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Abstract

Let C be an algebraic space curve defined by a rational parametrization
P(t) ∈ K(t)`, ` ≥ 2. In this paper, we consider the T–function, T (s), which
is a polynomial constructed from P(t) by means of a univariate resultant,
and we show that T (s) contains essential information concerning the sin-
gularities of C. More precisely, we prove that T (s) =

∏n
i=1HPi

(s), where
Pi, i = 1, . . . , n, are the (ordinary and non–ordinary) singularities of C and
HPi

, i = 1, . . . , n, are polynomials, each of them associated to a singularity,
whose factors are the fibre functions of those singularities as well as those
other belonging to their corresponding neighborhoods. That is, HQ(s) =

HQ(s)m−1
∏k

j=1HQj
(s)mj−1, where Q is an m-fold point, Qj, j = 1, . . . , k,

are the neighboring singularities of Q, and mj, j = 1, . . . , k, are their corre-
sponding multiplicities (HP denotes the fibre function of P ). Thus, by just
analyzing the factorization of T , we can obtain all the singularities (ordinary
and non–ordinary) as well as interesting data relative to each of them, like its
multiplicity, character, fibre or number of associated tangents. Furthermore,
in the case of non–ordinary singularities, we can easily get the corresponding
number of local branches and delta invariant.

Keywords: Rational parametrization; Singularities of an algebraic curve;
Multiplicity of a point; Ordinary singularity; Non–ordinary singularity;
T–function; Fibre function
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1. Introduction

The study of algebraic varieties from the parametric point of view has
been a subject of attention for many researchers in the last years ([7], [9],
[15], [16], [17], [23], [27]). The increasing interest in this area is partially
motivated by the convenience of manipulating algebraic varieties through
their corresponding parametric equations. The computations required for
many practical applications in computer aided geometric design (CAGD),
can often be carried out in an easier way by working with the parametric
expression. Important examples of these assertions can be found for instance,
in visualization problems (see [16], [17]) or modeling problems (see [15] or
[19]).

One of the main topics in this area is the study of singularities. Here,
rational parametrizations provide interesting approaches from the computa-
tional point of view. For instance, for the case of parametric plane curves,
some interesting results are provided in [9], where the singular points are
computed using the implicitization matrix derived from the µ–basis of the
curve. In addition, a conjecture is presented which concerns the computation
of the parameter values corresponding to all the singularities, from the Smith
normal forms of certain Bézout resultant matrices derived from µ–bases. A
similar result is proved in [18]. In [30], a natural one to one correspondence
is derived between the singular points of a rational planar curve and the
axial moving lines that follow that curves. This correspondence is applied
to compute and analyze the singular points of low degree rational planar
curves, by using µ–bases. In [7], it is introduced a new implicit represen-
tation of the curve which consists in the locus where the rank of a single
matrix drops. From this representation, one may compute the singularities
of the given curve. In [8], it is given a complete factorization of the invari-
ant factors of resultant matrices, built from birational parameterizations of
rational plane curves, in terms of the singular points of the curve and their
multiplicity graph. This also allows to prove the validity of some conjectures
introduced in [9]. A new technique for detecting singularities is introduced
in [29]. The idea is to compute a µ–basis for the parametrization and to gen-
erate, from this µ–basis, three planar algebraic curves of different bidegrees,
whose intersection points correspond to the parameters of the singularities.
In order to find these intersection points, a new sparse resultant matrix for
these three bivariate polynomials is constructed. Afterwards, authors com-
pute the parameter values corresponding to the singularities by applying
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Gaussian elimination to the resultant matrix. All these works are based on
the use of µ–basis. Besides, there is a second line of work, based on the use
of univariate resultants. For instance, in [22], a method for detecting and
analyzing the singularities of a rational curve (including the non–ordinary
ones) by computing a univariate resultant, is provided. This approach is
based on the ideas introduced in Subsection 4.3 in [27], and it generalizes
some previous results presented in [1], [13], [20] and [31]. Finally, one also
should mention the recent work [2], where a different approach is considered.
There, in order to study the singularities of a plane rational curve C of degree
n, authors use the fact that the parameterization of C defines a projection
π : Pn → P2, from the rational normal curve Cn ⊂ Pn, and π(Cn) = C ⊂ P2

(π is generically one–to–one). If P is a singular point of multiplicity m of
C, then there is an (m − 1)–dimensional m–secant space H to Cn such that
π(H) = P . The center of projection of π is a (n − 3)–linear space Π, and
Π∩H has to be (m− 2)–dimensional, in order to have that π(H) is a point.
It is proved that H ∩ Cn and H ∩ Π contain all the information about the
singularity P . In order to extract this information, authors consider the
spaces Pk ∼= Pk(K[s, t]k) that parameterize the k–secant variety of ((k − 1)–
dimensional) k–secant spaces to C and their intersection with the center of
projection Π (which is determined by the parameterization of C). Such study
yields to considering 0–dimensional schemes, Xk ⊂ Pk, which parameterize
the k–secant (k− 1)–spaces that get contracted to a point by π, so that they
encode all the information on the singularities of C.

The study of singularities in parametric space curves has been addressed,
for instance, in [7], [25], [29] and [30]. In this case, also the most important
methods used have to do with the computation of µ–bases and univariate
resultants. For the case of surfaces, some works have also been published
(see e.g. [24]).

In this paper, by using some previous results in [3] and [22], we develop
a resultant based methodology which allows us to obtain all the (ordinary
and non–ordinary) singularities of a rational curve (plane or space curve in
any dimension) from its parametric representation. Our approach allows us
to easily get relevant information about each of those singularities, as its
multiplicity, its character, its fibre or the tangent lines to the curve at this
point. Furthermore, in the case of non–ordinary singularities our method
also provides the number of local branches and the delta invariant. The most
important point of the paper is that all this information is easily deduced
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from the structure of a polynomial which is carefully characterized. This
polynomial, which is called the T–function, is obtained by just computing an
univariate resultant constructed from the input parametrization of the given
curve. The above mentioned parameters are obtained in a relatively simple
way, by just analyzing the factors of this polynomial.

More precisely, let P(t) ∈ P2(K(t)) be a rational projective proper para-
metrization of an algebraic plane curve C over an algebraically closed field
of characteristic zero, K. We denote by FP(P ) the fibre of a point P ∈ C
via P(t); that is FP(P ) = {t ∈ K | P(t) = P}. Intuitively speaking, P(t)
proper means that the parametrization traces the curve once, except for at
most a finite number of points. In [22], it is shown that those points are the
singularities of C and it is introduced the notion of fibre function. The fibre
function of a point P ∈ C is a polynomial, HP (t), which provides a lot of
information about the fibre of P . In particular, we have that t0 ∈ FP(P ) if
and only ifHP (t0) = 0. In [22], it is proved that ifHP (t) =

∏n
i=1(t−si)ki then,

C has n tangents at P of multiplicities k1, . . . , kn, respectively. In addition,
each of these tangents can be computed by using P(t) and the root of the
corresponding fibre function. Furthermore, it is shown that multP (C) =
deg(HP ). A deeper analysis of the relation between the fibre of a point and its
multiplicity can be found in [3]. There, it is introduced the T–function, T (s),
a polynomial which is defined by means of a univariate resultant constructed
from P(t) and contains essential information about the singularities of C.
The main theorem of [3] states that, if C only has ordinary singularities,
then T can be factorized as T (s) =

∏n
i=1HPi

(s)mi−1 where Pi, i = 1, . . . , n,
are the singularities and mi, i = 1, . . . , n, are their respective multiplicities.
Thus, a complete classification of the singularities of C, via the factorization
of a resultant, is obtained.

In this work, we extend the methodology introduced in [3] and we gen-
eralize the main result of that work by proving that the T–function also
contains the fibre functions of the non–ordinary singularities. More pre-
cisely, we show that T (s) =

∏n
i=1HPi

(s), where Pi, i = 1, . . . , n, are the
(ordinary and non–ordinary) singularities of C and HPi

, i = 1, . . . , n, are
polynomials, each of them associated to a singularity, whose factors are the
fibre functions of those singularities as well as those other belonging to their
corresponding neighborhoods. That is, given an m-fold point Q, we have
that HQ(s) = HQ(s)m−1

∏k
j=1HQj

(s)mj−1, where Qj, j = 1, . . . , k, are the
neighboring singularities of Q and mj, j = 1, . . . , k, are their respective mul-
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tiplicities. We will see that, by appropriately reading these factors, one can
obtain all the ordinary and non–ordinary singularities of the curve, as well as
interesting data relative to each of them, like its multiplicity, character, fibre
or number of associated tangents. Furthermore, in the case of non–ordinary
singularities we can easily get the corresponding number of local branches
and delta invariant.

The results above described can easily be adapted for the study of sin-
gularities of rational space curves in any dimension. For this purpose, we
introduce an extension of the T–function which allows us to perfectly gen-
eralize the results of plane curves to the space case. Any factor of the new
T–function (TE(s)) corresponds to a singularity of the space curve. Thus,
we provide, as in the case of plane curves, a complete classification of the
singularities (ordinary and non–ordinary) of a given rational space curve, via
the factorization of a univariate resultant. In this way, we are generalizing
some previous results (cited above) that partially approach the computa-
tion and analysis of singularities for rational space curves. In particular, [1],
where the factorization of the T–function is carried out for a given poly-
nomial parametrization, and [8], where authors provide a generalization of
Abhyankar’s formula for the case of rational parametrizations (not necessar-
ily polynomial). This second work is based on the concept of singular factors
introduced in [9], and it involves the construction of µ–basis. However, our
approach is totally different since we generalize Abhyankar’s formula by us-
ing the methods and techniques presented in [22]. Amongst other things,
this allows us to group the factors of the T–function to easily obtain the
fibre functions of the different singularities and, hence, the set of relevant pa-
rameters above mentioned: multiplicity, number of branches, delta invariant,
etc.

In summary, our approach exhibits certain specific features and advan-
tages with respect to other existing methods, that we list below: 1) it allows
us to study the singularities of the curve by just computing a single univariate
resultant, 2) it gives us both, the ordinary and the non–ordinary singular-
ities, 3) for each singularity, one can easily get its multiplicity, character,
fibre and number of tangents, as well as the number of local branches and
the delta invariant in the case of non–ordinary singularities, and 4) it may
be easily adapted for the study of space curves. In addition, we recall that,
in a direct method, in order to compute the singularities, one would intro-
duce algebraic numbers during the computations. However, in this paper,
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in order to deal with this problem, we consider families of conjugated para-
metric points. This notion allows us to determine the singularities of a curve
without directly introducing algebraic numbers in the computations.

The structure of the paper is as follows: Section 2 is devoted to intro-
duce some basic concepts and previous results, mainly concerned with the
analysis of the fibre and its application to the study of ordinary singulari-
ties. In particular, the T–function is defined and some of its most important
properties are summarized. In order to completely describe a non–ordinary
singularity we need to “blow up” the curve. For this purpose, in Section 3,
we first summarize the blowing up process and we explain how to perform
it from the parametric expression of a rational curve. Afterwards, the main
result of the paper, Theorem 4, and some technical lemmas and corollaries,
are stated. Theorem 4 claims that the factors of the T–function are the fibre
functions of the ordinary and non–ordinary singularities of the curve. These
fibre functions provide interesting information concerning each singularity.
However, for unfamiliar users, the T–function may be difficult to read, since
factors corresponding to fibre values of different singularities, use to appear
scrambled and raised to different powers. Thus, in order to obtain the dif-
ferent fibre functions, we need to correctly group those factors. For this
purpose, an efficient algorithm, which can be used as a guideline through
the whole process, has been included in Section 4. In Section 5, we show
how to generalize our method for the study of parametric space curves in
any dimension. Finally, the proofs of some technical results are presented in
Section 6.

2. Basis concepts and previous results

Let C be a rational (projective) plane curve defined by the projective
parametrization

P(t) = (p1(t), p2(t), p(t)) ∈ P2(K(t)),

where gcd(p1, p2, p) = 1, and K is an algebraically closed field of charac-
teristic zero . We assume that C is not a line (note that a line does not
have multiple points). Let d1 = deg(p1), d2 = deg(p2), d3 = deg(p), and
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d = max{d1, d2, d3}. Thus, we may write p1, p2 and p as
p1(t) = a0 + a1t+ a2t

2 + · · ·+ adt
d

p2(t) = b0 + b1t+ b2t
2 + · · ·+ bdt

d

p(t) = c0 + c1t+ c2t
2 + · · ·+ cdt

d.

Associated with P(t), we consider the induced rational map ψP : K −→
C ⊂ P2(K); t 7−→ P(t). We denote by deg(ψP) the degree of the rational map
ψP (for further details see e.g. [28] pp.143, or [14] pp.80). As an important
result, we recall that the birationality of ψP , i.e. the properness of P(t), is
characterized by deg(ψP) = 1 (see [14] and [28]). Also, we recall that the
degree of a rational map can be seen as the cardinality of the fibre of a generic
element (see Theorem 7, pp. 76 in [28]). We will use this characterization
in our reasoning. For this purpose, we denote by FP(P ) the fibre of a point
P ∈ C via the parametrization P(t); that is

FP(P ) = P−1(P ) = {t ∈ K | P(t) = P}.

In general, it holds that P ∈ C if and only if FP(P ) 6= ∅, although an
exception can be found for the limit point of the parametrization.

Definition 1. We define the limit point of the parametrization P(t) as

PL = lim
t→∞
P(t)/td = (ad : bd : cd).

Note that PL ∈ C since P(t)/td = P(t) ∈ C, for t ∈ K, and C is a
closed set. Furthermore, we observe that, given a parametrization P(t),
there always exists an associated limit point, and it is unique.

The limit point is reachable via the parametrization P(t), if there exists
t0 ∈ K such that P(t0) = PL. However, the value t0 ∈ K could not exist, and
then FP(PL) = ∅. If PL is not an affine point or it is a reachable affine point,
we have that P(t) is a normal parametrization. Otherwise, we say that P(t)
is not normal and PL is the critical point (see Subsection 6.3 in [27]). Further
properties of the limit point are stated and proved in [4].

In Subsection 2.2. in [27], it is shown that the degree of a dominant
rational map between two varieties of the same dimension is the cardinality
of the fiber of a generic element. Therefore, in the case of the mapping
ψP , this implies that almost all points of C (except at most a finite number
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of points) are generated via P(t) by the same number of parameter values,
and this number is the degree of ψP . Thus, intuitively speaking, the degree
measures the number of times the parametrization traces the curve when the
parameter takes values in K. Taking into account this intuitive notion, the
degree of the mapping ψP is also called the tracing index of P(t). In order
to compute the tracing index, the following polynomials are considered,

G1(s, t) := p1(s)p(t)− p(s)p1(t)
G2(s, t) := p2(s)p(t)− p(s)p2(t)
G3(s, t) := p1(s)p2(t)− p2(s)p1(t)

(1)

and G(s, t) = gcd(G1(s, t), G2(s, t), G3(s, t)). This functions satisfy the fol-
lowing properties (see Remark 1 in [3]):

• Gi(s, t) = −Gi(t, s) for i = 1, 2, 3.

• degs(Gi) = degt(Gi) for i = 1, 2, 3, and degs(G) = degt(G).

• degt(G1) = max{d1, d3}, degt(G2) = max{d2, d3} and
degt(G3) = max{d1, d2}.

• G(s, t) = gcd(Gi(s, t), Gj(s, t)) where i, j = 1, 2, 3 and i 6= j.

The following theorem has been proved in [27] (see Subsection 4.3). It
allows us to compute the tracing index of P(t) using the polynomial G(s, t).

Theorem 1. It holds that deg(ψP) = degt(G).

Throughout this paper, we assume that P(t) is proper, that is deg(ψP) =
1. Otherwise, we can reparametrize the curve using, for instance, the results
in [21]. Under these conditions, it holds that the degree of C is d (see Theorem
6 in [22]). In addition, G(t, s) = t− s, and the cardinality of the fibre for a
generic point of C is 1, although it can be different for a particular point.

Given a point P ∈ C, the fibre of P consists of the values t ∈ K such
that P(t) = P . In particular, if P = P(s0) for some s0 ∈ K, those values are
the common roots of the fibre equations, given by Gi(s0, t) = 0, i = 1, 2, 3.
This fact motivates the following definition (see Corollary to Theorem 4.28
in Section 4.3 in [27]):
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Definition 2. Given the rational parametrization P(t) ∈ P2(K(t)) and the
point P = P(s0), we define the fibre function of P as

HP (t) := gcd(G1(s0, t), G2(s0, t), G3(s0, t)).

Thus, t0 ∈ FP(P ) if and only if HP (t0) = 0.

In [3], it is shown that one may compute HP (t) as follows:

HP (t) =

{
gcd(G1(s0, t), G2(s0, t)) if P is an affine point
gcd(p(t), G3(s0, t)) if P is an infinity point.

(2)

2.1. Detection and analysis of ordinary singularities

The analysis of the fibre allows us to study the singularities of a rational
curve. We recall that P is a point of multiplicity ` on C if and only if all the
derivatives of F (where F denotes the implicit polynomial defining C) up to
and including those of (` − 1)–th order, vanish at P but at least one `−th
derivative does not vanish at P . We denote it by multP (C) = `. The point
P is called a simple point on C if multP (C) = 1. If multP (C) = ` > 1, then
we say that P is a multiple or singular point (or singularity) of multiplicity
` on C or an `–fold point. Clearly P 6∈ C if and only if multP (C) = 0.

Observe that the multiplicity of P is given by the order of the Taylor
expansion of F at P . The tangents of C at P are the irreducible factors of
the first non–vanishing form in that Taylor expansion, and the multiplicity
of each tangent is the multiplicity of the corresponding factor. If all the `
tangents at the `-fold point P are different, then this singularity is called
ordinary, and non–ordinary otherwise. Thus, we say that the character of P
is either ordinary or non–ordinary.

In [22], it is shown how to compute the singular points of a given rational
plane curve from its parametric expression. Furthermore, it is provided a
method for computing the multiplicity of each singular point as well as the
tangents of the curve at that point. In particular, the following theorem and
corollary are proved.

Theorem 2. Let C be a rational algebraic curve defined by a proper para-
metrization P(t), with limit point PL. Let P 6= PL be a point of C and let
HP (t) =

∏n
i=1(t− si)ki be its fibre function. Then, C has n tangents at P of

multiplicities k1, . . . , kn, respectively.
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Corollary 1. Let C be a rational algebraic curve defined by a proper para-
metrization P(t), with limit point PL. Let P 6= PL be a point of C and let
HP (t) be its fibre function. Then, multP (C) = deg(HP (t)).

From these results and using the input parametrization, in [3], we con-
struct a polynomial, the T–function, which provides essential information
about the singularities of the curve. In order to define it, we need to intro-
duce the following notation:

δi := degt(Gi), λij := min{δi, δj}, G∗i (s, t) :=
Gi(s, t)

t− s ∈ K[s, t]

and
Rij(s) := Rest(G

∗
i , G

∗
j) ∈ K[s] for i, j = 1, 2, 3, i < j.

Definition 3. The T–function of the parametrization P(t) is

T (s) = R12(s)/p(s)
λ12−1.

In [3], it is shown that T (s) is a polynomial and that it may also be
expressed as:

T (s) =
R13(s)

p1(s)λ13−1
=

R23(s)

p2(s)λ23−1
. (3)

In addition, the following lemma shows that the fibre function of any
ordinary singularity is a factor of T (s). This lemma is proved in [3].

Lemma 1. Let C be a rational algebraic curve defined by a proper parametriza-
tion P(t), with limit point PL. Let P 6= PL be an ordinary singular point of
multiplicity m. It holds that

T (s) = HP (s)m−1T ∗(s),

where T ∗(s) ∈ K[s] and gcd(HP (s), T ∗(s)) = 1.

Lemma 1 is the key for the proof of Theorem 3, which states that the
factorization of the T–function provides the fibre functions of all the ordinary
singularities in the curve. This theorem is also proved in [3].
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Theorem 3. Let C be a rational algebraic curve defined by a proper parametriza-
tion P(t), with limit point PL. Let P1, . . . , Pn be the singular points of C, with
multiplicities m1, . . . ,mn respectively. Let us assume that all of them are or-
dinary singularities and that Pi 6= PL for i = 1, . . . , n. Then, it holds that

T (s) =
n∏
i=1

HPi
(s)mi−1.

The T–function totally describes the ordinary singularities of the curve,
since it gives us the corresponding fiber functions. We recall that, from the
fibre function of a point P , we can obtain its multiplicity, its fibre, and the
tangent lines of the curve at P (see Theorem 2 and Corollary 1). In [4], it
is proved that the theorem also holds if PL is a singularity. An alternative
approach for computing this factorization, based on the construction of µ–
basis, can be found in [8] (see also [1], [9], [7]). From Theorem 3, we can
derive the following corollary.

Corollary 2. Let C be a rational plane curve of degree d such that all its
singularities are ordinary. Let P(t) be a proper parametrization of C such
that PL is regular. It holds that deg(T ) = (d− 1)(d− 2).

This result may be used, for instance, for checking if PL is a regular point.
More precisely, deg(T ) < (d − 1)(d − 2) implies that PL is not regular and
the assumptions of Theorem 3 does not hold. Then, in order to use Theorem
1, an appropriate reparametrization should be applied (see Section 3 in [4]).

3. Detection and analysis of non–ordinary singularities

The methods described in Section 2 are valid for the detection and anal-
ysis of ordinary singularities. However, when non–ordinary singularities are
involved, some new difficulties may appear. For instance, a non–ordinary sin-
gularity may have other singularities in its “neighborhood”, which can not
be detected in a direct way. The analysis of these neighboring singularities
is fundamental in order to compute the delta invariant, which measures, for
instance, the contribution of the singularity to the genus formula. In order
to describe the neighborhood of a non–ordinary singularity, some quadratic
transformations called “blow-ups” may be applied to the curve (see [6], [12]
or [32]).
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In Subsection 3.1, we summarize the process of blowing up a given curve
C at a non–ordinary singularity P , and we introduce some notions, the delta
invariant and the number of local branches, which are associated to P . Af-
terwards, in Subsection 3.2, we explain how to blow up a rational curve from
a given parametrization. Finally, in Subsection 3.3, we generalize Theorem
3 (see Subsection 2.1) to non–ordinary singularities (see Theorem 4) which
provides a method for studying also the non–ordinary singularities.

The main result of this paper, Theorem 4, claims that the factorization
of the T–function provides the fibre functions of all the singularities in the
curve, including the ordinary and the non–ordinary ones. Furthermore, for
each non–ordinary singularity, T (s) also gives the fibre functions of all the
singularities in its neighborhood. By analyzing these fibre functions, we
can obtain essential information about each singularity, as its multiplicity,
its fibre and the tangent lines of the curve at this point. In addition, for
each non–ordinary singularity P , we can easily obtain the number of local
branches centered at P as well as its corresponding delta invariant.

3.1. Description of the blowing–up process

In order to completely describe the non–ordinary singularities of a given
curve, it must be “blown up”. The blowing up process consists in recur-
sively applying certain quadratic transformations (blow-ups) for birationally
transforming the curve into a new one with only ordinary singularities. More
precisely, let P be a non–ordinary singularity of multiplicity m of a curve C.
The blowing up process can be summarized as follows (see [6], [12] or [32]):

Step 1. Apply a linear change of coordinates, L, such that P is moved to (0 :
0 : 1), none of its tangents is an irregular line (i.e. a line x1 = 0,x2 = 0
or x3 = 0), and no other point on an irregular line is a singular point
on C.

Step 2. Apply the quadratic transformation T = (x2x3, x1x3, x1x2) to C, get-
ting the transformed curve C1. It holds that:

• Outside of the irregular lines, T preserves the multiplicity of points
and their tangents (and thus, its character).

• New ordinary singularities might be created at the points (1 : 0 :
0), (0 : 1 : 0) and (0 : 0 : 1) (called the fundamental points).
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• The new curve C1 might have singularities, also non–ordinary ones,
on the irregular line x3 = 0. These singularities come from P .
That is, P is replaced on C1 by points of the form (1 : γ : 0),
with γ 6= 0. We denote by ξ1 := {P 1

1 , . . . , P
1
α1
}, the set of points

of multiplicities {m1
1, . . . ,m

1
α1
}, m1

j ≥ 2, where P 1
i = (1 : γi : 0),

γi 6= 0, i = 1, . . . , α1. We say that ξ1 is the first neighborhood of
P .

Step 3. As we stated before, some of the singularities in the first neighbor-
hood of P may be non–ordinary. In this case, we apply again Steps
1 and 2 to each non–ordinary singularity in ξ1. Then, we get the sec-
ond neighborhood of P as the union of the first neighborhoods of these
non–ordinary singular points. We denote the second neighborhood of
P as ξ2 := {P 2

1 , . . . , P
2
α2
}. In general, we will call any point in one of

the neighborhoods of P , a neighboring point of P .

It is proved that there are at most a finite number of singular points in
the neighborhoods of any point of an irreducible curve (see [32], pp. 82).
Hence the analysis of a singularity in terms of neighboring singularities is a
finite process, which leads to a complete classification of all singular points.
Observe that the process finishes when ξm = ∅, for some m ∈ N and thus,
this method always achieves an irreducible curve having only ordinary sin-
gularities in a finite number of steps (see [12]).
We also note that the above process can be generalized for the case of space
curves of any dimension. For instance, for a curve in the 3–dimensional space,
one would consider the transformation Ts = (x2x3x4, x1x3x4, x1x2x4, x1x2x3).

Let P ∈ C be a singularity of multiplicity mP . One can associate to
P its delta invariant, δP , and the number of local branches, rP . The delta
invariant is a very important number since for instance, the genus of an
irreducible plane curve is the number (d−1)(d−2)/2−∑P∈S δP , where d is
the degree of the given curve, and S is the set of singular points. Intuitively
speaking, the delta invariant δP measures the number of “equivalent” double
points concentrated at P ; i.e. it takes into account the multiplicity of P and
all its neighboring points (see Subsection 7.4.1 in [19], Subsection 2.5.4 in [5],
Subsection 8.1 in [10] or Subsection 9.2.5 in [11]). Thus, the delta invariant
of P is given by

δP = mP (mP − 1)/2 +
n∑
j=1

αj∑
i=1

mj
i (m

j
i − 1)/2, (4)
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where n is the number of neighborhoods, ξj := {P j
1 , . . . , P

j
αj
}, j = 1, . . . , n

(in order to compute δP , one also may apply the formula using intersection
index of Puiseux expansion; see e.g. Subsection 2.5.4 in [5]).

In general rP ≤ mP and mP (mP − 1)/2 ≤ δP , and both of these inequal-
ities are equalities when P is an ordinary singularity of multiplicity mP . If
P is a non–ordinary singularity the following situations may appear (see [12]
or [32]):

S1. rP < mP : in this case there exist mP values of the parameter t, namely
s1, . . . , smP

, such that P(sj) = P but only rP of them are different.
S2. mP (mP−1)/2 < δP : in this case we have that δP 1 = δP−mP (mP−1)/2,

where δP 1 :=
∑α1

j=1 δP 1
j

and, in general,

δP i = δP i−1 −
αi−1∑
j=1

mi−1
j (mi−1

j − 1)/2,

where δP i :=

αi∑
j=1

δP i
j

for i = 1, . . . , n (we denote P 0 := P ). In the

above expression, the i–th neighborhood of P is given by the set of
points ξi := {P i

1, . . . , P
i
αi
} of multiplicities {mi

1, . . . ,m
i
αi
}, and delta

invariants {δi1, . . . , δiαi
}, respectively (for i = 1, . . . , n). In addition,

δPn+1 = 0 and ξn+1 = ∅.
From the situations above considered, one may classify any non–ordinary
singularity P as follows:

• We say that P is a type I non–ordinary singularity if only S1 holds.

• We say that P is a type II non–ordinary singularity if only S2 holds.

• We say that P is a type III non–ordinary singularity if both, S1 and
S2, hold.

Note that if none of these situations hold, we have that P is ordinary.

3.2. Blowing up of a rational curve from a given parametrization

In the following, we show how to blow up a rational plane curve C from a
given parametrization P(t). For this purpose, we apply the three steps intro-
duced in Subsection 3.1 and we see how the parametrization, after blowing
up, can be computed from the parametrization before blowing up.
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Step 1

Let P be an m−fold point of C. We apply a linear change of coordinates,
L, such that P is moved to (0 : 0 : 1). Thus, let P = (0 : 0 : 1) ∈ C
be a point of multiplicity m. We assume w.l.o.g that P is not the limit
point (see Definition 1). Otherwise, we consider a reparametrization of P
(see Section 3 in [4]). From (2), we may write pj(t) = HP (t)pj(t), j = 1, 2
with gcd(p1, p2) = 1, gcd(HP , p) = gcd(p1, p2, p) = 1 and deg(HP ) = m (see
Corollary 1). Then,

P(t) = (p1(t), p2(t), p(t)) = (HP (t)p1(t), HP (t)p2(t), p(t)).

In this first step of the blowing up process, we have to impose the following
two assumptions:

a) None of the tangents of P is an irregular line. For this purpose, we
have to ensure that P ′(s0) 6= (1, 0, α) and P ′(s0) 6= (0, 1, α) for any
s0 in the fibre of P (i.e., such that HP (s0) = 0) and any α ∈ K (if
P ′(s0) = (0, 0, 0), we reason with the second derivative; in general, we
reason with the first derivative different from zero). Thus, we need that
gcd(p′i, HP ) = 1 for i = 1, 2.
We observe that pi(t) = HP (t)pi(t), which implies that

p′i(s0) = H ′P (s0)pi(s0) +HP (s0)p
′
i(s0) = H ′P (s0)pi(s0).

That is, p′i(s0) = 0 implies that pi(s0) = 0 or H ′P (s0) = 0. Note that
H ′P (s0) = 0 is equivalent to (t− s0)2 divides HP (t) and in this case, we
would have a tangent of multiplicity at least 2. In this case, we would
need that p′′i (s0) 6= 0, which implies that H ′′P (s0)pi(s0) 6= 0. Note that
H ′′P (s0) = 0 implies that (t − s0)

3 divides HP (t) and we would have
a tangent of multiplicity at least 3, and so on. Thus, p′i(s0) = 0 is
equivalent to pi(s0) = 0 and the condition to impose is

gcd(HP (t), pi(t)) = 1, for i = 1, 2. (5)

b) No other point on an irregular line is a singular point. That is, any
point P(a) 6= P such that p1(a) = 0, p2(a) = 0 or p(a) = 0 must be
regular. From Definition 2 and Corollary 1, we need that

HP(a)(t) = gcd(G1(a, t), G2(a, t), G3(a, t)) = t− a
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where

Gj(a, t) = pj(a)p(t)−p(a)pj(t), j = 1, 2, G3(a, t) = p1(a)p2(t)−p2(a)p1(t).

If p2(a) = 0 we have thatG2(a, t) = −p(a)p2(t) andG3(a, t) = p1(a)p2(t),
soHP(a)(t) = gcd(p1(a)p(t)−p(a)p1(t), p2(t)). Now, taking into account
that gcd(HP , HP(a)) = 1, we deduce that

HP(a)(t) = gcd(p1(a)p(t)− p(a)p1(t), p2(t)).

Similarly, if p1(a) = 0 we have that

HP(a)(t) = gcd(p2(a)p(t)− p(a)p2(t), p1(t)).

In addition, if p(a) = 0 we have that

HP(a)(t) = gcd(p1(a)p2(t)− p2(a)p1(t), p(t)).

Hence, in order to get this assumption, we impose that

gcd(Gi(a, t), pj(t)) = t− a, gcd(G3(a, t), p(t)) = t− a (6)

where pi(a) = p(a) = 0, i, j ∈ {1, 2}, i 6= j.

We have to check whether P(t) satisfies both conditions. In the negative
case, we should apply a linear change of coordinates to P(t).

Step 2

The second step in the blowing up process consists in applying the quadratic
transformation T = (x2x3, x1x3, x1x2) to C, getting the transformed curve C1.
Thus, by applying T to P(t), we get the projective parametrization of C1 de-
fined by

M1(t) := T (P(t)) =

= (p2(t)p(t), p1(t)p(t), p1(t)p2(t)) = (p2(t)p(t), p1(t)p(t), HP (t)p1(t)p2(t)).

Now, we check whether there exist singular points of the form (1 : γ : 0) ∈ C1,
with γ 6= 0 (note that if these points exist, they should be reached by the
values of t being roots of the polynomialHP (t)). The singular points obtained
in this way constitute the first neighborhood of P , which we denote by ξ1.
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Step 3

If all the singularities in ξ1 are ordinary the blowing up process is over.
However, some of them might be non–ordinary and, in this case, we should
apply the blowing up to each of them. Let P 1 := (1 : γ : 0) ∈ C1, with
γ 6= 0, be one of these non–ordinary singularities. We first apply a change of
coordinates such that P 1 is moved to (0 : 0 : 1) and the conditions appearing
in equalities (5) and (6) hold. Then, we apply again the transformation
T , and we obtain a parametrization M2 that defines a new curve C2. The
singular points (1 : δ : 0) ∈ C2, with δ 6= 0, constitute the first neighborhood
of P 1 and, consequently, they take part of the second neighborhood of P ,
which we denote by ξ2. This process must be recursively applied until we get
a curve without non–ordinary singularities.

We note that the above process can be generalized for the case of space
curves of any dimension.

In the following example, we illustrate the method above described and
we blow up a given irreducible plane curve defined by a parametrization
P(t). We compute its singularities and, for each singularity P , we compute
the delta invariant (δP ) and the number of local branches (rP ).

Example 1. Let C be the plane curve over C defined by the parametrization
P(t) = (t2, t5, 1). One may check (see, for instance, [22] or Chapter 2 of
[27]) that C has two singularities: P1 = (0 : 0 : 1) of multiplicity mP1 = 2,
and P2 = (0 : 1 : 0) of multiplicity mP2 = 3. Let us analyze both points:

• We start with P1 = (0 : 0 : 1) and we observe that HP1(t) = t2 (see
Definition 2). Thus, the number of parameters t corresponding to P1 is
2 (t = 0, 0), and rP1 = 1 < mP1 = 2, so S1 holds (see Subsection 3.1).

Now, we analyze the neighboring points of P1. For this purpose, we
first note that gcd(HP1(t), p2(t)) = t2, so the conditions for the blowing
up do not hold (see (5)). Hence, we apply the change of coordinates
L = (1/2x1− 1/2x2, 1/2x2 + 1/2x1, x3) and we obtain a new curve that
can be parametrized by

L(P(t)) = (1/2t2 − 1/2t5, 1/2t5 + 1/2t2, 1).

One may check that the conditions for the blowing–up are now satisfied:
L(P1) = (0 : 0 : 1), none of its tangents is an irregular line, and no
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other point on an irregular line is singular. Then, we consider the
parametrization

M1(t) = T (L(P(t))) = (1 + t3, 2/3− t3,−1/6t5 + 1/3t2 − 1/2t8),

where T = (x2x3, x1x3, x1x2). We apply the results in [22] (see Corol-
lary 1), and we get that P 1

1 = (1 : 1 : 0) is an ordinary singularity
of multiplicity 2, the points (1 : 0 : 0), (0 : 1 : 0) are singularities of
multiplicity 3, and (0 : 0 : 1) is a singularity of multiplicity 5. Thus,
the first neighborhood of P1 is given by P 1

1 and the process finishes with
this point (see step 2 of the blowing–up process).

Note that δP1 = 2 > mP1(mP1 − 1)/2 = 1, so S2 holds and P1 is a type
III non–ordinary singularity (see Subsection 3.1).

• Now, we reason similarly for P2 = (0 : 1 : 0). However, note that this
is the limit point of the parametrization (see Definition 1). To deal
with this situation we can use the reparametrization U(t) := P(1/t),
which allows us to reach the limit point as PL = U(0) (see Section 3
in [4]). Now we have that P2 = U(0) and HP2(t) = t3. Thus, the
number of parameters t corresponding to P2 is 3 (t = 0, 0, 0), and
rP2 = 1 < mP2 = 3, so S1 holds (see Subsection 3.1).

Let us analyze the neighboring points of P2. Recall that P2 = (0 : 1 : 0),
so we first have to apply a change of coordinates that moves it to (0 : 0 :
1). We take L = (1/2x1 + 1/2x3,−1/2x3 + 1/2x1, x2) (see step 1 of the
blowing–up process) and we check that L(U(t)) satisfies the conditions
for the blowing up (see (5) and (6)). Now, we apply the blowing up by
considering the following parametrization:

M1(t) = T (L(U(t))) = (6 + 6t2, 4− 6t2, 2t3 − t5 − 3t7)

(see step 2 of the blowing–up process). We apply the results in [22] (see
Corollary 1), and we get that P 1

2 = (6 : 4 : 0) is an ordinary singularity
of multiplicity 2, and the points (1 : 0 : 0), (0 : 1 : 0) are singularities
of multiplicity 2. The first neighborhood of P2 is given by P 1

2 and thus,
the process finishes with the point P 1

2 .

Finally, we note that δP2 = 4 > mP2(mP2 − 1)/2 = 3, so P2 is a type
III non–ordinary singularity (see Subsection 3.1).
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3.3. The T–function and the non–ordinary singularities

In Section 2.1 we have summarized a method, developed in [3], for ob-
taining the ordinary singularities of a rational curve from its parametric
expression. This approach is based on the construction of the T–function, a
polynomial whose factors give us the fibre functions of the different ordinary
singularities (see Theorem 3). From the fibre function of a point, one can
obtain relevant information like its multiplicity, its fibre or the tangent lines
of the curve at that point.

The main result presented in this paper, Theorem 4, shows how the T–
function can also be used to obtain and characterize non–ordinary singulari-
ties. Furthermore, by analyzing this function we can get a partial knowledge
of the different neighborhoods, which allows us, for instance, to directly com-
pute the delta invariant of each non–ordinary singularity.

The following result provides a first approach to the proof of Theorem 4.
Observe that it is similar to Lemma 1, but in this case the singular point
P is non–ordinary. To enhance the reading flow, the proof of the lemma is
presented in Section 6.

Lemma 2. Let C be a rational algebraic curve defined by a proper parametriza-
tion P(t), with limit point PL. Let P 6= PL be a non–ordinary singular point
of multiplicity m, and let ξ1 = {P 1}, where P 1 is an ordinary singular point
of multiplicity m1. Then it holds that

T (s) = HP (s)m−1HP 1(s)m1−1K(s),

where K(s) ∈ K[s], HP 1(s) divides HP (s), and gcd(HP (s), K(s)) = 1.

The next lemma generalizes Lemma 2 and allows us to deal with more
difficult situations. More precisely, we consider a point P that has several
singular points in its different neighborhoods. The proof of this lemma is
also presented in Section 6.

Lemma 3. Let C be a rational algebraic curve defined by a proper parametriza-
tion P(t), with limit point PL. Let P 6= PL be a singular point of multiplicity
m, let ξi := {P i

1, . . . , P
i
αi
} be its i-th neighborhood and let mi

j be the multi-
plicity of P i

j , for i = 1, . . . , n and j = 1, . . . , αi (δPn+1 = 0 and ξn+1 = ∅). It
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holds that

T (s) = HP (s)m−1
n∏
i=1

αi∏
j=1

HP i
j
(s)m

i
j−1T ∗(s), (7)

where T ∗(s) ∈ K[s], HP i
j
(s) divides HP (s), and gcd(HP (s), T ∗(s)) = 1, j =

1, . . . , αi, i = 1, . . . , n.

Remark 1. a) Equality (7) can be written as T (s) = HP (s)T ∗(s) where

HP (s) = HP (s)m−1
n∏
i=1

αi∏
j=1

HP i
j
(s)m

i
j−1. (8)

In the following, HP (s) will be called the contribution of P to the T–
function. It contains a lot of information about P since its factors
are the fibre functions of P and all its neighboring singularities. From
Lemma 3, we have that gcd(HP (s), T ∗(s)) = 1.

b) The delta invariant of P can be easily obtained from HP since, from
(4), we have that

2δP = m(m− 1) +
n∑
i=1

αi∑
j=1

mi
j(m

i
j − 1) = deg(HP ).

c) We observe that, in (8), the product
∏n

i=1

∏αi

j=1HP i
j
(s)m

i
j−1 contains

the fibre functions of the singularities in the neighborhood of P . If
ξ1 = . . . = ξn = ∅, we have that HP i

j
(s) = 1 for every j = 1, . . . , αi, i =

1, . . . , n and then, HP (s) = HP (s)m−1. In particular, if P is ordinary,
Lemma 3 states that T (s) = HP (s)m−1T ∗(s), which agrees with Lemma
2 in [3] (see also Lemma 1).

Now, we are ready to state the main result of the paper, Theorem 4, which
can be directly proved from Lemma 3. It claims that the factorization of the
T–function provides the contributions of all the ordinary and non–ordinary
singularities of the curve. We will see that, by analyzing these contributions
one may easily obtain the multiplicity, character, number of branches and
delta invariant of every singularity (see Example 2).

20



Theorem 4. (Main theorem) Let C be a rational plane curve and let P(t)
be a proper parametrization of C such that PL is regular. Let P1, . . . , P` be the
singular points of C and let HP1 , . . . ,HP`

be their corresponding contributions
to the T–function. Then, it holds that

T (s) =
∏̀
k=1

HPk
(s).

Proof: Taking into account Lemma 3, Remark 1, statement (a), for each
singular point Pk, we have that

T (s) = HPk
(s)T ∗k (s),

where T ∗k (s) ∈ K[s] and gcd(Hk(s), T
∗
k (s)) = 1. In addition, note that

gcd(HPi
(s),HPj

(s)) = 1 for i 6= j (otherwise, there would exist s0 ∈ K
such that HPi

(s0) = HPj
(s0) = 0, that is, P(s0) = Pi = Pj). Then, we get

that

T (s) =
∏̀
k=1

HPk
(s)V (s),

where V (s) ∈ K[s] and gcd(HPk
, V ) = 1 for k = 1, . . . , `.

Finally, we prove that V (s) ∈ K. For this purpose, we recall that

T (s) =
R13(s)

p1(s)λ13−1
,

(see (3)).

Note that if V (s0) = 0, then T (s0) = 0 and, thus, R12(s0) = R13(s0) =
R23(s0) = 0. From R13(s0) = Rest(G

∗
1(s, t), G

∗
3(s, t))(s0) = 0, using the

properties of the resultants (see e.g. [27]), we deduce that one of the following
two statements hold:

1. There exists s1 ∈ K such that G∗1(s0, s1) = G∗3(s0, s1) = 0. Thus,
deg(HP ) ≥ 2 where for P = P(s0) = P(s1). This implies that P is
a singular point of multiplicity at least 2 (see Corollary 1), so there
is some k = 1, . . . , ` such that P = Pk and, hence, gcd(HPk

, V ) 6= 1,
which is impossible.
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2. It holds that gcd(lct(G
∗
1), lct(G

∗
3))(s0) = 0. However, this is also a

contradiction since we would have that

lct(G
∗
1)(s0) = lct(G1)(s0) = p1(s0)cd − p(s0)ad = 0

and
lct(G

∗
3)(s0) = lct(G3)(s0) = p1(s0)bd − p2(s0)ad = 0.

From these two equalities we deduce that P(s0) = (ad : bd : cd) = PL
and, thus, the limit point is reached by the parametrization. This
implies that PL is a singularity (see Proposition 3.4 in [4]), which con-
tradicts the assumptions of the theorem.

Thus, V (s) ∈ K and we conclude that, up to constants in K \ {0},

T (s) =
∏̀
k=1

HPk
(s).

�

Corollary 3. Let C be a rational plane curve of degree d. Let P(t) be a
proper parametrization of C such that PL is regular. It holds that

deg(T ) = (d− 1)(d− 2).

Proof: Let P1, . . . , P` be the singular points of C, with delta invariants
δ1, . . . , δ`, respectively. Then, from Theorem 4 and Remark 1 (statement
(b)), we get that

deg(T (s)) =
∑̀
k=1

deg(Hk(s)) = 2
∑̀
k=1

δPk
.

Since the genus of an irreducible plane curve of degree d is the number
(d−1)(d−2)/2−∑`

k=1 δPk
(see [27]), and C is a rational curve (i.e. its genus

is 0), we get that deg(T (s)) = 2
∑`

k=1 δPk
= (d− 1)(d− 2). �

Remark 2. Corollary 3 may be used for checking if PL is a regular point.
More precisely, if deg(T ) < (d− 1)(d− 2) then PL is not regular and the as-
sumptions of Theorem 4 do not hold. Therefore, in order to use this theorem,
an appropriate reparametrization should be applied (see Section 3 in [4]).
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Example 2. Let C be the plane curve over C defined by the parametrization

P(t) = (2t4 − 8t3 + 2t2 + 20t− 16, t4 − 2t3 − 11t2 + 32t− 20, t2 + 1).

We will obtain its singularities using the T–function. First, we compute the
polynomials G1(s, t), G2(s, t) and G3(s, t) introduced in (1):

G1(s, t) = 18t2− 8t3− 8t3s2 + 2t4 + 2t4s2 + 20t+ 20ts2− 18s2 + 8s3 + 8s3t2−
2s4 − 2s4t2 − 20s− 20st2.

G2(s, t) = 9t2− 2t3− 2t3s2 + t4 + t4s2 + 32t+ 32ts2− 9s2 + 2s3 + 2s3t2− s4−
s4t2 − 32s− 32st2.

G3(s, t) = 112t− 112s− 216t2 − 92s3t2 + 24s4t2 + 284st2 − 216t3s+ 44t4s−
4t3s4 + 4t4s3 + 216ts3 − 44ts4 + 92t3s2 − 24t4s2 − 284ts2 + 128t3 − 24t4 +
216s2 − 128s3 + 24s4.

We have that G(s, t) = gcd(G1(s, t), G2(s, t), G3(s, t)) = s − t, so we
get that P is a proper parametrization. Let G∗i (s, t) = Gi(s, t)/(s − t) for
i = 1, 2, 3. Then,

R12(s) = Rest(G
∗
1(s, t), G

∗
2(s, t)) = 1280(5t2−24t+37))(t−1)2(t−2)2(1+t2)3.

In addition, note that d1 = 4, d2 = 4 and d3 = 2. Hence, δ1 = δ2 = 4 and
λ12 = 4. Now, by applying Definition 3, we obtain the T–function:

T (s) = R12(s)/p(s)
λ12−1 = 1280(5t2 − 24t+ 37)(t− 1)2(t− 2)2.

The factors of T are the fibre functions of the singularities. Let us analyze
each of them:

• The factor (5t2−24t+37) has the conjugate complex roots s1 = 12/5+√
41/5I and s2 = 12/5−

√
41/5I. Both of them point to the singularity

P1 = P(s1) = P(s2) = (−1450,−1900, 4959),

which corresponds to the affine point (−171/50,−261/100). The fibre
function of P1 is HP1(t) = 5t2−24t+37. Hence, we deduce that P1 is a
double point, since m1 = deg(HP1) = 2, and that C has two branches at
this point (HP1 has two simple roots). In addition, the contribution of
P1 to the T–function is HP1(s) = HP1(s). From Remark 1, statement
(b), we deduce that the delta invariant is δP1 = deg(HP1)/2 = 1. Thus,
P1 is an ordinary double point (see Subsection 3.1).
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Figure 1: General view of curve C (left) and detailed view of the non–ordinary double
point P2 = (0 : 0 : 1) (right)

• The factor (t− 1) gives us a third root of the T–function, s3 = 1, that
points to the singularity P2 = P(1) = (0 : 0 : 1). Its fibre function
is HP2(s) = (t − 1)(t − 2). Then, reasoning as above, we deduce that
P2 is a double point and that C has two different branches centered
at this point. However, the contribution of P2 to the T–function is
HP2(s) = (t − 1)2(t − 2)2 and, consequently, the delta invariant is
δP2 = deg(HP2)/2 = 2. Thus, P2 is a type II non–ordinary double point
(see Subsection 3.1).

We recall that type II singularities do always have other singularities
in its neighborhood, whose fibre functions are given by

HP (s)

HP (s)m−1
=

n∏
i=1

αi∏
j=1

HP i
j
(s)m

i
j−1 = (t− 1)(t− 2)

(see Remark 1, statement (c)). Thus, in this case, we can deduce that
ξ1 = {P 1

2 }, where HP 1
2
(s) = (t − 1)(t − 2) (it is a double point), and

ξ2 = . . . = ξn = ∅.

In Figure 1, we plot the curve C and we observe that it has two branches
centered at P2 although both of them have the same tangent. We can not
appreciate P1 since it is an isolated point.

24



Remark 3. In general, different conjugate roots of the T–function appear all
together under a unique irreducible polynomial. These roots are associated
to families of conjugated parametric points (see Definition 4 in [3]). In [22]
(Theorem 16), it is shown that all the points in such a family have the same
multiplicity and character.

Let us assume that T (s) includes a factor m(s)k−1, where m(s) is an
irreducible polynomial of degree l. Then, m(s) contains the fibre functions
of l/k singular points of multiplicity k (see Theorem 5 in [3]). Note that we
have just faced this situation in Example 2, where the fibre function of P1

was given by the irreducible polynomial m(t) = 5t2 − 24t+ 37.

4. Algorithm and example

In Section 3, we show that the T–function may be used to obtain es-
sential information concerning the singularities of the curve. In particular,
the factorization of T (s) provides the contributions of the different singular-
ities to the T–function. We recall that, by analyzing these contributions, we
can compute the corresponding multiplicities, number of branches and delta
invariants.

However, the contributions of the different singularities use to appear
scrambled and it may be difficult, for unfamiliar users, to get conclusions by
simply watching the T–function. In the following, we present an algorithm
that allows us to extract and organize all the information provided by T (s).
For this purpose, we recall that the contribution of an m-fold point P to the
T–function is given by

HP (s) = HP (s)m−1
n∏
i=1

αi∏
j=1

HP i
j
(s)m

i
j−1,

where ξi := {P i
1, . . . , P

i
αi
} is the i-th neighborhood and {mi

j} is the multi-
plicity of P i

j , for i = 1, . . . , n and j = 1, . . . , αi (δPn+1 = 0 and ξn+1 = ∅).

We can easily obtainHP (s) from T (s) if we know the fibre functionHP (s).
Note that HP i

j
(s)|HP (s) and gcd(HP ,HQ) = 1 if P 6= Q (see the proof of

Lemma 3). Thus, HP is composed by all the factors of HP , each of them
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raised to its power in the T–function. That is, let

HP (s) =
r∏
i=1

(s− si)fi ,

where si 6= sj for i 6= j, i, j = 1, . . . , r. Note that
∑r

i=1 fi = m and r is the
number of branches of the curve centered at P . Then HP (s) has the form

HP (s) =
r∏
i=1

(s− si)gi ,

where gi ≥ fi for i = 1, . . . , r. Note that
∑r

i=1 gi = 2δP . Now, we may
classify the singularity P as follows (see Subsection 3.1):

• If r = m and 2δP = m(m− 1) then, P is an ordinary singularity.

• If r < m and 2δP = m(m − 1) then, P is a type I non–ordinary
singularity.

• If r = m and 2δP > m(m − 1) then, P is a type II non–ordinary
singularity.

• If r < m and 2δP > m(m − 1) then, P is a type III non–ordinary
singularity.

The above statements are used for developing the following algorithm.
We assume that the conditions of Theorem 4 are verified that is, we have
a proper parametrization with a regular limit point. Note that, if P is not
proper, one can always get a proper reparametrization (see [21]). In addition,
in [3] and [4] one can find some linear changes of variables that may be applied
for the limit point to be regular (see also Example 1).
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Algorithm Classification of Singularities.

Given a parametrization, P(t), of a rational plane curve C, the algorithm
returns the singularities as well as their multiplicity and character. For
the non–ordinary singularities, the algorithm classifies the singularities as
type I, II or III (see Subsection 3.1) and returns their number of branches
and delta invariant.

1. Compute T (s) and get its factorization.

2. Let Taux(s) = T (s) and k = 1 and repeat steps 2.1 to 2.5 until the
algorithm finishes.

2.1. Take one factor of Taux(s), namely (s− s0). If Taux(s) = 1 the
algorithm finishes.

2.2. Compute Pk := P(s0) and HPk
(t) (see Definition 2). The

multiplicity of Pk is mk = deg(HPk
). The number of different

factors in HPk
is the number of branches, rk.

2.3. Compute HPk
(s) by taking all the factors of HPk

raised to its
power in Taux. The delta invariant of Pk is δPk

= deg(HPk
)/2.

2.4. Choose one of the following options:

a) If rk = mk and 2δPk
= mk(mk − 1), Return Pk is an

ordinary singularity of multiplicity mk.

b) If rk < mk and 2δPk
= mk(mk − 1), Return Pk is a type

I non–ordinary singularity with rk branches.

c) If rk = mk and 2δPk
> mk(mk − 1), Return Pk is a type

II non–ordinary singularity with delta invariant δPk
.

d) If rk < mk and 2δPk
> mk(mk − 1), Return Pk is a type

III non–ordinary singularity with rk branches and delta
invariant δPk

.

2.5. Let Taux(s) := Taux(s)/HPk
(s) and k := k + 1.

In the following, we illustrate the performance of algorithm Classification
of Singularities with an example.

Example 3. Let C be the plane curve over C defined by the projective
parametrization P(t) =

(35/2t4+2t3−5t2+1/2−25t6−10t5+12t8+8t7, t4+2t3−5t6−10t5+4t8+8t7, t8).
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First, we note that from [27] (see Chapter 4), the degree of the curve is d =
max{deg(p1), deg(p2), deg(p)} = 8. Furthermore, by using Theorem 1, we get
that P is a proper parametrization. Hence, we can study the singularities of
C by applying algorithm Classification of Singularities:

Step 1: Compute T (s) and get its factorization. We proceed as in Example 2
and we obtain:

T (s) = (−1− t+ t2)(t+ 1)6(2t− 1)6(2t+ 1)7(t− 1)7t14.

At this point, we should check that the limit point is regular. For this
purpose, we use Remark 2. Since deg(T ) = 42 = (d− 1)(d− 2), we get
that PL is regular.

Step 2: Let Taux(s) = T (s) and k = 1.

Step 2.1: We take one factor of Taux, namely (−1− t + t2). Hence we
obtain the conjugate roots: (1±

√
5)/2. Let s0 = (1 +

√
5)/2.

Step 2.2: We compute the first singularity P1 = P(s0) = (15/2 : 5 : 1).
We have that its fibre function is HP1(t) = −1 − t + t2. The degree
of HP1 is m1 = 2 and then, P1 is a double point. In addition, since
HP1 has two different simple roots, we deduce that the curve has r1 = 2
branches centered at P1.

Step 2.3: We determine the contribution of P1 to the T–function: HP1(t) =
−1− t+ t2. The delta invariant of P1 is δP1 = deg(HP1)/2 = 1.

Step 2.4: We have that r1 = m1 = 2 and δP1 = m1(m1 − 1)/2 = 1.

Then, the algorithm returns that P1 = (15/2 : 5 : 1) is an ordinary

double point.

Step 2.5: Let Taux(s) = Taux(s)/HP1(s) = (t+ 1)6(2t− 1)6(2t+ 1)7(t−
1)7t14 and k = 2. We repeat steps 2.1 to 2.5.

Step 2.1: We take one factor of Taux, namely (t+ 1). Hence, we obtain
the root s0 = −1.

Step 2.2: We compute the second singularity P2 = P(s0) = (0 : 0 : 1).
The fibre function of P2 is HP2(t) = (t − 1)(2t + 1)(2t − 1)(t + 1).
The multiplicity of this point is m2 = deg(HP2) = 4. Since HP2 has
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four different simple roots, we get that the curve has r2 = 4 branches
centered at P2.

Step 2.3: We determine the contribution HP2(t) = (t+1)6(2t−1)6(2t+
1)7(t− 1)7, and we have that δP2 = deg(HP2)/2 = 13.

Step 2.4: Since r2 = m2 = 4 and δP2 = 13 > m2(m2 − 1)/2 = 6, the

algorithm returns that P2 = (0 : 0 : 1) is a type II non–ordinary 4-fold

point with four associated branches, and δP2 = 13.

Step 2.5: Let Taux(s) = Taux(s)/HP2(s) = t14 and k = 3. We repeat
steps 2.1 to 2.5.

Step 2.1: We take one factor of Taux, namely t, which corresponds to
the root s0 = 0.

Step 2.2: We compute the third singularity P3 = P(s0) = (1 : 0 : 0).
The fibre function of P3 is HP3(t) = t3. The degree of HP3 is m3 = 3,
so P3 is a triple point. In addition, since HP3 has one only root, we
deduce that C has one only branch centered at P3. That is, r3 = 1.

Step 2.3: We determine the contribution of P3 to the T–function: HP3(t) =
t14. The delta invariant of P3 is δP3 = deg(HP3)/2 = 7.

Step 2.4: We have that r3 = 1 < m3 = 3 and δP3 = 7 > m3(m3−1)/2 =

3. Then, the algorithm returns that P3 = (1 : 0 : 0) is a type III non–

ordinary triple point with one associated branch, and δP3 = 7.

Step 2.5: Let Taux(s) = Taux(s)/HP3(s) = 1 and k = 3. We repeat steps
2.1 to 2.5.

Step 2.1: We have that Taux(s) = 1. Then, the algorithm finishes.

Thus, the algorithm returns that C has three singularities:

• one ordinary double point at P1 = (15/2 : 5 : 1)

• one type II non–ordinary 4-fold point at P2 = (0 : 0 : 1) with δP2 = 13

• one type III non–ordinary triple point at P3 = (1 : 0 : 0) with r3 = 1
and δP3 = 7
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Figure 2: The curve C has two affine singularities: the double point (15/2, 5) and the
4-fold point (0, 0).

In Figure 2, we plot the curve C. We can appreciate the two affine singular-
ities, P1 and P2.

5. The general case for rational space curves

Reasoning similarly as in [3] (see Section 4), we may adapt Theorem
4 for studying the singularities of rational space curves in any dimension.
More precisely, in this section, we generalize Theorem 6, in [3], for the case
that the given curve, C, is a rational space curve with also non–ordinary
singularities. In this case, a deeply analysis is necessary to prove that the
invariants associated to the non–ordinary singularity (as the delta invariant)
are preserved (see Proposition 2).

As in [3], we use an equivalent polynomial to the T–function, the TE(s)
polynomial, which totally describes the singularities of C. In particular, the
factorization of TE(s) provides the fibre functions of both, the ordinary and
the non–ordinary singularities. We recall that from the fibre function of a
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point P , one may determine the multiplicity of P as well as its fibre FP(P )
and the tangent lines of C at P (see Theorem 2 in Section 2.1). In addition,
we can compute the contribution of each singularity to TE(s) (see Remark
1) and, hence, we also obtain its delta invariant. The method presented
generalizes the results obtained in previous works (see Section 1), since a
complete classification of the singularities of a given space curve, via the
factorization of a univariate resultant, is obtained.

For this purpose, we consider a proper parametrization

P(t) = (p1(t), . . . , pn(t), p(t)) ∈ Pn(K(t)), gcd(p1, . . . , pn, p) = 1,

of a given rational space curve, C. In addition, we define the associated ratio-
nal parametrization over K(Z), where Z = (Z1, . . . , Zn−2) and Z1, . . . , Zn−2
are new variables, given by

P̂(t) = (p̂1(t), p̂2(t), p̂(t)) =

= (p1(t), p2(t) + Z1p3(t) + · · ·+ Zn−2pn(t), p(t)) ∈ P2((K(Z))(t)).

Note that P̂(t) = R(P(t)), where

R(x̄) = (x1, x2+Z1x3+· · ·+Zn−2xn, xn+1) ∈ P2((K(Z))(x̄)), x̄ = (x1, . . . , xn+1).

This notation is used for the sake of simplicity, but we note that P̂(t) depends

on Z. Observe that P̂(t) is a proper parametrization of a rational plane curve

Ĉ defined over the algebraic closure of K(Z).

There exists a correspondence between the points of C and the points of
Ĉ. More precisely, for each point P = (a1 : a2 : a3 : · · · : an : an+1) ∈ C
we have another point P̂ = (a1 : a2 + Z1a3 + · · · + Zn−2an : an+1) ∈ Ĉ.
Moreover, this correspondence is bijective for the points satisfying that a1 6= 0
or an+1 6= 0. For these points, it holds that FP(P ) = FP̂(P̂ ), which implies
that HP (s) = HP̂ (s). Note that the polynomial HP represents the fibre
function of a point P in the space curve C computed from P(t); i.e. the roots
of HP are the fibre of P ∈ C (this notion was introduced in Definition 2 for
a given plane curve but it can be easily generalized for space curves).

The study of the singularities of C through those of Ĉ, arises an additional
difficulty when C contains two or more points of the form (0 : a2 : a3 : · · · :
an : 0). We call them bad points since the correspondence above introduced

31



is not bijective when they appear. However, we may assume w.l.o.g. that C
does not have two or more bad points. Otherwise, a change of coordinates
may be applied in order to remove them from the curve (see [3] for further
details).

We observe that additional points, which can not be written in the form
(a1 : a2 +Z1a3 + · · ·+Zn−2an : an+1), ai ∈ K, i = 1, . . . , n+1, may appear in

the curve Ĉ. Such points are obtained from P̂(t) for t ∈ K(Z) \K and they
do not have a correspondence with any point of C. However, we will see later
that these points are not a problem, since we can easily put them aside and
focus on those which have a correspondence in C.

Under these conditions, we note that the above correspondence can also
be established between the places of C and Ĉ centered at P and P̂ , respec-
tively. That is, for each place ϕ(t) = (ϕ1(t), ϕ2(t), ϕ3(t), . . . , ϕn(t), ϕn+1(t))
of C centered at P we have the place ϕ̂(t) = (ϕ1(t), ϕ2(t) + Z1ϕ3(t) + · · · +
Zn−2ϕn(t), ϕn+1(t)) of Ĉ centered at P̂ . Hence, the number of tangents of

C at P is the same that the number of tangents of Ĉ at P̂ and, as a conse-
quence, the number of branches of each curve at P and P̂ and the character
of each point is the same. Furthermore, multP (C) = multP̂ (Ĉ) (we recall that

the curve tangents of C at P , respectively of Ĉ at P̂ , consist of the tangents
to the places of the curve that are centered at P , resp. at P̂ ; see e.g [15]).
This assertion can also be easily proved using results in Subsection 3.2. More
precisely, we have the following proposition.

Proposition 1. It holds that (a : b : c : d) ∈ C is a singular point of

multiplicity m if and only if (a : b + Zc : d) ∈ Ĉ is a singular point of
multiplicity m.

Proof: For the sake of simplicity, we assume that C is a space curve defined
by the proper parametrization

P(t) = (p1(t), p2(t), p3(t), p(t)) ∈ P3(K(t)), gcd(p1, p2, p3, p) = 1.

Then, Ĉ is defined by the proper parametrization

P̂(t) = (p̂1(t), p̂2(t), p̂(t)) = (p1(t), p2(t) + Zp3(t), p(t)) ∈ P2((K(Z))(t)).

In addition, we assume that P = (0 : 0 : 0 : 1) ∈ C is a point of multiplicity
m. Thus, using Subsection 3.2 (see Step 1), we may write

pj(t) = HP (t)pj(t), j = 1, 2, 3
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with gcd(p1, p2, p3) = 1, gcd(HP , p) = gcd(p1, p2, p3, p) = 1 and deg(HP ) = m
(see Corollary 1). Furthermore, gcd(HP (t), pi(t)) = 1 for i = 1, 2, 3 (see
equality (5)). Under these conditions, we may write

P̂(t) = (HP (t)p1(t), HP (t)(p2(t) + Zp3(t)), p(t)) ∈ P2((K(Z))(t)),

where gcd(p1, p2(t) + Zp3(t)) = 1 (since gcd(p1, p2, p3) = 1). Thus, from the

results in Subsection 3.2 (see Step 1), we deduce that P̂ = (0 : 0 : 1) ∈ Ĉ is
a point of multiplicity m.

Reciprocally, we reason similarly and we conclude that (a : b : c : d) ∈ C
is a singular point of multiplicity m if and only if (a : b + Zc : d) ∈ Ĉ is a
singular point of multiplicity m. �

We also have to check that the correspondence above defined preserves
the neighboring points. For this purpose, considering the notation introduced
above and using Subsections 3.1 and 3.2, we prove the following proposition.
We recall that ξj, j = 1, . . . , n, represents the neighborhoods of a certain

singularity P ∈ C. We denote by ξ̂j, j = 1, . . . , n, the neighborhoods of the

corresponding singularity P̂ ∈ Ĉ.

Proposition 2. There exists a bijective correspondence between the points
in ξj and the points in ξ̂j (for any j). In addition, the multiplicity of each
point is preserved.

Proof: For the sake of simplicity, we assume that we are in the conditions of
Proposition 1. That is, C is a space curve defined by the proper parametriza-
tion

P(t) = (p1(t), p2(t), p3(t), p(t)) ∈ P3(K(t)), gcd(p1, p2, p3, p) = 1,

and then, Ĉ is defined by the proper parametrization

P̂(t) = (p̂1(t), p̂2(t), p̂(t)) = (p1(t), p2(t) + Zp3(t), p(t)) ∈ P2((K(Z))(t)).

We recall that

P̂(t) = R(P(t)), where R(x̄) = (x1, x2 + Zx3, x4) ∈ P2((K(Z))(x̄)).

Let P = (0 : 0 : 0 : 1) ∈ C be a point of multiplicity m, and we write

pj(t) = HP (t)pj(t), j = 1, 2, 3
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with gcd(p1, p2, p3) = 1, gcd(HP , p) = gcd(p1, p2, p3, p) = 1, deg(HP ) = m
and gcd(HP (t), pi(t)) = 1, i = 1, 2, 3 (see Step 1 in Subsection 3.2). Hence,

from Proposition 1, we get that P̂ = (0 : 0 : 1) ∈ Ĉ is a point of multiplicity
m.

In order to study the neighboring points, we apply Steps 2 and 3 in
Subsection 3.2. We distinguish two different cases:

1. First, we study the correspondence between the points in the first neigh-
borhood of P and P̂ (see Step 2 in Subsection 3.2). For this purpose,

we apply T to P̂(t), and we get the projective parametrization of the

transformed curve Ĉ1 defined by

M̂1(t) := T (P̂(t)) = (q̂1(t), q̂2(t), q̂(t)) =

= ((p2(t) + Zp3)p(t), p1(t)p(t), HP (t)p1(t)(p2(t) + Zp3)).

We assume that there exists a singular point of multiplicity m1 that
belongs to the first neighborhood of P̂ . This point should be of the
form (a : b : 0) ∈ Ĉ1, with ab 6= 0, and it is reached by the values of t
being roots of the polynomial HP (t). That is,

(p2(t) + Zp3)p(t)− a = H?
P (t)q̂1, p1(t)p(t)− b = H?

P (t)q̂2 (9)

where H?
P (t) divides HP (t), gcd(q̂1, q̂2) = 1, and deg(H?

P ) = m1. Then,
we deduce that a = a1 + Za2, and

p2(t)p(t)− a1 = H?
P (t)q̂1,1, p3p(t)− a2 = H?

P (t)q̂1,2 (10)

where q̂1 = q̂1,1 + Zq̂1,2, and gcd(q̂1,1, q̂1,2, q̂2) = 1. We note that
a1a2 6= 0 since gcd(H?

P (t), p2) = gcd(H?
P (t), p3) = 1 (we recall that

gcd(HP (t), pi(t)) = 1 for i = 1, 2, 3, and H?
P (t) divides HP (t)).

Now, we apply the transformation Ts to C, getting the transformed
curve C1. Thus, we get the projective parametrization of C1 defined by

M1(t) := Ts(P(t)) =

= (p2(t)p3(t)p(t), p1(t)p3(t)p(t), p1(t)p2(t)p(t), HP (t)p1(t)p2(t)p3(t)).

Note that since P̂(t) = R(P(t)), M1(t) = Ts(P(t)) and M̂1(t) :=

T (P̂(t)), we get that

M̂1(t) = R1(M1(t)), where R1 = T ◦R ◦ Ts ∈ P2((K(Z))(t))
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(recall that T −1s = Ts).
Observe that the parametrization M1 can be written as

M1(t) = (q1(t), q2(t), q3(t), q(t)) =

(p2(t)p3(t)p(t)
2, p1(t)p3(t)p(t)

2, p1(t)p2(t)p(t)
2, HP (t)p1(t)p2(t)p3(t)p(t)).

Under these conditions, and using equalities (9) and (10), we get that

p2(t)p3(t)p(t)
2 − a1a2 = H?

P (t)q1
p1(t)p3(t)p(t)

2 − a2b = H?
P (t)q2

p1(t)p2(t)p(t)
2 − a1b = H?

P (t)q3.

In addition, it holds that gcd(q1, q2, q3) = 1. Indeed: from equalities
(9) and (10), we have that

q1 = a1q̂1,2 + a2q̂1,1 +H?
P (t)q̂1,1q̂1,2

q2 = a2q̂2 + bq̂1,2 +H?
P (t)q̂1,2q̂2

q3 = a1q̂2 + bq̂1,1 +H?
P (t)q̂1,1q̂2.

If there exists r ∈ K such that qj(r) = 0, j = 1, 2, 3, since a1a2b 6= 0,

the three above equations imply that q̂1,1(r) = q̂1,2(r) = q̂2(r) = 0,

which is impossible since gcd(q̂1,1, q̂1,2, q̂2) = 1.
Thus, we obtain that (a1a2 : a2b : a1b : 0) ∈ C1, with a1a2b 6= 0, is
a singular point of multiplicity m1 (note that deg(H?

P ) = m1). This
point belongs to the first neighborhood of P .

Reciprocally, let (a : b : c : 0) ∈ C1, with abc 6= 0, be a singular point of
multiplicity m1. Then, reasoning similarly as above, we have that

p2(t)p3(t)p(t)
2 − a = H?

P (t)q1
p1(t)p3(t)p(t)

2 − b = H?
P (t)q2

p1(t)p2(t)p(t)
2 − c = H?

P (t)q3,

where gcd(q1, q2, q3) = 1, H?
P (t) divides HP (t) and deg(H?

P ) = m1.
Thus, we may write a = a2a3, b = a1a3, c = a1a2, where

pi(t)p(t)− ai = H?
P (t)q̂i, i = 1, 2, 3,

and gcd(q̂1, q̂2, q̂3) = 1 (note that a1 =
√
abc/a, a2 =

√
abc/b, and

a3 =
√
abc/c; also the solution a1 = −

√
abc/a, a2 = −

√
abc/b, and
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a3 = −
√
abc/c is possible but in any case, the point (a1 : a2 : a3 : 0) is

the same). Hence

(p2(t)+Zp3)p(t)−(a2+Za3) = H?
P (t)(q̂2+Zq̂3), p1(t)p(t)−a1 = H?

P (t)q̂1

where gcd(q̂1, q̂2+Zq̂3) = 1 (note that gcd(q̂1, q̂2, q̂3) = 1), and deg(H?
P ) =

m1. Then, we deduce that (a2 + Za3 : a1 : 0) ∈ Ĉ1 is a singular point
of multiplicity m1.

Therefore (a : b : c : 0) = (a2a3 : a1a3 : a1a2 : 0) ∈ C1, with a1a2a3 6= 0,

is a singular point of multiplicitym1 if and only if (a2+Za3 : a1 : 0) ∈ Ĉ1
is a singular point of multiplicity m1.

2. For the second neighborhood, we apply Step 3 in Subsection 3.2. For
this purpose, we first observe that the correspondence proved in case 1.,
is also satisfied for the curves defined by the parametrizations L(M̂1(t))
and Ls(M1(t)), where L and Ls are linear change of coordinates. In

particular, we consider Q̂1(t) := L(M̂1(t)) and Q1(t) := Ls(M1(t)),
where L and Ls are the linear change of coordinates one should apply
to M̂1 and M1, respectively, to move the singular point obtained in
the first neighborhood to the origin point (see Step 3 in Subsection
3.2). Hence, using case 1., we get that there exists a correspondence
between the singularities (and their multiplicities) defined by the curves

parametrized by Q̂1 and Q1.

Now, we may reason as in case 1., and we prove that since Q̂1(t) =

R̄1(Q1(t)) (where R̄1 = L(R1(L
−1
s ))),M2(t) = Ts(Q1(t)) and M̂2(t) :=

T (Q̂1(t)), it holds that

M̂2(t) = R2(M2(t)), where R2 = T ◦ R̄1 ◦ Ts ∈ P2((K(Z))(t)).

Thus, we are in the same conditions as in case 1., and hence we may
reason in a similar way to get that there exists a bijective correspon-
dence between the points in ξ2 and ξ̂2. In addition, the multiplicity of
each point is preserved.

In general, and reasoning similarly for each neighborhood, we get that
there exists a bijective correspondence between the points in ξj and the

points in ξ̂j (for any j). In addition, the multiplicity of each point is
preserved. �
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Taking into account the definition of the delta invariant (see Subsection
3.1) and Proposition 2, we easily get the following corollary. We recall that δP
represents the delta invariant of a certain singularity P ∈ C, and we denote
by δ̂P̂ the delta invariant of the corresponding singularity P̂ ∈ Ĉ.

Corollary 4. It holds that δP = δ̂P̂ .

Once the main properties of the considered correspondence are proved,
we show how to generalize the concept of the T–function for the space
case and how to compute it. For this purpose, let Ĝ1, Ĝ2 and Ĝ3 be
the equivalent polynomials to G1, G2 and G3 (defined in (1)), constructed

from the parametrization P̂(t). In addition, let δ̂i := degt(Ĝi) and λ̂ij :=

min{δ̂i, δ̂j}, i, j = 1, 2, 3, i < j,

Ĝ∗i (s, t) :=
Ĝi(s, t)

t− s ∈ (K[Z])[s, t], i = 1, 2, 3,

and
R̂ij(s) := Rest(Ĝ

∗
i , Ĝ

∗
j) ∈ (K[Z])[s], i, j = 1, 2, 3, i < j.

Then, the T–function of the parametrization P̂(t) is given by

T̂ (s) = R̂12(s)/p̂(s)
λ̂12−1

(see Definition 3).

In the following, we show how this function can be used to define an
equivalent polynomial to the T–function introduced for plane curves (see
Definition 3). The factorization of this polynomial, which will be denoted
as TE(s), provides essential information about the singularities of the space
curve. In particular, for each m-fold point P , TE(s) has a factor of the form:

HP (s) = HP (s)m−1
n∏
i=1

αi∏
j=1

HP i
j
(s)m

i
j−1,

where ξi := {P i
1, . . . , P

i
αi
} is the i-th neighborhood of P and mi

j is the mul-
tiplicity of P i

j , for i = 1, . . . , n and j = 1, . . . , αi (δPn+1 = 0 and ξn+1 = ∅).
We say that HP (s) is the contribution of the singularity P to the T–function.
This notion was introduced in Remark 1 for a given plane curve but it can
easily be generalized for space curves.
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Theorem 5, below, is obtained as a consequence of Theorem 4 (see Section
3). We recall that we have assumed that the input curve does not have two
or more bad points.

Theorem 5. Let C be a rational algebraic space curve and let P(t) be a proper
parametrization of C such that PL is regular. Let P1, . . . , P` be the singular
points of C and let HP1 , . . . ,HP`

be their corresponding contributions to the
T–function (see Remark 1, statement (a)). Then, it holds that

TE(s) =
∏̀
k=1

HPk
(s),

where TE(s) = ContentZ

(
T̂ (s)

)
∈ K[s].

Proof: From the statements before Theorem 5, we observe that there exists
a bijective correspondence between the points P̂ = (a1 : a2 + Z1a3 + · · · +
Zn−2an : an+1), ai ∈ K, i = 1, . . . , n + 1, of Ĉ and the points P = (a1 : a2 :

a3 : · · · : an : an+1) of C. Consequently, we have that multP̂ (Ĉ) = multP (C),
which implies that P̂ is a singularity of Ĉ of multiplicity m if and only if P
is a singularity of C of multiplicity m. Hence, using Theorem 4, we deduce
that

T̂ (s) =
∏̀
k=1

HPk
(s)L(s, Z).

We observe that the factor L(s, Z) ∈ K[s, Z] \K[s] is a product of the fibre

functions corresponding to the singularities of Ĉ that can not be written
as (a1 : a2 + Z1a3 + · · · + Zn−2an : an+1), ai ∈ K, i = 1, . . . , n + 1 (these
singularities do not have an equivalent singularity in C, and its fibre function
necessarily is a polynomial in K[s, Z] \K[s]). Then, we conclude that

TE(s) = ContentZ

(
T̂ (s)

)
=
∏̀
k=1

HPk
(s).

�

Remark 4. From Propositions 1 and 2, and Corollary 4, one gets that the
polynomial TE(s) perfectly describes the singularities of C.
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Example 4. Let C be the rational space curve defined by the projective
parametrization P(t) = (p1(t), p2(t), p3(t), p(t)) ∈ P3(C(t)), where

p1(t) = −t6 − 12t5 + t4 + 38t3 + 30t2 + 4t,
p2(t) = −t6 − 5t5 + 2t4 + 17t3 + 13t2 + 2t,
p3(t) = −t7 − 4t6 − (13/8)t5 + (93/8)t4 + (175/8)t3 + (131/8)t2 + (19/4)t,
p(t) = 1.
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Figure 3: General view of curve C (left) and detailed view of the non–ordinary singular
point P = (0, 0, 0) (right)

We consider the plane curve Ĉ defined by the parametrization

P̂(t) = (p1(t) : p2(t) + Zp3(t) : p(t)) ∈ P2((C(Z))(t)).

From P̂(t), we compute Ĝi(s, t), i = 1, 2, 3 and the corresponding T–function.
We get that

TE(s) = 1/32768s4(s− 2)4(s+ 1)6.

Now, we apply Algorithm Classification of Singularities. Thus, we take one
factor of TE(s), namely s, which corresponds to the root s0 = 0, and we get
the singularity P = P(0) = (0 : 0 : 0 : 1). Its fibre function is

HP (t) := gcd(Ĝ1(0, t), Ĝ2(0, t), Ĝ3(0, t)) = (t− 2)(t+ 1)2t.
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Hence, we deduce that P is the only singularity of C and it has multiplicity
m = deg(HP ) = 4. In addition, the curve has r = 3 branches centered
at P (HP has 3 different roots), and the contribution of this point to the
T–function is

HP (s) = s4(s− 2)4(s+ 1)6,

which implies that δP = deg(HP )/2 = 7. Finally, reasoning as in Example
2, we have that

HP (s)

HP (s)m−1
= s(s− 2),

is the part of HP (s) which corresponds to the neighboring singularities of P .
Hence, we deduce that P has only one double point at its first neighborhood.

In Figure 3, we plot the curve C. If we focus on the area around the 4-fold
point, P , we observe that it is crossed by 3 branches which yield 2 different
tangents.

6. Proofs of Lemmas 2 and 3 in Section 3

In order to prove Lemmas 2 and 3, we need first to recall the following
technical result, which summarizes some useful properties of the resultant of
two polynomials. This lemma has been proved in [3] (see Section 5).

Lemma 4. Let A(s, t), B(s, t), C(s, t) ∈ K[s, t], and K(s) ∈ K[s]. The fol-
lowing properties hold:

1. Rest(A,K) = Kdegt(A).

2. Rest(A,B · C) = Rest(A,B) · Rest(A,C).

3. If B divides A, it holds that Rest(A/B,C) = Rest(A,C)/Rest(B,C).

4. Rest(A,B+CA) = lc(A)kRest(A,B), where k = degt(B + CA)− degtB.

Now we present the proof of Lemma 2.

Statement of Lemma 2: Let C be a rational algebraic curve defined by
a proper parametrization P(t), with limit point PL. Let P 6= PL be a non–
ordinary singular point of multiplicity m, and let ξ1 = {P 1}, where P 1 is an
ordinary singular point of multiplicity m1. Then it holds that

T (s) = HP (s)m−1HP 1(s)m1−1K(s),
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where K(s) ∈ K[s], HP 1(s) divides HP (s), and gcd(HP (s), K(s)) = 1.

Proof: In order to prove the lemma, one may consider three cases: (a) let
P = (0 : 0 : 1), (b) let P be an affine point of the form (a : b : 1) and (c) let
P be an infinity point of the form (a : b : 0). However, the proof for cases
(b) and (c) can be derived from that for case (a) by applying a change of
coordinates (see the proof of Lemma 2 in [3]). Therefore, in the following we
assume that the given singularity is the point P = (0 : 0 : 1). Thus, we may
write

p1(t) = HP (t)p1(t), p2(t) = HP (t)p2(t), (11)

where p1(t) and p2(t) are polynomials satisfying that gcd(p1, p2) = 1. Fur-
thermore, it holds that gcd(HP (t), p(t)) = 1, since gcd(p1, p2, p) = 1. In
addition, we assume that none of the tangents of P are an irregular line and
no other point on an irregular line is a singular point (see the first step of
the blowing up process in Subsection 3.1). In Subsection 3.2, we showed
that both conditions hold if equalities (5) and (6) hold. In the negative case,
we apply a linear change of coordinates to P(t). Finally, we assume that
(0 : 1 : 0), (1 : 0 : 0) 6∈ C; i.e. gcd(pi, p) = 1 for i = 1, 2 (otherwise, we apply
a linear change of coordinates).

We recall that the T–function can be computed as (see (3))

T (s) = R13(s)/p1(s)
λ13−1, (12)

where δi := degt(Gi), λij := min{δi, δj}, G∗i (s, t) :=
Gi(s, t)

t− s ∈ K[s, t] and

Rij(s) := Rest(G
∗
i , G

∗
j) ∈ K[s] for i, j = 1, 2, 3, i < j.

In addition, we have that G3(s, t) = p1(s)p2(t) − p2(s)p1(t) (see (1)). By
substituting (11) in this expression, we get that

G3(s, t) = HP (s)HP (t)(p1(s)p2(t)− p2(s)p1(t))

and hence,
G∗3(s, t) = HP (s)HP (t)G

∗
3(s, t),

where

G
∗
3(s, t) :=

p1(s)p2(t)− p2(s)p1(t)
s− t .

Then,
R13(s) = Rest(G

∗
1(s, t), HP (s)HP (t)G

∗
3(s, t))
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and by applying the properties stated in Lemma 4 (for further details see the
proof of Lemma 2 in [3]), we get that

R13(s) = HP (s)δ1−1p1(s)
mHP (s)m−1Rest(G

∗
1(s, t), G

∗
3(s, t)).

Therefore, (12) can be expressed as

T (s) =
HP (s)δ1−1p1(s)

mHP (s)m−1Rest(G
∗
1(s, t), G

∗
3(s, t))

p1(s)λ13−1
.

Observe that λ13 = δ1 since δ1 ≤ δ3. Otherwise, if δ1 > δ3, we would have
that max{d1, d3} > max{d1, d2} and then, d3 > d1, d2. However, this would
imply that P = PL (see Definition 1), which contradicts the assumptions.
Thus, taking into account that p1(s) = HP (s)p1(s), we conclude that

T (s) = HP (s)m−1T ∗(s), T ∗(s) =
Rest

(
G∗1(s, t), G

∗
3(s, t)

)
p1(s)

δ1−1−m
. (13)

In [3] (see Lemma 2), it is proved that T ∗(s) ∈ K[s].

In the second step of the blowing up process, we apply the transformation
T to the original curve C and we get a new curve C1 that is defined by the
projective parametrization

M1(t) = T (P(t)) =

= (p2(t)p(t), p1(t)p(t), p1(t)p2(t)) = (p2(t)p(t), p1(t)p(t), HP (t)p1(t)p2(t)).

By hypotheses, we know that there exists one ordinary singular point
P 1 := (1 : γ : 0) ∈ C1, with γ 6= 0. Note that this point is reached by values
of t being roots of the polynomial HP (t). Hence, there exists a polynomial
HP 1(t), which divides HP (t), such that for every s0 ∈ K with HP 1(s0) = 0,
it holds that M1(s0) = P 1. That is,

M1(s0) =

(
1 :

p1(s0)

p2(s0)
:
HP (s0)p1(s0)

p(s0)

)
= (1 : γ : 0). (14)

We observe that HP (t) and HP 1(t) are fibre functions defined from differ-
ent parametrizations (P and M1 respectively). However, for the sake of
simplicity, we have not remarked this fact in the notation.
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Now, let us apply a second change of coordinates in order to move the
point (1 : γ : 0) to the point (0 : 0 : 1); for instance, let us consider the
change L = (x2 − γx1, x3, x1). The transformed curve can be parametrized
by Q1(t) := L(M1(t)). We have that

Q1(t) = (q1(t), q2(t), q3(t)) = (p1(t)p(t)−γp2(t)p(t), HP (t)p1(t)p2(t), p2(t)p(t)).

Note that the fibre of the point Q1 := (0 : 0 : 1) in the parametrization
Q1 is the fibre of P 1 = (1 : γ : 0) in the parametrizarion M1. Thus,
HQ1(t) = HP 1(t) and, reasoning as in (11), we get

qi(t) = HQ1(t)qi(t) = HP 1(t)qi(t), i = 1, 2, (15)

where q1, q2 ∈ K[t] and gcd(q1, q2) = 1. Furthermore, since gcd(pi, p) = 1 for
i = 1, 2, we have that gcd(q1, q2, q) = 1, and then gcd(HQ1 , q) = 1.

From the above parametrization, we construct the polynomials

G∗1,1(s, t) =
q1(s)q(t)− q(s)q1(t)

t− s = p(t)p(s)G
∗
3(s, t), (16)

where G
∗
3(s, t) = (p1(s)p2(t)− p2(s)p1(t))/(t− s),

G∗2,1(s, t) =
q2(s)q(t)− q(s)q2(t)

t− s = p2(t)p2(s)G
∗
1(s, t), (17)

and

G∗3,1(s, t) =
q1(s)q2(t)− q2(s)q1(t)

t− s = HP 1(s)HP 1(t)G
∗
3,1(s, t),

where G
∗
3,1(s, t) = (q1(s)q2(t)− q2(s)q1(t))/(t− s). Note that deg(pi) = di −

m, i = 1, 2 and hence, degt(G
∗
1,1) := δ1,1 = d3 + δ3− 1−m and degt(G

∗
2,1) :=

δ2,1 = d2 + δ1 − 1−m. In addition, we denote degt(G
∗
3,1) := δ3,1.

The polynomials G∗i,1 are equivalent to the polynomials G∗i , but con-
structed from the parametrization Q1. Taking this into account, we may
apply Definition 3 for computing T1 (that is, a polynomial equivalent to T ,
but constructed from Q1). Thus, we obtain

T1(s) =
Rest

(
G∗1,1(s, t), G

∗
2,1(s, t)

)
q(s)λ

1
12−1

, (18)
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where λ112 := min{δ1,1, δ2,1}. Now, we reason as above (see (13)), and we get
that

T1(s) = HQ1(s)m1−1U1(s), U1(s) :=
Rest

(
G∗1,1(s, t), G

∗
3,1(s, t)

)
q1(s)

δ1,1−m1−1
∈ K[s].

From the proof of Lemma 2 in [3], we have that gcd(HQ1 , U1) = 1, since Q1 is
an ordinary singularity and it is not the limit point ofQ1 (by assumption, P is
not the limit point of P(t), and we have just applied a change of coordinates).
On the other hand, as we have remarked above, HQ1(s) = HP 1(s), so we have
that

T1(s) = HP 1(s)m1−1U1(s), U1(s) :=
Rest

(
G∗1,1(s, t), G

∗
3,1(s, t)

)
q1(s)

δ1,1−m1−1
∈ K[s] (19)

with gcd(HP 1 , U1) = 1.

In order to complete the proof, we need to find a connection between
equations (13) and (19), which allows us to relate the T–functions, T (s) and
T1(s). For this purpose, we substitute (16) and (17) in (18) and, by applying
statements 1 and 2 of Lemma 4, we get that

Rest
(
G∗1,1(s, t), G

∗
2,1(s, t)

)
=

= p(s)δ1−1+d2−mp2(s)
δ3−1+d3−mRest

(
p(t)G

∗
3(s, t), p2(t)G

∗
1(s, t)

)
.

Now, using again Lemma 4, and we have that

Rest

(
p(t)G

∗
3(s, t), p2(t)G

∗
1(s, t)

)
=

= Rest (p(t), G∗1(s, t)) Rest

(
G
∗
3(s, t), p2(t)

)
Rest

(
G
∗
3(s, t), G

∗
1(s, t)

)
.

Let us analyze the first two factors. On the one hand, we have that

Rest (p(t), G∗1(s, t)) = Rest

(
p(t),

p1(s)p(t)− p(s)p1(t)
t− s

)
=

=
Rest(p(t),−p(s)p1(t))

Rest(p(t), t− s)
=

Rest(p(t), p(s))

p(s)
= p(s)d3−1.
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On the other hand, reasoning similarly as above, we get that

Rest

(
G
∗
3(s, t), p2(t)

)
= p2(s)

d2−m−1

Therefore,
Rest

(
G∗1,1(s, t), G

∗
2,1(s, t)

)
=

= p(s)δ1−2+d2−m+d3p2(s)
δ3−2+d3−2m+d2Rest

(
G
∗
3(s, t), G

∗
1(s, t)

)
.

Now, using that q(s) = p(s)p2(s), and substituting it in (18), we get

T1(s) =
Rest

(
G
∗
3(s, t), G

∗
1(s, t)

)
p(s)ap2(s)

b
,

where a := λ112 − δ1 − d2 − d3 +m+ 1 and b := λ112 − δ3 − d2 − d3 + 2m+ 1.
This equality is, somehow, the key of the proof, since it relates some elements
obtained from the parametrization P and some others obtained from Q1,
which provides us the desired connection between equations (13) and (19).

We substitute Rest

(
G
∗
3(s, t), G

∗
1(s, t)

)
= T1(s)p(s)

ap2(s)
b on (13), and we

get that

T (s) = HP (s)m−1
T1(s)p(s)

ap2(s)
b

p1(s)
δ1−1−m

.

Thus, from (19), we obtain

T (s) = HP (s)m−1HP 1(s)m1−1K(s), where K(s) := p(s)ap2(s)
bp1(s)

m+1−δ1U(s).

Observe that since T (s) ∈ K[s], U(s) ∈ K[s], HP 1 dividesHP , and gcd(HP , p) =
gcd(HP , p2) = gcd(HP , p1) = 1 (see (5)), we deduce that K(s) ∈ K[s].

Now, we have to prove that gcd(HP (s), K(s)) = 1. Since gcd(HP , p) =
gcd(HP , pi) = 1, i = 1, 2 (see (5)), we have that gcd(HP , K) = gcd(HP , U).
On the other hand, since HP 1(t) divides HP (t), there exist L(t) ∈ K[t] such
that HP (t) = L(t)HP 1(t) and, from (19), we know that gcd(HP 1 , U) = 1, so
gcd(HP , U) = gcd(L,U). Now, we remind that

U(s) := q1(s)
m1+1−δ1,1Rest

(
G∗1,1(s, t), G

∗
3,1(s, t)

)
∈ K[s],

and thus,

gcd(L,U) = gcd(L, q1)
m1+1−δ1,1gcd

(
L,Rest(G

∗
1,1(s, t), G

∗
3,1(s, t))

)
.
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Note that gcd(L, q1) = 1 (otherwise, since q2(t) = L(t)p1(t)p2(t), we would
have that gcd(q1, q2) 6= 1, which is impossible). Hence,

gcd(HP , K) = gcd
(
L,Rest(G

∗
1,1(s, t), G

∗
3,1(s, t))

)
.

Now, let us assume that there exists k0 ∈ K such that L(k0) = 0 and

Rest

(
G∗1,1(s, t), G

∗
3,1(s, t)

)
(k0) = 0. Then, one of the following statements

hold:

1. There exists k1 ∈ K such that G∗1,1(k0, k1) = G
∗
3,1(k0, k1) = 0 which

implies that G1,1(k0, k1) = G3,1(k0, k1) = 0. Thus, the fibre function
HQ1(k0)(t) = gcd(G1,1(k0, t), G3,1(k0, t)) has degree at least 2. There-
fore, Q1(k0) is a singular point (note that Q1 is proper). On the other
hand, L(k0) = 0 implies that HP (k0) = 0 so, if we substitute k0 in (14),
we get that

M1(k0) =

(
1 :

p1(k0)

p2(k0)
:
HP (k0)p1(k0)

p(k0)

)
= (1 : β : 0) , β 6= 0.

Note that p1(k0)p2(k0)p(k0) 6= 0, since we had that gcd(HP (t), p(t)) = 1
and that gcd(HP (t), pi(t)) = 1 for i = 1, 2 (see (5)). Now, we distin-
guish two different cases and we show that both of them contradict the
assumptions of the proof:

(a) Let β = γ. This implies thatM1(k0) = P 1, so HP 1(k0) = 0. How-

ever, this is not possible since Rest

(
G∗1,1(s, t), G

∗
3,1(s, t)

)
(k0) = 0

implies that U(k0) = 0 (recall that gcd(L, q1) = 1) and we know
that gcd(HP 1 , U) = 1.

(b) Let β 6= γ. This implies that C1 has a singularity of the form
Q1(k0) = (1 : β : 0) 6= P 1, with β 6= 0, which contradicts the
assumption that ξ1 = {P 1}.

2. It holds that gcd(lct(G
∗
1,1), lct(G

∗
3,1))(k0) = 0. This implies that Q1 =

Q1(k0) is the limit point of the parametrization (see the proof of Lemma
2 in [3]). However, as we stated before, this is not possible under the
assumption that P 6= PL.

The cases 1 and 2 above considered, provide a contradiction with the as-
sumptions of the lemma. Therefore, we deduce that the polynomials L and
Rest(G

∗
1,1(s, t), G

∗
3,1(s, t)) do not have common roots and gcd(HP , K) = 1. �
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Finally, we present the proof of Lemma 3.

Statement of Lemma 3: Let C be a rational algebraic curve defined by a
proper parametrization P(t), with limit point PL. Let P 6= PL be a singular
point of multiplicity m, let ξi := {P i

1, . . . , P
i
αi
} be its i-th neighborhood and

let mi
j be the multiplicity of P i

j , for i = 1, . . . , n and j = 1, . . . , αi (δPn+1 = 0
and ξn+1 = ∅). It holds that

T (s) = HP (s)m−1
n∏
i=1

αi∏
j=1

HP i
j
(s)m

i
j−1T ∗(s),

where T ∗(s) ∈ K[s], HP i
j
(s) divides HP (s), and gcd(HP (s), T ∗(s)) = 1, j =

1, . . . , αi, i = 1, . . . , n.

Proof: First, we assume that P has two ordinary singularities P 1 and P 2, of
multiplicities m1 and m2, in its first neighborhood. That is, ξ1 = {P 1, P 2}.
Then, from Lemma 2, we have that

T (s) = HP (s)m−1HP 1(s)m1−1K1(s) = HP (s)m−1HP 2(s)m2−1K2(s),

where K1(s), K2(s) ∈ K[s] and gcd(HP (s), Ki(s)) = 1, i = 1, 2. In addition,
note that gcd(HP 1(s), HP 2(s)) = 1 (otherwise, if s0 was a common root of
HP 1(s) and HP 2(s), we had that P 1 = Q1(s0) = P 2). Hence, we deduce that
HP 2(s)m2−1 divides K1(s) and thus,

T (s) = HP (s)m−1HP 1(s)m1−1HP 2(s)m2−1K(s) (20)

where K(s) ∈ K[s] and gcd(HP (s), K(s)) = 1.

Now, we assume that P 1 ∈ ξ1 is a non–ordinary singularity which in turn
has an ordinary singularity P 2 at its first neighborhood. That is, ξ1 = {P 1}
and ξ2 = {P 2}. Then, we observe that equality (19) appearing in the proof
of Lemma 2, may be written, in this case, as

T1(s) = HP 1(s)m1−1HP 2(s)m2−1U(s), U(s) ∈ K[s].

Reasoning similarly as in that proof, we also get (20).

The lemma follows by induction on the two cases above considered. �
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7. Conclusions

Let C be an algebraic space curve defined by a rational parametrization
P(t) ∈ K(t)`, ` ≥ 2. In this paper, we construct the T–function, T (s), which
is a polynomial obtained from P(t) by means of a univariate resultant, and
we carefully study the structure of T (s) showing that it contains essential
information concerning the (ordinary and non–ordinary) singularities of C .
More precisely, we prove that T (s) =

∏n
i=1HPi

(s), where Pi, i = 1, . . . , n,
are the singularities of C and HPi

, i = 1, . . . , n, are polynomials, each of
them associated to a singularity, whose factors are the fibre functions of
those singularities as well as those other belonging to their corresponding
neighborhoods. That is, HQ(s) = HQ(s)m−1

∏k
j=1HQj

(s)mj−1, where Q is
an m-fold point, Qj, j = 1, . . . , k, are the neighboring singularities of Q,
and mj, j = 1, . . . , k, are their corresponding multiplicities (HP is the fibre
function of P ). Therefore, by just analyzing the factorization of T , we can
obtain all the singularities (ordinary and non–ordinary) as well as interesting
data relative to each of them, like its multiplicity, character, fibre or number
of associated tangents. Furthermore, in the case of non–ordinary singulari-
ties, we can easily get the corresponding number of local branches and delta
invariant.

The problem of computing the singularities from the parametrization
defining a curve has been much treated in the literature (see Section 1).
In the present paper, we describe the structure of singular points by using
the parameterization, but from a different point of view with respect to the
previous works. This point of view is just based on the analysis of the struc-
ture of a polynomial, the T–function, constructed by a univariate resultant.
The results presented in this paper and some appearing in previous litera-
ture are directly related and all allow compute satisfactorily the singularities.
However, the approaches are totally different and, perhaps, complementary
(see Section 1). For instance, in [7], it is introduced the notion of inversion
formula of a point P on a rational curve C. It is a polynomial whose roots
provide the fibre of the point P in a given homogeneous parametrization of
C. In this paper, we work with non–homogeneous parametrizations and we
define the equivalent concept of fibre function which, in fact, was introduced
in [22] (see Theorem 17 and Corollary 1).

In the context of planar curves, in [1], Abhyankar shows how to compute
the product of the inversion formulae of the different singularities by means of
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a resultant. However, his approach only works if one considers a polynomial
parametrization. In [8], it is obtained a similar formula for the case of a
generic rational parametrization, not necessarily polynomial. There, using
µ–bases, authors deal with the singular factors introduced in [9], and it is
proved that the k–th singular factor provides the product of the inversion
formulae of the k–fold singularities (see Theorem 11). This allows to obtain
the product of the inversion formulae as the product of the singular factors.

Our paper is based on the approach of [22]. We consider the case of
a generic rational parametrization, and we aim to generalize Abhyankar’s
formula by just computing a univariate resultant and dealing with two im-
portant and new situations, the presence of the non–ordinary singularities
as well as the case of space curves in any dimension. For this purpose, we
observe that in [22], it is proved that the inversion formulae of the different
singularities divide the resultant (see Theorem 10). Now, we improve that
result and we show how to obtain, in an exact way, the product of the in-
version formulae (which we call the T–function) by removing the residual
factors of the resultant (in this sense, we note that the extraneous factor
removing from the resultant computed for defining the T–function, T (s), is
only a power of the denominator of the parametrization). Thus, we get these
inversion formulae, but using the resultant and generalizing Abhyankar’s re-
sult.

In addition, we show how to group the different factors of the resultant
to obtain the fibre functions of the different singularities (ordinary and non–
ordinary), their multiplicity, number of branches and delta invariants (see the
algorithm presented). Furthermore, we show how to deal with singularities
that are reached by algebraic values of the parameter (see Remark 3).

Regarding the study of space curves, in [7], µ–basis are used to obtain an
extension of the singular factors and it is proved that the inversion formula
of any k–fold singularity divides the k–th singular factor (see Corollary 17
of Section 5.2). However, there can be other elements dividing the singular
factor that do not correspond to any inversion formula.

In this sense, we introduce an extension of the T–function which allows
us to perfectly generalize the results of plane curves to the space case. The
new T–function (TE) provides, in an exact way, the product of the inversion
formulae, so that any factor of the T–function corresponds to a singularity
of the curve.
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Therefore, we can conclude that in this paper we provide some new
achievements on this topic. More precisely: 1) we provide a complete classi-
fication of the singularities of the curve by just analyzing the structure of a
univariate resultant, 2) we deal with both, the case of ordinary and the case
of non–ordinary singularities, 3) for each singularity, we get its multiplic-
ity, character, fibre and number of tangents, as well as the number of local
branches and the delta invariant for the case of non–ordinary singularities
and 4), we show how the results can be obtained for the case of space curves
in any dimension (for this purpose, we construct a plane curve which is in
correspondence with the input space curve). In addition, we recall that, in
a direct method, in order to compute the singularities, one would introduce
algebraic numbers during the computations. However, in this paper, in or-
der to deal with this problem, we consider families of conjugated parametric
points. This new notion allows us to determine the singularities of a curve
without directly introducing algebraic numbers in the computations.
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