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10ABSTRACT
Integrated coastal zone management (ICZM) and marine spatial plan-
ning (MSP) have been proposed for sustainable development of
coastal zones. To implement ICZM and MSP, there is a need to estab-
lish database and informational networks to collect, share and disse-

15minate information of the present situation of coastal zones. One
permanent and concentrated use of coastal zones is hosting aqua-
cultural facilities. This study aimed to develop a method to detect and
discriminate aquacultural facilities in Matsushima Bay, Japan, using
L-band polarimetric and interferometric airborne synthetic aperture

20radar (Pi-SAR-L2). Three-component-scattering model and eigenva-
lue–eigenvector decomposition were applied. The volume-scattering
component images of the three-component-scatteringmodel showed
raft, longline, and rack aquacultural facilities from the sea surface in
good contrast. The double-bounce-scattering component percentage

25discriminated rack aquacultural facilities from raft and longline aqua-
cultural facilities. The size difference in the raft and longline aquacul-
tural facilities was helpful for discriminating the type.
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1. Introduction

Coastal zones form an extremely important area supporting not only human activities like
shipping, industry, and tourism but also marine food supplies of coastal ecosystems,

30providing ecosystem services to society. The population of coastal zones has been rapidly
increasing, and the food supplied by fisheries is increasingly important. However, world
food fish production from capture fisheries is stagnating (World Bank 2013). In contrast,
aquacultural products are rapidly increasing and account for nearly one-half of the fish
consumed worldwide (FAO 2016). However, aquaculture sometimes affects and changes

35the coastal environment (e.g. Delgado et al. 1999; Forrest et al. 2009). For sustainable
development of coastal zones, integrated coastal zone management (ICZM) was proposed
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in Agenda 21 (UNCED 1992). In Japan, the government began enforcing the Basic Act on
Ocean Policy in 2007 and is working on ICZM. Recently, marine spatial planning (MSP) has
been proposed to improve decision making and deliver an ecosystem-based approach to

40manage human activities in the marine environment (Ehler and Douvere 2007). This
approach uses maps to visualise a more comprehensive picture of the use of a marine
area and what natural resources and habitat occur (Baker and Harris 2012). To implement
ICZM and MSP, there is a need to establish database and informational networks to collect,
share, and disseminate information about the present scenario (Komatsu et al. 2012). In

45Japan, aquaculture is based on the demarcated fishery right. The area, term, and type of
aquaculture are defined by the demarcated fishery rights by the prefecture governors or
a minister. The fisheries cooperatives autonomously manage the number and location of
aquacultural facilities in a demarcated fishery area on behalf of the prefecture governor or
minister. A fisheries cooperative approximately knows these areas but they do not know the

50exact locations and aquacultural facility types because it is difficult to gather information on
numerous aquaculture facilities from field surveys. Governors orministers do not know their
distribution as well. Thus, mapping of aquacultural facilities by type in an efficient manner in
a demarcated fishery area to manage it for sustainable use of coastal zones is needed.

AQ1

Remote sensing can be used to support the planning and management of aquacultural
55practices and the implementation of adequate regulations and protectionmeasures (Ottinger,

Clauss, and Kuenzer 2016). Several studies have attempted to detect aquacultural facilities
using optical remote sensing and synthetic aperture radar (SAR) remote-sensing imagery.
Optical remote sensing detects the visible, near-infrared, and shortwave infrared radiation of
sunlight that reflects from the ground. Komatsu et al. (2002) applied a pan-sharpened IKONOS

60satellite image of 1 m spatial resolution to detect aquacultural facilities in Yamada Bay, Japan.
As a result, 4m× 12m raft aquacultural facilities (hereafter referred to as ‘RAFT’) and 50–100m
longline aquacultural facilities (hereafter referred to as ‘LONGLINE’) were detected. They also
applied 2.5 m spatial resolution pan-sharpened Advanced Land Observing Satellite (ALOS)
satellite imagery of Yamada Bay and detected RAFTs and LONGLINEs in most areas except

65where buoys were less than 1 m below the resolution of the ALOS sensor and where
LONGLINEs were submerged under the sea (Komatsu et al. 2012). From these results, it was
suggested that high-resolution optical satellite imagery can detect these small-size aquacul-
tural facilities.

SAR actively irradiates and receives microwaves and can observe under all weather
70conditions, day and night. Hence, SAR can observe more frequently compared to

optical satellite imagery. Several studies have detected aquacultural facilities using
single polarisation SAR data (e.g. Travaglia et al. 2004; Szuster, Steckler, and
Kullavanijaya 2008). During recent years, it has become possible to obtain full
polarisation data from air- and space-borne SAR systems. Full polarimetric SAR data

75provide a scattering matrix of observational objects. The scattering matrix consists of
the amplitude and phase at four polarisations, HH, HV, VH, and VV, which are
horizontally (H) and vertically (V) polarised waves sent and received by radar
antenna. Some polarimetric decomposition methods have been suggested to obtain
Earth surface conditions from full polarimetric SAR data. The three-component-

80scattering model was presented by Freeman and Durden (1998). The four-
component-scattering approach was presented by Yamaguchi et al. (2005), and the
eigenvalue–eigenvector decomposition was presented by Cloude and Pottier (1996 ,
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1997). In a previous study using full polarisation SAR data, Won, Ouchi, and Yang
(2013) successfully detected cultivation nets of a size of 123.0 m × 8.3 m in Tokyo

85Bay, Japan, using the entropy image applied constant false alarm rate (CFAR) based
on the eigenvalue decomposition of the ALOS PALSAR data. Sugimoto, Ouchi, and
Nakamura (2013) also detected cultivation nets in Tokyo Bay, Japan, by applying
four-component-scattering decomposition to ALOS PALSAR data. Although polari-
metric SAR has the potential of distinguishing targets according to differences in

90scattering characteristics, there have been no reports on the classification of types of
aquacultural facilities.

In this study, we investigated the possibility of recognising aquacultural facility types
by applying the polarimetric decomposition technique to L-band polarimetric and
interferometric airborne synthetic aperture radar (Pi-SAR-L2). Pi-SAR-L2 has been oper-

95ated by the Japan Aerospace Exploration Agency (JAXA) since 2012, and it is possible to
obtain imagery with a 1.76 m slant range resolution.

2. Study area and data

2.1. Study area

The study area was Matsushima Bay, Sanriku coast, Japan. A wide variety of marine
100products, such as oyster, scallops, sea pineapple, seaweed, and Coho salmon, are

cultured along this coast. Matsushima Bay is at the southern end of the Sanriku coast,
and the main cultivation product is oyster. Matsushima Bay is an enclosed bay with an
area of approximately 35.3 km2, a maximum depth of approximately 4 m, and a bay
mouth width of approximately 1.7 km (International EMECS Center 2001). Figure 1

105shows the distribution of the demarcated fishery right areas and the locations of wave
height, weather, and wind observational stations. Three types of oyster aquacultural
facilities, (1) RAFT, (2) LONGLINE, and (3) rack (hereafter referred to as ‘RACK’) facilities,
are placed within these demarcated fishery right areas (Figure 2). The size of the RAFT is
approximately 5 m × 15 m, the LONGLINE approximately 1 m × 60 m, and the RACK

110approximately 2–5 m × 60 m. The RAFT is constructed from bamboo poles and buoys.
The bamboo poles are fixed in vertical and horizontal directions and to complete
a square. After these are combined with buoys, the facility is anchored to the sea
bottom. Oysters are hung from the bamboo. The LONGLINE is constructed from buoys
and ropes. Both ends of the buoys are bound with ropes to form a single line. Oysters

115are hung from the rope. This type of facility is mainly placed at the mouth of the bay,
where wind and waves are strong. The RACK is placed in the shallow water area.
Bamboo poles are pounded into the sea bottom in a parallel arrangement and
a crosspiece is set to create the rack. Oysters are hung from the rack.

Matsushima Bay was damaged by the huge tsunami of 11 March 2011. The tsunami
120destroyed nearly all of the aquacultural facilities (Tsujimoto et al. 2016). Since the

occurrence of the tsunami, aquacultural facilities have been recovering year-by-year.
We collected field data on the locations and types of aquacultural facilities using
a digital camera with Global Positioning System (GPS) tracking on 2 June 2015.
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2.2. Optical satellite image and aerial photographs

125WorldView-2 data obtained on 28 January 2013 were used as a reference image.
WorldView-2 provides a 2.4 m resolution multispectral image in a 20° off-nadir observa-
tional mode. At the time of data acquisition, the weather condition was fair. The
significant wave height was 0.34 m and the wind speed was 3.5 m s�1 from the
northwest. The wave height data, acquired at a station approximately 8 km south-

130southwest of the mouth of Matsushima Bay, were provided by the Nationwide Ocean
Wave Information Network for Ports and Harbours (NOWPHAS). The weather and wind
data were provided by the Japan Meteorological Agency from a station approximately
3 km west of the inner part of Matsushima Bay (Figure 1). The wind and wave conditions
of the study site during the observation were approximately estimated from data

135obtained from these observational stations. We also referenced aerial photographs
acquired on 9 September 2013 and 2 July 2015 by the Geospatial Information
Authority of Japan.

2.3. Pi-SAR-L2 data

The Pi-SAR-L2 observed Matsushima Bay on 6 August 2014. The altitude, velocity, and
140pulse repetition frequency were 13,303 m, 230.9 m s�1, and 585.5 Hz, respectively. The

pixel size was 1.76 m (illumination) and 3.2 m (airplane flight path). The illumination
angle was 10° to 62°. The airplane flew south-southwest to north-northeast and

Figure 1. Map of Matsushima Bay with the locations of the demarcated fishery right areas and wave
height and weather and wind observational stations.
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microwave illuminated from the left side. The data were calibrated by JAXA before being
made available (Shimada et al. 2013). At the time of data acquisition, the weather

145condition was fair or cloudy. The significant wave height was 0.62 m, and the wind
speed was 3.2 m s�1 from the south-southeast.

The Pi-SAR-L2 data were analysed using PolSARpro software. We applied the three-
component-scattering model (Freeman and Durden 1998) and eigenvalue–eigenvector
decomposition (Cloude and Pottier 1997) using a 3 × 3 pixel window.

150The three-component-scattering model decomposes the full polarimetric SAR data
into surface, volume, and double-bounce scattering. According to the Freeman and
Durden (1998) three-component-scattering model, the total backscatter is as follows:

S ¼ SHH SHV
SVH SVV

� �
(1)

jSHHj2
D E

¼fsjβj2þfdjαj2þfv (2)

jSVVj2
D E

¼fsþfdþfv (3)
155

SHHS�VV
� �¼fsβþfdαþfv=3 (4)

COLOUR
FIGURE

Figure 2. Photographs taken on 2 June 2015 of the (a) RAFT, (b) LONGLINE, and (c) RACK oyster
aquacultural facility types in Matsushima Bay.
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jSHVj2
D E

¼fv=3 (5)

SHHS
�
HV

� �¼ SHVS
�
VV

� �¼ 0 (6)

Here, S is the 2 × 2 complex scattering matrix; and fs, fd, and fv are the surface,
160double-bounce, and volume scatter contributions to the VV polarisation component,

respectively. In equations, * means the complex conjugate. Determining whether
double-bounce or surface scattering is the dominant contribution by using the sign
of Re SHVS

�
VV

� �
(Van 1989) enables one to identify the contribution of each scattering

mechanism. The parameters α and β are related to double-bounce and surface scatter
165contributions. Finally, the contribution of each scattering mechanism to the span P

were estimated using the following Equations (7) through (10):

P ¼ Ps þ Pd þ Pv ¼ SHHj j2 þ 2 SHVj j2 þ SVVj j2 (7)

Ps ¼ fs 1þ jβj2
� 	

(8)

Pd ¼ fd 1þ jαj2
� 	

(9)

Pv ¼ 8 fv=3 (10)
170

We calculated the percentage of surface, double-bounce, and volume scattering in the
total backscatter.

Polarimetric parameters, entropy (H), and alpha angle �αð Þ were computed using
eigenvalue–eigenvector decomposition. According to Cloude and Pottier (1997), the

175coherency matrix is defined by the following equation:

T ¼ 1
2

SHH þ SVVð Þ SHH þ SVVð Þ� SHH þ SVVð Þ SHH � SVVð Þ�2 SHH þ SVVð ÞS�HV
SHH � SVVð Þ SHH þ SVVð Þ� SHH � SVVð Þ SHH � SVVð Þ�2 SHH � SVVð ÞS�HV
2SHV SHH þ SVVð Þ� 2SHV SHH � SVVð Þ� 4SHVS�HV

2
64

3
75
+*

¼U3

λ1 0 0

0 λ2 0

0 0 λ3

2
64

3
75U3

�T

(11)

where the parameters λ1, λ2, and λ3 are the calculated eigenvalues of T, conventionally
ordered such that 0 � λ3 � λ2 � λ1. Matrix U3 is parameterised as follows:

U3 ¼
cos α1 cos α2 cos α3

sin α1 cos β1e
iδ1 sin α2 cos β2e

iδ2 sin α3 cos β3e
iδ3

sin α1 sin β1e
iγ1 sin α2 sin β2e

iγ2 sin α3 sin β3e
iγ3

2
4

3
5 (12)

180Parameter αi is directly related to the angle of incidence and dielectric constant of the
surface with i ranging from 1 to 3. The βi angles can be interpreted as orientation angles.
γi and δi account for the phase relations. The appearance probability of each λi con-
tribution is given by the following:

6 H. MURATA ET AL.



Pi ¼ λiPn
j¼1 λj

(13)

The polarimetric scattering entropy is defined as follows:

H ¼ �n
i¼1 � PilognPi 0 � H � 1ð Þ (14)

185
where n = 3 for backscatter problems. The randomness of the scattering process is
measured by the entropy. The dominant scattering mechanism for each pixel is provided
by the alphaangle αð Þ:

α¼P1α1þP2α2þP3α3 0° � α � 90°ð Þ (15)

1903. Results and discussion

3.1. Estimation of the aquacultural facility distribution using an optical image

Estimated distributions of the three aquacultural facility types in Matsushima Bay were
mapped from a WorldView-2 image on 28 January 2013 using visual interpretation
(Figure 3). The aerial photograph obtained during September 2013 supported the

195interpretation. The RAFTs were mainly to the north of Katsura Island and to the west
of Miyato Island. The LONGLINEs were mainly north-northeast of Katsura Island, north-
northwest of Nono Island, and north-northwest and east of the Ho Islands. The RACKs

Figure 3. Estimated distributions of the (a) RAFT, (b) LONGLINE, and (c) RACK aquacultural facilities
in Matsushima Bay on 28 January 2013 from a WorldView-2 image with a near-infrared image.
Densely located RACKs are shown in dashed rounded rectangular outlines and others are shown in
solid rectangular outlines and polygons.
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were extensively distributed in the bay. The RACKs were distributed at a relatively low
density, except in the area north-northeast of Kuno Island; the area surrounded by the

200Nono, Sabusawa, and Ho islands; the area east of Hebijimasaki; and the area southwest
of Maruyamasaki. In Figure 3, densely distributed RACKs are shown by dashed rounded
rectangular outlines and others are shown by solid rectangular outlines and polygons.

3.2. Detection of an aquacultural facility using HH or HV single polarimetric
images of Pi-SAR-L2

205Figure 4 shows an (a) horizontal-horizontal (HH) single polarisation image and an (b)
horizontal-vertical (HV) single polarisation image of Pi-SAR-L2 data for 6 August 2014.
The black colour indicates small scattering, and the white colour large scattering. The HH
single polarisation image indicated a different scale of colour on sea surface by area
(Figure 4(a)). The northern area of Nono island; the area surrounded by the Nono,

210Sabusawa, and Ho islands; and the western area of Maruyamasaki and Hebijimasaki
showed small scattering from the sea surface. At the time of data acquisition, the wind
direction was from south-southeast. Therefore, it is considered that the islands blocked
the wind and affected the sea surface roughness. At these areas, aquacultural facilities
showed good contrast with the sea surface compared to that of other areas and could

215be detected. However, it was difficult to clearly detect aquacultural facilities in the study
area except for these areas. The HV single polarisation image showed small scattering
from the sea surface and large scattering from the aquacultural facilities (Figure 4(b)).
Therefore, from the HV single polarisation image we clearly detected aquacultural
facilities from the sea surface of the study area. From this HV single polarisation

220image, aquacultural facilities that were not recognised from the WorldView-2 image
(Figure 3) were detected. These aquacultural facilities are shown in the dashed rectan-
gular outlines and polygon in Figure 4(b). This can be explained by the year-by-year
recovery of aquacultural facilities after the tremendous tsunami damage that occurred
on 11 March 2011.

225The aquacultural facilities were detected using HH or HV single polarisation images.
Particularly, the HV single polarisation image showed small scattering from the sea
surface and we could detect aquacultural facilities in good contrast compared to the
HH single polarisation image. However, the aquacultural facility type was difficult to
discriminate only using the HH or HV single polarisation images.

2303.3. Discrimination of aquacultural facility types using polarimetric analysis of
Pi-SAR-L2 data

The three-component decomposition image of Pi-SAR-L2 data for 6 August 2014 is
shown in Figure 5. This image indicated double-bounce scattering as red, volume
scattering as green, and surface scattering as blue to better differentiate all three

235scatterings in one figure. To compare each scattering component image of the three-
component scattering model and the eigenvalue–eigenvector decomposition, we
focused on three the (a) RAFT, (b) LONGLINE, and (c) RACK where each aquacultural
facility type was intensively located as shown in Figure 5. The incident angle was
approximately 35° for (a) RAFT and 45° for both (b) LONGLINE and (c) RACK. Each

8 H. MURATA ET AL.



Figure 4. Images show (a) HH single polarisation and (b) HV single polarisation of Pi-SAR-L2 data for
6 August 2014. The black colour shows small scattering and the white colour large scattering.
Dashed rectangular outlines and polygons in (b) show the distributions of the aquacultural facilities
that were not recognised on the WorldView-2 image from 28 January 2013 (Figure 3).

INTERNATIONAL JOURNAL OF REMOTE SENSING 9
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FIGURE

Figure 5. Three-component decomposition image of Pi-SAR-L2 data for 6 August 2014. The image
shows double-bounce scattering as red, volume scattering as green, and surface scattering as blue.
Solid squares show areas of (a) RAFT, (b) LONGLINE, and (c) RACK aquacultural facilities, focused to
compare the scattering component images shown in Figure 6.

Figure 6. Surface, volume, and double-bounce-scattering images of the three-component-scattering
model and alpha angle and entropy images of the eigenvalue–eigenvector decomposition. The
black colour shows small scattering and the white colour large scattering. The selected areas of the
(a) RAFT, (b) LONGLINE, and (c) RACK types are shown in Figure 5.

10 H. MURATA ET AL.



240scattering component image of three are shown in Figure 6 to compare the detect-
ability. The black colour indicates small scattering and the white colour indicates large
scattering. The RAFTs and LONGLINEs were mainly detected using volume scattering,
and the RACKs the volume scattering component, double-bounce scattering compo-
nent, alpha angle, and entropy images. The three aquacultural facility types were

245commonly clearly detected using volume scattering component images. HV polarisation
greatly contributes to the volume scattering component. Therefore, it is considered that
HV single polarisation images may be suitable to detect aquacultural facilities that are in
good contrast with the sea surface. This result confirms the result in the previous
chapter 3.2.

250Table 1 shows the average and standard deviation of the surface, volume, and double-
bounce scattering computed using the three-component scattering model and the alpha
angle and entropy using eigenvalue–eigenvector decomposition. The contributions of the
scattering components were individually computed inside the solid rectangular outlines
and polygons as (a) RAFT, (b) LONGLINE, and (c) RACK shown in Figure 3. These aquacultural

255facilities inside the solid rectangular outlines and polygons that had been placed at the time
of the WorldView-2 observation on 28 January 2013 were selected for polarimetric analysis.
The aquacultural facilities that were not recognised and are not shown in Figure 3, and the
aquaculture facility types that had changed between January 2013 and July 2015 as
detected in the aerial photograph, were not part of the polarimetric analysis. The number

260of samples of the aquaculture facilities was 80 for the RAFTs, 72 for the LONGLINEs, and 210
for the RACKs. In addition, 50 sample areas of the sea surface were selected in the study area
to compare to the aquacultural facilities.

Figure 7 shows an image of the dominant scattering components of the three
aquacultural facility types and sea surface. Volume scattering was dominant and surface

265scattering was the second most important contribution to the RAFTs. The average of the
volume-scattering component percentage was 1.38 times greater than the average of
the surface-scattering component percentage. The double-bounce-scattering compo-
nent percentage of the RAFTs was very small with an average of 0.6%. The inner
structure of the RAFTs may cause volume-scattering, and microwaves reflecting from

270the surface of the RAFTs may cause surface scattering (Figure 7(a)).
Surface scattering was dominant and volume scattering was the second-greatest contri-

butor for the LONGLINEs (Figure 7(b)). The average of the surface-scattering component

Table 1. Average and standard deviation of the surface, volume, and double-bounce scattering
values computed using the three-component-scattering model, and the alpha angle and entropy
using eigenvalue–eigenvector decomposition. Aquacultural facilities selected inside the solid rec-
tangular outlines and polygons are individually shown in Figure 3.

RAFT LONGLINE RACK Sea surface

Avg SD Avg SD Avg SD Avg SD

Three–component-scattering model Surface (%) 41.7 19.3 63.1 20.3 27.1 16.8 90.7 9.3
Volume (%) 57.7 19.6 33.5 21.6 20.4 8.3 7.4 6.4
Double-bounce (%) 0.6 1.1 3.4 3.0 52.6 13.8 2.0 3.3

Eigenvalue–eigenvector
decomposition

Entropy 0.51 0.10 0.43 0.09 0.63 0.05 0.20 0.15
Alpha angle (°) 28.55 5.75 25.79 6.02 50.54 7.51 21.99 3.73

Avg*: Average
SD**: Standard deviation

INTERNATIONAL JOURNAL OF REMOTE SENSING 11



percentage was 1.88 times greater than the average of the volume-scattering component
percentage. The average of the double-bounce-scattering component percentage was 3.4%.

275This value was small, but greater than that of the RAFTs.
For the RACK, the average of the double-bounce-scattering component percentage

accounted for more than one-half of all of the scattering components. The RACKs
showed a larger double-bounce-scattering component percentage compared to that
of the RAFTs or LONGLINEs. This was likely because the RACKs are constructed from

280bamboo pounded into the sea bottom and the microwaves were reflected twice, at the
sea surface and bamboo (Figure 7(c)). On average, the surface-scattering component
accounts for a greater percentage than the volume-scattering component. The inci-
dence angle of the analysed RACK and LONGLINE areas is approximately 45°. This
incidence angle caused an obvious difference in the scattering component percentages

285in the aquacultural facility types in this study.
The sea surface accounted for 90.7% of the average of the surface-scattering compo-

nent percentage. This percentage was greater than that of the three aquacultural facility
types. The average value of the alpha angle was 0.20 which was less than that of the
three aquacultural facility types.

290Figure 8 shows triangle plots of the surface, volume, and double-bounce-scattering
component percentages computed from the three-component-scattering model for
three aquacultural facility types and sea surface samples. The selected samples were

Figure 7. Image of the dominant scattering components of the three aquacultural facility types (a)
RAFT, (b) LONGLINE, and (c) RACK as well as the (d) Sea surface.

12 H. MURATA ET AL.



the same as those selected in Table 1. The RAFTs showed widely ranging surface
(2–76%) and volume (24–98%)-scattering component percentages, but the range of

295the distribution of double-bounce (0–6%)-scattering component percentages was nar-
rower than that of the other two components. The LONGLINEs showed a more widely
ranging distribution of surface (0–85%), volume (6–100%), and double-bounce (0–11%)-
scattering component percentages than that of the RAFTs. The widespread distribution
of the volume-scattering component of the LONGLINEs may be because the LONGLINEs

300mainly consist of buoys, which scatter microwaves in all directions (Figure 7(b)). Some
LONGLINEs showed a small contribution of double-bounce scattering. It is assumed that
buoys were drier than the sea surface and that microwaves reflected twice, at the sea
surface and at the buoy. Therefore, the double-bounce-scattering component will
increase if the buoy is floating and drier than the sea surface. Sugimoto, Ouchi, and

305Nakamura (2013) concluded that surface scattering showed good contrast for detecting
cultivation nets underwater. Thus, if buoys are sinking, it seems likely that the surface-

COLOU
FIGURE

Figure 8. Triangle plots of surface, volume, and double-bounce-scattering component percentages of
the three aquacultural facility types and sea surface samples. The aquacultural facility types (a) RAFT,
(b) LONGLINE, and (c) RACK were selected inside the solid rectangular outlines and polygons shown
in Figure 3 and (d) Sea surface was extensively recorded in the study area.

INTERNATIONAL JOURNAL OF REMOTE SENSING 13



scattering component percentage would increase and the double-bounce-scattering
component percentage would relatively decrease. Therefore, the scattering component
percentage is affected by the position relation between the buoy and the sea surface.

310The RACKs showed widely ranging surface (2–71%), volume (5–57%), and double-
bounce (22–84%) -scattering components. The RACKs showed a larger double-bounce-
scattering component percentage range than that of the RAFTs and LONGLINEs. Thus, it
should be possible to discriminate the RACKs from RAFTs and LONGLINEs using the
contribution of double-bounce scattering. As shown in Figure 8 (c), aquacultural facilities

315showing a double-bounce-scattering component percentage greater than 20% were
assumed to be RACKs. The RAFTs and LONGLINEs showed a similar distribution of scatter-
ing component percentages. Thus, it was difficult to discriminate the RAFTs and
LONGLINEs from the scattering component percentage of the three-component decom-
position model. To discriminate the RAFTs and LONGLINEs, it was helpful to use the size

320difference of the facilities to estimate the facility type. The length of a RAFT is approxi-
mately 15 m, and the length of a LONGLINE or RACK is approximately 60 m. Therefore, the
RAFTs can be discriminated from the other two types of facilities using their size difference.

The sea surface showedwidely ranging surface (56–97%), volume (3–33%), and double-
bounce (0–13%)-scattering component percentages. The double-bounce-scattering com-

325ponent percentage of the sea surface was less than that of the RACKs and was possible to
discriminate. The average surface-scattering component was 90.7% and nearly all samples
showed a greater than 90% surface scattering as shown in Figure 8 (d). However, some
samples showed a smaller percentage. Hence, overlaps existed between the aquacultural
facilities and sea surface. This was considered a result of the sea surface roughness being

330affected by geographical features and weather conditions.
The eigenvalue–eigenvector decomposition results for individual samples are shown

in Figure 9. The selected samples were the same as those selected in Table 1. For the
RAFTs, the alpha angle distributes between 18° and 43° and the entropy between 0.23
and 0.74. For the LONGLINEs, the alpha angle distributes between 15° and 44° and the

335entropy between 0.25 and 0.75. The RACKs showed a distribution of alpha angle from
33° to 65° and a distribution of entropy from 0.41 to 0.75. Sea surface showed an alpha
angle distribution between 16° and 33° and entropy between 0.08 and 0.66. The RAFTs
and LONGLINEs showed approximately the same data ranges for alpha angle and
entropy. The RACKs showed a larger alpha angle and entropy value than those of the

340other two facility types. However, overlaps in the data distributions for both alpha angle
and entropy were found between the RACKs and the other two aquacultural facility
types. The RACKs showed the same or a larger alpha angle data range compared to that
of the sea surface and it should be possible to discriminate nearly all of the RACKs from
the sea surface. Other results showed overlaps and it was difficult to discriminate

345aquacultural facilities from the sea surface using eigenvalue-eigenvector decomposition.

4. Conclusions

Pi-SAR-L2 data were applied to detect and discriminate three aquacultural facility types,
RAFTs, LONGLINEs, and RACKs, in Matsushima Bay. Using HH and HV single polarisation
images one could detect the aquaculture facilities. Particularly, the HV single polarisation

350image showed good contrast between the aquacultural facilities and sea surface and
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they were clearly detected throughout the study area. However, the aquacultural facility
types were difficult to discriminate using only these images.

Polarimetric analysis of the three-component-scattering model discriminated the
RACKs from RAFTs and LONGLINEs because of the larger double-bounce-scattering com-

355ponent percentage. The RACKs were also discriminated from the sea surface using their
larger double-bounce-scattering component percentage. The RAFTs and LONGLINEs were
difficult to discriminate using the scattering component percentages of three-component-
scattering model. To discriminate the RAFTs and LONGLINEs, the size difference was
helpful in estimating. The result of the alpha angle of the eigenvalue-eigenvector

Figure 9. Plots of alpha angle and entropy for the (a) RAFT, (b) LONGLINE, (c) RACK aquacultural
facilities and (d) Sea surface. The aquacultural facilities were selected inside the solid rectangular
outlines and polygons shown in Figure 3 and (d) Sea surface was selected throughout the study
area.
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360decomposition could discriminate nearly all of the RACKs from the sea surface. However,
the three aquacultural facility types were difficult to discriminate because the data
overlapped.

The weather, wave height, and wind speed were considered to be suitable at the Pi-
SAR-L2 observed time. If the weather condition is not suitable, detection and discrimina-

365tion of aquacultural facilities may become difficult. Matsushima Bay is an enclosed bay;
therefore, the sea surface in the bay is calm compared to that in other coastal areas.
Thus, geographical features are considered important in detecting and discriminating
aquacultural facilities.
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