ASSESSMENT OF PERIPHERAL ARTERIAL DISEASE IN DIABETIC

FOOT ULCER IN SOUTH INDIAN POPULATION:

A PROSPECTIVE STUDY

A Dissertation submitted to

THE TAMILNADU DR. M.G.R. MEDICAL UNIVERSITY

In partial fulfilment of the regulations for the award of the

M.S. DEGREE EXAMINATION

BRANCH I GENERAL SURGERY

DEPARTMENT OF GENERAL SURGERY

STANLEY MEDICAL COLLEGE AND HOSPITAL

THE TAMILNADU DR. M.G.R. MEDICAL UNIVERSITY

CHENNAI

APRIL 2017

CERTIFICATE

This is to certify that the dissertation titled "ASSESSMENT OF PERIPHERAL ARTERIAL DISEASE IN DIABETIC FOOT ULCER IN SOUTH INDIAN POPULATION: A PROSPECTIVE STUDY" is the bonafide work done by Dr. S. Vijayasarathy, Post graduate student in the Department of General Surgery, Government Stanley Medical College and Hospital, Chennai under my guidance and supervision, in partial fulfilment of the regulations of the The Tamilnadu Dr. M.G.R. Medical University, Chennai for the award of M.S. Degree Branch I General Surgery Examination to be held in April 2017.

Prof. M.V. UDAYACHANDAR M.S. Professor of Surgery Dept. of General Surgery Stanley Medical College Chennai - 600001 Prof. D. NAGARAJAN M.S. Head of the Department Dept. of General Surgery Stanley Medical College Chennai - 600001

PROF. ISAAC CHRISTIAN MOSES M.D. The Dean Govt. Stanley Medical College Chennai - 600001

DECLARATION

I, Dr. S. Vijayasarathy solemnly declare that this dissertation titled "ASSESSMENT OF PERIPHERAL ARTERIAL DISEASE IN DIABETIC FOOT ULCER IN SOUTH INDIAN POPULATION: A PROSPECTIVE STUDY" is a bonafide work done by me in the Department of General Surgery, Government Stanley Medical College and Hospital, Chennai under the guidance and supervision of my unit chief

Prof. M.V. UDAYACHANDAR Professor of Surgery

This dissertation is submitted to The Tamilnadu Dr. M.G.R. Medical University, Chennai in partial fulfilment of the university regulations for the award of M.S. Degree Branch I General Surgery Examination to be held in April 2017

Place: Chennai

Date: September 2016

Dr. S. Vijayasarathy

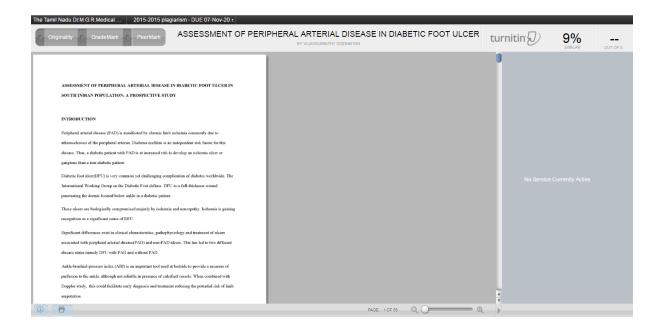
ACKNOWLEDGEMENT

It gives me immense pleasure to thank everyone who has helped me during the course of my study and during preparation of dissertation.

My sincere thanks to Prof. ISAAC CHRISTIAN MOSES M.D., the Dean, Govt. Stanley Medical College for permitting me to conduct the study and use the resources of the College.

I am very thankful to the chairman of Ethical Committee and members of Ethical Committee, Government Stanley Medical College, for their guidance in ethical clearance.

I consider it a privilege to have done this study under the supervision of my beloved Prof. M.V. UDHAYACHANDAR, who has been a source of constant inspiration and encouragement to accomplish this work.


I express my deepest sense of thankfulness to my assistant professors Dr. T. BABU ANTONY, Dr. S. THIRUMURUGANAND, Dr. D.S. KUMARESAN, Dr. S. KRISHNABHARATH for their valuable inputs and constant encouragement without which this dissertation could not have been completed. I express my sincere gratitude to my mentors Prof. S. VISWANATHAN and Prof. G.V. MANOHARAN for their constant support, able guidance and valuable help.

I am thankful to Dr. MATHAN SANKAR, Dr. FAZIL NAVABJAN and Dr. ANBARASAN and other fellow postgraduates for their valuable support.

I thank my senior postgraduates Dr. S. CHELLADURAI, Dr. MRUDUL MATHEW, Dr. T. JEYALAKSHMI for their constant encouragement and support. I am also thankful to my junior postgraduates Dr. DEEPAK DAVID, Dr. P.J. SANJEEV and Dr. KOKILA for their help in completing the study.

It is my earnest duty to thank my dear parents and my brother without whom accomplishing this task would have been impossible.

I am extremely thankful to my PATIENTS who consented and participated to make this study possible.

CONTENTS

S. NO.	CHAPTER	PAGE
1	INTRODUCTION	8
2	OBJECTIVES	38
3	MATERIALS AND	39
	METHODS	
4	RESULTS	48
5	DISCUSSION	74
6	CONCLUSION	79
7	REFERENCES	82
8	ANNEXURE	86

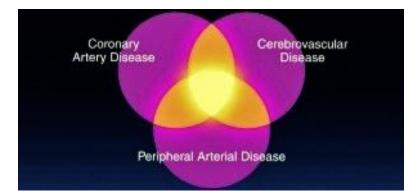
ASSESSMENT OF PERIPHERAL ARTERIAL DISEASE IN DIABETIC FOOT ULCER IN SOUTH INDIAN POPULATION: A PROSPECTIVE STUDY

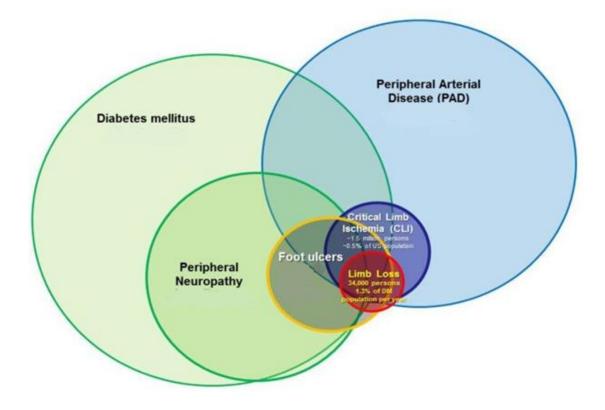
INTRODUCTION

Peripheral arterial disease (PAD) is manifested by chronic limb ischemia commonly due to atherosclerosis of the peripheral arteries. Diabetes mellitus is an independent risk factor for this disease. Thus, a diabetic patient with PAD is at increased risk to develop an ischemic ulcer or gangrene than a non-diabetic patient.

Diabetic foot ulcer(DFU) is very common yet challenging complication of diabetes worldwide. The International Working Group on the Diabetic Foot defines DFU as a full-thickness wound penetrating the dermis located below ankle in a diabetic patient.

These ulcers are biologically compromised majorly by ischemia and neuropathy. Ischemia is gaining recognition as a significant cause of DFU. Significant differences exist in clinical characteristics, pathophysiology and treatment of ulcers associated with peripheral arterial disease(PAD) and non-PAD ulcers. This has led to two different disease states namely DFU with PAD and without PAD. Ankle-brachial-pressure index (ABI) is an important tool used at bedside to provide a measure of perfusion to the ankle, although not reliable in presence of calcified vessels. When combined with Doppler study, this could facilitate early diagnosis and treatment reducing the potential risk of limb amputation. The indications for revascularization of an ischemic limb are incapacitating claudication and critical limb ischemia(CLI). Disabling claudication is a relative indication and one has to weigh the existing quality of life against the risk of procedure during selection of suitable patient and it requires significant patient counseling. Revascularization in some ischemic limbs may be deferred if no target vessel present or unavailability of an autogenous vein. Even irreversible gangrene progressing beyond midfoot may preclude revascularization. In such patients a choice must be made between prolonged medical management and primary amputation.


Major amputation in an ischemic foot is indicated only when there is life threatening sepsis or when arterial occlusion causing extensive necrosis has destroyed the foot.


Most amputations can be prevented and limbs salvaged through a multimodal treatment of infection control, wound debridement and revascularization procedures. However amputation may warrant a good quality of life, if a prolonged treatment course is anticipated with minimal likelihood of healing.

9

All diabetic patients should be offered full and active rehabilitation following limb amputation.

Thus the association of PAD largely impacts the treatment outcomes in terms of ulcer healing, lower limb amputations and mortality. The burden of PAD in DFU in South Indian population has not been assessed adequately in the recent years. A prompt diagnosis of ischemia and multidisciplinary approach to DFU will decrease the loss of limb and life. This study aims to throw light on the same.

Effect of Peripheral Arterial Disease in Diabetic population

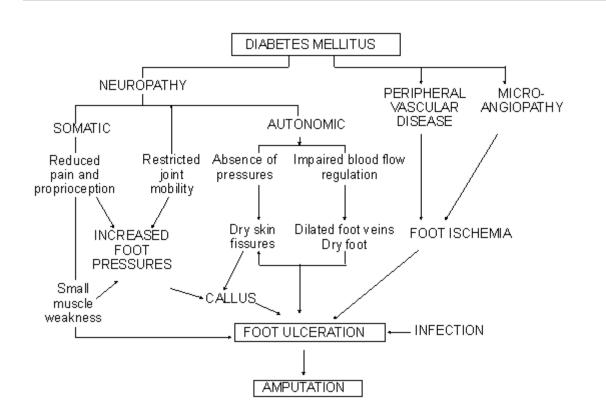
PAD is characterized by atherosclerosis of lower extremity arteries causing occlusive disease. It is a strong predictive factor for atherothrombotic disease in other vascular beds.

PAD involvement is mostly diffuse and particularly is more severe in tibial vessels. It usually involves long segment occlusions. In a non-diabetic individual, collateral vessels develop in response to occlusion of a major artery. This collateral formation is impaired in diabetes rendering the distal tissue more prone to severe ischemia.

Patient with PAD most commonly presents with a cramping pain in the calves, thighs or buttocks known as intermittent claudication. This pain relieved by rest and reappears with walking and exercise. Some patients present with extreme symptoms like rest pain, infected ulcer and gangrene. These limbthreatening symptoms are collectively termed as critical limb ischemia (CLI).

The strong risk factors for PAD are diabetes and smoking. The duration of diabetes, hypertension, hyperlipidemia and advanced age are the other established risk factors.

In diabetic patients, occurrence of PAD increases with diabetic duration, advancing age and peripheral neuropathy.


Most patients are asymptomatic or do not report symptoms due to ignorance. For some, pain is blunted by presence of neuropathy. Moreover there is no uniformly agreed consensus on screening modalities. For these reasons, the assessment of true prevalence of PAD in diabetic patients becomes difficult. Hence in presence of diabetes, PAD is more likely to present at an advanced stage.

Two common assessment tools are presence of intermittent claudication and absence of distal foot pulses, both involving an element of insensitivity. For more accurate estimation of prevalence, the assessment should be based on reproducible and validated test like ankle-brachial index (ABI).

The significant differences in clinical characteristics and outcome has led to the consideration that

DFU with PAD and **DFU without PAD**

should potentially be defined as two separate disease states

Evaluation of PAD in DFU

Clinical evaluation

The clinical evaluation should start with a detailed medical history enquiring about the onset and progression of disease. Risk factors should be enquired about and focus should be on identifying symptoms like claudication, rest pain and functional impairment. PAD patient may present in a diverse form from no symptoms to infected chronic ulcer and gangrene. Associated symptoms arising from atherothrombosis in other vascular beds like angina, stroke and abdominal ischemia should be noted. Alternative causes of claudication like spinal canal stenosis should be ruled out.

Physical examination should start with attitude of limb and presence of deformity. Detailed inspection of the affected limb involves looking for the signs of vascular insufficiency. These include muscle wasting and loss of subcutaneous fat characterized by thinning of limbs with bony prominence. The skin becomes dry and fissured with reduced temperature. Nails are dystrophic, lusterless, brittle and contain transverse ridges. There is loss of skin hair make the skin appear shiny. The interdigital spaces should be inspected for ulcers and fissures.

This should be followed by assessment of circulatory insufficiency like capillary refilling time, venous filling time(Harvey's sign) and Buerger's test.

17

Buerger's test involves assessing the leg elevation angle at which vascular compromise is obvious. Assessment of peripheral pulses is most important which involves charting of lower and upper limb pulses. One has to auscultate these arteries and look for bruit. This has to be followed by assessment of neighboring joints for movements and deformity. Thorough assessment of motor system, sensory system of nerves and reflexes should be done. Finally draining lymph nodes should be examined.

Non invasive test: ABI

ABI provides an easy, reasonably accurate and non invasive assessment of occurrence of PAD. It also helps assessing the severity of the disease. It is a ratio in which the numerator is the highest of the three ankle systolic blood pressures in dorsalis pedis, anterior and posterior tibial arteries in the affected lower limb. The denominator is the highest of brachial systolic pressures measured in both the upper limbs. The pressures are measured by using hand held Doppler making it a very simple and quantitative tool to assess the patency of lower limb arteries

However, in elderly, diabetic patients and in chronic kidney disease, the peripheral arteries are calcified and are poorly compressible and hence may artificially elevate the values. This complicate the evaluation of PAD.

18

The tools required to calculate ABI include a hand-held Doppler probe of frequency 5–10 MHz and a sphygmomanometer with blood pressure cuff. The ABI is measured by putting patient in supine position for 5 min. Systolic blood pressure in ankle is measured in posterior tibial artery and dorsalis pedis and by placing the cuff just above the ankle. Systolic blood pressure in arm is measured in brachial artery by placing the cuff just above the elbow.

ABI>1.3 indicates presence of poorly compressible arteries at the ankle level due to medial arterial calcification which occurs commonly in diabetes. This renders diagnosis of PAD by ABI alone less reliable.

Since the digital arteries are less commonly affected by calcification, toe pressure measurements involving digital arteries are more reliable in assessment of forefoot circulation in patients with diabetes. A toe-brachial index of <0.7 or toe pressure of <55 mmHg strongly indicates PAD.

Evaluation of the flow signals from arteries in foot using hand held Doppler revealing a monophasic or absent signal indicated sever ischemia.

Imaging modalities for PAD in diabetes

Doppler ultrasound:

Doppler ultrasound involves combining B-mode ultrasound and pulsed Doppler flow to assess anatomy and physiology of blood flow in specific arterial segments. The entire lower extremity arterial circulation is evaluated by sequential scanning of the abdominal aorta, iliac, femoral, popliteal and tibial arteries,.

CT angiography:

It is a minimally invasive modality to diagnose PAD. It involves use of iodinated contrast which is injected intravenously. For lower extremity, scanning is done from renal arteries to the distal foot . This is followed by 3D reconstruction of data. The advantage is that it provides high resolution images of small vessels in the calf. The disadvantage being use of radiation and potentially nephrotoxic contrast.

Contrast-enhanced MR angiography:

This is also a low invasive imaging technique for detecting PAD. Gadolinium is used as contrast.

Digital subtraction angiography

Intra-arterial DSA is considered as the gold standard for imaging due to high spatial resolution of arteries. Endovascular revascularization can be performed in the same sitting. The risks involved are arterial puncture, hematoma, extravasation and contrast allergy. Preferably DSA should be performed only when revascularization is planned.

Medical management for PAD in DFU

Asymptomatic PAD

Life style modification

This involves modification of daily activities and dietary pattern.

Tobacco Smoking

Counseling of patients to abstain from all tobacco products is the first and most essential step. In PAD, tobacco is believed to increase progression of the atherosclerotic disease and hence increases amputation risk.

Blood sugar control

Adequate glycemic control to a tune of HbA1c < 7% is needed to prevent microvascular complications.

Hyperlipidemia

Many studies conclude that lipid lowering agents slow the disease progression and bring down deaths due to cardiovascular events.

Antiplatelets

Aspirin low dose exhibits antithrombotic effects and also slows down the clot propagation and reduce the cardiovascular complication. Those allergic to aspirin are put on clopidogrel.

Management of symptomatic PAD

Exercise

Moderate exercise within the limits of claudication distance is advised to improve the collateral blood supply and cardiovascular risk factor profile.

Drug therapies

Heparin is used to interfere with clotting mechanism and prevent further clot formation. However it does not act on existing clot.

Pentoxifylline is a hemorheologic modifier which is said to improve microcirculation by decreasing the blood viscosity.

Cilostazol is a phosphodiesterase III inhibitor acting as a vasodilator. It is contraindicated in heart failure.

Foot care

Patients should be counseling on foot care involving hygiene and specialized foot wear. Regular supervision reduces the risk of foot complications.

Check everyday for cuts, foot ulcers
Use mirror, if needed, to check the soles
Do not use socks with tight elastic band
Change socks everyday
Cut toe nails with utmost care
Do not cut too much into the edge and cause skin breach
It can get infected; gangrene can lead to amputation of toe or even the limb

Treatment of ischemic foot

- 1. Debridement of nonviable tissue
- 2. Off-load pressure from injury site
- Provide clean, moist environment to promote new granulation tissue and epithelialization
- 4. Optimize nutrition, glycemic control
- Possible antibiotics, surgery to resolve infection
- Possible revascularization surgery to resolve peripheral ischemia

Critical limb ischemia characterized by rest pain, tissue loss or gangrene is a limb-threatening condition which warrants emergent treatment. Peripheral neuropathy blunts the pain perception causing PAD to manifest late in a diabetic patient. Contrarily PAD accelerated nerve ischemia and worsened neuropathy.

In contrast to involvement of plantar aspect in neuropathic ulcers, ischemic ulcers commonly involve dorsum, edges of foot and toes. Conservative management includes wound debridement, ulcer offloading, appropriate dressing, and adjuvant wound healing methods.

Wound Debridement

Wound debridement should aim to remove all necrotic debris and slough to reduce infection. It should be done when there is presence of localized fluctuation, undermining of ulcer with slough, crepitus with gas in X-ray and need for drainage of pus.

Appropriate footwear

It is most important in case of a neuroischemic foot wear the aim is protection of foot from shear and pressure. Patients should be advised not to wear tight shoes. This would hinder ulcer healing. Ideal footwear should be long, deep and broad, designed to protect arch of foot and offload the pressure. This would automatically facilitate the ulcer healing.

Dressings

Dressing is applied to prevent tissue desiccation, absorb discharge, prevent external contamination. Occlusive dressing lowers risk of infection. Non adhesive dressings should cover foot ulcers at all times. Some properties like easy removability, accommodating foot pressures while walking and is

26

desirable. Various available dressings include foams, hydrogels, absorbent polymers, alginates, growth factor and skin replacement agents.

Treatment of infection

In a diabetic foot, the signs and symptoms of foot infection are often diminished due to impaired neuroinflammatory response.

The isolates in diabetic foot sepsis are usually polymicrobial. Commonly streptococci, methicillin resistant staphylococcus(MRSA), enterobacteriaceae and pseudomonas are encountered. Often it is mixed infection with anaerobes.

Appropriate empirical antibiotics should act against both gram positive and gram negative organisms and provide both aerobic and anaerobic coverage. Such wounds require intravenous antibiotics and these patients should be hospitalized.

Patients with mild to moderate infection, superficial ulcers without sepsis, localized cellulitis can be treated with oral antibiotics on an outpatient basis. The empirical antibiotics should be started after initial cultures are taken and changed as needed. Incision and drainage is the core of treatment for almost all diabetic foot infections. It may be supplemented with toe or ray amputation for facilitating drainage. Aggressive wound debridement and revascularization procedure usually make limb salvage possible.

Neuroischemic foot may complicate into dry and wet gangrene. Septic arteritis following soft tissue infection and ulceration leads to wet gangrene. If gas in soft tissue is noted, immediate open drainage of all potentially infected spaces is necessary along with broad spectrum I.V. antibiotics.

In acute on chronic limb ischemia, there is severe reduction in arterial perfusion leading to dry gangrene. Surgical wound debridement should be done only after revascularization if applicable. Only then the debrided foot will be perfused adequately to heal.

Revascularization

Revascularization can be carried out by open surgical technique or endovascular procedures. These two types of procedures are not mutually exclusive. They are combined in most of the cases like iliac angioplasty with bypass grafting with saphenous vein. Endovascular procedures are preferred in focal segmental disease.

Aortoiliac disease usually managed effectively with open aortofemoral prosthetic bypass but endovascular stenting is gaining significant recognition as an alternative.

Superficial femoral artery stenosis can be treated by open femoropopliteal bypass.

Bypass grafting with autogenous great saphenous vein is the common procedure for tibial disease. Nevertheless, endovascular procedures are increasingly becoming popular due to technical advances allowing aggressive use of tibial angioplasty.

Major limb amputation is only indicated in case of life threatening sepsis in an ischemic foot. majority of limb amputations can be prevented by timely diagnosis and intervention by a combination of revascularization, wound debridement, infection control by antibiotics, and staged closure of wound.

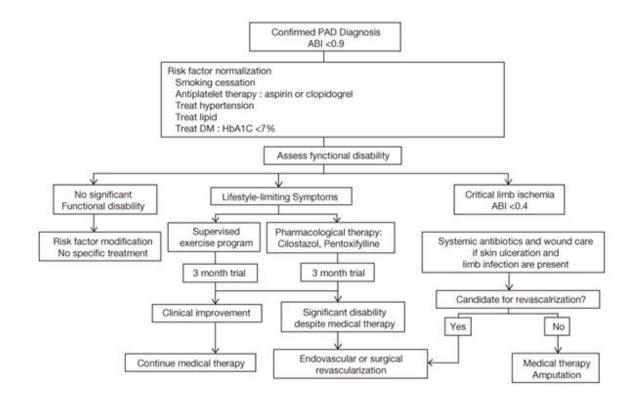
Revascularization patient counseling

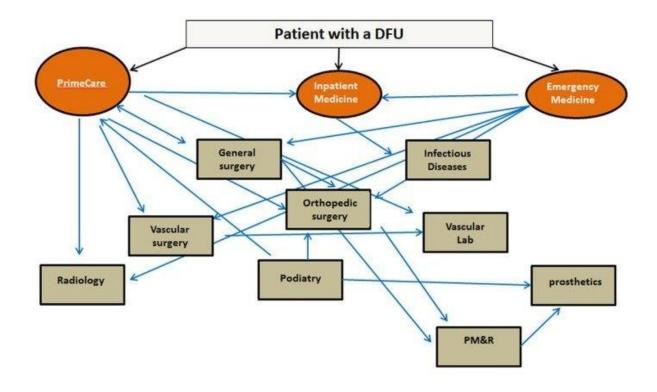
Critical limb ischemia ABI<0.4

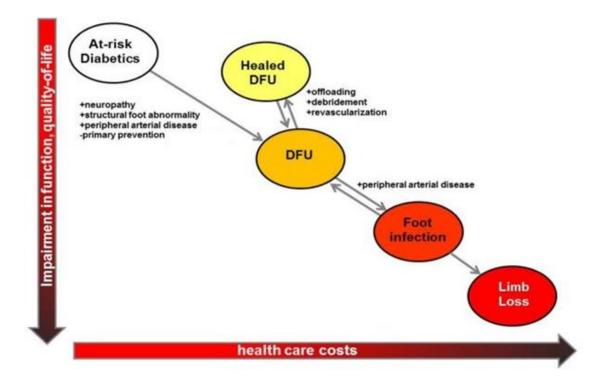
Incapacitating claudication

lack of target vessel

unavailability of autogenous vein


irreversible gangrene beyond the level of midfoot


Primary amputation


Severe ischemia leading to necrosis

Life threatening sepsis

if a prolonged course of treatment is anticipated with little likelihood of healing, amputation may cause return to a good quality of life

WIFI-G Index

3

4

5

The society of vascular surgeons formulated a new wound classification system WIFI based on wound, ischemia and foot infection. It is useful for risk stratification like other classification systems like Wagner, PEDIS, Texas. This study aims to incorporate this classification and test its correlation with PAD and limb amputation.

Grade	Denomination	Description
0	Foot at risk	Thick calluses, bone deformities, clawed toes, and prominent metatarsian heads
1	Superficial ulcers	Total destruction of the thickness of the skin
2	Deep ulcers	Penetrates through skin, fat and ligaments, but not affect bone. Infected

Limited necrosis in toes or the foot Limited necrosis in toes or the foot

Necrosis of the complete foot, with systemic effects

Table 2. Diabetic Foot classification according to Wagner

Abscessed deep ulcers

Limited gangrene

Extensive gangrene

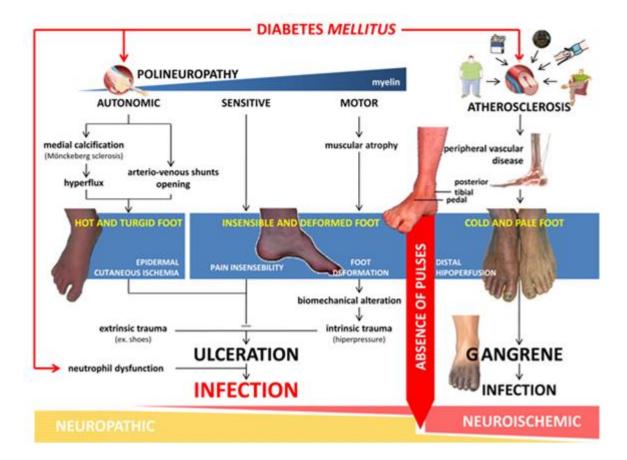

University of Texas Diabetic Wound Classification System					
Stage	Grade				
	0	Ι	II	III	
A (no infection or ischemia)	Pre- or post- ulcerative lesion completely epithelialized	Superficial wound not involving tendon, capsule, or bone	Wound penetrating to tendon or capsule	Wound penetrating to bone or joint	
В	Infection	Infection	Infection	Infection	
C	Ischemia	Ischemia	Ischemia	Ischemia	
D	Infection and ischemia	Infection and ischemia	Infection and ischemia	Infection and ischemia	

Table 2. IWGDF and IDSA Classification of DFIs			
PEDIS	IDSA		
1	Uninfected		
N/A	N/A		
2	Mild		
3	Moderate		
4	Severe		
	PEDIS 1 N/A 2 3		

DFI: diabetic foot infection; HR: heart rate; IDSA: Infectious Diseases Society of America; IWGDF: International Working Group on the Diabetic Foot; min: minute; N/A: not applicable; PaCO₂; partial pressure of carbon dioxide, arterial; PEDIS: perfusion, extent, depth, infection, sensation; RR: respiratory rate; SC: subcutaneous; SIRS: systemic inflammatory response syndrome; T: temperature. Source: References 6, 13.

Table 3. PEDIS^a Grades and Treatment Paradigms

Grade	Infection Severity	Clinical Manifestations	Treatment Parameters	Medications	
1	Uninfected	Wound without purulence or inflammation	Outpatient	Topical antibiotics	
2 ⁶	Mild	≥2: purulence or erythema, pain, tenderness, warmth, or induration; cellulitis ≤2 cm around ulcer; infection limited to skin/subcutaneous tissue; no other complications	Most not limb- threatening; most outpatient treatment	Cephalexin, trimethoprim- sulfamethoxazole (TMP-SMX), levofloxacin, amoxicillin- clavulanate, clindamycin	
3°	Moderate	Infection as above plus >1: cellulitis >2 cm, streaking, deep tissue abscess, gangrene and with some life-threatening; involvement of muscle, tendon, joint, or bone	Most limb-threatening with some life-threatening; requires hospital treatment	TMP-SMX, amoxicillin-clavulanate, levofloxacin, ceftriaxone, linezolid, ertapenem, ticarcillin-clavulanate	
4 ^d	Severe	Infection plus systemic toxicity or metabolic instability; fever, chills, tachycardia, hypotension, confusion, vomiting, severe hyperglycemia, acidosis, or azotemia	Life-threatening; requires hospital treatment	Imipenem-cilastatin, vancomycin- ceftazidime, levofloxacin-clindamycin, piperacillin-tazobactam, ticarcillin-clavulanate	
^b Medic ^c Medic ^d Medic	^a PEDIS stands for perfusion, extent/size, depth/tissue loss, infection, and sensation. ^b Medications for treatment can be oral. ^c Medications for treatment are oral or parenteral, based on clinical situation. ^d Medications for treatment are IV, at least initially. Source: Reference 18.				

OBJECTIVES

To know prevalence of peripheral arterial disease in diabetic foot ulcer

To assess the associated risk factors

To test the correlation of WIFI-G score with severity of disease

To assess the appropriateness of triple test and need for routine Doppler in

DFU to evaluate PAD

To assess the limb salvage

To compare the results with previous similar studies on DFU with PAD

MATERIALS AND METHODS

PATIENT SELECTION:

In-patients admitted with isolated diabetic foot ulcer were enrolled into the study. They were randomly selected from the surgical wards on every 7th day. A total of 100 patients were sampled.

Study area: Department of General Surgery and Vascular Surgery,

Govt. Stanley Hospital

INCLUSION CRITERIA:

Age group 35-65yrs

Both sexes

In-patient

Known diabetic

Isolated foot ulcer

EXCLUSION CRITERIA:

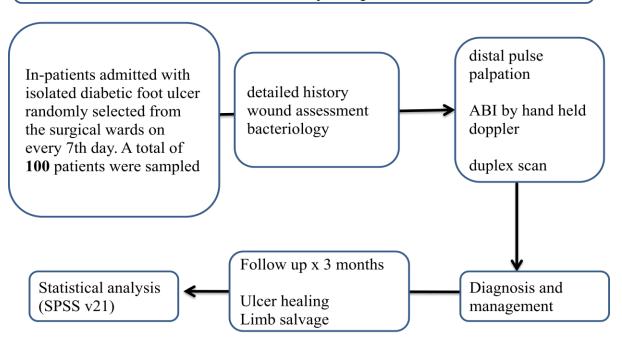
Out patients

Known case of peripheral vascular disease during admission

Ulcer other than in foot

Vasculitis

PERIOD OF STUDY: 9 months


METHODOLOGY

This is a prospective study which involved type 2 diabetic patients with isolated foot ulcer(DFU). Their history, clinical parameters and wound bacteriology were noted and documented. A total of 100 patients were evaluated in this study. The patients were subjected to detailed history by administering questionnaires to assess the diabetic foot ulcer and associated risk factors. A thorough clinical examination was carried out followed by specific examination which included distal pulse assessment, ankle-brachial index(ABI) and duplex scan to evaluate PAD. Portable hand held Doppler was used to measure ABI.

The patients were followed up for a period of 3 months from definitive procedure to assess the ulcer healing and limb salvage. The data was subjected to statistical analysis to find out association between parameters of interest.

MATERIALS AND METHODS

Department of General Surgery and Vascular Surgery Govt. Stanley Hospital

DIAGNOSIS CRITERIA

Peripheral arterial disease:

any 2/3 criteria of the following

- absent distal foot pulses
- ankle brachial pressure index(ABI) < 0.9
- abnormal doppler flow/duplex scan

Fontaine classification:

Stage I asymptomatic Stage IIa intermittent claudication >200m/mild Stage IIb intermittent claudication <200m/moderate-severe/incapacitating

Stage III rest pain

Stage IV ulceration/gangrene

Proposed WIFI Index

Based upon existing validated systems or best available data with 4 point scales where

- 0 = none
- 1 = mild-moderate
- 2 = moderate-severe
- 3 = severe or advanced

W: WOUND DEPTH [based on validated UT/PEDIS Wound Classification Systems]:

Grade	Depth/Description
0	no wound, pre-ulcerative state
1	superficial/shallow; no exposed tendon, capsule or bone
2	penetrates to tendon or joint capsule
3	penetrates to bone

I: ISCHEMIA (hemodynamics, physiology): use TP or TcpO2 if ABI incompressible

Grade	ABI	$\underline{\text{TP, TcpO}_2}$							
0	<u>>0.90</u>	≥ 60 mm Hg							
1	0.6-0.89	40-59 mm Hg							
2	0.4-0.59	21-39 mm Hg							
3	<0.39 (*or ankle pressure < 50)	< 20 mm Hg							
* BASIL TP =	* BASIL TP = Toe pressure								

FI: FOOT INFECTION: SVS Grades 0 (none), 1 (mild), 2 (moderate), 3 (severe)

Grade 0	<u>Clinical Description</u> wound without purulence or manifestations of infection	IDSA uninfected	IWGDF Class 1
1	>2 manifestations of infection (erythema or purulence, pain tenderness, warmth or induration) any cellulitis or erythema extends < 2cm around ulcer; infection is limited to skin or subcutaneous tissues; no local complications or systemic illness	mild	2
2	Infection in patient who is systemically and metabolically stable but has ≥ 1 of the following: cellulitis extending 2cm, lymphangitis; spread beneath fascia; deep tissue abscess; gangrene; muscle, tendon, joint or bone involvement	moderate	3
3	Infection in patient with systemic or metabolic toxicity	severe	4

<u>G</u> :- GANGRENE	
Grade	Clinical Description
0	None
1	Ischemic rest pain- Pre-gangrenous
	skin changes
	Minor Gangrene - limited to mid-
	distal digits. simple toe
	amputation(s) likely goal, up to a
	single ray amputation
2	Moderate gangrene- > 2 toes,
	extending onto forefoot, likely to
	require TMA or more than single ray
	amputation
3	Major gangrene- extensive gangrene
	> 10 cm2 or forefoot or midfoot,
	likely to require Chopart or Lisfranc
	amputation to achieve healing; full
	thickness heel gangrene $> 5 \text{ cm}2$
	w/o calcaneal involvement

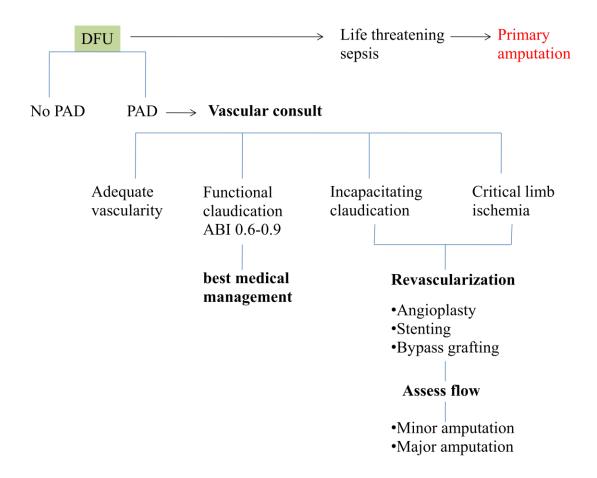
WIFI index is intended to be analogous to the TNM staging system for cancer

A patient with diabetes, a shallow superficial foot ulcer, early cellulitis and an

ABI of 0.43 with a TP of 25 mm Hg would be classified as follows:

W1 I 2 FI 1 G 0 or WIFI-G 1210, with a Total Score of 4(1+2+1=0)

The highest possible score would be in a patient with severe ischemia (TP 15 mm Hg), dorsal foot ulcer with penetration to bone, wet gangrene of 3 toes to


the bases and systemic sepsis: W3 I3 FI3 G3, WIFI-G 3333, generating a Total Score of 12

It might be useful to analyze outcomes based on total as well as fractionated scores

WOUND SWAB:

2 swabs were taken, one from the edge of the spreading ulcer and another from the depth of the wound. Swabs taken before empirical antibiotic administration and wound debridement.

WORKUP PROTOCOL USED IN STUDY:

RESULTS

The prevalence of PAD in DFU was found to be 36%(table 1, fig 1). It was more prevalent in males and in age>40 years and higher with increasing age(table 2). PAD was associated almost equally with plantar and dorsal ulcers, more often whole of foot was involved(p=0.008) (table 3, fig 2). There is significant association of PAD with high WIFI index(table 4, fig 3) and longer diabetic duration(p<0.0001) (table 7, fig 4) with mean disease duration of 10 years.

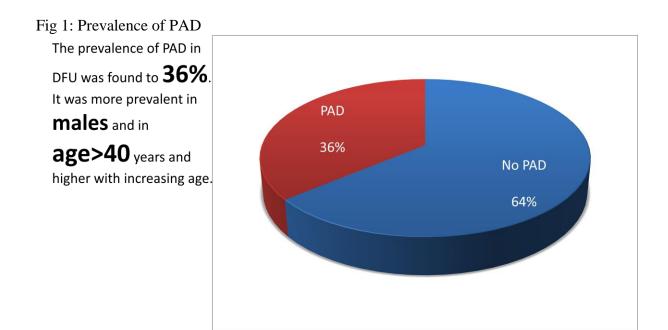
With only ABI as diagnostic criteria, occurrence of PAD was 28%, in another 7% cases ABI could not assessed due to non-compressibility. Combining with Doppler study, occurrence was 36%.

When >2 absent distal pulses by palpation alone was the criteria, occurrence of PAD was 24%. This could be due to human error, presence of associated pedal edema and presence of collaterals. Biphasic flow in Doppler was associated with only 74% of PAD(table 12, fig 8). This could be attributed to human error or hypodynamic circulation in septic patients.

Osteomyelitis is strongly associated with PAD(59%, p=0.003) (table 8, fig 5). PAD was associated with higher amputation rates(53.8%, p=0.003). Of minor lower limb amputations, only 47% were associated with PAD whereas of all major amputations, 87% were associated with PAD(p= 0.002) (table 14). In a 3 month follow up, the ulcer healing was delayed in patients with PAD(~70 days) compared to non-PAD(~30 days).

36 DFU patients diagnosed with PAD were referred for vascular surgery consultation, out of which 10 patients had severe ischemia were taken up for revascularization. After a 3 month follow up, complete ulcer healing without any amputation occurred in 3 patients , 2 patients had toe amputation with complete healing of wound, one patient had a subsequent BKA with complete healing of the stump and one patient subsequently expired after angioplasty due to MI. 2 patients were lost to follow up. Therefore 60% limb salvage was possible.

Among the rest of 26 patients with PAD, 6 patients who were assessed to have adequate vascularity were put on best medical management and had complete ulcer healing.


Out of the 20 patients with PAD, 6 underwent toe amputation, one patient underwent forefoot amputation with complete healing, 9 patients underwent BKA with complete healing of stump, 3 patients underwent AKA with complete healing, and one patient was lost to follow up. Since it is a tertiary setting, the referral was late and hence primary amputation was done as a life saving measure in these patients. Major amputations were associated more with plantar foot ulcer(16%) whereas minor amputations were associated more with dorsal foot ulcer(33%) (table 20). About 47% of ulcers involving whole of foot went in for major amputation while forefoot ulcers(33%) and midfoot ulcers(25%) commonly went in for minor amputations(p<0.0001) (table 21).

Also higher amputation rates correlated with a high WIFI score(p<0.0001) (table 16, fig 11) and higher Fontaine grades(table 17, fig 12). Mean diabetic duration(9.8 yrs) (table 16) was found higher in those who underwent amputation(p=0.006).

Wound culture most commonly revealed a polymicrobial isolate(table 9, fig 6) followed by gram negative aerobes sensitive to Aminogycosides. Amikacin was sensitive to all the organisms in most of the cases(table 10, fig 7). Antibiotic resistance to Cefotaxime and Ceftriaxone was reported in few cases.

Table 1: Prevalence of PAD

		Count	Column N %
PAD	NO PAD	64	64.0%
	PAD	36	36.0%

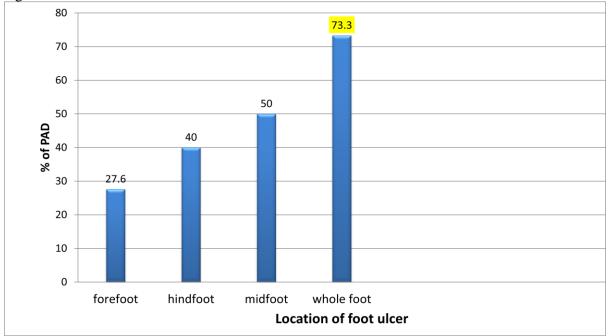


Table 2: Distribution of DFU

			PAD					
		NO F	PAD	PA	D		Total	Р
		Count	Row %	Count	Row %	Count	Column N %	
age	<40	4	80.0	1	20.0	5	5.0	0.2
	41-50	15	78.9	4	21.1	19	19.0	
	51-60	30	63.8	17	36.2	47	47.0	
	>61	15	51.7	14	48.3	29	29.0	
Sex	Male	44	65.7	23	34.3	67	67.0	0.6
	Female	20	60.6	13	39.4	33	33.0	
Education	10th	10	76.9	3	23.1	13	13.0	0.4
	5th	1	100.0	0	.0	1	1.0	
	nil	53	61.6	33	38.4	86	86.0	
Religion	christian	2	33.3	4	66.7	6	6.0	0.06
	Hindu	59	68.6	27	31.4	86	86.0	
	Muslim	3	37.5	5	62.5	8	8.0	
Socioeconomic status	low	60	63.8	34	36.2	5	5.0	0.9
	middle	4	66.7	2	33.3	19	19.0	

		PAD							
		NO	PAD	F	AD	Т			
		Count	Row N %	Count	Row N %	Count	columnN %	Р	
Side	left	32	65.3	17	34.7	49	49.0	0.8	
	right	32	62.7	19	37.3	51	51.0		
dorsum_plantar	dorsum	53	65.4	28	34.6	81	81.0	0.5	
	plantar	11	57.9	8	42.1	19	19.0		
Location of foot	forefoot	55	72.4	21	27.6	76	76		
	hindfoot	3	60.0	2	40.0	5	5		
	midfoot	2	50.0	2	50.0	4	4		
	whole foot	4	26.7	11	73.3	15	15	0.008	

Table 3: Site of ulcer and PAD

Fig 2: Site of ulcer and PAD

PAD was associated almost **equally** with plantar and dorsal ulcers, more often **whole** of foot was involved(p=0.008)

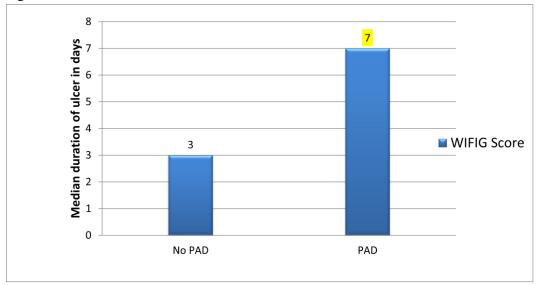
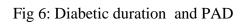


Fig 3: Ulcer duration and WIFI-G score correlation with PAD

	NO PAD (64)			PAD (36)			
	Mean	Median	SD	Mean	Median	SD	р
Ulcer durationdays	25.03	14.00	46.9	25.3	17.50	21.5	0.09
WIFIG Score	3.48	3.00	1.83	6.6	7.0	2.7	< 0.0001


There is significant association of PAD with **high** WIFI index(p<0.0001)

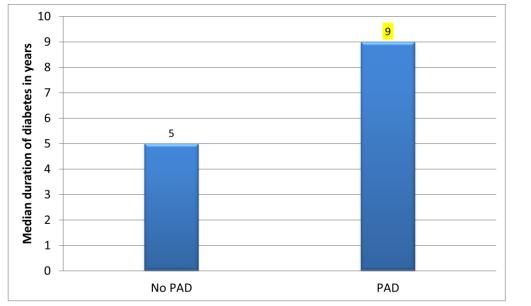

		NO I		PA		
		Count	Row N %	Count	Row N %	р
Trauma	no	55	64.0	31	36.0	0.9
	yes	9	64.3	5	35.7	
Footwear use	no	2	40.0	3	60.0	0.2
	yes	62	65.3	33	34.7	
Smoking	no	28	65.1	15	34.9	0.8
	yes	36	63.2	21	36.8	

Table 5: Trauma, foot wear use and smoking in relation with PAD

Table 6: Co morbidities and PAD

		NO	PAD	PA	\D	
		Count	Row N %	Count	Row N %	Р
DM_Rx	no	9	60.0	6	40.0	0.8
	yes	54	64.3	30	35.7	
Hypertension	no	46	66.7	23	33.3	0.4
	yes	18	58.1	13	41.9	
CVA	no	64	64.6	35	35.4	0.2
	yes	0	.0	1	100.0	
CAD	no	60	64.5	33	35.5	0.7
	yes	4	57.1	3	42.9	
Nephropathy	no	61	64.9	33	35.1	0.5
	yes	3	50.0	3	50.0	
Retinopathy	no	64	64.0	36	36.0	
	yes	0	.0	0	.0	NA

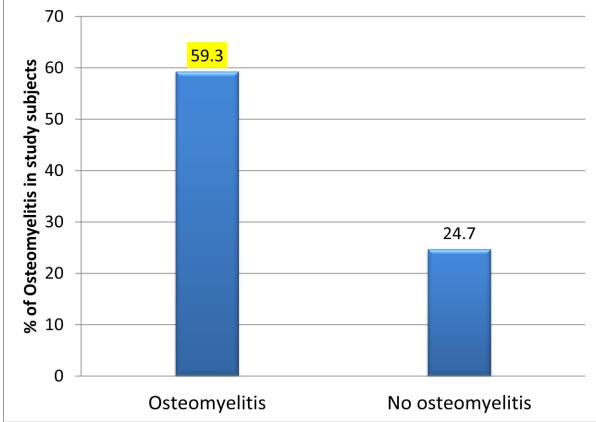

		There is significant						
	N	PAD				association of PAD with		
								longer diabetic
	Mean	Median	SD	Mean	Median	SD		duration(p<0.0001)
Diabetes duration years	7.30	5.00	5.80	10.6	9.00	6.4	0.007	with mean disease
duration years								duration of 10 years

Table 8: Osteomyelitis and PAD

		PAD						
		NO	PAD	PA	\D			
		Count	Row N %	Count	Row N %			
Osteomyelitis	no	53	72.6	20	27.4			
	yes	11	40.7	16	59.3			

P=0.003

Fig 5: Osteomyelitis and PAD

Osteomyelitis is **strongly** associated with PAD(59%, p=0.003).

			PAD				
		NO I	PAD	PA			
		Count	Row N %	Count	Row N %	р	
Absent distal pulses	No	64	84.2	12	15.8		
	Yes	0	.0	24	100.0	<0.0001	
Doppler flow	Normal	55	100.0	0	.0		
	No flow	0	.0	12	100.0		
	Monophasic	0	.0	4	100.0	<0.0001	
	Biphasic	7	25.9	20	74.1		
Fontaine grade	.00	64	100.0	0	.0	L.	
	1.00	0	.0	7	100.0	U	
	2.00	0	.0	10	100.0	<0.0001	
	3.00	0	.0	8	100.0		
	4.00	0	.0	11	100.0		

Table 12: Distal pulses, Doppler flow and Fontaine grading in PAD

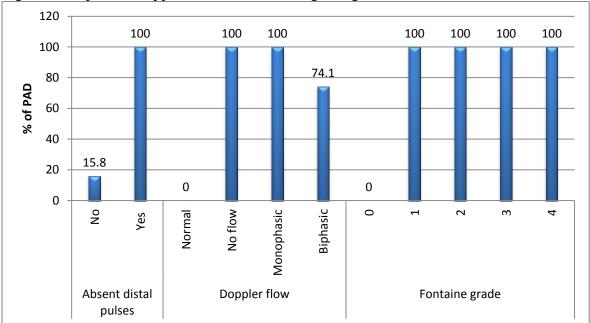


Fig 8: Distal pulses, Doppler flow and Fontaine grading in PAD

		PAD					
		NO	PAD	PA	\D		
		Count	Row N %	Count	Row N %		
amputation	no	46	75.4	15	24.6		
	yes	18	46.2	21	53.8		

Table 15: Lower limb amputation in PAD

P=0.003

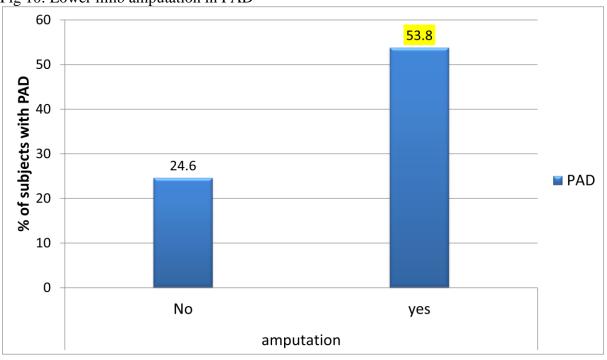


Fig 10: Lower limb amputation in PAD

PAD was associated with **higher amputation** rates(53.8%, p=0.003)

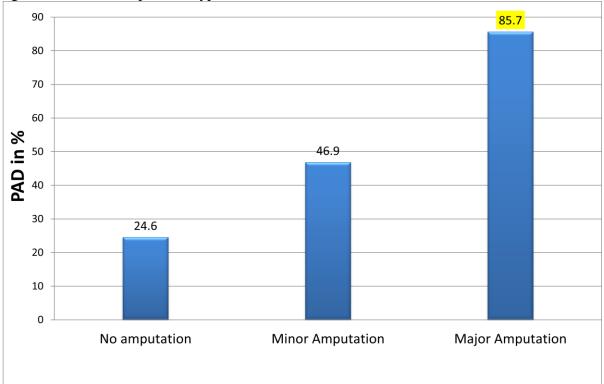


Fig 9: Lower limb amputation type and PAD

Of minor lower limb amputations, only 47% were associated with PAD whereas of all major amputations, 87% were associated with PAD(p= 0.002)

		PAD				
		NO	NO PAD		D	
		Count	Row N %	Count	Row N %	
Amputation	0	46	75.4	15	24.6	
	Bka	1	16.7	5	83.3	
	bka,aka	0	.0	1	100.0	
	forefoot amputation	4	57.1	3	42.9	
	toe amputation	13	52.0	12	48.0	

Table 13: Lower limb amputation level in PAD

P=0.01

		PAD					
		NO	PAD	PA	\D		
		Count	Row N %	Count	Row N %		
ampute	No amputation	46	75.4	15	24.6		
	Minor Amputation	17	53.1	15	46.9		
	Major Amputation	1	14.3	6	85.7		

P=0.002

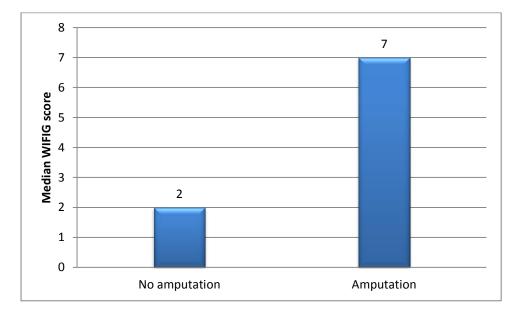

			PAD					
		NO	PAD	PAD				
		Count	Row N %	Count	Row N %	р		
Neuropathy	no	48	66.7	24	33.3	0.4		
	yes	16	57.1	12	42.9			
venous disease	no	61	63.5	35	36.5	0.7		
	yes	3	75.0	1	25.0			
PulseU#L#	no	0	.0	1	100.0			
	yes	64	64.6	35	35.4	0.2		

Table 11: Neuropathy and venous disease associated with DFU

Table 16: Correlation of WIFI-G score and diabetic duration with lower limb amputation in DFU

		Amputation						
	no							
			Standard				р	
	Mean	Median	Deviation	Mean	Median	SD		
WIFIG Score	2.98	2.00	1.27	7.15	7.00	2.11	<0.0001	
Diabetes_durationyears	7.6	5.0	5.9	9.8	8.0	6.5	0.06	

Fig 11: Correlation of WIFI-G score with lower limb amputation in DFU

		N	0	Ye		
		n	%	n	%	Р
Age	<40	2	40.0	3	60.0	0.2
	41-50	11	57.9	8	42.1	
	51-60	34	72.3	13	27.7	
	>61	14	48.3	15	51.7	
Sex	Male	43	64.2	24	35.8	0.6
	Female	18	54.5	15	45.5	
Fontaine grade	.00	46	71.9	18	28.1	
	1.00	5	71.4	2	28.6	0.02
	2.00	3	30.0	7	70.0	
	3.00	3	37.5	5	62.5	
	4.00	4	36.4	7	63.6	
CAD	no	57	61.3	36	38.7	0.9
	yes	4	57.1	3	42.9	
prev_amput	no	51	63.8	29	36.3	
	yes	10	50.0	10	50.0	0.3

Table 17: Association of risk factors with lower limb amputation in DFU

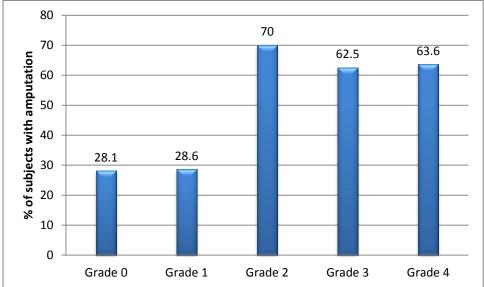


Fig 12: Association of Fontaine grade with lower limb amputation in DFU

		Count	Column N %
Osteomyelitis	no	73	73.0%
	yes	27	27.0%
amputat	no	61	61.0%
	yes	39	39.0%
organism	Polymicrobial	45	45.5%
	Klebsiella	47	47.5%
	Proteus	36	36.4%
	Ecoli	12	12.1%
	Pseudomonas	8	8.1%
	Acinetobacter	1	1.0%
sensitivity	Cefotaxime	14	14.3%
	ceftriaxone	10	10.2%
	cefperazone	4	4.1%
	ceftazidime	2	2.0%
	amikacin	64	65.3%
	imipenem	5	5.1%
	piptaz	6	6.1%

Table 18: Distribution of Osteomyelitis, lower limb amputation and bacteriology in DFU

Table 20: Site of ulcer and amputation

		dorsum_plantar				
		do	orsum	pl	antar	
			Column N %	Count	Column N %	
ampute	No amputation	50	61.7%	11	57.9%	
	Minor Amputation	27	33.3%	5	26.3%	
	Major Amputation	4	4.9%	3	15.8%	

P=0.2

Table 21: Site of ulcer and amputation type

		locationoffoot								
	for	forefoot		hindfoot		midfoot		le foot		
		Column N		Column N		Column N		Column N		
	Count	%	Count	%	Count	%	Count	%		
ampute No amputation	48	63.2%	5	100.0%	3	75.0%	5	33.3%		
Minor	28	36.8%	0	.0%	1	25.0%	3	20.0%		
Amputation										
Major	0	.0%	0	.0%	0	.0%	7	46.7%		
Amputation										

P<0.0001

Table 22: Revascularization and amputation

		Revascular					
			No		Yes		
		Count	Column N %	Count	Column N %		
ampute	No amputation	53	58.9%	8	80.0%		
	Minor Amputation	30	33.3%	2	20.0%		
	Major Amputation	7	7.8%	0	.0%		

P=0.4

3 month follow up

PAD	Revascularization for severe ischemia(vascular consult)	Complete healing without amputation	Toe amputation	ВКА	Expired (MI)	Lost to follow up	LIMB SALVAGE
36	10	3	2	1	1	2	60%

PAD	Best medical management	toe amputation	Forefoot	ВКА	АКА	Lost to follow up	AMPUTATION RATE
26	6	6	1	9	3	1	65%

Since it is a tertiary setting, the **referral was late** and hence primary amputation was done as a life saving measure in these patients.

Organism	N	O PAD			
Organism		Column Total N		Column Total N	Р
	Count	%	Count	%	
Polymicrobial	26	40.6	19	52.8	0.3
Klebsiella	34	53.1	13	36.1	0.2
Proteus	21	32.8	15	41.7	0.4
Ecoli	7	10.9	5	13.9	0.8
Pseudomonas	5	7.8	3	8.3	1
Acinetobacter	0	.0	1	2.8	0.4

Table 9: Pus culture isolates in DFU

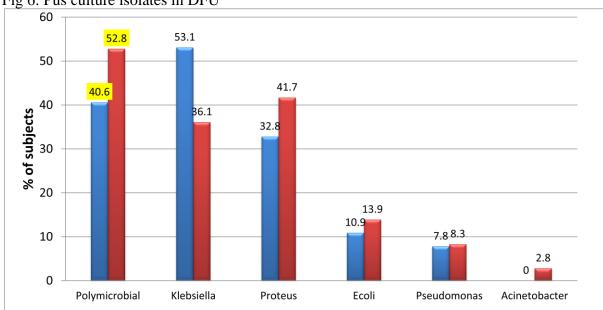


Fig 6: Pus culture isolates in DFU

Wound culture most commonly revealed a **polymicrobial isolate** followed **by gram negative** aerobes sensitive to Aminogycosides.

		Sensitivity													
		Cefotaxime		ceftriaxone		cefperazone		ceftazidime		Amikacin		imipenem		piptaz	
		n	%	n	%	n	%	n	%	n	%	n	%	n	%
organism	Polymicrobial	7	16.3	2	4.7	1	2.3	1	2.3	27	62.8	5	11.6	3	7.0
	Klebsiella	9	19.6	5	10.9	2	4.3	1	2.2	32	69.6	2	4.3	0	.0
	Proteus	5	14.3	3	8.6	1	2.9	0	.0	22	62.9	2	5.7	4	11.4
	Ecoli	0	.0	2	16.7	0	.0	0	.0	8	66.7	1	8.3	1	8.3
	Pseudomonas	0	.0	0	.0	3	37.5	1	12.5	2	25.0	1	12.5	2	25.0
	Acinetobacter	0	.0	0	.0	0	.0	0	.0	1	100.0	0	.0	0	.0

Table 19: Distribution of drug sensitivity in common culture isolates

_					
Drug sensitivity	NO PAD			PAD	
	Count	%	Count	%	р
Cefotaxime	6	9.4	8	22.2	0.1
ceftriaxone	8	12.5	2	5.6	0.3
cefperazone	2	3.1	2	5.6	0.6
ceftazidime	1	1.6	1	2.8	1
amikacin	41	64.1	23	63.9	01
imipenem	4	6.3	1	2.8	0.7
piptaz	6	9.4	0	.0	0.09

Table 10: Drug sensitivity and DFU

Fig 7: Drug sensitivity and DFU

Amikacin was sensitive in almost all cases. Antibiotic resistance to Cefotaxime and Ceftriaxone was reported in few cases.

DISCUSSION

Previous studies aimed to study prevalence of PAD in diabetic population irrespective of foot ulcer. This study aimed to assess the burden of PAD in specific subset(DFU) of diabetic patients and the prevalence is 36%. A south Indian study(CUP) reported prevalence of peripheral arterial disease as 11.8%. Mohan et al have reported on the prevalence of PAD in South Indian diabetics to be 3.9%. They compared their results with that of western studies, where the prevalence ranged between 22% and 45%.

Another study from South India reported a lesser prevalence of PAD (13%) among Indians.

A similar study from Greece reported prevalence of 42%.

In a study based on a tertiary setting in Eastern India by Sahana et al, 141 (34.4%) patients were diagnosed with PAD(ABI<0.9). PAD occurred in 46% of subjects with foot ulcerations compared to 32.7% of subjects without foot ulceration.

Mohan et al concluded that prevalence of PAD in diabetics increased with advancing age, with diabetic duration, from 15% at 10 years to 45% at 20 years from the diagnosis of diabetes. In a study among Central Indian population by Pendsey et al, Diabetic duration<10 yrs had 30% associated PAD, whereas when duration was >10yrs, the association doubled to 60%.

Study	Year	Occurrence of PAI)
		In diabetes	In diabetic foot ulcers
Shojaie Fard et al.	2007		30%
Probal K. Moulik et al	2003		41%
Ikem R et al	2010		25.7%(>2 absent distal pulses) 55.4% (ABI with hand held Doppler)
UKPDS	2008	1.2%(at diagnosis)	
	U.K.	11% (after 6yrs)	
Mohan et al	1995 South India	3.9%	
		X (10yrs)	
		3X (20yrs)	
Pendsey et al	1997	3.9%	
	Central India	X (10yrs)	
		2X (>10yrs)	
Sahana et al	Eastern India	34.4%	46%

In our study, PAD prevalence was 36% which was higher in comparison to most of the other studies. This could be attributed to many causes including large percentage of patients with foot complications attending a **tertiary** care centre like our hospital, **specific** target population of DFU and **triple** assessment criteria.

	absent distal pulses	ABI	ABI + Duplex
PAD	24%	28%	36%
Non- compressibility		7%	
	Edema, Collaterals, human error		

In a study by Jyothylekshmy et al, Culture report on foot ulcer patients revealed that Gram-positive Staphylococcus species (18.8%) and the Gram-negative Pseudomonas species (18.2%) were the predominant organisms.

Gram-positive aerobic bacteria was reported to be the commonest isolate in diabetic foot infections in many studies but recent investigations reported a predominance of Gram-negative aerobes. Fluoroquinolones were the most commonly used empirical antibiotics in this study as it has broad spectrum of activity, relatively safe, and cost effective antibiotic compared to the other antibiotics.

However in some studies, monomicrobial isolates were most common. This kind of discrepancy may be attributed to varying geography or infection severity in different hospitals included in the studies.

	Jyothylekshmi et al	Gadipalli	Х	OUR STUDY
Isolate	Gram positive aerobic	Gram negative aerobic	Monomicrobial	Polymicrobial Gram negative aerobic

In this study, Cephalosporins followed by flouroquinolones was the most prescribed empirical antibiotic . The most common culture isolates were polymicrobial consisting of gram negative aerobes. Taylor et al reported that ischemic patients without revascularization had the worst outcomes. Chang TY et al in a study in Taiwan reported a limb salvage rate of 36% in revascularized patients.

In a 3 month follow up in our study, the ulcer healing was delayed in patients with PAD compared to non-PAD. 60% limb salvage was possible with revascularization. The amputation rates were higher(65%) in the non-revascularized group.

Ulcer healing occurred in revascularized and non-revascularized group of patients and was quicker in the revascularized group(PAD). The mean hospital stay duration and drug expenditure was lower in the revascularized patients.

- <u>Taylor et al</u> reported that ischemic patients without revascularization had the **worst** outcomes.
- Chang TY et al in a study in Taiwan reported a limb salvage rate of 36% in revascularized patients.
- The **amputation rates were higher**(65%) in the non-revascularized group.
- **60% limb salvage** was possible with revascularization.
- ulcer healing was delayed in patients with PAD compared to non-PAD.
- Ulcer healing **occurred in both** revascularized and non-revascularized group of patients but was **quicker** in the revascularized group(PAD).

CONCLUSION

The prevalence of PAD in DFU is high in South Indian. The present study analyzed occurrence of PAD and various factors coexisting with DFU and PAD.

Increasing age and longer duration of diabetes are risk factors for peripheral arterial disease. High prevalence puts DFU at a higher risk of amputation.

The prevalence of PAD is found to be 36%. Patients with high risk factors associated with PAD like male, age>40 yrs, ulcer involving whole of foot, high WIFI-G score with diabetic duration> 10yrs, should be dealt with a strong suspicion of PADs

Strong association with osteomyelitis, higher amputation rates and longer hospital stay warrants a screening for PAD in all DFU.

WIFI-G scoring should be incorporated in the clinical assessment of wound due to its positive correlation with likelihood of amputation and PAD.

The use of hand held Doppler will aid early diagnosis in a reliable and costeffective manner. Moreover, a triple assessment criteria involving distal pulse charting, ABI and Doppler study should be followed to properly diagnose a PAD at the earliest. Based on the bacteriological data acquired by doing hospital based study, institutional antibiotic protocol should be formed for empirical treatment of the diabetic foot to counter the antibiotic resistance.

Once PAD diagnosed, patient should be counselled and categorized according to the appropriate management, and if found fit for revascularization should be done at the earliest onset to attain the benefit of limb salvage.

The patients who underwent revascularization had lower rates of major amputation and limb loss.

Nonetheless, in patients not fit for revascularization, the rates of major amputation were appreciable and ulcer healing was delayed.

The results conclude that peripheral arterial disease is a potential risk factor for delayed wound healing and major limb amputations in DFU.

Our data emphasizes the need for further dedicated research to identify and target this high risk population of DFU.

Strength and weakness of the study

- Since the study was conducted in a tertiary care centre, the number of patients with diabetic foot complications were high.
 - Randomization was easier

- Neuropathic component was ignored
- Emergency revascularization procedures were not carried out.
- Not all patients were revascularized due to lack of awareness and ignorance, individual patient counselling was difficult.
- Follow up period was only 3 months.

REFERENCES

- Rhee SY, Guan H, Liu ZM, Cheng SW, Waspadji S, Palmes P, Tai TY, Suwanwalaikorn S, Kim YS; PAD-SEARCH Study Group. Multi-country study on the prevalence and clinical features of peripheral arterial disease in Asian type 2 diabetes patients at high risk of atherosclerosis.
- 2. A. Shojaie Fard, M. Esmaelzadeh, B. Larijani. Assessment and treatment of diabetic foot ulcer
- Probal K. Moulik, Robert Mtonga, Geoffrey V. Gill. Amputation and Mortality in New-Onset Diabetic Foot Ulcers Stratified by Etiology. Diabetes Care 2003 Feb; 26(2): 491-494.
- Ikem R, Ikem I, Adebayo O, Soyoye D. An assessment of peripheral vascular disease in patients with diabetic foot ulcer. Diabetes Care. 2000 Sep;23(9):1295-300.
- Premalatha G, Shanthirani S, Deepa R, Markovitz J, Mohan V.
 Prevalence and risk factors of peripheral vascular disease in a selected South Indian population: the Chennai Urban Population Study.
 Diabetes Care. 2000 Sep;23(9):1295-300.
- Sh. Pendsey. PERIPHERAL VASCULAR DISEASE: AN INDIAN SCENARIO

- Vijay Viswanathan, The Diabetic Foot: Perspectives From Chennai, South India
- P Sahana, N Sengupta, S Chowdhury. High Prevalence Of Neuropathy And Peripheral Arterial Disease In Type 2 Diabetes In A Tertiary Care Centre In Eastern India. The Internet Journal of Endocrinology. 2010 Volume 6 Number 2.
- Al-Maskari F, El-Sadig M. Prevalence of risk factors for diabetic foot complications. BMC Fam Pract 2007;8:59.
- Malyar NM¹, Freisinger E², Meyborg M², Lüders F², Gebauer
 K², Reinecke H², Lawall H³. Amputations and mortality in in-hospital treated patients with peripheral artery disease and diabetic foot syndrome.
- Williams DT¹, Majeed MU, Shingler G, Akbar MJ, Adamson
 DG, Whitaker CJ. A diabetic foot service established by a department of vascular surgery: an observational study. Ann Vasc Surg. 2012
 Jul;26(5):700-6. doi: 10.1016/j.avsg.2011.10.020. Epub 2012 Apr 12.
- 12. Armstrong DG¹, Bharara M, White M, Lepow B, Bhatnagar S, Fisher T, Kimbriel HR, Walters J, Goshima KR, Hughes J, Mills JL. The impact and outcomes of establishing an integrated interdisciplinary surgical team to care for the diabetic foot.

- Rabia K¹, Khoo EM. Prevalence of peripheral arterial disease in patients with diabetes mellitus in a primary care setting.
- 14. Guan H, Li YJ, Xu ZR et al. Prevalence and risk factors of peripheral arterial disease in diabetic patients over 50 years old in China.
- 15. Newman AB[•] Peripheral arterial disease: insights from population studies of older adults.
- Lange S, Diehm C, Darius H, Haberl R, Allenberg JR, Pittrow
 D, Schuster A, von Stritzky B, Tepohl G, Trampisch HJ. High prevalence of peripheral arterial disease and low treatment rates in elderly primary care patients with diabetes.
- 17. Rhee SY¹, Guan H, Liu ZM, Cheng SW, Waspadji S, Palmes P, Tai TY, Suwanwalaikorn S, Kim YS; PAD-SEARCH Study Group. Multicountry study on the prevalence and clinical features of peripheral arterial disease in Asian type 2 diabetes patients at high risk of atherosclerosis.
- Bernstein EF, Fronek A: Current status of non-invasive tests in the diagnosis of peripheral arterial disease. Surg Clin North Am 62:473– 487, 1982
- Elhadd TA, Robb R, Jung RT, Stonebridge PA, Belch JJF: Pilot study of prevalence of asymptomatic peripheral arterial occlusive disease in patients with diabetes attending a hospital clinic. Practical Diabetes Int 16:163–166, 1999

- Hirsch AT, Criqui MH, Treat-Jacobson D, Regensteiner JG, Creager MA, Olin JW, Krook SH, Hunninghake DB, Comerota AJ, Walsh ME, McDermott MM, Hiatt WR: Peripheral arterial disease detection, awareness, and treatment in primary care. JAMA 286:1317– 1324, 2001
- Weitz JI, Byrne J, Clagett GP, Farkouh ME, Porter JM, Sackett DL, Strandness DE Jr, Taylor LM: Diagnosis and treatment of chronic arterial insufficiency of the lower extremities: a critical review. Circulation94:3026–3049, 1996
- Dormandy JA, Rutherford RB: Management of peripheral arterial disease (PAD): TASC Working Group: TransAtlantic Inter-Society Concensus (TASC). J Vasc Surg 31:S1–S296, 2000
- 23. Dolan NC, Liu K, Criqui MH, Greenland P, Guralnik JM, Chan C, Schneider JR, Mandapat AL, Martin G, McDermott MM: Peripheral artery disease, diabetes, and reduced lower extremity functioning. Diabetes Care 25:113–120, 2002
- 24. McDaniel MD, Cronenwett JL: Basic data related to the natural history of intermittent claudication. Ann Vasc Surg 3:273–277, 1989
- Beckman JA, Creager MA, Libby P: Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA 287:2570– 2581, 2002

- 26. David G Armstrong, D.P.M., M.D., Ph.D., Kelman Cohen, M.D.,²Stephane Courric, Ph.D., Manish Bharara, Ph.D.,and William Marston, M.D. Diabetic Foot Ulcers and Vascular Insufficiency: Our Population Has Changed, but Our Methods Have Not
- 27. Williams DT, Majeed MU, Shingler G, Akbar MJ, Adamson DG, Whitaker CJ. A diabetic foot service established by a department of vascular surgery: an observational study.
- 28. V Jyothylekshmy, Arun S Menon, Suja Abraham, Epidemiology of diabetic foot complications in a podiatry clinic of tertiary hospital in South India a Year :2015 | Volume :8 | Issue :1 | Page :48-51
- Gadepalli R, Dhawan B, Sreenivas V, Kapil A, Ammini AC, Chaudhry R. A clinico-microbiological study of diabetic foot ulcers in an Indian tertiary care hospital. Diabetes Care 2006;29:1727-32.

INSTITUTIONAL ETHICAL COMMITTEE, STANLEY MEDICAL COLLEGE, CHENNAI-1

Title of the Work	: Assessment of peripheral arterial disease in diabetic
	foot ulcer : A prospective Study.

Principal Investigator : Dr. Vijayasarathy S.

Designation	: PG MS (General Surgery)
Department	: Department of General Surgery, Government Stanley Medical College Chennai-01.

The request for an approval from the Institutional Ethical Committee (iEC) was considered on the IEC meeting held on 14.06.2016 at the Council Hall, Stanley Medical College, Chennai-1 at 2PM

The members of the Committee, the secretary and the Chairman are pleased to approve the proposed work mentioned above, submitted by the principal investigator.

The Principal investigator and their team are directed to adhere to the guidelines given below:

- 1. You should inform the IEC in case of changes in study procedure, site investigator investigation or guide or any other changes.
- 2. You should not deviate from the area of the work for which you applied for ethical clearance.
- 3. You should inform the IEC immediately, in case of any adverse events or serious adverse reaction.
- 4. You should abide to the rules and regulation of the institution(s).
- 5. You should complete the work within the specified period and if any extension of time is required, you should apply for permission again and do the work.
- 5. You should submit the summary of the work to the ethical committee
 - on completion of the work.

land. MEMBER SECRETARY, (914)16

IEC, SMC, CHENNAI MEMBER SECRETARY ETHICAL COMMITTEE, STANLEY MEDICAL COLLEGE CHENNAI-600 001.

PROFORMA

S. No.	DOA	Cor	ntact:	
Name	Age/	Sex	IP. No.	
Occupation				
Education	Relig	ion	Socioecono	mic status
Site of ulcer:				
Size of ulcer:				
Duration of ul	cer:			
Wound depth	Ischemia	Foc	ot infection	Gangrene
WIFI-G score:				
Previous hospi	italization:			
Trauma	Smoking	Hypertension	CAD	CVA
Retinopathy	Nephropathy	DM x		
Footwear use				
X-ray foot:				
Wound culture	e: Organisms			
	Antibiotic			

Bone culture: Organisms

Antibiotic

MRI Foot:

Neuropathy: Vibration sense 2-point discrimination: Venous system: Superficial Deep

Pulses:	Right	Bruit	Pressure	Left	Bruit	Pressure
U.L.						
STA						
CCA						
SCA						
AA						
BA						
RA						
UA						

L.L.		
CFA		
PA		
PT		
AT		
DPA		
ABI		

Doppler/Duplex Scan:

CT Angiogram:

Limb ischemia/Fontaine:

Medical management: Heparin() Aspirin/Clopidogrel() Acitrom()

Antibiotics:

Total duration:

Angioplasty/Stenting:

Debridements:

Amputation:

Minor

Major

Duration of hospital stay:

FOLLOW UP	Clinical	Ulcer	ABI
Intervention			
1 st month			
2 nd month			
3 rd month			
Limb Salvage:			
Amputation free surviv	val(3 months):		
MALE:			

MACE:

MASTER CHART

Name	Age Sex	IP No Ulcer Site	WIFI-G Score	OM(years) Osteomyelitis	Culture yield	Polymicrobial
nelson	51 m	1673929 plantar, whole foot	9	20 n	Proteus	У
meenatchi	68 f	1608601 dorsum,forefoot	2	2 n	klebsiella	У
manjula	25 f	1604250 dorsum, whole foot	2	5 n	klebsiella	n
shanthakumari	41 f	1604067 plantar,midfoot	6	2 n	klebsiella	n
durairaj	60 m	1601581 dorsum,whole foot	12	5 y	klebsiella	n
velayudam	75 m	1601775 dorsum,forefoot	5	2 n	klebsiella	n
mangai	53 f	1604756 dorum,forefoot	9	15 y	Proteus	У
sakkubai	60 f	1687299 dorsum,forefoot	7	8 y	Proteus	n
chanbee	67 f	1611103 plantar,midfoot	8	8 n	klebsiella	n
sumathy	56 f	1611221 plantar,wholefoot	11	20 y	Proteus	У
govindaraj	37 m	1607832 dorsum,forefoot	8	4 y	klebsiella	У
kannabiran	38 m	1610375 dorsum,whole foot	6	8 n	Proteus	У
velayudam	50 m	1600518 dorsum,forefoot	6	5 y	Proteus	У
balakrishnan	48 m	1619793 dorsum,forefoot	6	8 y	klebsiella	n
vasu	55 m	1618161 plantar,hindfoot	2	10 n	klebsiella	n
mani	55 m	1614947 dorsum,forefoot	2	10 n	Proteus	n
mohan	63 m	1607396 dorsum, whole foot	2	13 n	Proteus	n
dharmaraj	60 m	1607823 dorsum,2nd toe	6	1 n	E.coli	n
henry	50 m	1600213 dorsum,5th toe	4	6 n	E.coli	n
munusamy	60 m	1611425 dorsum,forefoot	9	20 y	Acinetobacter	n
krishnamurthy	57 m	1609315 plantar, whole foot	9	10 y	E.coli	У
thomas	62 m	1608141 dorsum,forefoot	2	4 n	Proteus	n
mohan	55 m	1609456 dorsum,forefoot	2	5 n	E.coli	n
vasu	55 m	1627272 dorsum, hind foot	8	15 y	Proteus	n
jaya	64 f	1638102 dorsum,forefoot	4	3 n	klebsiella	n
yashoda	55 f	1610303 dorsum,forefoot	3	10 n	klebsiella	У
samikannu	85 m	1654353 plantar,hindfoot	2	10 n	E.coli	У
panneerselvam	56 m	1608995 plantar, forefoot	2	22 n	E.coli	У
anwar ali	42 m	1606588 dorsum,forefoot	5	5 n	Pseudomonas	У
rajendran	49 m	1689278 dosum, whole foot	8	8 n	Proteus	n
karunanidhi	59 m	1604972 dorsum,forefoot	3	18 n	Proteus	У

asothi	70 f	1608599 dorsum,great toe	9	5 y	E.coli	У
amsa	48 f	1609181 plantar,hindfoot	3	3 n	E.coli	У
anjalai	63 f	1673279 dorsum, whole foot	8	18 y	klebsiella	n
prema	65 f	1608102 dorsum,forefoot	6	8 y	klebsiella	n
sulochana	65 f	1673838 dorsum,great toe	7	10 n	Pseudomonas	n
avadiammal	72 f	1618835 dorsum, whole foot	9	14 y	Pseudomonas	n
ranjitham	63 f	1654232 dorsum,great toe	2	10 n	Pseudomonas	n
subamma	63 f	1653424 dorsum,great toe	4	10 n	Proteus	У
mary susila	54 f	1654322 dorsum,forefoot	3	5 n	Proteus	n
poornima	43 f	1678898 dorsum,forefoot	5	13 y	klebsiella	n
abdul	52 m	1604275 dorsum,forefoot	3	13 n	Proteus	У
alexander	65 m	1653433 plantar, whole foot	8	14 y	Proteus	У
nagarathnam	60 m	1638387 dorsum,forefoot	6	10 y	klebsiella	n
raniyammal	60 f	1613625 dorsum, whole foot	9	10 y	klebsiella	У
kanagammal	80 f	1672628 dorsum,great toe	10	5 y	klebsiella	У
arumugam	57 m	1621294 dorsum,great toe	6	5 n	Proteus	n
ganesan	63 m	1616716 dorsum,2nd toe	9	20 y	klebsiella	n
rangarajan	57 m	1619782 dorsum,5th toe	3	4 n	klebsiella	n
mani	48 m	1618198 plantar,hindfoot	2	3 n	Proteus	n
govindaraj	37 m	1620225 dorsum,forefoot	8	4 y	Proteus	У
lakshmanan	65 m	1618170 dorsum,forefoot	9	20 y	Proteus	У
desingh	67 m	1617984 dorsum,great toe	6	4 n	klebsiella	У
tamilarasan	50 m	1619166 dorsum,forefoot	2	10 n	Proteus	У
panneerselvam	55 m	1608445 plantar,great toe	2	22 n	Proteus	n
kuppan	45 m	1619907 dorsum,2nd toe	6	1 y	Pseudomonas	n
ragupathy	60 m	1615313 plantar,midfoot	4	25 n	Proteus	n
ganesan	52 m	1618851 dorsum,5th toe	2	15 n	klebsiella	n
vasudevan	64 m	1619942 dorsum,forefoot	2	12 n	klebsiella	У
kanniayappan	65 m	1672828 dorsum,forefoot	6	6 y	Pseudomonas	У
kannamal	60 f	1622780 dorsum,great toe	3	3 n	Proteus	У
Pushpa	53 f	1676551 dorsum,2nd toe	3	3 n	klebsiella	У
kamalanathan	70 m	1628937 dosum,hindfoot	9	2 n	klebsiella	У
balasubramaniam	58 m	1634232 dorsum, whole foot	4	8 n	klebsiella	У

sampath kumar	56 m	1629232 dorsum,forefoot	4	4 n	klebsiella, proteus	n
kannan	48 m	1626774 dorsum,forefoot	4	1 n	citrobacter	У
vasudevan	64 m	1619947 dorsum,forefoot	2	1 n	proteus	У
jayaraj	70 m	1629379 dorsum,forefoot	5	20 n	klebsiella	У
samidurai	60 m	1605804 dorsum,forefoot	2	3 n	klebsiella	У
hussain	55 m	1631559 dorsum,great toe	2	4 n	klebsiella	У
mahendran	51 m	1627078 dorsum,forefoot	2	20 n	klebsiella	n
kaliyamurthy	68 m	1631607 dorsum,forefoot	7	6 n	proteus	n
ellapan	63 m	1651216 dorsum,forefoot	2	3 n	klebsiella	У
meena	52 f	1676611 plantart,midfoot	5	1 y	proteus	n
maheshwari	40 f	1612820 dorsum,forefoot	4	5 n	klebsiella	n
meenakshi	60 f	1688800 dorsum,great toe	2	15 n	E.coli	n
govindamal	47 f	1630045 dorsum,forefoot	2	1 n	klebsiella	n
mary	55 f	1631445 dorsum,forefoot	2	15 n	klebsiella	n
prabakaran	55 m	1623422 plantar,forefoot	7	3 n	proteus,Ecoli	У
govindan	53 m	1627219 dorsum,forefoot	2	8 n	proteus	n
balasubramanian	54 m	1677282 dorsum,forefoot	2	15 n	klebsiella	n
saroja	70 f	1688732 dorsum,whole foot	11	8 y	Ecoli	у
devaraj	50 m	1677282 dorsum,forefoot	3	10 n	proteus	n
jaishankar	61 m	1626059 plantar, whole foot	7	25 y	klebsiella	n
sigamani	55 m	1673383 dorsum,forefoot	2	1 n	klebsiella	n
ameer basha	69 m	1689483 dorsum,forefoot	2	3 n	klebsiella	n
vatchala	55 f	1678283 dorsum,forefoot	3	7 n	klebsiella	n
prabakar	50 m	1683838 dorsum,forefoot	2	10 n	klebsiella	У
govind	45 m	1676262 dorsum,forefoot	2	2 n	klebsiella	n
palani	55 m	1637373 dorsum,forefoot	2	3 n	proteus	n
kuppurani	50 f	1679292 dorsum,forefoot	4	4 n	klebsiella	n
prabakaran	54 m	1633255 dorsum,forefoot	2	4 n	klebsiella	У
balasubramani	54 m	1654233 dorsum,forefoot	8	10 n	proteus	y
velu	60 m	1672822 dorsum,forefoot	2	5 n	proteus	У
nagamani	48 m	1673938 dorsum,great toe	4	6 n	klebsiella	у
bala	54 m	1683844 dorsum,forefoot	2	4 n	klebsiella	n
prabhu	55 m	1673637 plantar,forefoot	2	3 n	proteus	У
chellamal	55 f	1678992 plantar, whole foot	4	5 n	proteus	n
Basha	55 m	1653335 dorsum,forefoot	4	3 n	klebsiella	n
dhanalakshmi	45 f	1634234 plantar, forefoot	4	12 n	proteus	У

Name	absent distal pulses	ABI Doppler study	PAD	Amputation	Revascularization	1st month	2nd month
nelson	у	0 no flow	у	aka	n		
meenatchi	n	nc normal	n	n	n		healed
manjula	n	1 normal	n	n	n		healed
shanthakumari	У	0.8 biphasic flow in PT,AT	У	n	n		healed
durairaj	У	0 no flow	У	bka,aka	n		
velayudam	n	nc normal	n	n	n		healed
mangai	У	0.6 biphasic flow in PT,AT	У	bka	n		
sakkubai	У	0.8 biphasic flow in PT,AT	У	toe amputation	n		healed
chanbee	У	nc no flow	У	forefoot amputation	n		healed
sumathy	У	0.3 monophasic flow	У	bka	n		
govindaraj	n	1 normal	n	forefoot amputation	n		healed
kannabiran	У	0 no flow	У	n	у,	healed	
velayudam	n	nc biphasic flow in PT,AT	n	toe amputation	n		healed
balakrishnan	n	1.3 normal	n	toe amputation	n		healed
vasu	n	1.2 normal	n	n	n		healed
mani	n	1 normal	n	n	n		healed
mohan	n	1.1 normal	n	n	n		healed
dharmaraj	У	0 no flow	У	n	у,	healed	
henry	У	0.5 monophasic flow	У	n	у,	healed	
munusamy	У	0 no flow	У	toe amputation	n		healed
krishnamurthy	n	0.8 biphasic flow in PT,AT	У	bka	n		
thomas	n	1 normal	n	n	n		healed
mohan	n	0.9 normal	n	n	n		healed
vasu	У	nc biphasic flow	У	aka	n		
jaya	n	1.3 normal	n	n	n		healed
yashoda	n	nc biphasic	n	n	n		healed
samikannu	n	1.3 biphasic flow in PT,AT	n	n	n		healed
panneerselvam	n	1 normal	n	n	n		healed
anwar ali	n	1 normal	n	toe amputation	n		healed
rajendran	У	nc biphasic	У	bka	n		
karunanidhi	n	0.8 biphasic flow in PT,AT	У	n	n		healed

asothi	у	0	no flow	у	toe amputation	n		healed
amsa	n	1	normal	n	n	n		healed
anjalai	n	1	biphasic flow	n	bka	n		
prema	n	1.3	normal	n	toe amputation	n		healed
sulochana	У	0	no flow	У	toe amputation	n		healed
avadiammal	У	0.8	biphasic flow	У	bka	n		
ranjitham	n	1	normal	n	n	n		healed
subamma	У	0.6	biphasic flow	У	n	у,	healed	
mary susila	n	1	normal	n	n	n		healed
poornima	n	1.3	normal	n	n	n		healed
abdul	n	0.6	biphasic flow in AT,PT	У	n	у,	healed	
alexander	n	0.6	biphasic flow	У	toe amputation	n		healed
nagarathnam	n	1	normal	n	toe amputation	n		healed
raniyammal	n	0.8	biphasic flow	У	bka	n		
kanagammal	У	0	no flow	У	n	n		healed
arumugam	У	0	no flow	У	n	у,	healed	
ganesan	У	0.7	biphasic flow in PT,AT	У	forefoot amputation	у,	healed	
rangarajan	У	0.9	monophasic flow	У	n	у,	healed	
mani	У	1	monophasic flow	У	n	у,	healed	
govindaraj	n	1	biphasic flow	n	forefoot amputation	n		healed
lakshmanan	n	nc	biphasic	У	forefoot amputation	у,	healed	
desingh	У	0	no flow	У	n	n		healed
tamilarasan	n	1	normal	n	n	n	healed	
panneerselvam	n	1	normal	n	n	n	healed	
kuppan	n	nc	normal	n	toe amputation	n	healed	
ragupathy	n	nc	normal	n	n	n	healed	
ganesan	n	1	normal	n	n	n	healed	
vasudevan	n	1	normal	n	n	n	healed	
kanniayappan	n	0.9	normal	n	toe amputation	n	healed	
kannamal	n	1.1		n	n	n		healed
Pushpa	n	1		n	n	n		healed
kamalanathan	n	0.8	biphasic	У	bka	n		
balasubramanian	n n	0.8	biphasic dorsalis pedis	У	n	n		healed

sampath kumar	n	1.1	normal	n	toe amputation	n	healed
kannan	n	0.9) normal	n	toe amputation	n	healed
vasudevan	n	0.9) normal	n	n	n	healed
jayaraj	n	1	biphasic	У	toe amputation	n	healed
samidurai	n	1	normal	n	n	n	healed
hussain	n	0.9	normal	n	n	n	healed
mahendran	n	1	normal	n	n	n	healed
kaliyamurthy	n	nc	normal	n	forefoot amputation	n	healed
ellapan	n	1	normal	n	n	n	healed
meena	n	nc	normal	n	n	n	healed
maheshwari	n	1	normal	n	toe amputation	n	healed
meenakshi	n	nc	normal	n	n	n	healed
govindamal	n	1	normal	n	n	n	healed
mary	n	nc	normal	n	n	n	healed
prabakaran	n	1	normal	n	forefoot amputation	n	healed
govindan	n	1	normal	n	n	n	healed
balasubramanian	n	nc	biphasic	n	n	n	healed
saroja	у	0) no flow	У	bka	n	
devaraj	n	1	normal	n	n	n	healed
jaishankar	n	0.7	/ biphasic	У	toe amputation	n	healed
sigamani	n	1	normal	n	n	n	healed
ameer basha	n	1	normal	n	n	n	healed
vatchala	n	0.8	8 biphasic	У	n	n	healed
prabakar	n	nc	biphasic	n	n	n	healed
govind	n	1	normal	n	n	n	healed
palani	n	1	normal	n	n	n	healed
kuppurani	n	0.9) normal	n	toe amputation	n	healed
prabakaran	n	1	normal	n	n	n	healed
balasubramani	n	0.7	/ biphasic	У	bka	n	healed
velu	n	1	normal	n	n	n	healed
nagamani	n	1	normal	n	toe amputation	n	healed
bala	n	nc	normal	n	n	n	healed
prabhu	n	1	normal	n	n	n	healed
chellamal	n	1	normal	n	n	n	healed
Basha	n	nc	normal	n	toe amputation	n	healed
dhanalakshmi	n	nc	normal	n	n	n	healed

Name	3rd month				
nelson	healed	asothi		sampath kumar	
meenatchi		amsa		kannan vasudevan	
manjula		anjalai	healed	iavaraj	
shanthakumari		prema		jayaraj samidurai	
durairaj	healed	sulochana		hussain	
velayudam		avadiammal	healed	mahendran	
mangai	healed	ranjitham		kaliyamurthy	
sakkubai		subamma marv susila		ellapan	
chanbee		poornima		meena	
sumathy	healed	abdul		maheshwari	
govindaraj		alexander		meenakshi	
kannabiran		nagarathnam		govindamal	
velayudam		raniyammal	healed	mary	
balakrishnan		kanagammal		prabakaran	
vasu		arumugam		govindan balasubramanian	
mani		ganesan			healed
mohan		rangarajan		saroja devaraj	nealeu
dharmaraj		mani		jaishankar	
henry		govindaraj		sigamani	
munusamy		lakshmanan dasiaab		ameer basha	
krishnamurthy	healed	desingh tamilarasan		vatchala	
thomas		panneerselvam		prabakar	
mohan		kuppan		govind	
vasu	healed	ragupathy		palani	
jaya		ganesan		kuppurani	
yashoda		vasudevan		prabakaran	
samikannu		kanniayappan		balasubramani	
panneerselvam		kannamal		velu	
anwar ali		Pushpa		nagamani bala	
rajendran	healed	kamalanathan	healed	prabhu	
karunanidhi		balasubramaniam	1	prablia	

GOVT.STANLEY MEDICAL COLLEGE, CHENNAI- 600 001

INFORMED CONSENT

"Assessment of peripheral arterial disease in diabetic foot ulcer: A prospective study"

PLACE OF STUDY: GOVT. STANLEY MEDICAL COLLEGE, CHENNAI

NAME AND ADDRESS OF PATIENT:

I, ______ have been informed about the details of the study in my own language. I have completely understood the details of the study.

I am aware of the possible risks and benefits, while taking part in the study.

I understand that I can withdraw from the study at any point of time and even then, I will continue to receive the medical treatment as usual.

I understand that I will not get any payment for taking part in this study.

I will not object if the results of this study are getting published in any medical journal, provided my personal identity is not revealed.

I know what I am supposed to do by taking part in this study and I assure that I would extend my full co-operation for this study.

Name and Address of the Volunteer:

Name and signature of investigator:

Signature/Thumb impression of the Volunteer

Date:

Date:

Witnesses: (Signature, Name & Address)

Date:

அரசு ஸ்டான்லி மருத்துவகல்லூரி, சென்னை – 600001

Assessment of peripheral arterial disease in diabetic foot ulcer: A prospective study நான் இந்த ஆராய்ச்சியில்விவரங்களை முற்றிலும் புரிந்து கொண்டேன்.

ஆய்வில் பங்கு எடுத்துபோது, சாத்தியமான அபாயங்கள் மற்றும் பயன்களை பற்றி நான் அறிந்துள்ளேன்.

நான் எந்தவொரு வேளையிலும் ஆய்வில் இருந்துதிரும்பமுடியும், அதன்பின்னர், நான்வழக்கம்போல் மருத்துவசிகிச்சை பெற முடியும் என்று புரிந்து கொள்கிறேன்

நான் ஆய்வில் பங்கு எடுத்து பணம் எதையும் பெறமுடியாது என்று அறிந்துள்ளேன். இந்த ஆய்வின் முடிவுகள் எந்த மெடிக்கல் ஜர்னலில் வெளியிடப்பட இருந்தால் நான் எதிர்க்கவில்லை, என் தனிப்பட்ட அடையாளத்தை வெளிப்படுத்தப்பட்டு இருக்ககூடாது.

நான் இந்த ஆய்வில் பங்கெடுப்பதன் மூலம் நான் என்ன செய்ய போகிறேன் என்று தெரியும்

நான் இந்த ஆய்வில் என் முழு ஒத்துழைப்பையும் கொடுப்பேன் என்று உறுதியளிக்கிறேன்.

தன்னார்வளர்

சாட்சி

பெயர் மற்றும் முகவரி

கையொப்பம் / விரல் ரேகை

கையொப்பம் / விரல் ரேகை:

பெயர் மற்றும் முகவரி

ஆராய்ச்சியாளராக கையொப்பம் மற்றும் தேதி