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Abstract

We study a family of nonlinear initial value problem for partial differential equations in the complex
domain under the action of two asymmetric time variables. Different Gevrey bounds and multisumma-
bility results are obtained depending on each element of the family, providing a more complete picture
on the asymptotic behavior of the solutions of PDEs in the complex domain in several complex variables.

The main results lean on a fixed point argument in certain Banach space in the Borel plane, together
with a Borel summability procedure and the action of different Ramis-Sibuya type theorems.

Key words: asymptotic expansion, Borel-Laplace transform, Fourier transform, initial value problem, for-
mal power series, nonlinear integro-differential equation, nonlinear partial differential equation, singular
perturbation. 2010 MSC: 35C10, 35C20.

1 Introduction

This work is framed into the study of multisummable formal solutions of certain family of PDEs.
Multisummability of formal solutions of functional equations is observed in recent studies made
by some research groups in different directions, and a growing interest has been observed in the
scientific community. The present work belongs to these trends of studies, for which we provide
a brief overview.

Borel-Laplace summability procedures have been recently applied to solve partial differential
equations. In the seminal work [19], the authors obtain positive results on the linear complex
heat equation with constant coefficients. This construction was extended to more general linear
PDEs by W. Balser in [3], under the assumption of adequate extension of the initial data to
an infinite sector. More recently, M. Hibino [9] has made some advances in the study of linear
first order PDEs. Subsequently, several authors have studied complex heat like equations with
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variable coefficients (see [5, 6, 21]). The second author [22], both authors [13] and the two
authors and J. Sanz [17] have also contributed in this theory.

Recently, multisummability of formal solutions of PDEs has also been put forward in different
works. W. Balser [4] described a multisummability phenomenon in certain PDEs with constant
coefficients. S. Ouchi [23] constructed multisummable formal solutions of nonlinear PDEs, com-
ing from perturbation of ordinary differential equations. H. Tahara and H. Yamazawa [24] have
made progresses on general linear PDEs with non constant coefficients under entire initial data.
In [20], G. Lysik constructs summable formal solutions of the one dimensional Burgers equation
by means of the Cole-Hopf transform. O. Costin and S. Tanveer [8] construct summable formal
power series in time variable to 3D Navier Stokes equations. The authors have obtained results
in this direction [14, 15].

A recent overview on summability and multisummability techniques under different points
of view is displayed in [18].

The purpose of the present work is to study the solutions of a family of singularly perturbed
partial differential equations from the asymptotic point of view. More precisely, we consider a
problem of the form

(1)
Q(az)atgu(ttha Z, 6) = (Pl(az’? E)U(t17t27 Z, 6))(P2(8Z7 6)U(t1,t27 Z, 6)) + P<t17t27 €, atu atga 82)

+ f(t17t27 Z, 6)7

under initial conditions u(t;,0, z,€) = u(0, to, z,€) = 0, and where Q(X) € C[X]. The elements
which conform the nonlinear part P;, P» are polynomials in their second variable with coefficients
being holomorphic functions defined on some neighborhood of the origin, say D(0, €y), continuous
up to their boundary.

Here, D(0, ¢y) stands for the open disc in the complex plane centered at 0, and with positive
radius €9 > 0. We write D(0, €g) for its closure.

Moreover, P stands for some polynomial of six variables, with complex coefficients, and the
forcing term f(t1,t2, 2, €) is a holomorphic and bounded function in D(0, p)? x Hpg x D(0,€),
for some p > 0, and where Hg stands for the horizontal strip

Hg/ = {Z e C: ]Im(z)| < ﬁ/},

for some 3’ > 0.

The precise configuration of the elements involved in the problem is stated and described in
Section 2.2.

In particular, in order to illustrate the kind of PDEs we handle in this work, we can display
a simple equation belonging to the family (1) under study in this paper, namely

(1 + €220, 1204, + et20y,) (O, u) (t1, t2, 2, €) = f(L, 2, €).
The change of variable x1 = 1/t1, xo = 1/t2, and by means of the change of function
(Oru)(t1,to, z,€) = v(1/t1,1/ta, 2, €),
the previous equation can be reduced to a second order PDE with constant coefficients

(1+ 6289018@ — €0y, )V(21,T2, 2,€) = f(1/x1,1/x9, 2, €),



which turns out to be of hyperbolic type provided that the variables x1, x2, € are restricted to
real values and € # 0. Such equations play a fundamental role in physics and mathematics,
modelling wave propagation phenomena such as the propagation of sound or electromagnetic
waves.

This paper provides a step beyond in the study of the asymptotic behavior of the solutions
of a subfamily of singularly perturbed partial differential equations of the form (1). We first
recall some previous advances made in this respect, which motivate the present framework.

In [13], we studied under the asymptotic point of view the solutions of certain family of
PDEs of the form

Q(0.)0wu(t, z,€) = (P1(0z, €)u(t, z,€)) (Pa(0y, €)u(t, z,€)) + P(t,€,0¢, 0x)ult, z,€) + f(t, z,€),

where the elements involved in the problem depend only on one time variable ¢. Our next aim
was to check whether the asymptotic properties of the solutions in this equation can be extended
to functions of more number of time variables, as stated in (1).

It is worth mentioning that, in the previous work [13], the linear part of the equation, ruled
by P(t,e€, 0, 0,)u(t, z,€) was assumed to be more general than in the present configuration,
admitting an additional term of the form cy(¢, z, €) R(,)u(t, z, €), where cy(t, z, €) is given by a
certain holomorphic function defined on a product D(0, p) x Hg x D(0, €p).

We decided not to incorporate this term in the present study for the sake of simplicity.
However, the results can be written with no additional theoretical difficulties by adding the
analog of such terms into the equation. As a matter of fact, the decision of not considering this
term in the present work is due to emphasize other fact: an outstanding phenomena occurred
when dealing with two complex variables, arriving at substantially and qualitatively different
asymptotic properties of the solutions attained.

In [12], we described a study of a family of equations of the shape (1) which showed a
symmetric behaviour with respect to the asymptotic properties of the analytic solutions with
respect to both time variables, as initially expected from the generalization of the one-time
variable case. More precisely, we proved the following result: given a good covering of C*,

{&p1 p2 Yo<pi<ai—1 (see Definition 3) involving sectors of opening larger than 7/ks, there exist
0<p2<¢2—1
sectors with vertex at the origin in C and finite radius, say 71 and 72, such that a family of

solutions {up, p, (t1, 2, 2, €) fo<pi <, —1 of (1) is constructed. The function wy, p,(t1,t2, 2, €) turns
0<p2<¢2—1

out to be holomorphic in 71 X 7o X Hg' X &, p,, for every 0 <p; < ¢ —1and 0 < ps < g — 1.

In addition to this, we obtain in this previous work that the difference of two consecutive (in

the sense that they are related to consecutive sectors in the good covering) solutions w,, ,, and

Uyt of (1) can be classified into two categories:

1. Those pairs ((p1, p2), (P, Ph)) € Uy, such that

My
sup |tup, po(t1,t2,2,€) — Ut ot (t1,t2,2,€)| < Kpe "1 e Eprpa N Spfl’pé;
(tl,tz,z)E'Tl XBXHB/
2. and those pairs ((p1,p2), (P}, P5)) € Uy, such that
Mp
- k
sup [tup, po(t1,t2,2,€) — upll,plz(tlyt27 z6)| < Kpe 192 €&y py N gpiapé‘

(t1,t2,2)€TL ><'T2><H5/



Here, k1 and ko are different positive integers involved in the definition of the polynomials
appearing in the main equation, and K, M,, are positive constants.

The application of a two-level Ramis-Sibuya type result entails the existence of a formal
power series U(t1,t2,2,€) € F[[e]], where F stands for the Banach space of holomorphic and
bounded functions in the domain 7; x T3 x Hg/, with the supremum norm. Such formal power
series is a formal solution of (1) and can be split in the form

ﬂ(t17t27 Z, 6) = a(t17t27 2, 6) + al(tla t27 Z, 6) + ’LALQ(tl,tQ, Z, 6)7

where a(ty,to, z,€) belongs to F{e}, and ;, 02 € F[[e]]. Moreover, for all p; € {0,...,¢ — 1}
and pa € {0,...,52 — 1}, the function uy, ,,(t1,%2, 2, €) can be split analogously:

uPl:PZ(tth:z 6) = a(tlthaZ 6) +up1 pg(tlatZaz 6) +up1 pz(t17t27276)7

where € — u{,hm (t1,t2,2,€) is an [F-valued function which admits 4;(t1, t2, z, €) as its k;-Gevrey
asymptotic expansion on &, p,, for j = 1,2, seeing 4; as a formal power series in €, with
coeflicients in F. In addition to this, and under the assumption that k; < ko, a multisummability
result is also attained. Under the assumption that

{2, 99), (b1, 92), (P1,22), (03, 93)), - (01,3 ), (01" 05")} € Un,

for some y € N:= {1,2,...}, and

gpi’,p” C Srjk S U gp{,pé’
0<5<2y

for some sector S, with opening larger than 7 /k1, then it holds that u(t1m,t2, 2, €) is indeed
(k2, k1) —summable on & v, being its (kz, k1)-sum given by w,y v on Ey v

The role played by ki and ko in the previous framework is completely symmetric. The
assumption k1 < ko is innocuous, reaching symmetric results in the case that ko < k1. In that
study, the principal part of any of the equations in the family studied is factorisable as a product
of two operators involving a single time variable, yielding a multisummability phenomena in the

perturbation parameter e.

On the other hand, in the present study, the sign of k1 — ko is crucial at the time of studying
the asymptotic behavior of the analytic solution. In fact, a negative sign provides less information
on the asymptotic behavior, which entails only Gevrey estimates whilst the positive one furnishes
more precise information, namely multisummability. Here is where the strength of the present

results holds. More precisely, we find a family of analytic solutions {up, p,(t1,t2, 2, €) }o<pi<c1—1
0<p2<¢3—1
of the main problem under study, which are holomorphic in 71 x T3 x Hgr X &, p,, and such that

one of the following hold:

1. In case ko > ki, a formal power series u(ty,t2, z,€) € F[[¢]], formal solution of (1), exists
such that for every (p1,p2) € {0,...,¢1 —1} x{0,..., s — 1}, the function wuy, p, (t1,t2, 2, €)
admits 4(t1, 12, 2, €) as its asymptotic expansion of Gevrey order 1/k; in &,, p, (see Theo-
rem 2).

2. In case that k1 > ko, a formal power series u(t1,t2,2,€) € F[[e]] exists, being formal
solution of (1), and such that u(t1, t2, 2, €) shows analogous properties as those described
in the family of equations in [12], i.e. multisummability of the formal solution with Gevrey
levels k1 and ky (see Theorem 3).



The present study is based on the following approach: after establishing the main problem
under study:

2) (Q(agatﬁeﬁlt?aff’leﬁ% 2002 Ry, py(02) + 23453007 Ry (0, >> ult, 2, €)

= (P1(8,, €)ult, z, ) (Pa(ds, €)ult, 2, €)) + Z Aty g ole py (. )ult, 2, )
0<1;<D;—
=12

+ f(t7 2, 6)7

where ki,ko > 1, D1, Dy > 2, Al,dl,5D1,A2,JQ,SD2,A3,CZ3,SD3 are integer numbers, and for
all0 < l; < Dy —1and 0 <lIls < Dy — 1, we take nonnegative integers dll,a?b,éll,cib, and
Ay, 1,, under the assumptions (5)-(7). Moreover, Q, Rp, p,, Rp, and Ry, ;, are polynomials with
complex coefficients, for all 0 < I3 < Dy —1and 0 <y < Dy—1. The polynomials P;, P> present
coefficients which are holomorphic functions with respect the perturbation parameter on some
neighborhood of the origin, under assumptions (8)-(10). The forcing term f(t1,to, 2, €) is given
by some holomorphic and bounded function on a neighborhood of the origin with respect to
both variables and the perturbation parameter ¢, and some horizontal strip with respect to z
variable.

We search for analytic solutions of (2) given as a Laplace and Fourier transform of certain
function w,‘ci to be determined:

ki k w\F1_(wp\F2 g d
(3)  u(ty,ta,z,€) 12 / / / wk Uy, ug, M, €)e (€t1> (etz) elzmﬂﬂdn%
Lay JLay

27‘r 1/2

where L., = R_ €™, for some appropriate direction v; € R, for j = 1,2. The problem of finding
such a function is equivalent (in view of Lemma 1) to solve an auxiliary convolution equation
in the Borel plane. More precisely, there is a one-to-one correspondence between functions
u(ty,t2,z,€) of the form (3), which solve (2), and functions w(71, 72, m,€) admitting Laplace
transform with respect to the first two variables along directions d; and do resp., and Fourier
transform with respect to m variable, which turn out to be solutions of a convolution equation
(see 23).

For every fixed value of the perturbation parameter €, (11,72, m) — w(r1,72,m,€) is ob-
tained as the fixed point of the contractive operator H, (see (33) for its definition) acting on some
Banach space of functions owing exponential decay at infinity on the Fourier variable, and defined
on some neighborhood of the origin for (71, 7) in C?, which can be prolonged to some neighbor-
hood of the origin together with an infinite sector of bisecting direction d; times an infinite sec-
tor with bisecting direction ds; under certain concrete monomial exponential growth at infinity.
More precisely, w@(71, 72,m, €) is a continuous function in (D(0, p) US4, ) X Sa, x Rx D(0, €0) \ {0},
and holomorphic with respect to (71, 72) in (D(0, p) U Sg,) X Sa,, and on D(0,¢p) \ {0} with re-
spect to the perturbation parameter. In addition to this, there exist constants @, u, 8,v1,v9 > 0
such that

To |k2

€ )
for every (1,72, m,€) € (D(0,p)USy, ) X Sq, x Rx D(0, ¢) \ {0}. Laplace and Fourier transforms
make sense in order to get (3). At this point, we are able to construct a family of solutions

}L ‘D 1 (k1
1,72, )] < {1+ ) L o (< iml 4] 2|
R R f




{up, po(t1,t2, 2, €) Yo<p <1 —1 of (2), where up, p, (1,12, 2,€) is a holomorphic function defined in
0<p2<¢2—1
Ti X Ta x Hgr x &, p,, with T and Tz being finite sectors in C* with vertex at the origin, and

where {&p, p Jo<pi<c—1 conforms a good covering at 0 (see Definition 3).
0<p2<c2—1
The distinction of k1 < ko and ko < ki provide Gevrey asymptotics or multisummability
results in Theorem 2, resp. Theorem 3. It is worth mentioning that these results lean on the
application of a cohomological criteria known as Ramis-Sibuya Theorem; resp. a multilevel
version of such result.

The fact that a different behavior can be observed with respect to the variables in time
is due to the domain of definition of w,ccl with respect to such variables: a neighborhood of
the origin for (71,72) € C? which can only be prolonged up to a neighborhood of the origin
together with an infinite sector with respect to the first variable; whereas it can not be defined
on any neighborhood of the origin with respect to the second time variable, but it does on
some infinite sector. This causes the impossibility of application of a deformation path at the
time of estimating the difference of two consecutive solutions in order to apply the multilevel
version Ramis-Sibuya Theorem. With respect to the study of the main problem in [12], the
main difficulty at this point comes due to the fact that Case 1 in Theorem 1 of [12] is no longer
available.

We also find it necessary to justify the fact that w,‘i can not be defined with respect to (71, 72)
in sets of the form

(4) S1 x (S2U D(0, p2)),

for some infinite sectors S1 and Sz, and for some po > 0. In order to solve the main equation, one
needs to divide by Py, (71, 72) (see (24) for its definition). However, as stated in Section 3.1.1, the
roots of such polynomial lie on sets of the form (4), for any po > 0. Therefore, a small divisor
phenomena is observed , which does not allow a summability procedure. This occurrence has
already been noticed in another context in previous works: in the framework of g—difference-
differential equations [16]; in the context of multilevel Gevrey solutions of PDEs in the complex
domain in [15], etc.

The layout of the paper is as follows.

After recalling the definition and the action of Fourier transform in the first part of Section 2,
we describe the main problem under study in Section 2.2, and reduce it to the research of a
solution of an auxiliary convolution equation. Such solution is obtained following a fixed point
argument in appropriate Banach spaces (see Section 3.2), whose main properties are provided
in Section 3.1.

Section 3.1.1 is devoted to motivate the domain of definition of the solution, in contrast to
that studied in [12].

The first main result of our work is Theorem 1, where the existence of a family of analytic
solutions of the main problem is obtained. In Section 5.1 we recall the Borel summability
procedure and two cohomological criteria: Ramis-Sibuya Theorem, and a multilevel version of
Ramis-Sibuya Theorem. We conclude the present work with the existence of a formal solution
to the problem, and two asymptotic results which connect the formal and the analytic solutions:
Theorem 2 states a result on Gevrey asymtotics in a subfamily of equations; Theorem 3 states
a multisummability result in another different subfamily of equations under study.



2 Layout of the main and auxiliary problems

This section is devoted to describe the main problem under study. We first recall some facts on
the action of Fourier transform on certain Banach spaces of functions.
2.1 Fourier transform on exponentially decreasing function spaces

In order to transform the main problem under study into an auxiliary one, easier to handle,
we first describe the action of Fourier transform in certain Banach spaces of rapidly decreasing
functions.

Definition 1 Let 8, € R. E(g ) stands for the vector space of continuous functions h : R — C
such that

1h(m)l g,y = sup (1 + [m|)* exp(Bm])|h(m)]|
meR
is finite. Eg ) turns out to be a Banach space when endowed with the norm |.[|g -
The following result is stated without proof, which can be found in [13], Proposition 7.

Proposition 1 Let f € Eg ) with 8> 0, u> 1. The inverse Fourier transform of f

+00
F () = 11/2 /OO f(m)exp(izm)dm, xz € R,

(2m)
can be extended to an analytic function on the strip
Hg :={z € C/|Im(2)| < B}.

Let ¢(m) =imf(m) € E(g—1)- Then, it holds that 0.F ' (f)(z) = F1(¢)(2), for z € Hp.

Let g € Eg,y and put ¢(m) = Wf x g(m), the convolution product of f and g, for all

m € R. 1 belongs to Eg ). Moreover, we have F~(f)(z)F 1 (g)(z) = F 1 (¢)(2), for z € Hg.

2.2 Layout of the main problem

Let k1,ko > 1 and Dy, Do > 2 be integer numbers. We also consider non negative integer
numbers dl,dj,Al,Aj,épl,gD]., for j € {2,3}. Forall 0 <3 < Dy —1and 0 <ly < Dy — 1,
let dy,, dy,, 01,5 01, Ay, 1, be non negative integers. We assume the previous elements satisfy the
next identities:

(5) — < 5D2 < 5D3
and &), < 0p,41, 01y < Oppq1 forall 0 <y < D; —1and 0 <ly < Dy —1,

(6) A1+Ag—d1—5l2—1+6pl+5,32:0 Ag—cz3+gp3—1:0
dy = 6p, (k1 + 1), ko+1+d;=6p,(ka+1) (j=2,3)

Moreover, for every 0 <[y < Dy —1and 0 <l < Dy — 1, we assume

(7) dll > 511 (kl + 1)7 de > (812 - 1)(k2 + 1)7



Ah,lg > 5D1 kl + (8D2 — 1)k2

Let Q(X),Rp,,p,, Rp; € C[X], and for 0 < l; < Dy —1and 0 <lp < Dy — 1 we take
Ry, 1,(X) € C[X]. We consider polynomials P;, P» with coefficients belonging to O(D(0, €)),
such that

(8) deg(Q) > deg(Rh,lQ)v

for 0 <]y < Dy —1and 0<Ily < Dy —1. Moreover, we choose these polynomials satisfying
(9) deg(Q) > deg(Py), j=1,2  Q(im)#0, meR,

deg(Q) = deg(RDs) = deg(RD17D2)'

More precisely, we assume there exist sectorial annulus Ep, g and Ep, p, p, (see (11)) such
that

RD3 ('Lm) RD17D2 (Zm)

10 ——cFE ———=—cFk
( ) Q(Zm) € D3,Q> Q(Zm) S D1,D2,D3)»

for every m € R. In other words, there exist real numbers 0 < r; < R; and «a; < 35, for j = 1,2,
such that

(11) EDg,Q = {ZL‘ cC: r < ":U| < R17arg(w) € (alaﬁl)}a
Ep,,py@ = {z € Ciry <z < Ry, arg(z) € (az, B2)}-

Throughout the whole work, we denote the pairs of variables in bold letters: ¢ := (¢1,t2),
T .= (Tl,TQ), T = (7’1,7’2), etc.
We consider the following nonlinear initial value problem

(12) <Q<8 JOh, + A1t Aride g2 Ry 1 (0.) + Aot Ry, (az>> u(t, z,€)

= (PL(0: ult, 2, ) (Pa(0s, ult, 2, )+ S Ao ole gy (0.)ut, 2,6
0<1;<D;—1
=12

+ f(t, z,€)

with null initial data u(¢;,0, 2z, €) = u(0, t9, z,€) = 0.

The forcing term f(t, 2, €) is constructed as follows. For ny,ng > 1, let m — Fy,, »,(m, €) be
a family of functions belonging to the Banach space Eg ) for some 5 > 0, pu > max(deg(P;) +
1,deg(P2) + 1) and which depend holomorphically on ¢ € D(0,€¢p). We assume there exist
constants Kg, Ty > 0 such that

1

(13) By (. € TO

KO( )n1+n2

)

H (Bop) =

for all n1,ne > 1, and € € D(0,¢y). We deduce that

F(T,z,e)= Y F '(me Fuymy(m,e)(2)T{ T4

ni,n2>1



represents a bounded and holomorphic function on D(0,Tp/2)? x Hg x D(0,¢) for any 0 <
B’ < B. We define
(14) f(t,Z,E) = F(6t176t27276>-

Observe the function f is holomorphic and bounded on D(0,p)? x Hg x D(0,€) where pey <
To/2.
We search for solutions of the main problem (12), which are time scaled and expressed as a
Fourier transform with respect to z variable, in the form
1 oo
(277)1/2/—00 U (et1, eta, m, €) exp(izm)dm.

The symbol U(T',m, €) satisfies the next equation.

u(t, z,€) = U(etq, eta, z,€) =

) Ay—di—d. i 5o a0Dy A0 .
(15) (Q(lm)68T2 +6A1+A2 dq d2T1d1T2d266D1+5D28T1D1aTQDQRDhDQ(Zm)

FeSsIT Sosaff i, im) ) V(T m.

1 > . .
— W / (P1(i(m —mq),e)U(T,m —mq,e€))(Pa(imy, e)U (T, mq,€))dm
— 00
Y iyt S ple gl g By (im)U (T, m )
0<1;<D;—1

j=1,2
+ F(z— F(T,z,¢€))(m)

Our goal is to provide solutions of (15) in the form of a Laplace transform. Namely, we
search for solutions of the form
gk (22 )k2 dug dug

(16) U(T,m,e):klkg/ / w,‘i(ul,UQ,m,e)e_(T1 (PR p———
Ly, J Ly, uz U1

where L, = R ", for some appropriate direction vj € R, for j = 1,2, which depend on T}.
The function wg(T, m, €) is constructed in the incoming sections as the fixed point of a map
defined in certain Banach spaces, studied in the forthcoming sections. For j = 1,2, let Sg; be
infinite sectors with vertex at the origin and bisecting direction dj, such that L., C Sq4,. We fix
a positive real number p > 0.

In the present section, we depart from a function w,‘j T,m, €) continuous on (D(0, p) U Sy, ) x
S, X R x D(0,€) \ {0}, holomorphic with respect to (7,€) in (D(0, p) U Sy, ) X Sg, x D(0,¢€),
and such that
i 2

14 [T [2k 1 4 |22 |2k

T T
(A7) [wR(m.m O] < wa(l+ [m]) e exp(va| " + o] Z|"2)

for all 7 € (D(0, p) U Sq,) X Sq,, every m € R and € € D(0,¢) \ {0}.
In order to construct the solution, we present a refined form of the problem. For that purpose,

we need some preliminary results. We make use of the following relations, which can be found
in [24], p. 40:
1) o Sp, —
(18) T Dy (kﬁl)anl _ (Tf1+18T1)5D1 4 Z AaDl ’plel( Dy pl)(Tfl'i‘laTl)pl
1<p1<0p, —1

= (TP or,)" ™ + Asp, (T1,0ry)
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5p. (ka+1) bp. 5 ~ k2(3p,—pj) ,
(19) T2D] 2 aTSJ — (T2]<72+18T2) D; + ASDj’pjT22 D; J (T2k‘2+1aT2)pJ
1<p;<ép,—1
— (TF419, Y905 4 A: (T, 0
= ( 2 ) "+ 5Dj( 2, 01,)
for some real numbers A(‘}Dl,p17 p1=1,...,0p, —1 and ASD. py Pi = 1,... 5 . —1, for j =2,3.
]7

We write Ap, (resp. flpj, for 7 = 2,3,) in the place of Asp, (resp. A ) for the sake of

simplicity.

We divide by € and multiply by T21¢2+1 at both sides of (15). Under the assumptions displayed
in (6) one may apply (18) and (19) in order to rewrite equation (15). This step is important
to exhibit the equations as an expression where some operators algebraically well-behaved with
respect to Laplace transform appear. The resulting equation is as follows:

(20)
(Q(im)T2kQ+laT2 + (lelJrlaTl )éDl (,-Z—'2]€2+18712)6D2 RDl,Dz (Zm) + (T2’€2+16T2)5D3 RDs (Zm)> U(T7 m, 6)

= [_(le 07, )01 Ap, (Ty, 01,) Rpy sy (im) — (T2 07,)°P2 Ap, (T1, 01, ) R, s (im)

_ADI (Tlv aT1 )A~D2 (T2) 8T2)RDLDQ (Zm) - AD:& (T27 8T2 )RDs (Zm)} U(T7 m, 6)

Thetle—1 . ;
o / (Py(i(m — my), U (T, m — my, ))(Pa(imy, YU (T, my, €))dms
— 0o
4 Z Aty =iy =y o+, L pe ghu gl (T )
0<1;<D;—
i=1,2

+ TF T e F (2 o F(T, 2, €)) (m).

The following result allows to establish a one-to-one correspondence between solutions of
equation (20), and an auxiliary equation in the Borel plane, (23). The last equation will be
presented afterwards, in this same section.

Lemma 1 Let U(T,m,e¢) be the function constructed in (16). Then, the following statements
hold:

. C(m M (52)*2 dus d
T 00, U(T, m, ) = kyks / (kYo m, g (i) () 7z 5y
Ly, JL uz Ul
whoy ™y 1/k dsy
T U(T, m,€) = kiks / (Wt —s1) B wd(s)" ™ ug, m, €)—
Ly, J L, Tl 0 51
u k1 ko
we- () -() dwdu
ug U1
Uz’ m_ g 1/k dso
Tm2U(T m, 6 = k1ko / (u22 — 82) k2 wk(ul,SQ 2, R )
Ly, J L, 72 0 52
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/ U(T,m —my,e)U(T, m1,e)dm

N o\ F
wg(Sl ,52 , M1, €) ! dslds2> e_(T%) 1_(%) 2@%

(u]f1 — 51)51 (ulg2 — 89)82 Uy Ul

Proof

The first statement is a direct application of the derivation under the integral symbol. The
second and third statements are equivalent, so we only give details for the second one.

In order to give proof for the second statement, we first apply Fubini theorem at the inner
and outer integrals. That expression can be rewritten in the next form:

kl—l k1
U my g (21" duy
LT e L (#)" du
L L L my Ui
S}/kl’,\/1 I ( k1 )

k171 V2

k

7<”L2> 2 dug dsy

, U2, MM, 6)6 T2 )
U2 S1

1/k
d(/l

ka S1

where Ly, ., = {re’*1m :r >0} and L 1k = {re :r > |s1|"/*1}. We proceed by applying
1 y V1

two consecutive deformation paths at the inner integral in the previous expression: first, we

apply hy = ulfl, and then A1 — s1 = hq11. We arrive at

myq _hn

1 ™
A:klkg/ — b} e T dhy
Lkim r (m1>

k1
L)
_ 81 [(u2
1/k:1 T (T2) dug dsy
,ug, mye)e 1 —
Ly / Lyg

The deformation path 4, = 51/ followed by hio = h” yields

m3 _

1
A=U(T,m,e)——T™ / hyy YoM gy,
1B (%) Llel —klarg(Tl)

1

A deformation path and the definition of Gamma function allow us to conclude that A =

U(T,m,e).
The proof of the third formula follows the same lines of arguments, involving Fubini theorem
and it is omitted for the sake of brevity. O

Remark: Lemma 1 provides the equivalence of existence of solutions of different equation
(20) and (23), related by Laplace transformation.
We define the operators
(21)
k1
T d81

Asp,p lel 1 o k
A(;Dlwk(’r7m7 5) = Z ]:‘((lei)/ (T{ﬁ _ 81)5D1 P1 lklspl k( 1/k1 Ty, M, 6)877
1<pr<op,—1 D1 TP !
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A k2 k
- A5Dj7pj7_2 ™ ko 6p,—pj—1 1/ka dss
Az, wi(T,m,€) = Z TG ) (757 — 52)"" kosh wi (11,85, m, 6)57’
! I( D; _pj) 2

1<p;<bp;—1

for j = 2,3. Observe that they turn out to be the my, (resp. mg,) Borel transform of the
operator Ap, (T1,0r,) (resp. ADJ. (T3,0r1,), for j = 2,3) (see Section 5.1 for more details on
this).

In view of the assumption,described in (7), we define the natural numbers d;, , and dj, k,
by

(22) dll = 5l1 (kl + 1) + dl1,k17 le = (Slz - 1)(1{72 + 1) + dlzJﬂz’

fora110§l1§D1—1and()§l2§D2—1.
Taking into account Lemma 1, we see that U (T, m, €) satisfies (20), iff w@(7, m, €) is a solution
of the next equation.

(23)  (QUim) + Ry by im) (7721 (k)2 +RD3<¢m><k2T§2>5D3‘1)w(am,e)

A .
(arktyon 22282 o, im ) m€) = (ka2 A (1) R )7
279
— Ap, (ﬁ)A]f?( )RDth(zm)w(‘r m,e) — ALZQ)RD3 (im)w (T, m, €)
27—2

-1 k1 Tf
+61 T / _32k2/ / /p1 m — ml))

(2m)2 kD (14 £) Jo

k 1 1 dxgdsldmldSQ

x w((m" = s1)F1, (52 — 22)*2,m — my, €) Py(imy, €)w (31 ’wQ L €)
(7 = s1)or(on - 22)22
~ ~ kl
Ay 1y —diy —di1y+01, +01,—1 ] N
+ Z €712 T T T T Rzl,b(zm)k F(Mﬁ@?“)
0<1;<D;~1 2 k1 ko
1=1,2
ko k1
T T kg 4y, o1, O L dsi d
x/ / (7-1’“1_51) k1 1(7'52_52) k2 lk n llk (31 7‘92 2 Y e)ﬂﬁ
O 0 S1 82
ko
1 T, i
) ; n dsg
+1/ (152 — 52) "2 pe(71, 8 ,m, €) —,
k;gr(1+—) 0 >

where 1), is the formal my, -Borel transform with respect to 77 and the formal my,-Borel trans-
form with respect to Ty of F(T,m,e), i.e.

Ty
Y(T,m,€) = Z Fnl’HQmG)F(ﬂ)F(@)'
ni,ng>1 1 2

Observe that g is an entire function with respect to 7. Moreover, regarding the construction
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of 1k and (13), one has

[ m, M sy < S IFmnna(me &)l 5,

ni,ne>1
e 1k T2k T2 72|
x(  sup |Lf| |L§| exp(—vi|—|" — 1| —=| 2)m)
TE(D(0,p)US4; )X Sa,) € € € k1 o

for all e € D(0, €0)\{0}, any unbounded sectors Sy, and Sy, centered at 0 and bisecting directions
di € R and da € R, respectively, for some v = (v, 1) € (0, +00)2.

Remark: According to classical estimates and Stirling formula, we observe that ¢ (7, m,€) €
F(?/,,B,;L,k,e): See Definition 2.

We write

(24)  Pu(r) = Q(im) + Rpy,p, (im) (ky)2P1 (kork2)0P2 =1 4 R (im) (ko7s2)°Ps 1,

3 Construction of the solution for a convolution equation

The main aim in this section is to provide with a solution of (23) which belongs to certain
Banach space of functions satisfying bounds in the form (17). Such function is obtained as a
fixed point of an operator acting on Banach spaces, introduced and studied in the incoming
section.

3.1 Banach spaces of exponencial growth

We consider the open disc D(0, p) for some p > 0. Let Sq; be open unbounded sectors with
bisecting directions d; € R, for j = 1,2, and let £ be an open sector with finite radius r¢, all
with vertex at 0 in C.

The following norm is inspired from that considered by the authors in [12]. It is an adecquate
modification of that described in [13], adapted to the framework of two complex time variables.

Definition 2 Let vi,v9, 8,1 > 0 and p > 0 be positive real numbers. Let ki, ko > 1 be integer

numbers and let e € £. We put v = (v1,12), k = (k1,k2), d = (di,d2), and denote ngﬁuke)

the vector space of continuous functions (7,m) — h(7,m) on the set (D(0,p) U Sq,) X Sg, X R,
which are holomorphic with respect to T on (D(0,p) U Sg,) X Sq, and such that

(25) ||h(7-7 m)”(u,ﬁ,u,k,s)
L (3R 142

1 72
= sup (1 4 [m[)* EY EY exp(Blm| —vi| =" — va|=|*2)|h(r, m)|
TE(D(0,p)USq, )X Sq, i o € €
meR
is finite. The normed space (F(‘f/ﬂ’#’k’e), I[-[l(v,8,,k,¢)) @8 @ Banach space.

We fix € € £, p,3,> 0 in the whole subsection. We also choose v = (v1,12) € (0,00)2,
d= (dl,dg) S R2, and k = (kl,kg) S Nz.

We first state some technical results. The first one follows directly from the definition of the
norm of the Banach space.
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Lemma 2 Let (1,m) + a(T,m) be a bounded continuous function on (D(0, p)U Sy, ) X Sq, X R,
holomorphic with respect to T on (D(0, p) U Sq,) X Sa,. Then,

a(T, m)R(T, )|, 8,1,k,e) < ( ) sup a(r,m)\) (T, m) || 8,1,k
T€(D(0,p)USq, )X Sq,,mER

for all h(T,m) € FE 5 1 o)

Lemma 3 Let o = (01,03) € (0,00)2, and assume that ay g is a holomorphic function of

(D(0, p) U Sq,) X Sq,, continuous up to (D(0,p) U Sqg,) X Sq,, such that

1
(14 [maffr)or (1 + |y [k2)o2’

a0 k(T)] <
for every T € (D(0, p) U Sq,) X Sa,. We take 0 < 6, < oj for j =1,2. Assume that one of the
following hold:
e 03>0 and o3+ 04 < 09 — 9,
° ngk%—l andag—i-%ﬁag—&g,

where & > 1. Then, there exists C1 > 0, depending on k,va,65,0¢, j = 1,2, £ = 1,...,4, such
that

k
2 1

~ - T2 1
taa(r )P [ (el sy (sl ),
0

(V767H’k7€)

< Cl|€|k2(1+03+o4702+&2) Hf(Tv m)H(u,ﬁ,/J,,k,e) ,

Jor every f € F((i,ﬁ,u,k,ﬁ)'

Proof There exists C1.1 > 0 only depending on o1, 09, k1, ko such that

Ci1
(0 ey

o go ()77 M1 7524 <

f(;r every T € (D(0,p) U Sg,) x Syg,. We apply the definition of the norm of F(‘f,ﬂ’“’kye) to arrive
a

ko 1

G1k1, G2k 2 ko _ .. \03 .04 ko d
ao’,k(T)Tl T (TZ 82) 89 f(7—17 97, m) 52
0

(v.B,1,k,€)
2 )
2
< CLlf (T m)llw,6 k. Tfég; ﬁ eXp <_V2 )? > (1 + |ro|F2)o2—02
2 €
|a|F2 h% h
></ (72| —h)"i”h‘”L2 exp ( vo—o— | dh.
0 14 e[
‘€|2k2

The proof concludes with the steps providing a bound for Cs(€) in the proof of Proposition 2
in [13)]. O

An analogous result holds by interchanging the role of the time variables.
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Lemma 4 Under the same hypotheses as in Lemma 3, assume that
e 0g3>0and o3+ 04 < 01— 01,
° 03:,65—171 (md03+k%§0'1761,

where & > 1. Then, there exists C1 > 0, depending on k,v1,0j,0¢, for j =1,2 and { =1...,4,
such that

k1

~ - T 1
G ()70 £ 2H2 / (51— 50)P 50 f (5T y, m)dsy
0

(v,B,,k,¢€)

< Cl|€|k1(1+03+cr4—a1+&1) Hf(Ta m)H(u,B,u,k,e) ,

Jor every f € F(Crlj,ﬂ,uykvf)'

Grouping the integral operators in Lemma 3 and Lemma 4 the following result is attained.

Lemma 5 Let o € (0,00)%. Assume that ay g is given as in Lemma 3. Let 0 < 6; < o; for
7 =1,2, and 031, 032,041,042 be real numbers such that

e 03; >0 and o3 + 045 < 0 — 7j,
e o3 =5% —1andos; + +~ < oj— 5,
39 = & 33Tk =9 VE

or 7 = 1,2 and where & > 1. Then, there exists C1 > 0 depending on k,v,0;,6;,03;,04; for
J 32955035504
7 =1,2, such that

e T -
daa(r)rf g [ [ e s (s g (s s m)dsads
0 0

(V7/87/‘L7k76)

< C%‘6’k1(1+U31+U41—U1+51)+/€2(1+U32+U42—02+52) Hf(,n m)H(u,ﬁ,u,k,e) ’

Jor every f € F((riz,ﬂ,uvk,f)'

The proof of Proposition 1 in [13] can be adapted with minor modifications to the Banach
spaces under study.

Lemma 6 Let o > 0. Assume that 1/ke < o < 1. Then, there exists Cy > 0 (depending on
v, k,72) such that

for every f(T7 m) € F(Cll’7ﬁ7)u'ak:76).

)
T2 = dSQ
/ (72 — 52 f(ry, 552 m) 252
0 592

k
< CQ’€| e ”f(Ta m)”(u,ﬁ,p,k,e) ’
(V7B7M7k76)

The symmetric statement of Lemma 6, obtained by interchanging the role of 7 and 7 is
derived straightforward from Lemma 6. We finally state the following auxiliary lemma.
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Lemma 7 Let o and aq g be as in Lemma 3. Assume that Py, P>, R € C[X] such that

deg(R) > deg(Py), deg(R) = deg(P2), R(im) # 0

for every m € R. Assume that 1 > max{deg(P1)+1, deg(P2) +1}. We take 6; < oj forj =1,2.
Then, there exists a constant C3 > 0 (depending on Q1,Q2, R, 1, k,v) such that

ko k1
~ B Ty e 0o Tl S9
H%’k(”ff“ﬁr;?’” ek [ Ao m)
0 —o0 J0 0
1 1

R(im)
dzrodsidmidss

1 ‘ S
k2=m_ml)PQ(Zml)g(Sfl7$§27m1)(7_k1 51)51 (52 — 72)2
11— s1)s1(s2 — z2)T2

St = 1), (st — )
< Gslel [1Lf (T, m) | g pukesey 19(T ) (0 5 ) 5

fOT’ every f(Ta m)? g(T7 m) € F((flvﬁvuvkve) ’

Proof We follow analogous estimates as in the proof of Proposition 3 in [13] to arrive at

ko k1
a ) . - Ty 1 o0 T S2
okl )7'01]“72”2’“2 / (752 — 59) %2 / / / Pi(i(m —mq))
0 —00 J0 0
1 1 1

R(im) 't
dl‘gdsl dm1d82

1 1 ) 1 1
Xf((Tfl—81)’“17(5]2“—$2)’“2,m—ml)P2(Zm1)g(Sf1,1‘52,7”1)(7% 51)s1(s2 — x2)x
b —s1)51(82 — w2)22

1

1
- k k1 _p ) FL h1
< sup n|7h 1 ‘%‘2 1 /hlkl (m‘f\l) g dhy
= k kq_ 2 2 k
m1€(D(0,01)USq, ) (1 + ’7‘1| 1)01 |%’ 0 14+ (|7'1I€|12k1h1) 14+ ‘6?21,61 (”7’1| 1 — hl)hl
~ 2ko kg
Ty Goko 1 + T2 T ko 72| 1
[y T g (|2 (Iraf* — o)
T2ES4, ( + ’7—2| ) o € 0
(hy—2)%2 g
ho—x9) "2 x
[ e (st ) L 2y )y N
(h —T )2 k'2 2 J— ’ V,0,1,R,€ ) v,p0,u,Rk,€ :
o 1+ ‘26‘%; lel™> ) 1 4 ‘jzzkz (hg — x2)x2

On the one hand, the expression |73|72%2 /(1 + |72|*2)?2 is bounded. Moreover,

2k’2 kg
1+ |2 To |k2 |72] 1
Ay := sup "T;}’exp <—V2 - > /0 (\Tg’kz — hg) k2

T2E€S54, e
1 Eg
2

ho—z2) %2
/Sgl (he |f66|2) ) < ho ) &
T2 XP | 2
0o 14 % lelF2) 1 4 ‘e‘ﬁiz (he — @2)w2

can be estimated following the same steps as in the study of upper bounds for Cj59 in formula
(35) of [13]. We get the existence of Cy1 > 0 such that Ay < Cs2le|. It only rests to prove that
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Aj is upper bounded, where

1 1
[Ttk 1+ ‘ﬂ‘%l "1 (‘Tl‘klﬁhl)kl h|1k|1 dhy
A= sup £ / < <
T1€(D(0,0)US4,) (1 -+ |7'1|k1)01 |%’ 0 1+ (|7'1|k12;h1)2 14 h? (’7'1|k‘1 — hl)hl
le[?"1 le[¥1

= sup Al.
T1E(D(0,p)usd1)

We distinguish two cases. First, we assume that |71| > C, for some C' > 0. Then, it holds that
1|71

T+ )

is upper bounded, and by putting & = |71 /€| one can estimate A; from above by

1+ 22 /Oo dh
su .
v B Jy (U (@ = WA+ 1)
for some C' > 0. We apply Corollary 4.9 in [7] to conclude that

~ 1+2%
Ay < sup— L
S T

for some j; > 0. The previous expression is upper bounded by a positive constant. Second, in
the case that |71| < C, we have (1 + |7|*)7t > 1. We put = = (|71]|/|€])** to get that

1

+a? /fﬂ (@—h)™  RE dhy
0 1—|—(l’—h1)21—|—h%h1(1}—h1)'

sup Al <supz
1/ks
T1€(D(0,p)US4y ),|T1|<C x>0 L

A partial fraction decomposition yields

1 1
T . Ty k1 .
/ (SC hl) 1 5 hl 5 Clhl < ; Ik 7 x> 07
0 1+($—h1) 1+h1 hl(I—hl) JII_E(.TQ—FZL)

for some j; > 0, valid for k£ > 2. This concludes the existence of a positive upper bound for Ay,
and the proof follows from this point. O

3.1.1 Domain of existence for the solution

The purpose of this section is twofold. On the one hand, we motivate the fact that any actual
holomorphic solution w(7, m, €) of (23) is not well defined on sets of the form Sy, X (S4,UD(0, p2)),
for di,ds € R and any choice of po > 0.This is due to a small divisor phenomenon observed,
which does not allow to proceed with a summability procedure. On the second hand, we aim to
display geometric conditions on the natural domains in which the solution is defined.

In order to motivate that the natural domains of definition of a solution cannot be of the
form Sy, x (Sg, U D(0, p2)), for di,ds € R and py > 0, let po > 0. We rewrite the equation
P, (1) =0 (see (24) for the definition of P,,) in the form

2 pr— poy "~ ~ ~ .
. op 0po—1 kidp . Op,—1 k‘2(5D —op )
Rp, p,(im)ky ko 2 1 U+ Rpy(im)ky Ty T

(26) TkQ (52*1) _Q(lm)
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k2(6p,—1)

We put T =7, , and write (26) in the form W(Ty) = Tb, where

6D3—6D2

(27)  W(Tn) = —Q(im) | Rp,.p,(im)k)" k">~ """ 4 Rpp, (im)ky™ T, 72"

Lemma 8 Let di,d2 € R. Under the assumption that 5?‘3;6[1)2 € N\ {0}, there exists 71 € S,
Do —
such that the following statements hold:

1. VU is a map from E = D(0, (%Q)IQ((SD?_I)) into itself.

2. U: E — FE is a shrinking map.

Proof Let 7 € Sy, with large enough modulus in such a way that

S{’3_5D2
5p 3 5,1 Ty P27
(28) Rp,.p, (im)k;lDl k‘2D2*1 + Rp, (im)k2D3 2k175£)1 > |Rp,(im)],
5

for every m € R and all T5 € §d2 U D(0, p2). Here, SdQ stand for the infinite sector defined by

Sq, == {Tp € C*: 7'2’62(6[)271) € Sy, }, and pg = p;”(érl). The assumption (10) on the geometry

of the problem and (28) yield

-1

5Dy 3D,
B _ ~ 5D -1
|Q(im)| . 6Dy 10Dy . Spa—1Ty 2
VI < R, Ry, (im)ky " k"2 + R, (im)ky ™ }75]3
1

|Q(im)] - (p2>k2(5D21)

M0 Rp, (im)| T\ 2

9

for large enough |71]. As a result, we get the fist statement in the result. We have

. 6p.—16p,—6
|Rp, (im)]ky"? %(%)

~ 5p.—6
ka(5p,—1)-23—P2 1

W' (2)] < :
(|71 ["°P1 | Rp, (im)|)?
- kstlSDs —dp, (m)kz(éDS—stQH) Q(im) 11
= R SDQ 1 2 Rpg(im) |7_1|2k16D1 =9’

for every z € D(0, (%)kz(%?_l)), m € R, and large enough |71|. We get that

1
U(Tz) = U(Tp)| < sup |W(2)||Th = Tof < 5|T2 — T,
ZG[TQszl]

for every Ty, Ty € D(0, (%)k2(5D2_1). The application of the mean value theorem entails the
second statement of the result. O
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As a consequence of Lemma 8, we deduce that ¥ has a unique fixed point in F, hence, there
exists a unique solution of ¥ (1) = T for T € E, say Tp. The solutions of (26) are the solutions

of T§2(6D2_1 = Ty. As a matter of fact, the kQ(SDQ — 1) roots of Ty belong the disc D(0, &).

Remark: Observe that, in the case that 5 Dy = 5 D, the equation W(Ty) = T5 can be solved
directly in terms of 7. In this case, the ky(dp, — 1) roots of Pp,(T) = 0 lay on D(0, £), and we
can not define w(7,m, €) in any set of the form Sy, x (Sg, U D(0, p2)).

In the next paragraphs we display geometric conditions on the problem, which allow us to
attain lower estimates on P,,(7), defined in (24). On the way, the choice of directions d; and da
is made accordingly with the geometry of the problem.

We write

Pp(T) k2(8p,—1) ( Rpy D, (iMm) 6p,  6p,~1 ki6p, | Rps(im) 5p,—1 ka(5p,~dp,)
. — 1 2 . k:l k:2 1 . k:2 7—2 .

Q(im) Q(im) Q(im)

We distinguish different cases.

1. In case that 7 € D(0, p1), for some small enough p; > 0.

1.1. If » € D(0, p2), for small enough p2 > 0. Regarding (10), there exist r})hDQ’Q, 7’}73 0>
0 such that

k‘2(8D2—1) RDLDQ(im) op SD —1 kidp RDJ(Zm) SD -1 kQ(SD —8D)
7}{; 1]{; 2 1 71{; 3 3 2
& ( Qm) 1 2T Qlm) 7

kQ(SD -1) 1 op SD -1 kiép 1 SD —1 k:g(SD —SD ) 1
< Py : (TDl,DQ,le Yot pp ! +TD3,Qk2 > Py ’ )< 1

for every m € R, every 71 € D(0, p1), and 72 € D(0, p2). We conclude that

P, (1)
Q(im)

for some positive constant C, common for all m € R, 7, € D(0, p1), and 1o € D(0, p2).

> 017

(29) |

1.2. Assume that m € Sg,, with |12| > po, for some fixed py > 0. We write

RDhDZ(Z‘m) k6D1 ksD271 k15D1 + RDS(Zm) kSD?’il k2(sD37‘§D2)
2 2

Qlim) ! n Q(im) 2
- RDS(Zm) SD371 k2(sD375D2)
- Q(zm) 2 Ty (1 + A(m7 T))a
where i3
. -1 k10
Alm,T) := Rp, ., (im) k"ky"

RD3 (Zm) ka3717.2kQ (5D37‘§D2) '
From the assumptions made in (10), we get that

6py ,0p,—1 k16
lel k2D2 pll Dy
dps—1  ka(dpy—dp,
k2D3 :002( D3~9Dy

’A(m7 T)’ S TlDl,DQ,Dg
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for some Tll?l, Dy.py > 0. Taking small enough p; > 0, we can write
L+ A(m, ) = pmgem,

with pn, + close to 1 and 6,, + close to 0, uniformly for every m € R and all 2 € Sg,, with
’T2| > po and 71 € D(O,pl).
Therefore, we have
P (T)
Q(im)

Let 751 be the roots satisfying

5p.—1 Rpy(im) ky(3p,—1) 0, +
SUER Gy T

ka1 _ -~ Qlm) i, .
2,k Rp,(im)
.

ng?’*lp : |
fork=0,... ,kQ(SDS — 1) — 1. We select the sector Sy, in such a way that if 75 € Sy,, then it
can be expressed as 7o = pelerg,k for some fixed k, some 6 close to 0, § # 0, and any p > 0. We
get

Q(im)
Now, there exists C; > 0 such that

Pm(T) —-1— pkg(SDsfl)eiekQ(Spgfl) — pk2(5D371) _ei6k2(8D371) + 1
ka(SDg_l) .

oL (§ 1
_ibka(3p.—1) >
| e 37 4 koD | = Ch
p
for every p > 0. By construction, we also have ka(sDa*l) = |7'2\’”(5’3371)/|7'27k|k2(5D371). We

deduce the existence of Cy > 0 such that ka(Sszl) > CQ|TQ|’“2(SD3*1).
As a result, we see that

(30) > 0102‘72’@(5133—1)’

’Pm(T)
Q(im)

for every 1 € Sy, with |m| > po and 71 € D(0, p1), for some small enough p; > 0.

2. Assume that 71 € Sy, with |71]| > p1 for some fixed p; > 0, and 72 € Sy, .

We select Sy, in such a way that for 71 € Sy, one can write

k2845 —=8py)

1
o TR Rp.(tm k18p
T = 5161017-2 th <RD 3D( (Z'I’?’L)) ' )
1,72

(here, we have chosen any particular 1/k;0p, root), for some & > 0 and 6; close to 0, when
Ty € Sg,. Since |11| > p1, we have that & > v > 0 for some fixed v; > 0.

Remark: This factorization is a particular case of a so-called blow up in the desingular-
ization procedure. We refer to the excellent textbook of Y. Ilyashenko and S. Yakovenko [11],
Chapter 1, Section 8, for an introduction to the geometric aspects.
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We write
Pm(T) 1 + k’Q(SDS_].) kl(SDl RDJ (Zm) k'(SDl k5D2_1ei91k16D1 n §D371
= T. — ——
Q(im) ? boQum) \ T k190,

Again, taking into account (10) one can select a sector Sy, which additionally satisfies

. = SD -1
1 Rp,(tm) , é6p, ,0p,—1 ’
— D3.( )(lel k2D2 e101k16D, + %CT) >C >0,
k2o ki, Q(im) S
Ty 51 !

for some C' > 0, valid for every m € Sg,, and & > v1 > 0. As a result, we get

Py (T)
Q(im)

> O [F19P1 |y k2005~ 1)

@) |

RD1,D2 (Zm)
RD3 (Zm)

)

=C|n ’k15D1 ‘7_2"62(5%—1)

‘ > é‘ﬁ‘lﬂépl ‘TZIICQ(SDQ—U
for some C' > 0 and all m € R.
As a summary, we have achieved the following result.

Proposition 2 There exist di,do € R and p1 > 0 such that for every m € R and all m €
D(0,p1) U Sy, , T2 € S4, one has

‘ Dn(T)
Q(im)

for some C > 0, and where f(7) is defined by

(32) ‘ > C(L+ || )P f(r),

f(r) = { (1+|nff2)%2s~t if |n|<p

(14 |2[*2)°P2=1 i || > pr.
Remark: Without loss of generality, we may assume that p; < p, where p > 0 is the radius
of the disc of holomorphy with respect to the first time variable appearing in Section 2.2.

3.2 Fixed point of a convolution operator in Banach spaces

The main purpose of this section is to obtain the existence of a fixed point on certain operator
defined in a Banach space. It will allow us to construct the analytic solution of the main problem
under study, (12).
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For every e € D(0,¢p) \ {0}, we consider the operator H. defined by

(33) He(w(T,m))
—(k1711)P1 Ap, (1)

RD1,D2 (im)w(Ta m) -AD1 (Tl)RDl,DQ (im)w(Tv m)

Po(T) ki I C
1 Ap, (1) 1 Ap,(m) ,
- Pm(T)ADl( ) bk Rp,,p, (im)w(T,m) — Pm(T)WRDg(lm)W(ﬂm)
: 6_1 Tfl 7-2 — S ki m m
T B(™) (2m)3 ot (1 + %) / ?) / / / i 1):€)

1 L dzodsidmid
X w((TFr = s1)%1, (s2 — 2) %2 ,m — m1) Py(imy, €)w (s1 ,wQ 2 my) L2051 05

(TR — 5181 (52 — o) 22

k
1 5 % T
+ P, Z EAllhidll7d12+611+51271'Rl1 l2 (Zm) d S d
T ’ 11,k lo,k
m( )OSI;SID%A k2F< 11911>F(%)
‘7: 9
ko k1
To 1 Ak 1 4y, 1.6, & dsy ds
- k 1 2
/ / (it — sy B e ) R e (o gy 01 092
0 0 S1 S2
ko
e ! 2 = d52

_l’_

52

T. - ki
ko P (T)T (1+1<;12>/0 (7572 — s9) "2 (11, 892 , M, €) ——

Proposition 3 Assume that the hypotheses (5)-(10) hold. There exist w,&, R > 0 such that if

||7/’k(7'am)||(y,ﬁ,u,k,e) <¢, max{R, Ro} < R,

, where Ry, Ry are the geometric conditions determined in (11), for all € € D(0,¢e9) \ {0}. Then,
the operator H, defined in (33) admits a unique fived point wd(T,m,€) € F(‘flﬂuke) such that
ng(‘r,m, G)H(V,,B”u,,k,e) < w, for all e € D(0,¢) \ {0}.

Proof Take di,ds € R and p; > 0 determined in Proposition 2. First, we apply Lemma 2 and
Lemma 3 to get that

Tkl&DlR (tm) 7° =
(34) ‘ 1 PD(17-1))2 / (152 — 52)°P2 P2 (1, 557 m)dso
" 0 (v,Bopske)
Cr | Bpy.p,(im) lw(r, m)ll
=0 ;}é Q(im) v.Bmk.e)
for every 1 < pg < 5D2 —1.
In view of Lemma 2 and Lemma 4 we have
kaGps—1) Rpy py (im) o [T1 .
(35) 7'22( D21)D]13’D(27_)Tf1/ (Tfl - 81)5D17p1’13’1’1_1w(5f1 , T2, m)dsy
m 0 (vBupaikse)
Cl ’TQIkQ(SDZ_l) | ( )|
< — su = su - w(T,m ,
ST L et a2 10 T s
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for every 1 < p; <dp, — 1.
Moreover, from Lemma 2 and Lemma 5 we have

(36) 7'1 RD1 D2 im / / L 5D2 —p2—1 s~ 1(7’{7Cl —31)‘5131_1’1_1311)1_1
Cl RD D zm
Xw (s 552, m)ds1dss <= — = [lw(T,m) || :
e wBuke O mer| Q(im) (Pl
for every 1 < py §6D1—1and1§p2§5D2—1.
We apply Lemma 2 and Lemma 3 to get
1 752 . a
60 | [ s g (s m)ds,
e (v, 6)
1 1
< — sup - o) s
for every 1 < p3 < 5D3 —1.
Regarding Lemma 2 and Lemma 7, we deduce that
CO - '“/( 2 ) oo/rfl " Pyitm —m), 0
T To~ — S92 1e(m —mq), €
Pu(m) " Jo ? —00 J0 0
1 1 . £ L d:UQdSldmldSQ
xw((TF = s1)%1, (s9 — 2) %2 ,m — my) Pa(imy, €)w(st, 252 ,my) o
(" = s1)s1(52 — @2) 72

C3

maxmeRr ]Q(zm

< el

)| ||w(7-’ m) ||?V7,B,u,k,e)

We apply Lemma 2 and Lemma 5 to get

diy Kk diy Kk H
l,l 1k q 2,72 1 &, —1 6;,—1
(39) H 1,62 k1 / / k1 (7_§2 _ 82) ko 31 1 822

Ry g, (im)
Q(zm) Hw(Tﬁm)H(u,ﬁ,y,k,e)

X W (31 ,32 ,m)dsidsy

Wbk O mer

for every 0 <1; < Dj —1, for j = 1,2.
Finally, the application of Lemma 2 and Lemma 6 yield
(40)

ko 1

1 T2 k 1 dSQ
Pm(T)/o (152 — s2)F2 (71, 552 , M, €) —

52

Cq

SC”%R@()HHWM )| 8, 11k.6)

(V7ﬁ7/”’7k7€)

Take small enough @, &, g > 0 and assume that

RD1,D2 (Zm)

Q(im)

Rp,(im)
Q(im)

sup
meR

’ < R and sup
meR

n
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in such a way that

sp. C1R |A5D 7102‘ 5p,—1C1R |A6D 7p1|
A R D VI i s A DR i
1<p2<bp,—1 Dy — P2 1<p1<ép, —1 !
CiR Z Z ‘A(le p1 | ’ASDQ P2 |
O ap Sy -1 1<p2<bp,—1 L0, =P T (0p, —p2)
CiR 145, sl 1 1 1
1<ps<bp,—1 I'(0p; = ps) mer [Q(im)] (27)2 k2T (1+ 77)
. , 81y 4 01,1
Cl A11712—5D1k1—5D2k2+k2—1 Rll,[2 (Zm) kl k2
+ el Z 60 3 di, i di, 1 w
0<1,<D; mer| Q(m) | < 3 1) r ( 7 2)
=12
C 1
+ ! §<w.

sup -
Clar (1+ ) mes [Q0m)

Taking into account (34-40) and (41), we get that H.(D(0,w)) € D(0, ). Here, ﬁ(O,w)

stands for the closed disc of radius w centered at the origin in the Banach space F( Buike)

Now, let wy,wy € F( Bk With |\wj(7',m)||(”ﬁ,u,k75) < w. We now prove that

1
(42) HHG(wl) - HG(WQ)H(V,B,M,k,é) < 5 ”wl - WQH(V,ﬁ,u,k,é) .

At this point, the classical contractive mapping theorem acting on the complete metric space
D(0,w) C F( B.uk,c) Suarantees the existence of a fixed point for He. Let us check (42).
Analogous ‘estimates as in the first part of the proof yield

(43)
k15D1 . k 1 1
R ™ B 1 E
n D10 (i) j/ (152 — 82)°P2 P21 sB2 N (1) (7, 552 m) — wa(T1, 852, m))ds2
Fru(T) 0 (v ot ke)
< EEBLTLH ) — wa(r,m)l,

for every 1 < py <4 D, — 1. Also Lemma 2 and Lemma 4 yield

(44)

k2(8p,—1) R im T _ = =
7‘22( py=1) Epy,p, (im) )7‘1’“1 / (rhr — g1)001TP1mLgh l(wl(sfl ,T2,m) — wa(sy', T2, m))dsy
P(T) 0

(V7/87)u/7k’6)
< ﬁ sup ’T2|k2(6D2_1) sup
- C T2€54, (1 + ‘7’2’]@)6’%71 meR ’Q(Zm”

”wl (T7 m) - wQ(Tﬂ m) H(u,ﬁ,,u,k,e) )

for every 1 <p; <Jp, — 1. Lemma 2 and Lemma 5 guarantee that
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RD D, (im) —pa—1 pa—1 —pi—1.p1—1
(45) Dy, D \U1TY) 2 2 _ 59) 6/32 D2 181292 (T{u _31)5D1 P1 1311?1

11
(wl(sl ,52 ,m)—wl(sfl,s§2,m))dsld82

(V,B u,k €)
C? Rp,.p,(im)
— —_— T, m ,
= R Q(zm ”w )H (v,B,u,k,€)

for every 1 < py S&Dl—land1§p2§502—l.
We apply Lemma 2 and Lemma 3 to get

1 732 . B 1 1
(46) / (7_562 - 82)5D3 —p3—18]273 l(wl (7—17 852 ’ m) — w2 (7—17 852 3 m))dSQ
0

P, (7)

(V1/87/J'7k’6)
1

< L sup

C meR

) = w2 (T m) |y ke

for every 1 < p3 < ng — 1.
In order to study the convolution operator, we need to give some details on the procedure.
Put

W = wi((r = s1)", (52— 22) %2 m = my) — wa((m1 — $1)%, (52 — 22) /2, m — my),
and Wy := wl(s}/kl,xé/b, my) — wg(si/kl,xé/b,ml). Then, taking into account that
. 1/k‘1 1/]{32 . 1/k1 1/k2
(47) Pi(i(m —mq), €)wi((11 —s1) 7", (s2 — x2) ™2, m — my) Pa(imy, €wi (s, x5! ™2, my)
— Pi(i(m —m1), e)wa (11 — s1)"*1, (82 — 22)*2 m — my) Pa(im, )Wz(é’l/kl, ;ﬂwﬂm)

= Pi(i(m —my), €)Wy Pa(imyq, e)wl(s}/kl , xé/kQ, my)
+ Pl( (m ml) )(.UQ((Tl — 81)1/k1, (82 — 1‘2)1/k2,m — ’ml)Pg(iml, 6)W2,

and due to Lemma 2 and Lemma 7, we proceed with analogous estimates as in (38) to get that

1 k1 2 k
0 |t [ et [ [ o
x (wi((rf" —81)% (s 2—962)"2 m —my) — wa((F! —51)’% (s 2—$2)%,m—m1))
ng(iml,e)(wl(sf%,xf?,ml) —wg(sf‘%,x;%,ml)) ? daydsidmidsy
(" = s1)s1(82 — 72) 72
<fd—— it U m s+ 1m0 ) e (7m) = 2 m)

maXmER‘Q ?
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Finally, we apply Lemma 2 and Lemma 5 to get

(im) dyky digks 1 5 1 &5 —1
(49) 17 2 kl/ / _ 81 k1 1(7_532 _ 52) ko 18111 82l2
TS
x(w1(31 ,52 ,m)—wg(sll,sf,m))dsld@
(VB k6)
1 Ry, 1, (im)
< 6 up W ||w1 T m) Q(Tvm)”(u,ﬁ,,u,,k,e)

for every 1 <1; < Dj —1, for j = 1,2.
We choose small enough w, ¢y > 0 and assume that

R ' Rp, (i
sup W’SR and sup M‘gR,
meR Q(im) mer | Q(im)
to satisfy
CiR 450, 02! p,~1CiR Asp,
R L
1<ps<ip,—1 (0D, = p2) 1<p1<dp,—1 * D1 2
CiR Z Z |A5D1 1 | ‘ASDQ y |
C 11 S0, 1 1<y 1 L'(0p, —p1) T(0p, — p2)
CiR 1450, psl 1 1 1
é Z _ _Obaybs’ + 2C3 sup - T W
1<p3<dp,—1 T(0p; —ps) mer [Q(Im)] (2m)2 kal'(1+ ;)
- . 81y 4 01,1
+ Cl Z EAll,l2_5D1k1_6D2k2+k2_1 RllylZ (Zm)‘ ]{1 kQ
1 0 '
0<l;<D;-1 mer | Q(im) I (%) T <d1271k2)
71=1,2
1
< —.
-2
Then, (42) holds, and the proof is complete. O

The following is a direct consequence of the previous result.

Corollary 1 The function wg(r,m, €), obtained in Proposition 3 is a continuous function in
(D(0,p) USg,) x Sa, x R x D(0,¢)\ {0}, and holomorphic with respect to T in the set (D(0, p)U
Say) X Sa, and on D(0,€p) \ {0} with respect to the perturbation parameter €. Moreover, it turns
out to be a solution of (23), which satisfies there exists w > 0 such that

T+ [2P% T+ 2P

(50)  lwfi(r,m. )| < @(1+ ml)~" exp(—Blm| + 11| 4 | 2 [12),

fOT“ every (Tvmv 6) € (E(O,p) U Sdl) X Sdz X R x D(Ov 60) \ {0}
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4 Family of analytic solutions of the main problem

In this section, we consider the main problem under study, namely (12), under the conditions
(5)-(7) on the parameters involved, and also on the geometry of the problem, (8)-(10). In order
to construct the analytic solution of the problem, we recall the definition of a good covering in
C*.

Definition 3 Let 1,52 > 2 be integer numbers. Let {Ep, p, }o<pi<a—1 be a finite family of open
0<p2<¢2—1
sectors with vertex at 0, and radius eg. In addition to this, we assume the opening of every

sector is chosen to be slightly larger than m/ks in the case that ki < ko, and slightly larger than
w/k1 in case ky < kj.
We assume that the intersection of three different sectors in the good covering is empty, and

Uo<pr<ci—1Ep1ps = U \ {0}, for some neighborhood of 0, U € C. Such set of sectors is called a
0<p2<e—1
good covering in C*.

Definition 4 Let 1,50 > 2 and {&p, p, bo<pi<ci—1 be a good covering in C*. Let T; be open
0<p2<¢2—1
bounded sectors centered at 0 with radius r7; for j € {1,2}, and consider two families of sectors

as follows: let
Sopy b1.corr, = 111 € CY/ITh| <eory [0y, —arg(Th)| < 61/2},

={T e C"/|s| < eor; , [0p, —arg(T2)| < 02/2},

0py,02,€0TT,

with opening 0; > mw/k;, and where Dp176p2 ER, forall0<p1 <gq—1and0<py<g—1is
the couple of directions dy,d> € R mentioned in Proposition 2, whenever &y, ,, is the domain of
definition of the perturbation parameter €.

In addition to that, the sectors Sy, 0, cory, and Sap2’927€OTT
G1—1,0<p2<q—-1,tcTi xTa, and € € &, p,, one has

are such that for all 0 < p1 <

€t € Saplﬁh and ety € Sﬁ

€0TTy po:02,€0T T,

We say that the family {(Ss,, 01,cor7, J0<p1<ci -1 (Sﬁp2,92,607‘72)0§P2§<2—17Tl x Ta} is associated to

the good covering {Ep, py Yo<pi<ci—1-
0<p2<ga—1

Let 1,62 > 2 and {&p, p, Jo<pi<ci—1 be a good covering in C*. We assume the family
0<p2<ca—1
{(Ss,, O1,c077, )o<pi<ci—1, (551}2792,60”2)0§p2§§2,1, T1 x T2} is associated to the previous good cov-
ering.

The existence of a solution wg(7,m, €) of the auxiliary problem (23) turns out to provide an
actual solution of the main problem via Laplace and Fourier transform, in view of the constraints
satisfied by w,ccl(T, m, €), see (50). More precisely, for every 0 < p; < ¢ and 0 < ps < ¢ — 1, the
function

(51)

ki1ko oo a 2 —(BLyky (X2 YKo du2 duq
Upy py (t, 2, €) P (ur, ug, m, €)e ()™ —(G5)™ gizm QU2 41
L L

(2m)1/2 uz U
Tp1 Tpo

is holomorphic on the domain (73 N D(0, ")) x (T UD(0,h")) X Hg' X Ep, py, for any 0 < ' <
and some h' > 0.
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The first main result of the present work is devoted to the construction of a family of actual
holomorphic solutions to the equation (12) for null initial data. Each of the elements in the family
of solutions is associated to an element of a good covering with respect to the complex parameter
€. The strategy leans on the control of the difference of two solutions defined in domains with
nonempty intersection with respect to the perturbation parameter e. The construction of each
analytic solution in terms of two Laplace transforms in different time variables requires to
distinguish different cases, depending on the coincidence of the integration paths or not.

Theorem 1 Let the hypotheses of Proposition 8 hold. Then, for every element &, ,, in the
good covering in C*, there exists a solution up, p,(t,z,€) of the main problem under study (12)
defined and holomorphic on (T1 N D(0,h")) x (T2 U D(0,h")) X Hgr X Ep, p,, for any 0 < 5/ <
and some h' > 0.

Moreover, for every two different multiindices (p1,p2), (P}, 05) € {0,...,c1—1} x{0,..., 60—
1}, one of the following situations hold:

o Case 1: Epyp, NEy = 10.

o Case 2: Epy po NEy py # 0. The path L., coincides with L, , but L, does not coincide
2
with va, . Then, it holds that
1
Mp

(52) sup |up17p2 (tvzve) - Uplppé(t,z,e)‘ < er_le‘kl )
tE(TIND(O1")) X (TaND(0,h")) 2€ Hy

for every € € &y p, N Eyy - In that case, we say that ((p1,p2), (P}, p3)) belongs to the
subset Uy, of {0,...,61 —1} x {0,...,6 — 1}.

o Case 3: &y, p, NEy py # 0. Neither, the path L, coincides with Ly, , nor Ly, coincides
2
with L,yp/ . Then, it holds that
1
(53)

Mp Mp
- k k
sup [Uup, po(t, 2, €) — Upt ot (t,z,€)| < Kpmax {e lel®1 g lel*2 } ’
te(TiND(0,h"))x (T2ND(0,h")),2€H g1

Jor every € € Ep, py NEY 11 -
Proof The existence of the solution uy, ,,(t, 2, €), for every 0 < p; < ¢ and 0 < py < ¢ —11is
guaranteed from the construction described previously.

We now give proof for the second statement of the result, namely, the existence of an exponen-
tial decay to 0, with respect to the perturbation parameter, of the difference of two consecutive
solutions in the good covering, uniformly with respect to (¢, z).

The proof is close to that of Theorem 1 in [12], but for the sake of clarity, we give a complete
description.

Case 2: Assume that the path L,,, coincides with L7p/2, and L., does not coincide with

L, ,. Then, using that uy wzpl’am (ug,ug, m,€) exp(—(éi—ll)kl)/ul is holomorphic on D(0, p)

for all (m,€) € R x (D(0,€) \ {0}), and every us € L, , one can deform one of the integration
paths and write

- k1 s ky
Oy 0 —(#) " dw py 0 —(#) " du

I = / wkpl P2 (UI; ug, m, 6)6 ety et S wkm P2 (Uh ug, m, 6)6 ety 7
L"/pl U1 L'Ypll

Ui
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in the form

op. 0 — (M vk dug
/ wkpl " (ula Uz, m, 6)6 (etl )
u
Lm/?ﬁm 1
%1 :9ps —(yk duy
- / Wi (ula Uz, m, 6)6 1 u
P1/2:7 1 1
0py,0 u1 vk duq
+/ Wkpl pz(u17u25m7 6)6 (etl)
C Uy

P1 /27717/1 1

where Ly, 9, = [p1/2, +o00)edr Lp1/2ryp/1 = [p1/2,400)e "t and Cﬂl/lvp/l -, 1S an arc of circle

connecting (p1/ 2)62'7,,/1 and (p1/2)e"»1 with the adequate orientation. The positive real number
p1 is determined in Proposition 2.

We get the existence of constants C + > (0 such that

p1.04 Mpy )
M /
gimi__1"¢] oy~
[ =c PL.P) ap1,6p2(1+|m‘) e mmex (1/2| |2) le]*1
€

for t1 € TN D(0, 1) and € € &y, p, N Eyy py, and ug € L, . We have

(54) ‘um,m (t,z,€) — Up! pl, (t,2z,¢)]

kik >
< (2;)12/2 Cpl,p/l (/ (1+ |m|)_Me—ﬁlmle—mllm(zﬂdm)

x/ &ex (va] 2 |F2) exp(— [ L2 "
Lo, L4 [ PR P e

Tp

M /
P1,P]
leF1

dus

U2

The last integral is estimated via the reparametrization ug = rerz V=T and the change of variable

r = |e|s by o
/ ! ¢ 025" ds,
0 1 + 82

for some 3 > 0, whenever ty € To N D(0,h').
The estimates given in the enunciate of Case 2 follows from here.
Case 3: Assume that neither L, ~p, Coincides with va, , nor Ly, coincides with L%, .
1 2

Pl 70172

Owing to the fact that uy +— w), (u1,u2, m,€) exp(—(zf—ll)kl)/ul is holomorphic on D(0, p)
for all (m,e€) € R x (D(0,¢0) \ {0}), and every ug € L,,, we deform the integration paths with
respect to the first time variable and write

Upy o (B, 2, €) — gy (8, 2,€) = J1 = Jo + J,
where

oo -
o1 €t1 d’LL2 dul
/ / wkpl " (UI; uz,m, E)e (etl )k (€t2) M g, S22 .
L —_

u2 U1

k1ks /
271' (9.-\1/2 Lopy 1 .

k1ko a,a, C(MLyky_(X2)\koy duso duq
- 2 1/2 Ul,UQ,m, E)e (Etl) (EtQ) ezzmdm :
ﬂ- W | )1 L'y A - uz U1
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.

\\ i
Loy, L2 Loy,
\, ’

Figure 2: Path deformation in Case 3

£1 0

k1ks 2 o Opy D _ (22 yk2 dug
J3 = —"— wy, 7 (ur, ug, m, €)e (G5) 242
21 u
m 0 —0o0 L’ng 2
0,0, (82 \ks du . — (M yk1 du
PP 2 1 1
—/ wy 2 (ur, ug,m,e)e ()" 202 | pizm g, | o~ () —,
L U2 Ul
Y,
P

2

where %eie is such that ¢ is an argument between ,, and v, . The path L, 1 (resp. pr, 1)
1

. . . . 0 . ; . Y,
consists of the concatenation of the arc of circle connecting 2-e? with BLe*r1 (resp. with e 71)

. 2
and the half line [£-e?1, 00) (resp. [Ze'"1,00)).
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We first give estimates for |J1|. We have

~ ul
0py,0py _(2722)]@@ < . 1 —p ,—B|m| |?| E k1
[ e m g B < ok e el
|2 ug | k2 —(ﬂ)k2 duz
<[ (i ewton ]2 ") e (B)7) |22
L, \Trmpe Pl | "
2

—u - Ut
< Ty, iy, O (L [ml) e i exp(| 2™,
€
for some Cp, > 0, and t2 € T N D(0,h’). Using the parametrization uy = re2V=1 and the
change of variable r = |e|s. Using analogous estimations as in the Case 1, we arrive at

R

p,1

|J1] < Cpae 1dF1

for some Cp 1, Mp1 > 0, for all € € &, 5, N 5p’1,p’27
z€H B
Analogous calculations yield to

where t; € Ty N D(0,1') and to2 € TN D(0, k'),

R

P,

|J2] < Cpoe 1F1

for some Cp2, Mp 2 > 0, for all € € &, p, NEY, 11,
z€H B
In order to give upper bounds for |J3|, we consider

where t; € 71N D(0,h") and t2 € TN D(0,h'),

0 D _(22yk2 dus 0, 0, _(22yk2 dus
/ wy P (ug, ug, m, €)e S wy b2 (w1, uz, m,€)e ()7 22 )
L L

Uz
Tp2o ’Yp/2

Since u; belongs to the disc D(0, p1), we know that the function

P1 75102 (

0
Ug > Wy g, Uz, M, €)e

is holomorphic on the disc D(0, p). In this framework, one is able to deform the integration path
in order to write the difference as the next sum

py 50 — (22 k3 dug
/ wkpl p2(u1,’UJ27m,€)€ (Etz)
u
LP1/27"/p2 2
0y 10 (22 \k2 dug
_/ wy T (ug, ug, m, €)e (@) e
L 2
91/2”Yp/
s D (42 ko dug
—i—/ wi M (ug, ug, m, €)e (&)™ 242
C u2

P1 /27717/2 Tpo

We get the previous expression is upper estimated by

w| u M, .
C. (1 —ng—plm| |’ 2Lk _h2p
p2,p2( + |77’L|) € 1+ ’%Pkl exp(y1| € | )exp |6|k2 3

. ~
apl ’OPQ
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for € € Epy py NEp 11 s t2 € TN D(0, 1), ug € [0, p1/2¢%]. We finally get

(N

kiko OO —p,—Bm| —m|Im(z
|J3] < (277)1/2Cp2vp/2w0p175p2 (/OO(1+ Im|) e Blm| o —m|lm( )|dm>

p1/2¢% uy (w4
(/ i el e ()|
0

k
T+ 2R

We conclude that

|J3] < Kpze 1<%

uniformly for (t1,t2) € (71 N D(0,h")) x (T2 N D(0,1”)) for some h” > 0, and z € Hg for any
fixed 8’ < B, where Ky 3, Mp 3 are positive constants.
O
Remark: Observe that, in case that the path L, —coincides with L, ,, but L., does not
1 P p2

coincide with L%, , then it is not possible to obtain estimates on the difference of two solutions
2

in the form exp(—M/|e|*?), as it happens in Case 2. The reason is that we can not deform the

P1’6P2(

0,0,
. . v : .
path L., — va, since the function w, T,m,€) and wkp1 2 (T, m,€) are not holomorphic
2

on a disc centered at 0 respect to 7.

5 Asymptotics of the problem in the perturbation parameter

5.1 k—Summable formal series and Ramis-Sibuya Theorem

For the sake of completeness, we recall the definition of k—Borel summability of formal series
with coefficients in a Banach space, and Ramis-Sibuya Theorem. A reference for the details on
the first part is [1], whilst the second part of this section can be found in [2], p. 121, and [10],
Lemma XI-2-6.

Definition 5 Let k > 1 be an integer. A formal series

00 a
X(e) = ,—{e] € F[[e]]
=0
with coefficients in a Banach space (F,||.||r) is said to be k—summable with respect to € in the

direction d € R if

i) there exists p € Ry such that the following formal series, called formal Borel transform of
X of order k

B () = M e F[r]),

is absolutely convergent for |T| < p,

ii) there exists § > 0 such that the series Bi(X)(7) can be analytically continued with respect
to T in a sector Sg5 = {T € C* : |d — arg(7)| < d}. Moreover, there exist C > 0, and K > 0
such that
IBE)(7)le < CeXIm

forall T € S45.
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If this is so, the vector valued Laplace transform of order k of By(X)(7) in the direction d is
defined by
LEBX)) () = | Bu(X)(w)e™ @) kuF 1 du,
L'Y
along a half-line L, = Rye?™ C Sy5U {0}, where v depends on € and is chosen in such a way
that cos(k(y — arg(e))) > d; > 0, for some fixed 1, for all € in a sector

Sporme =1e€C el < RYk | |d —arg(e)| < 0/2},

where T <60 < T +20 and 0 < R < 01/K. The function LH(Br(X))(e) is called the k—sum of
the formal series X (¢) in the direction d. It is bounded and holomorphic on the sector Sa.0.R1/k

and has the formal series X (e) as Gevrey asymptotic expansion of order 1/k with respect to €
on S, g pi/e. This means that for all 7 < 601 <0, there exist C, M > 0 such that

n—1
d % ap n n n
||£3: (B (X)) (€) — pZ::O EGPHF < CMTT(1+ el

foralln >1,alle € S, pin.

Multisummability of a formal power series is a recursive process that allows to compute the
sum of a formal power series in different Gevrey orders. One of the approaches to multisumma-
bility is that stated by W. Balser, which can be found in [1], Theorem 1, p.57. Roughly speaking,
given a formal power series f which can be decomposed into a sum f(z) = f1(z) + ... + fm(2)
such that each of the terms fj(z) is kj-summable, with sum given by f;, then, f turns out to be
multisummable, and its multisum is given by fi1(z) + ...+ fin(z). More precisely, one has the

following definition.

Definition 6 Let (F,|-||p) be a complex Banach space and let 0 < ky < k1. Let € be a bounded
open sector with vertex at 0, and opening Z—l + 61 for some 01 > 0, and let F be a bounded open

sector with vertex at the origin in C, with opening k% + 93, for some d9 > 0 and such that £ C F
holds.

A formal power series f(€) € F|[e]] is said to be (ki, ko)—summable on & if there exist fo(e) €
F([e]] which is ko—summable on F, with ko-sum given by fo : F — F, and fi(e) € F[[e] which
is k1—summable on £, with ki-sum given by f1 : € — F, such that f = f1 + fz. Furthermore,
the holomorphic function f(e) = fi(€) + fa(€) on € is called the (ki,ko)—sum of f on E. In
that situation, f(€) can be obtained from the analytic continuation of the ko— Borel transform of
f by the successive application of accelerator operators and Laplace transform of order ki, see
Section 6.1 in [1].

We recall the reader the classical version of Ramis-Sibuya Theorem for the Gevrey asymp-

totics as stated in [10] in the framework of our good covering {&p, p, to<pi<c—1, given above in
0<p2<e2—1
Definition 3.

Theorem (RS) Let 0 < ki < ko be integer numbers. Let (F,||.||r) be a Banach space over C and

0<p<c—1 be a good covering in C*, such that the aperture of every sector is slightly larger

Epi po JO<pr1<a—1 b d ing in C* h that th 3 tor s slightly [
0<p2<¢2—1

than m/ky. For all0 < p; < —1,0 <py < —1, let Gp, p, be a holomorphic function from

Ep,po into the Banach space (F,||.|[r) and let the cocycle Oy, py)(p, pt)(€) = Gy po(€) — Gy (€)
be a holomorphic function from the sector Z(p1,p2), (0 0y = Eprpa N 5p37p§ # () into E. We make
the following assumptions.
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1) The functions Gp, p,(€) are bounded as € € &y, 5, tends to the origin in C, for all 0 < p; <
gi—1and all0 <py < g —1.

2) The functions Oy, 1), py)(€) are exponentially flat of order 1/ki on Zg, b))t py)s for
all 0 < pl,p’1 < ¢ -1, and 0 < pg,p’2 < ¢ — 1. This means that there exist constants
c A > 0 such that

P1,p2,P},05 £3P1,p2,P),0h

-4 fleli
H® (p1,p2)( ( )HIF < Pl,pQ,pl,p’Qe P1.P2,P] Ph

for all e € Z allogpl,p’lgq—l and 0 < po, ph < g9 — 1.

P1,p2),(P],p5)?

Then, for all0 < p; <wv; —1 and 0 < py < ¢ — 1, the functions Gy, p,(€) admit a common
formal power series C’(e) € Fle]] as asymptotic expansion of Gevrey order 1/k;.

A novel version of Ramis-Sibuya Theorem has been developed in [25], and has provided
successful results in previous works by the authors, [14], [15, 12]. A version of the result in two
different levels which fits our needs is now given without proof, which can be found in [14], [15].

Theorem (multilevel-RS) Assume that 0 < kg < k1 are integer numbers. Let (F,||.||r) be a

Banach space over C and {&p, p, to<pi<ai—1 be a good covering in C*, where all the sectors have
0<p2<¢2—1
an opening slightly larger than 7/k1. For all0 <p; <¢ —1 and 0 < pa < ¢ —1, let Gp, p, be a

holomorphic function from &y, p, into the Banach space (F, ||.||r) and for every (p1,p2), (P}, p5) €
{0,...,61—1}x{0,...,sa—1} such that Sphpzﬂé’ ' £ () we define © pl’m)(p,l’pé)(e) = Gy po(€)—
G, (€) be a holomorphic function from the sector Zip1p2) () = Eprope N Ept py, into F. We
make the following assumptions.

1) The functions Gp, p,(€) are bounded as € € &y, 5, tends to the origin in C, for all 0 < p; <
Gi—1land 0 <ps <g—1.

2) ({0,...,61 — 1} x {0,...,5})?% = Uy Uly, UUy,, where
((plap2)7 (pllupé)) € UO Zﬁ 5?17132 N gp1 Pz @
((plap2)7 (pllvpé)) S uk’l Zﬁ 51’14’2 N 8 Db 7& @ and

k
e Am,pz,p’l,p&/lel !
p1,p2,p1,p2

11©( r<C

(p1,p2),(P1.05) ( )’

for-all e € Zipy po) (i)
((plaPZ)’ (p17p2)) € Z/{k2 Zﬁ EPLPZ N gp’l,p; 7& 0 and

k
e Ap1p2p’p'/||2

H@ (p1,p2),(P},p ( )HF < P1,P2,07 .05

foralle e Z A
(p1,p2), (P} P5)
Then, there exists a convergent power series a(e) € F{e} and two formal power series

G(e), G2(e) € F[[e]] such that Gy, p,(€) can be split in the form

2
GP17P2( )_ ( )+G;1p2< )+Gp1,p2( )
where G;{n,pz (€) € O(&pypo,F), and admits Gj(e) as its asymptotic expansion of Gevrey order
1/k;j on &y, p,, for j € {1,2}.
Moreover, assume that

{((%,9), (01, 03)), (. p3) W1 13)), -, (03 03 ), (7Y, p3Y))}
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s a subset of Uy, , for some positive integer y, and

Epypy S Srky U Ei i,

p1,P3
0<5<2y

Jor some sector Sy, with opening larger than 7/ko. Then, the formal power series G(e) 18
(k1, k2)—summable on Eyy v and its (ki, kg)—sum is Gy u(€) on E .

5.2 Formal solution and asymptotic behavior in the complex parameter

The second and third main results state the existence of a formal power series in the perturbation
parameter €, with coefficients in the Banach space F of holomorphic and bounded functions on
(Ti N D(0,h")) x (T2 N D(0,h")) x Hg, with the norm of the supremum. Here h”, T;, 75 are
determined in Theorem 1.

It is worth observing the different asymptotic behavior of the analytic solutions of the prob-
lem depending on k; and ko. More precisely, in case that k; < ko, Theorem 2 shows a Gevrey
estimates occurrence, whilst ko < k; displays a multisummability phenomenon; in contrast to
the results observed in [12], where multisummability is always observed.

Theorem 2 Let ko > k1. Under the assumptions of Theorem 1, a formal power series

i(t,z,€) = Y Hm(t, 2)e™/m) € Fl[e]]

m2>0

exists, with the following properties. 4 is a formal solution of (12). Moreover, for every p; €
{0,...,61 =1} and p2 € {0, ..., 52 — 1}, the function up, p,(t, 2, €) admits u(t, z, €) as asymptotic
expansion of Gevrey order 1/ki. This means that

m N
sup Up, po (L, 2, €) tht z)6 <CMN T+ )MN,
te(TiND(0,h"))x (T2ND(0,h")),2E€ Hgs m! k1

for every € € &, p, and all integer N > 0.

Proof Let (up, p,(t, 2, €))o<p,<c;—1 be the family constructed in Theorem 1. We recall that
0<p2<¢2—1
(Ep1 p2)o<pi<ci—1 1s a good covering in C*, with all its components being finite sectors of opening
0<p2<¢2—1
slightly larger than 7 /k;.

The function Gy, p,(€) = (t1,t2,2) = Up, p, (t1, L2, 2, €) belongs to O(Ep, p,,F). We consider
{(p1,p2), (P}, p5)} such that (p1,p2) and (p},ph) belong to {0,...,¢1 — 1} x {0,...,¢0 — 1},
and &, p, and &,y are consecutive sectors in the good covering, so their intersection is not
empty. In view of (52) and (53), one has that A, p,) (ot p) (€) 1= Gy pa(€) — Gy 1y (€) satisfies
exponentially flat bounds of Gevrey order k;, due to Uy, coincides with {0,...,¢1} x{0,...,s}.
Ramis-Sibuya Theorem guarantees the existence of a formal power series G(e) € F[[¢]] such that
Gp, p, admits G(e) as its Gevrey asymptotic expansion of order kj, say

Gle) = ift, z,0) = 3 Hm(t,z)%.

m>0
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Let us check that (¢, z, €) is a formal solution of (12). For every 0 < p; < ¢ —1,0 < py < g —1,
the existence of an asymptotic expansion concerning Gy, p,(€) and G(e) implies that

(55) hm sup |afup17p2 (tv Z, 6) - Hﬁ(t” = 07
€0,6€8p1 93 (t,2)€(T1ND(0,h")) % (12ND(0,h")) X H s

for every £ € N. By construction, the function wy, p,(t,2,€) is a solution of (12). Taking
derivatives of order m > 0 with respect to € on that equation yield

Rion yda 20
(56) Q(0:)0, + Z oM (€A2)tggat2DQ Rp,.p, (82)8?12%01,?2 (t, 2 €)

mi1+mo=m

>0 () 8,7 R, (0:)0  upy o (E, 2, €)

mi1+mo=m

m! my . .
- Z mqlms! ( Z 7|6 1P (0, )86 12up17p2(t>za€))

mi1!lm
mi+mo=m mi1+miz=mi B 12

( > L.O"‘?%(@ >azn22up1,p2<t,z,e>)

mo1!m
m21+ma2=m2 21 22

d d, 5
am1( A, 12) lthlQatfla 12R117l2(82)8?2up17p2 (t,z,e))

+ 01 f (2, €),

for every m > 0 and (¢, 2z,¢) € (1N D(0,1")) x (TaND(0,h")) x Hgr x Ep, p,. Tending € — 0 in
(56) together with (55), we obtain a recursion formula for the coefficients of the formal solution.

m)! )
(57) Q1(0:)Q2(0:)04 O, Hin(t, Z)erthatszDl,Dz(az)Hm A, (¢ 2)
+ thBBtQ 3RD3 (8Z)Hm—Ad (t, Z)

m 'm
mi+mo=m mi11+miz=mi n 12

ma M21
x ( Z m21|m22 0" Py(0z, 0) Hiny (8, Z))

ma1+maa=ma2

|
m: diy ,diy 01, 01
Y R Ry (0 o (12)
0<l,<D (m = A o)
<11 <D1,0<12<D>

+00f(t,2,0),

for every m > max{maxi<;,<p, 1<i,<D, AILZQ,AQ,A?)}, and (¢,z,¢) € (T N D(0,R")) x (T2 N
D(0,Rh")) x Hg. From the analyticity of f with respect to € in a vicinity of the origin we get

(58) f(t,Z,E) _ Z (8:”f)(t,z,0) em

m!
m>0
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for every € € D(0,¢p) and (¢, z) as above. On the other hand, a direct inspection from the
recursion formula (57) and (58) allow us to affirm that the formal power series u(t,z,€) =
> m>0 Hm(t, 2)€™ /m! solves the equation (12). O

Theorem 3 Let ki > ko. Under the assumptions of Theorem 1, a formal power series

ity ty, 2,€) = > hm(t1,ta, 2)€™ /m) € F[[e]]

m>0

exists, with the following properties. 4 is a formal solution of (12). In addition to that, 4 can
be split in the form
u(t, z,€) = a(t, z,€) + u1(t, z,€) + ua(t, z, €),

where a(t, z,€) € F{e}, and 41,02 € Fl[e]]. Moreover, for every p1 € {0,...,¢1 — 1} and pa €
{0,...,5 — 1}, the function up, p,(t, z,€) can be written as

(t,z,€) +u2 (2 €),

Upy po (E,2,€) = a(t, z,€) + ul 51,93

Pp1,p2
where € — uZ,l,pQ (t, z,€) is an F—valued function which admits u;(t, z, €) as its kj— Gevrey asymp-
totic expansion on &y, p,, for j =1,2.

Moreover, assume that

{(®9,29), (01, 23)), ((p1.p3), (03, 93)), -, (T, 05" ), 01, p3"))}

s a subset of Uy, , for some positive integer y, and

Eptpy S S/ky & U gp{',pé’
0<j<2y

for some sector Sy, with opening larger than ©/ks. Then, u(t, 2,€) is (ki1, k2)—summable on

Epp py and its (ky, ko) —sum is uyy v (€) on Ey

DP1,P2 pg :

Proof Let (up, p,(t, 2,€))o<pi<c—1 be the family constructed in Theorem 1. In this case, we
0<p2<¢2—1

@#UkQ ::{0,...,§1—1}X{0,..., 2—1}\Uk1,

and the opening of the sectors in the good covering are of opening slightly larger than 7 /k;.

The function Gy, p,(€) 1= (t1,t2, 2) = Up, p, (t1, 2, 2, €) belongs to O(Ey, p,, F). We consider
{(p1,p2), (P}, p5)} such that (p1,p2) and (p}, p5) belong to {0,...,¢1 — 1} x {0,...,¢0 — 1}, and
Ep pe and &y are consecutive sectors in the good covering, so their intersection is not empty. In
view of (52) and (53), one has that A, 1) () (€) 1= Gp, p, (€) =Gy (€) satisfies exponentially
flat bounds of certain Gevrey order, which is k; in the case that {(p1,p2), (P}, p5)} € Uk, and
ko if {(p1,p2), (P}, Ph)} € Uy,. Multilevel-RS Theorem guarantees the existence of formal power
series G(€), G1(€), Ga(€) € F[[e]] such that

have

~ A~ ~

G(e) = a(e) + Gi(e) + Gafe),

and the splitting
Gprpe(€) = ale) + Gy, p,(€) + Gf, 4, (),



38

for some a € F{e}, such that for every (p1,p2) € {0,...,¢1 —1} x {0,...,62 — 1}, one has that

CA;zln,pz(e) admits @},hm(e) as its Gevrey asymptotic expansion of order k1, and G2 (e) admits

G12>1 1, (€) as its Gevrey asymptotic expansion of order k2. We define

Gle) =it z,e) = Hm(t,z)%.

m>0

Following analogous arguments as in the second part of the proof of Theorem 2, we conclude
that u(t, z, €) is a formal solution of (12). O
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