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Abstract

This paper investigates estimation of sparsity-induced weak factor (sWF) models, with
large cross-sectional and time-series dimensions (N and T , respectively). It assumes
that the kth largest eigenvalue of data covariance matrix grows proportionally to Nαk

with unknown exponents 0 < αk ≤ 1 for k = 1, . . . , r. Employing the same rotation
of the principal component (PC) estimator, in the sWF models the growth rate αk is
linked to the degree of sparsity of kth factor loadings. This is much weaker than the
typical assumption on the recent factor models, in which all the r largest eigenvalues
diverge proportionally to N . We apply the SOFAR method of Uematsu et al. (2019)
to estimate the sWF models and derive the estimation error bound. Importantly, our
method yields consistent estimation of αk’s as well. A finite sample experiment shows
that the performance of the new estimator uniformly dominates that of the PC estimator.
We apply our method to forecasting bond yields and results demonstrate that our method
outperforms that based on the PC. In another application we analyze S&P500 firm
security returns and find that the first factor is consistently near strong while the others
are indeed weak.

Keywords. Sparsity-induced weak factor models, (Adaptive) SOFAR estimator, Estimation
error bound, Estimating diverging exponents, Interpreting factors, Group factor structure.

1 Introduction

The approximate factor model with large cross-sectional and time-series dimensions (N and
T , respectively) has become an increasingly important tool for the analysis of psychology,
finance, economics, and biology, among many others. In finance, the model is firstly in-
troduced by Chamberlain and Rothschild (1983), then developed in the subsequent articles
by Connor and Korajczyk (1986, 1993), Bai and Ng (2002), Bai (2003), Fan et al. (2008),
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Fan et al. (2011, 2013), among many others. In macroeconomics, Stock and Watson (2002)
propose to extract a small number of factors from the large macroeconomic and financial
series and use them to forecast a macroeconomic variable of interest. Ludvigson and Ng
(2009) take a similar approach to forecast bond yields. See, for example, Fan et al. (2018)
for an excellent review of the high-dimensional factor models and their applications.

1.1 Weak factor model, rotation, and sparsity

Suppose that a vector of zero-mean stationary time series xt = (xt1, . . . , xtN )′ ∈ RN , t =
1, . . . , T , is generated from the factor model

xt = B∗f∗t + et, (1)

where B∗ = (b∗1, . . . ,b
∗
N )′ ∈ RN×r with b∗i ∈ Rr is a matrix of deterministic factor loadings,

f∗t ∈ Rr is a vector of zero-mean latent factors, and et ∈ RN is an idiosyncratic error vector.
For a while suppose r is given. Let Σx = E[xtx

′
t], Σ∗f = E[f∗t f∗t

′], and Σe = E[ete
′
t]. Assuming

uniform boundedness of λk(Σe) together with an exogeneity condition, we observe that

λk(Σx) � λk(B∗Σ∗fB∗
′) for each k = 1, . . . , r

and λk(Σx) are uniformly bounded for all k = r + 1, . . . , N .
In the studies on high-dimensional factor models, including Connor and Korajczyk (1986,

1993), Stock and Watson (2002), Bai and Ng (2002, 2006, 2013), Bai (2003) and Fan et al.
(2018), it is typically assumed that all the r largest eigenvalues diverge proportional to N ,
namely, λk(B

∗Σ∗fB
∗′) � N for all k = 1, . . . , r. We call the models with this condition the

strong factor (SF) models. This SF assumption seems unduly restrictive, as it does not permit
slower divergence rates than N nor different divergence rates among the r largest eigenvalues.
The original approximate factor model proposed by Chamberlain and Rothschild (1983) is
an important exception, which assumes that λr(B

∗Σ∗fB
∗′) → ∞ as N → ∞. Inspired by

this condition, we will significantly relax the SF condition, and consider the structure,

λk(B
∗Σ∗fB

∗′) � Nk := Nαk with 0 < αk ≤ 1 for each k = 1, . . . , r. (2)

We call the factor models with (2) the weak factor (WF) models in this paper. The WF
models allow different divergence rates of the signal eigenvalues, which can be slower than
N . Our definition of the WF models is similar to the one in De Mol et al. (2008), but
the readers are cautioned that the definition varies in the literature. For example, they
assume non-diverging factors (i.e. αr = 0), which Chamberlain and Rothschild (1983) and
we exclude; see Onatski (2012), Bryzgalova (2016), Lettau and Pelger (2020)). Chudik et al.
(2011) categorize the factors according to the values of the exponents.

It is well-known that estimation of factor models, including (1), has an identification
issue. To address it, we must impose r2 restrictions on the model. Since the column and row
spaces of F∗ = (f∗1 , ..., f

∗
T )′ and B∗′ are identical to those of F∗H and H−1B∗′, respectively,

for any invertible matrix H, we choose a specific (but frequently employed) rotation without
loss of generality. That is, we put f0t = Hf∗t and B0′ = H−1B∗′ with Σf = E[f0t f0t

′
] = Ir and

B0′B0 being a diagonal matrix. Then the model in (1) becomes

xt = B0f0t + et, (3)
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and is identifiable. Because the eigenvalues of (2) are invariant to any rotation, we have

Nk � λk(B0B0′) = λk(B
0′B0) for each k = 1, . . . , r. (4)

To estimate the identifiable model (3) with satisfying (4), we require the assumption that
B0 is sparse such that (4) and diagonality of B0′B0 simultaneously hold.1 It is called the
sparsity-induced weak factor (sWF) model, and we investigate estimation of the sWF models
hereafter. As the earlier discussion implies, the WF structure in (4) can be induced by non-
sparse factor loadings. For instance, it is the case when a factor affects all the variables at
similar strengths thinly,2 but we do not consider this class in this paper.

1.2 Empirical evidence of the sWF models

A growing body of evidence in the literature supports the sWF models. First, influential
empirical studies often find that the factors identified under the restrictions we impose are
loaded on small subsets of the variables. Stock and Watson (2002) find that each of the
extracted six factors from macroeconomic indicators are essentially loaded on the variables
only in a few of the 14 categories; see figure 1 and discussions therein. By implementing a
similar analysis, Ludvigson and Ng (2009) find a sharp contrast in intensity of correlation
between each of the five factors and the measures of economic activity from which the factors
are extracted, across the categories; see figures 1–5 and discussions therein. We will examine
this feature by observing the sparse factor loadings; see Section 6.2. Note that Uematsu and
Yamagata (2020) formally establish an inferential method for zeros in the loadings.

Another strand of empirical support for the sWF models comes from the literature on
hierarchical (group) factor structures, which contain two types of factors, global and local
factors. The factor loadings of the global factors are all non-zeros, whereas the local factors
are associated with the loadings with nonzero elements only among specific cross-sectional
groups. Ando and Bai (2017), Choi et al. (2018) provide empirical evidence for such a
structure in financial and macroeconomic data sets. Importantly, the sWF model (3) nests
the hierarchical factor model, to which the same identification restrictions have typically been
imposed, and thus our method can be applied; see Section 5.3. In this context, Andreou
et al. (2019) propose a test for the number of factors in the group factor models.

1.3 Contributions

Unlike the principal components (PC) estimator, our estimator for the sWF models requires
the `1-norm regularization; see Section 3.1. Although the numerical optimization becomes
much more complicated due to the imposition of both sparsity and orthogonality on the
estimator, we can obtain a highly efficient estimator by employing the recently developed
framework, the sparse orthogonal factor regression (SOFAR) of Uematsu et al. (2019). Here-
after the new estimator is called the SOFAR estimator.

As theoretical contributions, we will establish the estimation error bounds of the SOFAR
and PC estimators as well as validating the method of Onatski (2010) for determining the
number of factors for the sWF models. Perhaps surprisingly, our SOFAR estimator can

1Although sparsity of B0 is not generally rotation invariant, we can identify the r signal eigenvalues of
model (1) as long as B0 is sparse. Also the sparse structure of B0 is row permutation invariant, or invariant
to orderings of cross-section units; see Bai et al. (2016).

2For illustration, when the kth column vector of B0 is not sparse and composed of nonzero values of order
Nαk−1, it is easy to see that λk(B0′B0) diverges proportionally to Nαk .
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be consistent for the sWF models with αk less than 1/2. We also propose the adaptive
SOFAR estimator, which yields factor selection consistency. This property asymptotically
guarantees the true support recovery of the sparse loadings. The assumptions we will make
are in line with the literature of the approximate factor models. Thus the statistical theory
substantially departs from that in Uematsu et al. (2019). In particular, the theoretical
investigation of the adaptive SOFAR is completely new to the literature.

Importantly, the factor selection consistency enables us to consistently estimate each ex-
ponent αk of the divergence rates. Recently estimation of the exponents has drawn great
attention of empirical researchers since it is a useful measure of strength of the cross-sectional
correlations. Assuming sparse loadings, Bailey et al. (2016, 2020) and Gao et al. (2020) pro-
pose methods that make use of cross-sectional averages of data for estimation and inference
of the exponent, but they can only identify the largest divergence rate, α1. This is essentially
because they focus on estimation of the structural model (1). In contrast, our method can
identify all the divergence rates because we impose the identification restrictions and focus
on the rotated model (3).3

We implement extensive finite sample experiments in terms of the determining the num-
ber of factors and estimation accuracy of each parameter. Regarding estimation accuracy, we
find that the SOFAR estimate uniformly dominates the PC estimate across all the designs
we consider. We also conduct empirical analysis with a large data set of macroeconomic
variables and S&P 500 monthly returns. In the first analysis, we compare the out-of-sample
performance of forecasting bond yields using extracted factors from the macroeconomics
variables via our method and the PC method. The statistical evidence suggests that our
SOFAR method outperforms the PC method. In the second analysis, we illustrate usefulness
of looking into sparse factor loadings to find properties of the extracted factors. The third
analysis shows that the first factor in S&P 500 monthly returns is consistently near strong,
while the second to fourth exponents vary over months between 0.90 and 0.65.

1.4 Related work

To our knowledge, this is the first study to propose a method that can estimate the WF
models, separately identifying spans of B∗ and F∗, while taking the possibly different rates
(2) into account. Recently some alternative approaches have been proposed. Freyaldenhoven
(2020) advocates a two-step identification strategy; after obtaining the (non-sparse) PC es-
timator, it seeks a rotation that maximizes the number of zeros in the loading matrix. This
approach can be seen as a complementary one to ours since it can reveal an alternative spar-
sity property with a different rotation. Another related recent work is Daniele et al. (2020).
Extending Bai and Li (2012) and Bai and Liao (2017), they propose a method to estimate the
idiosyncratic variance-covariance matrix for the sWF models, but it is questionable whether
their strategy really works to separately identify the factors and factor loadings. 4

There are some studies that consider WF models, but most of them have focused only
on the case where all the divergence rates are identical. Such examples are seen in De Mol
et al. (2008) and Lam et al. (2011); the former consider the Bayesian forecasts with the PC
estimates for WF models, and the latter propose an efficient estimator for WF models with
a specific correlation structure. Other related research includes Onatski (2012), Bryzgalova

3Bailey et al. (2020) permit estimation of multiple exponent for the models with observed factors.
4Daniele et al. (2020) counts the number of (ex post) zeros in the estimated loadings as a part of the r2

identification restrictions.
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(2016), and Lettau and Pelger (2020). They consider the properties of the PC estimator
with the bounded maximum eigenvalue of Σx, i.e., αk = 0 for all k in our WF specification.

We finally mention a large literature called sparse principal component analysis (sPCA),
which introduces sparsity in the loadings of principal components by minimizing a penalized-
regression-type criterion; see Zou et al. (2006), Shen and Huang (2008), among many others.
The sPCA is related to but significantly different from ours in the following two points.
First, it does not consider any factor model such as (3). Second, sPCA does not separately
identify factors and loadings when r > 1. For example, the sPCA of Zou et al. (2006) can be
interpreted that it estimates Bft as a predictor of xt, allowing sparsity in B. However, they
solve the problem imposing the r(r+ 1)/2 restrictions, F′F/T = I, only. A similar comment
applies to Shen and Huang (2008). We emphasize that this paper considers estimation of
F0 and B0 in model (3) under relevant assumptions for economic and financial data, which
requires very different mathematical proofs from those for sPCA. See Uematsu et al. (2019)
for discussions on the relation between sPCA and SOFAR.

1.5 Organization and notational remarks

The rest of this paper is organized as follows. Section 2 formally defines the sWF models.
Section 3 proposes the (adaptive) SOFAR estimator for the sWF models. Section 4 inves-
tigates the theoretical properties, including determination of the number of weak factors,
the estimation error bounds of the SOFAR and PC estimators, and factor selection consis-
tency. Section 5 confirms the validity of our method by Monte Carlo experiments. Section
6 gives three empirical illustrations. Section 7 concludes. All the proofs are collected in
Supplementary Material.

For any matrix M = (mti) ∈ RT×N , we define the Frobenius norm, `2-induced (spec-
tral) norm, entrywise `1-norm, and entrywise `∞-norm as ‖M‖F = (

∑
t,im

2
ti)

1/2, ‖M‖2 =

λ
1/2
1 (M′M), ‖M‖1 =

∑
t,i |mti|, and ‖M‖max = maxt,i |mti|, respectively, where λi(S) refers

to the ith largest eigenvalue of any symmetric matrix S. We denote by IN and 0T×N the
N ×N identity matrix and T ×N zero matrix, respectively. We use . (&) to represent ≤
(≥) up to a positive constant factor. For any positive sequences an and bn, we write an � bn
if an . bn and an & bn. For any positive values a and b, a ∨ b and a ∧ b stand for max(a, b)
and min(a, b), respectively. The indicator function is denoted by 1{·}.

2 Sparsity-Induced Weak Factor Models

Consider the factor model in (3) more precisely. Stacking the vectors vertically like X =
(x1, . . . ,xT )′, F0 = (f01 , . . . , f

0
T )′, and E = (e1, . . . , eT )′, we rewrite it as the matrix form

X = F0B0′ + E = C0 + E, (5)

where C0 is called the matrix of common components. By the construction, the model sat-
isfies the restrictions: EF0′F0/T = Ir and B0′B0 is a diagonal matrix. Then the covariance
matrix reduces to

Σx = B0B0′ + Σe.

As discussed in Introduction, we consider sparsity-induced WF (sWF) models. Specifically,
we assume sparse factor loadings B0 such that the sparsity of kth column (i.e., the number of
nonzero elements in b0

k ∈ RN ) is Nk := Nαk for k ∈ {1, . . . , r}, where 1 ≥ α1 ≥ · · · ≥ αr > 0
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and exponents αk’s are unknown. Note that Nr must diverge since αr > 0 and N → ∞.
We may relax the exact sparseness by introducing the approximate sparse loadings; that is,
B0 = (bik) such that

∑N
i=1 |bik| � Nk. This does not necessarily require exact zeros in B0.

However, we choose not to pursue this direction to avoid a complicated technical issue.
By the sparsity assumption and the diagonality of B0′B0, we can write

B0′B0 = diag
(
d21N1, . . . , d

2
rNr

)
with d21N1 ≥ · · · ≥ d2rNr > 0 for some positive constants d1, . . . , dr. Then, under the
assumption of uniform boundedness of λj(Σe), we have

λj(Σx)

{
� λj(B0B0′) = λj(B

0′B0) = d2jNj for j ∈ {1, . . . , r},
is uniformly bounded for j ∈ {r + 1, . . . , N}.

Apparently, this specification fulfills the requirement of the WF structure (4).
For later use, we confirm the connection between C0 = F0B0′ and its singular value

decomposition (SVD) C0 = U0D0V0′. Here, U0 ∈ RT×r and V0 ∈ RN×r are respectively
matrices of the (scaled) left- and sparse right-singular vectors of C0 that satisfy restrictions
U0′U0/T = Ir and V0′V0 = N with N = diag(N1, . . . , Nr), and D0 = diag(d1, . . . , dr)
is composed of the (scaled) singular values. In view of the restrictions on model (5), it is
reasonable to set F0 = U0 and B0 = V0D0. This construction yields F0B0′ = C0 and
satisfies the restrictions.

3 Estimation

We propose our SOFAR estimator based on the SOFAR framework of Uematsu et al. (2019)
for the WF models. In this section, we denote by r̂ an estimate of the number of factors.
The actual method of estimating r is introduced in Section 4.1.

3.1 SOFAR estimation

Once the sWF model is defined, it is natural to introduce a sparsity-inducing penalty term,
such as the `1-norm of B, to obtain a sparse estimate of B0 in the same fashion as the Lasso
by Tibshirani (1996). The SOFAR estimator is defined as

(F̂, B̂) = arg min
(F,B)∈RT×r̂×RN×r̂

{
1

2

∥∥X− FB′
∥∥2
F

+ η‖B‖1
}

(6)

subject to F′F/T = Ir̂ and B′B diagonal,

where r̂ is the predetermined number of factors and η > 0 is a regularization coefficient. If
η = 0 in (6), then the resulting estimator reduces to the PC estimator (F̂PC, B̂PC).

It is well-known that the PC estimator is easily obtained by the eigenvalue problem on
XX′; specifically, for given r̂, F̂PC is obtained as T 1/2 times the eigenvectors corresponding
to the top r̂ largest eigenvalues of (NT )−1XX′ and B̂PC = X′F̂PC/T . On the other hand, the
SOFAR estimator is no longer computed by the eigenvalue problem. Even some algorithms
used for the lasso, such as coordinate descent, cannot be directly applied to the problem
due to the restrictions, sparsity and orthogonality (diagonality). In order to overcome this
difficulty, we apply the SOFAR algorithm proposed by Uematsu et al. (2019) to solving (6).
Roughly speaking, the algorithm provides estimates for the SVD of a coefficient matrix in a

6



multiple linear regression, with simultaneously exhibiting both low-rankness in the singular
values matrix and sparsity in the singular vectors matrices. Recall the connection between
(F,B) and (U,D,V), which has been defined by the SVD of C, in Section 2. Then for given
r̂, the SOFAR algorithm can solve (6) to get (F̂, B̂) = (Û, V̂D̂).

The algorithm to compute the SOFAR estimate is based on the augmented Lagrangian
method coupled with the block coordinate decent, and is numerically stable. For detailed
information on the algorithm, see Uematsu et al. (2019). The associated R package (rrpack)
is available at https://cran.r-project.org/package=rrpack.

3.2 Adaptive SOFAR estimation

It is interesting to observe which factors truly contribute to xti. Expecting the true support
recovery of B0, we introduce the adaptive SOFAR based on a similar principle of the adaptive
lasso by Zou (2006). Let B̂ini = (b̂iniij ) denote the first-stage initial estimator, such as the
PC estimator. Then the (i, j)th element of the weighting matrix W = (wij) is defined as

wij = 1/|b̂iniij |. The adaptive SOFAR estimator is defined as a minimizer of the second-stage
weighted SOFAR problem:

(F̂ada, B̂ada) = arg min
(F,B)∈RT×r̂×RN×r̂

{
1

2

∥∥X− FB′
∥∥2
F

+ η‖W ◦B‖1
}

(7)

subject to F′F/T = Ir̂ and B′B diagonal,

where A ◦B represents the Hadamard product of two matrices, A and B, of the same size.
Estimating exponents αk’s is of great interest to empirical research since, as discussed

in Bailey et al. (2016), they are interpreted as the strength of the influence of the common
factors and of the cross-sectional correlations. Recall that the kth column of B0, b0

k, has

Nk = Nαk nonzero entries. Similarly, let N̂k denote the number of nonzero elements in
b̂ada
k . As the lasso in a linear regression, we may expect that the adaptive SOFAR estimate

B̂ada can successfully recover the true sparsity pattern of B0. If this is true, the estimators
of exponents αk’s can naturally be obtained as α̂k = log N̂k/ logN by a simple algebraic
formulation. In the next section, we will prove this estimator is actually consistent for αk.

4 Theory

We first reveal the asymptotic behavior of the eigenvalues of XX′ for the sWF model in
Section 4.1. This helps us to determine the number of factors. Next we derive the estimation
error bound in Section 4.2. Furthermore, the asymptotic property of the adaptive SOFAR
estimator is derived in Section 4.3.

For the sake of convenience, we assume the existence of some underlying sequence n that
satisfies the principle that N and T are both functions of n and that they simultaneously
diverge as n → ∞ (i.e., N = N(n) → ∞ and T = T (n) → ∞ as n → ∞). For example,
we may simply suppose n = N ∧ T → ∞. Furthermore, following Rigollet and Hütter
(2017), we introduce a sub-Gaussian random variable: a random variable X ∈ R is said to
be sub-Gaussian with variance proxy σ2 if E[X] = 0 and its moment generating function
satisfies E[exp(sX)] ≤ exp(σ2s2/2) for all s ∈ R. This is denoted by X ∼ subG(σ2). Define
Ln = (N ∨ T )ν − 1 for an arbitrary constant ν > 0. Throughout the paper, including all the
proofs in Appendix, ν is assumed to be fixed, and n is sufficiently large.
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Assumption 1 (Latent factors). The factor matrix F0 = (f01 , . . . , f
0
T )′ is specified as the

vector moving average process of order Ln (VMA(Ln)) such that

f0t =

Ln∑
`=0

Ψ`ζt−`, lim
n→∞

Ln∑
`=0

Ψ`Ψ
′
` = Ir,

where ζt = (ζt1, . . . , ζtr)
′ with {ζtk}t,k i.i.d. subG(σ2ζ ) that has E ζ2tk = 1, and where Ψ0 is a

nonsingular, lower triangular matrix.

Assumption 2 (Factor loadings). Each column b0
k of B0 has the sparsity Nk = Nαk with

0 < αr ≤ · · · ≤ α1 ≤ 1 and B0′B0 = diag{d21N1, . . . , d
2
rNr} with 0 < drN

1/2
r ≤ · · · ≤ d1N1/2

1 .
For k such that αk = αk−1, it holds that d2k−1 − d2k ≥ δ1/2d2k−1 for some constant δ > 0.

Assumption 3 (Idiosyncratic errors). The error matrix E = (e1, . . . , eT )′ is specified as the
VMA(Ln) such that

et =

Ln∑
`=0

Φ`εt−`, lim sup
n→∞

Ln∑
`=0

‖Φ`‖2 <∞,

where εt = (εt1, . . . , εtN )′ with {εti}t,i i.i.d. subG(σ2ε) and Φ0 is a nonsingular, lower trian-
gular matrix.

Assumption 4 (Parameter space). The parameter space of B in optimization (6) is given
by B(Ñ) = {B ∈ RN×r : ‖B‖0 . Ñ/2} for Ñ ∈ [N1, N ]. (Define α̃ to be such that Ñ = N α̃.)

These assumptions are quite different from those on the original SOFAR theory by Ue-
matsu et al. (2019), which consider a multiple regression with deterministic regressors and
i.i.d. errors. Assumptions 1 and 3 specify the stochastic processes {ft} and {et}, respectively,
to be stationary VMA(Ln), where Ln � (N ∨ T )ν diverges with an arbitrary fixed constant
ν > 0. This construction is regarded as the asymptotic linear process, which includes a wide
range of multivariate weakly dependent processes. Assumption 2 is key to our analysis and
provides the sWF models. The sparsity makes the divergence rate of λk(B

0′B0) possibly
slower than N . Assumption 4 is required only when the parameter estimation is considered.
If Ñ is set to N , B(N) coincides with the whole space, RT×r. Whereas, if Ñ is set to N1,
B(N1) becomes as sparse as B0. The PC estimator always requires optimization on B(N)
since it cannot be sparse, but the SOFAR estimator can allow sparse B(Ñ) with Ñ ∈ [N1, N)
when the true loadings matrix is expected to be sparse. An important consequence of taking
sparser space is that, as explained in Section 4.2, a wider class of the sWF models can be
allowed in consistent estimation.

4.1 Determining the number of factors

Before investigating the properties of the estimator, we first observe the asymptotic behavior
of the eigenvalues of XX′ under the sWF model. This result yields important information
for determining the number of weak factors, r. Write T = N τ for some constant τ > 0 to
understand the size of T relative to N . Recall that Nk = Nαk for some αk ∈ (0, 1].

Theorem 1. Suppose that Assumptions 1–3 and condition

α1 < 2αr (8)
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hold. Then for any finite integer kmax > r, the jth largest eigenvalue of (N ∨ T )−1XX′,
denoted by λk, satisfies

λk

&
NkT

N ∨ T
for k ∈ {1, . . . , r},

= O(1) for k ∈ {r + 1, . . . , kmax},

with probability at least 1−O((N ∨ T )−ν). Divergence of λr is ensured by condition

αr + τ > 1. (9)

Theorem 1 suggests the means of determining the number of weak factors. This presents
a case in which the method of Onatski (2010) works. Namely, for δ > 0, define

r̂(δ) = max {k = 1, . . . , kmax − 1 : λk − λk+1 ≥ δ} .

Then, the following important corollary is obtained.

Corollary 1. Suppose that Assumptions 1–3 hold. If conditions (8) and (9) are true, then
for any fixed positive constant δ, we have r̂(δ)→ r with probability at least 1−O((N ∨T )−ν).

In practice, δ should appropriately be predetermined. In fact, Onatski (2010) suggested
the edge distribution (ED) method based on a calibration; see that paper for full details. If δ
is appropriately chosen, r̂(δ) will successfully detect the true number of factors r even when
the biggest gap is observed not between λr and λr+1 but among λ1, . . . , λr. Meanwhile, the
method of Ahn and Horenstein (2013), which was designed for SF models, is likely to fail
in detecting r in the WF models because it defines r̂ as the point at which the largest gap
is observed among λ1, . . . , λkmax ; this is not always the case for the WF models. In Section
5, we will check the validity of Onatski’s ED estimator in our model through numerical
simulations.

4.2 Estimation error bound

We suppose that the sWF model satisfies conditions (8) and (9) and that r is known in
view of Corollary 1. Recall that Ñ = N α̃ (see Assumption 4), and introduce an additional
condition that restricts the class of sWF models:

α1 + (α̃ ∨ τ)/2 < αr + αr ∧ τ. (10)

This condition is necessary to derive a nontrivial error bound. Note that condition (10) with
any α̃ ∈ [α1, 1] implies (8) because α1 < αr + αr ∧ τ − (α̃ ∨ τ)/2 < αr + αr ∧ τ ≤ 2αr. For
notational convenience, we put Kn = {N1 log1/2(N ∨ T )}/{Nr(Nr ∧ T )}.

Theorem 2 (SOFAR). Set ηn � T 1/2 log1/2(N∨T ) in optimization (6). If Assumptions 1–4
and conditions (9) and (10) hold with any Ñ ∈ [N1, N ] (i.e., α̃ ∈ [α1, 1]), then the following
error bounds hold with probability at least 1−O((N ∨ T )−ν):

T−1/2‖F̂− F0‖F . N
1/2
1 Kn, N−1/2‖B̂−B0‖F .

N
1/2
1 T 1/2

N1/2
Kn.

In particular, the upper bounds converge to zero.
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The convergence rates do not depend on the choice of Ñ . Through condition (10),
however, it provides a class of the sWF models that can consistently be estimated. In fact,
the range of αr restricted by (10) becomes the largest when Ñ = N1 (i.e., α̃ = α1). This
point is reconsidered in Remark 1 below in comparison with the PC estimator.

Theorem 3 (PC). If Assumptions 1–4 and conditions (9) and (10) hold with Ñ = N (i.e.,
α̃ = 1), then the following error bounds hold with probability at least 1−O((N ∨ T )−ν):

T−1/2‖F̂PC − F0‖F . N1/2Kn, N−1/2‖B̂PC −B0‖F . T 1/2Kn.

In particular, the upper bounds converge to zero.

First, when the model has strong factors only (i.e., Nr = N), the convergence rates in the
theorems correspond to that obtained from Bai (2003) up to the logarithmic factor. We also
observe that the convergence rates of the SOFAR and the PC estimators become identical
if N1 = N . On the other hand, when the model has weak factors with N1 < N , the SOFAR
can take advantage of utilizing the sparsity and achieve a tighter upper bound. Therefore,
the SOFAR estimator is likely to converge at least as fast as the PC estimator even when
all the factors are strong. Of course a precise discussion requires a lower bound, but it is
beyond the scope of this paper and left for a future study.

While the SOFAR can choose Ñ = N1 as already mentioned, the PC necessarily selects
Ñ = N since it does not exploit sparse parameter spaces. In view of model restriction (10),
this leads to the fact that the SOFAR can consistently estimate a wider class of the sWF
models than the PC can. For a more detailed discussion, see the following remark.

Remark 1. We are interested in the class of sWF models that can consistently be estimated
by the SOFAR and the PC, respectively. Condition (10) with Ñ = N1 (i.e., α̃ = α1) naturally
brings the largest class of the sWF models. In this case, the lower bound of αr is 1/3, which
is achievable when α1 = αr and τ = 2/3. Likewise, the upper bound of the difference α1−αr
is found to be 1/4, which is attainable when τ ∈ (3/4, 1] and α1 = 1. Note that these results
can be obtained not by PC but by SOFAR. Contrary to the case of Ñ = N1, condition (10)
with Ñ = N restricts αr to be strictly larger than 1/2. This is more restrictive than the case
of Ñ = N1 though the upper bound of the difference is the same.

In sum, the SOFAR can consistently estimate the sWF models with exponents αk’s
smaller than or equal to 1/2 by supposing a sparse parameter space. The finite sample
evidence in Section 5 shows that the SOFAR estimator seems quite robust to the violation
of the restrictions on the region of (τ, α1, αr) discussed in Remark 1.

4.3 Factor selection consistency

We prove the factor selection consistency, which guarantees that the adaptive SOFAR re-
covers the true sparsity pattern of the loadings and correctly selects the relevant factors. As
a corollary, we also establish consistency of the estimated exponents, α̂k’s.

Before stating the theorem, define S = supp(B0) ⊂ {1, . . . , N} × {1, . . . , r}, the index
set of nonzero signals in B0. For any (sparse) matrix A = (aik) ∈ RN×r, we define AS =
(aik1{(i, k) ∈ S}) and aS = vec AS ∈ RrN . Write b0n = min(i,k)∈S |b0ik|. Furthermore,
introduce additional conditions:

α1 − αr < τ/4, (11)

1 .
ηn/b

0
n

T 1/2 log1/2(N ∨ T )
.
N1(Nr ∨ T )

Nr(Nr ∧ T )
. (12)

10



Condition (11) further restricts the model in terms of the maximum difference of α1 and αr
when τ < 1. However, the difference can be 1/4, which is the same as the maximum value
obtained by constraint (10) only, as long as τ = 1. Condition (12) restricts the relation
between ηn and b0n.

Theorem 4 (Adaptive SOFAR). If Assumptions 1–3 and conditions (9)–(12) hold, then for
the weighting matrix W constructed by any estimator B̂ini such that

‖B̂ini −B0‖max . b0n (with high probability), (13)

the adaptive SOFAR estimator satisfies

T−1/2
∥∥∥F̂ada − F0

∥∥∥
F

= Op

(
N

1/2
1 Kn

)
, (14)

N−1/2
∥∥∥B̂ada
S −B0

S

∥∥∥
F

= Op

(
N

1/2
1 T 1/2

N1/2
Kn

)
, (15)

P
(

supp(B̂ada) = S
)
→ 1. (16)

If the PC estimator is used for the initial estimator, b0n & T−1/2 log1/2(N∨T ) is allowed in
(13) (see Lemma 6 in Appendix). The rates of convergence (14) and (15) are identical to those
in Theorem 2, and hence they converge to zero. Finally, we prove that α̂k = log N̂k/ logN ,
which is defined in Section 3.2, is consistent for αk because of (16).

Corollary 2. If the model selection consistency in (16) holds, then we have

P (α̂k = αk for all k = 1, . . . , r)→ 1.

It is well-known that the adaptive Lasso can establish the asymptotic normality for the
nonzero subvector of the estimator. Likewise, the asymptotic normality of the adaptive
SOFAR estimator might be proved. However, we do not consider it due to the criticism by
Leeb and Pötscher (e.g., Leeb and Pötscher (2008) and references therein). Instead, it is
interesting to investigate inferential theory based on “debiasing” the SOFAR estimator in a
manner similar to Javanmard and Montanari (2014). This direction is explored in Uematsu
and Yamagata (2020).

5 Monte Carlo Experiments

We investigate thee Monte Carlo experiments. In this section, indexes i, t, and k run over
1, . . . , N , 1, . . . , T , and 1, . . . , r, respectively, unless otherwise noted. We consider the Data
Generating Process (DGP), xti =

∑r
k=1 bikftk +

√
θeti. The factor loadings bik and factors

ftk are formed such that N−1
∑N

i=1 bikbi` = 1{k = `} and T−1
∑T

t=1 ftkft` = 1{k = `},
by applying Gram–Schmidt orthonormalization to b∗ik and f∗tk, respectively, where b∗ik ∼
i.i.d.N(0, 1) for i = 1, . . . , Nk and b∗ik = 0 for i = Nk+1, . . . , N , and f∗tk = ρfkf

∗
t−1,k+vtk with

vkt ∼ i.i.d.N(0, 1 − ρ2fk) and f∗0k ∼ i.i.d.N(0, 1). The idiosyncratic errors eti are generated

by eti = ρeet−1,i + βεt,i−1 + βεt,i+1 + εti, where εti ∼ i.i.d.N(0, σ2ε,ti) with σ2ε,ti being set such
that Var(eti) = 1. The DGP is in line with the existing representative literature, such as
Bai and Ng (2002), Onatski (2010), and Ahn and Horenstein (2013), among many others,
but the main difference is that the absolute sums of the factor loadings over i are allowed to
diverge proportionally to Nk = Nαk .
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As the benchmark DGP, we set r = 2, ρfk = ρe = 0.5 for all k, β = 0.2, and θ = 1.
We focus on the performance of the estimators for different values of exponents (α1, α2). In
particular, we consider the combinations (0.9, 0.9), (0.8, 0.5)5 and (0.5, 0.4). All the experi-
mental results are based on 1,000 replications.

5.1 Determining the number of weak factors

Based on Corollary 1 and the discussion in Section 4.1, we confirm validity of r̂(δ). As
already explained, the estimator is the maximum value of j with which λk−λk+1 exceeds the
threshold δ. Following the ED algorithm of Onatski (2010), we compute δ̂ by calibration.6

The other competitor statistics include the ER (eigenvalue ratio) and GR (growth ratio)
estimators of Ahn and Horenstein (2013). We also consider the information criteria IC3 and
BIC3 proposed by Bai and Ng (2002). Note that these competitors are designed for SF
models. Especially, the ER and GR just identify the maximum gap between the ordered
eigenvalues. Hence, when the gap, λk − λk+1, is relatively large, these statistics will pick up
k as the estimate of r even when k < r.

Table 1 reports the average of the estimated number of factors over the replications by
the ED, GR, and BIC3.

7 We set the maximum number of factors, kmax, as five. As can
be seen in Table 1, when α1 and α2 are both close to unity, all the methods perform well;
see the case of exponents (α1, α2) = (0.9, 0.9). However, the performance of GR and BIC3

deteriorates when the gap of the values between α1 and α2 widens, or when both values
α1 and α2 are further away from unity; e.g., see the cases when (α1, α2) = (0.8, 0.5) and
(α1, α2) = (0.5, 0.4). In contrast, ED performs very well, and its estimation quality is very
similar to that when both exponents are close to unity. Even under the most challenging
set up (α1, α2) = (0.5, 0.4), ED consistently estimates the number of factors for sufficiently
large T and N .

We conclude that the finite sample evidence suggests that the ED method of Onatski
(2010) provides a reliable estimation of the number of factors in sWF models, while the
methods of GR and BIC3 may not be as reliable as the ED in general.

5.2 Finite sample properties of the SOFAR estimator

We investigate the finite sample properties of our SOFAR estimator in comparison with
the PC estimator. Here we treat the number of factors, r, as given. We report the re-
sults of the adaptive SOFAR estimator with regularization coefficient η determined by BIC,
which we recommend to use.8 For performance comparison purposes, we consider the `2-
norm losses based on the scaled estimators: L(F̂) = ‖

∑r
k=1 T

−1/2[abs(f̂k) − abs(f0k )]‖2,
L(B̂) = ‖

∑r
k=1N

−1/2
k [abs(b̂k) − abs(b0

k)]‖2, and L(Ĉ) = ‖
∑r

k=1 T
−1/2N

−1/2
k [Ĉk −C0

k]‖F,
where abs(a) takes elementwise absolute value of a real vector a. Due to the scaling, the
performance of the estimators can be comparable across different combinations of the values
of N , T , and αk’s.

5When α1 = 0.8, the smallest value of αr implied by condition (10) is 0.6, which is much larger than 0.5.
6We have found no experimental results on the finite sample performance of the ED estimator with the

WF models apart from ours.
7To save the space, we do not report the results for ER and IC3 since the performance of ER is very similar

to that of GR, and the performance of IC3 is mostly outperformed by BIC3. These results are available upon
request from the authors.

8We examined all the combinations of SOFAR and adaptive SOFAR with AIC, cross-validation, BIC and
GIC. The results of which are available upon request from the authors.
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Table 1: Average of the chosen number of factors for sWF models by ED, GR, and BIC3

ED GR BIC3

T,N 100 200 500 1000 100 200 500 1000 100 200 500 1000
(α1, α2) = (0.9, 0.9)
100 2.05 2.04 2.02 2.01 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
200 2.04 2.04 2.03 2.02 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
500 2.04 2.04 2.03 2.02 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
1000 2.02 2.04 2.03 2.02 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
(α1, α2) = (0.8, 0.5)
100 1.96 1.96 1.95 1.90 1.30 1.18 1.04 1.00 1.30 1.17 1.02 1.00
200 2.02 2.02 2.03 2.02 1.40 1.30 1.09 1.01 1.39 1.36 1.12 1.01
500 2.03 2.03 2.02 2.02 1.61 1.45 1.24 1.10 1.41 1.51 1.53 1.42
1000 2.02 2.03 2.02 2.02 1.52 1.45 1.24 1.10 1.43 1.51 1.53 1.42
(α1, α2) = (0.5, 0.4)
100 1.54 1.52 1.36 1.14 1.50 1.47 1.39 1.33 1.03 1.00 1.00 1.00
200 1.83 1.88 1.89 1.86 1.52 1.53 1.50 1.39 1.03 1.02 1.00 1.00
500 2.00 2.00 2.01 2.02 1.67 1.64 1.65 1.59 1.03 1.05 1.02 1.01
1000 1.92 2.00 2.01 2.02 1.60 1.64 1.65 1.59 1.04 1.05 1.02 1.01

Table 2 reports the averages and standard deviations (s.d.) of α̂1 and α̂2 based on Corol-
lary 2, and the average of the norm losses of the scaled estimated factors, factor loadings, and
common components by the SOFAR (SO in the tables) and PC estimators over the replica-
tions. First, focus on (α̂1, α̂2). In a nutshell, they are sufficiently accurate but tend to slightly
underestimate when αk is closer to one and overestimate when it is around 0.5. The precision
improves as T and N increase. For example, see the results when (α1, α2) = (0.8, 0.5). Now
we turn to the performance of the SOFAR and PC estimates. In terms of the norm loss given
above, the SOFAR uniformly beats the PC across all the designs. Perhaps surprisingly, the
SOFAR estimate of the factors is much more accurate than the PC even in the most favor-
able experimental design to the PC, with (α1, α2) = (0.9, 0.9). As expected, moreover, the
accuracy of the SOFAR estimates of factor loadings is uniformly superior to that of the PC
estimates. This gap in accuracy becomes wider when the exponents are further from unity.
Consequently, the accuracy of the SOFAR estimator of common component is uniformly
superior to that of the PC estimator.

Table 3 reports the same information as Table 2, but for more challenging models with
(0.5, 0.4). Remarkably, even when one of the exponent is 0.4, our SOFAR method provides
sufficiently accurate estimates of α1 and α2 as well as far superior estimates of the factors,
factor loadings, and common components to the PC method.

To summarize, the SOFAR estimator performs very well when the exponents are close
to unity, thus, signal of common components is high, even with a smaller sample size. When
the signal of common components is weak, namely when the value(s) of exponent(s) are
around 0.5 or below, the SOFAR estimator is sufficiently precise in terms of norm loss,
but requires a larger sample size. Significantly, even when the gap between α1 and α2 is
larger than that condition (10) implies, the SOFAR estimator is sufficiently accurate, and its
accuracy improves as the sample size rises. Conversely, the PC estimator fails to improve the
performance when N rises due to its inability to identify zero elements in sparse loadings,
and consequently the PC estimator is uniformly superseded by the SOFAR estimator.
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Table 3: Performance of the SOFAR (SO) and PC estimators for approximate factor models
with two factor components with (α1, α2) = (0.5, 0.4)

T=500 T=1000
Design (α1, α2) (0.5, 0.4) (0.5, 0.4)

N=500 mean s.d. mean s.d.

α̂1 0.47 0.03 0.47 0.03
α̂2 0.41 0.04 0.40 0.04

SO PC SO PC

L2
F (F̂)×100 13.4 17.9 13.1 15.2

L2
F (Λ̂)×100 4.6 48.3 2.9 24.4

L2
F (Ĉ)×100 17.3 48.6 16.0 31.1

T=500 T=1000
Design (α1, α2) (0.5, 0.4) (0.5, 0.4)

N=1000 mean s.d. mean s.d.

α̂1 0.48 0.02 0.48 0.02
α̂2 0.40 0.03 0.40 0.03

SO PC SO PC

L2
F (F̂)×100 9.7 15.2 9.5 12.0

L2
F (Λ̂)×100 3.7 65.6 2.3 32.2

L2
F (Ĉ)×100 13.0 57.4 12.0 32.9

5.3 A hierarchical factor structure

Recently estimation of a hierarchical factor structure or a multi-level factor structure has
been gaining serious interest in the literature. Ando and Bai (2017) and Choi et al. (2018)
consider two types of factors, called global and local factors. The global factors have the
loadings with non-zero values for all the cross-section units, whereas the local factors have
the non-zero loadings among the cross-section units of some specific groups. They propose
sequential procedures to identify the global and local factors separately.9 In fact, the sWF
model nests the hierarchical factor structure, and hence our SOFAR method can be readily
applied. In contrast to the existing approaches, given the total number of global and local
factor, our approach permits us to consistently estimate the hierarchical model in one go.
Furthermore, our method can identify “near global” (or “near local”) factors as the strongest,
which influence many but not all the variables; see Section 6.2 for the evidence of such factors.
The near global factors may not be distinguished from the global (or strictly strong) factors
by the aforementioned existing methods.

For illustration, We generate the data of four factors models as above. The first factor
is global, i.e., bi1 ∼ i.i.d.N(0, 1) for i = 1, . . . , N . The other three factors are local, i.e., bi2
is drawn from N(0, 1) for the first third, bi3 for the second third, and bi4 for the last third
of cross section units while the rests are zero. We obtained a simulated data with N = 450
and T = 120, and estimated the model given r = 4 by the PC and SOFAR. To visualize the
quality of the factor loadings, we provide heat maps of three N×N matrices,

∑4
k=1 ωkb

0
kb

0
k
′
,∑4

k=1 ωkb̂kb̂
′
k and

∑4
k=1 ωkb̂PC,kb̂

′
PC,k, which are reported in Figures 1-3, respectively. To

clarify the difference between the global factor loadings and local ones, which overlaps in the
heat maps, we use the weight ω1 = 1/8 and ω2 = ω3 = ω4 = 1. As is clear, the SOFAR
estimator successfully recover the hierarchical pattern while the PC estimator fails.

6 Empirical Applications

We provide three empirical applications. Section 6.1 conducts forecasting bond yields with
comparing the SOFAR and PC. Section 6.2 investigates interpreting the extracted factors in
Section 6.1. Section 6.3 considers estimation of the exponents based on the adaptive SOFAR
with a large number of stock returns.

9Andreou et al. (2019) propose a similar sequential method to estimate the number of global and local
factors separately.
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Figure 1: True factor loadings Figure 2: SOFAR estimate Figure 3: PC estimate

6.1 Forecasting bond yields

We consider out-of-sample forecasting of bond yields using extracted factors via our SOFAR
and the PC, from a large number of macroeconomic variables in line with Ludvigson and Ng
(2009). We use the same data set provided by Sydney Ludvigson’s web page.10 Specifically,
the data consists of the continuously compounded (log) annual excess returns on an n-year

discount bond at month t, y
(n)
t , and a balanced panel of i = 1, . . . , 131 monthly macroeco-

nomic series at month t, xti, spanning the period from January 1964 to December 2003. We
consider the maturities n = 2, 3, 4, 5. For more details of data, see Section 3 of Ludvigson
and Ng (2009).

We conduct one-year-ahead out of sample forecast comparisons. In order to minimize
possible adverse effects of structural breaks, we set the rolling window at 252 months. The
forecast comparison procedure is explained below. For the Tth month rolling window and
maturity n, we extract factors {f̂tk}r̂Tk=1 from standardized xti via our SOFAR and the PC,
i = 1, . . . , N = 131, t = T, . . . , TT − 12, where t denotes months from January 1964 to
December 2003, T and TT denote the start and end months of the Tth rolling window,
respectively. Observe that r is estimated for each window according to Section 4.1, where
the estimates vary from one to six over the forecast windows. Then, run the predictive
regression

y
(n)
t+12 = β̃

(n)
0 +

r̂T∑
k=1

β̃
(n)
k f̂tk + ε̃

(n)
t , t = T, . . . ,TT − 12, n = 2, 3, 4, 5

and obtain the forecast error ε̂
(n)
TT+12|TT = y

(n)
TT+12−ŷ

(n)
TT+12|TT , with ŷ

(n)
TT+12|TT = β̃

(n)
0 +

∑r̂T
k=1 β̃

(n)
k f̂TTk.

This produces H = 217 forecast errors.
In Table 4, we report the mean absolute deviation of the forecast errors, MAE(n) =

H−1
∑H

s=1

∣∣∣ε̂(n)s|s−1

∣∣∣, and the DM forecasting performance test statistics of Diebold and Mar-

iano (1995) with associated p-values, based on the MAEs. As can be seen, the MAEs of
the SOFAR are smaller than those of the PC for all the maturities. The DM test strongly
rejects the null of the same forecasting performance for all the maturities, in favor of the
alternative that our method outperforms the PC. The average values of exponents over the
windows are {α̂1, α̂2, α̂3, α̂4, α̂5, α̂6} = {0.92, 0.82, 0.87, 0.78, 0.77, 0.74}, which suggests that

10https://www.sydneyludvigson.com/s/RFS2009-u1e1.xls
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even the (first) strongest factor is not strictly strong (N̂1 = 89). As is evidenced in the
previous section, the accuracy of our estimator is much higher than the PC estimator under
such situations, and the better forecasting performance may not be too surprising in this
empirical exercise.

Table 4: Mean absolute forecast errors and DM forecast comparison test
SOFAR PC DM Statistic [p-value]

y
(2)
t+12 1.164 1.191 -3.58 [0.0003]

y
(3)
t+12 2.304 2.354 -3.54 [0.0004]

y
(4)
t+12 3.354 3.429 -3.73 [0.0002]

y
(5)
t+12 4.197 4.278 -3.20 [0.0014]

Notes: For the computation of the long-run variance for the DM test statistic, the window
is chosen by the Schwert criterion with the maximum lag of 14.

6.2 Interpreting the factors

Since no statistical methods will recover the structural or true factors F∗ and factor loadings
B∗ in model (1), it is irrelevant to discuss their detailed properties based on the consistent
estimates of their rotations, F0 and B0 in sWF model (3). Nonetheless, it is certainly useful
to look into the properties of (F0,B0) or its consistent estimate (F̂, B̂). As discussed in
Ludvigson and Ng (2007, 2009), when the loadings are not sparse, all the variables xti are
subject to the factors, and any economic labeling, such as “output” and/or “unemployment,”
to a factor can be irrelevant. For this reason, to illustrate the characterization of the factors,
empirical studies based on the PC estimate typically report the R2 statistic of the time-series
regression of (xti)t on each factor (f̂PCtk )t for k for each i; see figure 1 of Stock and Watson
(2002) and figures 1-5 in Ludvigson and Ng (2009).

Importantly, our SOFAR estimates B̂ of the sparse loadings B0 can provide more in-
formation on the individual factors than the PC estimates because b0ik = 0 literally means
no influence of f0tk on xti. Therefore, together with the orthogonality of the factors, the
information about the association of a factor to the variables and its strength is contained
in the corresponding loadings. In addition, the sign of a non-zero loading reveals whether
the associated variable responds in the same or opposite direction to the other variables in
terms of the corresponding factor.

For illustration, we investigate a set of extracted factors from the 131 macroeconomic
variables used in Section 6.1 in more detail. In particular, we estimate the model using the
variables between January 1982 and December 2001. Two factors (i.e., r̂ = 2) are extracted
by the PC and SOFAR methods (adaptive, BIC). The exponents are {α̂1, α̂2} = {0.91, 0.71}.
Figure 4 displays the R2 of the regressions of the 131 individual time series on the first PC
factor over the period. These R2 are plotted as bar charts, and the variables are ordered as
described in the aforementioned data file. Figure 5 displays the PC estimates of the loadings
on the first factor. Comparing Figures 4 and 5 reveals that the variables 70–83 and 101–
131 except 78 and 113 have little association in terms of R2, whereas the magnitude of the
corresponding loadings are not as small as R2. Figures 6 and 7 report corresponding results
of the adaptive SOFAR to Figures 4 and 5. The patters of R2 and loadings of SOFAR and
PC are very similar. The striking difference is, however, that for the variables 70–83 and
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101–131 except 78 and 113, the R2s for the regressions with the SOFAR factor in Figure 6
are as close to zeros as those of PC (actually the former are slightly closer to zeros), and the
associated loadings of SOFAR in Figure 7 are (rightly) zeros. In addition, comparing Figures
6 and 7, the magnitude of R2 is largely similar to that of loadings. These contrasts in the
PC and SOFAR estimation results are more pronounced for the second factor, which are
reported in Figures 8–11. In summary, unlike the PC, the SOFAR loadings contain sharper
information on which variables are associated with which factor. Among the variables with
nonzero loadings, the value of the SOFAR loadings can provide information on strength and
direction of the influence of the factor relative to the other variables.

With this encouraging result, we investigate properties of each empirical factor, making
use of the information contained in SOFAR loadings. Based on the description of each of
the 131 variables in the aforementioned data file, we categorize the 131 variables as follows:
1-24 Output ; 25-32 Unemployment ; 33-49 Employment ; 50-59 Housing ; 60-69 Orders; 70-
76 Money Supply ; 77-80 Credits; 81-84 Stock Prices; 85-93 Interest Rate; 94-101 Spreads;
102-106 Exchange Rates; 107-127 Prices; 128-130 Wages; 131 Consumer Expectation. From
Figure 7 it is easily seen that the first SOFAR factor is exclusively loaded on Output, Unem-
ployment, Employment, Housing, Orders, Interest Rates and Spreads with a few exceptions
only. Observe that the signs of the loadings on the unemployment variables are different
from those on the employment variables, as expected. Figure 11 reveals that the second SO-
FAR factor is exclusively loaded on Money Supply, Exchange Rates and Prices, with scarce
exceptions.
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Figure 4: R2 for regression of xit on f̂PCt1
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Figure 5: PC estimates b̂PCi1

6.3 Estimating exponents with stock returns

We estimate the sWF model using excess returns of components of the Standard & Poor’s
500 Stock Index (S&P 500). In particular, we obtain the 500 securities each month over
the period from January 1984 to April 2018 from Datastream. The monthly excess return
of security i for month t is computed as re,ti = 100 × (Pti − Pt−1,i)/Pt−1,i + DYti/12 − rft,
where Pti is the end-of-the-month price, DYti is the percent per annum dividend yield, and
rft is the one-month US treasury bill rate chosen as the risk-free rate.11 We standardize the
obtained excess returns and denote them as r∗e,ti.

For each window month, T = September 1998 to April 2018, we chose securities that
contain the data extending 120 months back (T = 120) from T. This gives the different

11This is obtained from Ken French’s data library web page.
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Figure 6: R2 for regression of xit on f̂adat1
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Figure 7: adaptive SOFAR estimates b̂adai1
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Figure 8: R2 for regression of xit on f̂PCt2
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Figure 9: PC estimates b̂PCi2
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Figure 10: R2 for regression of xit on f̂adat2

‐0.6

‐0.4

‐0.2

0

0.2

0.4

0.6

0.8

1

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 10
1

10
5

10
9

11
3

11
7

12
1

12
5

12
9

Figure 11: adaptive SOFAR estimates b̂adai2

number of securities for each window T (NT). The average number of securities over the
estimation windows is 443 (N̄ = 443). As will be shown below, three or four factors are
estimated over the windows. We identify the factors and signs of the factors and factor
loadings, given the estimates of the initial window month, T = September 1989, based on
the correlation coefficients between the factors at T and the appropriately lagged T.12

12For example, define (T − 1)-dimensional vector of `th factor of T as f̂`T = (f̂`T,1, f̂`T,2, . . . , f̂`T,T−1)
′ and

that of T − 1 as f̂`T−1 = (f̂`T−1,2, f̂`T−1,2, . . . , f̂`T−1,T)
′, ` = 1, . . . , r. For f̂`T, if max1≤k≤r |corr(f̂`T, f̂kT−1)| =
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We report α̂k, k = 1, 2, 3, 4, of the stock return covariance matrix, which are associated
with the four factors. Observe that, as discussed earlier, the estimated exponents are in-
variant to the rotation of the estimated common components. Figure 12 plots α̂k over the
estimation window months, T = September 1989 to April 2018. Apart from the first factor,
which is always strong, the strengths of the signals vary over the months and can become
quite weak. These strongly imply a potentially substantial efficiency gain in estimation of
the approximate factor models through our SOFAR over the PC. It is also interesting that
the orders in terms of values of the exponents, α2, α3, and α4, change over the period.

In line with the well-observed phenomenon that the correlation among the securities in
the financial market rises during periods of turmoil, sharp rises of exponents in some months
can be observed. For example, α2 goes up sharply around February 2000 then rises gradually.
This period corresponds to the peak of the dot-com bubble and its burst on March 2000 (the
main contributor to the factor loadings of the second factor is Technology industry, see
Appendix C.1). Similarly, a sharp rise of α3 is observed from July 2008 to April 2009. This
period coincides with the 2008 financial crisis. In just ten months, it goes up by 0.12, from
0.74 to 0.86 (one of the main contributors to the factor loadings of the third factor is the
Financial industry, see Appendix C.1).

Figure 12: Plot of the estimated αk’s from September 1989 to April 2018.

7 Conclusion

This paper has considered estimation of the sparsity-induced weak factor (sWF) models
in a high-dimensional setting. We suppose sparse factor loadings B0 that lead to the WF
structure, λk(B

0′B0) � Nαk with 0 < αk ≤ 1 for k = 1, . . . , r. This model is much less
restrictive than the widely employed strong factor (SF) model in the literature, in which
λk(B

0′B0) � N for k = 1, . . . , r. The SOFAR estimator and its adaptive version enable us

|corr(f̂`T, f̂2T−1)| and corr(f̂`T, f̂2T−1) < 0, say, f̂2T ≡ −f̂`,T and b̂i2T ≡ −b̂i`T.
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to consistently estimate the sWF models, separately identifying B0 and F0. As theoretical
contributions, we have established the estimation error bound of the SOFAR estimators,
the factor selection consistency of the adaptive SOFAR estimator, and consistent estimation
of each exponent αk as well as validating the method of Onatski (2010) for determining
the number of weak factors. All the theoretical results are supported by the Monte Carlo
experiments, and three empirical examples demonstrate practical usefulness of our estimator
in comparison to the principal component (PC) estimator.

The proposed method has large potential applicability and many direction to extend. The
hierarchical factor model, which contains global and local factors, are recently considered by
Ando and Bai (2017), Choi et al. (2018) and Andreou et al. (2019). Our sWF model nests the
hierarchical factor model, and hence the SOFAR method can be applied to readily estimate
such models. It is of interest to estimate the stock returns covariance matrix for optimal
portfolio allocation and portfolio risk assessment. This can be achieved by consistently
estimating the covariance matrix of idiosyncratic errors, in line with Fan et al. (2008) and Fan
et al. (2011), which is an interesting extension of this paper. Having provided the consistent
estimation in this paper, the statistical inference for the sWF models is an important research
agenda. This is considered in Uematsu and Yamagata (2020). Yet another possible extension
of interest is the estimation of panel data models with interactive effects, which is considered
by Pesaran (2006) and Bai (2009), among others: yti = x′tiβ + uti, uti = f ′tbi + εti. For the
PC based estimators, such as Bai (2009), uti is typically assumed to be a SF model and
estimated by PC, given an initial estimator of β. The SOFAR estimation, instead of the
PC, would potentially improve the precision of the estimates of β.

References

Ahn, S. C. and A. R. Horenstein (2013). Eigenvalue ratio test for the number of factors.
Econometrica 81, 1203–1227.

Ando, T. and J. Bai (2017). Clustering huge number of financial time series: A panel data
approach with high-dimensional predictors and factor structures. Journal of the American
Statistical Association 112, 1182–1198.

Andreou, E., P. Gagliardini, E. Ghysels, and M. Rubin (2019). Inference in group factor
models with an application to mixed frequency data. Econometrica, to appear .

Bai, J. (2003). Inferential theory for factor models of large dimensions. Econometrica 71,
135–171.

Bai, J. (2009). Panel data models with interactive fixed effects. Econometrica 77, 1229–1279.

Bai, J. and K. Li (2012). Statistical analysis of factor models of high dimension. Annals of
Statistics 40, 436–465.

Bai, J., K. Li, and L. Lu (2016). Estimation and inference of FAVAR models. Journal of
Business & Economic Statistics 34, 620–641.

Bai, J. and Y. Liao (2017). Inferences in panel data with interactive effects using large
covariance matrices. Journal of Econometrics 200, 59–78.

Bai, J. and S. Ng (2002). Determining the number of factors in approximate factor models.
Econometrica 70, 191–221.

21



Bai, J. and S. Ng (2006). Confidence intervals for diffusion index forecasts and inference
with factor-augmented regressions. Econometrica 74, 1133–1150.

Bai, J. and S. Ng (2013). Principal components estimation and identification of static factors.
Journal of Econometrics 176, 18–29.

Bailey, N., G. Kapetanios, and M. H. Pesaran (2016). Exponent of cross-sectional depen-
dence: Estimation and inference. Journal of Applied Econometrics 31, 929–960.

Bailey, N., G. Kapetanios, and M. H. Pesaran (2020). Measurement of factor strength:
Theory and practice. mimeo.

Bryzgalova, S. (2016). Spurious factors in linear asset pricing models. mimeo.

Chamberlain, G. and M. Rothschild (1983). Arbitrage, factor structure and mean-variance
analysis in large asset markets. Econometrica 51, 1281–1304.

Choi, I., D. Kim, Y. J. Kim, and N.-S. Kwark (2018). A multilevel factor model: Identifica-
tion, asymptotic theory and applications. Journal of Applied Econometrics 33, 355–377.

Chudik, A., , H. Pesaran, and E. Tosetti (2011). Weak and strong cross-section dependence
and estimation of large panels. Econometrics Journal 14, C45–C90.

Connor, G. and R. A. Korajczyk (1986). Performance measurement with the arbitrage pricing
theory: A new framework for analysis. Journal of Financial Economics 15, 373–394.

Connor, G. and R. A. Korajczyk (1993). A test for the number of factors in an approximate
factor modela test for the number of factors in an approximate factor model. Journal of
Finance 48, 1263–1291.

Daniele, M., W. Pohlmeier, and A. Zagidullina (2020). Sparse approximate factor estimation
for high-dimensional covariance matrices. arXiv:1906.05545v1 .

De Mol, C., D. Giannone, and L. Reichlin (2008). Forecasting using a large number of
predictors: Is Bayesian shrinkage a valid alternative to principal components? Journal of
Econometrics 146, 318–328.

Diebold, F. X. and R. S. Mariano (1995). Comparing predictive accuracy. Journal of Business
& Economic Statistics 13, 253–263.

Fan, J., Y. Fan, and E. Barut (2014). Adaptive robust variable selection. Annals of Statis-
tics 42, 324–351.

Fan, J., Y. Fan, and J. Lv (2008). High dimensional covariance matrix estimation using a
factor model. Journal of Econometrics 147, 186–197.

Fan, J., Y. Liao, and M. Mincheva (2011). High-dimensional covariance matrix estimation
in approximate factor models. Annals of Statistics 39, 3320–3356.

Fan, J., Y. Liao, and M. Mincheva (2013). Large covariance estimation by thresholding
principal orthogonal complements. Journal of the Royal Statistical Society Series B 75,
603–680.

Fan, J., K. Wang, Y. Zhong, and Z. Zhu (2018). Robust high-dimensional factor models
with applications to statistical machine learning. arXiv:1808.03889v1 .

22



Fan, Y., J. Lv, M. Sharifvaghefi, and Y. Uematsu (2019). IPAD: stable interpretable forecast-
ing with knockoffs inference. Journal of the American Statistical Association, to appear .

Freyaldenhoven, S. (2020). Identification through sparsity in factor models. Federal Reserve
Bank of Philadelphia, WP20-25 .

Gao, J., G. Pan, Y. Yan, and B. Zhang (2020). Estimation of cross-sectional dependence in
large panels. arXiv:1904.06843v1 .

Javanmard, A. and A. Montanari (2014). Confidence intervals and hypothesis testing for
high-dimensional regression. Journal of Machine Learning Research 15, 2869–2909.

Lam, C., Q. Yao, and N. Bathia (2011). Estimation of latent factors for high-dimensional
time series. Biometrika 98, 901–918.

Leeb, H. and B. M. Pötscher (2008). Sparse estimators and the oracle property, or the return
of hodges’ estimator. Journal of Econometrics 142, 201–211.

Lettau, M. and M. Pelger (2020). Estimating latent asset-pricing factors. Journal of Econo-
metrics 218, 1–31.

Ludvigson, C. S. and S. Ng (2007). Empirical risk-return relation: A factor analysis approach.
Journal of Financial Econometrics 83, 171–222.

Ludvigson, C. S. and S. Ng (2009). Macro factors in bond risk premia. Review of Financial
Studies 22, 5027–5067.

Onatski, A. (2010). Determining the number of factors from empirical distribution of eigen-
values. Review of Economics and Statistics 92, 1004–1016.

Onatski, A. (2012). Asymptotics of the principal components estimator of large factor models
with weakly influential factors. Journal of Econometrics 168, 244–258.

Pesaran, H. (2006). Estimation and inference in large heterogeneous panels with a multifactor
error structure. Econometrica 74, 967–1012.

Rigollet, P. and J.-C. Hütter (2017). High Dimensional Statistics. Massachusetts Institute
of Technology, MIT Open CourseWare.

Rudelson, M. and R. Vershynin (2013). Hanson-wright inequality and sub-gaussian concen-
tration. Electronic Communications in Probability 18, 1–9.

Shen, H. and J. Huang (2008). Sparse principal component analysis via regularized low rank
matrix approximation. Journal of Multivariate Analysis 99, 1015–1034.

Stock, J. H. and M. W. Watson (2002). Macroeconomic forecasting using diffusion indexes.
Journal of Business & Economic Statistics 30, 147–162.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society Series B , 267–288.

Uematsu, Y., Y. Fan, K. Chen, J. Lv, and W. Lin (2019). SOFAR: large-scale association
network learning. IEEE Transactions on Information Theory 65, 4929–4939.

23



Uematsu, Y. and S. Tanaka (2019). High-dimensional macroeconomic forecasting and vari-
able selection via penalized regression. Econometrics Journal 22, 34–56.

Uematsu, Y. and T. Yamagata (2020). Inference in weak factor models. Available at SSRN:
https://ssrn.com/abstract=3556275 .

Vershynin, R. (2012). Introduction to the non-asymptotic analysis of random matrices.
In Y. C. Eldar and G. Kutyniok (Eds.), Compressed Sensing: Theory and Practice, pp.
210–268. Cambridge University Press.

Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American
Statistical Association 101, 1418–1429.

Zou, H., T. Hastie, and R. Tibshirani (2006). Sparse principal component analysis. Journal
of Computational and Graphical Statistics 15, 265–286.

24



Supplementary Material for

Estimation of Weak Factor Models

Yoshimasa Uematsu∗ and Takashi Yamagata†

*Department of Economics and Management, Tohoku University

†Department of Economics and Related Studies, University of York

†Institute of Social Economic Research, Osaka University

A Proofs of the Main Results

A.1 Proof of Theorem 1

Proof. We denote by Mk:` ∈ RT×(`−k+1) a submatrix of M constructed by its kth to `th
columns. Following Ahn and Horenstein (2013), we evaluate the eigenvalues of XX′ with
recalling notation based on the SVD rather than F0 and B0. We define P = V0N−1V0′, Q =
IN−P, and U∗ = U0+EV0N−1(D0)−1. Then, we can write XX′ = U∗D0ND0U∗′+EQE′

since V0′V0 = N = diag(N1, . . . , Nr) by the definition. We also define W1:k as the matrix
of k eigenvectors corresponding to the first k largest eigenvalues of U∗D0ND0U∗′.

We first evaluate the r largest eigenvalues of XX′. Because λk(U
0D0ND0U0′) = d2kNkT ,

it is sufficient to show that for any k ∈ {1, . . . , r},

λk(XX′) = λk(U
∗D0ND0U∗′) +O(N ∨ T ), (A.1)

λk(U
∗D0ND0U∗′) = λk(U

0D0ND0U0′) +O
(
TN

1/2
1 log1/2(N ∨ T ) +N ∨ T

)
. (A.2)

Then (A.1) and (A.2) lead to

λk(XX′) = λk(U
0D0ND0U0′) +O(TN

1/2
1 log1/2(N ∨ T ) +N ∨ T )

= d2kNkT +O
(
TN

1/2
1 log1/2(N ∨ T ) +N ∨ T

)
,

which gives the desired result under condition (8). We show (A.1). Lemma A.5 of Ahn and
Horenstein (2013) yields the upper bound

k∑
j=1

λj(XX′) =
k∑
j=1

λj(U
∗D0ND0U∗′ + EQE′)

≤
k∑
j=1

λj(U
∗D0ND0U∗′) + kλ1(EQE′ + EPE′)

=
k∑
j=1

λj(U
∗D0ND0U∗′) + kλ1(EE′) .

k∑
j=1

λj(U
∗D0ND0U∗′) + T ∨N,

where the last inequality follows from Lemma 1(a), with probability at least 1−O((N∨T )−ν).

1



Moreover, the lower bound is given by

k∑
j=1

λj(XX′) ≥ T−1 tr(W′
1:kXX′W1:k)

= T−1 tr(W′
1:kU

∗D0ND0U∗′W1:k) + T−1 tr(W′
1:kEQE′W1:k)

≥
k∑
j=1

λj(U
∗D0ND0U∗′).

Hence, these two inequalities imply (A.1). Next, we verify (A.2). By the construction of U∗,
the upper bound is

k∑
j=1

λj(U
∗D0ND0U∗′) = T−1 tr(W′

1:kU
0D0ND0U0′W1:k)

+ 2T−1 tr(W′
1:kU

0D0V0′E′W1:k) + T−1 tr(W′
1:kEPE′W1:k)

.
k∑
j=1

λj(U
0D0ND0U0′) + TN

1/2
1 log1/2(N ∨ T ) +N ∨ T,

where the last inequality holds by Lemma 3 with probability at least 1 − O((N ∨ T )−ν).
Similarly, the lower bound is

k∑
j=1

λj(U
∗D0ND0U∗′) &

k∑
j=1

λj(U
0D0ND0U0′)− TN1/2

1 log1/2(N ∨ T ).

Hence, these two inequalities imply (A.2).
Finally, we consider the lower and upper bounds of λr+j(XX′) for j = 1, . . . , kmax.

Because λr+j(U
∗D0ND0U∗′) = 0 for all j ≥ 1, Lemma 3 entails

λr+j(XX′) ≤ λr+j(U∗D0ND0U∗′) + λ1(EQE′) = λ1(EQE′) . T ∨N

with probability at least 1−O((N ∨ T )−ν). This completes the proof.

A.2 Proof of Theorem 2

Proof. The optimality of the SOFAR estimator implies

2−1‖X− F̂B̂′‖2F + ηn‖B̂‖1 ≤ 2−1‖X− F0B0′‖2F + ηn‖B0‖1.

By plugging model (5) and letting ∆ = F̂B̂′ − F0B0′, this is equivalently written as

2−1‖E−∆‖2F + ηn‖B̂‖1 ≤ 2−1‖E‖2F + ηn‖B0‖1.

Define ∆f = F̂− F0 and ∆b = B̂−B0. Expanding the first term and using decomposition
∆ = ∆fB0′ + ∆f∆b′ + F0∆b′ lead to

(1/2)‖∆‖2F ≤ tr E∆′ + ηn

(
‖B0‖1 − ‖B̂‖1

)
≤
∣∣∣tr EB0∆f ′

∣∣∣+
∣∣∣tr E∆b∆f ′

∣∣∣+
∣∣∣tr ∆bF0′E

∣∣∣+ ηn

(
‖B0‖1 − ‖B̂‖1

)
. (A.3)
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We bound the traces in (A.3). By applying Hölder’s inequality and using properties of the
norms, the first term is bounded as∣∣∣tr EB0∆f ′

∣∣∣ ≤ ‖EB0‖max‖∆f‖1 ≤ (rT )1/2‖EB0‖max‖∆f‖F.

Similarly, the second and third terms of (A.3) are bounded as∣∣∣tr E∆b∆f ′
∣∣∣+
∣∣∣tr ∆bF0′E

∣∣∣ ≤ ‖E∆b‖2‖∆f‖∗ + ‖∆b‖1‖F0′E‖max

≤ r1/2‖E∆b‖2‖∆f‖F + ‖∆b‖1‖F0′E‖max.

From these inequalities, the upper bound of (A.3) becomes

(1/2)‖∆‖2F ≤ (rT )1/2‖EB0‖max‖∆f‖F + r1/2‖E∆b‖2‖∆f‖F

+ ‖∆b‖1‖F0′E‖max + ηn

(
‖B0‖1 − ‖B̂‖1

)
. (A.4)

From Lemmas 1 and 4, there exist some positive constants c1–c3 such that the event

E =
{
‖E∆b‖2 ≤ c1‖∆b‖F(Ñ ∨ T )1/2 log1/2(N ∨ T )

}
∩
{
‖EB0‖max ≤ c2N1/2

1 log1/2(N ∨ T )
}
∩
{
‖F0′E‖max ≤ c3T 1/2 log1/2(N ∨ T )

}
occurs with probability at least 1 − O((N ∨ T )−ν) for any fixed constant ν > 0. Set the
regularization parameter to be ηn = 2c3T

1/2 log1/2(N ∨ T ). Then on event E , we have
‖F0′E‖max ≤ ηn/2, and (A.4) is further bounded as

‖∆‖2F . (N1T )1/2 log1/2(N ∨ T )‖∆f‖F + (Ñ ∨ T )1/2 log1/2(N ∨ T )‖∆b‖F‖∆f‖F

+ ηn

(
‖∆b‖1 + 2‖B0‖1 − 2‖B̂‖1

)
. (A.5)

We then focus on the last parenthesis of (A.5). Define index set S = {(i, k) : b0ik 6= 0}, the
support of B0. Note that |S| =

∑r
k=1Nk ≤ rN1. The last parenthesis of (A.5) is rewritten

and bounded as

‖∆b‖1 + 2‖B0‖1 − 2‖B̂‖1 = ‖∆b
S‖1 + ‖∆b

Sc‖1 + 2‖B0
S‖1 − 2‖B̂S‖1 − 2‖B̂Sc‖1

≤ ‖∆b
S‖1 + ‖∆b

Sc‖1 + 2‖B0
S‖1 − 2

(
‖B0
S‖1 − ‖∆b

S‖1
)
− 2‖B̂Sc‖1

= 3‖∆b
S‖1 − ‖B̂Sc‖1 ≤ 3(rN1)

1/2‖∆b
S‖F ≤ 3(rN1)

1/2‖∆b‖F.

Therefore, the upper bound of (A.5) is given by

‖∆‖2F . (N1T )1/2 log1/2(N ∨ T )‖∆f‖F
+ (Ñ ∨ T )1/2 log1/2(N ∨ T )‖∆b‖F‖∆f‖F +N

1/2
1 ηn‖∆b‖F. (A.6)

Meanwhile, Lemma 5 establishes the lower bound of (A.6). Consequently, we obtain

κn

(
‖∆f‖2F + ‖∆b‖2F

)
. (N1T )1/2 log1/2(N ∨ T )‖∆f‖F

+ (Ñ ∨ T )1/2 log1/2(N ∨ T )‖∆b‖F‖∆f‖F +N
1/2
1 ηn‖∆b‖F

=: αn‖∆f‖F + µn‖∆b‖F‖∆f‖F + βn‖∆b‖F

≤ αn‖∆f‖F + µn

(
‖∆b‖2F + ‖∆f‖2F

)
+ βn‖∆b‖F,

3



where κn = Nr(Nr ∧ T )/N1, αn = (N1T )1/2 log1/2(N ∨ T ), µn = (Ñ ∨ T )1/2 log1/2(N ∨ T ),

and βn = N
1/2
1 ηn. By condition (10), we have

‖∆f‖2F + ‖∆b‖2F ≤
(αn/κn)‖∆f‖F + (βn/κn)‖∆b‖F

1− µn/κn
.

Rearranging this inequality gives

‖∆f‖F + ‖∆b‖F ≤
3

2

(
αn/κn + βn/κn

1− µn/κn

)
.

Finally, since ηn = 2c3T
1/2 log1/2(N ∨ T ), we observe that

αn + βn = (N1T )1/2 log1/2(N ∨ T ) +N
1/2
1 ηn . (N1T )1/2 log1/2(N ∨ T ).

This completes the proof.

A.3 Proof of Theorem 3

Proof. Following the proof of Theorem 2, we derive the bound. From (A.4) with putting
ηn = 0, we have

(1/2)‖∆PC‖2F
. T 1/2‖EB0‖max‖∆f

PC‖F + ‖E∆b
PC‖2‖∆

f
PC‖F +N1/2‖∆b

PC‖F‖F0′E‖max. (A.7)

Lemmas 1 and 4 states that the event

E =
{
‖E∆b

PC‖2 . ‖∆b
PC‖F(N ∨ T )1/2 log1/2(N ∨ T )

}
∩
{
‖EB0‖max . N

1/2
1 log1/2(N ∨ T )

}
∩
{
‖F0′E‖max . T 1/2 log1/2(N ∨ T )

}
occurs with probability at least 1−O((N ∨ T )−ν) for any fixed constant ν > 0. On event E
together with Lemma 5, (A.7) becomes

κn

(
‖∆f

PC‖
2
F + ‖∆b

PC‖2F
)
. αn‖∆f

PC‖F + µn

(
‖∆b

PC‖2F + ‖∆f
PC‖

2
F

)
+ βn‖∆b

PC‖F,

where

κn =
Nr(Nr ∧ T )

N1
, µn = (N ∨ T )1/2 log1/2(N ∨ T )

αn = (N1T )1/2 log1/2(N ∨ T ), βn = (NT )1/2 log1/2(N ∨ T ).

The desired result is obtained by rearranging this inequality as in the proof of Theorem 2.
In fact, we have

‖∆f
PC‖F + ‖∆b

PC‖F .
3

2

(
αn/κn + βn/κn

1− µn/κn

)
.

Finally, we observe that

αn + βn = (N1T )1/2 log1/2(N ∨ T ) + (NT )1/2 log1/2(N ∨ T ) . (NT )1/2 log1/2(N ∨ T ).

This completes the proof of Theorem 3.
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A.4 Proof of Theorem 4

Proof. Throughout this proof, we omit the superscript of the adaptive estimators (F̂ada, B̂ada)
and simply write them as (F̂, B̂). Recall S = supp(B0), which is a subset of {1, . . . , N} ×
{1, . . . , r}. For any matrix B = (bik) ∈ RN×r, define BS ∈ RN×r as the matrix whose
(i, k)th element is bik1{(i, k) ∈ S}. Similarly, define BSc ∈ RN×r whose (i, k)th element
is bik1{(i, k) ∈ Sc}. By the definition, note that B0

S = B0 and B0
Sc = 0. Recall that the

objective function for obtaining the adaptive SOFAR estimator is given by

Qn(F,B) :=
1

2

∥∥X− FB′
∥∥2
F

+ ηn‖W ◦B‖1 (A.8)

subject to F′F/T = Ir and B′B being diagonal. The strategy of this proof consists of two
steps. In the first step, we show that the oracle estimator (F̂o, B̂o

S), which is defined as a
minimizer of Qn(F,BS), is consistent to (F0,B0

S) with some rate of convergence. In the
second step, we prove that the oracle estimator is indeed a minimizer of the unrestricted
problem, minQn(F,B) over RT×r × RN×r.

(First step) We derive the rate of convergence of the oracle estimator. To this end, it
suffices to show that as n→∞, there exists a (large) constant C > 0 such that

P
(

inf
‖U‖F=C, ‖VS‖F=C

Qn(F0 + rnU,B
0
S + rnVS) > Qn(F0,B0

S)

)
→ 1, (A.9)

where U ∈ RT×r and V ∈ RN×r are deterministic matrices, and

rn =
N1(N1T )1/2 log1/2(N ∨ T )

Nr(Nr ∧ T )
.

This implies that the oracle estimator (F̂o, B̂o
S) lies in the ball{

(F,BS) ∈ RT×r × RN×r : ‖F− F0‖F ≤ Crn, ‖BS −B0
S‖F ≤ Crn

}
with high probability, which gives the desired rate of convergence. In this proof, write
`n = log(N ∨ T ) for notational simplicity.

To show (A.9), we first have

Qn(F0 + rnU,B
0
S + rnVS)−Qn(F0,B0

S)

= 2−1‖X− (F0 + rnU)(B0
S + rnVS)′‖2F − 2−1‖X− F0B0

S‖2F
+ ηn‖W ◦ (B0

S + rnVS)‖1 − ηn‖W ◦B0
S‖1

≥ − tr(rnE
′F0V′S + rnE

′UB0
S
′
+ r2nE

′UV′S)

+ 2−1‖rnF0V′S + rnUB0
S
′
+ r2nUV′S‖2F − rnηn‖WS ◦VS‖1

=: (I) + (II) + (III). (A.10)

By Lemma 7 (a)–(c), we bound (I) as

|(I)| ≤ rn
∣∣tr V′SE

′F0
∣∣+ rn

∣∣∣tr B0
S
′
E′U

∣∣∣+ r2n
∣∣tr V′SE

′U
∣∣

. rn

(
T 1/2‖VS‖F +N

1/2
1 ‖U‖F

)
`1/2n + r2n‖U‖F‖VS‖F`1/2n .
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Next, we bound (II) from below as

(II) = 2−1‖rnF0V′S + rnUB0
S
′
+ r2nUV′S‖2F

≥ 2−1‖rnUB0
S
′‖2F + 2−1‖rnF0V′S‖2F − r3n

∣∣tr VSU
′F0V′S

∣∣− r3n ∣∣tr B0
SU
′UV′S

∣∣− r2n ∣∣tr B0
SU
′F0V′S

∣∣
= (i) + (ii) + (iii) + (iv) + (v).

In view of the Rayleigh quotient, (i) and (ii) are further bounded from below as

(i) + (ii) = 2−1‖UB0′‖2F + 2−1‖F0V′S‖2F
= 2−1r2n‖(IT ⊗B0) vec(U′)‖22 + 2−1r2n‖(IN ⊗ F0) vec(V′S)‖22

& r2n

{
min

u∈RTr\{0}

(
‖(IT ⊗B0)u‖22

‖u‖22

)
‖U‖2F + min

v∈RNr\{0}

(
‖(IN ⊗ F0)v‖22

‖v‖22

)
‖VS‖2F

}
& r2n

(
Nr‖U‖2F + T‖VS‖2F

)
.

Meanwhile, by Lemma 7 (d)–(f), |(iii) + (iv) + (v)| is bounded from above as

|(iii) + (iv) + (v)| . r3n

(
‖U‖F‖VS‖2F`1/2n +N

1/2
1 ‖U‖

2
F‖VS‖F

)
+ r2nN

1/2
1 ‖U‖F‖VS‖F`

1/2
n .

Combining these bounds of (i)–(v) yields

(II) & (i) + (ii)− |(iii) + (iv) + (v)| & r2n
(
Nr‖U‖2F + T‖VS‖2F

)
− r3n

(
‖U‖F‖VS‖2F`1/2n +N

1/2
1 ‖U‖

2
F‖VS‖F

)
− r2nN

1/2
1 ‖U‖F‖VS‖F`

1/2
n .

We then consider (III) in (A.10). Lemma 8 yields

|(III)| = rnηn‖WS ◦VS‖1 ≤ rnηn‖WS‖F‖VS‖F . N
1/2
1 rn(ηn/b

0
n)‖VS‖F,

where b0n = min(i,k)∈S |b0ik|, with high probability.
Putting together the pieces obtained so far with (A.10), we have

inf
‖U‖F=C, ‖VS‖F=C

Qn(F0 + rnU,B
0
S + rnVS)−Qn(F0,B0

S)

& inf
‖U‖F=C, ‖VS‖F=C

{(II)− |(I)| − |(III)|}

& inf
‖U‖F=C, ‖VS‖F=C

{
r2n
(
Nr‖U‖2F + T‖VS‖2F

)
− r3n

(
‖U‖F‖VS‖2F`1/2n +N

1/2
1 ‖U‖

2
F‖VS‖F

)
− r2nN

1/2
1 ‖U‖F‖VS‖F`

1/2
n

− rn
(
T 1/2‖VS‖F`1/2n +N

1/2
1 ‖U‖F`

1/2
n

)
− r2n‖U‖F‖VS‖F`1/2n −N1/2

1 rn(ηn/b
0
n)‖VS‖F

}
� r2n

(
Nr + T −N1/2

1 `1/2n

)
C2 − r3nN

1/2
1 C3 − rn

(
T 1/2`1/2n +N

1/2
1 `1/2n +N

1/2
1 (ηn/b

0
n)
)
C.

By condition (8), which is implied by (10), and the fact that rn ≥ N
1/2
r T 1/2/(Nr ∨ T ) ≥ 1,

we have

inf
‖U‖F=C, ‖VS‖F=C

Qn(F0 + rnU,B
0
S + rnVS)−Qn(F0,B0

S)

& r2n (Nr ∨ T )C2 − r3nN
1/2
1 C3 − rnN1/2

1 (ηn/b
0
n)C. (A.11)

6



Furthermore, in (A.11), the first term dominates the second as the ratio, r3nN
1/2
1 /{r2n(Nr ∨

T )} = N2
1 /{N2

r T
1/2}`1/2n , converges to zero by condition (11). Also, the first term dominates

the third in (A.11) by the upper bound of conditions (12) as long as C > 0 is taken to be
large enough. In consequence, the lower bound (A.11) tends to positive for such C > 0 and
(A.9) holds.

(Second step) Set F̂ = F̂o and B̂ = B̂o
S . If the estimator (F̂, B̂) is indeed a minimizer of

the unrestricted problem, minQn(F,B) over RT×r × RN×r, the proof completes. Note that
supp B̂ = S by the construction. Taking the same strategy as in Fan et al. (2014), we check
the optimality of (F̂, B̂). By a simple calculation, the (sub-)gradients of Qn with respect to
F and B are given by

∇FQn(F,B) = FB′B−XB, ∇BQn(F,B) = BF′F−X′F + ηnT,

where the (i, k)th element of T ∈ RN×r is defined as

tik

{
= wik sgn(bik) for bik 6= 0,

∈ wik[−1, 1] for bik = 0.

Then (F̂, B̂) is a strict minimizer of (7) if the following conditions hold:

F̂B̂′B̂−XB̂ = 0T×r, (A.12)

T B̂S − (X′F̂)S + ηnWS ◦ sgn B̂S = 0N×r, (A.13)∥∥∥W−
Sc ◦

{
T B̂Sc − (X′F̂)Sc

}∥∥∥
max

< ηn, (A.14)

where F̂′F̂ = T Ir has been used, and W− ∈ RN×r is the matrix with its (i, k)th elements
given by 1/wik. Since (F̂, B̂S) is a minimizer of Qn(F,BS), it satisfies the Karush–Kuhn–
Tucker (KKT) conditions. Therefore, we only need to check condition (A.14), which is
verified by Lemma 9. This completes the proof of Theorem 4.

A.5 Proof of Corollary 2

Proof. Recall that α̂j = log N̂j/ logN with N̂j = | supp(b̂ada
j )| and αj = logNj/ logN by the

definition. Because {supp(B̂ada) = supp(B0)} ⊂ {N̂j = Nj for all j = 1, . . . , r}, we have

P (α̂j = αj for all j = 1, . . . , r)

= P
(
N̂j = Nj for all j = 1, . . . , r

)
≥ P

(
supp(B̂ada) = supp(B0)

)
.

The last probability tends to one by the factor selection consistency. This completes the
proof of Corollary 2.

B Related Lemmas and the Proofs

Lemma 1. Suppose that Assumptions 1–3 hold. Then the following inequalities simultane-
ously hold with probability at least 1−O ((N ∨ T )−ν):

(a) ‖E‖2 . (N ∨ T )1/2,

(b) ‖EB0‖max . N
1/2
1 log1/2(N ∨ T ),

7



(c) ‖E′F0‖max . T 1/2 log1/2(N ∨ T ),

(d) maxi∈{1,...,N}

∣∣∣∑T
t=1

(
e2ti − E e2ti

)∣∣∣ . T 1/2 log1/2(N ∨ T ).

Proof of Lemma 1. (a) The tth row of E, et ∈ RN , is specified as et =
∑L

`=0 Φ`εt−`,

where εt ∈ RN is composed of i.i.d. subG(σ2ε) by Assumption 3. We also define Ẽ` =
(ε1−`, . . . , εT−`)

′ ∈ RT×N . Then, we can write E =
∑Ln

`=0 Ẽ`Φ
′
`, so that the spectral norm is

bounded as

‖E‖2 ≤
Ln∑
`=0

‖Ẽ`‖2‖Φ`‖2 ≤ max
`∈{0,...,Ln}

‖Ẽ`‖2
∞∑
`=0

‖Φ`‖2.

By Assumption 3, the last infinite sum is bounded from above. Because of the union bound
and sub-Gaussianity (see Section 4 and Theorem 5.39 of Vershynin 2012), there is a positive
constant M such that

P
(

max
`∈{0,...,Ln}

∥∥∥(N ∨ T )−1/2Ẽ`

∥∥∥
2
> M

)
≤ Ln max

`∈{0,...,Ln}
P
(∥∥∥(N ∨ T )−1/2Ẽ`

∥∥∥
2
> M

)
≤ 2(N ∨ T )ν exp (−c1|N ∨ T |) ≤ exp (−c2|N ∨ T |)

for some constants c1, c2 > 0, where the last inequality holds since ν is a fixed positive
constant. Thus, ‖(N ∨ T )−1/2E‖2 is bounded by a constant with probability at least 1 −
exp (−|c2(N ∨ T )|).

(b) By the definition, the (t, k)th element of EB0 is given by e′tb
0
k =

∑Ln
`=0 ε

′
t−`Φ

′
`b

0
k.

Let b̃`k,i denote the ith element of Φ′`b
0
k. Then, we have

‖EB0‖max = max
t∈{1,...,T},k∈{1,...,r}

∣∣∣∣∣
Ln∑
`=0

N∑
i=1

εt−`,ib̃`k,i

∣∣∣∣∣
≤

Ln∑
`=0

max
t∈{1,...,T},k∈{1,...,r}

∣∣∣∣∣‖Φ′`bk‖−12

N∑
i=1

εt−`,ib̃`k,i

∣∣∣∣∣ ‖Φ′`bk‖2
≤ max

t∈{1,...,T},k∈{1,...,r},`∈{0,...,Ln}

∣∣∣∣∣‖Φ′`bk‖−12

N∑
i=1

εt−`,ib̃`k,i

∣∣∣∣∣max
k

Ln∑
`=0

‖Φ`‖2‖bk‖2

. N
1/2
1 max

t,k,`

∣∣∣∣∣‖Φ′`bk‖−12

N∑
i=1

εt−`,ib̃`k,i

∣∣∣∣∣
∞∑
`=0

‖Φ`‖2.

Since {εt−`,ib̃`k,i}Ni=1 is a sequence of independent subG(σ2ε b̃
2
`k,i) for each t, k, `, we can further

see that ‖Φ′`bk‖
−1
2

∑N
i=1 εt−`,ib̃`k,i ∼ subG(σ2ε) by Lemma 2(b). Thus, the union bound yields

P

(
max
t,k,`

∣∣∣∣∣‖Φ′`bk‖−12

N∑
i=1

εt−`,ib̃`k,i

∣∣∣∣∣ > x

)

≤ rT (Ln + 1) max
t,k,`

P

(∣∣∣∣∣‖Φ′`bk‖−12

N∑
i=1

εt−`,ib̃`k,i

∣∣∣∣∣ > x

)
≤ 2r(N ∨ T )ν+1 exp

(
− x2

2σ2ε

)
.

Setting x =
(
2σ2ε(2ν + 1) log(N ∨ T )

)1/2
leads to

max
t,k,`

∣∣∣∣∣‖Φ′`bk‖−12

N∑
i=1

εt−`,ib̃`k,i

∣∣∣∣∣ ≤ (2σ2ε(2ν + 1) log(N ∨ T )
)1/2

,
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which holds with probability at least 1 − O ((N ∨ T )−ν). This together with the first in-
equality achieves the result.

(c) Let Z̃` = (ζ1−`, . . . , ζT−`)
′ ∈ RT×r. Then, by Assumptions 1 and 3, we can write

E′F =
∑L

`,m=0 Φ`Ẽ
′
`Z̃mΨ′m. By the triangle inequality and property of matrix norms, we

observe that

‖E′F‖max ≤
Ln∑

`,m=0

‖Φ`Ẽ
′
`Z̃mΨ′m‖max ≤ r1/2

Ln∑
`,m=0

‖Ψm‖2 max
i∈{1,...,N},k∈{1,...,r}

∣∣∣φ′`,iẼ′`ζm,k∣∣∣
≤ r1/2

Ln∑
`,m=0

‖Ψm‖2 max
i,k

∣∣∣‖φ`,i‖−12 φ
′
`,iẼ

′
`ζm,k

∣∣∣max
i
‖φ`,i‖2

≤ r1/2 max
`,m,i,k

∣∣∣‖φ`,i‖−12 φ
′
`,iẼ

′
`ζm,k

∣∣∣ Ln∑
`,m=0

‖Ψm‖2 max
i
‖φ`,i‖2

≤ r1/2 max
`,m,i,k

∣∣∣‖φ`,i‖−12 φ
′
`,iẼ

′
`ζm,k

∣∣∣ ∞∑
m=0

‖Ψm‖2
∞∑
`=0

‖Φ`‖2,

where φ′`,i and ζm,k are the ith row vector of Φ` and kth column vector of Z̃m, respectively.
We can see that for each i and `, the row vector

φ′`,iẼ
′
` =

 N∑
j=1

φ`,ijε1−`,j , . . . ,
N∑
j=1

φ`,ijεT−`,j


is composed of independent subG(σ2ε‖φ`,i‖22). Since ζm,k = (ζ1−m,k, . . . , ζT−m,k)

′ consists of
i.i.d. subG(σ2ζ ), Lemma 2(a) entails that

‖φ`,i‖−12 φ
′
`,iẼ

′
`ζm,k =

T∑
t=1

‖φ`,i‖−12

N∑
j=1

φ`,ijεt−`,j

 ζt−m,k

is the sum of i.i.d. subE(4eσεσζ). Therefore, the union bound and Bernstein’s inequality for
the sum of sub-exponential random variables give

P
(

max
`,m,i,k

∣∣∣T−1‖φ`,i‖−12 φ
′
`,iẼ

′
`ζm,k

∣∣∣ > x

)
≤ rN(Ln + 1)2 max

`,m,i,k
P
(∣∣∣T−1‖φ`,i‖−12 φ

′
`,iẼ

′
`ζm,k

∣∣∣ > x
)

≤ 2r(N ∨ T )2ν+1 exp

{
−T

2

(
x2

16e2σ2εσ
2
ζ

∧ x

4eσεσζ

)}

for all x > 0. Putting x =
(

32e2σ2εσ
2
ζ (3ν + 1)T−1 log(N ∨ T )

)1/2
gives

max
`,m,i,k

∣∣∣‖φ`,i‖−12 φ
′
`,iẼ

′
`ζm,k

∣∣∣ ≤ (32e2σ2εσ
2
ζ (3ν + 1)T log(N ∨ T )

)1/2
,

which holds with probability at least 1−O ((N ∨ T )−ν). Combining this with the first bound
yields the result.
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(d) To obtain the result, we apply the Hanson–Wright inequality in Rudelson and Ver-
shynin (2013). Let ξ = (ξ1, . . . , ξm)′ ∈ Rm denote a random vector of m independent copies
of ε ∼ subG(σ2ε). Then the inequality states that for any (nonrandom) matrix M ∈ Rm×m,

P
(∣∣ξ′Mξ − E ξ′Mξ

∣∣ > u
)
≤ 2 exp

{
−cmin

(
u2

K4‖M‖2F
,

u

K2‖M‖2

)}
, (A.15)

where c and K are positive constants such that supk≥1 k
−1/2(E |ε|k)1/k ≤ K. In our setting,

we can take K = 3σε (e.g., Rigollet and Hütter (2017), Lemma 1.4).
Let φ′`,i denote the ith row vector of Φ`. Then we have

max
i

∣∣∣∣∣T−1
T∑
t=1

(
e2ti − E e2ti

)∣∣∣∣∣ = max
i

∣∣∣∣∣T−1
T∑
t=1

Ln∑
`=0

(
ε′t−`φ`,iφ

′
`,iεt−` − E ε′t−`φ`,iφ′`,iεt−`

)
+T−1

T∑
t=1

Ln∑
`,m=0,` 6=m

ε′t−`φ`,iφ
′
m,iεt−m

∣∣∣∣∣∣ .
The first term (sum of the diagonal elements) is bounded as

max
i

∣∣∣∣∣T−1
T∑
t=1

Ln∑
`=0

(
ε′t−`φ`,iφ

′
`,iεt−` − E ε′t−`φ`,iφ′`,iεt−`

)∣∣∣∣∣
≤ T−1

Ln∑
`=0

max
i

∣∣ε̃′`A`iε̃` − E ε̃′`A`iε̃`
∣∣ ,

where ε̃` = (ε′1−`, . . . , ε
′
T−`)

′ ∈ RNT and A`i = diag(φ`,iφ
′
`,i, . . . ,φ`,iφ

′
`,i) ∈ RNT×NT . For

any ` ∈ {0, . . . , L} and u > 0, the Hanson–Wright inequality in (A.15) with the union bound
gives

P
(

max
i

∣∣ε̃′`A`iε̃` − E ε̃′`A`iε̃`
∣∣ > u

)
≤ N max

i
P
(∣∣ε̃′`A`iε̃` − E ε̃′`A`iε̃`

∣∣ > u
)

≤ 2N exp

(
−c u2

K4 maxi ‖A`i‖2F

)
Setting u = ((ν + 1)/c)1/2K2 maxi ‖A`i‖F log1/2(N ∨ T ) yields

T−1
Ln∑
`=0

max
i

∣∣ε̃′`A`iε̃` − E ε̃′`A`iε̃`
∣∣ ≤ K2T−1 log1/2(N ∨ T )

Ln∑
`=0

max
i
‖A`i‖F

. T−1/2 log1/2(N ∨ T )

Ln∑
`=0

max
i
‖φ`,iφ′`,i‖F = T−1/2 log1/2(N ∨ T )

∞∑
`=0

max
i
‖φ`,iφ′`,i‖2

. T−1/2 log1/2(N ∨ T )

with probability at least

1− 2N exp (−(ν + 1) log(N ∨ T )) = 1−O((N ∨ T )−ν).

The second term (sum of the off-diagonal elements) is bounded in the same way, and we
omit it. For detail, see the proof of Lemma 7 in Fan et al. (2019). This completes all the
proofs.
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Lemma 2. Assume Xi ∼ ind. subG(α2
i ) and Yi ∼ ind. subE(γi). Then, for any deterministic

sequences (φi) and (ψi), the following statements are true:

(a) XiXj ∼ subE(4eαiαj) for i 6= j.

(b)
∑n

i=1 φiXi ∼ subG(
∑n

i=1 φ
2
iα

2
i ).

(c)
∑n

i=1 ψiYi ∼ subE((
∑n

i=1 ψ
2
i γ

2
i )1/2,maxi |ψi|γi).

Proof. This proof was achieved in Uematsu and Tanaka (2019).

Lemma 3. Suppose the same conditions as Theorem 1. Then, for any H ∈ RT×k (k ≤ r)
such that H′H = T Ik, the following inequalities simultaneously hold with probability at least
1−O((N ∨ T )−ν):

(a) T−1
∣∣∣tr H′U0D0V0′E′H

∣∣∣ . TN
1/2
1 log1/2(N ∨ T ),

(b) T−1 tr H′EPE′H . N ∨ T,
(c) λ1(EQE′) . T ∨N,
(d) T−1 tr(H′EQE′H) . T ∨N.

Proof. Recall the notation based on the SVD of C0: U0 = F0 and V0D0 = B0. We
derive the results on the event that Lemma 1 hold, which occurs with probability at least
1−O((N ∨ T )−ν). Prove (a). Low rankness of each matrix and Lemma 1(b) give∣∣∣tr H′U0D0V0′E′H

∣∣∣ ≤ ‖HH′‖F‖U0‖F‖D0V0′E′‖F . ‖HH′‖F‖U0‖F‖D0V0′E′‖2

. TT 1/2T 1/2‖D0V0′E′‖max . T 2N
1/2
1 log1/2(N ∨ T ).

Prove (b). Since the rank of P is at most r, Lemma 1(a) gives

tr H′EPE′H . ‖HH′‖F‖EPE′‖2 ≤ T‖E‖22‖P‖2 . T (N ∨ T ).

Prove (c). By the argument of the proof of Lemma A.8 in Ahn and Horenstein (2013) and
Lemma 1(a), the bound

λ1(EQE′) ≤ λ1(EQE′ + EPE′) = λ1(EE′) = ‖E‖22 . T ∨N.

Prove (d). From the triangle inequality and result (c), we have

tr(H′EQE′H) . ‖HH′‖F‖EQE′‖2 ≤ ‖HH′‖F(‖EE′‖2 + ‖EPE′‖2) . T (T ∨N).

This completes all the proofs of (a)–(d).

Lemma 4. Suppose the same conditions as Theorem 2. Then we have

‖E∆b‖2 . ‖∆b‖F(Ñ ∨ T )1/2 log1/2(N ∨ T )

with probability at least 1−O((N ∨ T )−ν).
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Proof. In the upper bound of (A.3), we consider a tighter bound of the second trace. The
second trace in the upper bound of(A.3) is bounded as∣∣∣tr E∆b∆f ′

∣∣∣ ≤ ‖E∆b‖2‖∆f‖∗.

Because B̂ and B0 lie in the set B(Ñ) = {B ∈ RN×r : ‖B‖0 . Ñ/2} for Ñ ∈ [N1, N ] by
Assumption 4, we have

‖∆b‖0 ≤ ‖B̂‖0 + ‖B0‖0 . Ñ/2 + Ñ/2 ≤ Ñ .

Define a set of sparse vectors V(A) = {v ∈ RN\{0} : ‖v‖0 = |A|} with A ⊂ {1, . . . , N}.
Then, by the definition of the spectral norm, we have

‖E∆b‖22 = max
u∈Rr\{0}

u′∆b′E′E∆bu

u′u
≤ max

u∈Rr\{0}

u′∆b′E′E∆bu

u′∆b′∆bu
max

u∈Rr\{0}

u′∆b′∆bu

u′u

≤ max
|A|.Ñ

max
v∈V(A)

v′E′Ev

v′v
‖∆b‖22 = max

|A|.Ñ
max

vA∈R|A|

v′AE′AEAvA
v′AvA

‖∆b‖22

≤ max
|A|.Ñ

‖EA‖22‖∆b‖22 ≤ max
|A|.Ñ

max
`∈{1,...,Ln}

‖ẼA,`‖22

(
Ln∑
`=0

‖Φ`‖2

)2

‖∆b‖22

where vA ∈ R|A| consists of elements {vi : i ∈ A} and EA ∈ RT×|A| is composed of the
corresponding columns. Note that the second inequality holds since ‖∆bu‖0 . Ñ , and in the
last inequality ẼA,` is defined in the proof of Lemma 1. We also observe that

∑∞
`=0 ‖Φ`‖2 <

∞ by Assumption 3. By Theorem 5.39 of Vershynin (2012) with the union bound, for some
positive constants c1 and c2 such that c1 < c2 and C, we have

P

(
max
|A|.Ñ

max
`∈{0,...,Ln}

‖ẼA,`‖2 > C(Ñ ∨ T )1/2 log1/2(N ∨ T )

)

≤
(
N

c1Ñ

)
(Ln + 1) max

|A|.Ñ
max

`∈{1,...,Ln}
P
(
‖ẼA,`‖2 > C(Ñ ∨ T )1/2 log1/2(N ∨ T )

)
. N c1Ñ (N ∨ T )ν exp

{
−c2(Ñ ∨ T ) log(N ∨ T )

}
= O

(
(N ∨ T )−Ñ∨T

)
= O

(
(N ∨ T )−ν

)
.

Thus, we have with probability at least 1−O((N ∨ T )−ν),

‖E∆b‖2 . ‖∆b‖2(Ñ ∨ T )1/2 log1/2(N ∨ T ) ≤ ‖∆b‖F(Ñ ∨ T )1/2 log1/2(N ∨ T ),

giving the desired bound.

Lemma 5. Suppose the same conditions as Theorem 2. Then we have

‖∆‖2F & κn

(
‖F̂− F0‖2F + ‖B̂−B0‖2F

)
,

where κn = Nr(Nr ∧ T )/N1.
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Proof. Recall the notation based on the SVD of C0 and Ĉ: U0 = F0, V0D0 = B0, Û = F̂,
and V̂D̂ = B̂. To establish the statement, we derive the following two inequalities:

(a) ‖∆‖2F &
N2
r

N1
‖Û−U0‖2F,

(b) ‖∆‖2F &
TNr

N1
‖D̂V̂′ −D0V0′‖2F.

Using them, we can immediately obtain the result.
First we prove (a). We define matrices: Û∗ = T−1/2Û, D̂∗ = D̂N̂1/2, V̂∗ = V̂N̂−1/2,

U0
∗ = T−1/2U0, D0

∗ = D0N1/2, and V0
∗ = V0N−1/2, where N̂ is any p.d. diagonal matrix.

Then, we can see that

T−1/2∆ = Û∗D̂∗V̂
′
∗ −U0

∗D
0
∗V

0
∗
′
=: ∆∗.

For this expression, we can apply the proof of Lemma 3 in Uematsu et al. (2019). That is,
under Assumptions 1 and 2, we have

‖Û∗ −U0
∗‖2F =

r∑
k=1

‖û∗k − u0
∗k‖22 . d2∗1‖∆∗‖2F

r∑
k=1

1

δd4∗k

= d21N1‖∆∗‖2F
r∑

k=1

1

δd4kN
2
k

. ‖∆∗‖2F
N1

N2
r

.

Rewriting this inequality with the original scaling gives result (a).
Next, we prove (b). We begin with rewriting ∆∗ as

Û∗(D̂∗V̂
′
∗ −D0

∗V
0
∗
′
) = ∆∗ − (Û∗ −U0

∗)D
0
∗V

0
∗
′
.

The triangle inequality and unitary property of the Frobenius norm entail that

‖D̂∗V̂′∗ −D0
∗V

0
∗
′‖F ≤ ‖∆∗‖F + ‖(Û∗ −U0

∗)D
0
∗‖F.

We can bound the second term of the upper bound as in the proof of (a). That is, we have

‖(Û∗ −U0
∗)D

0
∗‖2F ≤ ‖∆∗‖2F(cd2∗1/δ)

r∑
k=1

d−2∗k

= ‖∆∗‖2F(cd21N1/δ)

r∑
k=1

(dkN
1/2
k )−2 . ‖∆∗‖2F

N1

Nr
.

Combining these inequalities gives

‖D̂∗V̂′∗ −D0
∗V

0
∗
′‖2F ≤ 2‖∆∗‖2F + 2‖(Û∗ −U0

∗)D
0
∗‖2F

. ‖∆∗‖2F + ‖∆∗‖2F
N1

Nr
= T−1‖∆‖2F

(
1 +

N1

Nr

)
.

Noting that the left-hand side is equal to ‖D̂V̂′ −D0V0′‖2F, we obtain

‖∆‖2F & T

(
1 +

N1

Nr

)−1
‖D̂V̂′ −D0V0′‖2F

=
TNr

N1 +Nr
‖D̂V̂′ −D0V0′‖2F &

TNr

N1
‖D̂V̂′ −D0V0′‖2F.

This completes the proof.

13



Lemma 6. Suppose that Assumptions 1–4 with Ñ = N and conditions (9) and (10) hold.
Then we have

‖B̂PC −B0‖max . T−1/2 log1/2(N ∨ T )

with probability at least 1−O((N ∨ T )−ν).

Proof. Let ∆̂ = F̂PC − F0. Define

F =
{

∆ = (δtk) ∈ RT×r : ‖∆‖F ≤ CrPCn
}

with rPCn =
N1(NT )1/2 log1/2(N ∨ T )

Nr(Nr ∧ T )
,

where C is some positive constant introduced in the proof of Theorem 4. By the definition
of the PC estimator under PC1 restriction, we have

B̂PC = T−1X′F̂PC = T−1(B0F0′ + E′)F̂PC

= T−1(B0F0′ + E′)F0 + T−1(B0F0′ + E′)∆̂

= B0 + T−1E′F0 + T−1B0F0′∆̂ + T−1E′∆̂.

Then the triangle inequality implies that

‖B̂PC −B0‖max ≤ T−1‖E′F0‖max + T−1‖B0F0′∆̂‖max + T−1‖E′∆̂‖max. (A.16)

From Lemma 1(c), the first term of (A.16) is bounded by T−1/2 log1/2(N ∨ T ) (up to a
positive constant factor) with probability at least 1− O((N ∨ T )−ν). We then consider the
remaining two terms. For any ∆ ∈ RT×r, we have

∥∥∥B0F0′∆
∥∥∥
max
≤ r

∥∥B0
∥∥
max

∥∥∥F0′∆
∥∥∥
max

.
∥∥∥F0′∆

∥∥∥
max
≤ max

k

∑
`

∥∥∥∥∥Ψ`

∑
t

ζt−`δtk

∥∥∥∥∥
max

.

By Lemma 2 with Assumption 1, we have z`,jk :=
∑

t ζt−`,jδtk ∼ subG(σ2ζ‖δk‖22) for each
fixed δtk, j, and `. By the independence of z`,jk across j and Lemma 2 again, we have∑

j ψ`,ijz`,jk ∼ subG(σ2ζ‖δk‖22‖Ψ`,i·‖22) for each i, k, and `. Therefore, for any fixed ∆ and
`, the subG tail inequality with the union bound entails that

max
k

∥∥∥∥∥Ψ`

∑
t

ζt−`δtk

∥∥∥∥∥
max

. max
i
‖Ψ`,i·‖2‖∆‖F log1/2(N ∨ T )

with probability at least 1−O((N ∨T )−ν). Because maxi ‖Ψ`,i·‖2 ≤ ‖Ψ`‖2 by the definition
of the spectral norm, we have

sup
∆∈F

∥∥∥F0′∆
∥∥∥
max
≤ C

∑
`

‖Ψ`‖2rPCn log1/2(N ∨ T ) . rPCn log1/2(N ∨ T )

with probability at least 1−O((N ∨ T )−ν). Moreover, by the same argument as above with
Assumption 3, we have

sup
∆∈F

∥∥E′∆∥∥
max

. rPCn log1/2(N ∨ T ) =
N1N

1/2T log1/2(N ∨ T )

Nr(Nr ∧ T )
· T−1/2 log1/2(N ∨ T )
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with probability at least 1 − O((N ∨ T )−ν). Consequently, by Theorem 3 with condition
(10), the bound in (A.16) becomes

‖B̂PC −B0‖max . T−1/2 log1/2(N ∨ T ) +
N1N

1/2 log1/2(N ∨ T )

Nr(Nr ∧ T )
· T−1/2 log1/2(N ∨ T )

= T−1/2 log1/2(N ∨ T ) + o(1)T−1/2 log1/2(N ∨ T )

with probability at least 1−O((N ∨ T )−ν). This completes the proof of Lemma 6.

Lemma 7. Suppose the same conditions as Theorem 4. Then, for any deterministic matrices
U = (utk) ∈ RT×r and V = (vik) ∈ RN×r, the following inequalities simultaneously hold with
probability at least 1−O((N ∨ T )−ν):

(a)
∣∣tr EB0U′

∣∣ . N
1/2
1 ‖U‖F log1/2(N ∨ T ),

(b)
∣∣tr E′F0V′S

∣∣ . T 1/2‖VS‖F log1/2(N ∨ T ),

(c)
∣∣tr V′SE

′U
∣∣ . ‖U‖F‖VS‖F log1/2(N ∨ T ),

(d)
∣∣tr VSU

′F0V′S
∣∣ . ‖U‖F‖VS‖2F log1/2(N ∨ T ),

(e)
∣∣tr B0U′UV′S

∣∣ . N
1/2
1 ‖U‖

2
F‖VS‖F,

(f)
∣∣tr B0U′F0V′S

∣∣ . N
1/2
1 ‖U‖F‖VS‖F log1/2(N ∨ T ).

Proof. Recall that VS ∈ RN×r is defined as the matrix whose (i, k)th element is vik1{(i, k) ∈
S}, where S = supp(B0); see the proof of Theorem 4.

(a) First note that the (t, k)th element of EB0 is given by e′tb
0
k. We observe that

∣∣tr EB0U′
∣∣ =

∣∣vec(EB0)′u
∣∣ ≤ rmax

k

∣∣∣∣∣
T∑
t=1

e′tb
0
kutk

∣∣∣∣∣ ,
where we have written as u = vec(U). From Assumption 3, recall that et =

∑L
`=0 Φ`εt−`,

where εt = (εt1, . . . , εtN )′ with {εti}t,i ∼ i.i.d. subG(σ2ε). Let b̃`k,i denote the ith element of
Φ′`b

0
k as in the proof of Lemma 1(b). Then, we have

max
k

∣∣∣∣∣
T∑
t=1

e′tb
0
kutk

∣∣∣∣∣ = max
k

∣∣∣∣∣
T∑
t=1

L∑
`=0

N∑
i=1

εt−`,ib̃`k,iutk

∣∣∣∣∣
≤

L∑
`=0

max
k

∣∣∣∣∣
T∑
t=1

N∑
i=1

εt−`,ib̃`k,iutk

∣∣∣∣∣ ≤
L∑
`=0

max
k

∣∣∣∣∣‖Φ′`bk‖−12

T∑
t=1

N∑
i=1

εt−`,ib̃`k,iutk

∣∣∣∣∣ ‖Φ′`bk‖2
≤ max

k,`

∣∣∣∣∣‖Φ′`bk‖−12

T∑
t=1

N∑
i=1

εt−`,ib̃`k,iutk

∣∣∣∣∣max
k
‖bk‖2

∞∑
`=0

‖Φ`‖2

. N
1/2
1 max

k,`

∣∣∣∣∣
T∑
t=1

utk‖Φ′`bk‖−12

N∑
i=1

εt−`,ib̃`k,i

∣∣∣∣∣ .
Since {εt−`,ib̃`k,i}i is a sequence of independent subG(σ2ε b̃

2
`k,i) for each t, k, `, we can see that

{‖Φ′`bk‖
−1
2

∑N
i=1 εt−`,ib̃`k,i}t ∼ indep. subG(σ2ε) by Lemma 2. Moreover, Lemma 2 gives

Zk` :=
T∑
t=1

utk‖Φ′`bk‖−12

N∑
i=1

εt−`,ib̃`k,i ∼ subG(σ2ε‖uk‖22).
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Therefore, the subG tail inequality and the union bound entail

P
(

max
k,`
|Zk`| > x

)
≤ r(L+ 1) max

k,`
P (|Zk`| > x)

≤ 2r(N ∨ T )ν exp

(
− x2

2σ2ε maxk ‖uk‖22

)
≤ 2r(N ∨ T )ν exp

(
− x2

2σ2ε‖U‖2F

)
.

Setting x2 = 4σ2ε‖U‖2Fν log(N ∨ T ) leads to getting the bound

max
k,`
|Zk`| ≤ 2σε‖U‖Fν1/2 log1/2(N ∨ T )

with probability at least 1−O((N ∨ T )−ν). Thus the desired upper bound∣∣tr EB0U′
∣∣ . N

1/2
1 log1/2(N ∨ T )‖U‖F

holds with probability at least 1−O((N ∨ T )−ν).
(b) As in the proof of Lemma 1, we write Ẽ` = (ε1−`, . . . , εT−`)

′ ∈ RT×N and Z̃` =
(ζ1−`, . . . , ζT−`)

′ ∈ RT×r. Then we can write E′F =
∑Ln

`,m=0 Φ`Ẽ
′
`Z̃mΨ′m under Assumptions

1 and 3. By the same way as in (a), we have

∣∣tr E′F0V′S
∣∣ =

∣∣∣∣∣∣
∑

(i,k)∈S

Ln∑
`,m=0

φ′`,iẼ
′
`Z̃mψm,kvik

∣∣∣∣∣∣ ≤
Ln∑

`,m=0

∣∣∣∣∣∣
∑

(i,k)∈S

φ′`,iẼ
′
`Z̃mψm,kvik

∣∣∣∣∣∣
=

Ln∑
`,m=0

∣∣∣∣∣∣
∑

(i,k)∈S

vik trψm,kφ
′
`,iẼ

′
`Z̃m

∣∣∣∣∣∣ =

Ln∑
`,m=0

∣∣∣tr Θ`mẼ′`Z̃m

∣∣∣ ,
where Θ`m :=

∑
(i,k)∈S vikψm,kφ

′
`,i with its (h, j)th component given by θ`m,hj for h =

1, . . . , r and j = 1, . . . , N . Recall that Ẽ′` = (ε1−`, . . . , εT−`) and Z̃′m = (ζ1−m, . . . , ζT−m)
from the proof of Lemma 1. Then we have

Ln∑
`,m=0

∣∣∣tr Θ`mẼ′`Z̃m

∣∣∣ =

Ln∑
`,m=0

∣∣∣∣∣∣
r∑

h=1

T∑
t=1

 N∑
j=1

θ`m,hjεt−`,j

 ζt−m,h

∣∣∣∣∣∣
≤ rmax

h

Ln∑
`,m=0

∣∣∣∣∣∣
T∑
t=1

‖θ`m,h‖−12

N∑
j=1

θ`m,hjεt−`,j

 ζt−m,h

∣∣∣∣∣∣ ‖θ`m,h‖2
. max

h,`,m

∣∣∣∣∣∣
T∑
t=1

‖θ`m,h‖−12

N∑
j=1

θ`m,hjεt−`,j

 ζt−m,h

∣∣∣∣∣∣
Ln∑

`,m=0

‖θ`m,h‖2

. max
h,`,m

∣∣∣∣∣∣
T∑
t=1

‖θ`m,h‖−12

N∑
j=1

θ`m,hjεt−`,j

 ζt−m,h

∣∣∣∣∣∣max
h

Ln∑
`,m=0

‖θ`m,h‖2, ,

where θ′`m,h is the hth row vector of Θ`m. By the same reason as in the proof of Lemma
1(c), Lemma 2 entails that the inside of the absolute value is the sum of i.i.d. subE(4eσεσζ)
random variables. Thus, the same bound in that proof can be used. Thus, applying the
union bound, we obtain with probability at least 1−O((N ∨ T )−ν),

max
h,`,m

∣∣∣∣∣∣
T∑
t=1

‖θ`m,h‖−12

N∑
j=1

θ`m,hjεt−`,j

 ζt−m,h

∣∣∣∣∣∣ ≤ (96e2σ2εσ
2
ζνT log(N ∨ T ))1/2.
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Finally, we evaluate maxh
∑Ln

`,m=0 ‖θ`m,h‖2. By the construction, we have

max
h

Ln∑
`,m=0

‖θ`m,h‖2 = max
h

Ln∑
`,m=0

 N∑
j=1

 ∑
(i,k)∈S

vikψm,hkφ`,ij

21/2

≤ max
h

Ln∑
`,m=0

 r∑
k=1

ψ2
m,hk

N∑
i,j=1

φ2
`,ij

1/2

‖vS‖2 ≤
∞∑
m=0

‖Ψm‖2
∞∑
`=0

‖Φ`‖F‖VS‖F.

Thus the desired upper bound holds with probability at least 1−O((N ∨ T )−ν).
(c) We observe that

∣∣tr V′SE
′U
∣∣ =

∣∣∣∣∣
r∑

k=1

T∑
t=1

v′ketutk

∣∣∣∣∣ ≤
r∑

k=1

L∑
`=0

∣∣∣∣∣
T∑
t=1

v′kΦ`εt−`utk

∣∣∣∣∣ .
By Assumption 3 and Lemma 2, we have (v′kΦ`εt−`)t ∼ indep. subG(σ2ε‖v′kΦ`‖22) for each k

and `. Thus, by Lemma 2 again, we further have
∑T

t=1 v′kΦ`εt−`utk ∼ subG(σ2ε‖v′kΦ`‖22‖uk‖22)
for each k and `. Therefore, the subG tail probability gives∣∣∣∣∣

T∑
t=1

v′kΦ`εt−`utk

∣∣∣∣∣ . ‖v′kΦ`‖2‖uk‖2 log1/2(N ∨ T ) ≤ ‖Φ`‖2‖VS‖F‖U‖F log1/2(N ∨ T )

with probability at least 1−O((N ∨ T )−ν). Consequently, we have

∣∣tr V′SE
′U
∣∣ . ∞∑

`=0

‖Φ`‖2‖VS‖F‖U‖F log1/2(N ∨ T ) . ‖VS‖F‖U‖F log1/2(N ∨ T ),

which yields the result.
(d) By the property of norms, we obtain∣∣tr V′SVSU

′F0
∣∣ ≤ ‖V′SVS‖∗‖U′F0‖2

≤ r3/2‖V′SVS‖F‖U′F0‖max . ‖VS‖2F max
j,k

∣∣∣∣∣
T∑
t=1

utjf
0
tk

∣∣∣∣∣ .
By Assumption 1, the last stochastic part is evaluated as

max
j,k

∣∣∣∣∣
T∑
t=1

utkf
0
tk

∣∣∣∣∣ = max
j,k

∣∣∣∣∣
Ln∑
`=0

r∑
m=1

ψ`,km

T∑
t=1

utjζt−`,m

∣∣∣∣∣
≤ rmax

k,m

Ln∑
`=0

|ψ`,km|max
j,m

∣∣∣∣∣
T∑
t=1

ζt−`,mutj

∣∣∣∣∣ ≤ rmax
j,m,`

∣∣∣∣∣
T∑
t=1

ζt−`,mutj

∣∣∣∣∣max
k,m

Ln∑
`=0

|ψ`,km|

. max
j,m,`

∣∣∣∣∣
T∑
t=1

ζt−`,mutj

∣∣∣∣∣
∞∑
`=0

‖Ψ`‖2,

where {ζtm}t,m ∼ i.i.d. subG(σ2ζ ) and
∑∞

`=0 ‖Ψ`‖2 is bounded. By Lemma 2(b), we have∑T
t=1 ζt−`,mutj ∼ subG(σ2ζ‖uj‖22) for any j,m, `. Thus, the subG tail inequality together
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with the union bound establishes that

P

(
max
j,m,`

∣∣∣∣∣
T∑
t=1

ζt−`,mutj

∣∣∣∣∣ > x

)
≤ r2(Ln + 1) max

j,m,`
P

(∣∣∣∣∣
T∑
t=1

ζt−`,mutj

∣∣∣∣∣ > x

)

. (N ∨ T )ν exp

(
− x2

2σ2ζ maxj ‖uj‖22

)
.

Setting x = 2ν1/2σζ maxj ‖uj‖2 log1/2(N ∨ T ) yields

max
j,m,`

∣∣∣∣∣
T∑
t=1

ζt−`,mutj

∣∣∣∣∣ ≤ 2σζ max
j
‖uj‖2 log1/2(N ∨ T ) . ‖U‖F log1/2(N ∨ T )

with probability at least 1−O((N ∨T )−ν). This together with the first inequality yields the
result.

(e) We observe that∣∣tr B0U′UV′S
∣∣ ≤ ‖V′SB0‖F‖U′U‖F . N

1/2
1 ‖U‖

2
F‖VS‖F,

which gives the proof.
(f) By the property of norms, we obtain∣∣tr V′SB

0U′F0
∣∣ ≤ ‖V′SB0‖∗‖U′F0‖2

≤ r3/2‖V′SB0‖F‖U′F0‖max . N
1/2
1 ‖VS‖F max

j,k

∣∣∣∣∣
T∑
t=1

utjf
0
tk

∣∣∣∣∣ .
Thus by the same argument as the proof of (d), we conclude that the stochastic part is
bounded by ‖U‖F log1/2(N ∨ T ), which occurs with probability at least 1− O((N ∨ T )−ν).
This completes the proofs of (a)–(f).

Lemma 8. Suppose the same conditions as Theorem 4. Then we have with high probability

‖WS‖F ≤
2(rN1)

1/2

b0n
.

Proof. Let b0n = min(i,k)∈S |b0ik| and b̂n = min(i,k)∈S |b̂
ini
ik |. For any x > 0, we have

P (‖WS‖F > x) ≤ P
(
‖WS‖F > x | b̂n > b0n/2

)
+ P

(
b̂n ≤ b0n/2

)
. (A.17)

With setting x = 2(rN1)
1/2/b0n, we verify that the upper bound of (A.17) tends to zero. The

first probability of the upper bound is bounded as

P

(
‖WS‖F >

2(rN1)
1/2

b0n
| b̂n > b0n/2

)
≤ P

(
rN1

b̂
2

n

>
4rN1

(b0n)2
| b̂n > b0n/2

)

≤ P

(
2

b̂nb
0
n

>
4

(b0n)2
| b̂n > b0n/2

)
= P

(
b0n/2 > b̂n | b̂n > b0n/2

)
= 0.

By condition (12) and Lemma 6, the second probability of the upper bound of (A.17) is
bounded as

P
(
b̂n ≤ b0n/2

)
≤ P

(
‖B̂ini −B0‖max ≥ b0n/2

)
= o(1).

These two bounds together with (A.17) imply the result.

18



Lemma 9. Suppose the same conditions as Theorem 4. Then we have∥∥∥W−
Sc ◦ (X′F̂)Sc

∥∥∥
max

< ηn

with probability at least 1−O((N ∨ T )−ν).

Proof. Let ∆ = (δtk) = F− F0 and ∆̂ = F̂− F0. Define

F =
{
∆ ∈ RT×r : ‖∆‖F ≤ Crn

}
with rn =

N1(N1T )1/2 log1/2(N ∨ T )

Nr(Nr ∧ T )
,

where C is some positive constant introduced in the proof of Theorem 4. Then we have∥∥∥W−
Sc ◦ (X′F̂)Sc

∥∥∥
max
≤
∥∥W−

Sc
∥∥
max

∥∥∥(X′F̂)Sc
∥∥∥
max

=
∥∥∥B̂ini
Sc
∥∥∥
max

∥∥∥(B0F0′∆̂)Sc + (E′∆̂)Sc + (E′F0)Sc
∥∥∥
max

≤
∥∥∥B̂ini −B0

∥∥∥
max

(
sup
∆∈F

∥∥∥(B0F0′∆)Sc
∥∥∥
max

+ sup
∆∈F

∥∥(E′∆)Sc
∥∥
max

+
∥∥(E′F0)Sc

∥∥
max

)
≤
∥∥∥B̂ini −B0

∥∥∥
max

(
sup
∆∈F

∥∥∥B0F0′∆
∥∥∥
max

+ sup
∆∈F

∥∥E′∆∥∥
max

+
∥∥E′F0

∥∥
max

)
.

Therefore, by the same argument as the proof of Lemma 6, we observe that

η−1n

∥∥∥W−
Sc ◦ (X′F̂)Sc

∥∥∥
max

. η−1n

∥∥∥B̂ini −B0
∥∥∥
max

(
T 1/2 + rn

)
log1/2(N ∨ T ),

where T 1/2 + rn = T 1/2(1 + o(1)) by condition (10). Lemma 6 and condition (13) yield

η−1n

∥∥∥W−
Sc ◦ (X′F̂)Sc

∥∥∥
max

. η−1n

∥∥∥B̂ini −B0
∥∥∥
max

T 1/2 log1/2(N ∨ T )

. (2ηn)−1b0nT
1/2 log1/2(N ∨ T )

with high probability. By the lower bound of condition (12) with taking sufficiently large
positive constant factor in ηn, the desired strict inequality is obtained.

C Additional Estimation Results

C.1 Estimating Exponents with Stock Returns

In addition to reporting the divergence rates in Section 6.3, we summarize the estimates
of the factor loadings, focusing on analysis of the contributions of industrial sectors to the
non-zero factor loadings. Such contributions can be regarded as measures of sensitivities of
industrial sectors to the factor. Also we look into the signs of the factor loadings. Notice
that the firm securities with negative loadings react to the factor in the opposite direction to
those with positive loadings. Therefore, given the systematic risk factor, the different sign of
the factor loadings could be interpreted as the different investment positions, for example,
being long and short. Note that our analyses on the measures of sensitivities of industrial
sectors and the signs of the factor loadings are conditional on the identification restrictions
on the factors and factor loadings.
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For the above purposes, all the firms are categorized to one of the ten industrial sectors
based on Industry Classification Benchmark (ICB)13: (i) Oil & Gas; (ii) Basic Materials; (iii)
Industrials; (iv) Consumer Goods; (v) Health Care; (vi) Consumer Services; (vii) Telecom-
munications; (viii) Utilities; (ix) Financials; (x) Technology. Then, for a given factor, the
factor loadings are grouped into the negatives and the positives. For each group, the portion
of the sum of the absolute value of the factor loadings which belong to each industrial sector
is computed and reported. Specifically, we compute the following statistics for factor ` and
industry s for given estimation window:

T−b`,s =

∑N
i=1 b̂i`1{b̂i` < 0}1{i ∈ s}∑N

i=1 b̂i`1{b̂i` < 0}
, T+

b`,s
=

∑N
i=1 b̂i`1{b̂i` > 0}1{i ∈ s}∑N

i=1 b̂i`1{b̂i` > 0}

where b̂i` is the estimated factor loading of ith firm security, and 1{A} is the indicator
function which takes unity if A is true and zero otherwise. We regard the portion T−b`,s and

T+
b`,s

as the statistical measure of the negative and positive sensitivities of the sth industry to
the `th factor. The average of the portion of the industrial sectors in S&P500 and the average
of T−b`,s and T+

b`,s
for the four factors over the estimation windows τ =Sept 1998,...,April 2018,

are reported in Figure SP2.
Figure SP2(a) shows the portion of the industrial sectors to which the securities consists

of S&P500 belong, and the measure T+
b1,s

for the first factor. All the loadings to the first
factor have the same sign (and it is chosen to be positive), which strongly suggests that
this is the market factor. As one might expect, the ‘beta’ (the factor loading) of defensive
industries, Oil&Gas, Health Care, Telecoms and Utilities is relatively small. The ‘beta’ of
cyclical industries such as Industrials, Financials and Basic Materials, is noticeably high.
The averages of the measures of negative and positive industrial contributions to the second
factor loadings are reported in Figure SP2(b). It shows that Utility and Financials account
for around 43% and 23% of negative loadings, respectively, while Technology, Industrials and
Basic Materials share 40%, 17% and 14% of positive loadings, respectively. The averages
of T−b`,s and T+

b`,s
for the third factor are reported in Figure SP2(c). It is clear that this is

the Oil&Gas factor, which share the 67% of the negative loadings. Financials, Consumer
Services and Consumer Goods share 29%, 23% and 19% of positive loadings, which means
that these industrial sectors move opposite direction to the Oil&Gas with respect to the
third factor. In view of Figure SP2(d), the dominating industry of the fourth factor is
Utility, which share 43% of positive loading, together with Health Care with 17% of the
share. No dominant industry is found for negative loadings, which are equally shared by
cyclical industries.

In turn we discuss each factors in more details by analyzing Table SP1, Figures SP1 and
SP2. The first factor does seem to be almost always “strong,” in that the absolute sum of
factor loadings is proportional to N . As reported in Table SP1, the average of α1 over the
month windows is 0.995 and standard deviation is very small (0.004) with the minimum value
of 0.979. Also as is shown later, all the values of the factor loadings to this factor have the
same sign, which strongly suggests that this is the market factor. Now we turn our attention
to the rest of the factors. The divergence rates for the rest of the common components, α2,
α2 and α4, exhibit very different trajectory over the months, and their orders in terms of
value change (i.e., their plots cross).

Let us see the trajectory of α2. From Figure SP2(b), under our identification condition,
the second factor can be understood of Utility and Financials versus Technology, Industrials

13Refer to FTSE Russell for more details about ICB.
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and Basic Materials. In Figure SP1 it is seen that α2 moves around 0.80 until October 1998,
but from this month it sharply goes down and stay below 0.75 to October 1999. Then it
sharply goes up to achieve 0.83 in February 2000. Indeed, this period corresponds to the
turbulence of Basic Material stock index during 1998-2003, the fall of Industrials stock index
around 2001-2 and the dot com bubble towards the peak in 2000. Since then, during most
of the 2000s, α2 goes above 0.85. After achieving the peak of 0.895 in April 2009, it steadily
decreases and stabilizes around 0.75 from November 2012 onward, during which often this
factor is not estimated but the fourth factor is.

Now let us analyze the move of α3. From Figure SP2(c), under our identification condi-
tion, the third factor can be understood of Oil&Gas versus Financials, Consumer Services
and Consumer Goods. According to Table SP1, α3 has the lowest average. In Figure SP1,
it looks co-moving with α2, around 0.1 below, between September 1989 and July 2008. The
exceptions are the periods from 1991 to 1992 and from 1999 to 2000, during which α3 and
α2 are very close. A sharp rise of α3 is observed from July 2008 to April 2009. This period
coincides with the 2008 financial crisis. In just ten months, it goes up by 0.12, from 0.74 to
0.86. This can be interpreted that the Oil&Gas industry was sharply affected by the crisis.
α3 exceeds α2 in December 2010, and this change of the order remains to the latest data
point, April 2018.

Now let us analyze the move of α4. From Figure SP2(d), under our identification condi-
tion, the fourth factor can be understood of Utility and Health Care versus cyclical industries.
As shown in Figure SP1, the first estimate of the fourth factor appears in February 2004,
with the value of α4 being 0.80. Since its appearance, often it is not estimated but it is from
March 2010 onward, seemingly becoming more and more stronger toward the latest month,
April 2018. Since its first appearance, the value of α4 is mostly between 0.75 and 0.80. After
the sharp one off drop in February 2015,14 α4 rises to become the highest next to the first
factor from November 2016 onward.

14This coincides with the period at bottom of the biggest sharp fall in oil price between 2014–2015.
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