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On q−asymptotics for linear q−difference-differential equations

with Fuchsian and irregular singularities

Alberto Lastra, Stéphane Malek, Javier Sanz

November, 14 2011

Abstract

We consider a Cauchy problem for some family of linear q−difference-differential equations with Fuchsian
and irregular singularities, that admit a unique formal power series solution in two variables X̂(t, z) for
given formal power series initial conditions. Under suitable conditions and by the application of certain
q−Borel and Laplace transforms (introduced by J.-P. Ramis and C. Zhang), we are able to deal with
the small divisors phenomenon caused by the Fuchsian singularity, and to construct actual holomorphic
solutions of the Cauchy problem whose q−asymptotic expansion in t, uniformly for z in the compact sets
of C, is X̂(t, z). The small divisors’s effect is an increase in the order of q−exponential growth and the
appearance of a power of the factorial in the corresponding q−Gevrey bounds in the asymptotics.

Key words: q−difference-differential equations, q−Laplace transform, formal power series solutions,
q−Gevrey asymptotic expansions, small divisors, Fuchsian and irregular singularities.
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1 Introduction

The second author has studied partial differential equations of the form

(1) t2r2∂r2
t (z∂z)r1∂S

z u(t, z) = F (t, z, ∂t, ∂z)u(t, z)

where S, r1, r2 are nonnegative integers and F is some differential operator with polynomial
coefficients. These equations belong to a class of partial differential equations with both irregular
singularity at t = 0 (in the sense of T. Mandai [21]) and Fuchsian singularity at z = 0. These kind
of problems have been extensively studied in the literature, see for example [1, 4, 9, 11, 20, 30]
for Fuchsian partial differential equations, and [6, 21, 22] for irregular singularities.

It is possible to construct formal power series solutions for the equation (1) of the form
û(t, z) =

∑
m≥0 ûm(t)zm/m!, with coefficients in C[[t]], for given initial data

(2) (∂j
z û)(t, 0) = ûj(t) ∈ C[[t]],

0 ≤ j ≤ S − 1, which are assumed to be 1−Borel summable with respect to t in some direction
d ∈ R.

In the case r1 = 0, it was shown in [18] that the formal series û(t, z) is 1−Borel summable
with respect to t in the direction d if d is well chosen, as series with coefficients in the Banach
space of holomorphic functions near the origin with the supremum norm.
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In the paper [15] the case r1 6= 0 was treated, noticing that the formal series û is in general
no longer 1−Borel summable, but one can show the existence of actual holomorphic solutions
u(t, z) which are Gevrey asymptotic of order larger than 1 to û(t, z) with respect to t in sectors
centered at 0 with finite radius in well chosen directions d ∈ R. The reason for this different
behaviour is the presence of small divisors introduced by the Fuchsian operator (z∂z)r1 . More
precisely, the singularities of the 1−Borel transforms Bûm(τ) accumulate to the origin in C as m
tends to infinity, so that the 1−Borel transform (Bû)(τ, z) with respect to t is only holomorphic
on a sector with infinite radius centered at 0 with respect to τ . This induces a large multiplier
effect on the l−th derivatives with respect to t of the actual solution of (1) constructed with the
classical Borel-Laplace procedure u(t, z) = (LBû)(t, z) which grows like CK ll!Γ(1+γl) for some
C, K > 0 and some γ > 2 that can be expressed in terms of r1,r2, for all l ≥ 0.

In this paper, we study a q−analog of the problem (1), (2), discretized with respect to the
variable t, where ∂t is replaced by the operator (f(qt)− f(t))/(qt− t) for q ∈ C (which formally
tends to ∂t as q tends to 1). Namely, we will consider the following linear q−difference-differential
equation

(3) ((z∂z + 1)r1(tσq)r2 + 1)∂S
z X̂(t, z) =

S−1∑

k=0

bk(z)(tσq)m0,k(∂k
z X̂)(t, zq−m1,k)

with given initial conditions

(4) (∂j
zX̂)(t, 0) = X̂j(t) ∈ C[[t]], 0 ≤ j ≤ S − 1,

where S,m0,k,m1,k are nonnegative integers, for 0 ≤ k ≤ S − 1 and where q ∈ C such that
|q| > 1, σq is the dilation operator defined by (σqX̂)(t, z) = X̂(qt, z), and bk(z) are polynomials
in z. As in previous works [16], [17], the map (t, z) 7→ (qm0,kt, zq−m1,k) is assumed to be a
volume shrinking map, meaning that the modulus of the Jacobian determinant |q|m0,k−m1,k is
less than 1. We will always assume that r2 ≥ 1, while r1 ≥ 0.

Advanced/delayed partial differential equations have also been widely studied, see for ex-
ample [12, 13, 14, 23, 29, 32], and some authors have considered the use of special functions
transforms for the study of the asymptotic properties of the solutions of q−difference-differential
equations [10, 24]. Our present work is a contribution to this area.

It is not difficult to show (see Lemma 5) that this Cauchy problem has a unique formal power
series solution of the form

X̂(t, z) =
∑

h≥0

X̂h(t)
zh

h!
,

where X̂h(t) =
∑

m≥0 fm,htm ∈ C[[t]], h ≥ 0. Our purpose is to construct actual holomorphic
solutions of this problem that are asymptotically represented by X̂(t, z) in a precise sense.

The key idea in our approach is the study of a related Cauchy problem,

(5) ((z∂z + 1)r1τ r2 + 1)∂S
z Ŵ (τ, z) =

S−1∑

k=0

bk(z)τm0,k(∂k
z Ŵ )(τ, zq−m1,k)

with initial conditions

(6) (∂j
zŴ )(τ, 0) = Ŵj(τ) ∈ C[[τ ]], 0 ≤ j ≤ S − 1,

which, by the application of a q−Laplace transform in the variable τ , provides information on
our initial problem (see Lemma 6). The q−Laplace transform we consider was introduced by
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J.-P. Ramis and C. Zhang in [28], and in recent years it has been used with great success in
the study of the asymptotic properties of solutions of q−difference equations, see [8], in much
the same way as the classical Laplace-Borel transform has been applied to the asymptotic study
of formal solutions to differential equations and singular perturbation problems in the complex
domain (see the works of W. Balser [2, 3], B. Malgrange [19], J.-P. Ramis [26] or O. Costin [7]).
This new Cauchy problem (5), (6) is studied in two respects.

Firstly, assuming the initial conditions Wj are holomorphic and have q-exponential growth
(of order 2) in a set V qZ = {vqh : v ∈ V, h ∈ Z}, V being a well chosen bounded open set in
C\{0}, and with some restriction on the argument of q, we prove in Theorem 2 that there exists
a unique solution of (5), (6), of the form

(7) W (τ, z) =
∑

h≥0

Wh(τ)
zh

h!
,

holomorphic on V qZ×C and of q-exponential growth (of order 1) in τ , in the terminology of [28],
uniformly for z in any compact set of C. The increase in the order may be seen as an effect of
the small divisors appearing in the problem.

Secondly, assuming the initial conditions Wj , 0 ≤ j ≤ S−1, are holomorphic near the origin,
we prove in Theorem 4 that the solution in (7) has coefficients Wh holomorphic in discs Dh whose
radii tend to 0 as h tends to infinity, in such a way that there exist constants C1, T1, X1 > 0
such that

sup
τ∈Dj

|∂nWj(τ)| ≤ C1

( 1
T1

)n( 1
X1

)j
n!j!(j + 1)

r1n
r2 |q|−j2/2,

for every n, j ≥ 0. The important fact here is the q−exponential decrease of these bounds with
respect to j, what will turn out to be crucial in the following. These two results allow us to
analyze the q−asymptotic expansion of the q−Laplace transforms of the Wh (Proposition 3),
which is shown to hold in a common domain Tλ,q,δ,r0 (see (9) for its definition) for all h ≥ 0.

We are prepared to turn now to our main objective. Departing from formal initial conditions
X̂j , 0 ≤ j ≤ S − 1, whose q−Borel transforms Wj(τ) (in the terminology of [28]) satisfy all the
conditions in the previous two results, we are finally able to find a solution of our problem
(Theorem 5) in the form

X(t, z) =
∑

h≥0

Lλ
q (Wh)(t)

zh

h!
,

which is holomorphic in Tλ,q,δ,r0 × C, and such that given R > 0, there exist constants C̃ > 0,
D̃ > 0 such that for every n ∈ N, n ≥ 1, one has

∣∣∣X(t, z)−
∑

h≥0

n−1∑

m=0

fm,htm
zh

h!

∣∣∣ ≤ C̃D̃nΓ(
r1

r2
(n + 1))|q|n(n−1)/2|t|n

for every t ∈ Tλ,q,δ,r0 , z ∈ D(0, R). Again one may note that the small divisors phenomenon has
caused the appearance of the term Γ(r1

r2
(n + 1)).

The paper is organized as follows. Section 2 provides the facts concerning the q−Laplace
transform. Section 3 is devoted to the study of a first auxiliary Cauchy problem in suitable
weighted Banach spaces of formal Laurent series. This is needed in the following section, devoted
to the proof of Theorem 2. A second Cauchy problem in weighted Banach spaces of formal Taylor
series (Section 5) is applied in the next Section, which contains Theorem 4. Finally, Section 7
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consists of the construction of the solution, and it also contains some remarks on the nature of
the solution in the special case that r1 = 0, in which no small divisors appear.

We fix some conventions. C∗ stands for C \ {0}, and N for the set {0, 1, 2, · · · }. D(0, r)
denotes the open disc with center 0 and radius r > 0. Given a set V ⊂ C and q ∈ C, we define

V qZ = {vqh : v ∈ V, h ∈ Z}, V qN = {vqh : v ∈ V, h ∈ N}.

2 A q−analogue of the Laplace transform and q−asymptotic ex-
pansion

In this section, we recall the definition of a q−analogue of the Laplace transform introduced in
the papers [28, 31] and some of its properties that will be useful in the sequel. For the sake
of clarity, we include the proof of these results (mainly available in [31]), since they contain
important estimates that will be used in the proof of our main result (Theorem 5).

Proposition 1 Let q ∈ C such that |q| > 1. Let V be an open and bounded set in C∗ and
D(0, ρ0) a disc such that V ∩ D(0, ρ0) 6= ∅. Let (F, ||.||F) be a complex Banach space. Let
φ : V qN ∪D(0, ρ0) → F be a holomorphic function which satisfies the following estimates : there
exist C,M > 0 such that

(8) ||φ(xqm)||F ≤ M |q|m2/2Cm

for all m ≥ 0, all x ∈ V . Let Θ be the Jacobi Theta function defined in C∗ by

Θ(x) =
∑

n∈Z
q−n(n−1)/2xn.

Let δ > 0 and λ ∈ V ∩D(0, ρ0). We denote by

(9) Rλ,q,δ = {t ∈ C∗ : |1 +
λ

tqk
| > δ,∀k ∈ Z}, Tλ,q,δ,r1 = Rλ,q,δ ∩D(0, r1).

The q−Laplace transform of φ in the direction λqZ is defined by

Lλ
q (φ)(t) :=

∑

m∈Z
φ(qmλ)/Θ(

qmλ

t
)

for all t ∈ Tλ,q,δ,r1, if r1 < |λq1/2|/C. Moreover, Lλ
q (φ)(t) defines a bounded holomorphic function

on Tλ,q,δ,r1 with values in F when r1 < |λq1/2|/C. Assume that the function φ has the following
Taylor expansion

(10) φ(τ) =
∑

n≥0

fn

qn(n−1)/2
τn

on D(0, ρ0), where fn ∈ F, n ≥ 0. Then, there exist two constants D, B > 0 such that

(11) ||Lλ
q (φ)(t)−

n−1∑

m=0

fmtm||F ≤ DBn|q|n(n−1)/2|t|n

for all n ≥ 1, for all t ∈ Tλ,q,δ,r1.
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Remark: In the situation described by (11) it is said that Lλ
q (φ) admits the series

∑∞
m=0 fmtm

as q−Gevrey asymptotic expansion of order 1 (whenever the exponent of |q| in the bounds is
n(n− 1)/(2r) the order is said to be r). Analogously, a function that satisfies estimates such as
(8) is said to have q−exponential growth of order 1 in V qN.
If φ(z) =

∑
n≥0 anzn is an entire function such that there exists C > 0 such that

|an| ≤ C exp(−(n− α)2/2)

for all n ≥ 0 and some α ≥ 0, then φ satisfies the estimates (8). For a reference, see [25].

Proof Since the Theta function Θ(x) satisfies the q−difference equation Θ(qx) = qxΘ(x) for all
x ∈ C∗, we get that

(12) Θ(
qmλ

t
) = qm(m+1)/2(

λ

t
)mΘ(

λ

t
)

for all t ∈ C∗. Moreover, from Lemma 4.6 of [27], there exists K1 > 0 such that

(13) |Θ(qmλ/t)| ≥ K1δ
∑

n∈Z
|q|−n(n−1)/2|q

mλ

t
|n

for all t ∈ Rλ,q,δ, all m ∈ Z.

In the proof, we will show the estimates (11). From them one may easily deduce that the series
defining Lλ

q (φ)(t) converges and defines a bounded holomorphic function on Tλ,q,δ,r1 . We would
like to point out that many of the series following are initially formal, but we will finally prove
their convergence.
Let K ≥ 0 be an integer. First of all, we give estimates for the sum

∑
m>0 φ(qmλ)/Θ(qmλ/t).

From the estimates (13), we have that

(14) |Θ(
λ

t
)| ≥ K1δ|q|−K(K−1)/2|λ

t
|K

for all t ∈ Rλ,q,δ. Using (8), (12) and (14), we get the estimates

|| φ(qmλ)
Θ(qmλ/t)

||F ≤ M

K1δ
(

1
|λ|)

K |q|K(K−1)/2|t|K(
C|t|

|λ||q|1/2
)m

for all m > 0, all t ∈ Rλ,q,δ. So that if we choose a positive real number r1 < |λ||q|1/2/C, then
there exist D1, B1 > 0 (independent of K) such that

(15)
∑

m>0

|| φ(qmλ)
Θ(qmλ/t)

||F ≤ D1(B1)K |q|K(K−1)/2|t|K

for all t ∈ Tλ,q,δ,r1 .
In a second step, we give estimates for the sum

∑
m≤0 φ(qmλ)/Θ(qmλ/t) − ∑K

n=0 fntn, where
the fn are defined in the Taylor expansion (10). From the formula

qn(n−1)/2tn =
∑

m∈Z

(qmλ)n

Θ(qmλ/t)
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for all n ≥ 0, given in [28], we can write (at least formally)

(16)
∑

m≤0

φ(qmλ)/Θ(qmλ/t)−
K∑

n=0

fntn =
∑

m≤0

1
Θ(qmλ/t)


 ∑

n≥K+1

fn

qn(n−1)/2
(qmλ)n




−
K∑

n=0

fn

qn(n−1)/2

(∑

m>0

(qmλ)n

Θ(qmλ/t)

)

for all t ∈ C∗. From the fact that φ has convergent expansion (10) on D(0, ρ0), and since
|λ| < ρ0, there exist C, A > 0, with A < 1/|λ|, such that

(17) || fn

qn(n−1)/2
||F ≤ CAn

for all n ≥ 0. From (16) and (17), we deduce that

(18) ||
∑

m≤0

φ(qmλ)/Θ(qmλ/t)−
K∑

n=0

fntn||F ≤ A(t) + B(t)

where

A(t) =
∑

m≤0

1
|Θ(qmλ/t)|


 ∑

n≥K+1

CAn(|q|m|λ|)n




and

B(t) =
K∑

n=0

CAn

(∑

m>0

|(qmλ)n|
|Θ(qmλ/t)|

)
,

for all t ∈ C∗.
We give estimates for A(t). By summing up the geometric series (convergent because A|q|m|λ| ≤
A|λ| < 1 for all m ≤ 0) and changing m into −m, we first have that there exists D > 0 such
that

(19) A(t) ≤ DAK+1
∑

m≥0

(|q|−m|λ|)K+1

|Θ(q−mλ/t)|

for all t ∈ C∗. From (13), we have that

|Θ(q−mλ/t)| ≥ K1δ|q|−K(K−1)/2|q
−mλ

t
|K

for all m ≥ 0, all t ∈ Rλ,q,δ. We then have that

(20)
(|q|−m|λ|)K+1

|Θ(q−mλ/t)| ≤
|λ|
K1δ

|q|K(K−1)/2|t|K(
1
|q|)

m

for all m ≥ 0, all t ∈ Rλ,q,δ. From (19) and (20), we deduce that there exist D2, B2 > 0
(independent of K) such that

(21) A(t) ≤ D2(B2)K |q|K(K−1)/2|t|K

for all t ∈ Rλ,q,δ.
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In the next step, we get estimates for B(t). From (13), we have that

|Θ(qmλ/t)| ≥ K1δ|q|−(K+1)K/2|q
mλ

t
|K+1

for all m > 0, all t ∈ Rλ,q,δ. We deduce that

(22)
|(qmλ)n|
|Θ(qmλ/t)| ≤

|λ|n
K1δ

(
1
|λ|)

K+1|q|(K+1)K/2|t|K+1(
1
|q|)

m

for all m > 0, all 0 ≤ n ≤ K. From (22), the equality (K + 1)K/2 = K + K(K − 1)/2 and
the fact that |t| < r1 whenever t ∈ Tλ,q,δ,r1 , we obtain that there exist D3, B3 > 0 (independent
of K) such that

(23) B(t) ≤ D3(B3)K |q|K(K−1)/2|t|K

for all t ∈ Tλ,q,δ,r1 .

Finally, using the estimates

||
∑

m∈Z
φ(qmλ)/Θ(qmλ/t)−

K∑

n=0

fntn||F ≤ ||
∑

m≤0

φ(qmλ)/Θ(qmλ/t)−
K∑

n=0

fntn||F

+ ||
∑

m>0

φ(qmλ)/Θ(qmλ/t)||F

we deduce from (15), (18), (21), (23) that

(24) ||
∑

m∈Z
φ(qmλ)/Θ(qmλ/t)−

K∑

n=0

fntn||F ≤ D4(B4)K |q|K(K−1)/2|t|K

for some D4, B4 > 0 (independent of K). Now, for K ∈ N, K ≥ 1 one may write

||
∑

m∈Z
φ(qmλ)/Θ(qmλ/t)−

K−1∑

n=0

fntn||F ≤ ||
∑

m∈Z
φ(qmλ)/Θ(qmλ/t)−

K∑

n=0

fntn||F + ||fKtK ||F

and take into account (24) and (17) in order to obtain (11), as desired. 2

Proposition 2 Let V be an open and bounded set in C∗ and D(0, ρ0) be a disc such that
V ∩D(0, ρ0) 6= ∅. Let φ be a holomorphic function on V qN ∪D(0, ρ0) with values in (F, ||.||F)
which satisfies the estimates : There exist C,K > 0, such that

(25) ||φ(xqm)||F ≤ K|q|m2/2Cm

for all m ≥ 0, all x ∈ V . Then, the function Mφ(τ) := τφ(τ) is holomorphic on V qN ∪D(0, ρ0)
and satisfies estimates of the form (8). Let λ ∈ V ∩D(0, ρ0). We have the following equality

Lλ
q (Mφ)(t) = tLλ

q (φ)(qt)

for all t ∈ Tλ,q,δ,r1, if r1 < |λq1/2|/(C|q|).
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Proof From the estimates (25), we get a constant r > 0 such that

||(Mφ)(xqm)||F ≤ rK|q|m2/2(|q|C)m

for all m ≥ 0, all x ∈ V . From Proposition 1, we deduce that Lλ
q (Mφ)(t) defines a holomorphic

function on Tλ,q,δ,r1 , if r1 < |λq1/2|/(C|q|). On the other hand,

(26) tLλ
q (φ)(qt) =

∑

m∈Z

tφ(qmλ)
Θ(qmλ/(qt))

.

But we have that
t

Θ(qmλ/(qt))
=

qmλ

Θ(qmλ/t)

for all m ∈ Z. Indeed, put y = qmλ/(qt) in the identity Θ(qy) = qyΘ(y). From (26), we get
that

tLλ
q (φ)(qt) =

∑

m∈Z

qmλφ(qmλ)
Θ(qmλ/t)

= Lλ
q (Mφ)(t)

for all t ∈ Tλ,q,δ,r1 . 2

For convenience, we recall the following concepts.

Definition 1 A series f̂(t) =
∑

n≥0 fntn ∈ C[[t]] is said to be q−Gevrey of order 1 if its so-called
formal q−Borel transform of order 1,

B̂qf̂(τ) =
∑

n≥0

fn

qn(n−1)/2
τn,

converges (i.e. it has positive radius of convergence).
The formal q−Laplace transform of order 1 of a series ĝ(τ) =

∑
n≥0 gnτn ∈ C[[τ ]] is defined as

L̂q ĝ(t) =
∑

n≥0

qn(n−1)/2gntn,

so that these formal transforms are inverse of each other.

It is immediate to check that, in agreement with Proposition 2, we have that for every
ĝ ∈ C[[τ ]],

(27) L̂q(τ ĝ)(t) = tL̂qĝ(qt).

3 A Cauchy problem in a weighted Banach space of formal Lau-
rent series

With the help of the q−Laplace transform we will change our initial problem (3), (4) into an
equivalent one (5), (6), whose study will require the consideration of two auxiliary Cauchy
problems. The first of them, which we are going to present in this Section, will be crucial in
the study of the q−exponential growth of the coefficients of a solution of (5), (6). Although our
equation involves a complex number q with |q| > 1, in this Section and in Section 5 we will be
only concerned with the value |q|, so we directly work with a real value q > 1.
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Definition 2 We consider the vector space Eq,(T,X) of formal Laurent power series

(28) V (ξ, x) =
∑

l∈Z,h≥0

vl,hξl x
h

h!
∈ C[[ξ, ξ−1, x]]

such that

||V (ξ, x)||(T,X) :=
∑

l∈Z,h≥0

|vl,h|
qP (l,h)

T l X
h

h!
< ∞,

where T, X > 0, q > 1 are positive real numbers and where

P (l, h) =
{

1
4 l2 + 1

2 lh− 1
2h2 if l ≥ 0,h ≥ 0,

−(1/2)h2 if l ≤ 0,h ≥ 0.

The space (Eq,(T,X), ||.||(T,X)) is a Banach space.

Remark: Notice that we have a continuous inclusion (Eq,(T,X′), ||.||(T,X′)) ↪→ (Eq,(T,X), ||.||(T,X))
when 0 < X ≤ X ′.

We consider the integration operator ∂−1
x defined on C[[ξ, ξ−1, x]] by

∂−1
x (V (ξ, x)) :=

∑

l∈Z,h≥1

vl,h−1ξ
l x

h

h!
∈ C[[ξ, ξ−1, x]]

Lemma 1 Let m1, s, h1, h2 ≥ 0 be nonnegative integers. Let T,X > 0. Assume that the
inequalities hold

(29) s + h2 ≥ 2h1 , m1 ≥ s + h2.

Then, there exist C > 0 (depending q, s, h1, h2,m1) such that

(30) ||xs(∂−h2
x V )(qh1ξ,

x

qm1
)||(T,X) ≤ CX(s+h2)||V (ξ, x)||(T,X)

for all V (ξ, x) ∈ Eq,(T,X).

Proof Let V (ξ, x) ∈ C[[ξ, ξ−1, x]] as in (28). We have that

xs(∂−h2
x V )(qh1ξ,

x

qm1
) =

∑

l∈Z,h≥h2+s

vl,h−(s+h2)
qh1lh!

qm1(h−s)(h− s)!
ξl x

h

h!

From the definition of the norm ||.||(T,X), we get that

(31) ||xs(∂−h2
x V )(qh1ξ,

x

qm1
)||(T,X) =

∑

l∈Z,h≥h2+s

|vl,h−(s+h2)|
qP (l,h−(s+h2))

T l Xh−(s+h2)

(h− (s + h2))!
×

{
1

qP (l,h)−P (l,h−(s+h2))−h1l+m1(h−s)

(h− (s + h2))!
(h− s)!

Xs+h2

}
.

In the rest of the proof, we will show that there exists a constant C > 0 (depending on q,
s, h1, h2,m1) such that

(32)
1

qP (l,h)−P (l,h−(s+h2))−h1l+m1(h−s)
≤ C
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for all l ∈ Z, h ≥ 0. Indeed, if l ≥ 0, then

P (l, h)− P (l, h− (s + h2))− h1l + m1(h− s) = l(
s + h2

2
− h1) + h(m1 − (s + h2))

−m1s +
(s + h2)2

2
for all h ≥ 0. From the assumption (29), we deduce that the inequalities (32) hold for l ≥ 0,
h ≥ 0.
If l ≤ 0, then

P (l, h)− P (l, h− (s + h2))− h1l + m1(h− s) = l(−h1) + h(m1 − (s + h2))−m1s +
(s + h2)2

2
for all h ≥ 0. From the assumption (29), we deduce that the inequalities (32) hold for l ≤ 0,
h ≥ 0.
Finally, the inequality (30) follows from the expression (31) and the estimates (32). 2

Lemma 2 Let s, h1 ≥ 0 and T0, X0 > 0. Then, there exists a constant C1 > 0 (depending on
q, s, h1, T0, X0) such that for all 0 < X1 ≤ X0q

−s and for all T1 > 0 satisfying

(33) q−h1T0 ≤ T1 ≤ T0q
s
2
−h1

one has

(34) ||xsV (qh1ξ, x)||(T1,X1) ≤ C1||V (ξ, x)||(T0,X0)

for all V (ξ, x) ∈ Eq,(T0,X0).

Proof Let V (ξ, x) ∈ C[[ξ, ξ−1, x]]. From the definition of the norm ||.||(T,X), one can write

(35) ||xsV (qh1ξ, x)||(T1,X1) =
∑

l∈Z,h≥s

|vl,h−s|
qP (l,h−s)

T l
0

X
(h−s)
0

(h− s)!
×
{

1
qP (l,h)−P (l,h−s)−h1l

(
T1

T0
)l(

X1

X0
)hXs

0

}

In the rest of the proof, we will show that there exists a constant C1 > 0 (depending on q, s, h1)
such that for all 0 < X1 ≤ X0q

−s and all T1 satisfying (33), one has

(36)
1

qP (l,h)−P (l,h−s)−h1l
(
T1

T0
)l(

X1

X0
)h ≤ C1

for all l ∈ Z, all h ≥ 0.

If l ≥ 0, then

P (l, h)− P (l, h− s)− h1l = l(
s

2
− h1) + h(−s) +

s2

2
for all h ≥ 0. So, we get that (36) holds for all l ≥ 0, all h ≥ 0.

If l ≤ 0, then

P (l, h)− P (l, h− s)− h1l = l(−h1) + h(−s) +
s2

2
for all h ≥ 0. Hence, we get that (36) holds for all l ≤ 0, all h ≥ 0.

Finally, the inequality (34) follows from the expression (35) and the estimates (36). 2
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Lemma 3 Let h2 ≥ 0 and T0, X0 > 0. Then, there exists a constant C2 > 0 (depending on
q, h2, T0, X0) such that for all 0 < X1 ≤ X0q

−h2 and for all T1 > 0 satisfying

(37) T0 ≤ T1 ≤ T0q
h2/2,

one has

(38) ||∂−h2
x V (ξ, x)||(T1,X1) ≤ C2||V (ξ, x)||(T0,X0)

for all V (ξ, x) ∈ Eq,(T0,X0).

Proof Let V (ξ, x) ∈ C[[ξ, ξ−1, x]]. From the definition of the norm ||.||(T,X), one can write

(39) ||∂−h2
x V (ξ, x)||(T1,X1) =

∑

l∈Z,h≥h2

|vl,h−h2 |
qP (l,h−h2)

T l
0

X
(h−h2)
0

(h− h2)!
×

{
1

qP (l,h)−P (l,h−h2)
(
T1

T0
)l(

X1

X0
)h (h− h2)!

h!
Xh2

0

}

In the rest of the proof, we will show that there exists a constant C2 > 0 (depending on q, h2)
such that for all 0 < X1 ≤ X0q

−h2 and T1 satisfying (37) one has

(40)
1

qP (l,h)−P (l,h−h2)
(
T1

T0
)l(

X1

X0
)h ≤ C2

for all l ∈ Z, all h ≥ 0.

If l ≥ 0, then

P (l, h)− P (l, h− h2) = l(
h2

2
) + h(−h2) +

h2
2

2
,

for all h ≥ 0. Hence, we get that (40) holds for all l ≥ 0, all h ≥ 0.

If l ≤ 0, then

P (l, h)− P (l, h− h2) = h(−h2) +
1
2
h2

2,

for all h ≥ 0, and we get that (40) holds for all l ≤ 0, all h ≥ 0.
Finally, the inequality (38) follows from the expression (39) and the estimates (40). 2

Let S,m0,k,m1,k, 0 ≤ k ≤ S−1 be positive integers. Let D the linear operator from C[[ξ, ξ−1, x]]
into C[[ξ, ξ−1, x]] defined by

D(V (ξ, x)) := ∂S
x V (ξ, x)−

S−1∑

k=0

ak(x)(∂k
xV )(qm0,kξ, x/qm1,k),

for all V ∈ C[[ξ, ξ−1, x]], where ak(x) =
∑

s∈Ik
aksx

s ∈ C[x], with Ik be a finite subset of N, for
0 ≤ k ≤ S − 1.

We make the following hypothesis.

Assumption (A) For all 0 ≤ k ≤ S − 1, for all s ∈ Ik, we have

s + S − k ≥ 2m0,k , m1,k ≥ s + S − k.
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We consider the operator A from C[[ξ, ξ−1, x]] into C[[ξ, ξ−1, x]] defined by

A(V (ξ, x)) = V (ξ, x)−D(∂−S
x V (ξ, x)) =

S−1∑

k=0

ak(x)(∂k−S
x V )(qm0,kξ, x/qm1,k)

for all V ∈ C[[ξ, ξ−1, x]].

From Lemma 1, we deduce the following

Lemma 4 Let T > 0. Then, there exists X > 0 such that A is a linear bounded operator from
(Eq,(T,X), || · ||(T,X)) into itself. Moreover, we have that

||A(V (ξ, x))||(T,X) ≤
1
2
||V (ξ, x)||(T,X),

for all V ∈ Eq,(T,X).

From Lemma 4, we deduce the next

Corollary 1 Let T > 0. Then, there exists X > 0 such that D ◦ ∂−S
x is an invertible linear

operator from (Eq,(T,X), ||.||(T,X)) into itself. In particular, there exists C > 0 such that

||D(∂−S
x b(ξ, x))||(T,X) ≤ C||b(ξ, x)||(T,X)

for all b(ξ, x) ∈ Eq,(T,X).

Definition 3 Let T0,j > 0, 0 ≤ j ≤ S − 1 be real numbers. We say that (T0,j)0≤j≤S−1 satisfies
the assumption (B) if
1) The set

T := ∩0≤k≤S−1 ∩k≤j≤S−1,s∈Ik
[q−m0,kT0,j , T0,jq

(
s+j−k−2m0,k

2
)]

is not empty,
2) There exists T1 ∈ T such that

T1 := [T1, T1q
S/2]

⋂
∩S−1

j=0 [T0,j , T0,jq
j/2]

is not empty.

Example: Let S ≥ 1. For all 0 ≤ k ≤ S − 1, let Ik ⊂ N such that s ∈ Ik implies s ≥ 2m0,k + k.
For all 0 ≤ j ≤ S − 1, we put T0,j = T0 > 0. Then, we have that T0 ∈ T and that T1 = {T0}.
So that (T0,j)0≤j≤S−1 satisfies the assumption (B).

Theorem 1 Let S ≥ 1 be an integer. For all 0 ≤ k ≤ S − 1, let m0,k,m1,k be positive integers
and ak(x) =

∑
s∈Ik

aksx
s ∈ C[x]. We make the hypothesis that the assumption (A) holds.

We consider the following functional equation

(41) ∂S
x V (ξ, x) =

S−1∑

k=0

ak(x)(∂k
xV )(qm0,kξ, x/qm1,k)

with initial conditions

(42) (∂j
xV )(ξ, 0) = φj(ξ) , 0 ≤ j ≤ S − 1.
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We assume that φj(ξ) ∈ Eq,(T0,j ,X0), for 0 ≤ j ≤ S − 1, where X0 > 0 and (T0,j)0≤j≤S−1

satisfy the assumption (B). Then, there exists X > 0 and for T ∈ T1, the problem (41),
(42) has a unique solution V (ξ, x) ∈ Eq,(T,X). Moreover, there exists C > 0 (depending on
S,q,ak(x),m0,k,m1,k, for 0 ≤ k ≤ S − 1 and X0,T0,j, for 0 ≤ j ≤ S − 1) such that

||V (ξ, x)||(T,X) ≤ C
S−1∑

j=0

||φj(ξ)||(T0,j ,X0).

Proof A formal series V (ξ, x) ∈ C[[ξ, ξ−1, x]] which satisfies (42) can be written in the form
V (ξ, x) = ∂−S

x U(ξ, x) + I(ξ, x) where

I(ξ, x) =
S−1∑

j=0

φj(ξ)
xj

j!

and U(ξ, x) ∈ C[[ξ, ξ−1, x]]. A formal series V (ξ, x) ∈ C[[ξ, ξ−1, x]] is a solution of the problem
(41), (42) if and only if U(ξ, x) satisfies the equation

(43) D(∂−S
x U(ξ, x)) = −D(I(ξ, x)).

By construction, we have that

−D(I(ξ, x)) =
S−1∑

k=0

S−1∑

j=k

∑

s∈Ik

aks

qm1,k(j−k)(j − k)!
xs+j−kφj(qm0,kξ)

From Lemma 2 and the assumption (B), there exists X1 > 0 such that for all T1 ∈ T we have
that

xs+j−kφj(qm0,kξ) ∈ Eq,(T1,X1)

for all 0 ≤ k ≤ S − 1, all k ≤ j ≤ S − 1, all s ∈ Ik. Moreover, there exists C1 > 0 (depending
on Ik,j,m0,k,X0,T0,j) such that

(44) ||xs+j−kφj(qm0,kξ)||(T1,X1) ≤ C1||φj(ξ)||(T0,j ,X0).

We deduce that D(I(ξ, x)) ∈ Eq,(T1,X1) and from (44) there exists a constant C ′
1 > 0 (depending

on q,ak(x),m0,k,m1,k, for 0 ≤ k ≤ S − 1 and X0,T0,j , for 0 ≤ j ≤ S − 1) such that

(45) ||D(I(ξ, x))||(T1,X1) ≤ C ′
1

S−1∑

j=0

||φj(ξ)||(T0,j ,X0).

From Corollary 1, we deduce that the equation (43) has a unique solution U(ξ, x) ∈ Eq,(T1,X1).
Moreover, there exists a constant C2 > 0 (depending on q,ak(x),m0,k,m1,k, for 0 ≤ k ≤ S − 1)
such that

(46) ||U(ξ, x)||(T1,X1) ≤ C2||D(I(ξ, x))||(T1,X1).

Now, from the assumption (B), we choose T1 ∈ T in such a way that T1 is not empty. Let
T2 ∈ T1. From Lemma 3, there exists X2 < X1 such that ∂−S

x U(ξ, x) ∈ Eq,(T2,X2). Moreover,
there exists a constant C3 > 0 (depending on q,S,T1,X1) such that

(47) ||∂−S
x U(ξ, x)||(T2,X2) ≤ C3||U(ξ, x)||(T1,X1)
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From Lemma 2, there exists X3 < X2 such that I(ξ, x) ∈ Eq,(T2,X3). Moreover, there exists a
constant C4 > 0 (depending on S,q,T0,j ,X0, for 0 ≤ j ≤ S − 1) such that

(48) ||I(ξ, x)||(T2,X3) ≤ C4

S−1∑

j=0

||φj(ξ)||(T0,j ,X0).

Finally, the formal series V (ξ, x) = ∂−S
x U(ξ, x) + I(ξ, x), solution of the problem (41), (42),

belongs to Eq,(T2,X3). Moreover, from the inequalities (45), (46), (47) and (48), we get a constant
C5 (depending on S,q,ak(x),m0,k,m1,k, for 0 ≤ k ≤ S − 1 and X0,T0,j , for 0 ≤ j ≤ S − 1) such
that

||V (ξ, x)||(T2,X3) ≤ C5

S−1∑

j=0

||φj(ξ)||(T0,j ,X0).

2

4 A Cauchy problem in analytic spaces of q−exponential growth

Let S ≥ 1, r1, r2 ≥ 0 be integers. For all 0 ≤ k ≤ S − 1, let m0,k,m1,k be positive integers and
bk(z) =

∑
s∈Ik

bksz
s be a polynomial in z, where Ik is a subset of N.

Lemma 5 For every choice of formal series X̂j ∈ C[[t]], 0 ≤ j ≤ S − 1, the Cauchy problem

(3), (4) has a unique solution in the form of a formal power series X̂(t, z) =
∑

h≥0

X̂h(t)
zh

h!
, where

X̂h ∈ C[[t]] for every h ≥ 0.

Proof Let us put X̂h(t) =
∑

m≥0 fm,htm, h ≥ 0, fm,h ∈ C. By substituting X̂ in (3), one can
check that the left hand side turns out to be

∑

h≥0

( r2−1∑

m=0

fm,h+Stm +
∞∑

m=r2

(fm,h+S + (h + 1)r1fm−r2,h+Sqr2(r2−1)/2qr2(m−r2))tm
)zh

h!
,

while the right hand side is

∑

h≥0

( S−1∑

k=0

∑

h1+h2=h,h1∈Ik

bkh1t
m0,kX̂h2+k(qm0,kt)

h2!qm1,kh2

)
zh.

The values fm,h, m ≥ 0, 0 ≤ h ≤ S − 1, are given by the initial conditions. We begin obtaining
fm,S , m ≥ 0. We look at the coefficients of z0 at both sides and impose them to be equal:

r2−1∑

m=0

fm,Stm +
∞∑

m=r2

(fm,S + fm−r2,Sqr2(r2−1)/2qr2(m−r2))tm =
S−1∑

k=0

∑

0∈Ik

bk0t
m0,kX̂k(qm0,kt).

Since the right hand side is determined by the X̂j , 0 ≤ j ≤ S − 1, we can recursively obtain
the fm,S , m ≥ 0, by imposing the equality of the coefficients of tm in each side for every
m = 0, 1, 2, . . .
We can repeat this argument in a similar way as the second index in fm,h increases. 2
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With the help of the q−Laplace transform, we reformulate our problem. Consider the Cauchy
problem

(49) ((z∂z + 1)r1τ r2 + 1)∂S
z Ŵ (τ, z) =

S−1∑

k=0

bk(z)τm0,k(∂k
z Ŵ )(τ, zq−m1,k)

with initial conditions

(50) (∂j
zŴ )(τ, 0) = Ŵj(τ) ∈ C[[τ ]] , 0 ≤ j ≤ S − 1.

Lemma 6 The formal series X̂(t, z) =
∑

h≥0

X̂h(t)
zh

h!
, where X̂h ∈ C[[t]] for every h ≥ 0, satisfies

the Cauchy problem (3), (4) if, and only if, the formal series Ŵ (τ, z) =
∑

h≥0

B̂qX̂h(τ)
zh

h!
satisfies

the Cauchy problem (49), (50) with Wj(τ) = B̂qX̂j, 0 ≤ j ≤ S − 1.

Conversely, Ŵ (τ, z) =
∑

h≥0

Ŵh(τ)
zh

h!
, with Ŵh ∈ C[[τ ]] for every h ≥ 0, satisfies the Cauchy

problem (49), (50) if, and only if, the formal series X̂(t, z) =
∑

h≥0

L̂qŴh(t)
zh

h!
satisfies the Cauchy

problem (3), (4) with X̂j(t) = L̂qŴj(t) for 0 ≤ j ≤ S − 1.

Proof It suffices to insert each series in the corresponding Cauchy problem and apply (27). 2

Let V be an open and bounded set in C∗, and q ∈ C with |q| > 1. In the following result we
study the q−exponential growth of the coefficients of a solution to the Cauchy problem (49),
(50). We will depart from initial conditions Wj , 0 ≤ j ≤ S − 1, holomorphic in V qZ. We make
the assumptions (A) and (B) in the previous Section, so that we may apply Theorem 1, and
we also suitably choose q and V in order to deal with a small divisors problem.

Theorem 2 Let the assumption (A) (of Section 3) be fulfilled by the sets Ik and the integers
m0,k,m1,k, for 0 ≤ k ≤ S − 1.
1) We make the following assumptions on q and on the open set V : q is of the form q = |q|eiθ,
with θ = 2π

br2
for some b ∈ N, b ≥ 1. If we denote

V r2 = {xr2 : x ∈ V },

we assume that there exists ε ∈ (0, min{π/b, π/2}) such that

V r2
⋂( b−1⋃

l=0

S(−π +
2πl

b
, 2ε)

)
= ∅,

where S(d, ϕ) stands for the unbounded sector in C with vertex at 0, bisected by direction d and
with opening ϕ.
2) The following assumptions on the initial conditions hold: Let (T0,j)0≤j≤S−1 be a sequence
satisfying the assumption (B), there exists a constant K0 > 0 such that

(51) sup
x∈V

|Wj(xql)| ≤ K0|q|
1
4
l2(

1
T0,j

)l 1
1 + l2

, sup
x∈V

|Wj(xq−l)| ≤ K0(T0,j)l 1
1 + l2
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for all 0 ≤ j ≤ S − 1, all l ≥ 0.
Then, there exists a unique solution of (49), (50)

(τ, z) 7→ W (τ, z) =
∑

h≥0

Wh(τ)
zh

h!

which is holomorphic on V qZ × C. Moreover, for all ρ > 0, there exist two constants C, T > 0
(depending on ρ,S,|q|,bk(z),m0,k,m1,k, for 0 ≤ k ≤ S − 1 and T0,j, for 0 ≤ j ≤ S − 1) such that

(52) sup
x∈V,z∈D(0,ρ)

|W (xql, z)| ≤ CK0|q|
1
2
l2(

1
T

)l , sup
x∈V,z∈D(0,ρ)

|W (xq−l, z)| ≤ CK0T
l

for all l ≥ 0 (where K0 > 0 is defined in (51)).

Proof From the hypothesis 1) in the statement, there exists δ > 0 such that

(53) |(h + 1)r1xr2qr2l + 1| > δ

for all l ∈ Z, all h ≥ 0, all x ∈ V . We consider the sequence of functions Wh(τ), h ≥ S, defined
as follows

(54)
Wh+S(xql)

h!
=

S−1∑

k=0

∑

h1+h2=h,h1∈Ik

bkh1x
m0,kqm0,kl

((h + 1)r1xr2qr2l + 1)
Wh2+k(xql)
h2!qm1,kh2

for all h ≥ 0, all l ∈ Z, all x ∈ V . One checks that the sequence Wh(τ), h ≥ 0, of holomorphic
functions on V qZ, satisfies the recursion (54) if and only if the formal series

W (τ, z) =
∑

h≥0

Wh(τ)
zh

h!

in the z variable, satisfies the problem (49), (50). From this we deduce that the solution W , if
it exists, is unique.
According to (51) and (54), we can recursively prove that the sequence (wl,h)l∈Z,h≥0 defined by

(55) wl,h = sup
x∈V

|Wh(xql)|,

for all l ∈ Z, all h ≥ 0, consists of positive real numbers. Due to (53), the sequence (wl,h)l∈Z,h≥0

satisfies the following inequalities: There exists r > 0 (depending on m0,k, V ) such that

wl,h+S

h!
≤

S−1∑

k=0

∑

h1+h2=h,h1∈Ik

|bkh1 |r|q|m0,kl

δ

wl,h2+k

h2!|q|m1,kh2

for all l ∈ Z, all h ≥ 0.
We consider the sequence of real numbers (vl,h)l∈Z,h≥0 defined by the following recursion

(56)
vl,h+S

h!
=

S−1∑

k=0

∑

h1+h2=h,h1∈Ik

|bkh1 |r|q|m0,kl

δ

vl,h2+k

h2!|q|m1,kh2
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with initial conditions vl,j = wl,j , for 0 ≤ j ≤ S − 1, all l ∈ Z. By construction, we have that

(57) wl,h ≤ vl,h

for all l ∈ Z, all h ≥ 0.

In the following, we put ak(x) =
∑

s∈Ik
(|bks|r/δ)xs for 0 ≤ k ≤ S−1 and we consider the formal

Laurent series

V (ξ, x) =
∑

l∈Z,h≥0

vl,hξl x
h

h!
.

From the recursion (56), we get that V (ξ, x) satisfies the following Cauchy problem

(58) ∂S
x V (ξ, x) =

S−1∑

k=0

ak(x)(∂k
xV )(ξ|q|m0,k , x/|q|m1,k)

with initial conditions

(59) (∂j
xV )(ξ, 0) = φj(ξ) :=

∑

l∈Z
wl,jξ

l

From the hypothesis (51), we get that φj(ξ) belongs to E|q|,(T0,j ,X0), for all X0 > 0. By hypothesis,
the assumption (A) holds for the sets Ik and the numbers m0,k,m1,k and the assumption (B)
is fulfilled for the sequence T0,j , 0 ≤ j ≤ S − 1. From Theorem 1, we deduce that the unique
solution V (ξ, x) of the problem (58), (59) satisfies V (ξ, x) ∈ E|q|,(T,X) for a real number X > 0
and T ∈ T1. Moreover, there exists a constant C > 0 (depending on S,|q|,ak(x),m0,k,m1,k, for
0 ≤ k ≤ S − 1 and X0,T0,j , for 0 ≤ j ≤ S − 1) such that

(60) ||V (ξ, x)||(T,X) ≤ C
S−1∑

j=0

||φj(ξ)||(T0,j ,X0).

From the inequality P (l, h) ≤ l2

2 − h2

4 , for all l ∈ Z, h ≥ 0, and (60) we get that there exists
a constant C ′ > 0 (depending on S,|q|,ak(x),m0,k,m1,k, for 0 ≤ k ≤ S − 1 and X0,T0,j , for
0 ≤ j ≤ S − 1) such that

(61) |vl,h| ≤ K0C
′|q| l

2

2 |q|−h2

4 h!(
1
T

)l(
1
X

)h , |v−l,h| ≤ K0C
′|q|−h2

2 T lh!(
1
X

)h

for all l ≥ 0, all h ≥ 0, where K0 is the constant introduced in (51). From the inequalities (57)
and (61), we get that

sup
x∈V,z∈D(0,ρ)

|W (xql, z)| ≤ K0C
′|q| l

2

2 (
1
T

)l(
∑

h≥0

|q|−h2/4(
ρ

X
)h),

sup
x∈V,z∈D(0,ρ)

|W (xq−l, z)| ≤ K0C
′T l(

∑

h≥0

|q|−h2/2(
ρ

X
)h)

for all l ≥ 0, all ρ > 0. So that the estimates (52) hold. 2

Remark: Condition 1) in the previous statement could be replaced by a more general condition,
namely: Let q and V be such that (53) is verified for some δ > 0 and for all l ∈ Z, all h ≥ 0, all
x ∈ V . However, we preferred to use 1) because of its easy geometrical interpretation.
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5 Second auxiliary Cauchy problem

We now suppose that the initial conditions Wh, 0 ≤ h ≤ S − 1, of (49), (50) are holomorphic
in suitably small neighbourhoods of 0. Our next aim is to obtain information on the rate of
decreasing of the derivatives of the functions Wh, h ≥ 0, coefficients of the solution constructed
in Theorem 2, near the origin. This will be done in the next Section, where we will need the
second auxiliary Cauchy problem we deal with in this Section.

Definition 4 Let q > 1 be given. Let us consider the space H(T,X) of formal power series

V (ξ, x) =
∑

l≥0,h≥0

vl,hξl x
h

h!
∈ C[[ξ, x]]

such that

|V (ξ, x)|′(T,X) :=
∑

l≥0,h≥0

|vl,h|T lqh2/2 Xh

h!
< ∞,

where T, X are positive real numbers.

The space (H(T,X), | · |′(T,X)) is a Banach algebra.
Remark: We have a continuous inclusion (H(T,X′), | · |′(T,X′)) ↪→ (H(T,X), | · |′(T,X)) whenever
0 < X ≤ X ′.

We can easily prove the following result, along the same lines as Lemma 1 in Section 3.

Lemma 7 Let m, s, h ≥ 0 be nonnegative integers such that m ≥ s+h, and let T, X > 0. Then,
there exists C > 0 such that

|xs(∂−h
x V )(ξ,

x

qm
)|′(T,X) ≤ CXs+h|V (ξ, x)|′(T,X)

for all V (ξ, x) ∈ H(T,X).

The following is immediate from the definition of H(T,X).

Lemma 8 Let T, X > 0. The series R(ξ) =
∑∞

l=0 2l+1ξl, to be considered next, belongs to
H(T,X) if, and only if, T < 1/2.

Let S,m1,k, 0 ≤ k ≤ S − 1, be positive integers. Let F be the linear operator from C[[ξ, x]]
into C[[ξ, x]] defined by

F(V (ξ, x)) := ∂S
x V (ξ, x)−

S−1∑

k=0

ck(x)R(ξ)(∂k
xV )(ξ, x/qm1,k),

for all V ∈ C[[ξ, x]], where

ck(x) =
∑

s∈Ik

|bks|xs, 0 ≤ k ≤ S − 1,

and R(ξ) is the one in Lemma 8.
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We consider the operator B from C[[ξ, x]] into C[[ξ, x]] defined by

B(V (ξ, x)) = V (ξ, x)−F(∂−S
x V (ξ, x)) =

S−1∑

k=0

ck(x)R(ξ)(∂k−S
x V )(ξ, x/qm1,k)

for all V ∈ C[[ξ, x]].

From now on in this Section, we will make the following

Assumption (A2) For all 0 ≤ k ≤ S − 1, for all s ∈ Ik, we have

m1,k ≥ s + S − k.

From Lemmas 7 and 8 we deduce the following result.

Lemma 9 Let T ∈ (0, 1/2). Then, there exists X > 0 such that B is a linear bounded operator
from (H(T,X), | · |′(T,X)) into itself, and

|B(V (ξ, x))|′(T,X) ≤
1
2
|V (ξ, x)|′(T,X),

for all V ∈ H(T,X).

From Lemma 9, we deduce the next

Corollary 2 Let T ∈ (0, 1/2). Then, there exists X > 0 such that F ◦ ∂−S
x is an invertible

linear operator from (H(T,X), | · |′(T,X)) into itself. In particular, there exists C > 0 such that

|F(∂−S
x b(ξ, x))|′(T,X) ≤ C|b(ξ, x)|′(T,X)

for all b(ξ, x) ∈ H(T,X).

Theorem 3 Let us consider the Cauchy problem

(62) ∂S
x V (ξ, x) =

S−1∑

k=0

ck(x)R(ξ)(∂k
xV )(ξ, x/|q|m1,k)

with initial conditions

(63) (∂j
xV )(ξ, 0) = φj(ξ), 0 ≤ j ≤ S − 1,

and assume that φj(ξ) ∈ H(T0,j ,X0), 0 ≤ j ≤ S − 1, where X0 > 0 and T0,j > 0 for j =
0, 1, ..., S − 1. Then, for every positive number T1 < min{T0,1, . . . , T0,S−1, 1/2}, there exists
X1 > 0 such that the problem (62), (63) has a unique solution V (ξ, x) ∈ H(T1,X1). Moreover,
there exists C > 0 (depending on S, q, X0, and ck(x),m1,k, T0,k for 0 ≤ k ≤ S − 1) such that

|V (ξ, x)|′(T1,X1) ≤ C
S−1∑

j=0

|φj(ξ)|′(T0,j ,X0).

Proof It heavily resembles that of Theorem 1,so we omit it. 2
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6 Estimates for the derivatives of Wj near the origin

In the Cauchy problem (49), (50) we consider initial conditions Wj which are holomorphic
functions respectively defined in open sets containing the closed disc

Dj = {τ : |τ | ≤ 1/(2(j + 1)r1/r2)}
for 0 ≤ j ≤ S−1 (for the sake of brevity, we say that Wj is holomorphic in Dj). Then, Cauchy’s
integral formula for the derivatives allows us to obtain constants Aj > 0 such that for every
natural number n ≥ 0 we have

max
τ∈Dj

|∂nWj(τ)| ≤ An
j n!.

So, the assumptions in the following result are not restrictive.

Theorem 4 Consider the Cauchy problem (49), (50). Suppose Wj(τ), 0 ≤ j ≤ S − 1, are
holomorphic functions in Dj such that there exist constants T0,j > 0 and a constant K > 0 such
that

max
τ∈Dj

|∂nWj(τ)| ≤ K
( 1

T0,j

)n n!
1 + n2

,

for n ≥ 0, j = 0, 1, ..., S − 1. Then there exists a formal solution of (49), (50),

W (τ, z) =
∑

h≥0

Wh(τ)
zh

h!
,

where Wh is a holomorphic function in Dh = {τ : |τ | ≤ 1/(2(h + 1)r1/r2)}, h ≥ S. Moreover,
there exist constants T1, X1 > 0 such that

(64) sup
τ∈Dj

|∂nWj(τ)| ≤ C1

( 1
T1

)n( 1
X1

)j
n!j!(j + 1)r1n/r2 |q|−j2/2,

for every n, j ≥ 0, where C1 is a positive constant (depending on S,q,bk(z),m1,k, for 0 ≤ k ≤ S−1
and T0,j, for 0 ≤ j ≤ S − 1).

Proof We look for formal series solutions of (49), (50) of the form

W (τ, z) =
∑

h≥0

Wh(τ)
zh

h!
,

which leads to the equalities

(65)
Wh+S(τ)

h!
=

S−1∑

k=0

∑

h1+h2=h,h1∈Ik

bkh1τ
m0,k

((h + 1)r1τ r2 + 1)
Wh2+k(τ)
h2!qm1,kh2

,

for all h ≥ 0. These equations recursively define in a unique way the sequence {Wh}h≥0, and
we easily see that Wh is holomorphic in Dh = {τ : |τ | ≤ 1/(2(h + 1)r1/r2)}, h ≥ 0. We aim at
estimating the rate of growth of the derivatives of Wh in Dh.

Let n0 be a natural number. Differentiating n0 times in (65) we get

(66)
∂n0Wh+S(τ)

h!
=

S−1∑

k=0

∑

h1+h2=h,h1∈Ik

bkh1

∑

l1+l2=n0

n0!
l1!l2!

∂l1
( τm0,k

((h + 1)r1τ r2 + 1)
)∂l2Wh2+k(τ)

h2!qm1,kh2
.
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It is clear that
(67)

∂l1
( τm0,k

((h + 1)r1τ r2 + 1)
)

=
∑

λ1+λ2=l1,λ1≤m0,k

l1!
λ1!λ2!

m0,k!
(m0,k − λ1)!

τm0,k−λ1∂λ2
( 1
((h + 1)r1τ r2 + 1)

)
.

Following the proof of Lemma 7 in [15], we get that for all λ2 ≥ 0, all τ ∈ Dh,

(68)
∣∣∂λ2

( 1
((h + 1)r1τ r2 + 1)

)∣∣ ≤ λ2!2λ2+1(h + 1)
r1
r2

λ2 .

We take (68) into (67) to obtain that

∣∣∂l1
( τm0,k

((h + 1)r1τ r2 + 1)
)∣∣ ≤

∑

λ1+λ2=l1,λ1≤m0,k

l1!
λ1!λ2!

m0,k!
(m0,k − λ1)!

|τ |m0,k−λ1λ2!2λ2+1(h + 1)
r1
r2

λ2

= 2l1!
m0,k∑

λ1=0

m0,k!
λ1!(m0,k − λ1)!

|τ |m0,k−λ12l1−λ1(h + 1)
r1
r2

(l1−λ1)

= l1!2l1+1(h + 1)
r1
r2

l1(|τ |+ 1
2(h + 1)r1/r2

)m0,k ≤ l1!2l1+1(h + 1)
r1
r2

l1 .

The previous estimates may be applied in (66) and they let us write

|∂n0Wh+S(τ)|
n0!h!

≤
S−1∑

k=0

∑

h1+h2=h,h1∈Ik

|bkh1 |
∑

l1+l2=n0

2l1+1(h + 1)
r1
r2

l1 |∂l2Wh2+k(τ)|
l2!h2!|q|m1,kh2

,

which may be rewritten as

|∂n0Wh+S(τ)|
n0!h!(h + S + 1)

r1
r2

n0
≤

S−1∑

k=0

∑

h1+h2=h,h1∈Ik

|bkh1 |
∑

l1+l2=n0

2l1+1 (h + 1)
r1
r2

n0

(h + S + 1)
r1
r2

n0

×(h2 + k + 1)
r1
r2

l2

(h + 1)
r1
r2

l2

|∂l2Wh2+k(τ)|
l2!h2!(h2 + k + 1)

r1
r2

l2 |q|m1,kh2

.(69)

Let us put

wn0,h := sup
τ∈Dh

|∂n0Wh(τ)|
(h + 1)r1n0/r2

, n0 ≥ 0, h ≥ 0.

From (69) we deduce that

wn0,h+S

n0!h!
≤

S−1∑

k=0

∑

h1+h2=h,h1∈Ik

|bkh1 |
∑

l1+l2=n0

2l1+1 wl2,h2+k

l2!h2!|q|m1,kh2
.

Now we define a multi-sequence {vl,h}l,h by

vl,h = wl,h, l ≥ 0, 0 ≤ h ≤ S − 1,

and by the following recurrence relations for n0 ≥ 0, h ≥ 0:

(70)
vn0,h+S

n0!h!
=

S−1∑

k=0

∑

h1+h2=h,h1∈Ik

|bkh1 |
∑

l1+l2=n0

2l1+1 vl2,h2+k

l2!h2!|q|m1,kh2
.
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It is clear that wl,h ≤ vl,h for all l ≥ 0, all h ≥ 0. Let us consider the functions

ck(x) =
∑

s∈Ik

|bks|xs, 0 ≤ k ≤ S − 1,

and

R(ξ) =
∞∑

l=0

2l+1ξl =
2

1− 2ξ
.

Due to the recursions (70), one can check that the formal power series V̂ (ξ, x) =
∑

l,h≥0
vl,h

l! ξl xh

h!
is a formal solution of the Cauchy problem (62), (63) with initial conditions

(∂j
xV )(ξ, 0) = φj(ξ) :=

∑

l≥0

wl,j

l!
ξl, 0 ≤ j ≤ S − 1.

It is immediate to check that, for any X0 > 0, we have φj(ξ) ∈ H(T0,j ,X0) for 0 ≤ j ≤ S − 1.

From Theorem 3 and the fact that V̂ (ξ, x) =
∑

n,j≥0
vn,j

n! ξn xj

j! is the unique formal solution of
(62), (63), we can find X1 > 0 and T1 > 0 such that

|V̂ (ξ, x)|′(T1,X1) ≤ C
S−1∑

j=0

|φj(ξ)|′(T0,j ,X0)

for a certain C > 0 (depending on S,q,ck(x),m1,k, for 0 ≤ k ≤ S − 1 and X0,T0,j , for 0 ≤ j ≤
S − 1). From the last expression, one can obtain that

wn,j ≤ vn,j ≤ C
( 1

T1

)n( 1
X1

)j
n!j!q−j2/2

[ S−1∑

l=0

|φl(ξ)|′(T0,l,X0)

]
≤ C1

( 1
T1

)n( 1
X1

)j
n!j!|q|−j2/2.

We conclude by the very definition of the multi-sequence {wn,j}n,j≥0, since

max
τ∈Dj

|∂nWj(τ)| = wn,j(j + 1)r1n/r2 ≤ C1

( 1
T1

)n( 1
X1

)j
n!j!(j + 1)r1n/r2 |q|−j2/2,

as desired. 2

7 Analytic solutions of the Cauchy problem with Fuchsian and
irregular singularities

Let Wh be the initial data in the Cauchy problem (49), (50), and suppose they are subject to the
hypotheses of Theorem 2 and to the hypotheses in Theorem 4. Those results give us a sequence
of functions {Wh}h≥0, holomorphic in V qZ ∪Dh for each h ≥ 0, and such that the series

W (τ, z) =
∑

h≥0

Wh(τ)
zh

h!

defines a holomorphic function on V qZ × C which solves the Cauchy problem.
Moreover, from (55), (57) and (61) in the proof of Theorem 2 we know that

(71) sup
x∈V

|Wh(xql)| ≤ K0C
′|q| l

2

2 |q|−h2

4 h!(
1
T

)l(
1
X

)h
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for all l, h ≥ 0.
Let us choose λ ∈ V and δ > 0. By (71) we see that every Wh verifies estimates as those in (8).

If we choose an integer n(h) in such a way that λqn(h) ∈ Dh, then, according to Proposition 1,
the q−Laplace transform of Wh in the direction λqn(h)qZ, which clearly equals λqZ, is given by

Lλqn(h)

q (Wh)(t) =
∑

m∈Z

Wh(qmλqn(h))

Θ( qmλqn(h)

t )
=

∑

m∈Z

Wh(qmλ)

Θ( qmλ
t )

,

so that it deserves to be denoted by Lλ
q (Wh)(t). This function is well defined and holomorphic in

the set Tλqn(h),q,δ,r(h), which is equal to Tλ,q,δ,r(h), whenever r(h) < |λqn(h)q1/2|T . We will show
that these radii r(h) can be taken independent of h, equal to r0 = |λq1/2|T/|q| = |λq−1/2|T for
every h ≥ 0, and we will obtain precise estimates for the corresponding q−asymptotic expansions.

Let us assume that the function Wh has the following Taylor expansion at 0,

(72) Wh(τ) =
∑

n≥0

fn,h

qn(n−1)/2
τn,

where fn,h ∈ C, n, h ≥ 0, and τ ∈ Dh.

Proposition 3 In the situation assumed in this Section, there exist constants B(h), D(h) > 0
(to be specified) such that

(73) |Lλ
q (Wh)(t)−

n−1∑

m=0

fm,htm| ≤ D(h)B(h)n|q|n(n−1)/2|t|n

for all n ≥ 1, for all t ∈ Tλ,q,δ,r0.

Proof
According to the estimates (64) in Theorem 4, we can write

(74)
∣∣ fn,h

qn(n−1)/2

∣∣ =
∣∣ 1
n!

∂nWh(0)
∣∣ ≤ C1

( 1
T1

)n( 1
X1

)h
h!(h + 1)r1n/r2 |q|−h2/2 = C(h)A(h)n

for every n, h ≥ 0, where we have put, for short,

(75) C(h) = C1

( 1
X1

)h
h!|q|−h2/2, A(h) =

1
T1

(h + 1)r1/r2 , h ≥ 0.

For each h ≥ 0 we define

mh := max{m ∈ Z : |qmλ| < 1
2A(h)

},

so that

(76) |qmλ|A(h) <
1
2
, m ≤ mh.

Also, we recall from Theorem 3 that T1 < 1/2, so

1
A(h)

<
1

2(h + 1)
r1
r2

,
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and we deduce that

(77) qmλ ∈ Dh, m ≤ mh.

Moreover, by the very definition of mh, we have that

(78) mh + 1 ≥ − log(2|λ|A(h))
log(|q|) , |q|mh+1 ≥ 1

2|λ|A(h)
.

Let K ≥ 0 be a fixed integer. Firstly, we give estimates for
∑

m>mh
Wh(qmλ)/Θ(qmλ/t). Using

(71), (12) and (14), we get

|Wh(qmλ)
Θ(qmλ/t)

| ≤ C ′K0h!
K1δ

(
1
|λ|)

K |q|K(K−1)/2|t|K(
|t|

T |λ||q|1/2
)m

( 1
X

)h|q|−h2/4

for all m > mh, all t ∈ Rλ,q,δ. For every t ∈ Tλ,q,δ,r0 we have |t| < r0 < T |λ||q|−1/2. Using (78),
we obtain that

∑
m>mh

(
|t|

T |λ||q|1/2
)m ≤

∑
m>mh

( 1
|q|

)m =
1

1− |q|−1

1
|q|mh+1

≤ 2|λ|A(h)
1− |q|−1

,

hence

(79)
∑

m>mh

|Wh(qmλ)
Θ(qmλ/t)

| ≤ 2|λ|C ′K0

K1δ(1− |q|−1)
A(h)h!

( 1
X

)h|q|−h2/4(
1
|λ|)

K |q|K(K−1)/2|t|K

for all t ∈ Tλ,q,δ,r0 .
In a second step, we give estimates for the sum

∑
m≤mh

Wh(qmλ)/Θ(qmλ/t) − ∑K
n=0 fn,htn,

where the fn,h are defined in the Taylor expansion (72). Taking into account (72) and (77), we
can formally write, as we did in the proof of Proposition 1,

(80)
∑

m≤mh

Wh(qmλ)/Θ(qmλ/t)−
K∑

n=0

fn,htn =
∑

m≤mh

1
Θ(qmλ/t)


 ∑

n≥K+1

fn,h

qn(n−1)/2
(qmλ)n




−
K∑

n=0

fn,h

qn(n−1)/2

( ∑
m>mh

(qmλ)n

Θ(qmλ/t)

)

for all t ∈ C∗.
From (80) and (74), we deduce that

(81) |
∑

m≤mh

Wh(qmλ)/Θ(qmλ/t)−
K∑

n=0

fn,htn| ≤ A(t) + B(t)

where

A(t) =
∑

m≤mh

1
|Θ(qmλ/t)|


 ∑

n≥K+1

C(h)A(h)n(|q|m|λ|)n




and

B(t) =
K∑

n=0

C(h)A(h)n

( ∑
m>mh

|(qmλ)n|
|Θ(qmλ/t)|

)
,
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for all t ∈ C∗.
We give estimates for A(t). Taking into account (76), we have that

(82)

A(t) ≤ C(h)
∑

m≤mh

1
|Θ(qmλ/t)|

(A(h)|q|m|λ|)K+1

1−A(h)|q|m|λ| ≤ C(h)A(h)K+1

1−A(h)|q|mh |λ|
∑

m≥−mh

(|q|−m|λ|)K+1

|Θ(q−mλ/t)|

for all t ∈ C∗. From (13), we have that

|Θ(q−mλ/t)| ≥ K1δ|q|−K(K−1)/2|q
−mλ

t
|K

for all m ≥ −mh, all t ∈ Rλ,q,δ. We deduce that

(83)
(|q|−m|λ|)K+1

|Θ(q−mλ/t)| ≤
|λ|
K1δ

|q|K(K−1)/2|t|K(
1
|q|)

m

for all m ≥ −mh, all t ∈ Rλ,q,δ. From (82), (83) and (76), we conclude that

A(t) ≤ C(h)A(h)
1−A(h)|q|mh |λ|

|λ|
K1δ

|q|mh

1− |q|−1
A(h)K |q|K(K−1)/2|t|K

≤ C(h)
K1δ(1− |q|−1)

A(h)K |q|K(K−1)/2|t|K(84)

for all t ∈ Rλ,q,δ.
In the next step, we get estimates for B(t). From (13), we have that

|Θ(qmλ/t)| ≥ K1δ|q|−(K+1)K/2|q
mλ

t
|K+1

for all m > mh, all t ∈ Rλ,q,δ. We deduce that

|(qmλ)n|
|Θ(qmλ/t)| ≤

|λ|n
K1δ

(
1
|λ|)

K+1|q|(K+1)K/2|t|K+1(
1

|q|K+1−n
)m

for all m > mh, all 0 ≤ n ≤ K. Then,

(85)
∑

m>mh

|(qmλ)n|
|Θ(qmλ/t)| ≤

|λ|n
K1δ

(
1
|λ|)

K+1|q|(K+1)K/2|t|K+1
( 1
|q|K+1−n )mh+1

1− 1
|q|K+1−n

.

It is clear that |q|K+1−n ≥ |q| for 0 ≤ n ≤ K, hence

1− 1
|q|K+1−n

≥ 1− |q|−1, 0 ≤ n ≤ K.

If we write
(

1
|q|K+1−n

)mh+1 =
( 1
|q|mh+1

)K+1(|q|mh+1)n,

from (85) we deduce that

B(t) ≤ C(h)
K1δ(1− |q|−1)

(
1

|λ||q|mh+1
)K+1|q|(K+1)K/2|t|K+1

K∑

n=0

(A(h)|λ||q|mh+1)n

≤ C(h)
K1δ(1− |q|−1)

(
1

|λ||q|mh+1
)K+1|q|(K+1)K/2|t|K+1

K∑

n=0

(2A(h)|λ||q|mh+1)n.
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By (78) we know that 2A(h)|λ||q|mh+1 ≥ 1. For every real number x ≥ 1 we have

K∑

n=0

xn ≤
K∑

n=0

(
K

n

)
xnxK−n = (2x)K ,

and we deduce that
∑K

n=0(2A(h)|λ||q|mh+1)n ≤ (4A(h)|λ||q|mh+1)K . Also, we have |t| <
|λq−1/2|T whenever t ∈ Tλ,q,δ,r0 , and (K + 1)K/2 = K + K(K − 1)/2. Gathering all these
facts and using (78), we deduce that

B(t) ≤ |t|C(h)
K1δ(1− |q|−1)|λ||q|mh+1

(4A(h)|q|)K |q|K(K−1)/2|t|K

≤ 2|λ|TA(h)C(h)
K1δ|q|1/2(1− |q|−1)

(4A(h)|q|)K |q|K(K−1)/2|t|K(86)

for all t ∈ Tλ,q,δ,r0 .

Finally, using the estimates

|
∑

m∈Z
Wh(qmλ)/Θ(qmλ/t)−

K∑

n=0

fn,htn| ≤ |
∑

m≤mh

Wh(qmλ)/Θ(qmλ/t)−
K∑

n=0

fn,htn|

+ |
∑

m>mh

Wh(qmλ)/Θ(qmλ/t)|

we deduce from (79), (81), (84), (86) that

(87) |Lλ
q (Wh)(t)−

K∑

n=0

fn,htn| ≤ D1(h)B1(h)K |q|K(K−1)/2|t|K

for all K ≥ 0, for all t ∈ Tλ,q,δ,r0 , with

(88) B1(h) = B1(h + 1)r1/r2 , D1(h) = B2(h + 1)r1/r2h!Bh
3 |q|−h2/4,

where B1, B2 and B3 are positive constants that do not depend on h. In order to conclude, it
suffices to write, for K ≥ 1,

|Lλ
q (Wh)(t)−

K−1∑

n=0

fn,htn| ≤ |Lλ
q (Wh)(t)−

K∑

n=0

fn,htn|+ |fK,htK |,

and take into account (87) and (74). According to the expressions (75) and (88), one obtains
the estimates (73) with

(89) B(h) = A1(h + 1)r1/r2 , D(h) = A2(h + 1)r1/r2h!Ah
3 |q|−h2/4,

where A1, A2 and A3 are again positive constants that do not depend on h. 2

We are ready to obtain our main result.

Theorem 5 Suppose X̂j(t) =
∑

m≥0 fm,jt
m ∈ C[[t]], 0 ≤ j ≤ S − 1, are given initial conditions

for the Cauchy problem (3), (4), and let

X̂(t, z) =
∑

h≥0

X̂h(t)
zh

h!
=

∑

h≥0

∑

m≥0

fm,htm
zh

h!
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be the only formal series solution of the problem (see Lemma 5). We suppose that the series
X̂j(t), 0 ≤ j ≤ S − 1, are q−Gevrey of order 1, and that their formal q−Borel transforms
of order 1, Wj(τ) = B̂qX̂j(τ), which are holomorphic functions around 0, indeed satisfy the
assumptions of Theorems 2 and 4. We also assume that the rest of hypotheses of Theorem 2 are
satisfied. Let

W (τ, z) =
∑

h≥0

Wh(τ)
zh

h!

be the solution of the Cauchy problem (49), (50), corresponding to the initial conditions Wj,
0 ≤ j ≤ S − 1. Then, we have that:

1) The function X(t, z) =
∑

h≥0

Lλ
q (Wh)(t)

zh

h!
is holomorphic in Tλ,q,δ,r0 × C.

2) The function X(t, z) solves the Cauchy problem (3), (4).
3) If r1 ≥ 1, given R > 0 there exist constants C̃ > 0, D̃ > 0 such that for every n ∈ N, n ≥ 1,
one has

(90)
∣∣∣X(t, z)−

∑

h≥0

n−1∑

m=0

fm,htm
zh

h!

∣∣∣ ≤ C̃D̃nΓ(
r1

r2
(n + 1))|q|n(n−1)/2|t|n

for every t ∈ Tλ,q,δ,r0, z ∈ D(0, R).
If r1 = 0, given R > 0 there exist constants C̃ > 0, D̃ > 0 such that for every n ∈ N, n ≥ 1, one
has

(91)
∣∣∣X(t, z)−

∑

h≥0

n−1∑

m=0

fm,htm
zh

h!

∣∣∣ ≤ C̃D̃n|q|n(n−1)/2|t|n

for every t ∈ Tλ,q,δ,r0, z ∈ D(0, R).

Remark: Due to the estimates (90) and (91), we may say that the function X(t, z) admits

the series
∑

h≥0

∑

m≥0

fm,htm
zh

h!
as q−asymptotic expansion of order 1 in t, uniformly for z in the

compact subsets of C. It may be noted that, because of the small divisors problem we have
dealt with, a new factor appears in the estimates, in terms of the Eulerian Gamma function.
The value r1/r2 may be thought of as a sub-order, or a second-level order, in the asymptotic
expansion.

Proof 1) In view of (73), for n = 1, and (89) we have that

|Lλ
q (Wh)(t)− f0,h| ≤ D(h)B(h)|t| ≤ A1(h + 1)2r1/r2A2h!Ah

3 |q|−h2/4r0

for every h ≥ 0, every t ∈ Tλ,q,δ,r0 . On the other hand, by (74) we have that

|f0,h| ≤ C1

( 1
X1

)h
h!|q|−h2/2

for every h ≥ 0. So, we conclude that there exist A4, A5 > 0 such that

|Lλ
q (Wh)(t)| ≤ A4A

h
5h!|q|−h2/4



28

for every h ≥ 0, every t ∈ Tλ,q,δ,r0 . Then, for z ∈ D(0, R) we have

|
∑

h≥0

Lλ
q (Wh)(t)

zh

h!
| ≤

∑

h≥0

A4(A5R)h|q|−h2/4 < ∞,

so that the series converges and the function it defines is holomorphic in Tλ,q,δ,r0 × C.

2) Since the series
∑

h≥0 Wh(τ)
zh

h!
is a solution of (49), (50), one can guarantee that X(t, z) is

a solution of the Cauchy problem (3), (4) by Proposition 2.
3) For every n ≥ 1, every (t, z) ∈ Tλ,q,δ,r0 ×D(0, R), the sum

∑

h≥0

n−1∑

m=0

fm,htm
zh

h!

is convergent, as we see from (74). One may take into account (73) and (89) and write

∣∣∣X(t, z)−
∑

h≥0

n−1∑

m=0

fm,htm
zh

h!

∣∣∣ ≤
∑

h≥0

|Lλ
q (Wh)(t)−

n−1∑

m=0

fm,htm|R
h

h!

≤ A2A
n
1 |q|n(n−1)/2|t|n

∑

h≥0

(h + 1)r1(n+1)/r2(A3R)h|q|−h2/4

=
A2

A3R
An

1 |q|n(n−1)/2|t|n
∑

h≥1

hr1(n+1)/r2(A3R)h|q|−(h−1)2/4.(92)

In case r1 = 0, the conclusion easily follows, since the last sum is convergent and independent
of n. In case r1 ≥ 1, we follow an idea of B. Braaksma and L. Stolovitch [5]. Let ε > 0, and
let γ be a contour that goes from ∞e−iπ to −ε along the negative real axis, then it turns once
around 0 in the positive sense, and it goes from −ε to ∞eiπ again along the negative real axis.
For

(93) µ =
r1(n + 1)

r2
> 0,

Hankel’s formula allows us to write

hµ

Γ(µ + 1)
=

1
2πi

∫

γ
ehss−µ−1 ds,

so that the sum in (92) may be written as

(94)
Γ(µ + 1)

2πi

∑

h≥1

(A3R)h|q|−(h−1)2/4

∫

γ
ehss−µ−1 ds

=
Γ(µ + 1)

2πi

∑

h≥1

∫

γ
s−µ−1|q|−(h−1)2/4(A3Res)h ds.

We consider now the entire function

F (z) =
∑

h≥1

|q|−(h−1)2/4zh, z ∈ C.
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The series converges uniformly in every closed disc. Observe that as s runs over γ, its real part
remains bounded above, and the same is valid for the modulus of A3Res. So, we may write

F (A3Res) =
∑

h≥1

|q|−(h−1)2/4(A3Res)h

uniformly in γ, and the dominated convergence theorem ensures that

(95)
∑

h≥1

∫

γ
s−µ−1|q|−(h−1)2/4(A3Res)h ds =

∫

γ
s−µ−1

∑

h≥1

|q|−(h−1)2/4(A3Res)h ds

=
∫

γ
s−µ−1F (A3Res) ds.

Moreover, F (A3Res) remains bounded as s runs over γ, say by M > 0, and it is easy to obtain,
estimating on each of the three parts of γ, that

(96) |
∫

γ
s−µ−1F (A3Res) ds| ≤ 2

M

µεµ
+

2πM

εµ
≤ M̃µ

µεµ
,

where M̃ > 0 is some suitable constant independent of h. Gathering (92), (94), (95) and (96),
we see that

∣∣∣X(t, z)−
∑

h≥0

n−1∑

m=0

fm,htm
zh

h!

∣∣∣ ≤ A2

A3R
An

1 |q|n(n−1)/2|t|n Γ(µ + 1)
2πi

M̃µ

µεµ
.

It suffices to recall that Γ(µ + 1) = µΓ(µ) and the definition of µ, (93), in order to conclude. 2

Remark: All the results in this work are valid for any r1 ≥ 0, but the case r1 = 0, as it may be
seen in the last Theorem, deserves some attention, since the Fuchsian singularity at z = 0 does
not appear any more. The most important consequence of this fact is the disappearance of the
small divisors phenomenon we had in general.
Moreover, the condition 1) in Theorem 2, concerning the argument of q and the set V , can be
relaxed. Indeed, the estimates (53) hold if one assumes that there exists δ > 0 such that

(97) dist(V r2qr2Z, {−1}) > δ,

where dist is the Euclidean distance between two sets in C. For example, suppose V is such that
there exist R1, R2 with

0 < R1 ≤ |xr2 | ≤ R2

for all x ∈ V , and suppose that R2 < |q|R1 and there exists j ∈ Z such that

|q|r2jR2 < 1 < |q|r2(j+1)R1.

Then, one can easily check that the condition (97) holds.
In Theorem 4 all the functions Wh are holomorphic in a common disc, say D, and there exist
constants T1, X1 > 0 such that

sup
τ∈D

|∂nWj(τ)| ≤ C1

( 1
T1

)n( 1
X1

)j
n!j!|q|−j2/2

for every n, j ≥ 0. The proof of Proposition 3 admits some simplification, and one obtains that

|Lλ
q (Wh)(t)−

n−1∑

m=0

fm,htm| ≤ A2h!Ah
3 |q|−h2/4An

1 |q|n(n−1)/2|t|n,

for every h ≥ 0, n ≥ 1. Finally, no sub-order appears in the q−asymptotic expansion of the
solution X(t, z).
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