 

That is, if the transactions, rather than the demand, history was available for the SKUs 

considered in the thesis, the Poisson assumption could be tested and, intuitively at 

least, it would be found to fit very well some of the series. The theoretical results 

developed in chapters 4, 5 and 6 were based on the Bernoulli assumption and they 

have been validated on the empirical data. Therefore, the theoretical results appear to 

be reasonable approximations even for Poisson processes, which though are modelled 

in practice based on Croston’s suggestions.  

 

“Models can be thought of as linking some underlying principles and the observations 

from the real world. By organising experience and data, a model provides a clear 

way of viewing the world and creates a basis for decision making. Johnston et al 

(1986), p. 229” It is both the realism in representing the real world and the objective 

of the modelling process that need to be taken into account when alternative models 

are evaluated. As far as the first issue is concerned, the Size-Interval model is 

certainly more realistic. But the purpose of modelling in the context of our research is 

to support a forecasting mechanism. In that respect, if organisations tend to record 

data in specific time “buckets” (monthly in the case of this research) and/or if time 

intervals (inter-demand intervals in our case) are recorded as discrete numbers then a 

hypothesised Bernoulli model would make more sense, from a practical point of view. 

 

If the underlying process is Poisson and forecasting takes place considering the order 

sizes and the actual (real time) intervals the theoretical results developed in this thesis 

cannot be expected to be accurate. The variability of the estimates is clearly different 

under the Poisson assumption and considering the order sizes rather than the demand 

sizes. The categorisation rules should also be different. This provides a potential 
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explanation for the inconsistency between some of the results developed in chapter 6 

of the thesis and simulation findings presented in Johnston and Boylan (1996).  

 

This entire thesis could have been postulated on the Poisson rather than Bernoulli 

assumption. The bias of EWMA given the Size-Interval model can be shown to be the 

same as that implicitly incorporated in the method’s estimates when Croston’s model 

is used, replacing the probability of demand occurrence by the Poisson demand arrival 

rate. The bias of Croston’s method under the Size-Interval model can be found 

following the approach developed in chapter 4 of the thesis accounting for a negative 

exponential rather than geometric distribution of the inter-order intervals. 

Theoretically informed corrections can then be introduced (similar to the ones used by 

the λApproximation and Approximation method) in order to produce unbiased 

estimates of the mean demand level. 

 

The variability of the EWMA estimates under the Poisson assumption  can be found 

taking into account the variance of the inter-order intervals. The variability of the 

Size-Interval method’s estimates remains as suggested in Johnston and Boylan (op. 

cit.) since they calculated the variance of a stochastic sum of random variables (using 

Clark’s equations, 1957) rather than that of the ratio of two independent random 

variables as in the case of Croston’s paper. 

 

Subsequently, the analysis conducted in chapter 6 would be performed for the 

theoretically expected MSEs of the alternative estimators and rules, similar to those 

proposed in chapter 6, would be developed to suggest which estimator should be used, 

under which circumstances. 

 

Our analysis could have also been conducted for the moving average rather than 

EWMA estimator either applied as a forecasting method on its own or in conjunction 

with Croston’s approach. The adjustment required in that case is the replacement of 

the αα /)2( −  latest observations that are effectively considered by EWMA in 

updating the level (under the stationary mean model assumption, see Brown, 1963) by 

, where  is the length of the moving average. N N
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12.5.3 Empirical work 

 

Examination (or further examination) of the following issues may be of great benefit 

to practitioners dealing with intermittent demand series. 

 

• The performance of the Approximation method (or any method that builds 

demand estimates from constituent elements) in conjunction with a relevant 

inventory control method, i.e. one that considers explicitly the demand sizes and 

inter-demand intervals (see for example Dunsmuir and Snyder, 1989). 

 

• The inconsistency between the theoretically unbiased nature of EWMA and 

Moving Average method and their biased performance in practice in an 

intermittent demand re-order interval context. 

 

• The relationship between the desired and achieved CSL in an intermittent demand 

context, for any of the estimators discussed in the empirical part of the thesis. 

 

No attempts have been made in this thesis to assess the empirical validity of the 

assumptions upon which our theory was developed. Some work has been done in this 

area (see for example Willemain et al, 1994) but clearly more empirical evidence is 

required regarding the validity of Croston’s model. 

 

Our empirical data sample consists of the demand histories for 3,000 SKUs. The range 

of the squared coefficient of variation values is very wide. The demand files are well-

suited to the testing of the categorisation results developed in this thesis since each of 

the categories are well represented in the sample. However, the sample does not 

include highly intermittent demand items and therefore our results could not be 

assessed for such data. 

 

Moreover, because of lack of the unit cost information we have not been able to fully 

assess the empirical utility of our theoretical findings (i.e. generate inventory cost 

results). Performance differences have been identified between the estimators 

considered in the empirical part of the thesis but more information is required to 

express those differences in cost terms.  
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In the next stage of research it is intended to  

 

• amend the categorisation rules developed in chapter 6 and test them on real data 

 

• assess the performance of the Approximation method in more empirical demand 

data series (considering assumptions other than those specified in the empirical 

part of the thesis) 

 

• identify performance differences between the estimators considered in the 

empirical part of the thesis in cost terms. 
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APPENDIX 4.A 

 

The expectation of the mean demand estimate for the Approximation 

method 
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This proves the result given by equation (4.38). 
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APPENDIX 5.A 

 

A correct approximation to the variance of Croston’s estimates 
 

We apply Taylor’s theorem to a function of two variables, ( )xg   
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where ( )
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1=g   is just the first term in the Taylor series and not the population 

expected value. 
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therefore, considering (5.A.4),  (5.A.1) becomes: 
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We set: 

 

=x1 z t′ , the estimate of demand size, with ( ) µ=Ε ′z t  

 

and , the estimate of the inter-demand interval, with =x2 p t′ ( ) pp t =Ε ′  
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It has been proven, in chapter 4, that: 
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considering the first three terms in the Taylor series. 
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Assuming that  are independent: xx 21,
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considering equations (5.A.2), (5.A.3), (5.A.5) and (5.A.6) 
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In Appendix 5.B it is proven that for 3 ,2=n : 
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where: 
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xt   represents the demand size ( ) or inter-demand interval ( ), zt pt

x t′  is their exponentially smoothed estimate ( z t′ , p t′ ) and 

( )xΕ  is the population expected value for either series. 

 

Consideration of (5.A.11) and (5.A.12) necessitates the adoption of the following 

assumptions: 

 

• no auto-correlation for the demand size and inter-demand interval series 

• homogeneous moments about the mean for both series 

• same smoothing constant value is used for both series 

 

Taking also into account that: 

 

( ) σ 2=ztVar  and ( ) ( )1−= ppVar pt  

 

(5.A.10) becomes: 
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The third moment about the mean in the geometric distribution, where:
p
1  is the 

probability of success in each trial, is calculated as: 

 

 

 



 407

( )
p

p
pp

p
ppp

p
ppp

ppt
12111211111111

333
3 −−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=−Ε  

 

      ( )( )
p

pp
5

121 −−
=                (5.A.14) 

 

and the fourth moment: 
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If we consider (5.A.14) and (5.A.15) , and also the fact that: 
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Since the fourth part of approximation (5.A.16) becomes almost zero even for quite 

low average inter-demand intervals, finally the variance is approximated by (5.A.17): 
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This proves the result given by equation (5.19).  
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APPENDIX 5.B 

 

The 2nd, 3rd  and 4th moment about the mean for exponentially 

smoothed estimates 
 

If we define: 
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Assuming series is not auto-correlated, for 3 ,2=n  we then have: 
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For  2=n
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assuming homogeneous moments about the mean 



 410

( )[ ] ( ) ( )[ ] ( ) ( )∑ −−∑∑ +−Ε−Ε=
∞

=

∞

=

∞

=
−

0

22

0

2 4

0

44 4  111 
i

ij

jj

j
jt xVarxx ααααα       (5.B.6) 

 

( ) ( )αα
−

−
−

=∑
∞

= 1
1 4

0

4

1
1

j

j                  (5.B.7) 

 

( ) ( ) =∑
∞

=

∞

=
−−∑

0

22

0
 11

i

ij

j
αα ( ) ( ) ( ) ..........1 111 642 ++++ −−− ααα  

             ( ) ( ) ( ) ..........    111 642 ++++ −−− ααα  

   ( ) ( ) ..........                  11 64 +++ −− αα  

       . 

                  . 

                  . 

       .               (5.B.8) 

 

( ) ( ) =∑ −−∑
∞

=

∞

= 0

22

0
 11

i

ij

j
αα ( ) ( ) ( ) ..........4321 111 642 ++++ −−− ααα            (5.B.9) 

 

If we multiply the first and the second part of equation (5.B.9) with , we then 

have: 
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Subtracting (5.B.9) - (5.B.10)  
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Considering equations (5.B.7) and (5.B.11), equation (5.B.6) becomes: 
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This proves the results given by equations (5.A.11) and (5.A.12). 
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APPENDIX 5.C 

 

The variance of the λ Approximation methods estimates 
 

We set, for the problem under concern:  
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and variance: 
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and variance: 
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(for the variance derivations consider also Appendix 5.B) 

 

The third and the fourth moments about the mean for the  variable (consider also 

Appendices 5.A and 5.B) are calculated as follows: 
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(assuming that the same smoothing constant value is used for both  and  series 

and that both series are not auto-correlated and have homogeneous moments about the 

mean). 
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Consequently we apply Taylor’s theorem to a function of two variables, ( )
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If we consider only the first three terms, we have: 
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In order to simplify somewhat the derivation of the variance of the λ Approximation 

method estimates and consequently facilitate the MSE comparisons (see chapter 6) we 

approximate ( )[ xg ]Ε  by: 
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Finally the variance of the estimates of the λ Approximation method is calculated as 

follows: 
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Since the fourth part of approximation (5.C.16) becomes almost zero even for quite low 

average inter-demand intervals, and the last two terms cancel each other, finally the 

variance is approximated by (5.C.17): 
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This proves the result given by equation (5.23). 
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MSE Croston’s Method – MSE Approximation 
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This proves the inequality (6.32). 
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MSE EWMA – MSE Approximation (issue points) 
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This proves the inequality (6.33). 
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APPENDIX 6.C 

 

MSE EWMA – MSE Croston’s Method  (issue points) 
 

⇔> MSEMSE CROSTONEWMA  

 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

−
−

+
pp

p σµ
α
βα

σα
2

2
2

2
22 1

2
>⎥

⎦

⎤
⎢
⎣

⎡
−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

pp
µβαµ

2

 

 

( )
⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛

−
+

−
− 2

2
22

3 2
1

2 pp
p σ

σ
α

α
µ

α
α ( )

⇔+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
− p

p
2

2
1

2
µ

α
α  

 

( )
>⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

−
−
−

+
ppp

p 111
2
1

2
22

2
2

2

2
22 αµσµ

α
αα

σα  

 

( )
⇔⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛

−
+⎥

⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛

−
+

−
− pppp

p 11
22

1
2

2

2

22

2

2
22

3

µ
α

ασ
σ

α
α

µ
α

α  

 

( ) ( )
>

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−
++

−
+

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

pp
p

p 2

22

22
22

22 1
22
1111

α
α

α
α α

αµσα
σα  

 

( ) ( )
⇔

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛

−
+

−
+

−
⎟
⎠
⎞

⎜
⎝
⎛

− 3

2

2

2
2

2

2
2

3

2 1
2

111
22

1
2 p

p
pppp

p
α

α
α

α
µ

σ
α

α
σ

α
α  

 

( ) ( ) ( ) ( )
>

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
−

−
−

⎟
⎠
⎞

⎜
⎝
⎛

−
−

−
−
−

+
−

32

2

2

2

2

2

2

2
22 1

2
11

2
1

2
11

p
p

p
p

pp
p

p
p

α
α

α
α

α
αα

αµ  

 

( ) ( )
⇔

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−

−−
−

+
−

⎟
⎠
⎞

⎜
⎝
⎛

− ppp
p 1

2
11

2
1

2

2
2

23

2
2

α
αα

α
α

α
α

α
σ  

 



 423

( ) ( ) ( ) ( ) ( ) ( )
>

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
−

−
−

−
−

−+
−

−
− 32

2

22
2

2

2
2 111

2
1

1
12

2 p
p

p
p

pp
p

p
p

α
α

αααµ
α

α  

 

( ) ( ) ( ) ⇔⎥
⎦

⎤
⎢
⎣

⎡
−−−−+

−
−− ppp

p 1
1211

22
2

23
2 ααα

α
α

σ
α

α  

 

( ) ( ) ( ) ( ) ( ) ( )
>

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
−

−
−

−
−

−+
−

−
32

2

22
2

2

2
2 111

2
1

1
12

p
p

p
p

pp
p

p
p

α
α

αααµ  

 

( ) ( ) ( ) ⇔⎥
⎦

⎤
⎢
⎣

⎡
−+−−−+

−
−

αααα
α

α
σ 21211

2
1

2
2 p

pp
p

p
 

 

( ) ( ) ( ) ( ) ( ) ( )
>

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
−

−
−

−
−

−+
−

−
32

2

22
2

2

2
2 111

2
1

1
12

p
p

p
p

pp
p

p
p

α
α

αααµ  

 

( ) ( )( ) ⇔⎥
⎦

⎤
⎢
⎣

⎡
−−−

−
−

−
−

12
11

2
1

2
2 p

p
p

p
p

p
αα

α
α

σ  

 

( ) ( )
>

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

−
−

−
−

+
−

−
−

23

2
2 11

2
1121

pp
p

pp
p

p
p

α
ααααµ  

 

( ) ⇔⎥
⎦

⎤
⎢
⎣

⎡
−−−

−
−

αα
α

α
σ 211

2
1

2
2

ppp
p  

 

( ) ( ) ( )
( ) ( )

>
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
+

−
−−+

−
−−

−
ppppp 322

2
2

22

122
1

α

α

α

ααααα
αµ ( ) ⇔

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−−

−
αα

α
α

σ 211
2 2

2

pp
 

 

( ) ( ) ( )
>

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
+

−
−+

−
−−

−
pppp 32

2
2 1

2
1

2
222

1
α

α
α

αααα
αµ ( ) ⇔

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−−

−
αα

α
α

σ 211
2 2

2

pp
 

 

( ) ( ) >⎥⎦
⎤

⎢⎣
⎡

−
+

−
−+−+−

α
α

α
ααα αµ

22
224121 2232

3
ppp

p
( ) ⎥⎦

⎤
⎢⎣
⎡ −−−

−
pp

p
p 322

3
2

2
1 αα

α
α

σ  

 



 424

At this stage we need to consider that 
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This proves the inequality (6.34). 
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APPENDIX 6.D 

 

MSE EWMA – MSE Approximation (all points in time) 
 

⇔> MSEMSE IONAPPROXIMATEWMA.  
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This can be proven as follows: 
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( ) ( )( ) pppppppppf 322232 4224422, −+−−=−−−= αααααα  

 

( ) ( ) 02214 22 <−−+−= pppp ααα  for  , 1>p 10 ≤≤α . 

 

Therefore,   if and only if:  MSEMSE IONAPPROXIMATEWMA >

 

( ) ( )[ ] ( )
( )( ) pp p

ppp
32

2

2

2

422

241 2
−−−

−−−−
>

−
αα

ααα
µ
σ , for  , 1>p 10 ≤≤α . 

 

This proves the inequality (6.35). 
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APPEMDIX 6.E 

 

MSE EWMA – MSE Croston’s method (all points in time) 
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APPENDIX 6.F 

 

MSE EWMA – MSE λ Approximation (issue points) 
 

⇔> MSEMSE IONAPPROXIMATEWMA λ  
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At this stage we need to consider that 
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Unfortunately we are not able to prove theoretically the above statement. 

Nevertheless, it can be illustrated, graphically, that for fixed α  values, ( )α,pf  is 

monotonic decreasing in  over the range [1,10], p ( ) 0,1 ≤αf . It can also be illustrated, 

graphically, that for fixed  values, p ( )α,pf  is monotonic decreasing in α  over the 

range [0,1], ( ) 00, ≤pf . In figure 6.F.1 the ( )α,pf  values are presented for  = 1 – 10 

step 1 and 

p

α  being 0, 0.5 and 1. 
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Figure 6.F.1. MSE EWMA – MSE λ Approximation (issue points) 
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Therefore, we conjecture that  if and only ifMSEMSE IONAPPROXIMATEWMA λ> 1:   
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1 For , the right hand side of the inequality is defined only for some1=p α values. 
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APPENDIX 6.G 

 

MSE EWMA – MSE λ Approximation (all points in time) 
 

⇔> MSEMSE IONAPPROXIMATEWMA λ.  
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This can be proven as follows (for 66.00 <≤α ):  
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Unfortunately we are not able to prove theoretically that: ( ) 0, <αpf , for  and 1>p α  

values greater than 0.66. Nevertheless, we can illustrate graphically that ( ) 0, ≤αpf  for 

 and 101 ≤≤ p 66.0≥α . We do so  in figure 6.G.1 where the ( )α,pf  values are 

presented for  = 1 – 10 step 1 and p α  being 0.66 and 1. 
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Figure 6.G.1. MSE EWMA – MSE λ Approximation (all points in time) 
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1 For , the right hand side of the inequality cannot be defined, for any 1=p 10 ≤≤α . 
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APPENDIX 6.H 

 

MSE Croston’s Method – MSE λ Approximation 
 

⇔> MSEMSE IONAPPROXIMATCROSTON λ  
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Unfortunately we are not able to prove theoretically the above statement. 

Nevertheless, it can be illustrated, graphically, that for fixed α  values greater than 

zero (when 0=α , ( ) 0, =αpf  for any ), 1≥p ( )α,pf  is monotonic decreasing in  over 

the range [1,10], 

p

( ) 0,1 ≤αf . It can also be illustrated, graphically, that for fixed  

values, 

p

( )α,pf  is monotonic decreasing in α  over the range [0.05,1], ( ) 005.0, ≤pf . In 

figure 6.H.1 the ( )α,pf  values are presented for  = 1 – 10 step 1 and p α  being 0.05, 0.5 

and 1. 
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Figure 6.H.1. MSE Croston’s Method – MSE λ Approximation 
 

Therefore, we conjecture that MSE  if and only ifMSE IONAPPROXIMATCROSTON λ> 1:  
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1 For ,  the right hand side of the inequality is defined only for some1=p α  values. 
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APPENDIX 6.I 
 

MSE Approximation – MSE λ Approximation 
 

⇔> MSEMSE IONAPPROXIMATIONAPPROXIMAT λ  
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This can be proven as follows: 
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Therefore,  if and only if: MSEMSE IONAPPROXIMATIONAPPROXIMAT λ>
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This proves the inequality (6.40). 
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APPENDIX 7.A 

 

Demand size distributions 

 
Three continuous demand size distributions 

 

The Erlang variate is a Gamma variate cb  , :γ  (scale parameter ) with shape 

parameter  an integer. The probability density function is given by (7.A.1): 

0>b

0>c

 

( ) ( ) ( )[ ]
( )cb

bx
xf

bx c

Γ

−
=

− /exp/ 1

               (7.A.1) 

 

where  is the Gamma function with integer argument : ( )cΓ c ( ) ( )! 1−=Γ cc  

 

The mean is calculated as: , whereas the variance is:  cb cb  2

 

The squared coefficient of variation ( ) is given by (7.A.2). CV 2

 

c
c
cb

bCV
1

22

2
2 ==                  (7.A.2) 

 

Considering integer values of  only, (7.A.2) is always less than or equal to 1. c

 

If the Gamma rather than the Erlang distribution was considered then (7.A.2) could 

also take values greater than 1. 

 

The negative exponential variate b :Ε  is the Gamma variate cb  , :γ  corresponding to 

shape parameter . In that case . 1 =c 12 =CV

 

The rectangular (uniform) continuous variate  with baR  ,: ba ≤≤ x  has the following 

probability density function: 
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( )
ab

xf
−

=
1                   (7.A.3) 

 

The mean is: 
2

ba +  and the variance: ( )
12

2ab−  and as such the CV  is calculated as 

follows: 

2

 

( )
( )ab

ab
CV

+

−
= 2

2
2

3
                 (7.A.4) 

 

From (7.A.4) it is obvious that CV  is always less than 1. 2

 

Two discrete demand size distributions 

 

A truncated probability density function ( )xf T  is calculated by dividing the original 

density function, , by one minus the probability that the variable  will take a 

value (in the variate’s 

( )xf x

X  range) that we do not want to consider. Both Poisson and 

Pascal are discrete distributions with range: ∞<≤ x0 . Since we refer to demand sizes, 

rather than demand per unit time period, a size 0=x  would not make sense. Therefore 

we want to consider the original distributions but excluding the zero “class” 

probability. 

 

The Poisson density function is as follows: 

 

( ) ( )
!

exp
x

xf
x λλ −

=                    (7.A.5) 

 

where 0>λ  is the mean and variance in this distribution. 

 
( ) ( )λ−= exp0f                     (7.A.6) 

 

and  
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( ) ( )
( )

( )
( )[ ]λ
λλ
−−
−

=
−

=
exp1!

exp
01 xf

xfx
x

Tf                  (7.A.7) 

 

The mean and variance of the distribution are now calculated as: ( )λ
λ
−− exp1

.  

 

Consequently the CV  is given by (7.A.8). 2

 

( )
λ

λ−−
=

exp12CV                          (7.A.8) 

 

For 1=λ , (7.A.8) becomes 632.0112 =−=
eCV . 

 

CV 2  is a decreasing function of λ  with  

 

Lim
∞→λ

( )
0

exp1
=

−−
λ

λ                    (7.A.9) 

 

Therefore , for all 12 <CV 1≥λ . 

 

The Pascal variate is the Negative Binomial variate  ( ) with pxNB  ,: 10 << p x  

( ) being an integer. (It was the truncated Pascal rather than the truncated 

Negative Binomial distribution that was considered in Kwan’s thesis.) 

∞<≤ x0

 

The Pascal density function is given by (7.A.10): 
 

( ) ( )
( ) qp yx

yx
yxxf

!! 1
! 1

−
−+

=                  (7.A.10) 

 

where  is the quantile, an integer with range: y ∞<≤ y0  and pq −=1  

 

The mean of the distribution is:  whereas the variance is:  pxq / pxq 2/

 

( ) pxf =0                   (7.A.11) 



 445

Considering (7.A.10) and (7.A.11) we then have: 
 

( ) ( )
( ) p

qp
yx

yxxf x

yx

T −−
−+

=
1!! 1

! 1
                (7.A.12) 

 

with 
 

xq
p

CV
x−

=
12                  (7.A.13) 

 

For  ,  1=x 12 =CV

 

For  ,   increases exponentially with a limit equal to 1 so that . 1>x px−1 12 <CV

 

For x  not restricted to being an integer, i.e. truncated Negative Binomial distribution, 

the squared coefficient of variation can also take values greater than 1, if . 1<x
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APPENDIX 7.B 

 

Theoretically generated demand data 

 
Binomially distributed random variables 

 

For a specified average inter-demand interval , the Bernoulli probability of demand 

occurrence is 

p

p
1 . 

 

A uniformly distributed in  random variate ( ) can then be generated so that: ( )1 ,0 R

 

If 
p

R 1 <   then  

“Return”  1 

Else 

“Return”  0 

End If 

 

Cells with the value 1 indicate demand occurrence, whereas cells with the value 0 

non-occurrence of demand. The number of consecutive zeroes can then be calculated 

so that: 

 

Inter-demand interval = Number of consecutive zeroes + 1 

 

The value 1 is added because we refer to the geometric distribution including the first 

success. As such inter-demand intervals equal to 1 indicate two consecutive demand 

occurring periods. 

 

Lognormally distributed random variables 

 

The relationship of the lognormal variate σ NmL ,:  to the unit normal variate  

gives: 

1 ,0:N
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( ){ }1 ,0:exp ~,: NmL NNN σµσ +                  (7.B.1) 

 

By specifying the mean ( µ ) and the variance ( ) of the lognormally distributed 

demand sizes, the 

σ 2

µN  and  values can then be derived as follows (Kleijnen and 

Van Groenendaal, 1992): 

σ N

 

( )δσ += 1log N                    (7.B.2) 

 

where  
µ
σδ 2

2
=    

 

and  

 

mN log =µ                     (7.B.3) 

 

where m  is calculated using (7.2) and (7.B.2). 

 

Two methods are recommended in the academic literature for generating standard 

normal random variables. The first is the Box -Muller method (1958). 

 

If ,  are two independent uniform variables distributed inR1 R2 ( ]1 ,0 , then two 

independent standard normal variables are generated by: 

 

( ) ( )R211 2sin log 21 ,0 πRN −=                   (7.B.4) 

 

( ) ( )R2cos log 21 ,0 212 πRN −=                  (7.B.5) 

 

This particular method is very easy to program but it is rather slow in execution as it 

requires the calculation of a logarithm, a square root and a trigonometric function. 

Marsaglia and Bray (1964) improved the operating speed of the Box-Muller approach 

by the following device (see also Kleijnen and Van Groenendaal, 1992): 
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If ,  are uniformly distributed in  subject to the condition ,   Z1 Z 2 )10( , 1 w 21
22 ≤+= ww

(where  and 12 11w −= Z 12 22w −= Z ) then two independent standard normal 

variables are generated by: 
 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −=

w
w

wN
log2 2

1

11 1 ,0                  (7.B.6) 

 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −=

w
w

wN
log2 2

1

22 1 ,0                  (7.B.7) 

 

This method is faster than the Box-Muller method since no calculation of a 

trigonometric function is required (see also Atkinson and Pearce, 1976). Consequently 

we use it for generating pairs of independent standard normal variables. 

  

For each particular demand time period, the binary decision variable that indicates 

whether or not demand occurs in that period and the lognormal variable that 

corresponds to that period are multiplied. The resulting series is that of demand per 

unit time period.  
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APPENDIX 7.C 

 

The simulation control parameters 
 

The  (average inter-demand interval) cut-off values for all the categorisation rules 

developed in chapter 6 were in the range 1.17 – 1.65. It is this area therefore that needs 

to be explored in detail in order to reach definitive conclusions about the validity of 

the categorisation rules. The 

p

p  values selected for that purpose are 1.1 to 1.9 step 0.2. 

The step value chosen reflects the compromise that we try to achieve between the 

detailed investigation of the problem concerned and the size of the simulation 

experiment (see table 7.C.2). For  the MSE superiority of one method over 

another or over all other methods is very well marked but nevertheless we still wish to 

assess the sensitivity of all the results, specifically related to each one of the methods, 

to higher inter-demand intervals. Consideration of inter-demand intervals equal or less 

than 10 can be justified based on the academic literature (Watson, 1987; Willemain et 

al 1994; Johnston and Boylan, 1996). In addition to the 

2≥p

p  values discussed above a 

wide range of other p  values is also considered in order to account for most of the 

“real world” scenarios p = 2 to 10 step 2. 

 

As far as the second control parameter is concerned, and in order to account for a 

wide range of “real world” situations, the following conditions need to be simulated: 

constant demand sizes (or more generally a variance that is set close to zero); variance 

less than the mean; variance equal or approximately equal to the mean; variance 

greater than the mean.  

 

The squared coefficient of variation (CV 2 ) cut-off values for all the categorisation 

rules developed in the chapter 6 were in the range 0.22 – 1.17. The final categorisation 

schemes developed (regarding all methods) were as follows: 
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     value)off-(cut 331.p =  
 
 
      
       
   Erratic (but not               Lumpy 
   very intermittent)   
  49.02 =CV

     
                

       S(A)   
     

 Intermittent 
           (but not very 

28.02 =CV     erratic)  
       S(B) 

 
      

 

Figure 7.C.1. Categorisation of demand patterns (re-order level systems) 

 

 
      value)off-(cut 32.1=p  
 
 
      
       
   Erratic (but not               Lumpy 
   very intermittent)   
  

49.02 =CV     
        ‘Smooth’ demand              Intermittent  value)off-(cut
              (but not very erratic) 
 
 
 

Figure 7.C.2. Categorisation of demand patterns (re-order interval systems) 

 

In order to check the categorisation rules we require, as a minimum, to simulate 

demand sizes with a squared coefficient of variation in the ranges: 0 – 0.28; 0.28 – 

0.49; > 0.49. For 49.02 >CV  (and in order to account for many “real world” scenarios) 

we wish to simulate, as mentioned above, situations where the squared coefficient of 

variation is close to 1 and greater than 1.  
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Willemain et al (1994) generated demand data for the purpose of comparing EWMA 

and Croston’s method. The demand sizes were assumed to be lognormally distributed. 

The four main scenarios that they considered in generating data were the following: 

 

1. Independent inter-demand intervals, independent sizes, independence between 

sizes and intervals 

2. Independent intervals, auto-correlated demand sizes, independence between sizes 

and intervals 

3. Auto-correlated intervals, independent sizes, independence between sizes and 

intervals 

4. Independent intervals, auto-correlated sizes, cross-correlation between sizes and 

intervals 

 

The assumptions associated with the first scenario are the same as those employed in 

our simulation experiment. The conditions considered in that case, in Willemain et al 

(1994), were the following: 

 

Demand intervals   Demand sizes

Geometric ( 3=p )   Lognormal, mean ( µ ) standard deviation (σ ) 

     1. 2=µ , 3=σ , 25.22 =CV  

     2. 10=µ , 3=σ , 09.02 =CV  

3. 2=µ , 25.0=σ , 015625.02 =CV  

     4. 10=µ , 25.0=σ , 000625.02 =CV    

     

All values were selected as representative of “real world” scenarios. As such it has 

been decided to replicate all the above combinations. The first combination refers to 

the area: 49.02 >CV . The last three combinations refer to the area: . 

Combination no. 3 looks the most realistic for slow moving items. In addition 

combination no.2 can also be used in order to ensure that “faster” moving items are 

represented. Finally combination no. 4 will test for all SKUs whose demand sizes are 

distributed with a very low variability.  

28.00 2 ≤< CV
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We still nevertheless need to consider a combination for the decision area 

. We have no reason to consider demand sizes other than those 

recommended by Willemain et al (1994) and a mean size of 10 is chosen (since we 

mainly test for faster moving items, “S(A)” category, see section 6.9) with a standard 

deviation equal to 6. Moreover, to generate C

49.028.0 2 ≤< CV

V 2  close or equal to 1 a mean demand 

size of 10 will be used (since the size 2 has already been considered for large values of 

CV 2 ) and the standard deviation will be also set to 10. Finally it is viewed as 

appropriate to generate results for . One of the objectives of this 

simulation experiment is to assess the sensitivity of the categorisation rules to 

different 

150.0 2 <≤ CV

CV 2  values. The CV 2  values equal to 1 and 2.25 that have already been 

selected are considerably higher than 0.49 to account for all cases that . As 

such, the combination 

5.02 ≥CV

L  (2, 1.5) is introduced at this stage with . The 

demand size was set to 2 to compensate for the higher usage of the size 10 in the 

experiment. 

5625.02 =CV

 

The sets of values finally selected are the following: 

 

Mean ( µ ) St. dev. (σ ) CV  CV 2  µσ /2  

2 3 1.50 2.25 4.50 

10 10 1 1 10 

2 1.50 0.75 0.5625 1.125 

10 6 0.60 0.36 3.60 

10 3 0.30 0.09 0.90 

2 0.25 0.125 0.015625 0.03125 

10 0.25 0.025 0.000625 0.00625 

 

Table 7.C.1. Lognormally distributed demand sizes 

 

Depending on what type of stock control system is utilised, not necessarily all 

estimates produced by the forecasting methods under concern are of interest to us. 

That is, if a continuous (re-order level) stock replenishment system is in place we are 

interested only in the estimates produced just after a demand occurrence (issue point) 

since only those estimates will be considered for replenishment purposes. On the 

other hand if a periodic (re-order interval or product group review) system is 
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employed, all demand estimates are viewed as important. Therefore intermittent 

demand forecasting methods should be evaluated with respect to the accuracy of their 

estimates of the mean demand level for all points in time and for issue points only.  

 

A wide range of lead time values has also been selected to cover for a variety of “real 

ne of the objectives of our simulation experiment is to assess the sensitivity of our 

world” scenarios. If we assume that each review period is one month, the lead times 

that we have selected range from 1 period (consistent with the recent co-managed 

inventory schemes introduced in the automotive industry) to a lead time equal to 3 

and 5 periods and finally 12 periods (an assumption still valid for many military 

inventory control applications). 

 

O

theoretical results to different smoothing constant values. In chapter 2 we argued that, 

in an intermittent demand context, a realistic range of α  smoothing constant values is 

0.05 – 0.20 (see also Burgin and Wild, 1967, Croston, 1972; Willemain et al, 1994; 

Sani, 1995; Johnston and Boylan, 1996). As such all the categorisation rules 

developed in chapter 6 refer to that particular range of smoothing constant values. 

Moreover this is the range of values to be considered for the purpose of generating 

simulation results in this chapter. Four representative α  smoothing constant values 

have been chosen from that range: 0.05 to 0.2 step 0.05. hose values cover cases that 

are generally encountered in practice. 

 

T

he values assigned to all the control parameters are presented in the summary table 

Factors

T

7.C.2. 

 

 

 

 

 

 

 

 

 

 System parameters: Levels Number of levels
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Inter-demand interval distribution Geometric (mean: ) 

.9 , 4, 6, 8, 10 
10 p

1.1, 1.3, 1.5, 1.7, 1 , 2
 

Demand size distribution ognormal
 
 
 

L  L  ( µ ,σ ) 
L  (2, 3), L  ( , 1 ),10 0   
L  (2, 1.5), L  (10, 6), L  (10, 3) 
L  (2, 0.25), L  (10, 0.2 ) 5
 

7 

Points in time considered ll –  Issue points in time 2 A
 

Lead time length  , 3, 5, 12 4 1
 

α  smoothing constant value .05, 0.1, 0.15, 0.2 4 0
 

 

Table 7.C.2. The simulated conditions 
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APPENDIX 8.A 

 

Definition of accuracy measures 
 

Mean Absolute Error (MAE) 

 

nn
MAE eYY LtLtLt +Σ

=
Σ

=
′−+ , , n  ......., 2, 1,   =t                          (8.A.1) 

 

Median Absolute Percentage Error (MdAPE) 

 

The Median Absolute Percentage Error is similar to MAPE but instead of summing 

the Absolute Percentage Errors (APEs) and then computing their average we find 

their median. That is, all the APEs are sorted from the smallest to the largest and the 

APE in the middle (in case that there is an even number of APEs then the average of 

the middle two is computed) is used to denote the median. 

 

Theil’s U Statistic (U Statistic) 
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U

,

,

STATISTIC 
2

2

, n  ......., 2, 1,   =t              (8.A.2) 

 

where is some benchmark forecast, usually the latest available value (i.e. the 

forecast given by the naïve 1 forecasting method). The accuracy measure is interpreted 

as follows: 

  ,F Lt

 

A value of 1 means that the accuracy of the method being used is the same as that of 

the benchmark method. A value smaller than 1 means that the method is better than 

the benchmark while a value greater than 1 means the opposite. 

 

 



 456

McLaughlin’s Batting Average (Batting Average) 
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BATTING , n  ......., 2, 1,   =t            (8.A.3) 

 

where is as in the previous case the benchmark (naïve 1) forecast. In this case 300 

will mean similar performance to the benchmark, 300 to 400 better performance than 

the benchmark and less than 300 the opposite.  

  F t

 

Geometric Mean Relative Absolute Error (GMRAE) 

 

The Geometric Mean Relative Absolute Error is found by calculating the geometric 

mean of the Relative Absolute Errors (RAE) per period. 
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Median Relative Absolute Error (MdRAE) 

 

The Median Relative Absolute Error is found by ordering the RAEs computed in 

(8.A.4) from the smallest to the largest and using the middle value (or the average of 

the middle two values if is an even number) as the median.    n
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APPENDIX 10.A 
 
 

The bias of intermittent demand estimates 
 
 

α  = 0.05 All Points in Time 

 L.T.=1 L.T.=3 L.T.=5 

 Avg. Var. Avg. Var. Avg. Var. 
EWMA 0.08 7.46 0.33 83.00 0.67 266.50 

Croston 0.12 8.02 0.45 87.32 0.88 275.35 

Approx. 0.009 7.91 0.11 86.27 0.31 272.49 

MA (13) 0.10 5.79 0.37 71.25 0.62 239.95 

 Issue Points Only 

 L.T.=1 L.T.=3 L.T.=5 

 Avg. Var. Avg. Var. Avg. Var. 
EWMA 0.13 8.01 0.67 82.70 1.35 241.83 

Croston 0.12 8.46 0.66 86.16 1.34 249.12 

Approx. 0.02 8.35 0.32 84.83 0.78 244.93 

MA (13) 0.17 6.36 0.74 71.07 1.35 214.76 

 

Table 10.A.1. ME results, α  = 0.05 

 

α  = 0.1 All Points in Time 

 L.T.=1 L.T.=3 L.T.=5 

 Avg. Var. Avg. Var. Avg. Var. 
EWMA 0.09 5.39 0.40 68.20 0.83 241.78 

Croston 0.15 6.13 0.54 74.35 1.05 254.46 

Approx. -0.08 6.05 -0.15 73.22 -0.09 250.62 

 Issue Points Only 

 L.T.=1 L.T.=3 L.T.=5 

 Avg. Var. Avg. Var. Avg. Var. 
EWMA 0.19 6.09 0.84 68.90 1.67 218.93 

Croston 0.14 6.60 0.71 73.21 1.46 228.13 

Approx. -0.08 6.54 0.02 71.61 0.32 221.88 

 

Table 10.A.2. ME results, α  = 0.1 
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α  = 0.15 All Points in Time 

 L.T.=1 L.T.=3 L.T.=5 

 Avg. Var. Avg. Var. Avg. Var. 
EWMA 0.10 4.12 0.44 58.72 0.95 227.69 

Croston 0.17 4.92 0.62 65.94 1.23 242.95 

Approx. -0.17 4.93 -0.41 65.24 -0.50 238.96 

 Issue Points Only 

 L.T.=1 L.T.=3 L.T.=5 

 Avg. Var. Avg. Var. Avg. Var. 
EWMA 0.23 4.98 1.00 60.59 1.98 206.97 

Croston 0.15 5.41 0.76 64.84 1.58 216.46 

Approx. -0.18 5.46 -0.26 63.52 -0.14 209.24 

 

Table 10.A.3. ME results, α  = 0.15 

 
α  = 0.2 All Points in Time 

 L.T.=1 L.T.=3 L.T.=5 

 Avg. Var. Avg. Var. Avg. Var. 
EWMA 0.09 3.29 0.47 52.27 1.04 219.60 

Croston 0.19 4.11 0.69 60.27 1.39 237.17 

Approx. -0.27 4.27 -0.69 60.35 -0.93 233.57 

 Issue Points Only 

 L.T.=1 L.T.=3 L.T.=5 

 Avg. Var. Avg. Var. Avg. Var. 
EWMA 0.28 4.31 1.15 55.50 2.27 201.47 

Croston 0.17 4.62 0.82 59.18 1.71 210.40 

Approx. -0.28 4.83 -0.56 58.56 -0.60 202.94 

 

Table 10.A.4. ME results, α  = 0.2 
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APPENDIX 10.B 
 

The accuracy of intermittent demand estimates.  

Percentage Better results 
 

Percentage Better results (ME) 

 

α  = 0.05  Croston- 

EWMA 

EWMA- 

Approx. 

Croston-

Approx. 

MA- 

EWMA 

Croston- 

MA 

MA- 

Approx. 

L.T.=1 22.02 

(2103 out 

of 3000*) 

-6.17 

(1331) 

3.94 

(1608) 

-16.83 

(1039) 

20.33 

(2057) 

-19.02 

(979) 

L.T.=3 18.43 

(1976 out 

of 2951*) 

-3.10 

(1415) 

4.34 

(1619) 

-13.51 

(1130) 

16.39 

(1949) 

-14.71 

(1097) 

 

 

 

All 

Points in 

Time 

L.T.=5 13.59 

(1816 out 

of 2900*) 

0.29 

(1508) 

5.14 

(1641) 

-10.18 

(1221) 

12.30 

(1837) 

-10.62 

(1209) 

L.T.=1 18.21 

(1983 out 

of 2973*) 

1.86 

(1541) 

4.63 

(1627) 

-15.19 

(1084) 

16.76 

(1959) 

-15.04 

(1088) 

L.T.=3 15.46 

(1884 out 

of 2931*) 

5.18 

(1642) 

7.15 

(1696) 

-11.46 

(1186) 

13.58 

(1872) 

-10.55 

(1211) 

 

 

 

Issue 

Points 

Only 

L.T.=5 9.48 

(1666 out 

of 2828*) 

7.37 

(1702) 

8.29 

(1727) 

-8.36 

(1271) 

9.78 

(1768) 

-6.64 

(1318) 

 

Table 10.B.1. Percentage Better results (ME), α  = 0.05 

*The number of ties does not change with the smoothing constant value. As such, in the 

following tables (PB results for 05.0>α ), and for the Croston – EWMA comparison, we 

present, for each of the simulated conditions, only the  that 

MEME CrostonEWMA< . The total number of files considered (3,000 minus (-) no. of ties) is the 

same as in the corresponding simulated scenario in the

number of files

 above table. 
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α  = 0.1  Croston-

EWMA 

EWMA- 

Approx. 

Croston-

Approx. 

MA- 

EWMA 

Croston- 

MA 

MA- 

Approx. 

L.T.=1 21.65 

(2093) 

-10.01 

(1226) 

2.88 

(1579) 

1.75 

(1548) 

8.65 

(1737) 

-8.22 

(1275) 

L.T.=3 17.32 

(1946) 

-5.51 

(1349) 

3.72 

(1602) 

2.12 

(1558) 

7.01 

(1692) 

-4.64 

(1373) 

 

 

All 

Points in 

Time L.T.=5 12.33 

(1782) 

-0.55 

(1485) 

4.49 

(1623) 

0.07 

(1502) 

5.04 

(1638) 

-3.69 

(1399) 

L.T.=1 14.65 

(1886) 

-0.04 

(1499) 

3.61 

(1599) 

1.35 

(1537) 

4.38 

(1620) 

-2.56 

(1430) 

L.T.=3 11.95 

(1789) 

3.29 

(1590) 

5.81 

(1659) 

2.26 

(1562) 

2.23 

(1561) 

0.62 

(1517) 

 

 

Issue 

Points 

Only L.T.=5 6.28 

(1581) 

6.21 

(1670) 

7.85 

(1715) 

-0.18 

(1495) 

2.37 

(1565) 

2.70 

(1574) 

 

Table 10.B.2. Percentage Better results (ME), α  = 0.1 

 

α  = 0.15  Croston-

EWMA 

EWMA- 

Approx. 

Croston-

Approx. 

MA- 

EWMA 

Croston- 

MA 

MA- 

Approx. 

L.T.=1 20.78 

(2069) 

-11.98 

(1172) 

1.17 

(1532) 

15.77 

(1932) 

-3.76 

(1397) 

0.51 

(1514) 

L.T.=3 15.78 

(1904) 

-6.94 

(1310) 

3.18 

(1587) 

12.27 

(1836) 

-3.61 

(1401) 

2.85 

(1578) 

 

 

All 

Points in 

Time L.T.=5 11.51 

(1760) 

-1.06 

(1471) 

4.13 

(1613) 

6.57 

(1680) 

-0.66 

(1482) 

2.78 

(1576) 

L.T.=1 9.85 

(1755) 

1.97 

(1554) 

1.65 

(1545) 

11.58 

(1817) 

-7.63 

(1291) 

5.00 

(1637) 

L.T.=3 7.70 

(1674) 

5.40 

(1648) 

5.37 

(1647) 

9.68 

(1765) 

-7.70 

(1289) 

7.67 

(1710) 

 

 

Issue 

Points 

Only L.T.=5 2.56 

(1482) 

7.63 

(1709) 

7.30 

(1700) 

4.67 

(1628) 

-3.43 

(1406) 

7.12 

(1695) 

 

Table 10.B.3. Percentage Better results (ME), α  = 0.15 
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α  = 0.2  Croston-

EWMA 

EWMA- 

Approx. 

Croston-

Approx. 

MA- 

EWMA 

Croston- 

MA 

MA- 

Approx. 

L.T.=1 19.72 

(2040) 

-12.82 

(1149) 

-0.95 

(1474) 

22.42 

(2114) 

-12.01 

(1171) 

4.60 

(1626) 

L.T.=3 14.45 

(1868) 

-7.49 

(1295) 

1.42 

(1539) 

16.14 

(1942) 

-9.46 

(1241) 

5.99 

(1664) 

 

 

All 

Points in 

Time L.T.=5 9.92 

(1717) 

-1.10 

(1470) 

3.76 

(1603) 

8.87 

(1743) 

-4.31 

(1382) 

4.02 

(1610) 

L.T.=1 5.01 

(1623) 

1.42 

(1539) 

-0.29 

(1492) 

14.97 

(1910) 

-15.92 

(1064) 

6.46 

(1677) 

L.T.=3 2.57 

(1535) 

6.17 

(1669) 

4.45 

(1622) 

12.01 

(1829) 

-13.18 

(1139) 

10.01 

(1774) 

 

 

Issue 

Points 

Only L.T.=5 -0.68 

(1396) 

8.62 

(1736) 

6.46 

(1677) 

5.26 

(1644) 

-7.16 

(1304) 

8.25 

(1726) 

 

Table 10.B.4. Percentage Better results (ME), α  = 0.2 
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Percentage Better results (GRMSE) 

 

α  = 0.05  Croston- 

EWMA 

EWMA- 

Approx. 

Croston-

Approx. 

MA- 

EWMA 

Croston- 

MA 

MA- 

Approx. 

L.T.=1 5.00 

(1637 out 

of 3000*) 

4.49 

(1623) 

11.39 

(1812) 

10.04 

(1775) 

-7.74 

(1288) 

9.93 

(1772) 

L.T.=3 2.45 

(1542 out 

of 2951*) 

6.24 

(1671) 

10.63 

(1791) 

6.13 

(1668) 

-4.82 

(1368) 

6.97 

(1691) 

 

 

 

All 

Points in 

Time 

L.T.=5 1.67 

(1495 out 

of 2900*) 

6.06 

(1666) 

8.51 

(1733) 

4.13 

(1613) 

-2.67 

(1427) 

6.68 

(1683) 

L.T.=1 -3.10 

(1402 out 

of 2973) 

10.44 

(1786) 

10.33 

(1783) 

8.18 

(1724) 

-8.14 

(1277) 

10.08 

(1776) 

L.T.=3 -4.23 

(1351 out 

of 2931*) 

11.43 

(1813) 

10.26 

(1781) 

5.22 

(1643) 

-5.44 

(1351) 

7.41 

(1703) 

 

 

 

Issue 

Points 

Only 

L.T.=5 -2.14 

(1357 out 

of 2828*) 

11.47 

(1814) 

9.20 

(1752) 

2.81 

(1577) 

-3.18 

(1413) 

6.43 

(1676) 

 

Table 10.B.5. Percentage Better results (GRMSE), α  = 0.05 

 

*The number of ties does not change with the smoothing constant value. As such, in the 

following tables (PB results for 05.0>α ), and for the Croston – EWMA comparison, we 

present, for each of the simulated conditions, only the number of files that 

. The total number of files considered (3,000 minus (-) no. of 

ties) is the same as in the corresponding simulated scenario in the above table. 

GRMSEEGRMSE CrostonEWMA <
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α  = 0.1  Croston-

EWMA 

EWMA- 

Approx. 

Croston-

Approx. 

MA- 

EWMA 

Croston- 

MA 

MA- 

Approx. 

L.T.=1 2.41 

(1566) 

7.89 

(1716) 

12.49 

(1842) 

9.68 

(1765) 

-7.78 

(1287) 

13.51 

(1870) 

L.T.=3 1.90 

(1527) 

7.67 

(1710) 

12.42 

(1840) 

2.81 

(1577) 

-2.67 

(1427) 

8.58 

(1735) 

 

 

All 

Points in 

Time L.T.=5 -1.30 

(1415) 

8.14 

(1723) 

9.09 

(1749) 

1.24 

(1534) 

-1.39 

(1462) 

5.22 

(1643) 

L.T.=1 -5.30 

(1342) 

12.82 

(1851) 

10.92 

(1799) 

7.30 

(1700) 

-9.82 

(1231) 

14.13 

(1887) 

L.T.=3 -5.67 

(1312) 

13.33 

(1865) 

12.23 

(1835) 

1.20 

(1533) 

-3.07 

(1416) 

8.76 

(1740) 

 

 

Issue 

Points 

Only L.T.=5 -6.06 

(1253) 

13.07 

(1858) 

10.26 

(1781) 

-0.07 

(1498) 

-1.53 

(1458) 

7.52 

(1706) 

 

Table 10.B.6. Percentage Better results (GRMSE), α  = 0.1 

 
α  = 0.15  Croston-

EWMA 

EWMA- 

Approx. 

Croston-

Approx. 

MA- 

EWMA 

Croston- 

MA 

MA- 

Approx. 

L.T.=1 2.15 

(1559) 

8.54 

(1734) 

13.00 

(1856) 

7.45 

(1704) 

-6.65 

(1318) 

14.53 

(1898) 

L.T.=3 -0.83 

(1453) 

7.49 

(1705) 

11.79 

(1823) 

-0.47 

(1487) 

1.28 

(1535) 

5.55 

(1692) 

 

 

All 

Points in 

Time L.T.=5 -2.27 

(1389) 

8.40 

(1730) 

9.42 

(1758) 

-2.19 

(1440) 

0.22 

(1506) 

3.61 

(1599) 

L.T.=1 -7.35 

(1286) 

13.84 

(1879) 

11.87 

(1825) 

3.54 

(1597) 

-7.38 

(1298) 

13.58 

(1872) 

L.T.=3 -9.99 

(1195) 

13.55 

(1871) 

10.44 

(1786) 

-3.25 

(1411) 

0.22 

(1506) 

6.10 

(1667) 

 

 

Issue 

Points 

Only L.T.=5 -8.24 

(1195) 

13.25 

(1863) 

10.01 

(1774) 

-2.45 

(1433) 

0.04 

(1501) 

4.09 

(1612) 

 

Table 10.B.7. Percentage Better results (GRMSE), α  = 0.15 
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α  = 0.2  Croston-

EWMA 

EWMA- 

Approx. 

Croston-

Approx. 

MA- 

EWMA 

Croston- 

MA 

MA- 

Approx. 

L.T.=1 2.92 

(1580) 

9.09 

(1749) 

15.08 

(1913) 

5.73 

(1657) 

-4.75 

(1370) 

13.99 

(1833) 

L.T.=3 -1.31 

(1440) 

10.08 

(1776) 

12.45 

(1841) 

-4.56 

(1375) 

3.98 

(1609) 

2.78 

(1576) 

 

 

All 

Points in 

Time L.T.=5 -4.42 

(1331) 

10.41 

(1785) 

8.80 

(1741) 

-7.05 

(1307) 

3.47 

(1595) 

0.00 

(1500) 

L.T.=1 -7.17 

(1291) 

14.57 

(1899) 

13.29 

(1864) 

1.94 

(1553) 

-4.45 

(1378) 

13.36 

(1866) 

L.T.=3 -11.03 

(1167) 

14.46 

(1896) 

11.10 

(1804) 

-5.59 

(1347) 

2.45 

(1567) 

2.67 

(1573) 

 

 

Issue 

Points 

Only L.T.=5 -11.96 

(1096) 

13.66 

(1874) 

9.79 

(1768) 

-6.24 

(1329) 

2.99 

(1582) 

0.37 

(1510) 

 

Table 10.B.8. Percentage Better results (GRMSE), α  = 0.2 
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APPENDIX 10.C 
 

The accuracy of intermittent demand estimates.  

Percentage Best results 
No. of files (Percentage Best - GRMSE) 

α  = 0.05  EWMA Croston Approx. MA (13) Ties 

L.T.=1 697 479 861 963 0 

L.T.=3 626 494 869 1006 5 

All 

Points in 

Time L.T.=5 595 477 873 1033 22 

L.T.=1 543 435 1008 1007 7 

L.T.=3 511 441 987 1051 10 

Issue 

Points 

only L.T.=5 507 422 960 1075 36 

 

Table 10.C.1. No. of files (superior performance), GRMSE, α  = 0.05 

 
α  = 0.1  EWMA Croston Approx. MA (13) Ties 

L.T.=1 697 530 1038 735 0 

L.T.=3 666 480 1024 820 10 

All 

Points in 

Time L.T.=5 616 553 923 897 11 

L.T.=1 567 452 1195 776 10 

L.T.=3 524 425 1148 890 13 

Issue 

Points 

only L.T.=5 510 459 1099 903 29 

 

Table 10.C.2. No. of files (superior performance), GRMSE, α  = 0.1 

 

α  = 0.15  EWMA Croston Approx. MA (13) Ties 

L.T.=1 713 544 1080 663 0 

L.T.=3 697 491 968 838 6 

All 

Points in 

Time L.T.=5 638 516 944 891 11 

L.T.=1 547 447 1242 756 8 

L.T.=3 512 435 1128 917 8 

Issue 

Points 

only L.T.=5 509 414 1121 926 30 

 

Table 10.C.3. No. of files (superior performance), GRMSE, α  = 0.15 
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α  = 0.2  EWMA Croston Approx. MA (13) Ties 

L.T.=1 748 509 1119 624 0 

L.T.=3 633 481 975 902 9 

All 

Points in 

Time L.T.=5 577 511 922 979 11 

L.T.=1 564 411 1285 731 9 

L.T.=3 488 419 1116 963 14 

Issue 

Points 

only L.T.=5 464 394 1097 1018 27 

 

Table 10.C.4. No. of files (superior performance), GRMSE, α  = 0.2 

 

No. of files (Percentage Best – ME) 

α  = 0.05  EWMA Croston Approx. MA (13) Ties 

L.T.=1 391 292 550 1767 0 

L.T.=3 435 324 600 1641 0 

All 

Points in 

Time L.T.=5 461 378 664 1486 11 

L.T.=1 393 193 717 1696 1 

L.T.=3 437 206 807 1549 1 

Issue 

Points 

only L.T.=5 477 232 871 1405 15 

 

Table 10.C.5. No. of files (superior performance), ME, α  = 0.05 

 

α  = 0.1  EWMA Croston Approx. MA (13) Ties 

L.T.=1 734 406 754 1106 0 

L.T.=3 714 413 813 1052 8 

All 

Points in 

Time L.T.=5 700 443 826 1017 14 

L.T.=1 669 260 1081 984 6 

L.T.=3 674 262 1118 935 11 

Issue 

Points 

only L.T.=5 649 246 1151 927 27 

 

Table 10.C.6. No. of files (superior performance), ME, α  = 0.1 
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α  = 0.15  EWMA Croston Approx. MA (13) Ties 

L.T.=1 963 490 880 667 0 

L.T.=3 859 488 936 707 10 

All 

Points in 

Time L.T.=5 782 484 931 789 14 

L.T.=1 838 269 1284 602 7 

L.T.=3 766 262 1332 628 12 

Issue 

Points 

only L.T.=5 686 256 1294 736 28 

 

Table 10.C.7. No. of files (superior performance), ME, α  = 0.15 

 

α  = 0.2  EWMA Croston Approx. MA (13) Ties 

L.T.=1 993 579 929 499 0 

L.T.=3 873 543 987 586 11 

All 

Points in 

Time L.T.=5 751 511 991 734 13 

L.T.=1 889 298 1319 485 9 

L.T.=3 789 290 1395 512 14 

Issue 

Points 

only L.T.=5 685 270 1345 672 28 

 

Table 10.C.8. No. of files (superior performance), ME, α  = 0.2 
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APPENDIX 10.D 
 

The categorisation of “non-normal” demand patterns 
 

 

Croston- 

EWMA 

EWMA- 

Approx. 

Croston- 

Approx. 

MA- 

EWMA 

Croston- 

MA 

MA- 

Approx. 
 

α (smoothing constant value) = 0.05 
non-smooth 0.99 0.99 0.98 0.93 1.06 0.92 L.T.=1 
smooth 0.99 0.99 0.99 0.95 1.05 0.94 
non-smooth 0.99 0.99 0.98 0.97 1.02 0.95 L.T.=3 
smooth 0.99 0.99 0.98 0.98 1.01 0.97 
non-smooth 0.98 0.99 0.98 0.97 1.01 0.97 L.T.=5 
smooth 1.00 0.98 0.98 0.99 1.01 0.97 

 α (smoothing constant value) = 0.1 

non-smooth 0.99 0.97 0.96 0.93 1.06 0.91 L.T.=1 
smooth 1.00 0.99 0.99 0.94 1.06 0.93 
non-smooth 0.98 0.97 0.95 0.96 1.02 0.94 L.T.=3 
smooth 0.99 0.98 0.97 0.98 1.01 0.96 
non-smooth 0.99 0.97 0.96 0.98 1.01 0.94 L.T.=5 
smooth 1.00 0.98 0.98 0.99 1.01 0.97 

 α (smoothing constant value) = 0.15 

non-smooth 0.99 0.96 0.95 0.93 1.06 0.90 L.T.=1 
smooth 1.00 0.97 0.97 0.95 1.05 0.92 
non-smooth 0.98 0.96 0.94 0.96 1.02 0.93 L.T.=3 
smooth 1.00 0.97 0.97 1.00 1.00 0.97 
non-smooth 1.01 0.94 0.95 0.99 1.02 0.93 L.T.=5 
smooth 1.01 0.97 0.98 1.01 1.00 0.98 

 α (smoothing constant value) = 0.2 

non-smooth 0.98 0.95 0.94 0.93 1.05 0.89 L.T.=1 
smooth 0.99 0.97 0.96 0.95 1.04 0.92 
non-smooth 0.99 0.94 0.93 0.98 1.01 0.92 L.T.=3 
smooth 1.00 0.96 0.96 1.02 0.98 0.98 
non-smooth 1.02 0.91 0.93 1.02 1.00 0.93 L.T.=5 
smooth 1.01 0.95 0.96 1.04 0.97 1.00 

 

Table 10.D.1. RGRMSE,  all points in time 
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Croston- 

EWMA 

EWMA- 

Approx. 

Croston- 

Approx. 

MA- 

EWMA 

Croston- 

MA 

MA- 

Approx. 
 

α (smoothing constant value) = 0.05 
non-smooth 0.06 0.78 0.84 2.77 -2.71 3.56 
smooth A 0.19 0.43 0.61 2.23 -2.04 2.67 

 

L.T.=1 
smooth B -0.17 0.50 0.33 3.14 -3.30 3.65 
non-smooth -0.24 1.11 0.86 0.97 -1.21 2.10 
smooth A 0.05 0.67 0.72 0.63 -0.58 1.32 

 

L.T.=3 
smooth B 0.13 0.47 0.60 2.05 -1.92 2.51 
non-smooth 0.12 0.77 0.89 0.85 -0.72 1.65 
smooth A 0.14 0.53 0.67 0.08 0.07 0.61 

 

L.T.=5 
smooth B 0.01 1.09 1.10 1.27 -1.26 2.38 

 α (smoothing constant value) = 0.1 

non-smooth -0.37 1.78 1.41 2.59 -2.98 4.40 
smooth A -0.13 1.07 0.94 2.47 -2.60 3.56 

 

L.T.=1 
smooth B 0.09 -0.39 -0.30 4.26 -4.16 3.85 
non-smooth -0.35 1.97 1.62 0.90 -1.25 2.89 
smooth A 0.12 1.19 1.32 0.47 -0.35 1.67 

 

L.T.=3 
smooth B 0.06 1.30 1.37 1.60 -1.55 2.92 
non-smooth -0.17 1.96 1.79 0.71 -0.89 2.71 
smooth A -0.16 0.91 0.74 -0.28 0.11 0.64 

 

L.T.=5 
smooth B 0.04 1.44 1.48 1.30 -1.26 2.78 

 

Table 10.D.2. t-test (GRMSE, difference between population means),  

 issue points only (α  = 0.05, 0.1) 
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Croston- 

EWMA 

EWMA- 

Approx. 

Croston- 

Approx. 

MA- 

EWMA 

Croston- 

MA 

MA- 

Approx. 
 

α (smoothing constant value) = 0.15 
non-smooth -0.58 2.35 1.76 2.41 -3.01 4.83 
smooth A -0.28 2.23 1.95 1.91 -2.20 4.18 

 

L.T.=1 
smooth B -0.22 0.51 0.29 3.47 -3.70 3.97 
non-smooth -0.49 2.59 2.10 0.76 -1.26 3.40 
smooth A -0.50 1.66 1.17 -0.30 -0.21 1.39 

 

L.T.=3 
smooth B -0.45 1.55 1.10 0.56 -1.02 2.14 
non-smooth -1.18 3.35 2.16 0.01 -1.21 3.42 
smooth A -0.42 1.52 1.09 -1.01 0.58 0.51 

 

L.T.=5 
smooth B -0.44 1.10 0.64 0.82 -1.26 1.94 

 α (smoothing constant value) = 0.2 

non-smooth -0.51 2.75 2.26 2.22 -2.76 5.10 
smooth A -0.40 3.25 2.85 1.52 -1.93 4.84 

 

L.T.=1 
smooth B -0.03 0.84 0.80 3.31 -3.33 4.13 
non-smooth -1.32 4.01 2.68 -0.19 -1.15 3.87 
smooth A -0.53 1.77 1.25 -1.12 0.59 0.67 

 

L.T.=3 
smooth B -0.01 2.29 2.27 -0.34 0.33 2.00 
non-smooth -1.82 4.61 2.76 -1.19 -0.65 3.47 
smooth A -0.69 2.24 1.54 -2.41 1.71 -0.19 

 

L.T.=5 
smooth B -0.12 1.81 1.69 -0.23 0.11 1.61 

 

Table 10.D.3. t-test (GRMSE, difference between population means),  

issue points only (α  = 0.15, 0.2) 
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Croston- 

EWMA 

EWMA- 

Approx. 

Croston- 

Approx. 

MA- 

EWMA 

Croston- 

MA 

MA- 

Approx. 
 

α (smoothing constant value) = 0.05 
non-smooth 1.00 0.98 0.98 0.93 1.07 0.92 
smooth A 1.00 0.99 0.99 0.96 1.04 0.95 

 

L.T.=1 
smooth B 1.00 0.99 0.99 0.94 1.07 0.93 
non-smooth 1.01 0.97 0.98 0.97 1.03 0.95 
smooth A 1.00 0.98 0.98 0.99 1.01 0.97 

 

L.T.=3 
smooth B 1.00 0.99 0.99 0.96 1.04 0.95 
non-smooth 1.00 0.98 0.97 0.98 1.02 0.95 
smooth A 1.00 0.99 0.98 1.00 1.00 0.99 

 

L.T.=5 
smooth B 1.00 0.97 0.97 0.97 1.03 0.94 

 α (smoothing constant value) = 0.1 

non-smooth 1.01 0.96 0.96 0.94 1.08 0.90 
smooth A 1.00 0.98 0.98 0.95 1.05 0.93 

 

L.T.=1 
smooth B 1.00 1.01 1.01 0.92 1.08 0.93 
non-smooth 1.01 0.95 0.96 0.98 1.03 0.93 
smooth A 1.00 0.97 0.97 0.99 1.01 0.96 

 

L.T.=3 
smooth B 1.00 0.97 0.97 0.97 1.03 0.94 
non-smooth 1.00 0.94 0.95 0.98 1.03 0.93 
smooth A 1.00 0.98 0.98 1.01 1.00 0.98 

 

L.T.=5 
smooth B 1.00 0.97 0.97 0.97 1.03 0.94 

 

Table 10.D.4. RGRMSE results, issue points only (α  = 0.05, 0.1) 
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Croston- 

EWMA 

EWMA- 

Approx. 

Croston- 

Approx. 

MA- 

EWMA 

Croston- 

MA 

MA- 

Approx. 
 

α (smoothing constant value) = 0.15 
non-smooth 1.01 0.94 0.96 0.94 1.08 0.89 
smooth A 1.01 0.95 0.96 0.96 1.05 0.92 

 

L.T.=1 
smooth B 1.00 0.99 0.99 0.94 1.07 0.93 
non-smooth 1.01 0.93 0.95 0.98 1.03 0.92 
smooth A 1.01 0.96 0.97 1.01 1.00 0.97 

 

L.T.=3 
smooth B 1.01 0.97 0.98 0.99 1.02 0.96 
non-smooth 1.03 0.91 0.94 1.00 1.03 0.91 
smooth A 1.01 0.96 0.97 1.03 0.99 0.99 

 

L.T.=5 
smooth B 1.01 0.97 0.99 0.98 1.03 0.96 

 α (smoothing constant value) = 0.2 

non-smooth 1.01 0.93 0.94 0.95 1.07 0.88 
smooth A 1.01 0.93 0.94 0.97 1.04 0.91 

 

L.T.=1 
smooth B 1.00 0.98 0.98 0.94 1.07 0.92 
non-smooth 1.04 0.90 0.93 1.00 1.03 0.90 
smooth A 1.01 0.96 0.97 1.03 0.99 0.99 

 

L.T.=3 
smooth B 1.00 0.95 0.95 1.01 0.99 0.96 
non-smooth 1.05 0.88 0.92 1.03 1.02 0.91 
smooth A 1.02 0.95 0.96 1.06 0.96 1.00 

 

L.T.=5 
smooth B 1.00 0.96 0.96 1.01 1.00 0.96 

 

Table 10.D.5. RGRMSE results, issue points only (α  = 0.15, 0.2) 
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APPENDIX 11.A 
 

Inventory control results ( P2  policy )  

 

  EWMA Croston Approx. MA(13) Ties 

  Customer Service Level 

L.T. = 1 693 42 54 32 2179 
L.T. = 3 515 51 48 36 2350 

 

α = 0.05 

 L.T. = 5 350 39 55 37 2519 
L.T. = 1 792 56 75 4 2073 
L.T. = 3 598 52 74 0 2276 

 

α = 0.1 

 L.T. = 5 454 39 67 0 2440 
L.T. = 1 751 50 81 6 2112 
L.T. = 3 597 55 81 0 2267 

 

α = 0.15 

 L.T. = 5 442 44 82 0 2432 
L.T. = 1 690 49 93 4 2164 
L.T. = 3 552 53 106 0 2289 

 

α = 0.2 

 L.T. = 5 428 45 104 0 2423 
  Number of units in stock 

L.T. = 1 446 253 704 655 942 
L.T. = 3 159 438 1042 744 617 

 

α = 0.05 

 L.T. = 5 50 495 1258 649 548 
L.T. = 1 489 335 928 629 619 
L.T. = 3 176 494 1307 618 405 

 

α = 0.1 

 L.T. = 5 37 571 1641 451 300 
L.T. = 1 418 413 1066 647 456 
L.T. = 3 167 543 1446 539 305 

 

α = 0.15 

 L.T. = 5 38 561 1732 395 274 
L.T. = 1 343 528 1091 737 301 
L.T. = 3 140 615 1431 579 235 

 

α = 0.2 

 L.T. = 5 35 553 1694 422 296 

 

Table 11.A.1. Best performance (number of files),  = 0.90 P2
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  EWMA Croston Approx. MA(13) Ties 

  Customer Service Level 

L.T. = 1 504 31 50 31 2384 

L.T. = 3 390 35 57 28 2490 

 

α = 0.05 

 L.T. = 5 270 36 47 25 2622 

L.T. = 1 545 39 67 7 2342 

L.T. = 3 461 42 68 0 2429 

 

α = 0.1 

 L.T. = 5 339 37 63 0 2561 

L.T. = 1 515 39 78 3 2365 

L.T. = 3 423 46 76 0 2455 

 

α = 0.15 

 L.T. = 5 347 42 70 0 2541 

L.T. = 1 459 35 79 2 2425 

L.T. = 3 393 46 81 0 2480 

 

α = 0.2 

 L.T. = 5 321 40 83 0 2556 

  Number of units in stock 

L.T. = 1 572 245 717 667 799 

L.T. = 3 202 403 1042 788 565 

 

α = 0.05 

 L.T. = 5 65 525 1267 690 453 

L.T. = 1 620 347 926 606 501 

L.T. = 3 242 481 1288 661 328 

 

α = 0.1 

 L.T. = 5 62 524 1604 461 349 

L.T. = 1 550 419 1047 659 325 

L.T. = 3 232 531 1412 602 223 

 

α = 0.15 

 L.T. = 5 65 545 1731 418 241 

L.T. = 1 451 526 1042 711 270 

L.T. = 3 198 602 1428 595 177 

 

α = 0.2 

 L.T. = 5 71 581 1717 439 192 

 

Table 11.A.2. Best performance (number of files), P2  = 0.95 
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APPENDIX 11.B 
 

Inventory control results ( B  B 3  policies) 2 ,

  B2  = 0.93 B2  = 0.96 

  EWMA Croston Approx. MA(13) EWMA Croston Approx. MA(13) 

L.T.=1 0.947 0.930 0.926 0.928 0.962 0.951 0.949 0.950 
L.T.=3 0.942 0.926 0.921 0.923 0.956 0.944 0.941 0.943 

 

α =0.05 

 L.T.=5 0.944 0.934 0.929 0.932 0.957 0.949 0.946 0.948 
L.T.=1 0.961 0.937 0.931 0.936 0.972 0.957 0.953 0.956 
L.T.=3 0.954 0.931 0.922 0.927 0.965 0.949 0.943 0.946 

 

α =0.1 
L.T.=5 0.954 0.937 0.928 0.934 0.965 0.952 0.945 0.950 
L.T.=1 0.969 0.943 0.934 0.941 0.978 0.962 0.955 0.960 
L.T.=3 0.961 0.934 0.921 0.931 0.971 0.952 0.943 0.950 

 

α =0.15 
L.T.=5 0.959 0.939 0.926 0.936 0.969 0.954 0.944 0.951 
L.T.=1 0.973 0.947 0.935 0.945 0.981 0.965 0.957 0.964 
L.T.=3 0.965 0.937 0.920 0.934 0.974 0.955 0.942 0.952 

 

α =0.2 
L.T.=5 0.963 0.941 0.923 0.937 0.972 0.955 0.942 0.953 

Average 0.958 0.936 0.926 0.934 0.969 0.954 0.947 0.952 

 
Table 11.B.1. Customer Service Level results (  policy) B2

 
  B3  = 0.95 B3  = 0.98 

  EWMA Croston Approx. MA(13) EWMA Croston Approx. MA(13) 

L.T.=1 0.965 0.954 0.952 0.952 0.977 0.972 0.971 0.971 
L.T.=3 0.965 0.956 0.953 0.953 0.976 0.971 0.969 0.969 

 

α =0.05 

 L.T.=5 0.966 0.960 0.958 0.958 0.977 0.973 0.971 0.972 
L.T.=1 0.973 0.959 0.955 0.957 0.983 0.976 0.973 0.975 
L.T.=3 0.971 0.958 0.953 0.956 0.980 0.973 0.969 0.971 

 

α =0.1 
L.T.=5 0.971 0.961 0.956 0.960 0.980 0.974 0.970 0.973 
L.T.=1 0.978 0.963 0.957 0.961 0.986 0.979 0.975 0.978 
L.T.=3 0.974 0.960 0.953 0.959 0.983 0.974 0.969 0.973 

 

α =0.15 
L.T.=5 0.973 0.962 0.954 0.960 0.982 0.974 0.969 0.973 
L.T.=1 0.981 0.966 0.958 0.965 0.988 0.981 0.976 0.980 
L.T.=3 0.976 0.962 0.952 0.961 0.984 0.975 0.969 0.974 

 

α =0.2 
L.T.=5 0.974 0.963 0.952 0.961 0.983 0.975 0.968 0.974 

Average 0.972 0.960 0.954 0.959 0.982 0.975 0.971 0.974 

 
Table 11.B.2. Customer Service Level results ( B3  policy) 
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  Croston- 

EWMA 

EWMA- 

Approx. 

Croston- 

Approx. 

MA- 

EWMA 

Croston- 

MA 

MA- 

Approx. 

L.T.=1 21.17 -22.37 -3.10 20.27 1.73 -4.64 
L.T.=3 18.07 -19.00 -1.83 17.11 1.60 -3.37 

 

α = 0.05 

L.T.=5 14.09 -15.05 -1.51 14.56 -0.72 -0.79 

L.T.=1 23.52 -24.19 -1.68 25.19 -5.21 4.01 

L.T.=3 19.96 -20.09 -0.24 22.45 -6.10 5.93 

 

α = 0.1 

L.T.=5 16.87 -16.58 0.45 19.71 -6.18 6.50 

L.T.=1 23.25 -23.61 -0.84 25.05 -5.40 4.81 

L.T.=3 19.20 -19.65 -0.76 22.35 -6.88 6.35 

 

α = 0.15 

L.T.=5 16.30 -16.64 -0.53 19.83 -6.96 6.58 

L.T.=1 21.79 -21.91 -0.26 23.74 -5.49 5.30 

L.T.=3 18.10 -17.83 0.41 21.36 -6.88 7.17 

 

α = 0.2 

L.T.=5 15.74 -15.18 0.81 19.16 -6.73 7.31 

 

Table 11.B.3. PBt CSL results,  policy (target value  = 0.96) B2

 
  EWMA Croston Approx. MA(13) 

L.T.=1 0.14 1.39 1.67 1.50 
L.T.=3 0.27 1.66 2.05 1.71 

 

α = 0.05 

L.T.=5 0.29 1.22 1.66 1.28 
L.T.=1 0.06 1.70 2.17 1.86 
L.T.=3 0.16 2.05 2.74 2.30 

 

α = 0.1 
L.T.=5 0.20 1.68 2.46 1.92 
L.T.=1 0.06 1.80 2.47 1.94 
L.T.=3 0.16 2.20 3.27 2.50 

 

α = 0.15 
L.T.=5 0.19 1.91 3.06 2.21 
L.T.=1 0.06 1.75 2.58 1.91 
L.T.=3 0.16 2.22 3.58 2.51 

 

α = 0.2 
L.T.=5 0.20 2.05 3.52 2.37 

 

Table 11.B.4. APR CSL results, B2  policy (target value = 0.96) 
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  Croston- 

EWMA 

EWMA- 

Approx. 

Croston- 

Approx. 

MA- 

EWMA 

Croston- 

MA 

MA- 

Approx. 

L.T.=1 -21.01 29.70 11.52 -33.80 16.73 -5.40 
L.T.=3 -24.61 35.27 13.97 -32.33 10.19 3.86 

 

α = 0.05 

L.T.=5 -23.80 39.76 20.41 -27.94 5.43 15.22 

L.T.=1 -24.63 38.10 17.64 -28.94 5.79 12.04 

L.T.=3 -28.60 42.89 18.57 -25.72 -3.87 22.23 

 

α = 0.1 

L.T.=5 -27.16 48.12 26.86 -22.22 -6.68 32.79 

L.T.=1 -25.58 42.71 22.19 -26.06 0.65 21.58 

L.T.=3 -29.10 46.49 22.43 -22.16 -9.31 30.92 

 

α = 0.15 

L.T.=5 -27.14 51.15 30.57 -19.13 -10.77 39.70 

L.T.=1 -25.92 44.76 24.29 -24.71 -1.64 25.79 

L.T.=3 -29.43 47.65 23.45 -21.98 -9.99 32.50 

 

α = 0.2 

L.T.=5 -26.72 51.62 31.64 -20.34 -8.61 38.94 

 

Table 11.B.5. PBt stock results,  policy (target value = 0.96) B2

 
  EWMA Croston Approx. MA(13) 

L.T.=1 22.21 6.08 3.85 5.95 
L.T.=3 19.33 6.69 3.84 6.75 

 

α = 0.05 

L.T.=5 13.00 6.61 3.50 6.09 
L.T.=1 40.43 6.87 2.88 5.56 
L.T.=3 36.58 8.13 3.35 6.78 

 

α = 0.1 
L.T.=5 25.71 9.04 3.31 7.13 
L.T.=1 60.74 8.05 2.73 6.48 
L.T.=3 55.13 10.27 3.51 8.41 

 

α = 0.15 
L.T.=5 38.72 11.64 3.58 8.92 
L.T.=1 83.43 9.38 2.90 7.74 
L.T.=3 75.23 12.72 4.35 10.64 

 

α = 0.2 
L.T.=5 52.44 14.63 4.60 11.32 

 

Table 11.B.6. APR stock results, B2  policy (target value = 0.96) 
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   Croston- 

EWMA 

EWMA- 

Approx. 

Croston- 

Approx. 

MA- 

EWMA 

Croston- 

MA 

MA- 

Approx. 

% stock 1.24 0.49 2.05 1.18 -0.89 1.64  
L.T.=1 % CSL -0.17 -0.11 -0.28 -0.04 -0.12 -0.16 

% stock -12.46 12.24 2.44 -12.14 -0.87 1.96  
L.T.=3 % CSL 1.19 -1.53 -0.33 1.32 -0.13 -0.21 

% stock -6.82 7.87 2.69 -6.73 -0.43 1.77 

 

 

 

α = 0.05 

 

L.T.=5 % CSL 0.77 -1.14 -0.37 0.89 -0.12 -0.25 
% stock -31.46 24.71 3.39 -32.99 0.78 2.04  

L.T.=1 % CSL 1.50 -1.93 -0.43 1.65 -0.15 -0.28 
% stock -26.68 22.65 3.91 -27.86 0.60 2.67  

L.T.=3 % CSL 1.65 -2.27 -0.62 1.91 -0.26 -0.37 
% stock -15.96 16.62 4.67 -17.28 0.93 3.00 

 

 

 

α = 0.1 

 

L.T.=5 % CSL 1.25 -1.93 -0.68 1.48 -0.22 -0.45 
% stock -48.56 33.21 4.39 -50.68 1.09 2.95  

L.T.=1 % CSL 1.62 -2.25 -0.63 1.75 -0.13 -0.50 
% stock -40.79 30.66 5.24 -42.91 1.12 3.79  

L.T.=3 % CSL 1.82 -2.80 -0.98 2.10 -0.28 -0.70 
% stock -24.71 23.34 6.17 -27.26 1.65 4.14 

 

 

 

α = 0.15 

 

L.T.=5 % CSL 1.48 -2.52 -1.04 1.75 -0.27 -0.77 
% stock -67.27 40.40 5.14 -69.83 1.17 3.72  

L.T.=1 % CSL 1.58 -2.37 -0.79 1.73 -0.16 -0.63 
% stock -55.40 36.98 5.99 -58.17 1.29 4.53  

L.T.=3 % CSL 1.87 -3.13 -1.26 2.12 -0.25 -1.01 
% stock -33.28 28.54 7.06 -36.89 2.10 4.82 

 

 

 

α = 0.2 

 

L.T.=5 % CSL 1.63 -2.97 -1.35 1.90 -0.27 -1.08 

 

Table 11.B.7. Stock and CSL % differences (  policy, target value = 0.96) B2
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  Croston- 

EWMA 

EWMA- 

Approx. 

Croston- 

Approx. 

MA- 

EWMA 

Croston- 

MA 

MA- 

Approx. 

L.T.=1 22.68 -23.64 -2.70 21.81 1.82 -4.34 

L.T.=3 18.85 -19.89 -2.11 19.19 -0.64 -1.48 

 

α = 0.05 

L.T.=5 14.48 -15.36 -1.46 14.96 -0.77 -0.70 

L.T.=1 25.64 -26.40 -2.20 27.05 -4.91 3.32 

L.T.=3 20.10 -21.17 -1.98 23.10 -6.81 5.40 

 

α = 0.1 

L.T.=5 15.79 -17.22 -2.25 19.51 -7.10 5.49 

L.T.=1 24.64 -25.35 -1.90 26.20 -5.11 3.75 

L.T.=3 19.21 -19.84 -1.04 22.63 -7.24 6.50 

 

α = 0.15 

L.T.=5 15.05 -15.68 -0.93 18.98 -7.24 6.58 

L.T.=1 23.43 -23.85 -0.98 25.22 -5.40 4.70 

L.T.=3 18.20 -17.88 0.49 21.68 -7.17 7.52 

 

α = 0.2 

L.T.=5 14.77 -14.14 0.88 18.57 -7.03 7.65 

 

Table 11.B.8. PBt CSL results, B3  policy (target value = 0.95) 

 

  EWMA Croston Approx. MA(13) 

L.T.=1 0.11 1.23 1.48 1.40 
L.T.=3 0.17 1.17 1.46 1.38 

 

α = 0.05 

L.T.=5 0.20 0.86 1.17 1.05 
L.T.=1 0.06 1.57 2.04 1.76 
L.T.=3 0.13 1.52 2.07 1.74 

 

α = 0.1 
L.T.=5 0.15 1.22 1.79 1.37 
L.T.=1 0.05 1.69 2.33 1.85 
L.T.=3 0.13 1.64 2.45 1.82 

 

α = 0.15 
L.T.=5 0.15 1.36 2.24 1.52 
L.T.=1 0.06 1.70 2.49 1.83 
L.T.=3 0.15 1.71 2.79 1.86 

 

α = 0.2 
L.T.=5 0.18 1.46 2.57 1.59 

 

Table 11.B.9. APR CSL results,  policy (target value = 0.95) B3
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  Croston- 

EWMA 

EWMA- 

Approx. 

Croston- 

Approx. 

MA- 

EWMA 

Croston- 

MA 

MA- 

Approx. 

L.T.=1 -20.88 29.66 11.68 -33.94 17.14 -5.66 

L.T.=3 -24.75 35.38 13.91 -31.34 8.71 5.30 

 

α = 0.05 

L.T.=5 -24.25 39.49 19.41 -27.38 4.08 15.50 

L.T.=1 -23.89 39.07 19.81 -28.36 6.01 14.05 

L.T.=3 -27.92 43.45 20.14 -25.65 -3.05 23.00 

 

α = 0.1 

L.T.=5 -27.53 47.79 25.99 -22.27 -7.10 32.33 

L.T.=1 -24.71 43.99 24.84 -25.07 0.50 24.39 

L.T.=3 -28.54 46.41 23.04 -23.15 -7.24 29.66 

 

α = 0.15 

L.T.=5 -27.16 50.59 29.86 -20.40 -9.12 37.70 

L.T.=1 -23.96 47.23 29.67 -23.81 -0.20 29.85 

L.T.=3 -28.67 46.91 23.49 -23.35 -7.15 30.01 

 

α = 0.2 

L.T.=5 -27.21 50.57 29.78 -21.47 -7.74 36.50 

 

Table 11.B.10. PBt stock results, B3  policy (target value = 0.95)  

 
  EWMA Croston Approx. MA(13) 

L.T.=1 23.18 6.11 3.86 6.37 
L.T.=3 19.00 6.38 3.57 6.63 

 

α = 0.05 

L.T.=5 12.82 6.02 3.18 6.02 
L.T.=1 42.66 6.87 2.68 6.00 
L.T.=3 36.40 7.92 2.94 6.71 

 

α = 0.1 
L.T.=5 25.21 8.31 2.82 6.87 
L.T.=1 64.26 8.01 2.39 6.76 
L.T.=3 55.32 9.92 3.13 8.10 

 

α = 0.15 
L.T.=5 38.03 10.80 3.11 8.56 
L.T.=1 88.68 9.57 2.39 8.20 
L.T.=3 75.68 12.24 3.79 10.21 

 

α = 0.2 
L.T.=5 51.24 13.53 3.98 10.62 

 

Table 11.B.11. APR stock results,  policy (target value = 0.95) B3
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   Croston- 

EWMA 

EWMA- 

Approx. 

Croston- 

Approx. 

MA- 

EWMA 

Croston- 

MA 

MA- 

Approx. 

% stock -16.42 14.79 1.95 -16.25 -0.95 1.57  

L.T.=1 % CSL 1.02 -1.26 -0.24 1.21 -0.19 -0.05 
% stock -12.41 12.36 2.44 -11.98 -0.99 2.17  

L.T.=3 % CSL 0.90 -1.16 -0.26 1.13 -0.23 -0.03 
% stock -7.10 8.13 2.46 -6.65 -0.78 2.10 

 

 

 

α = 0.05 

 

L.T.=5 % CSL 0.58 -0.86 -0.28 0.77 -0.19 -0.09 
% stock -33.58 26.21 3.60 -34.63 0.35 2.62  

L.T.=1 % CSL 1.42 -1.86 -0.44 1.60 -0.19 -0.25 
% stock -26.74 23.09 4.15 -27.86 0.52 3.02  

L.T.=3 % CSL 1.28 -1.78 -0.50 1.50 -0.22 -0.28 
% stock -16.17 16.94 4.56 -17.18 0.63 3.30 

 

 

 

α = 0.1 

 

L.T.=5 % CSL 0.96 -1.48 -0.52 1.10 -0.14 -0.38 
% stock -51.92 35.07 4.70 -53.68 0.78 3.54  

L.T.=1 % CSL 1.54 -2.16 -0.61 1.70 -0.16 -0.46 
% stock -41.42 31.29 5.38 -43.57 1.12 3.93  

L.T.=3 % CSL 1.40 -2.15 -0.75 1.57 -0.18 -0.57 
% stock -25.02 23.69 6.04 -27.17 1.37 4.34 

 

 

 

α = 0.15 

 

L.T.=5 % CSL 1.09 -1.90 -0.81 1.24 -0.14 -0.66 
% stock -71.79 42.58 5.83 -74.10 0.93 4.61  

L.T.=1 % CSL 1.55 -2.31 -0.76 1.68 -0.12 -0.64 
% stock -56.49 37.83 6.25 -59.28 1.29 4.77  

L.T.=3 % CSL 1.45 -2.47 -1.02 1.59 -0.14 -0.88 
% stock -33.59 28.94 6.96 -36.86 1.90 4.93 

 

 

 

α = 0.2 

 

L.T.=5 % CSL 1.17 -2.21 -1.04 1.28 -0.11 -0.93 

 

Table 11.B.12. Stock and CSL % differences ( B3  policy, target value = 0.95) 
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  Croston- 

EWMA 

EWMA- 

Approx. 

Croston- 

Approx. 

MA- 

EWMA 

Croston- 

MA 

MA- 

Approx. 

L.T.=1 17.20 -17.44 -0.52 16.81 0.78 -1.30 

L.T.=3 14.93 -15.90 -1.70 16.15 -2.20 0.51 

 

α = 0.05 

L.T.=5 11.91 -12.37 -0.70 12.19 -0.41 -0.29 

L.T.=1 18.55 -17.97 1.18 20.00 -4.37 5.21 

L.T.=3 15.09 -16.50 -2.24 18.66 -6.81 5.21 

 

α = 0.1 

L.T.=5 11.91 -12.76 -1.19 15.60 -6.43 5.58 

L.T.=1 16.62 -16.25 0.64 18.84 -5.30 5.76 

L.T.=3 13.51 -14.50 -1.42 17.49 -7.03 6.02 

 

α = 0.15 

L.T.=5 11.05 -11.71 -0.85 15.43 -7.03 6.43 

L.T.=1 15.21 -13.89 2.03 17.49 -5.21 6.66 

L.T.=3 12.40 -12.71 -0.42 16.49 -6.96 6.66 

 

α = 0.2 

L.T.=5 10.28 -10.04 0.30 14.86 -7.10 7.31 

 

Table 11.B.13. PBt CSL results,  policy (target value = 0.98) B3

 

  EWMA Croston Approx. MA(13) 

L.T.=1 0.10 0.70 0.84 0.84 
L.T.=3 0.15 0.75 0.95 0.93 

 

α = 0.05 

L.T.=5 0.17 0.61 0.80 0.73 
L.T.=1 0.06 0.86 1.12 0.96 
L.T.=3 0.13 0.94 1.31 1.11 

 

α = 0.1 
L.T.=5 0.14 0.82 1.22 0.94 
L.T.=1 0.07 0.89 1.26 0.99 
L.T.=3 0.14 1.04 1.56 1.17 

 

α = 0.15 
L.T.=5 0.16 0.95 1.55 1.07 
L.T.=1 0.08 0.87 1.30 0.96 
L.T.=3 0.15 1.11 1.76 1.21 

 

α = 0.2 
L.T.=5 0.18 1.01 1.80 1.12 

 

Table 11.B.14. APR CSL results, B3  policy (target value = 0.98) 

 

 

 

 



 483

  Croston- 

EWMA 

EWMA- 

Approx. 

Croston- 

Approx. 

MA- 

EWMA 

Croston- 

MA 

MA- 

Approx. 

L.T.=1 -21.94 29.77 10.01 -32.24 13.11 -3.17 

L.T.=3 -26.50 34.93 10.99 -31.19 6.15 4.89 

 

α = 0.05 

L.T.=5 -25.27 41.15 20.27 -26.85 2.07 18.30 

L.T.=1 -24.73 35.53 13.94 -29.58 6.33 7.71 

L.T.=3 -29.12 42.79 17.78 -26.08 -4.08 21.65 

 

α = 0.1 

L.T.=5 -28.13 47.67 25.11 -22.69 -7.32 31.70 

L.T.=1 -25.68 38.87 17.02 -28.28 3.43 13.70 

L.T.=3 -29.68 44.34 19.02 -23.99 -7.63 26.16 

 

α = 0.15 

L.T.=5 -28.15 50.09 28.04 -20.87 -9.79 36.60 

L.T.=1 -27.04 40.66 17.64 -27.88 1.11 16.57 

L.T.=3 -30.28 44.94 18.97 -23.59 -8.94 27.33 

 

α = 0.2 

L.T.=5 -27.67 49.79 28.27 -21.63 -8.14 35.40 

 

Table 11.B.15. PBt stock results,  policy (target value = 0.98) B3

 

  EWMA Croston Approx. MA(13) 

L.T.=1 17.80 5.59 3.84 4.46 
L.T.=3 15.97 5.92 3.86 5.22 

 

α = 0.05 

L.T.=5 11.58 6.01 3.50 5.44 
L.T.=1 32.19 6.17 3.53 4.34 
L.T.=3 30.24 7.51 3.81 5.75 

 

α = 0.1 
L.T.=5 22.02 8.01 3.69 6.27 
L.T.=1 48.91 7.31 3.78 5.45 
L.T.=3 45.62 9.38 4.62 7.33 

 

α = 0.15 
L.T.=5 33.09 10.55 4.44 8.18 
L.T.=1 68.39 8.55 4.58 6.70 
L.T.=3 62.45 11.51 5.98 9.48 

 

α = 0.2 
L.T.=5 44.34 13.15 5.98 10.37 

 

Table 11.B.16. APR stock results, policy (target value = 0.98) 

 

 

 

 

B3  



 484

   Croston- 

EWMA 

EWMA- 

Approx. 

Croston- 

Approx. 

MA- 

EWMA 

Croston- 

MA 

MA- 

Approx. 

% stock -11.82 10.78 1.50 -12.93 0.54 0.09  

L.T.=1 % CSL 0.56 -0.68 -0.12 0.69 -0.14 0.01 
% stock -10.06 9.80 1.73 -10.43 -0.06 0.79  

L.T.=3 % CSL 0.55 -0.73 -0.18 0.73 -0.18 0.00 
% stock -5.97 6.81 2.14 -5.98 -0.26 1.35 

 

 

 

α = 0.05 

 

L.T.=5 % CSL 0.38 -0.56 -0.17 0.50 -0.12 -0.05 
% stock -24.60 19.38 2.17 -26.56 1.34 0.39  

L.T.=1 % CSL 0.75 -1.00 -0.25 0.85 -0.10 -0.15 
% stock -21.53 18.68 2.94 -23.11 1.05 1.38  

L.T.=3 % CSL 0.74 -1.08 -0.34 0.91 -0.17 -0.18 
% stock -13.59 14.07 3.43 -14.82 0.88 1.95 

 

 

 

α = 0.1 

 

L.T.=5 % CSL 0.61 -0.98 -0.37 0.72 -0.11 -0.26 
% stock -38.60 26.84 2.75 -40.87 1.41 1.05  

L.T.=1 % CSL 0.77 -1.13 -0.35 0.88 -0.10 -0.25 
% stock -33.32 25.46 3.43 -35.49 1.35 1.80  

L.T.=3 % CSL 0.83 -1.32 -0.49 0.96 -0.13 -0.36 
% stock -20.91 19.86 4.47 -23.03 1.45 2.69 

 

 

 

α = 0.15 

 

L.T.=5 % CSL 0.72 -1.29 -0.57 0.83 -0.11 -0.46 
% stock -54.76 33.49 2.83 -57.29 1.41 1.19  

L.T.=1 % CSL 0.75 -1.16 -0.42 0.83 -0.08 -0.33 
% stock -45.79 31.07 3.45 -48.18 1.30 2.01  

L.T.=3 % CSL 0.89 -1.50 -0.61 0.98 -0.09 -0.52 
% stock -28.06 24.08 4.59 -30.84 1.75 2.70 

 

 

 

α = 0.2 

 

L.T.=5 % CSL 0.77 -1.51 -0.74 0.86 -0.10 -0.65 

 

Table 11.B.17. Stock and CSL % differences  policy, target value = 0.98) 
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APPENDIX 11.C 
 

Inventory control performance of a categorisation rule 
 

 = 0.93  = 0.96 B2 B2 

L.T.=1 L.T.=3 L.T.=5 average L.T.=1 L.T.=3 L.T.=5 average 

α =0.05 0.928 0.923 0.932 0.927 0.950 0.942 0.948 0.947 

α =0.1 0.934 0.926 0.933 0.931 0.955 0.946 0.949 0.950 

α =0.15 0.938 0.927 0.933 0.932 0.958 0.947 0.949 0.952 

α =0.2 0.940 0.928 0.932 0.933 0.960 0.948 0.949 0.953 

 overall average = 0.931 overall average = 0.950 

 

Table 11.C.1. Categorisation rule, CSL (  policy) 

 

 = 0.95  = 0.98 

B2

B3 B3 

L.T.=1 L.T.=3 L.T.=5 average L.T.=1 L.T.=3 L.T.=5 average 

α =0.05 0.953 0.954 0.959 0.955 0.971 0.969 0.972 0.971 

α =0.1 0.957 0.956 0.959 0.957 0.974 0.971 0.972 0.972 

α =0.15 0.959 0.956 0.958 0.958 0.976 0.972 0.971 0.973 

α =0.2 0.961 0.956 0.957 0.958 0.978 0.972 0.971 0.974 

 overall average = 0.957 overall average = 0.972 

 

Table 11.C.2. Categorisation rule, CSL (  policy) 
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Approx. 

Rule 

Croston 

Rule 

Approx. 

Rule 

Croston 

Rule 
 

 = 0.93  = 0.96 B2 B2

% stock -1.28 1.33 -1.04 1.01  

L.T. = 1 % CSL 0.18 -0.19 0.10 -0.15 
% stock -1.57 1.45 -1.40 1.18  

L.T. = 3 % CSL 0.25 -0.27 0.17 -0.16 
% stock -1.66 1.64 -1.51 1.33 

 

 

 

α  = 0.05 

 
 

 

L.T. = 5 % CSL 0.25 -0.21 0.21 -0.15 
% stock -2.28 2.35 -1.87 1.80  

L.T. = 1 % CSL 0.30 -0.38 0.18 -0.25 
% stock -2.89 2.44 -2.51 1.84  

L.T. = 3 % CSL 0.46 -0.45 0.31 -0.31 
% stock -3.15 2.89 -2.76 2.40 

 

 

 

α  = 0.1 

 

L.T. = 5 % CSL 0.48 -0.40 0.37 -0.31 
% stock -3.26 3.35 -2.58 2.32  

L.T. = 1 % CSL 0.40 -0.50 0.26 -0.37 
% stock -4.14 3.55 -3.47 2.61  

L.T. = 3 % CSL 0.62 -0.71 0.48 -0.50 
% stock -4.65 4.03 -3.91 3.22 

 

 

 

α  = 0.15 

 

L.T. = 5 % CSL 0.71 -0.62 0.57 -0.46 
% stock -4.20 4.26 -3.10 2.82  

L.T. = 1 % CSL 0.52 -0.72 0.31 -0.48 
% stock -5.27 4.26 -4.31 3.07  

L.T. = 3 % CSL 0.84 -0.91 0.60 -0.66 
% stock -6.06 5.02 -4.90 3.78 

 

 

 

α  = 0.2 

 

L.T. = 5 % CSL 0.94 -0.84 0.72 -0.63 
  

Table 11.C.3. Stock and CSL % differences (  policy) 
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Approx. 

Rule 

Croston 

Rule 

Approx. 

Rule 

Croston 

Rule 
 

 = 0.95  = 0.98 B3 B3

% stock -1.12 0.94 -0.87 0.73  

L.T. = 1 % CSL 0.11 -0.13 0.05 -0.07 
% stock -1.29 1.27 -1.06 0.80  

L.T. = 3 % CSL 0.13 -0.13 0.08 -0.10 
% stock -1.35 1.23 -1.17 1.10 

 

 

 

α  = 0.05 

 
 

 

L.T. = 5 % CSL 0.13 -0.15 0.09 -0.09 
% stock -1.98 1.89 -1.35 1.08  

L.T. = 1 % CSL 0.18 -0.26 0.09 -0.16 
% stock -2.36 2.16 -1.93 1.40  

L.T. = 3 % CSL 0.23 -0.26 0.14 -0.20 
% stock -2.56 2.39 -2.16 1.69 

 

 

 

α  = 0.1 

 

L.T. = 5 % CSL 0.26 -0.26 0.17 -0.20 
% stock -2.69 2.51 -1.83 1.41  

L.T. = 1 % CSL 0.25 -0.36 0.14 -0.22 
% stock -3.33 2.79 -2.57 1.67  

L.T. = 3 % CSL 0.34 -0.41 0.22 -0.26 
% stock -3.64 3.21 -2.97 2.41 

 

 

 

α  = 0.15 

 

L.T. = 5 % CSL 0.41 -0.40 0.27 -0.30 
% stock -3.38 3.21 -2.08 1.51  

L.T. = 1 % CSL 0.31 -0.46 0.16 -0.26 
% stock -4.10 3.35 -3.05 1.74  

L.T. = 3 % CSL 0.46 -0.57 0.28 -0.34 
% stock -4.50 3.81 -3.67 2.49 

 

 

 

α  = 0.2 

 

L.T. = 5 % CSL 0.52 -0.51 0.35 -0.39 
  

Table 11.C.4. Stock and CSL % differences (  policy) 
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