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Abstract
We study a family of partial differential equations in the complex domain, under the
action of a complex perturbation parameter ε . We construct inner and outer solutions
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1 Introduction
The main aim in this work is to describe the analytic solutions and asymptotic behavior
of the solutions of a family of initial value problems in the complex domain. Such a family
consists of partial differential equations in two complex time variables of the form

Q(∂z)u(t1, t2, z, ε) = P
(
tk1+1
1 ∂t1 , tk2+1

2 ∂t2 , ∂z, z, ε
)
u(t1, t2, z, ε) + f (t1, t2, z, ε), (1)

under given initial data u(0, t2, z, ε) ≡ u(t1, 0, z, ε) ≡ 0. Here, Q(X) ∈ C[X] and P(T1, T2, Z,
z, ε) stands for a polynomial in (T1, T2, Z) with holomorphic coefficients w.r.t. (z, ε) on
Hβ × D(0, ε0), where Hβ stands for the horizontal strip in the complex plane

Hβ :=
{

z ∈C :
∣∣Im(z)

∣∣ < β
}

for some β > 0, and D(0, ε0) ⊆C stands for the open disc centered at the origin with radius
ε0 for some small ε0 > 0. The symbol ε acts as a small complex perturbation parameter in
the equation. Moreover, k1, k2 are positive integers with 1 ≤ k1 < k2. The forcing term,
constructed in detail in Sect. 2, turns out to be a holomorphic function in C

2 × Hβ ′ ×
D(0, ε0). In this paper, we also adopt the notation D(0, r) for the closed disc centered at
0 ∈C and radius r > 0.

The precise constrains involving the parameters involved in each of the equations de-
termining the family of PDEs under study are described in Sect. 2.
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This is the continuation of a series of works devoted to the study of PDEs in the complex
domain under the action of two complex time variables. In [18], the authors studied a
family of nonlinear initial value Cauchy problems of the form

Q(∂z)∂t1∂t2 u(t1, t2, z, ε) =
(
P1(∂z, ε)u(t1, t2, z, ε)

)(
P2(∂z, ε)u(t1, t2, z, ε)

)

+ P(t1, t2, ∂t1 , ∂t2 , ∂z, ε)u(t1, t2, z, ε) + f (t1, t2, z, ε), (2)

where the terms in Q, P, P1, P2 are such that the action of t1 and t2 is symmetric. Moreover,
we assume that the polynomial

P(t1, t2, ∂t1 , ∂t2 , ∂z, ε) := Q(∂z)∂t1∂t2 – L1(t1, t2, ∂t1 , ∂t2 , ∂z, ε), (3)

where L1 involves leading terms of the differential operator P, can be factorized in such a
way that each of the factors only depends on one of the time variables, i.e.,

P(t1, t2, ∂t1 , ∂t2 , ∂z, ε) = P1(t1, ∂t1 , ∂z, ε)P2(t2, ∂t2 , ∂z, ε).

From this symmetric configuration one is able to construct families of analytic bounded
solutions udh (t1, t2, z, ε) ∈ Ob(T1 × T2 × Hβ ′′ × Eh) for every 0 ≤ h ≤ ι – 1, where T1, T2, Ej

stand for open bounded sectors with vertex at the origin in C, β ′′ > 0, and (Eh)0≤h≤ι–1 is
a good covering of C� (see Definition 3). Moreover, an asymptotic behavior of such solu-
tions can be observed with respect to the perturbation parameter ε. Indeed, there exists a
formal power series ε �→ û(t1, t2, z, ε) ∈ E�ε�, where E stands for the Banach space of holo-
morphic and bounded functions defined in T1 ×T2 ×Hβ ′′ with the norm of the supremum,
which turns out to be a formal solution of (2). In addition to this, a multisummability result
joins both analytic and formal solutions (see [18], Theorem 2).

In the second study [15], the property of symmetry of the equations drops, and P in (3)
is no longer factorizable into two terms which only present dependence on one of the time
variables. This asymmetry causes that the procedure followed in [18] is no longer valid in
that second framework and the procedure followed differs from that in [18].

In both studies, a Borel–Laplace method is applied. In the symmetric case, the analytic
solution is constructed as the Laplace transform with respect to τ1 and τ2 of an auxiliary
function ω(τ1, τ2), which is well defined in a domain of the form (S1 ∪ D(0,ρ)) × (S2 ∪
D(0,ρ)) for some ρ > 0 and certain sectors S1, S2 with vertex at the origin. Moreover, such
a function admits an exponential growth at infinity with respect to τ1 ∈ S1 and τ2 ∈ S2.
This is the suitable configuration in order to apply Borel–Laplace techniques on each of
the variables involved and achieve summability results (see Sect. 5.1). On the other hand,
the asymmetric settings in the problem considered in [15] cause the function ω(τ1, τ2) only
be defined in sets of the form S1 × (S2 ∪ D(0,ρ)), and a small divisor phenomenon is ob-
served. Therefore, the summability conditions are not satisfied, and a different approach,
focused on studying the natural domains and asymptotic behavior of ω(τ1, τ2), and apply-
ing summability results asymmetrically, has to be followed.

In this sense, this work is concerned with a family of equations in which none of the
previous strategies is satisfactory. On the one hand, the symmetric situation does not hold
in the present work, so the strategy followed in [18] is not available. On the other hand,
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the strategy considered in [15] does not apply because the auxiliary function ω(τ1, τ2) re-
quires that, at least for one of the variables, a neighborhood of the origin is contained in
its domain of definition. This is not the case, so a summability procedure cannot be fol-
lowed. The reason for failure is that the deformation path accomplished when computing
the difference of two consecutive solutions of the main problem, written as the Laplace
transform ω, is no longer applicable. A small divisor phenomenon occurs, which does not
allow to determine the Gevrey orders involved in the relationship between the analytic
and the formal solution. The precise reasoning on the failure of this procedure is detailed
in Sect. 2.1.

A second novelty in the present work is the appearance of two different kinds of families
of analytic solutions of the main problem for which one can give a picture of their asymp-
totic behavior with respect to the perturbation parameter. Following the terminology in
the study of boundary layer solutions of equations, we distinguish the inner solutions (see
Sect. 4.1) and the outer solutions (see Sect. 4.2) of the main problem and describe their
asymptotic representation with respect to the perturbation parameter near the origin.
A recent work by the authors [17] constructs boundary layer expansions for certain initial
value problem with merging turning points, regarding inner and outer solutions, which
only considers the action of one time variable in the equation. In that previous work and
also in the present work, the Gevrey orders of the asymptotic representation of the inner
and outer solutions are different in general. As mentioned, we observe a comparable phe-
nomenon in the present situation. However, in our context the inner solutions might not
be λ1k1-summable in general for some λ1 > 0 to be precised.

The so-called inner and outer expansions are of great interest in mathematics under the
theory of matched asymptotic expansions. For a detailed theory on this subject, we refer to
classical textbooks such as [3, 7, 11, 20–22]. For the general aspects on Gevrey asymptotic
expansions in this context, we refer to the book [9].

It is worth mentioning that the special solution u(t1, t2, z, ε) of the main problem under
study (1), which is constructed in this work, satisfies the partial differential equation

P̃p,q(u) :=
{(

ελ1k1

k1
tk1+1
1 ∂t1

)p

–
(

ελ2k2

k2
tk2+1
2 ∂t2

)q}
u = 0 (4)

for (p, q) ∈N
2 satisfying pk1 = qk2. Moreover, the forcing term f (t1, t2, z, ε) in (1) satisfies

P̃p,qf = 0. (5)

One may choose (p, q) := (k2, k1) or other generator (p, q) = (gcd(k1, k2))–1(k2, k1). There-
fore, the present study can be seen from the point of view of the asymptotic behavior of a
family of special solutions to the system of singularly perturbed partial differential equa-
tions (1) and (4) satisfying the compatibility condition (5).

The study of singularly perturbed PDEs in the complex domain is a topic of increasing
interest. In 2015, Yamazawa and Yoshino [23] studied parametric Borel summability in
semilinear systems of PDEs of fuchsian type and of combined irregular and fuchsian type
by Yoshino [24].

The theory of monomial summability was put forward by Canalis-Durand, Mozo-
Fernández, and Schäfke in [4]. Recently, Carrillo and Mozo-Fernández have studied fur-
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ther properties on monomial summability and Borel–Laplace methods on this theory in
[5, 6], and this technique has been successfully applied to families of singularly perturbed
ODEs and PDEs.

We now give a general overview of the sections in which the present study is divided
and the main results obtained. The statement of the main problem under consideration
is settled in Sect. 2, where we give arguments on the reason of failure of the methods
used in [15, 18] in this family of PDEs (see Sect. 2.1) and determine the shape of the an-
alytic solution as a Laplace-like transform of a function related to the meromorphic ker-
nel Ω provided in (18) (see Sect. 2.2): given two good coverings of C�, (E0

h1
)0≤h1≤ι1–1 and

(E∞
h2

)0≤h2≤ι2–1, with the first good covering consisting of sectors with wide enough opening
(see Definition 3), we construct two sets of analytic solutions of (1) in the form

uξhj
(t1, t2, z, ε) :=

1
(2π )1/2

∫ ∞

–∞

∫

Ldhj

ω(u, m, ε) exp

(
–
(

u
ελ1 t1

)k1

–
(

u
ελ2 t2

)k2)

× exp(izm)
du
u

dm, j = 1, 2.

The elements of the first family are constructed on a domain of the form T1 × (T2 ∩
D(0,ρ2))×Hβ ′ ×E0

h1
for some ρ2 > 0. The elements in the second family are constructed on

domains of the form T1 ×T2,ε ×Hβ ′ ×E∞
h2

. Here, T1 is a bounded sector, T2 is an unbounded
sector, and the direction ξh ∈R is an appropriate argument, the set T2,ε is a bounded sec-
tor that depends on ε ∈ E∞

h2
and tends to infinity with ε → 0; λ1,λ2 ∈ N. The function

ω(u, m, ε) comes as a result of a fixed point argument in the Borel plane, in certain Banach
spaces of functions (see Sect. 2.3 and Sect. 2.4). We finally relate the analytic solutions
to an asymptotic representation in different subdomains achieving the construction and
asymptotic results on the inner solutions (see Sect. 4.1) and on the outer solutions (see
Sect. 4.2). In both situations, we provide differences of consecutive solutions (in the sense
that they are associated with consecutive sectors in the fixed good covering) and apply the
Ramis–Sibuya theorem (see Theorem (RS)) to arrive at the existence of a common asymp-
totic representation of all the inner solutions and an asymptotic representation of all the
outer solutions. This asymptotic behavior appears in the form of Gevrey asymptotic ex-
pansions of order 1/(λ1k1) with respect to the perturbation parameter ε on E∞

h2
regarding

the inner solutions, whilst λ2k2-Gevrey summability can be observed regarding the outer
solutions, with respect to the perturbation parameter (see Theorem 4).

The paper is organized as follows.
In Sect. 2, we state the main problem under study and analyze different ways to approach

the problem. The section ends with the construction of the solution to an auxiliary prob-
lem in the Borel plane within a Banach space of functions with exponential growth and
decay. In Sect. 3, we study the solution of an auxiliary problem, which turns out to be cru-
cial in the sequel. Section 4 is devoted to the construction of the analytic solution of the
main problem in addition to the inner and outer solutions. The work ends in Sect. 5 with
the study of the parametric Gevrey asymptotic expansions of both types of solutions in
appropriate domains, with respect to the perturbation parameter. The last section is fo-
cused on the technical proof of Lemma 4, left at the end of the paper for the sake of clarity
in the ongoing argumentation.
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2 Statement of the main problem and solution of an auxiliary problem
Our main aim in this work is to provide analytic and formal solutions to the main problem
under study (1) and give information about the asymptotic behavior relating both. In this
section, we detail the elements involved in the main problem under study and provide dif-
ferent approaches which might be followed in order to search analytic and asymptotically
related formal solutions.

Let 1 ≤ k1 < k2 and D1, D2 ≥ 2 be integers. We also fix λ1,λ2 ∈ N. For 1 ≤ �1 ≤ D1 and
1 ≤ �2 ≤ D2, we consider nonnegative integers δ�1 , δ�2 , and ��1�2 .

We assume that

�D1D2 = λ1k1δD1 + λ2k2δD2 , λ2k2 > λ1k1, (6)

��1�2 > λ1k1δ�1 + λ2k2δ�2 , k1δD1 + k2δD2 ≥ k1δ�1 + k2δ�2 ,

1 ≤ �1 ≤ D1 – 1, 1 ≤ �2 ≤ D2 – 1. (7)

We consider polynomials with complex coefficients Q, RD1D2 , and R�1�2 for every 1 ≤
�1 ≤ D1 – 1 and 1 ≤ �2 ≤ D2 – 1. We assume that

Q(im)
RD1D2 (im)

∈ AQ,RD1D2
, m ∈R, (8)

where AQ,RD1 ,RD2
stands for the sectorial annulus AQ,RD1D2

defined by

{
z ∈C : r1

Q,RD1D2
≤ |z| ≤ r2

Q,RD1D2
, arg(z) ∈ (αQ,RD1D2

,βQ,RD1D2
)
}

for some 0 < r1
Q,RD1D2

< r2
Q,RD1D2

and αQ,RD1D2
,βQ,RD1D2

∈ R, with αQ,RD1D2
< βQ,RD1D2

. In ad-
dition to that, we assume

deg(R�1�2 ) ≤ deg(RD1D2 ), 1 ≤ �1 ≤ D1 – 1, 1 ≤ �2 ≤ D2 – 1,

RD1D2 (im) 
= 0, m ∈R.
(9)

We consider the main initial value problem under study:

Q(∂z)u(t1, t2, z, ε)

= ε�D1D2
(
tk1+1
1 ∂t1

)δD1
(
tk2+1
2 ∂t2

)δD2 RD1D2 (∂z)u(t1, t2, z, ε)

+
∑

1≤�1≤D1–1
1≤�2≤D2–1

ε��1�2
(
tk1+1
1 ∂t1

)δ�1
(
tk2+1
2 ∂t2

)δ�2 c�1�2 (z, ε)R�1�2 (∂z)u(t1, t2, z, ε)

+ f (t1, t2, z, ε), (10)

under given initial conditions u(0, t2, z, ε) ≡ 0 and u(t1, 0, z, ε) ≡ 0.
Let ε0 > 0. For every 0 ≤ �1 ≤ D1 – 1 and 0 ≤ �2 ≤ D2 – 1, the functions c�1�2 (z, ε) are

holomorphic on Hβ × D(0, ε0). They are defined by the inverse Fourier transform

c�1�2 (z, ε) := F–1(m �→ c�1�2 (m, ε)
)
(z) =

1
(2π )1/2

∫ ∞

–∞
C�1�2 (m, ε)eizm dm,
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where m �→ C�1�2 (m, ε) is continuous for m ∈R and satisfies uniform bounds with respect
to ε ∈ D(0, ε0). More precisely, there exists C�1�2 > 0 such that

sup
ε∈D(0,ε0)

∣
∣C�1�2 (m, ε)

∣
∣ ≤ C�1�2

(1 + |m|)μ exp
(
–β|m|), m ∈ R, (11)

for some μ > 0.
f is a holomorphic function in C

� ×C× Hβ ′ × (D(0, ε0) \ {0}) for every 0 < β ′ < β . The
details of its construction are given in Sect. 2.2.

We look for time rescaled solutions of (10) of the specific form

u(t1, t2, z, ε) = F–1(m �→ U
(
ελ1 t1, ελ2 t2, m, ε

))
(z). (12)

Accordingly, we assume that the forcing term writes in the same manner:

f (t1, t2, z, ε) = F–1(m �→ F
(
ελ1 t1, ελ2 t2, m, ε

))
(z), (13)

where F(T1, T2, m, ε) is holomorphic with respect to (T1, T2) on certain domain in C
2,

continuous with respect to m in R, and holomorphic with respect to ε on the disc D(0, ε0).
In view of (6), the classical properties of Fourier inverse transform, and the definition of

f and c�1�2 , we get that the expression U(T1, T2, m, ε) turns out to be a solution of

Q(im)U(T1, T2, m, ε)

=
(
Tk1+1

1 ∂T1

)δD1
(
Tk2+1

2 ∂T2

)δD2 RD1D2 (im)U(T1, T2, m, ε)

+
∑

1≤�1≤D1–1
1≤�2≤D2–1

ε��1�2 –λ1k1δ�1 –λ2k2δ�2
(
Tk1+1

1 ∂T1

)δ�1
(
Tk2+1

2 ∂T2

)δ�2

× 1
(2π )1/2

∫ ∞

–∞
C�1�2 (m – m1, ε)R�1�2 (im1)U(T1, T2, m1, ε) dm1

+ F(T1, T2, m, ε). (14)

2.1 A first approach
As a first approach, one is tempted to follow the techniques used in the previous works of
the authors dealing with singularly perturbed partial differential equations in two complex
time variables such as [12–14]. On the one hand, the family of equations studied in [18]
shows a symmetric role of the time variables in the equation. Although this is the case for
(10), in that previous study it holds that the principal part of any of the equations in the
family is factorizable as a product of two operators which split the dependence on the time
variables. For this reason, that procedure is no longer valid in the present framework. On
the other hand, the study made in [15] does not fit the main problem under study, as it can
be deduced from the forthcoming argument.

We search for solutions U(T1, T2, m, ε) of (14) of the form of a double Laplace transform

Ud1,d2 (T1, T2, m, ε)

=
k1k2

(2π )1/2

∫

Ld1

∫

Ld2

ω(u1, u2, m, ε) exp

(
–
(

u1

T1

)k1

–
(

u2

T2

)k2)du1

u1

du2

u2
(15)
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along well chosen halflines Ldj = R+edj
√

–1, with dj ∈ R, j = 1, 2. Accordingly, we assume
that the forcing term F(T1, T2, m, ε) is written in a similar way:

F(T1, T2, m, ε) =
k1k2

(2π )1/2

∫

Ld1

∫

Ld2

F̃(u1, u2, m, ε) exp

(
–
(

u1

T1

)k1

–
(

u2

T2

)k2)du1

u1

du2

u2
,

where F̃(u1, u2, m, ε) defines a holomorphic function on C
2 with respect to (u1, u2), con-

tinuous with respect to m ∈R, holomorphic with respect to ε on D(0, ε0).
Let

Pm(τ1, τ2) := Q(im) –
(
k1τ

k1
1

)δD1
(
k2τ

k2
2

)δD2 RD1D2 (im). (16)

We consider the related problem

(
Q(im) –

(
k1τ

k1
1

)δD1
(
k2τ

k2
2

)δD2 RD1D2 (im)
)
ω(τ1, τ2, m, ε)

=
∑

1≤�1≤D1–1
1≤�2≤D2–1

ε��1�2 –λ1k1δ�1 –λ2k2δ�2
(
k1τ

k1
1

)δ�1
(
k2τ

k2
2

)δ�2

× 1
(2π )1/2

∫ ∞

–∞
C�1�2 (m – m1, ε)R�1�2 (im1)ω(τ1, τ2, m1, ε) dm1

+ F̃(τ1, τ2, m, ε). (17)

Under the previous construction, the following proposition holds.

Proposition 1 Under the previous construction leading to (17), it holds that the possible
actual holomorphic solutions ω(τ1, τ2, m, ε) of (17) cannot be defined on any set of the form
(S1 ∪ D(0,ρ)) × S2 (resp. S1 × (S2 ∪ D(0,ρ))) with respect to (τ1, τ2) for any ρ > 0 and any
unbounded sectors S1, S2 with vertex at the origin in C, i.e., Sj = {z ∈C : arg(z) ∈ (αj,βj)} for
some real numbers αj < βj and j = 1, 2.

Proof Since equation (17) exhibits a symmetric behavior with respect to τ1 and τ2, we
only give details on the first of the previous statements, whilst the second follows from a
symmetric argument.

Fix m ∈R and let ρ0 > 0. We consider τ2 ∈ S2 such that

|τ2| ≥
( r2

Q,RD1D2

(ρ0/2)k1δD1

1

k
δD1
1 k

δD2
2

) 1
k2δD2 .

We derive that any τ1 ∈C such that Pm(τ1, τ2) = 0 would satisfy that

τ
k1δD1
1 τ

k2δD2
2 =

Q(im)
RD1D2 (im)

1

k
δD1
1 k

δD2
2

,

which entails

|τ1|k1δD1 ≤ 1
|τ2|k2δD2

r2
Q,RD1D2

1

k
δD1
1 k

δD2
2

≤
(

ρ0

2

)k1δD1
.
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It follows that all the k1δD1 roots of τ1 �→ Pm(τ1, τ2) for such choice of τ2 belong to the disc
D(0,ρ0). The limit ρ0 → 0 concludes the result. �

As a matter of fact, a small divisor phenomenon is observed, which does not al-
low a summability procedure. Moreover, the possible actual holomorphic solutions
ω(τ1, τ2, m, ε) of (17) are only expected to be well defined and holomorphic on products
of sectors with infinite radius, say S1 × S2. This construction does not allow us to use the
procedure applied neither in [18] nor [15] in order to analyze the asymptotic properties
of the solutions with respect to the small perturbation parameter ε (see the introduction
of this work for further details).

2.2 Second approach
In view of the failure of the approaches in [15, 18] (see Sect. 2.1), we need to adopt another
perspective.

We search for solutions of (14) of the special form

Ud(T1, T2, m, ε) =
∫

Ld

ω(u, m, ε) exp

(
–
(

u
T1

)k1

–
(

u
T2

)k2)du
u

=
∫

Ld

ω(u, m, ε)Ω(u, T1, T2)
du
u

, (18)

where Ld stands for a halfline departing from the origin and with bisecting direction of
argument given by d ∈ R for some d ∈ R to be determined. Accordingly, we assume that
the forcing term F(T1, T2, m, ε) is expressed in a similar manner. Let ψ : C×R×D(0, ε0) →
C be an entire function with respect to the first variable, continuous in R with respect to
the second one, and holomorphic with respect to the third variable on the disc D(0, ε0).
Moreover, there exist Cψ ,β ,μ,ν ∈R, with Cψ ,β ,ν > 0 and

μ > 1 + deg(R�1�2 ), 1 ≤ �1 ≤ D1 – 1, 1 ≤ �2 ≤ D2 – 1,

such that the following bound holds:

∣
∣ψ(τ , m, ε)

∣
∣ ≤ Cψ

(1 + |m|)μ e–β|m| exp
(
ν|τ |k′)|τ | (19)

for all (τ , m, ε) ∈ C×R× D(0, ε0) and some k1 < k′ < k2. In this situation, it is straightfor-
ward to check that the function

F(T1, T2, m, ε) :=
∫

Lγ

ψ(u, m, ε) exp

(
–
(

u
T1

)k1

–
(

u
T2

)k2)du
u

, (20)

where Lγ = [0,∞)eγ
√

–1, can spin around the origin in order to guarantee that F is a holo-
morphic function on C

� ×C with respect to (T1, T2) by analytic continuation. The corre-
sponding forcing term f (t1, t2, m, ε) expressed in (13) is holomorphic on C

� × C × Hβ ′ ×
(D(0, ε0) \ {0}) for all 0 < β ′ < β .

Our idea consists on merging the double integral Laplace transform along the product
Ld1 × Ld2 from the first approach in (15) into a simple integral along a halfline Ld ⊆ C. Ge-
ometrically, it consists in a projection on the diagonal part (u, u) ∈ C2, u ∈ C of the space
C

2. The advantage is that the related problem associated with the Borel map w(u, m, ε)
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(see (21)) involves now Pm(τ , τ ) as a denominator which is this time well defined on a full
neighborhood of 0 w.r.t. τ and analytically continuable along unbounded sectors Sd with
suitable directions d ∈ R. As a result, the asymptotic analysis in ε becomes a tractable
task. The drawback of this approach concerns the class of equations we are able to handle,
which is reduced compared to our previous studies and contains linear PDEs with special
time reliance.

Remark Observe that in the case k1 = k2, the function Ud turns out to be a Laplace trans-
form of order k1 in the meromorphic function

Ω(T1, T2) =
1

( 1
T1

)k1 + ( 1
T2

)k1
,

near 0 ∈C
2. That situation is directly linked to a summability procedure with respect to a

germ of function in C
2, as described in [19]. However, in our situation, the function Ω is

meromorphic near 0, not analytic.

Under the hypothesis that the solution of (14) is of the form (18), ω in (18) solves the
problem

(
Q(im) –

(
k1τ

k1
)δD1

(
k2τ

k2
)δD2 RD1D2 (im)

)
ω(τ , m, ε)

=
∑

1≤�1≤D1–1
1≤�2≤D2–1

ε��1�2 –λ1k1δ�1 –λ2k2δ�2
(
k1τ

k1
)δ�1

(
k2τ

k2
)δ�2

× 1
(2π )1/2

∫ ∞

–∞
C�1�2 (m – m1, ε)R�1�2 (im1)ω(τ , m1, ε) dm1 + ψ(τ , m, ε). (21)

We substitute (17) by (21) as an auxiliary problem in order to solve the main equation. In
the next section, we study some spaces of functions which are involved in the construction
of the solution of (21).

2.3 Banach spaces of functions with exponential growth and decay
The Banach spaces described in this section are modified versions of those appearing in
[12]. We omit the details which can be derived directly from that work and the variations
of that norm stated in [15, 18].

We fix positive real numbers β , μ, ν , with μ > 1, and an integer k′ > 0. Let ρ > 0 and Sd

be an open and unbounded sector with bisecting direction d ∈R, i.e.,

Sd =
{

z ∈C : arg(z) ∈ (d – a, d + a)
}

for some a > 0. We denote by D(0,ρ) the closed disc centered at 0 and positive radius ρ .
Firstly, we recall some classical properties of the inverse Fourier transform, which are

used in our construction.

Definition 1 We denote by E(β ,μ) the vector space of continuous functions h : R →C such
that

∥
∥h(m)

∥
∥

(β ,μ) = sup
m∈R

(
1 + |m|)μ

exp
(
β|m|)∣∣h(m)

∣
∣

is finite. The space E(β ,μ) equipped with the norm ‖ · ‖(β ,μ) is a Banach space.
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Proposition 2 Let f ∈ E(β ,μ). The inverse Fourier transform of f , given by

F–1(f )(x) =
1

(2π )1/2

∫ +∞

–∞
f (m) exp(ixm) dm, x ∈R,

can be extended to an analytic function on the horizontal strip

Hβ =
{

z ∈C/
∣∣Im(z)

∣∣ < β
}

. (22)

Let φ(m) := imf (m) ∈ E(β ,μ–1). Then the following statements hold:
(a) ∂zF–1(f )(z) = F–1(φ)(z) for z ∈ Hβ .
(b) Let g ∈ E(β ,μ), and consider the convolution product of f and g :

ψ(m) :=
1

(2π )1/2

∫ ∞

–∞
f (m – m1)g(m1) dm1.

Then ψ ∈ E(β ,μ) and F–1(f )(z)F–1(g)(z) = F–1(ψ)(z), z ∈ Hβ .

Definition 2 We write Expd
(ν,β ,μ,k′) for the vector space of continuous complex-valued

functions (τ , m) �→ h(τ , m), defined on (Sd ∪ D(0,ρ)) × R, holomorphic with respect to
τ on Sd ∪ D(0,ρ) such that

∥
∥h(τ , m)

∥
∥

(ν,β ,μ,k′) := sup
τ∈Sd∪D(0,ρ),m∈R

(
1 + |m|)μeβ|m| exp

(
–ν|τ |k′) 1

|τ |
∣
∣h(τ , m)

∣
∣

is finite. The normed space (Expd
(ν,β ,μ,k′),‖ · ‖(ν,β ,μ,k′)) is a Banach space.

The next result is straighforward from the definition of the norm ‖ · ‖(ν,β ,μ,k′).

Lemma 1 Let (τ , m) �→ a(τ , m) be a bounded continuous function of (D(0,ρ) ∪ Sd) × R,
holomorphic with respect to τ on D(0,ρ) ∪ Sd . Then, for every h ∈ Expd

(ν,β ,μ,k′), it holds that
a(τ , m)h(τ , m) ∈ Expd

(ν,β ,μ,k′) and

∥∥a(τ , m)h(τ , m)
∥∥

(ν,β ,μ,k′) ≤
(

sup
(τ ,m)∈(D(0,ρ)∪Sd)×R

∣∣a(τ , m)
∣∣
)∥∥h(τ , m)

∥∥
(ν,β ,μ,k′).

The proof of the next result follows analogous arguments as those in Proposition 2 in
[16], and we refer to that work for a complete proof.

Proposition 3 Let R1, R2 ∈C[X] such that

deg(R1) ≥ deg(R2), R1(im) 
= 0, μ > deg(R2) + 1.

Given f ∈ E(β ,μ) and g ∈ Expd
(ν,β ,μ,k′), then it holds that the function

Φ(τ , m) :=
1

R1(im)

∫ ∞

–∞
f (m – m1)R2(im1)g(τ , m1) dm1

is an element of Expd
(ν,β ,μ,k′), and there exists C1 > 0 such that

∥∥Φ(τ , m)
∥∥

(ν,β ,μ,k′) ≤ C1
∥∥f (m)

∥∥
(β ,μ)

∥∥g(τ , m)
∥∥

(ν,β ,μ,k′).



Lastra and Malek Advances in Difference Equations         (2020) 2020:20 Page 11 of 24

2.4 Solution of an auxiliary equation
At this point, we provide a brief summary on the strategy to trace. We continue with the
approach described in Sect. 2.2, searching for solutions of (14) in the form (18). In this
section, we guarantee the existence of ω(τ , m, ε) by means of a fixed point argument in the
Banach space of functions introduced in Sect. 2.3.

At this point, we follow a similar guideline as the one initiated in our former study [12].
We consider the following polynomial:

Pm(τ ) = Pm(τ , τ ) = Q(im) – k
δD1
1 k

δD2
2 τ k1δD1 +k2δD2 RD1D2 (im). (23)

In the following, we need lower bounds of the expression Pm(τ ) with respect to m and τ .
In order to achieve this goal, we can factorize the polynomial w.r.t. τ , namely

Pm(τ ) = –k
δD1
1 k

δD2
2 RD1D2 (im)

k1δD1 +k2δD2 –1∏

l=0

(
τ – ql(m)

)
, (24)

where its roots ql(m) can be displayed explicitly as follows:

ql(m) =
( |Q(im)|

|RD1D2 (im)|kδD1
1 k

δD2
2

) 1
k1δD1 +k2δD2

× exp

( √
–1

k1δD1 + k2δD2

(
arg

(
Q(im)

RD1D2 (im)k
δD1
1 k

δD2
2

)
+ 2π l

))

for all 0 ≤ l ≤ k1δD1 + k2δD2 – 1, for all m ∈R.
We set an unbounded sector Sd centered at 0, a small disc D(0,ρ), and we adjust the

sector AQ,RD1D2
in a way that the following condition holds: a constant m > 0 can be chosen

with

∣∣τ – ql(m)
∣∣ ≥ m

(
1 + |τ |) (25)

for all 0 ≤ l ≤ k1δD1 + k2δD2 – 1, all m ∈R, provided that τ ∈ Sd ∪D(0,ρ). Indeed, the inclu-
sion (8) implies in particular that all the roots ql(m), 0 ≤ l ≤ k1δD1 + k2δD2 – 1, remain apart
of some neighborhood of the origin, i.e., satisfy |ql(m)| ≥ 2ρ for an appropriate choice of
ρ > 0. Furthermore, when the opening of AQ,RD1D2

is taken close enough to 0, all these
roots ql(m) stay inside a union U of unbounded sectors centered at 0 that do not cover a
full neighborhood of 0 in C

∗. We assign a sector Sd with

Sd ∩ U = ∅.

By construction, the quotients ql(m)/τ fall apart some small disc centered at 1 in C for all
τ ∈ Sd , m ∈ R, 0 ≤ l ≤ k1δD1 + k2δD2 – 1. Then (25) follows.

We are now ready to supply lower bounds for Pm(τ ).
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Lemma 2 A constant CP > 0 (depending on k1, k2, δD1 , δD2 , m) can be found with

∣
∣Pm(τ )

∣
∣ ≥ CP

∣
∣RD1D2 (im)

∣
∣(1 + |τ |)k1δD1 +k2δD2 (26)

for all τ ∈ Sd ∪ D(0,ρ), all m ∈R.

Proof Departing from factorization (24), the lower bounds (25) entail

∣
∣Pm(τ )

∣
∣ ≥ k

δD1
1 k

δD2
2 m

k1δD1 +k2δD2
∣
∣RD1D2 (im)

∣
∣(1 + |τ |)k1δD1 +k2δD2

for all τ ∈ Sd ∪ D(0,ρ). �

Lemma 3 Assume that conditions (6)–(9) hold on the elements involved in problem (10),
with forcing term f determined by the construction and conditions in (19)–(20). We single
out a sector Sd that fulfills the constraints from the construction above.

Then there exist ε0,� > 0 and ξψ > 0 (depending on k1, k2, δD1 , δD2 , Q, RD1D2 ) such that
if Cψ ≤ ξψ , then for every ε ∈ D(0, ε0) the map Hε defined by

Hε

(
ω(τ , m)

)
:=

1
Pm(τ )

( ∑

1≤�1≤D1–1
1≤�2≤D2–1

ε��1�2 –λ1k1δ�1 –λ2k2δ�2
(
k1τ

k1
)δ�1

(
k2τ

k2
)δ�2

× 1
(2π )1/2

∫ ∞

–∞
C�1�2 (m – m1, ε)R�1�2 (im1)ω(τ , m1) dm1

)

+
1

Pm(τ )
ψ(τ , m, ε) (27)

satisfies the following properties:
(i) Hε(B(0,� )) ⊆ B(0,� ), where B(0,� ) is the closed disc of radius � > 0, in

Expd
(ν,β ,μ,k′).

(ii) We have

∥∥Hε(ω1) – Hε(ω2)
∥∥

(ν,β ,μ,k′) ≤ 1
2
‖ω1 – ω2‖(ν,β ,μ,k′)

for all ω1,ω2 ∈ B(0,� ) ⊆ Expd
(ν,β ,μ,k′).

Proof Take ω ∈ Expd
(ν,β ,μ,k′) and ε ∈ D(0, ε0). Let 1 ≤ �1 ≤ D1 – 1 and 1 ≤ �2 ≤ D2 – 1.

Bearing in mind Lemma 1, Proposition 3, from (9), (11), and (26), we have
∥∥
∥∥ε��1�2 –λ1k1δ�1 –λ2k2δ�2

(
k1τ

k1
)δ�1

(
k2τ

k2
)δ�2

× 1
(2π )1/2

∫ ∞

–∞
C�1�2 (m – m1, ε)R�1�2 (im1)

Pm(τ )
ω(τ , m1) dm1

∥∥
∥∥

(ν,β ,μ,k′)

≤ C(ε0) sup
τ∈Sd∪D(0,ρ),m∈R

|τ |k1δ�1 +k2δ�2

(1 + |τ |)k1δD1 +k2δD2

×
∥
∥∥∥

1
RD1D2 (im)

∫ ∞

–∞
C�1�2 (m – m1, ε)R�1�2 (im)ω(τ , m1) dm1

∥
∥∥∥

(ν,β ,μ,k′)

≤ C(ε0)C1C2C�1�2

∥∥ω(τ , ε)
∥∥

(ν,β ,μ,k′) ≤ C(ε0)C1C2C�1�2� , (28)
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where

C(ε0) = sup
1≤�1≤D1–1
1≤�2≤D2–1

ε
��1�2 –λ1k1δ�1 –λ2k2δ�2
0 k

δ�1 –δD1
1 k

δ�2 –δD2
2

(2π )1/2CPm
k1δD1 +k2δD2

> 0,

is such that C(ε0) → 0 for ε0 → 0, and

C2 = sup
τ∈Sd∪D(0,ρ),m∈R

|τ |k1δ�1 +k2δ�2

(1 + |τ |)k1δD1 +k2δD2
.

On the other hand, in view of (9), (19), and (26), we derive that

∥∥
∥∥

1
Pm(τ )

ψ(τ , m, ε)
∥∥
∥∥

(ν,β ,μ,k′)
≤ sup

τ∈Sd∪D(0,ρ)
m∈R

Cψ

Cp|RD1D2 (im)|(1 + |τ |)k1δD1 +k2δD2
≤ C3ξψ

for some C3 > 0.
Let � , ξψ , ε0 > 0 such that C(ε0)C1C2(

∑
1≤�1≤D1–1
1≤�2≤D2–1

C�1�2 )� + ξψC3 ≤ � . Under this

choice, we get that Hε is such that Hε(B(0,� )) ⊆ B(0,� ). For the second part of the proof,
we choose ω1,ω2 ∈ Expd

(ν,β ,μ,k′), with ‖ωj‖(ν,β ,μ,k′) ≤ � . Analogous estimates as in (28) yield

∥∥
∥∥ε��1�2 –λ1k1δ�1 –λ2k2δ�2

(
k1τ

k1
)δ�1

(
k2τ

k2
)δ�2

R�1�2 (im)
Pm(τ )

(
ω1(τ , m) – ω2(τ , m)

)
∥∥
∥∥

(ν,β ,μ,k′)

≤ C(ε0)C1C2C�1�2

∥∥ω1(τ , m) – ω2(τ , m)
∥∥

(ν,β ,μ,k′), (29)

and consequently

∥
∥Hε(ω1) – Hε(ω2)

∥
∥

(ν,β ,μ,k′) ≤ C(ε0)C1C2

( ∑

1≤�1≤D1–1
1≤�2≤D2–1

C�1�2

)

× ∥
∥ω1(τ , m) – ω2(τ , m)

∥
∥

(ν,β ,μ,k′). (30)

Let ε0 > 0 be such that C(ε0)C1C2(
∑

1≤�1≤D1–1,1≤�2≤D2–1 C�1�2 ) ≤ 1/2. This entails that Hε

is a contractive map in B(0,� ) ⊆ Expd
(ν,β ,μ,k′). �

As a consequence of Lemma 3, we achieve the next result.

Proposition 4 Assume that the hypotheses of Lemma 3 hold. Let � > 0. Then there exist
ε0 > 0 and ξψ > 0 such that if Cψ < ξψ , then for every ε ∈ D(0, ε0), equation (21) admits a
solution ω(τ , m, ε) ∈ Expd

(ν,β ,μ,k′), with ‖ω(τ , m, ε)‖(ν,β ,μ,k′) ≤ � .

Proof By the classical fixed point theorem in Banach spaces, Lemma 3 guarantees the exis-
tence of a function ω(τ , m, ε) ∈ B(0,� ) ⊆ Expd

(ν,β ,μ,k′) such that Hε(ω(τ , m, ε)) = ω(τ , m, ε)
for every ε ∈ D(0, ε0). Moreover, the function ω(τ , m, ε) depends holomorphically on
ε ∈ D(0, ε0). One can directly check that this fixed point is a solution of problem (21). �
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3 Actual solutions of auxiliary problem (21)
Let E be a bounded sector of C� with vertex at the origin. Let d ∈ R be the bisecting
direction of an unbounded sector Sd satisfying the hypotheses of Proposition 4. Let ωd be
the solution of (21) constructed in Proposition 4. Let T̃1 be a bounded sector with vertex
at the origin, i.e., T̃1 = {z ∈ C : arg(z) ∈ (α,β), |z| < ρ} for some α < β and ρ > 0, and let T̃2

be an unbounded sector with vertex at the origin. We choose each of the previous sectors
and small enough δ > 0 in order to satisfy that

kjξ – kj arg(Tj) ∈
(

–
π

2
+ δ,

π

2
– δ

)
, j = 1, 2, (31)

for all Tj ∈ T̃j, some ξ ∈R (which might depend on T1 and T2) under the assumption that
eξ

√
–1 ∈ Sd .

In particular, observe that there exists δ1 > 0 such that cos(k1ξ – k1 arg(T1)) > δ1 for every
T1 ∈ T̃1. Moreover, there exists δ2 > 0 such that cos(k2ξ – k2 arg(T2)) > δ2 for every T2 ∈ T̃2.

The function Uξ defined in (18) turns out to be an actual solution of auxiliary problem
(21) in the domain T̃1 × T̃2 ×R× E . Moreover, the following estimates hold:

∣∣Uξ (T1, T2, m, ε)
∣∣

≤ � (1 + |m|)–μ

eβ|m|

∫ ∞

0
eνrk′

× exp

(
–

rk1

|T1|k1
cos

(
k1ξ – k1 arg(T1)

)
–

rk2

|T2|k2
cos

(
k2ξ – k2 arg(T2)

))
dr

≤ �
(
1 + |m|)–μe–β|m|L

(|T1|, |T2|
)
, (32)

where

L
(|T1|, |T2|

)
=

∫ ∞

0
eνrk′

exp

(
–

rk1

|T1|k1
δ1 –

rk2

|T2|k2
δ2

)
dr.

Due to k′ ∈ (k1, k2), the function L(x, y) is well defined in {(x, y) ∈R
2 : x ≥ 0, y ≥ 0}.

We write L(|T1|, |T2|) = L1(|T1|, |T2|) + L2(|T1|, |T2|), with

L1
(|T1|, |T2|

)
=

∫ ρ

0
eνrk′

e
– rk1

|T1|k1
δ1– rk2

|T2 |k2
δ2

dr,

L2
(|T1|, |T2|

)
=

∫ ∞

ρ

eνrk′
e

– rk1
|T1|k1

δ1– rk2
|T2 |k2

δ2
dr

(33)

for some ρ > 0.
The proof of the following technical lemma is left to Sect. 4 at the end of the work in

order not to interfere with the ongoing arguments.

Lemma 4 The following statements hold:
(1) There exists C1 > 0 such that 0 < L1(|T1|, |T2|) ≤ C1 for all |T1|, |T2| ≥ 0.
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(2.a) Let ρ1 > 0. There exists large enough ρ∞
2 > 0 such that

L2
(|T1|, |T2|

) ≤ C2ae
– ρk1

|T1|k1
δ1 |T2|

k2
k2–k′

× exp

(
ν(1–k′/k2)–1

(
1
δ2

)k′/(k2–k′)
|T2|k2k′/(k2–k′)

)
(34)

for all |T1| < ρ1 and |T2| > ρ∞
2 , and some C2a > 0.

(2.b) Let ρ1,ρ2 > 0. Then it holds that

L2
(|T1|, |T2|

) ≤ C2b exp

(
–

ρk1

|T1|k1
δ1

)
exp

(
–

ρk2

2|T2|k2
δ2

)

for all |T1| < ρ1 and |T2| < ρ2, and some C2b > 0.

Following our new approach, we are able to construct global solutions Uξ (T1, T2, m, ε)
in the time variable T2 on an unbounded sector T̃2. This was not possible in our two pre-
vious studies [15, 18], where only local in time solutions were built up. This feature allows
us to study the asymptotic expansions w.r.t. ε in two different situations: when T2 remains
in a prescribed bounded domain (which is related to the forthcoming outer solution, con-
structed for the main equation (10)) and when T2 tends to ∞ in a related manner with ε

(linked to the inner solutions of (10) that we plan to build in Sect. 4.1).

4 Inner and outer solutions of the main problem
In this section, we preserve the conditions established in the statement of the main prob-
lem under study in Sect. 2. More precisely, we assume that conditions (6)–(9) hold on the
elements involved in problem (10), with forcing term f determined by the construction
and conditions in (19)–(20).

Our main aim is to construct solutions of the main problem (10) together with their
asymptotic behavior in different situations. This will be done via (14) and shape (18), as
stated in our second approach in Sect. 2.2.

We first specify some geometric constructions on the domain of definition of the solu-
tions. First, we recall the definition of a good covering in C

�, and that of a good covering
of prescribed opening.

Definition 3 Let ι1, ι2 ≥ 2 be integers. We consider two sets (E0
h1

)0≤h1≤ι1–1 and
(E∞

h2
)0≤h2≤ι2–1, where E0

h1
,E∞

h2
⊆ D(0, ε0) are open sectors with vertex at the origin which

satisfy the following assumptions:
(i) E0

h1
∩ E0

h1+1 
= ∅ for all 0 ≤ h1 ≤ ι1 – 1 (with E0
ι1 := E0

0 ) and E∞
h2

∩ E∞
h2+1 
= ∅ for all

0 ≤ h2 ≤ ι2 – 1 (with E∞
ι2 := E∞

0 ).
(ii) The intersection of three different elements of each family is empty.

(iii) The union of the elements of each family covers a punctured disc centered at 0 in C.
(iv) The opening of E0

h1
is larger than π/(λ2k2) for all 0 ≤ h1 ≤ ι1 – 1.

Then we say that (E0
h1

)0≤h1≤ι1–1 is a good covering of C
� of opening π/(λ2k2), and

(E∞
h2

)0≤h2≤ι2–1 is just called a good covering in C
�.

Definition 4 Let T1 be a bounded sector with vertex at the origin, and let T2 be an un-
bounded sector with vertex at the origin. Let (E0

h1
)0≤h1≤ι1–1 be a good covering of C� of
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opening π/(λ2k2), and let (E∞
h2

)0≤h2≤ι2–1 be a good covering in C
�. For every 0 ≤ h1 ≤

ι1 – 1, let S0
dh1

be an unbounded sector of bisecting direction dh1 , and let S∞
dh2

be an
unbounded sector of bisecting direction dh2 for all 0 ≤ h2 ≤ ι2 – 1. We say that the set
{T1,T2, (E0

h1
)0≤h1≤ι1–1, (S0

h1
)0≤h1≤ι1–1} is admissible if there exists δ > 0 such that

kjξh1 – kj arg
(
ελj tj

) ∈
(

–
π

2
+ δ,

π

2
– δ

)
, j = 1, 2, (35)

for all tj ∈ Tj, some ξh1 ∈ R (which might depend on tj and ε) such that eξh1
√

–1 ∈ Sdh1
, and

all ε ∈ E0
h1

.
The set {T1,T2, (E∞

h2
)0≤h2≤ι2–1, (S0

h2
)0≤h2≤ι2–1} is said to be admissible if it holds that there

exists small enough δ > 0 with

kjξh2 – kj arg
(
ελj tj

) ∈
(

–
π

2
+ δ,

π

2
– δ

)
, j = 1, 2, (36)

for all tj ∈ Tj, some ξh2 ∈ R (which might depend on tj and ε) such that eξh2
√

–1 ∈ Sdh2
, and

all ε ∈ E∞
h2

.

4.1 Construction and results on the inner solutions
Definition 5 Let μ2 > λ2 be an integer in such a way that

λ1k1 > (μ2 – λ2)
(

1
k′ –

1
k2

)–1

. (37)

Let χ∞
2 be the bounded domain

χ∞
2 =

{
x2 ∈ C

� : r2,∞ < |x2| < R2,∞, arg(x2) ∈ (α2,∞,β2,∞)
}

for some real numbers 0 < r2,∞ < R2,∞ and α2,∞ < β2,∞.
We assume that the good covering (E∞

h2
)0≤h2≤ι2–1 satisfies the next additional condition:

for all 0 ≤ h2 ≤ ι2 – 1, we can choose θh2 ∈ R (which depends on E∞
h2

) such that, for all
x2 ∈ χ∞

2 and ε ∈ E∞
h2

, the complex number

t2 =
x2

εμ2
eθh2

√
–1 (38)

belongs to T2 for all ε ∈ E∞
h2

. Then we define the set

T2,ε,μ2 :=
{

x2

εμ2
eθh2

√
–1 : x2 ∈ χ∞

2

}
.

Remark Observe that T2,ε,μ2 ⊆ T2 for every ε ∈ E∞
h2

and 0 ≤ h2 ≤ ι2 – 1. In addition to this,
observe that T2,ε,μ2 is a bounded domain for every ε ∈ E∞

h2
for 0 ≤ h2 ≤ ι2 – 1 with

lim
ε→0,ε∈E∞

h2

dist(T2,ε,μ2 , 0) = ∞.
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Theorem 1 Let {T1,T2, (E∞
h2

)0≤h2≤ι2–1, (S∞
h2

)0≤h2≤ι2–1} be an admissible set. For every 0 ≤
h2 ≤ ι2 – 1 and ε ∈ E∞

h2
, the function

(t1, t2, z) �→ udh2
(t1, t2, z, ε),

where

udh2
(t1, t2, z, ε) := F–1(m �→ Uξh2

(
ελ1 t1, ελ2 t2, m, ε

))
(z),

=
1

(2π )1/2

∫ ∞

–∞

∫

Lξh2

ωdh2
(u, m, ε) exp

(
–
(

u
ελ1 t1

)k1

–
(

u
ελ2 t2

)k2)

× exp(izm)
du
u

dm, (39)

where ωdh2
(u, m, ε) is constructed in Sect. 2.4, defines a bounded holomorphic function on

T1 × T2,ε,μ2 × Hβ ′ for all 0 < β ′ < β , which is an actual solution of (10), called an inner
solution. Moreover, for every ε ∈ E∞

h2
∩ E∞

h2+1, there exist C̃, D̃ > 0 such that

sup
t1∈T1,x2∈χ∞

2 ,z∈Hβ′

∣∣udh2+1

(
t1, x2ε

–μ2 eθh2
√

–1, z, ε
)

– udh2

(
t1, x2ε

–μ2 eθh2
√

–1, z, ε
)∣∣

≤ C̃ exp

(
–

D̃
|ε|λ1k1

)
. (40)

Proof Let 0 ≤ h2 ≤ ι2 –1, and dh2 be the value d determined in Proposition 4. The function
ω(τ , m, ε) ∈ Exp

dh2
(ν,β ,μ,k′) solves equation (21). This entails that Uξh2

(ελ1 t1, ελ2 t2, m, ε) is a
solution of (14), and its inverse Fourier transform with respect to m turns out to be a
solution of (10). The geometric construction of the domains involved guarantees that the
map (t1, t2, z) �→ udh2

(t1, t2, z, ε) represents a bounded holomorphic function defined in
T1 × T2,ε,μ2 × Hβ ′ for every 0 < β ′ < β , where ε belongs to E∞

h2
.

Regarding the definition of τ �→ Pm(τ ) in (23) and (26), we get that all the roots of Pm(τ )
are at positive distance, say ρ > 0, to the origin. This entails that the integration path defin-
ing the difference of two consecutive inner solutions can be deformed as follows.

Let 0 ≤ h2 ≤ ι2 – 1, fix ε ∈ E∞
h2

∩ E∞
h2+1, and write t2 = x2ε

–μ2 eθh2
√

–1 ∈ T2,ε,μ2 for some
x2 ∈ χ∞

2 and θh2 ∈R, as described in Definition 5. For every t1 ∈ T1, z ∈ Hβ ′ , we get that

udh2+1 (t1, t2, z, ε) – udh2
(t1, t2, z, ε)

=
1

(2π )1/2

∫ ∞

–∞

∫

Lξh2+1

ω(u, m, ε)Ω
(
u, ελ1 t1, ελ2 t2

)du
u

eizm dm

–
1

(2π )1/2

∫ ∞

–∞

∫

Lξh2

ω(u, m, ε)Ω
(
u, ελ1 t1, ελ2 t2

)du
u

eizm dm = E1 – E2 + E3,

with Ω(u, T1, T2) defined in (18), and where

E1 :=
1

(2π )1/2

∫ ∞

–∞

∫

Lξh2+1,ρ/2

ω(u, m, ε)Ω
(
u, ελ1 t1, ελ2 t2

)du
u

eizm dm,

E2 :=
1

(2π )1/2

∫ ∞

–∞

∫

Lξh2 ,ρ/2

ω(u, m, ε)Ω
(
u, ελ1 t1, ελ2 t2

)du
u

eizm dm,
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and where Lξh2+1,ρ/2 := [ρ/2, +∞)eξh2+1
√

–1, Lξh2 ,ρ/2 := [ρ/2, +∞)eξh2
√

–1, and

E3 :=
1

(2π )1/2

∫ ∞

–∞

∫

Ch2,h2+1,ρ/2

ω(u, m, ε)Ω
(
u, ελ1 t1, ελ2 t2

)du
u

eizm dm,

where Ch2,h2+1,ρ/2 is the arc of circle departing from (ρ/2)eξh2+1
√

–1, ending at (ρ/2)eξh2
√

–1.
Bearing in mind that μ2 > λ2, (38) and Lemma 4, one can apply (2.a) in Lemma 4 to arrive
at |E1| is upper bounded by

∫ ∞

–∞

∫ ∞

ρ/2

�

(1 + |m|)μ e–β|m|eνrk′
exp

(
–
(

r
|ελ1 t1|

)k1

δ1 –
(

r
|ελ2 t2|

)k2

δ2

)
dr e|m| Im(z) dm

≤ C̃1

∫ ∞

ρ/2
exp

(
νrk′)

exp

(
–
(

r
|ελ1 t1|

)k1

δ1 –
(

r
|ελ2 t2|

)k2

δ2

)
dr

≤ C̃1C2a exp

(
–

(ρ/2)k1δ1

|ελ1 t1|k1

)∣
∣ελ2 t2

∣
∣1+ k2

k2–k′ exp

(
ν(1–k′/k2)–1

(
1
δ2

) k′
k2–k′ ∣

∣ελ2 t2
∣
∣

k2k′
k2–k′

)

≤ C̃1C2a exp

(
–

(ρ/2)k1δ1

|ελ1 |k1 Ck1
T ,1

)∣∣ελ2
∣∣1+ k2

k2–k′ C
k2k′

k2–k′
χ∞

2
|ε|–μ2(1+ k2

k2–k′ )

× exp

(
ν(1–k′/k2)–1

(
1
δ2

) k′
k2–k′ ∣∣ελ2

∣∣
k2k′

k2–k′ C
1+ k2

k2–k′
χ∞

2
|ε|–μ2

k2k′
k2–k′

)
(41)

for some positive constant C̃1, CT ,1, Cχ∞
2

> 0. Taking into account (37), we derive that

|E1| ≤ C̃2 exp

(
–

D̃2

|ε|λ1k1

)
(42)

for some C̃2, D̃2 > 0.
An analogous upper bound can be associated with |E2|. We finally consider |E3|. Anal-

ogous estimates as for the previous yield

|E3| ≤ 1
(2π )1/2

∫ ∞

–∞

∫ ξh2+1

ξh2

�

(1 + |m|)μ e–β|m|eν(ρ/2)k′

× exp

(
–

(ρ/2)k1δ1

|ε|λ1k1 CT ,1
–

(ρ/2)k2δ2|ε|μ2k2

|ε|λ2k2 Cχ∞
2

)
dr e|m| Im(z) dm

≤ C̃3 exp

(
–

(ρ/2)k1δ1

|ε|λ1k1 CT ,1

)

for some C̃3, CT ,1, Cχ∞
2

> 0. This entails

|E3| ≤ C̃4 exp

(
–

D̃4

|ε|λ1k1

)
(43)

for some C̃4, D̃4 > 0. We conclude (40) from (42) and (43). �
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We now fix a different good covering to provide the asymptotic behavior of the outer
solutions. Let ι1 ≥ 2 be an integer. We fix a good covering in C

�, (E0
h1

)0≤h1≤ι1–1 of opening
π

λ2k2
. We observe that (35), (36) are satisfied for j = 2 under the second assumption in (6).

4.2 Construction and results on the outer solutions
Theorem 2 Let ρ2 > 0 and 0 ≤ h1 ≤ ι1 – 1. Let

{
T1,T2,

(
E0

h1

)
0≤h1≤ι1–1,

(
S0

h1

)
0≤h1≤ι1–1

}

be an admissible set. For every 0 ≤ h1 ≤ ι1 – 1, the function (t1, t2, z, ε) �→ udh1
(t1, t2, z, ε),

defined by

F–1(m �→ Uξh1

(
ελ1 t1, ελ2 t2, m, ε

))
(z)

=
1

(2π )1/2

∫ ∞

–∞

∫

Lξh1

ω(u, m, ε) exp

(
–
(

u
ελ1 t1

)k1

–
(

u
ελ2 t2

)k2)

× exp(izm)
du
u

dm, (44)

defines a holomorphic and bounded function of T1 × (T2 ∩ D(0,ρ2)) × Hβ ′ × E0
h1

, solving
(10). This solution is called an outer solution of (10).

For every two consecutive outer solutions associated with (10), which are jointly defined
in T1 × (T2 ∩ D(0,ρ2)) × Hβ ′ × (E0

h1
∩ E0

h1+1), it holds that

sup
t1∈T1,t2∈(T2∩D(0,ρ2)),z∈Hβ′

∣
∣udh1+1 (t1, t2, z, ε) – udh1

(t1, t2, z, ε)
∣
∣

≤ Ĉ exp

(
–

D̂
|ε|λ2k2

)
, ε ∈ E0

h1 ∩ E0
h1+1, (45)

for two positive constants Ĉ, D̂ > 0.

Proof Let 0 ≤ h1 ≤ ι1 – 1. We proceed as in the first part of the proof of Theorem 1, to
arrive at the splitting

udh1+1 (t1, t2, z, ε) – udh1
(t1, t2, z, ε) = E1 – E2 + E3

for every t1 ∈ T1, t2 ∈ T2 ∩ D(0,ρ2), z ∈ Hβ ′ , and ε ∈ E0
h1

∩ E0
h1+1. According to Lemma 4,

statement (2.b), one has

|E1| ≤ Ĉ1C2b exp

(
–

(ρ/2)k1

|ελ1 t1|k1
δ1

)
exp

(
–

(ρ/2)k2δ2

2|ελ2 t2|k2

)

≤ Ĉ1C2b exp

(
–

(ρ/2)k2δ2

2ρ
k2
2

1
|ε|λ2k2

)
(46)

for some Ĉ1 > 0, valid for every ε ∈ E0
h1

∩ E0
h1+1, t1 ∈ T1, t2 ∈ (T2 ∩ D(0,ρ2)), and z ∈ Hβ ′ .

Analogous bounds hold for |E2|. Regarding |E3|, one can follow the same bounds as for
|E1|. We conclude (45). �
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5 Parametric Gevrey asymptotic expansions of the solutions
This section is devoted to the study of the asymptotic expansions associated with the outer
and inner solutions of (10), with respect to the perturbation parameter. We make use of
the cohomological criterion for k-summability of formal power series with coefficients
in a Banach space (see [2], p. 121, or [10], Lemma XI-2-6), known as the Ramis–Sibuya
theorem. We first recall the main definition of this summability theory.

5.1 k-Summable formal power series and the Ramis–Sibuya theorem
Let (E,‖ · ‖E) be a complex Banach space.

Definition 6 Let k ≥ 1 be an integer. A formal power series

f̂ (ε) =
∞∑

n=0

fnε
n ∈ E�ε�

is said to be k-summable with respect to ε in the direction d ∈R if there exists a bounded
holomorphic function f defined in a bounded sector Vd of bisecting direction d and open-
ing larger than π/k and values in E such that it admits f̂ (ε) as its Gevrey asymptotic ex-
pansion of order 1/k on Vd , i.e., for every proper subsector V1 of Vd , there exist D, M > 0
with

∥∥
∥∥∥

f (ε) –
N–1∑

n=0

fnε
n

∥∥
∥∥∥
E

≤ DMNΓ

(
N
k

+ 1
)

|ε|N

for every N ≥ 1 and ε ∈ V1.
Such a function is unique and it is called the k-sum of the formal power series. Further-

more, we can reconstruct the function f by means of the classical Borel–Laplace proce-
dure.

Theorem 3 (RS) Let (Eh)0≤h≤ι–1 be a good covering in C
�. For all 0 ≤ h ≤ ι – 1, let Gh :

Eh → E be a holomorphic function, and define the cocycle Θh(ε) := Gh+1(ε) – Gh(ε), which
is a holomorphic function defined in Zh = Eh+1 ∩ Eh into E. We assume:

(1) Gh is a bounded function as ε ∈ Eh tends to 0 ∈ C for every 0 ≤ h ≤ ι – 1.
(2) Θh(ε) is an exponentially flat function of order k in Zh for all 0 ≤ h ≤ ι – 1, meaning

that there exist Ch, Ah > 0 with

∥
∥Θh(ε)

∥
∥
E

≤ Ch exp

(
–

Ah

|ε|k
)

, ε ∈ Zh,

for all 0 ≤ h ≤ ι – 1.
Then, for all 0 ≤ h ≤ ι – 1, the functions Gh(ε) have a common formal power series Ĝ(ε) ∈
E�ε� as Gevrey asymptotic expansion of order 1/k on Eh. Moreover, if the opening of one
sector Eh0 is barely larger than π/k, then Gh0 (ε) is promoted as the k-sum of Ĝ(ε) on Eh0 .

5.2 Parametric Gevrey asymptotic expansions of the inner and outer solutions of
the main problem

In this section, we display the main results of the present work, namely the asymptotic
behavior of the inner and outer solutions of (10), constructed in the previous section. In
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the present section, we assume that conditions (6)–(9) hold on the elements involved in
the main equation under study (10), with forcing term f determined by the construction
and conditions in (19)–(20). We depart from two good coverings (E∞

h2
)0≤h2≤ι2–1 of C� and

(E0
h1

)0≤h1≤ι1–1 of C�, this second good covering with opening π/(λ2k2); and choose T1, T2

satisfying (35), (36). We also fix χ∞
2 as in Definition 5, which allows us to construct the

family of inner solutions associated with the first good covering. In addition to this, we
choose ρ2 > 0 and the corresponding outer solutions associated with the second good
covering.

Let E1 denote the Banach space of holomorphic and bounded functions defined in T1 ×
χ∞

2 × Hβ ′ endowed with the sup. norm, and E2 the Banach space of holomorphic and
bounded functions in T1 × (T2 ∩ D(0,ρ2)) × Hβ ′ , with sup. norm.

Theorem 4 The partial maps obtained from the inner solution of the main problem (10)

ε �→ udh2

(
t1,

x2

εμ2
eθh2

√
–1, z, ε

)

have a common formal series û∞(ε) ∈ E1 �ε� as Gevrey asymptotic expansion of order
1/(λ1k1) on E∞

h2
for 0 ≤ h2 ≤ ι2 – 1.

Each of the partial maps obtained from the outer solution of the main problem (10), ε �→
udh1

(t1, t2, z, ε) is the λ2k2-sum of a common formal power series û0(ε) ∈ E2 �ε� on E0
h1

for
0 ≤ h1 ≤ ι1 – 1.

Proof A consequence of the construction of the inner solutions in Sect. 4.1 is that, for all
0 ≤ h2 ≤ ι2 – 1, the function ũdh2

: ε �→ udh2
(t1, x2

εμ2 eθh2
√

–1, z, ε) is a holomorphic map on
E∞

h2
, with values in the Banach space E1 for all 0 ≤ h2 ≤ ι2 – 1. Again, for every index, we

consider the function Gh2 := ũdh2
in the (RS) theorem. Due to Theorem 1, we have that

∥
∥Gh2+1(ε) – Gh2 (ε)

∥
∥
E1

≤ C̃ exp

(
–

D̃
|ε|λ1k1

)

for every ε ∈ E∞
h2

∩ E∞
h2+1. We apply the (RS) theorem in order to achieve the existence

of a common formal power series û∞(ε) ∈ E1 �ε� such that ε �→ udh2
(t1, x2

εμ2 eθh2
√

–1, z, ε)
admits û∞(ε) as its Gevrey asymptotic expansion of order 1/(λ1k1), on E∞

h2
, for every 0 ≤

h2 ≤ ι2 – 1.
For the second part of the proof, we consider the functions ǔdh1

: ε �→ udh1
(t1, t2, z, ε) for

0 ≤ h1 ≤ ι1 – 1, which turn out to be a holomorphic map on E0
h1

, with values in the Banach
space E2. We put Gh1 := ǔdh1

in the (RS) theorem. Due to Theorem 4, we have that

∥∥Gh1+1(ε) – Gh1 (ε)
∥∥
E1

≤ C̃ exp

(
–

D̃
|ε|λ2k2

)

for every ε ∈ E0
h1

∩ E0
h1+1. We apply the (RS) theorem in order to achieve the existence of

a common formal power series û0(ε) ∈ E2 �ε� such that ε �→ udh1
(t1, t2, z, ε) admits û0(ε)

as its Gevrey asymptotic expansion of order 1/(λ2k2), on E0
h1

, for every 0 ≤ h1 ≤ ι1 – 1.
Watson’s lemma (see [1]) guarantees that this function is unique with this property, leading
to a summability result. �
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6 Proof of Lemma 4
It is straightforward to check statement (1) in Lemma 4, due to k′ < k2.

We proceed to giving proof to (2.a): let ρ∞
2 ,ρ1 > 0. One has that L2(|T1|, |T2|) is upper

bounded by

e
– ρk1

|T1 |k1
δ1

∫ ∞

ρ

eνrk′
e

– rk2
|T2 |k2

δ2
dr ≤ e

– ρk1
|T1|k1

δ1
∫ ∞

0
eνrk′

e
– rk2

|T2|k2
δ2

dr.

Let

L(x) =
∫ ∞

0
eνrk′

e– rk2
x dr.

We focus on determining upper bounds for L(x), as x → ∞. Such bounds have already
been observed in the proof of Proposition 4 of our recent contribution [16]. We provide a
complete set of arguments for the sake of better readability.

By dominated convergence and the series representation of exp(νrk′ ), we derive that

L(x) =
∫ ∞

0

∑

n≥0

(νrk′ )n

n!
e– rk2

x dr =
∑

n≥0

νn

n!

∫ ∞

0

(
rk′)ne– rk2

x dr

for all x > 0. Let

Ln(x) =
∫ ∞

0

(
rk′)ne– rk2

x dr.

The change of variable rk2 /x = r̃ yields

Ln(x) = x
k′
k2

nx
1

k2
1
k2

∫ ∞

0
(r̃)

k′
k2

n+ 1
k2

–1e–r̃ dr̃ =
1
k2

x
1

k2 x
k′
k2

n
Γ

(
k′

k2
n +

1
k2

)
.

As a result,

L(x) =
1
k2

x
1

k2
∑

n≥0

(νx
k′
k2 )n

n!
Γ

(
k′

k2
n +

1
k2

)
=

1
k2

x
1

k2
∑

n≥0

(
νx

k′
k2

)n Γ ( k′
k2

n + 1
k2

)
Γ (n + 1)

.

We recall (see Appendix B in [2]) the beta integral formula

B(α,β) =
∫ 1

0
(1 – t)α–1tβ–1 dt =

Γ (α)Γ (β)
Γ (α + β)

≤ 1, α,β ≥ 1.

Regrading the previous formula, we deduce the existence of a constant C1 > 0 such that

Γ

(
k′

k2
n +

1
k2

)
Γ

((
1 –

k′

k2

)
n +

(
1 –

1
k2

))
≤ C1Γ (n + 1)

for n ≥ max{ k2–1
k′ , 1

k2–k′ }. This yields the existence of C̃1 > 0 such that

L(x) ≤ C̃1x
1

k2
∑

n≥0

(νx
k′
k2 )n

Γ ((1 – k′
k2

)n + (1 – 1
k2

))
.
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We recall the following bounds on the generalized Mittag-Leffler function (Wiman func-
tion), see [8]:

Eα,β (z) =
∑

n≥0

zn

Γ (β + αn)
, α,β > 0,α ∈ (0, 2).

There exists C2 > 0 such that

Eα,β (z) ≤ C2z
1–β
α ez

1
α , z ≥ 1. (47)

Regarding (47), we guarantee the existence of C3 > 0 with

L(x) ≤ C3x
1

k2–k′ eν

1
1– k′

k2 x
k′

k2–k′
, x ≥ 1.

As a result, we derive the formula in statement (2.a).
We proceed to giving upper bounds on L2(|T1|, |T2|) in case (2.b). We assume that |T1| <

ρ1 for some ρ1 > 0 and |T2| < ρ2 for some ρ2 > 0.
We write L2(|T1|, |T2|) = exp(– ρk1

|T1|k1 δ1)L2.1(|T2|k2 ), where

L2.1
(|T2|k2

)
=

∫ ∞

ρ

eνrk′
e

– rk2
|T2 |k2

δ2
dr.

We have

L2.1
(|T2|k2

)

=
∫ ∞

ρ

eνrk′
e

– rk2
2|T2 |k2

δ2
e

– rk2
2|T2 |k2

δ2
dr

≤ e
– ρk2

2|T2 |k2
δ2

∫ ∞

ρ

eνrk′
e

– rk2
2|T2 |k2

δ2
dr ≤ e

– ρk2
2|T2 |k2

δ2
∫ ∞

ρ

eνrk′
e

– rk2

2ρ
k2
2

δ2
dr,

being the last integral upper bounded by a positive constant for k2 > k′. In conclusion,
there exists some C2.1 > 0 such that the statement in (2.b) holds.
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