
Multiscale multiphysics process on a HPC
infrastructure: Application to coral growth

process
Karthik Senthil*

Dept. of Information Technology
National Institute of Technology

Karnataka, India
karthik.senthil94@gmail.com

Paul Albuquerque
inIT institute

University of Applied Sciences
and Arts Western Switzerland

Geneva, Switzerland
paul.albuquerque@hesge.ch

Jonas Latt
Centre Universitaire Informatique

University of Geneva
Geneva, Switzerland
jonas.latt@unige.ch

Abstract—Many natural processes are characteris-
tic multiscale multiphysics problems. Over the years
techniques have been developed to study and simulate
these processes using a computer. Such simulations
are highly resource intensive and their performance
is computationally bound on a large scale. High
Performance Computing (HPC) plays a handy role
in such a scenario. However, deploying a multiscale
multiphysics application on a HPC infrastructure
requires identifying and further tuning some parame-
ters so as to improve performance and efficiency. This
paper explains this procedure for the case study of a
nutriment-driven coral growth process.

Index Terms—Scientific & High Performance
Computing, Lattice Boltzmann Method, Multiscale
Multiphysics Science, Performance Analysis

I. INTRODUCTION

Corals are marine invertebrates that live in trop-
ical oceans. They are classified as filter-feeding
marine sessile organisms, i.e. biological systems in
which growth and development process is affected
by the suspended particle distribution (e.g. nutri-
ments) in their environment.

This paper explains a simulation model for the
growth of a coral from a multi-scale, massively
parallel perspective. It is designed as a tool for
biologists. Moreover, it provides a basis for the
determination of optimal parameters, in view of
proper scaling and efficient performance for this
model on a High Performance Computing (HPC)
infrastructure. The model is fully three-dimensional
(3D) and was developed with the open-source li-

brary Palabos1, based on the Lattice-Boltzmann
method. The model was deployed and tested on the
supercomputer Lemanicus BlueGene/Q.

A. Physics of the coral growth process

The coral growth process is an ideal example
of a multiscale multiphysics problem [1]. In the
present work, we address the multiscale nature of
the space and time scales in different ways. At the
level of the time scales, the coral growth model is
artificially accelerated to match the time scales of
the fluid more closely, and yet produce the same
physics. This model, described in [2], implements
coral growth at discrete iterations, which are im-
plemented whenever the fluid finds the time to
adapt to the updated coral geometry and reaches
a statistically stationary state. At the level of the
spatial scales, we chose to represent the physics
accurately by fully resolving all scales, with the
help of a supercomputing architecture.

B. Need for high performance computing

The simulation model spans over various large
scale parameters which are not practically address-
able on a general purpose computing machine. At
each iteration, the fluid state is updated, the parti-
cles in suspension transported, and the overall coral
structure grown. As an example, for a simulation
domain of size 2.95[m]×0.9[m]×0.9[m] and maxi-
mum growth time of 32[s] (at the real time scale of

1www.palabos.org, last accessed on 22 September 2015

Published in proceedings of IEEE International Conference on 
High Performance Computing (HiPC 2015), 16-19 December 2015, 
Bengaluru, India, which should be cited to refer to this work.



the fluid), around 14000 iterations are necessary.
When run on a single standard Intel processor
core, a total runtime of over an hour is needed
for achieving only a negligible coral growth. This
calls for parallelization on a HPC infrastructure.
We use a form of parallelism [6] based on domain
decomposition. Performance analysis details for the
model are charted out in section III and their results
accordingly explained in section IV-B.

II. NUMERICAL METHODOLOGY

A. Lattice Boltzmann method

The Lattice Boltzmann Method (LBM) [3] is a
modern and powerful approach in computational
fluid dynamics. In the present work, we chose this
method as the fluid flow can be easily parallelized
using LBM. Furthermore, the method is suitable
for flows around complex and dynamically chang-
ing geometries like corals. Finally, the method is
naturally able to incorporate a Lagrangian particle
model to simulate the advection and absorption of
nutriments [4].

B. Coral growth model

Our simulation model for coral growth is fully
3D. The simulations were animated using Par-
aview2, an open-source application for interactive,
scientific visualization. The coral growth algorithm
was developed and tested on a small simulation
domain of 2.95[m]× 0.9[m]× 0.9[m].

The growth model has 3 main components: (1)
the fluid flow around the coral, (2) nutriments or
suspended particles in the fluid, and (3) the growing
coral structure.

1) Fluid flow around the coral: We simulated
the coral growth process using a fluid with a
kinematic viscocity of 0.001[m2/s] and an initial
Reynolds number of 17.1. The fluid was assumed to
be present throughout the simulation domain. Fur-
ther, we apply the BGK (Bhatnagar-Gross-Krook)
collision model for the lattice representing the fluid
and the required boundary conditions were applied
on the fluid to represent the physical constraints in
the coral growth process.

2www.paraview.org, last accessed on 22 September 2015

2) Nutriments in the fluid around the coral:
The nutriments which are carried by the fluid to
the coral sites can be modeled as tagged particles.
These particles are characterised as Lagrangian
passive tracers. These particles are injected into the
domain from the top-surface in each iteration of
the simulation. Along with an injection domain,
2 absorption domains are defined i.e. regions to
absorb particles. The 2 absorption domains in our
model are along the bottom surface(sea-bed) and
along the outlet of the domain.

3) Coral structure growth algorithm: Initially
the coral structure (also called “seed”) is repre-
sented as a 3D cross placed at the center of the
domain on the bottom plane of the lattice (Fig. 1a).

Coral growth is executed in cyclic, dis-
crete steps. Between two coral growth itera-
tions, the fluid and Lagrangian particles execute
coralGrowthIters iterations. Whenever a par-
ticle enters a fluid cell neighboring a cell occupied
by the coral, it gets absorbed (it is removed from
the simulation), and a counter for this cell is incre-
mented in the matrix numParticles. At the end
of the coralGrowthIters iterations, the matrix
numParticles is evaluated. All elements of this
matrix exceeding a threshold value threshold
are reset to zero, and the corresponding fluid cell
gets converted into a solid cell, which is part of the
coral. For the simulations presented in this article,
we used the values coralGrowthIters=400
and threshold=100.

III. PERFORMANCE SCALING AND

MEASUREMENTS ON HPC INFRASTRUCTURE

A performance analysis of this model was es-
tablished on the Lemanicus BlueGene/Q super-
computer of the CADMOS3 center in Switzerland,
utilizing a maximum of 8192 CPU cores for parallel
executions.

A. Methodology for performance measurement

In the field of LBM, it is common to characterize
the code performance by a value called Sites up-
dated per second (SuS) . This value is the number
of lattice cells for which the code is able to perform
collision-streaming cycle (including the update of

3Center for ADvanced MOdeling Science, www.cadmos.org



particles present on the same site) during a wall-
clock second:

SuS =
nx · ny · nz · totalIters

totalTime
where the lattice resolution is nx × ny × nz,
totalIters is the number of iterations for which the
program was run, and totalTime is the measured
wall-clock time.

1) Experiment on domain size/resolution: The
performance of the model was measured for 7
different domain resolutions: 80(1×), 120(1.5×),
160(2×), 240(3×), 320(4×),480(6×) and 640(8×).
In each case the model was executed with only
the fluid (no particles) and the simulation was run
for a maximum of 1000 iterations. The model was
deployed on 512 cores.

2) Experiment on the number of proces-
sors/cores deployed (strong scaling): In this test
series, the strong scaling of the parallel program
was investigated by solving a constant-sized prob-
lem with a varying number of processors. The do-
main was resolved with 320 grid cells, the particles
were injected at 1 particle/cell, the threshold value
for coral growth was 100 particles, and all simu-
lations were run for 500 iterations. The reference
value was taken with cref = 64 nodes, using 1
core/node (64 cores in total). In the first test case,
this was compared to 3 simulation runs using 64,
128, and 256 nodes with 4 cores/node in each case.
In the second test case, the simulation was again run
on 64, 128, and 256 nodes, but with 8 cores/node.

3) Scaling the number of cores with the
domain size (weak scaling): In the following test
for the weak scaling behavior of the code, the
total number of grid nodes scales linearly with the
number of cores c, i.e. the resolution r goes like

r = rref ×
(
c

cref

)1/3

where rref = 160. In this experiment the threshold
value for coral growth was 100 particles, the parti-
cles were injected at the rate of 1 particle/cell and
simulations were run for 200 iterations. Here, we
took c = 64, 512, 1024, 2048, 4096 and 8192 cores.

4) Experiment on particle/nutriment density:
In this numerical experiment the performance of
the model was evaluated for 3 different particle
densities: 1 particle/cell, 2 particles/cell and 4 par-
ticles/cell. Again in this setup, the domain was

resolved with 320 grid cells, 128 nodes were used
(4 cores/node) and all simulations were run for a
maximum of 500 iterations.

IV. RESULTS

A. Coral growth algorithm

The coral growth algorithm and the model ex-
plained in section II-B were simulated on the Blue-
Gene/Q supercomputer in order to showcase the
growth of the coral and to measure its accuracy. In
the simulation environment, the domain was chosen
with size 2.95[m]×0.9[m]×0.9[m] and a resolution
of 80 lattice units. The maximum simulation time
was fixed at 300[s], the threshold for coral growth
was 100 particles and up to 256 nodes of the
supercomputer were used (4 cores/node). Fig. 1b
displays a significant growth in the coral structure
at the end of simulation.

(a) 3D initial view (b) 2D cut of grown coral

Fig. 1. Coral structure during the simulation

The growth rate and coral structure obtained are
accurate and match the expected results.

B. Performance analysis on HPC infrastructure

We provide here the results obtained for the
numerical experiments explained in section III-A

1) Numerical experiment on domain
size/resolution: Fig. 2 shows a plot of performance
measure (in terms of [MSuS]) vs. domain
resolution. From these results we can infer that an
increase in the total number of lattice sites in the
domain increases the performance of the model
implying that a greater extent of parallelism is
achieved with a larger domain size. We also note
that the increase in performance is not linear.

2) Numerical experiment on the number of
cores: Table I summarizes the results. We can
infer from them that the performance of the model
increases with the number of cores used for the
parallel execution. We also observe that the load
on a node does not significantly increase with the
number of cores used per node. Thus increasing the
number of cores used per node does not drastically
affect performance.



Fig. 2. Effect of domain resolution on performance

TABLE I
RESULTS OF NUMERICAL EXPERIMENT 2

Test case
Number of

cores

Performance

(in [MSuS])

Runtime

(in [s])

Reference 64 15.9772 3334

4 cores

per node

64 ×4 cores 45.8589 1161.65

128 ×4 cores 77.6638 685.929

256 ×4 cores 137.188 388.314

8 cores

per node

64 ×8 cores 76.0773 700.234

128 ×8 cores 135.278 393.797

256 ×8 cores 205.613 259.088

3) Numerical experiment on changing the
number of cores and the domain resolution:
We observe that the performance of the model
drastically increases with increase in the number
of cores deployed for parallel execution along with
a proportionate increase in the domain resolution.
Despite the increase in total number of lattice
sites for processing in the domain the increase in
number of cores accounts for a greater extent of
parallelism. Figure 3 provides a plot of performance
of model(normalized with respect to reference test
case) against the number of cores used. From this
graph we observe that the performance improve-
ment is almost linear and nearly consistent with
the ideal scenario of linear performance gain.

4) Numerical experiment on particle density:
The results of this numerical experiment have been
tabulated in Table II. We can infer from these results
that the performance of the model decreases while

Fig. 3. Effect of changing simultaneously the number of cores
and the domain resolution on the performance of the model

increasing particle (or nutriment) density. This is
expected since more particles implies more pro-
cessing to change physical parameters throughout
the simulation domain.

TABLE II
RESULTS OF NUMERICAL EXPERIMENT 4

Particle density

(particles per cell)

Performance

([MSuS])
Runtime ([s])

1 77.0564 691.336

2 48.6513 1094.97

4 27.3364 1948.75

V. DISCUSSION ON SPEEDUP AND EFFICIENCY

We discuss here speedup and efficiency [5] for
the proposed model. For a given resolution r, we
assume the number of lattice sites/cells scales as
nref · r3, where nref is the domain size in SI units.
Sequential and parallel time complexities, Tseq and
Tpar, then follow the law

Tseq = c1 ·nref ·r3, Tpar =
c1 · nref · r3

p
+To(r, p)

where the constant c1 is the time for a processor
to update 1 cell, and To(r, p) is the interprocessor
communication time overhead.

A. Interprocessor communication time overhead

For a parallel simulation, the overhead time due
to interprocessor communication must be accounted



for. Here we consider the the domain to be split
vertically across the length. The overhead is thus
proportional to the area of the split surface

To(r, p) = c2 · nref · r2

where the constant c2 depends on the communica-
tion bandwidth. Hence,

Tpar =
c1 · nref · r3

p
+ c2 · nref · r2

B. Speedup, efficiency and iso-efficiency

Based on the expressions for Tseq and Tpar, we
can derive the speedup S and efficiency E formulae

S =
Tseq
Tpar

=
1

1

p
+
c3
r

and, setting c3 =
c2
c1

, we get E =
S

p
=

1

1 + c3 ·
p

r
The iso-efficiency function expresses the depen-

dency between r and p so as to maintain E constant.
Thus, it is of the form r = k ·p for some constant k.

C. Analysis on parallel time complexity

We also further analyzed Tpar for a fixed domain
resolution r = 320[lattice units] by writing

Tpar = α · 1
p
+ β

and applying Least Square Interpolation (LSI).
Fig. 4 plots Tpar vs. the number of processors p.
The fit for Tpar using the LSI values α = 2.2×105

and β = 200 is shown together with the experimen-
tal results. This seems to confirm the correctness of
our expression for Tpar.

VI. CONCLUSION

In this paper we developed a new simulation
model for showcasing a multiscale multiphysics
process, a coral growth process, on a HPC in-
frastructure. We also investigated its efficiency and
performance. As a matter-of-fact this work could
be used by biologists as a tool or a standard use-
case to determine the right factors for simulating
such a problem and fine tune the parameters so as
to produce an efficient and realistic simulation.

From the results, we conclude that the imple-
mented model shows the expected growth rate and
growth pattern of a coral. Similarly, the numerical

Fig. 4. Parallel execution time Tpar vs. number of processors p

experiments help us identify the right parameters
to analyze and improve the parallel performance of
the model. The speedup and efficiency analysis also
showcase the correctness of the methodology. We
also concur that the simulation library Palabos is
very robust and suitable for designing multiscale
multiphysics problems.

ACKNOWLEDGMENT

We wish to acknowledge the CADMOS cen-
ter for sponsoring part of this research, and for
providing computation time on the BlueGene/Q
supercomputer.

REFERENCES

[1] J. Borgdorf et al. Foundations of Distributed Multiscale
Computing: Formalization, Specification, Analysis and Ex-
ecution. J. Par. & Distr. Comp. 73(4):465-483, 2013.

[2] Jaap A. Kaandorp et al. Effect of Nutrient Diffusion and
Flow on Coral Morphology. Phys. Rev. Lett. 77(11):2328-
2331, 1996.

[3] B. Chopard and M. Droz. Cellular Automata Modeling of
Physical Systems. Cambridge University Press, 1998.

[4] A.J.C. Ladd and R. Verberg. Lattice-Boltzmann sim-
ulations of particle-fluid suspensions. J. Stat. Phys.
104(5):1191-1251, 2001.

[5] A. Grama et al. Introduction to Parallel Computing. 2nd
edition, Pearson Education, 2003.

[6] B. Chopard et al. A Lattice Boltzmann simulation of the
Rhone river. Intl. J. Modern Phys. 1340008, 2013


