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Abstract

We study a nonlinear initial value Cauchy problem depending upon a complex perturbation parameter ε
with vanishing initial data at complex time t = 0 and whose coefficients depend analytically on (ε, t) near
the origin in C2 and are bounded holomorphic on some horizontal strip in C w.r.t the space variable.
This problem is assumed to be non-Kowalevskian in time t, therefore analytic solutions at t = 0 cannot
be expected in general. Nevertheless, we are able to construct a family of actual holomorphic solutions
defined on a common bounded open sector with vertex at 0 in time and on the given strip above in
space, when the complex parameter ε belongs to a suitably chosen set of open bounded sectors whose
union form a covering of some neighborhood Ω of 0 in C∗. These solutions are achieved by means of
Laplace and Fourier inverse transforms of some common ε−depending function on C× R, analytic near
the origin and with exponential growth on some unbounded sectors with appropriate bisecting directions
in the first variable and exponential decay in the second, when the perturbation parameter belongs to Ω.
Moreover, these solutions satisfy the remarkable property that the difference between any two of them is
exponentially flat for some integer order w.r.t ε. With the help of the classical Ramis-Sibuya theorem, we
obtain the existence of a formal series (generally divergent) in ε which is the common Gevrey asymptotic
expansion of the built up actual solutions considered above.
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1 Introduction

In this paper, we consider a family of parameter depending nonlinear initial value Cauchy
problems of the form

(1) Q(∂z)(∂tu(t, z, ε)) = (Q1(∂z)u(t, z, ε))(Q2(∂z)u(t, z, ε)) +

D∑
l=1

ε∆ltdl∂δlt Rl(∂z)u(t, z, ε)

+ c0(t, z, ε)R0(∂z)u(t, z, ε) + f(t, z, ε)

for given vanishing initial data u(0, z, ε) ≡ 0, where D ≥ 2, ∆l, dl, δl, 1 ≤ l ≤ D are integers
which satisfy the inequalities

1 = δ1 , δl < δl+1 , dD = (δD − 1)(k + 1) , ∆D = dD − δD + 1,

dl > (δl − 1)(k + 1) , δD ≥ δl +
2

k
, ∆l + k(1− δD) + 1 ≥ 0

for all 1 ≤ l ≤ D−1 and for some integer k ≥ 1. Besides, Q(X), Q1(X), Q2(X), Rl(X), 0 ≤ l ≤ D
are polynomials submitted to the constraints

deg(Q) ≥ deg(RD) ≥ deg(Rl) , deg(RD) ≥ deg(Q1) , deg(RD) ≥ deg(Q2),

Q(im) 6= 0 , RD(im) 6= 0

for all m ∈ R, all 0 ≤ l ≤ D − 1. The coefficient c0(t, z, ε) and the forcing term f(t, z, ε)
are bounded holomorphic functions on a product D(0, r)×Hβ ×D(0, ε0), where D(0, r) (resp.
D(0, ε0)) is a disc centered at 0 with small radius r > 0 (resp. ε0 > 0) and Hβ = {z ∈
C/|Im(z)| < β} is some strip of width β > 0. In order to avoid cumbersome statements and
to improve the readability of the computations, we have restricted our study to a quadratic
nonlinearity and monomial coefficients in t in front of the derivatives with respect to t and z but
the method described here can also be extended to higher order nonlinearities, with polynomial
coefficients w.r.t t in the linear part on the right handside of the equation (1).

This work can be seen as a continuation of the study described in [23] where the second
author has studied nonlinear integro-differential initial values problems with the shape

(2) R(∂z)P (∂t, ∂z)Y (t, z) =

∫ t

0
b(t− s, z)∂s0z Y (s, z)ds+

∫ t

0
∂s1z Y (t− s, z)∂s2z Y (s, z)ds

where R(X) ∈ C[X], P (T,X) ∈ C[T,X] and s0, s1, s2 ≥ 0 are non negative integers. The
coefficient b(t, z) =

∑
k∈I bk(z)t

k is a polynomial in t and its coefficients bk(z) are Fourier inverse
transform of some function bk(m) belonging to a Banach space E(β,µ) of continuous functions
h : R→ C endowed with the norm ||h(m)||(β,µ) = supm∈R(1 + |m|)µ exp(β|m|)|h(m)| and define
bounded holomorphic functions on any strip Hβ′ , 0 < β′ < β. The initial conditions are defined

by Y (0, z) = Y0(z), (∂jt Y )(0, z) ≡ 0, for all 1 ≤ j ≤ degTP (T,X)− 1, where Y0 is also assumed
to be the Fourier inverse transform of some Y0(m) belonging to E(β,µ). We focused on the case
when the degree of R(X)P (T,X) with respect to T is smaller than its degree in X. In that case
the classical Cauchy-Kowalevski theorem (see [12]) cannot be applied and the unique formal
power series solution Ŷ (t, z) =

∑
l≥0 Yl(z)t

l, with coefficients belonging to the Banach space of
bounded holomorphic functions on Hβ′ equipped with the sup norm, is in general divergent.
Nevertheless, under suitable constraints on the roots of the polynomial T 7→ P (T 2, im) and for
sufficiently small data ||bk||(β,µ), ||Y0||(β,µ), one can construct by means of classical Borel-Laplace
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procedure and Fourier inverse transform an actual holomorphic solution Y (t, z) on C+ ×Hβ′ of
(2) for the given initial data (C+ denotes the set of complex numbers t such that Re(t) > 0),
which possess the formal series Ŷ as Gevrey asymptotic expansion of order 1 as t tends to 0,
meaning that for any compact subsector W ⊂ C+ centered at 0, there exist constants C,M > 0
with

sup
z∈Hβ′

|Y (t, z)−
n−1∑
l=0

Yl(z)t
l| ≤ CMnn!|t|n

for all n ≥ 1, all t ∈ W.
Compared to the work [23], the problem (1) now involves an additional complex parameter

ε. Provided that δD + deg(RD) > deg(Q) + 1 holds, the problem (1) is singularly perturbed in
the parameter ε and belongs to a class of so-called PDEs with irregular singularity at t = 0 in
the sense of [25]. In the paper [22], the second author has already considered a similar problem
of the form

(3) εt2∂t∂
S
z Xp(t, z, ε) = F (t, z, ε, ∂t, ∂z)Xp(t, z, ε) + P (t, z, ε,Xp(t, z, ε))

for given initial data

(4) (∂jzXp)(t, 0, ε) = φj,p(t, ε) , 0 ≤ p ≤ ς − 1, 0 ≤ j ≤ S − 1,

where S, ς ≥ 2 are some positive integers, F is some differential operator with polynomial
coefficients and P a polynomial. The initial data φj,p(t, ε) were assumed to be holomorphic on
products T × Ep ⊂ C2 for some sector T centered at 0 and where E = {Ep}0≤p≤ς−1 denotes a
family of open bounded sectors with aperture larger than π which form a so-called good covering
in C∗, meaning that Ep ∩ Ep+1 6= ∅ for all 0 ≤ p ≤ ς − 1 (with the convention that Eς = E0) with
the property that the intersection of any three different elements in {Ep}0≤p≤ς−1 is empty and
that ∪ς−1

p=0Ep = U \ {0}, where U is some neighborhood of 0 in C. Under convenient assumptions
on the shape of the equation (3) and on the initial data (4), the existence of a formal series
X̂(t, z, ε) =

∑
k≥0 hk(t, z)ε

k/k! solution of (3) is established with coefficients hk(t, z) belonging
to the Banach space F of bounded holomorphic functions on T ×D(0, δ) (for some δ > 0 small
enough) equipped with the sup norm. This formal series X̂(t, z, ε) is the Gevrey asymptotic
expansion of order 1 of actual holomorphic solutions Xp(t, z, ε) of (3), (4) on Ep as F−valued
functions, for all 0 ≤ p ≤ ς − 1, in other words for any closed subsector W ⊂ Ep centered at 0,
there exist constants C,M > 0 such that

sup
t∈T ,z∈D̄(0,δ)

|Xp(t, z, ε)−
n−1∑
k=0

hk(t, z)ε
k/k!| ≤ CMnn!|ε|n

for all n ≥ 1, all ε ∈ W.
In this work we address the same queries as in [22], [23], namely our main purpose is the

construction of actual holomorphic solutions up(t, z, ε) to the problem (1) on domains T ×Hβ′×Ep
using some Borel-Laplace procedure and Fourier inverse transform and the analysis of their
asymptotic expansions as ε tends to 0. More specifically, we can present our main statements
as follows.

Main results Assume the existence of an unbounded sector

SQ,RD = {z ∈ C/|z| ≥ rQ,RD , |arg(z)− dQ,RD | ≤ ηQ,RD}

with direction dQ,RD ∈ R, aperture ηQ,RD > 0 and radius rQ,RD > 0 such that the quotient
Q(im)/RD(im) belongs to SQ,RD for all m ∈ R. This sector SQ,RD is prescribed in such a
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way that there exists a set of adequate directions dp ∈ R, 0 ≤ p ≤ ς − 1, with the feature
that the distinct complex roots ql(m), 0 ≤ l ≤ (δD − 1)k − 1, of the polynomial Pm(τ) =
Q(im)k − RD(im)kδDτ (δD−1)k fulfill estimates of the form : there exist constants M1,M2 > 0
such that

|τ − ql(m)| ≥M1(1 + |τ |) , |τ − ql0(m)| ≥M2|ql0(m)|

for all 0 ≤ l ≤ (δD − 1)k − 1, some integer l0 ∈ {0, . . . , (δD − 1)k − 1}, for all m ∈ R, all
τ ∈ Sdp ∪ D̄(0, ρ), for some well chosen unbounded sectors Sdp centered at 0 with direction dp
and for some radius ρ > 0. Then, we choose a family E = {Ep}0≤p≤ς−1 of sectors with aperture
slightly larger than π/k which defines a good covering of C∗ and we take an open bounded sector
T centered at 0 such that for every 0 ≤ p ≤ ς−1, the product εt belongs to a sector with direction
dp and aperture slightly larger than π/k, for all ε ∈ Ep, all t ∈ T . We make the assumption that
the coefficient c0(t, z, ε) and the forcing term f(t, z, ε) can be written as convergent series of the
special form

c0(t, z, ε) =
∑
n≥0

c0,n(z, ε)(εt)n , f(t, z, ε) =
∑
n≥1

fn(z, ε)(εt)n,

on a domain D(0, r)×Hβ′ ×D(0, ε0) (where Hβ′ is a strip of width β′) such that T ⊂ D(0, r),
∪0≤p≤ς−1Ep ⊂ D(0, ε0) and 0 < β′ < β are given positive real numbers. The coefficients c0,0(z, ε),
c0,n(z, ε) and fn(z, ε), n ≥ 1, are supposed to be inverse Fourier transform of functions m 7→
C0,0(m, ε), m 7→ C0,n(m, ε) and m 7→ Fn(m, ε) that belong to the Banach space E(β,µ) for some
µ > max(deg(Q1) + 1,deg(Q2) + 1) and that depend holomorphically on ε in D(0, ε0).

Our first result stated in Theorem 1 claims that if the norm ||C0,0(m, ε)||(β,µ) and the radius ε0
are chosen small enough and if the radius rQ,RD is taken sufficiently large then we can construct
a family of holomorphic bounded functions up(t, z, ε), 0 ≤ p ≤ ς − 1, defined on the products
T ×Hβ′ × Ep, which solves the problem (1) with vanishing initial data up(0, z, ε) ≡ 0 and which
can be written as Laplace-Fourier transform

up(t, z, ε) =
k

(2π)1/2

∫ +∞

−∞

∫
Lγp

ω
dp
k (u,m, ε)e−( u

εt
)keizm

du

u
dm.

where the inner integration is made along some halfline Lγp ⊂ Sdp where ω
dp
k (u,m, ε) denotes

a function with at most exponential growth of order k in u/ε and exponential decay in m ∈ R
which satisfies more precisely estimates of the form

|ωdp
k (u,m, ε)| ≤ C(1 + |m|)−µe−β|m|

|uε |
1 + |uε |2k

exp(ν|u
ε
|k)

for some constants C, ν > 0, for all m ∈ R, all u ∈ Sdp ∪ D̄(0, ρ), all ε ∈ D(0, ε0) \ {0}.
Our second main result, described in Theorem 2, asserts that the functions up, 0 ≤ p ≤ ς−1,

turn out to be the k−sums on Ep of a common formal power series

û(t, z, ε) =
∑
m≥0

hm(t, z)
εm

m!
∈ F[[ε]]

where F is the Banach space of bounded holomorphic functions on T ×Hβ′ equipped with the sup
norm. Namely, for any closed subsector W ⊂ Ep centered at 0, there exist constants C,M > 0
such that

sup
t∈T ,z∈Hβ′

|up(t, z, ε)−
n−1∑
m=0

hm(t, z)
εm

m!
| ≤ CMnΓ(1 +

n

k
)|ε|n
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for all n ≥ 1, all ε ∈ W.

It is worth remarking that when deg(Q)+1 > δD+deg(RD), the equation (1) is not singularly
perturbed in ε and possess no irregular singularity at t = 0. However, the asymptotic expansion
û of up as ε tends to 0 on Ep remains divergent in general. The reason for this phenomenon
to appear relies on the way one constructs the actual solutions up as Laplace transforms of
order k in the new variable εt and from the fact that for any fixed ε ∈ D(0, ε0) \ {0}, the
problem (1) is not Kowalevskian with respect to t at 0 (meaning that formal series solutions
v̂(t, z, ε) =

∑
n≥1 vn(z, ε)tn, with coefficients z 7→ vn(z, ε) bounded holomorphic on Hβ′ , are in

general divergent, as a consequence of Propositions 8 and 9) as it was already the case in our
previous paper [23].

The Cauchy problem (1) we consider here comes within the new trend of research concerning
Borel-Laplace summability procedures applied to partial differential differential equation going
back to the seminal work of D. Lutz, M. Miyake and R. Schäfke on the linear complex heat
equation, see [19]. We quote below some important results in this field not pretending to
be exhaustive. This construction of Borel-Laplace k−summable or even multi-summable formal
series solutions has been extended to general linear PDEs in two complex variables with constant
coefficients by W. Balser in [3] and [4] provided that their initial data are analytic functions
near the origin that can be analytically continued with exponential growth on some unbounded
sectors. A similar result has been obtain for the so-called fractional linear PDEs with non-
integer derivatives by S. Michalik, see [24]. Latter on, linear complex heat like equations with
variable coefficients have been explored by several authors, see [5], [7], [21]. Recently, general
linear PDEs with time dependent coefficients taking for granted that their initial data are entire
functions in CN , N ≥ 1, have been investigated by H. Tahara and H. Yamazawa in [28]. In the
context of nonlinear PDEs, we mention the work [20] of G. Lysik who constructed summable
formal solutions of the one dimensional Burgers equations with the help of the so-called Cole-
Hopf transform. We also point out that O. Costin and S. Tanveer have constructed summable
formal series in time variable to the celebrated 3D Navier Stokes equations in [9]. We also refer
to the work of S. Ouchi who constructed multisummable formal solutions to nonlinear PDEs
which come from perturbations of ordinary differential equations, see [26]. We also mention the
fact that, these last years, a lot of attention has been payed to singularly perturbed PDEs in
the complex domain partly motived by a conjecture of B. Dubrovin which concerns the question
of universal behaviour of generic solutions near gradient catastrophe of singularly Hamiltonian
perturbations of first order hyperbolic equations, see [10]. In this active direction, we refer
namely to the works of B. Dubrovin and M. Elaeva who investigated the case of generalized
Burgers equations in [11] and of T. Claeys and T. Grava in [6] who solved the problem for KdV
equations. We indicate the recent important studies of T. Koike on Garnier systems, [15], [16]
and of S. Hirose on the reduction of general singularly perturbed holonomic systems in two
complex variables to Pearcy systems normal forms, [13].

In the sequel, we explain our principal intermediate key results and the arguments needed
in their proofs. In a first part, we depart from an auxiliary parameter depending initial value
differential and convolution equation which is singular in its perturbation parameter ε at 0, see
(72). This equation is formally constructed by making the change of variable T = εt in the
equation (1) (as done in our previous works [22], [17]) and by taking the Fourier transform
with respect to the variable z. Under the constraint (70) and the assumption that dl ≥ δl,
0 ≤ l ≤ D − 1 (which follows from the hypothesis (69)) we can construct a formal power
series solution Û(T,m, ε) =

∑
n≥1 Un(m, ε)Tn of (72) whose coefficients m 7→ Un(m, ε) depend

holomorphically on ε ∈ C∗ near the origin and belong to a Banach space E(β,µ) of continuous
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function with exponential decay on R introduced in the paper [9] by O. Costin and S. Tanveer.
This series turns out to be in general divergent as we will see below.

In the next step, we follow the strategy developped recently by H. Tahara and H. Yamazawa
in [28], namely we multiply each hand side of (72) by the power T k which transforms it into an
equation (76) which involves only differential operators in T of irregular type at T = 0 of the
form T β∂T with β ≥ k + 1 due to our assumption (69) on the shape of the equation (72).

Then, we apply a formal Borel transform of order k (defined as a slightly modified version
of the classical Borel transform of order k from the reference book [1]), that we call mk−Borel
transform in Definition 3, to the formal series Û with respect to T , denoted

ωk(τ,m, ε) =
∑
n≥1

Un(m, ε)
τk

Γ(nk )
.

From the commutation rules of themk−Borel transform with respect to the weighted convolution
product ? of formal series (introduced in Proposition 5) and the differential operators T β∂T for
β ≥ k + 1 described in Proposition 6, we get that ωk(τ,m, ε) formally solves a convolution
equation in both variables τ and m, see (80).

Under some size constraint on the E(β,µ)−norm of the constant term C0,0 of one coefficient
of the equation (80) and for all ε ∈ C∗ close enough to 0, we show that ωk(τ,m, ε) is actually
convergent for τ on some fixed neighborhood of 0 and can be extended to a holomorphic functions
ωdk(τ,m, ε) on unbounded sectors Sd centered at zero with bisecting direction d and tiny aperture
provided that Sd stays away from the roots of some polynomial Pm(τ), for all m ∈ R. Besides,
the function ωdk(τ,m, ε) satisfies estimates of the form : there exist constants ν > 0 and $d > 0
with

|ωdk(τ,m, ε)| ≤ $d(1 + |m|)−µe−β|m|
| τε |

1 + | τε |2k
exp(ν|τ

ε
|k)

for all τ ∈ Sd, m ∈ R, all ε ∈ C∗ near the origin (see Proposition 9). The technical constraints
(69) and (87) together with (81), (84) and (85) allow, by means of lower bound estimates
(86) for the polynomial Pm(τ), the transformation of equation (80) into a fixed point equation
Hε(ωk) = ωk where the map Hε is given by (89) for which we can find a solution ωdk in some
Banach space of holomorphic functions F d(ν,β,µ,k,ε) studied in Section 2. It is worth noting that

the formal series Û(T,m, ε) diverges since the function ωk(τ,m, ε) cannot in general be extended
everywhere on C w.r.t τ . But, as a result, we get that these series Û are mk−summable w.r.t
T (see Definition 3) in all the directions d chosen as above. In other words, some Laplace
transform of order k of ωdk denoted Ud(T,m, ε) can be constructed for all T belonging to a
sector Sd,k,h|ε| with bisecting direction d, aperture slightly larger than π/k and radius h|ε| (for

some h > 0). This function T 7→ Ud(T,m, ε) is the unique E(β,µ)−valued map which admits

Û(T,m, ε) as Gevrey asymptotic expansion of order 1/k on Sd,k,h|ε|. Moreover, Ud(T,m, ε) solves

the auxiliary problem (72) with vanishing initial data Ud(0,m, ε), see Proposition 10.
In Theorem 1, we construct a family of actual bounded holomorphic solutions up(t, z, ε),

0 ≤ p ≤ ς − 1 of our original problem (1) on domains of the form T × Hβ′ × Ep. The sectors
Ep, 0 ≤ p ≤ ς − 1 constitute a so-called good covering in C∗ (Definition 4). The strip Hβ′ has
width 0 < β′ < β and T is a fixed bounded sector centered at 0 which fulfills the constraint
εt ∈ Sdp,k for all ε ∈ Ep, t ∈ T , and Sdp,k is a sector of bisecting direction dp and aperture
slightly larger than π/k where dp are suitable directions for which the unbounded sectors Sdp
with small aperture and bisecting direction dp satisfy the restrictions described above. Namely,
the functions up are set as Fourier inverse transforms of Udp ,

up(t, z, ε) = F−1(m 7→ Udp(εt,m, ε))(z)
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where the definition of F−1 is pointed out in Proposition 7. In addition to that, one can prove
that the difference of any two neighboring functions up+1(t, z, ε) − up(t, z, ε) tends to zero as
ε → 0 on Ep ∩ Ep+1 faster than a function with exponential decay of order k, uniformly w.r.t.
t ∈ T and z ∈ Hβ′ , see (119).

The last section of the paper is devoted to deal with this latter growth information in order
to show the existence of a common asymptotic expansion û(t, z, ε) =

∑
m≥0 hm(t, z)εm/m! of

Gevrey order 1/k for all the functions up(t, z, ε) as ε tends to 0 on Ep, uniformly w.r.t. t ∈ T
and z ∈ Hβ′ , see Theorem 2. The key tool in proving the result is the classical Ramis-Sibuya
theorem (Theorem (RS)).

The layout of this work reads as follows.
In Section 2, we define some weighted parameter depending Banach spaces of continuous func-
tions on C×R with exponential growth on sectors w.r.t the first variable and exponential decay
on R w.r.t the second one. We study the continuity properties of several kind of linear and
nonlinear integral operators acting on these spaces that will be useful in Section 4.
In Section 3, we give a definition of k−summability (that we call mk−summability) which is a
minor modification of the classical one given in the textbook [1] and which is appropriate for the
problem we have to deal with. We also give conditions for the set of mk−sums of formal series
to be a differential algebra. This fact will be important in the next section where we construct
actual solutions of the auxiliary equation (72). We provide explicit commutation formulas for
the mk−Borel transform w.r.t products and differential operators of irregular type.
In Section 4, we introduce an auxiliary differential and convolution problem (72) for which we
construct a formal solution. We show that the mk−Borel transform of this formal solution sat-
isfies a convolution problem (80). Under suitable assumptions, we can solve uniquely this latter
problem in the Banach spaces described in Section 2 using some fixed point theorem argument.
Then, applying Laplace transform, we can give a uniquely determined actual solution to (72)
having the formal solution mentioned above as Gevrey asymptotic expansion.
In Section 5, with the help of Section 4, we build a family of actual holomorphic solutions to
our initial Cauchy problem (1) on a full neighborhood of the origin in C∗ w.r.t the perturbation
parameter ε. We show that the difference of any two neighboring solutions is exponentially flat
for some integer order in ε (Theorem 1).
In Section 6, we show that the actual solutions constructed in Section 5 share a common formal
series as Gevrey asymptotic expansion as ε tends to 0 on sectors (Theorem 2). The result relies
on the classical so-called Ramis-Sibuya theorem.

2 Banach spaces functions with exponential growth and decay

We denote by D(0, r) the open disc centered at 0 with radius r > 0 in C and by D̄(0, r) its
closure. Let Sd be an open unbounded sector in direction d ∈ R and E be an open sector with
finite radius rE , both centered at 0 in C. By convention, these sectors do not contain the origin
in C.

Definition 1 Let ν, β, µ > 0 and ρ > 0 be positive real numbers. Let k ≥ 1 be an integer and
let ε ∈ E. We denote F d(ν,β,µ,k,ε) the vector space of continuous functions (τ,m) 7→ h(τ,m) on

(D̄(0, ρ) ∪ Sd)× R, which are holomorphic with respect to τ on D(0, ρ) ∪ Sd and such that

||h(τ,m)||(ν,β,µ,k,ε) = sup
τ∈D̄(0,ρ)∪Sd,m∈R

(1 + |m|)µ
1 + | τε |

2k

| τε |
exp(β|m| − ν|τ

ε
|k)|h(τ,m)|



8

is finite. One can check that the normed space (F d(ν,β,µ,k,ε), ||.||(ν,β,µ,k,ε)) is a Banach space.

Remark: These norms are appropriate modifications of the norms defined by O. Costin and S.
Tanveer in [9] and by the second the author in [22] and [23].

Throughout the whole section, we assume ε ∈ E , µ, β, ν > 0 are fixed. In the next lemma,
we check the continuity property by multiplication operation with bounded functions.

Lemma 1 Let (τ,m) 7→ a(τ,m) be a bounded continuous function on (D̄(0, ρ)∪Sd)×R, which
is holomorphic with respect to τ on D(0, ρ) ∪ Sd. Then, we have

(5) ||a(τ,m)h(τ,m)||(ν,β,µ,k,ε) ≤

(
sup

τ∈D̄(0,ρ)∪Sd,m∈R
|a(τ,m)|

)
||h(τ,m)||(ν,β,µ,k,ε)

for all h(τ,m) ∈ F d(ν,β,µ,k,ε).

In the next proposition, we study the continuity property of some convolution operators
acting on the latter Banach spaces.

Proposition 1 Let γ2 > 0 be a real number. Let k ≥ 1 be an integer such that 1/k ≤ γ2 ≤ 1.
Then, there exists a constant C1 > 0 (depending on ν, k, γ2) with

(6) ||
∫ τk

0
(τk − s)γ2f(s1/k,m)

ds

s
||(ν,β,µ,k,ε) ≤ C1|ε|kγ2 ||f(τ,m)||(ν,β,µ,k,ε)

for all f(τ,m) ∈ F d(ν,β,µ,k,ε).

Proof Let f(τ,m) ∈ F d(ν,β,µ,k,ε). For any τ ∈ D̄(0, ρ) ∪ Sd, the segment [0, τk] is such that the

map s ∈ [0, τk]→ f(s1/k,m) is well defined, provided that m ∈ R. By definition, we have that

(7) ||
∫ τk

0
(τk − s)γ2f(s1/k,m)

ds

s
||(ν,β,µ,k,ε)

= sup
τ∈D̄(0,ρ)∪Sd,m∈R

(1 + |m|)µ
1 + | τε |

2k

| τε |
exp(β|m| − ν|τ

ε
|k)

× |
∫ τk

0
{(1 + |m|)µeβ|m| exp(−ν|s|/|ε|k)

1 + |s|2
|ε|2k

|s|1/k
|ε|

f(s1/k,m)}

× A(τ, s,m, ε)ds|

where

A(τ, s,m, ε) =
1

(1 + |m|)µ
e−β|m|

exp(ν|s|/|ε|k)
1 + |s|2

|ε|2k

|s|1/k

|ε|
(τk − s)γ2 1

s

Therefore,

(8) ||
∫ τk

0
(τk − s)γ2f(s1/k,m)

ds

s
||(ν,β,µ,k,ε) ≤ C1(ε)||f(τ,m)||(ν,β,µ,k,ε)
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where

C1(ε) = sup
τ∈D̄(0,ρ)∪Sd

1 + | τε |
2k

| τε |
exp(−ν|τ

ε
|k)×

∫ |τ |k
0

exp(νh/|ε|k)
1 + h2

|ε|2k

h
1
k
−1

|ε|
(|τ |k − h)γ2dh

Making the change of variable h = |ε|kh′ in the integral inside C1(ε) yields

(9) C1(ε) = |ε|kγ2 sup
τ∈D̄(0,ρ)∪Sd

1 + | τε |
2k

| τε |
exp(−ν|τ

ε
|k)

×
∫ | τ

ε
|k

0

exp(νh′)

1 + h′2
(h′)

1
k
−1(|τ

ε
|k − h′)γ2dh′ ≤ |ε|kγ2 sup

x≥0
A(x)

where

A(x) =
1 + x2

x1/k
exp(−νx)

∫ x

0

exp(νh)

1 + h2
h

1
k
−1(x− h)γ2dh

For any x > 0, we have A(x) ≤ Ã(x), where

Ã(x) = (1 + x2)xγ2−
1
k exp(−νx)

∫ x

0

exp(νh)

1 + h2
h

1
k
−1dh.

Using L’Hospital rule, we know that

lim
x→+∞

Ã(x) = lim
x→+∞

exp(νx)x
1
k
−1/(1 + x2)

∂x( exp(νx)

(1+x2)xγ2−
1
k

)

= lim
x→+∞

(1 + x2)x2(γ2− 1
k

)x
1
k
−1

ν(1 + x2)xγ2−
1
k − (2xγ2−

1
k

+1 + (γ2 − 1
k )xγ2−

1
k
−1(1 + x2))

and this latter limit is finite if γ2 ≤ 1 holds. Hence, we deduce that there exists a constant
Ã > 0 such that

(10) sup
x≥0

Ã(x) ≤ Ã

Gathering the estimates (8), (9), (10), we see that (6) holds. 2

Proposition 2 Let γ1 ≥ 0 and χ2 > −1 be real numbers. Let ν2 ≥ 0 be an integer. We consider
a holomorphic function aγ1,k(τ) on D(0, ρ) ∪ Sd, continuous on D̄(0, ρ) ∪ Sd, such that

|aγ1,k(τ)| ≤ 1

(1 + |τ |k)γ1

for all τ ∈ D̄(0, ρ) ∪ Sd.

i) Assume that χ2 ≥ 0.

If ν2 + χ2 − γ1 ≤ 0, then there exists a constant C2.1 > 0 (depending on ν, ν2, χ2, γ1) such that

(11) ||aγ1,k(τ)

∫ τk

0
(τk − s)χ2sν2f(s1/k,m)ds||(ν,β,µ,k,ε)

≤ C2.1|ε|k(1+ν2+χ2−γ1)||f(τ,m)||(ν,β,µ,k,ε)
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for all f(τ,m) ∈ F d(ν,β,µ,k,ε).

ii) Assume that χ2 = χ
k − 1 for some real number χ ≥ 1.

If ν2 + 1
k − γ1 ≤ 0, then there exists a constant C2.2 > 0 (depending χ, k, ν, γ1, ν2) on such that

(12) ||aγ1,k(τ)

∫ τk

0
(τk − s)χ2sν2f(s1/k,m)ds||(ν,β,µ,k,ε)

≤ C2.2|ε|k(1+ν2+χ2−γ1)||f(τ,m)||(ν,β,µ,k,ε)

for all f(τ,m) ∈ F d(ν,β,µ,k,ε).

Proof In the first part of the proof, let us assume that i) holds. Let f(τ,m) ∈ F d(ν,β,µ,k,ε). By
definition, we have

(13) ||aγ1,k(τ)

∫ τk

0
(τk − s)χ2sν2f(s1/k,m)ds||(ν,β,µ,k,ε)

= sup
τ∈D̄(0,ρ)∪Sd,m∈R

(1 + |m|)µ
1 + | τε |

2k

| τε |
exp(β|m| − ν|τ

ε
|k)

× |aγ1,k(τ)

∫ τk

0
{(1 + |m|)µeβ|m| exp(−ν|s|/|ε|k)

1 + |s|2
|ε|2k

|s|1/k
|ε|

f(s1/k,m)}

× B(τ, s,m, ε)ds|

where

B(τ, s,m, ε) =
1

(1 + |m|)µ
e−β|m|

exp(ν|s|/|ε|k)
1 + |s|2

|ε|2k

|s|1/k

|ε|
(τk − s)χ2sν2 .

Therefore,

(14) ||aγ1,k(τ)

∫ τk

0
(τk − s)χ2sν2f(s1/k,m)ds||(ν,β,µ,k,ε) ≤ C2(ε)||f(τ,m)||(ν,β,µ,k,ε)

where

C2(ε) = sup
τ∈D̄(0,ρ)∪Sd

1 + | τε |
2k

| τε |
exp(−ν|τ

ε
|k)

× 1

(1 + |τ |k)γ1

∫ |τ |k
0

exp(νh/|ε|k)
1 + h2

|ε|2k

h
1
k

|ε|
(|τ |k − h)χ2hν2dh

Making the change of variable h = |ε|kh′ in the integral inside C2(ε) yields

(15) C2(ε) = |ε|k(1+ν2+χ2) sup
τ∈D̄(0,ρ)∪Sd

1 + | τε |
2k

| τε |
exp(−ν|τ

ε
|k)

× 1

(1 + |ε|k| τε |k)γ1

∫ | τ
ε
|k

0

exp(νh′)

1 + h′2
(h′)

1
k (|τ

ε
|k − h′)χ2h′ν2dh′

≤ |ε|k(1+ν2+χ2) sup
x≥0

B(x, ε)
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where

B(x, ε) =
1 + x2

x1/k
exp(−νx)

1

(1 + |ε|kx)γ1

∫ x

0

exp(νh)

1 + h2
h

1
k

+ν2(x− h)χ2dh.

For any x > 0, we get that B(x, ε) ≤ B̃(x, ε), where

B̃(x, ε) =
(1 + x2)xχ2

(1 + |ε|kx)γ1
exp(−νx)

∫ x

0

exp(νh)

1 + h2
hν2dh

Let x0 > 0. From the inequality 1 + |ε|kx ≥ 1, for all x ∈ [0, x0] and ε ∈ E , there exists a
constant B̃ > 0 such that

(16) sup
x∈[0,x0],ε∈E

B̃(x, ε) ≤ B̃.

On the other hand, since 1 + |ε|kx ≥ |ε|kx holds for all x ≥ 0 and ε ∈ E , we get that B̃(x, ε) ≤
B̃2(x)/|ε|kγ1 where

(17) B̃2(x) = (1 + x2)xχ2−γ1 exp(−νx)

∫ x

0

exp(νh)

1 + h2
hν2dh

for all x ≥ x0. By L’Hospital rule we get that

lim
x→+∞

B̃2(x) = lim
x→+∞

(1 + x2)x2(χ2−γ1)xν2

ν(1 + x2)xχ2−γ1 − (2xχ2−γ1+1 + (χ2 − γ1)xχ2−γ1−1(1 + x2))

which is finite if we assume that 1 ≥ (1 + ν2 + χ2 − γ1). We deduce that there exists a constant
B̃2 > 0 such that

(18) sup
x≥x0

B̃(x, ε) ≤ 1

|ε|kγ1
sup
x≥x0

B̃2(x) ≤ B̃2

|ε|kγ1

Bearing in mind the estimates (14), (15), (16) and (18), we obtain (11).

In the second part of the proof, assume now that the condition ii) holds. Let f(τ,m) ∈
F d(ν,β,µ,k,ε). By definition, we have

(19) ||aγ1,k(τ)

∫ τk

0
(τk − s)

χ
k
−1sν2f(s1/k,m)ds||(ν,β,µ,k,ε)

= sup
τ∈D̄(0,ρ)∪Sd,m∈R

(1 + |m|)µ
1 + | τε |

2k

| τε |
exp(β|m| − ν|τ

ε
|k)

× |aγ1,k(τ)

∫ τk

0
{(1 + |m|)µeβ|m| exp(−ν|s|/|ε|k)

1 + |s|2
|ε|2k

|s|1/k
|ε|

f(s1/k,m)}

× {exp(−ν |τ
k − s|
|ε|k

)
1 + |τk−s|2

|ε|2k

|τk−s|1/k
|ε|

(τk − s)
χ
k } ×B(τ, s,m, ε)ds|

where

B(τ, s,m, ε) =
e−β|m|

(1 + |m|)µ
exp(ν

|s|
|ε|k

) exp(ν
|τk − s|
|ε|k

)
|s|1/k

|ε|
|τk − s|1/k

|ε|

× 1

1 + |s|2
|ε|2k

1

1 + |τk−s|2
|ε|2k

(τk − s)−1sν2 .
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Hence,

(20) ||aγ1,k(τ)

∫ τk

0
(τk − s)

χ
k
−1sν2f(s1/k,m)ds||(ν,β,µ,k,ε) ≤ C2.2(ε)C2.3(ε)||f(τ,m)||(ν,β,µ,k,ε)

where

(21) C2.2(ε) = sup
x≥0

exp(−ν x

|ε|k
)
1 + x2

|ε|2k

x1/k

|ε|

x
χ
k ,

C2.3(ε) = sup
τ∈D̄(0,ρ)∪Sd

1 + | τε |
2k

| τε |
1

(1 + |τ |k)γ1

×
∫ |τ |k

0

h1/k

|ε|
(|τ |k − h)1/k

|ε|
1

1 + h2

|ε|2k

1

1 + (|τ |k−h)2

|ε|2k
(|τ |k − h)−1hν2dh.

By using the classical estimates

(22) sup
x≥0

xm1 exp(−m2x) = (
m1

m2
)m1e−m1

for any real numbers m1 ≥ 0 and m2 > 0, we get that

(23) C2.2(ε) ≤ |ε|χ
(

(
χ− 1

kν
)
χ−1
k e−(χ−1

k
) + (

2 + χ−1
k

ν
)2+χ−1

k e−(2+χ−1
k

)

)
.

Making the change of variable h = |ε|kh′ in the integral involved in the definition of C2.3(ε)
yields

(24) C2.3(ε) = sup
τ∈D̄(0,ρ)∪Sd

1 + | τε |
2k

| τε |
1

(1 + |ε|k| τε |k)γ1

×
∫ | τ

ε
|k

0
(h′)1/k(|τ

ε
|k − h′)1/k 1

1 + (h′)2

1

1 + (| τε |k − h′)2
(|τ
ε
|k − h′)−1|ε|kν2(h′)ν2dh′

≤ |ε|kν2 sup
x≥0

B2.3(x, ε)

where

B2.3(x, ε) =
1 + x2

x1/k

1

(1 + |ε|kx)γ1

∫ x

0

1

(1 + h2)(1 + (x− h)2)

1

(x− h)1− 1
k

h
1
k

+ν2dh.

For any x > 0, we have that B2.3(x, ε) ≤ B̃2.3(x, ε), where

B̃2.3(x, ε) =
1 + x2

(1 + |ε|kx)γ1

∫ x

0

1

(1 + h2)(1 + (x− h)2)

1

(x− h)1− 1
k

hν2dh.

Let x0 > 0. From the inequality 1 + |ε|kx ≥ 1, for all x ∈ [0, x0], ε ∈ E , there exists a constant
B̃2.3 > 0 such that

(25) sup
x∈[0,x0],ε∈E

B̃2.3(x, ε) ≤ B̃2.3.
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On the other hand, since 1 + |ε|kx ≥ |ε|kx holds for all x ≥ 0 and ε ∈ E , we get that

(26) B̃2.3(x, ε) ≤ B̃2.4(x)

|ε|kγ1

where

B̃2.4(x) = (1 + x2)x−γ1
∫ x

0

1

(1 + h2)(1 + (x− h)2)

1

(x− h)1− 1
k

hν2dh

for all x ≥ x0. Now, we make the change of variable h = xu in the integral inside B̃2.4(x). We
can write

B̃2.4(x) = (1 + x2)xν2+ 1
k
−γ1Fk(x)

where

Fk(x) =

∫ 1

0

uν2

(1 + x2u2)(1 + x2(1− u)2)(1− u)1− 1
k

du.

Using a partial fraction decomposition, we can split Fk = F1,k(x) + F2,k(x), where

F1,k(x) =
1

4 + x2

∫ 1

0

(2u+ 1)uν2

(1 + x2u2)(1− u)1− 1
k

du,

F2,k(x) =
1

4 + x2

∫ 1

0

(3− 2u)uν2

(1 + x2(1− u)2)(1− u)1− 1
k

du.

In particular, we observe that there exist two constants F1,k,F2,k > 0 such that

(27) F1,k(x) ≤
F1,k

4 + x2
, F2,k(x) ≤

F2,k

4 + x2

for all x ≥ x0. Hence, if one assumes that ν2 + 1
k − γ1 ≤ 0, then we get a constant B̃2.4.1 > 0

such that

(28) sup
x≥x0

B̃2.3(x, ε) ≤ 1

|ε|kγ1
sup
x≥x0

B̃2.4(x) ≤ B̃2.4.1

|ε|kγ1

Finally, gathering all the estimates (20), (23), (24), (25), (28), we get (12). 2

Proposition 3 Let k ≥ 1 be an integer. Let Q1(X), Q2(X), R(X) ∈ C[X] such that

(29) deg(R) ≥ deg(Q1) , deg(R) ≥ deg(Q2) , R(im) 6= 0

for all m ∈ R. Assume that µ > max(deg(Q1) + 1, deg(Q2) + 1). Let m 7→ b(m) be a continuous
function on R such that

|b(m)| ≤ 1

|R(im)|
for all m ∈ R. Then, there exists a constant C3 > 0 (depending on Q1, Q2, R, µ, k, ν) such that

(30) ||b(m)

∫ τk

0
(τk − s)

1
k (

∫ s

0

∫ +∞

−∞
Q1(i(m−m1))f((s− x)1/k,m−m1)

×Q2(im1)g(x1/k,m1)
1

(s− x)x
dxdm1)ds||(ν,β,µ,k,ε)

≤ C3|ε|||f(τ,m)||(ν,β,µ,k,ε)||g(τ,m)||(ν,β,µ,k,ε)

for all f(τ,m), g(τ,m) ∈ F d(ν,β,µ,k,ε).
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Proof Let f(τ,m), g(τ,m) ∈ F d(ν,β,µ,k,ε). For any τ ∈ D̄(0, ρ) ∪ Sd, the segment [0, τk] is such

that for any s ∈ [0, τk], any x ∈ [0, s], the expressions f((s− x)1/k,m−m1) and g(x1/k,m1) are
well defined, provided that m,m1 ∈ R. By definition, we can write

||b(m)

∫ τk

0
(τk − s)

1
k (

∫ s

0

∫ +∞

−∞
Q1(i(m−m1))f((s− x)1/k,m−m1)

×Q2(im1)g(x1/k,m1)
1

(s− x)x
dxdm1)ds||(ν,β,µ,k,ε)

= sup
τ∈D̄(0,ρ)∪Sd,m∈R

(1 + |m|)µ
1 + | τε |

2k

| τε |
exp(β|m| − ν|τ

ε
|k)

× |
∫ τk

0
(τk − s)1/k(

∫ s

0

∫ +∞

−∞
{(1 + |m−m1|)µeβ|m−m1|

1 + |s−x|2
|ε|2k

|s−x|1/k
|ε|

exp(−ν|s− x|/|ε|κ)

× f((s− x)1/k,m−m1)} × {(1 + |m1|)µeβ|m1|
1 + |x|2

|ε|2k

|x|1/k
|ε|

exp(−ν|x|/|ε|k)g(x1/k,m1)}

× C(s, x,m,m1, ε)dxdm1)ds|

where

C(s, x,m,m1, ε) =
exp(−β|m1|) exp(−β|m−m1|)

(1 + |m−m1|)µ(1 + |m1|)µ
b(m)Q1(i(m−m1))Q2(im1)

×
|s−x|1/k|x|1/k

|ε|2

(1 + |s−x|2
|ε|2k )(1 + |x|2

|ε|2k )
× exp(ν|s− x|/|ε|k) exp(ν|x|/|ε|k) 1

(s− x)x

Now, we know that there exist Q1,Q2,R > 0 with

(31) |Q1(i(m−m1))| ≤ Q1(1 + |m−m1|)deg(Q1) , |Q2(im1)| ≤ Q2(1 + |m1|)deg(Q2),

|R(im)| ≥ R(1 + |m|)deg(R)

for all m,m1 ∈ R. Therefore,

(32) ||b(m)

∫ τk

0
(τk − s)

1
k (

∫ s

0

∫ +∞

−∞
Q1(i(m−m1))f((s− x)1/k,m−m1)

×Q2(im1)g(x1/k,m1)
1

(s− x)x
dxdm1)ds||(ν,β,µ,k,ε)

≤ C3(ε)||f(τ,m)||(ν,β,µ,k,ε)||g(τ,m)||(ν,β,µ,k,ε)
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where

(33) C3(ε) = sup
τ∈D̄(0,ρ)∪Sd,m∈R

(1 + |m|)µ
1 + | τε |

2k

| τε |
exp(β|m| − ν|τ

ε
|k) 1

R(1 + |m|)deg(R)

×
∫ |τ |k

0
(|τ |k − h)1/k(

∫ h

0

∫ +∞

−∞

exp(−β|m1|) exp(−β|m−m1|)
(1 + |m−m1|)µ(1 + |m1|)µ

×Q1Q2(1 + |m−m1|)deg(Q1)(1 + |m1|)deg(Q2)

(h−x)1/kx1/k

|ε|2

(1 + (h−x)2

|ε|2k )(1 + x2

|ε|2k )

× exp(ν(h− x)/|ε|k) exp(νx/|ε|k) 1

(h− x)x
dxdm1)dh

Using the triangular inequality |m| ≤ |m1| + |m − m1|, for all m,m1 ∈ R, we get that
C3(ε) ≤ C3.1C3.2(ε) where

(34) C3.1 =
Q1Q2

R
sup
m∈R

(1 + |m|)µ−deg(R)

∫ +∞

−∞

1

(1 + |m−m1|)µ−deg(Q1)(1 + |m1|)µ−deg(Q2)
dm1

which is finite whenever µ > max(deg(Q1) + 1,deg(Q2) + 1) under the assumption (29) using
the same estimates as in Lemma 4 of [23] (see also the Lemma 2.2 from [9]), and where

(35) C3.2(ε) = sup
τ∈D̄(0,ρ)∪Sd

1 + | τε |
2k

| τε |
exp(−ν|τ

ε
|k)

×
∫ |τ |k

0
(|τ |k − h)1/k exp(νh/|ε|κ)

∫ h

0

(h−x)1/kx1/k

|ε|2

(1 + (h−x)2

|ε|2k )(1 + x2

|ε|2k )

1

(h− x)x
dxdh.

Making the changes of variables h = |ε|kh′ and x = |ε|kx′, we get that

(36)

∫ |τ |k
0

(|τ |k − h)1/k exp(νh/|ε|k)
∫ h

0

(h−x)1/kx1/k

|ε|2

(1 + (h−x)2

|ε|2k )(1 + x2

|ε|2k )

1

(h− x)x
dxdh

= |ε|
∫ | τ

ε
|k

0
(|τ
ε
|k − h′)1/k exp(νh′)

∫ h′

0

1

(1 + (h′ − x′)2)(1 + x′2)

1

(h′ − x′)1− 1
kx′1−

1
k

dx′dh′

From (35) and (36), we get that C3.2(ε) ≤ |ε|C3.3, where

(37) C3.3 = sup
x≥0

1 + x2

x1/k
exp(−νx)

∫ x

0
(x− h′)1/k exp(νh′)

× (

∫ h′

0

1

(1 + (h′ − x′)2)(1 + x′2)

1

(h′ − x′)1− 1
kx′1−

1
k

dx′)dh′

Again by the change of variable x′ = h′u, for u ∈ [0, 1], we can write

(38)

∫ h′

0

1

(1 + (h′ − x′)2)(1 + x′2)

1

(h′ − x′)1− 1
kx′1−

1
k

dx′

=
1

h′1−
2
k

∫ 1

0

1

(1 + (h′)2(1− u)2)(1 + h′2u2)(1− u)1− 1
ku1− 1

k

du = Jk(h
′)
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Using a partial fraction decomposition, we can split Jk(h
′) = J1,k(h

′) + J2,k(h
′), where

(39) J1,k(h
′) =

1

h′1−
2
k (h′2 + 4)

∫ 1

0

3− 2u

(1 + h′2(1− u)2)(1− u)1− 1
ku1− 1

k

du

J2,k(h
′) =

1

h′1−
2
k (h′2 + 4)

∫ 1

0

2u+ 1

(1 + h′2u2)(1− u)1− 1
ku1− 1

k

du

From now on, we assume that k ≥ 2. By construction of J1,k(h
′) and J2,k(h

′), we see that there
exists a constant jk > 0 such that

(40) Jk(h
′) ≤ jk

h′1−
2
k (h′2 + 4)

for all h′ ≥ 0. From (37) and (40), we deduce that C3.3 ≤ supx≥0 C̃3.3(x), where

(41) C̃3.3(x) = (1 + x2) exp(−νx)

∫ x

0

jk exp(νh′)

h′1−
2
k (h′2 + 4)

dh′.

From L’Hospital rule, we know that

lim
x→+∞

C̃3.3(x) = lim
x→+∞

jk

x1− 2
k

(1+x2)2

x2+4

ν(1 + x2)− 2x

is finite when k ≥ 2. Therefore, we get a constant C̃3.3 > 0 such that

(42) sup
x≥0

C̃3.3(x) ≤ C̃3.3.

Taking into account the estimates for (33), (34), (35), (37), (41) and (42), we obtain the result
(30) when k ≥ 2.

In the remaining case k = 1, from Corollary 4.9 of [8] one can check the existence of a constant
j1 > 0 such that

(43) J1(h′) ≤ j1
h′2 + 1

for all h′ ≥ 0. From (37) and (43), we deduce that C3.3 ≤ supx≥0 C̃3.3.1(x), where

(44) C̃3.3.1(x) = (1 + x2) exp(−νx)

∫ x

0

j1 exp(νh′)

h′2 + 1
dh′.

From L’Hospital rule, we know that

lim
x→+∞

C̃3.3.1(x) = lim
x→+∞

j1(1 + x2)

ν(1 + x2)− 2x

is finite. Therefore, we get a constant C̃3.3.1 > 0 such that

(45) sup
x≥0

C̃3.3.1(x) ≤ C̃3.3.1.

Taking into account the estimates for (33), (34), (35), (37), (44) and (45), we obtain the result
(30) for k = 1. 2
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Definition 2 Let β, µ ∈ R. We denote by E(β,µ) the vector space of continuous functions
h : R→ C such that

||h(m)||(β,µ) = sup
m∈R

(1 + |m|)µ exp(β|m|)|h(m)|

is finite. The space E(β,µ) equipped with the norm ||.||(β,µ) is a Banach space.

Proposition 4 Let k ≥ 1 be an integer. Let Q(X), R(X) ∈ C[X] be polynomials such that

(46) deg(R) ≥ deg(Q) , R(im) 6= 0

for all m ∈ R. Assume that µ > deg(Q) + 1. Let m 7→ b(m) be a continuous function such that

|b(m)| ≤ 1

|R(im)|

for all m ∈ R. Then, there exists a constant C4 > 0 (depending on Q,R, µ, k, ν) such that

(47) ||b(m)

∫ τk

0
(τk − s)

1
k

∫ +∞

−∞
f(m−m1)Q(im1)g(s1/k,m1)dm1

ds

s
||(ν,β,µ,k,ε)

≤ C4|ε|||f(m)||(β,µ)||g(τ,m)||(ν,β,µ,k,ε)

for all f(m) ∈ E(β,µ), all g(τ,m) ∈ F d(ν,β,µ,k,ε).

Proof The proof follows the same lines of arguments as those of Propositions 1 and 3. Let
f(m) ∈ E(β,µ), g(τ,m) ∈ F d(ν,β,µ,k,ε). We can write

(48) N2 := ||b(m)

∫ τk

0
(τk − s)

1
k

∫ +∞

−∞
f(m−m1)Q(im1)g(s1/k,m1)dm1

ds

s
||(ν,β,µ,k,ε)

= sup
τ∈D̄(0,ρ)∪Sd,m∈R

(1 + |m|)µ
1 + | τε |

2k

| τε |
exp(β|m| − ν|τ

ε
|k)

× |b(m)

∫ τk

0

∫ +∞

−∞
{(1 + |m−m1|)µ exp(β|m−m1|)f(m−m1)}

× {(1 + |m1)µ exp(β|m1|) exp(−ν|s|
|ε|k

)
1 + |s|2

|ε|2k

|s|1/k
|ε|

g(s1/k,m1)} × D(τ, s,m,m1, ε)dm1ds|

where

D(τ, s,m,m1, ε) =
Q(im1)e−β|m1|e−β|m−m1|

(1 + |m−m1|)µ(1 + |m1|)µ
×

exp(ν|s||ε|k )

1 + |s|2
|ε|2k

|s|1/k

|ε|
(τk − s)1/k 1

s

Again, we know that there exist constants Q,R > 0 such that

|Q(im1)| ≤ Q(1 + |m1|)deg(Q) , |R(im)| ≥ R(1 + |m|)deg(R)

for all m,m1 ∈ R. By means of the triangular inequality |m| ≤ |m1|+ |m−m1|, we get that

(49) N2 ≤ C4.1(ε)C4.2||f(m)||(β,µ)||g(τ,m)||(ν,β,µ,k,ε)
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where

C4.1(ε) = sup
τ∈D̄(0,ρ)∪Sd

1 + | τε |
2k

| τε |
exp(−ν|τ

ε
|k)
∫ |τ |k

0

exp(νh/|ε|k)
1 + h2

|ε|2k

h
1
k
−1

|ε|
(|τ |k − h)1/kdh

and

C4.2 =
Q

R
sup
m∈R

(1 + |m|)µ−deg(R)

∫ +∞

−∞

1

(1 + |m−m1|)µ(1 + |m1|)µ−deg(Q)
dm1.

From the estimates (9) and (10), we know that there exists a constant C4.1 > 0 such that

(50) C4.1(ε) ≤ C4.1|ε|

and from the estimates for (34), we know that C4.2 is finite under the assumption (46) provided
that µ > deg(Q) + 1. Finally, gathering this latter bound estimates together with (49) and (50)
yields the result (47). 2

In the next proposition, we show that (E(β,µ), ||.||(β,µ)) is a Banach algebra for some non-
commutative product ? introduced below.

Proposition 5 Let Q1(X), Q2(X), R(X) ∈ C[X] be polynomials such that

(51) deg(R) ≥ deg(Q1) , deg(R) ≥ deg(Q2) , R(im) 6= 0,

for all m ∈ R. Assume that µ > max(deg(Q1) + 1,deg(Q2) + 1). Then, there exists a constant
C5 > 0 (depending on Q1, Q2, R, µ) such that

(52) || 1

R(im)

∫ +∞

−∞
Q1(i(m−m1))f(m−m1)Q2(im1)g(m1)dm1||(β,µ)

≤ C5||f(m)||(β,µ)||g(m)||(β,µ)

for all f(m), g(m) ∈ E(β,µ). Therefore, (E(β,µ), ||.||(β,µ)) becomes a Banach algebra for the prod-
uct ? defined by

f ? g(m) =
1

R(im)

∫ +∞

−∞
Q1(i(m−m1))f(m−m1)Q2(im1)g(m1)dm1.

As a particular case, when f, g ∈ E(β,µ) with β > 0 and µ > 1, the classical convolution product

f ∗ g(m) =

∫ +∞

−∞
f(m−m1)g(m1)dm1

belongs to E(β,µ).

Proof The proof is similar to the one of Proposition 3. Let f(m), g(m) ∈ E(β,µ). We write

(53) || 1

R(im)

∫ +∞

−∞
Q1(i(m−m1))f(m−m1)Q2(im1)g(m1)dm1||(β,µ)

= sup
m∈R

(1 + |m|)µeβ|m|| 1

R(im)

∫ +∞

−∞
{(1 + |m−m1|)µeβ|m−m1|f(m−m1)}

× {(1 + |m1|)µeβ|m1|g(m1)} × E(m,m1)dm1|
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where

E(m,m1) =
e−β|m−m1|e−β|m1|

(1 + |m−m1|)µ(1 + |m1|)µ
Q1(i(m−m1))Q2(im1).

Using the triangular inequality |m| ≤ |m1|+ |m−m1| and the estimates in (31), we get that

(54) || 1

R(im)

∫ +∞

−∞
Q1(i(m−m1))f(m−m1)Q2(im1)g(m1)dm1||(β,µ)

≤ C5||f(m)||(β,µ)||g(m)||(β,µ)

where

C5 =
Q1Q2

R
sup
m∈R

(1 + |m|)µ−deg(R)

∫ +∞

−∞

1

(1 + |m−m1|)µ−deg(Q1)(1 + |m1|)µ−deg(Q2)
dm1

which is finite whenever µ > max(deg(Q1)+1, deg(Q2)+1) provided that (51) holds as explained
in Proposition 3 (see (34)). 2

3 Laplace transform, asymptotic expansions and Fourier trans-
form

We give a definition of k−Borel summability of formal series with coefficients in a Banach space
which is a slightly modified version of the one given in [1], Section 3.2, in order to fit our
necessities.

Definition 3 Let k ≥ 1 be an integer. Let mk(n) be the sequence defined by

mk(n) = Γ(
n

k
) =

∫ +∞

0
t
n
k
−1e−tdt

for all n ≥ 1. A formal series

X̂(T ) =

∞∑
n=1

anT
n ∈ TE[[T ]]

with coefficients in a Banach space (E, ||.||E) is said to be mk−summable with respect to t in the
direction d ∈ [0, 2π) if

i) there exists ρ ∈ R+ such that the following formal series, called a formal mk−Borel
transform of X̂

Bmk(X̂)(τ) =

∞∑
n=1

an
Γ(nk )

τn ∈ τE[[τ ]],

is absolutely convergent for |τ | < ρ.

ii) there exists δ > 0 such that the series Bmk(X̂)(τ) can be analytically continued with
respect to τ in a sector Sd,δ = {τ ∈ C∗ : |d − arg(τ)| < δ}. Moreover, there exist C > 0 and
K > 0 such that

||Bmk(X̂)(τ)||E ≤ CeK|τ |
k

for all τ ∈ Sd,δ.
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If this is so, the vector valued Laplace transform of Bmk(X̂)(τ) in the direction d is defined by

Ldmk(B(X̂))(T ) = k

∫
Lγ

Bmk(X̂)(u)e−(u/T )k du

u
,

along a half-line Lγ = R+e
iγ ⊂ Sd,δ ∪ {0}, where γ depends on T and is chosen in such a way

that cos(k(γ − arg(T ))) ≥ δ1 > 0, for some fixed δ1. The function Ldmk(Bmk(X̂))(T ) is well
defined, holomorphic and bounded in any sector

Sd,θ,R1/k = {T ∈ C∗ : |T | < R1/k , |d− arg(T )| < θ/2},

where π
k < θ < π

k + 2δ and 0 < R < δ1/K. This function is called the mk−sum of the formal

series X̂(T ) in the direction d.

We now state some elementary properties concerning the mk−sums of formal power series.

1) The function Ldmk(Bmk(X̂))(T ) has the formal series X̂(T ) as Gevrey asymptotic expansion
of order 1/k with respect to t on Sd,θ,R1/k . This means that for all π

k < θ1 < θ, there exist
C,M > 0 such that

(55) ||Ldmk(Bmk(X̂))(T )−
n−1∑
p=1

apT
p||E ≤ CMnΓ(1 +

n

k
)|T |n

for all n ≥ 2, all T ∈ Sd,θ1,R1/k . Moreover, from Watson’s lemma (see Proposition 11 p. 75 in

[1]), we get that Ldmk(Bmk(X̂))(T ) is the unique holomorphic function that satisfies the estimates
(55) on the sectors Sd,θ1,R1/k with large aperture θ1 >

π
k .

2) Let us assume that (E, ||.||E) also has the structure of a Banach algebra for a product ?. Let
X̂1(T ), X̂2(T ) ∈ TE[[T ]] be mk−summable formal power series in direction d. Let q1 ≥ q2 ≥ 1 be
integers. We assume that X̂1(T ) + X̂2(T ), X̂1(T ) ? X̂2(T ) and T q1∂q2T X̂1(T ), which are elements
of TE[[T ]], are mk−summable in direction d. Then, the following equalities

(56) Ldmk(Bmk(X̂1))(T ) + Ldmk(Bmk(X̂2))(T ) = Ldmk(Bmk(X̂1 + X̂2))(T ),

Ldmk(Bmk(X̂1))(T ) ? Ldmk(Bmk(X̂2))(T ) = Ldmk(Bmk(X̂1 ? X̂2))(T )

T q1∂q2T L
d
mk

(Bmk(X̂1))(T ) = Ldmk(Bmk(T q1∂q2T X̂1))(T )

hold for all T ∈ Sd,θ,R1/k . These equalities are consequence of the unicity of the function having
a given Gevrey expansion of order 1/k in large sectors as stated above in 1) and from the fact
that the set of holomorphic functions having Gevrey asymptotic expansion of order 1/k on a
sector with values in the Banach algebra E form a differential algebra (meaning that this set is
stable with respect to the sum and product of functions and derivation in the variable T ) (see
Theorem 18,19 and 20 in [1]).

In the next proposition, we give some identities for the mk−Borel transform that will be
useful in the sequel.

Proposition 6 Let f̂(t) =
∑

n≥1 fnt
n, ĝ(t) =

∑
n≥1 gnt

n be formal series whose coefficients
fn, gn belong to some Banach space (E, ||.||E). We assume that (E, ||.||E) is a Banach algebra for
some product ?. Let k,m ≥ 1 be integers. The following formal identities hold.

(57) Bmk(tk+1∂tf̂(t))(τ) = kτkBmk(f̂(t))(τ)
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(58) Bmk(tmf̂(t))(τ) =
τk

Γ(mk )

∫ τk

0
(τk − s)

m
k
−1Bmk(f̂(t))(s1/k)

ds

s

and

(59) Bmk(f̂(t) ? ĝ(t))(τ) = τk
∫ τk

0
Bmk(f̂(t))((τk − s)1/k) ? Bmk(ĝ(t))(s1/k)

1

(τk − s)s
ds

Proof First, we show (57). By definition, we have that

(60) Bmk(
tk+1

k
∂tf̂(t))(τ) =

∑
n≥1

n
k fn

Γ(nk + 1)
τn+k

By application of the addition formula for the Gamma function which yields Γ(nk + 1) = n
kΓ(nk )

for any n ≥ 1, we deduce (57) from (60).
Now, we prove (58). By definition, we can write

(61) Bmk(tmf̂(t))(τ) =
1

Γ(mk )

∑
n≥1

fn
Γ(nk )

Γ(mk )Γ(nk )

Γ(m+n
k )

τm+n.

Using the Beta integral formula (see Appendix B in [2]), we can write

(62)
Γ(mk )Γ(nk )

Γ(m+n
k )

=
τk

τm+n

∫ τk

0
(τk − s)

m
k
−1s

n
k
−1ds

for any m,n ≥ 1. Plugging (62) into (61) yields (58).
Finally, we show (59). By definition, we have

(63) Bmk(f̂(t) ? ĝ(t))(τ) =
∑
n≥2

(
∑
p+q=n

fp
Γ( pk )

?
gq

Γ( qk )
×

Γ( pk )Γ( qk )

Γ(nk )
)τn

Using again the Beta integral formula, we can write

(64)
Γ( pk )Γ( qk )

Γ(nk )
=
τk

τn

∫ τk

0
(τk − s)

p
k
−1s

q
k
−1ds

when p+ q = n and p, q ≥ 1. By the substitution of (64) into (63), we deduce (59). 2

In the following proposition, we recall some properties of the inverse Fourier transform

Proposition 7 Let f ∈ E(β,µ) with β > 0, µ > 1. The inverse Fourier transform of f is defined
by

F−1(f)(x) =
1

(2π)1/2

∫ +∞

−∞
f(m) exp(ixm)dm

for all x ∈ R. The function F−1(f) extends to an analytic function on the strip

(65) Hβ = {z ∈ C/|Im(z)| < β}.

Let φ(m) = imf(m) ∈ E(β,µ−1). Then, we have

(66) ∂zF−1(f)(z) = F−1(φ)(z)
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for all z ∈ Hβ.
Let g ∈ E(β,µ) and let ψ(m) = 1

(2π)1/2
f ∗g(m), the convolution product of f and g, for all m ∈ R.

From Proposition 5, we know that ψ ∈ E(β,µ). Moreover, we have

(67) F−1(f)(z)F−1(g)(z) = F−1(ψ)(z)

for all z ∈ Hβ.

Proof Let f ∈ E(β,µ). It is straight to check that F−1(f) is well defined on the real line. The fact
that F−1(f) extends to an analytic function on the strip Hβ follows from the next inequality.
There exists C > 0 such that

|f(m)|| exp(izm)| ≤ C

(1 + |m|)µ
exp((β′ − β)|m|)

for all m ∈ R, z ∈ Hβ′ , with β′ < β. The relations (66), (67) are classical and can be found for
instance in [27]. 2

4 Formal and analytic solutions of convolution initial value prob-
lems with complex parameters

Let k ≥ 1 and D ≥ 2 be integers. For 1 ≤ l ≤ D, let dl, δl,∆l ≥ 0 be nonnegative integers. We
assume that

(68) 1 = δ1 , δl < δl+1,

for all 1 ≤ l ≤ D − 1. We make also the assumption that

(69) dD = (δD − 1)(k + 1) , dl > (δl − 1)(k + 1) , ∆D = dD − δD + 1

for all 1 ≤ l ≤ D− 1. Let Q(X), Q1(X), Q2(X), Rl(X) ∈ C[X], 0 ≤ l ≤ D, be polynomials such
that

(70) deg(Q) ≥ deg(RD) ≥ deg(Rl) , deg(RD) ≥ deg(Q1) , deg(RD) ≥ deg(Q2),

Q(im) 6= 0 , RD(im) 6= 0

for all m ∈ R, all 0 ≤ l ≤ D − 1. We consider sequences of functions m 7→ C0,n(m, ε), for all
n ≥ 0 and m 7→ Fn(m, ε), for all n ≥ 1, that belong to the Banach space E(β,µ) for some β > 0
and µ > max(deg(Q1) + 1, deg(Q2) + 1) and which depend holomorphically on ε ∈ D(0, ε0). We
assume that there exist constants K0, T0 > 0 such that

(71) ||C0,n(m, ε)||(β,µ) ≤ K0(
1

T0
)n , ||Fn(m, ε)||(β,µ) ≤ K0(

1

T0
)n

for all n ≥ 1, for all ε ∈ D(0, ε0). We define

C0(T,m, ε) =
∑
n≥1

C0,n(m, ε)Tn , F (T,m, ε) =
∑
n≥1

Fn(m, ε)Tn
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which are convergent series on D(0, T0/2) with values in E(β,µ). We consider the following
singular initial value problem

(72) Q(im)(∂TU(T,m, ε)) = ε−1 1

(2π)1/2

∫ +∞

−∞
Q1(i(m−m1))U(T,m−m1, ε)

×Q2(im1)U(T,m1, ε)dm1 +

D∑
l=1

Rl(im)ε∆l−dl+δl−1T dl∂δlT U(T,m, ε)

+ ε−1 1

(2π)1/2

∫ +∞

−∞
C0(T,m−m1, ε)R0(im1)U(T,m1, ε)dm1

+ ε−1 1

(2π)1/2

∫ +∞

−∞
C0,0(m−m1, ε)R0(im1)U(T,m1, ε)dm1 + ε−1F (T,m, ε)

for given initial data U(0,m, ε) = 0.

Proposition 8 There exists a unique formal series

Û(T,m, ε) =
∑
n≥1

Un(m, ε)Tn

solution of (72) with initial data U(0,m, ε) ≡ 0, where the coefficients m 7→ Un(m, ε) belong to
E(β,µ) for β > 0 and µ > max(deg(Q1)+1, deg(Q2)+1) given above and depend holomorphically
on ε in D(0, ε0) \ {0}.

Proof From Proposition 5 and the conditions in the statement above, we get that the coefficients
Un(m, ε) of Û(T,m, ε) are well defined, belong to E(β,µ) for all ε ∈ D(0, ε0) \ {0}, all n ≥ 1 and
satisfy the following recursion relation

(73) (n+ 1)Un+1(m, ε)

=
ε−1

Q(im)

∑
n1+n2=n,n1≥1,n2≥1

1

(2π)1/2

∫ +∞

−∞
Q1(i(m−m1))Un1(m−m1, ε)Q2(im1)Un2(m1, ε)dm1

+
D∑
l=1

Rl(im)

Q(im)

(
ε∆l−dl+δl−1Πδl−1

j=0 (n+ δl − dl − j)
)
Un+δl−dl(m, ε)

+
ε−1

Q(im)

∑
n1+n2=n,n1≥1,n2≥1

1

(2π)1/2

∫ +∞

−∞
C0,n1(m−m1, ε)R0(im1)Un2(m1, ε)dm1

+
ε−1

(2π)1/2Q(im)

∫ +∞

−∞
C0,0(m−m1, ε)R0(im1)Un(m1, ε)dm1 +

ε−1

Q(im)
Fn(m, ε)

for all n ≥ max1≤l≤D dl. 2

Using the formula from [28], p. 40, we can expand the operators T δl(k+1)∂δlT in the form

(74) T δl(k+1)∂δlT = (T k+1∂T )δl +
∑

1≤p≤δl−1

Aδl,pT
k(δl−p)(T k+1∂T )p

where Aδl,p, p = 1, . . . , δl − 1 are real numbers. We define integers dl,k ≥ 0 to satisfy

(75) dl + k + 1 = δl(k + 1) + dl,k
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for all 1 ≤ l ≤ D. Multiplying the equation (72) by T k+1 and using (74), we can rewrite the
equation (72) in the form

(76) Q(im)(T k+1∂TU(T,m, ε))

= ε−1T k+1 1

(2π)1/2

∫ +∞

−∞
Q1(i(m−m1))U(T,m−m1, ε)Q2(im1)U(T,m1, ε)dm1

+
D∑
l=1

Rl(im)
(
ε∆l−dl+δl−1T dl,k(T k+1∂T )δlU(T,m, ε)

+
∑

1≤p≤δl−1

Aδl,p ε
∆l−dl+δl−1T k(δl−p)+dl,k(T k+1∂T )pU(T,m, ε)

)
+ ε−1T k+1 1

(2π)1/2

∫ +∞

−∞
C0(T,m−m1, ε)R0(im1)U(T,m1, ε)dm1

+ ε−1T k+1 1

(2π)1/2

∫ +∞

−∞
C0,0(m−m1, ε)R0(im1)U(T,m1, ε)dm1 + ε−1T k+1F (T,m, ε)

We denote ωk(τ,m, ε) the formal mk−Borel transform of Û(T,m, ε) with respect to T ,
ϕk(τ,m, ε) the formal mk−Borel transform of C0(T,m, ε) with respect to T and ψk(τ,m, ε)
the formal mk−Borel transform of F (T,m, ε) with respect to T ,

ωk(τ,m, ε) =
∑
n≥1

Un(m, ε)
τn

Γ(nk )
, ϕk(τ,m, ε) =

∑
n≥1

C0,n(m, ε)
τn

Γ(nk )

ψk(τ,m, ε) =
∑
n≥1

Fn(m, ε)
τn

Γ(nk )

Using (71) we get that ϕk(τ,m, ε) ∈ F d(ν,β,µ,k,ε) and ψk(τ,m, ε) ∈ F d(ν,β,µ,k,ε), for all ε ∈ D(0, ε0) \
{0}, any unbounded sector Sd centered at 0 and bisecting direction d ∈ R, for some ν > 0.
Indeed, we have that

(77) ||ϕk(τ,m, ε)||(ν,β,µ,k,ε) ≤
∑
n≥1

||C0,n(m, ε)||(β,µ)( sup
τ∈D̄(0,ρ)∪Sd

1 + | τε |
2k

| τε |
exp(−ν|τ

ε
|k) |τ |

n

Γ(nk )
),

||ψk(τ,m, ε)||(ν,β,µ,k,ε) ≤
∑
n≥1

||Fn(m, ε)||(β,µ)( sup
τ∈D̄(0,ρ)∪Sd

1 + | τε |
2k

| τε |
exp(−ν|τ

ε
|k) |τ |

n

Γ(nk )
)

By using the classical estimates (22) and Stirling formula Γ(n/k) ∼ (2π)1/2(n/k)
n
k
− 1

2 e−n/k as n
tends to +∞, we get two constants A1, A2 > 0 depending on ν, k such that

(78) sup
τ∈D̄(0,ρ)∪Sd

1 + | τε |
2k

| τε |
exp(−ν|τ

ε
|k) |τ |

n

Γ(nk )
= sup

τ∈D̄(0,ρ)∪Sd
|ε|n(1 + |τ

ε
|2k)|τ

ε
|n−1 exp(−ν| τε |

k)

Γ(nk )

≤ εn0 sup
x≥0

(1 + x2)x
n−1
k
e−νx

Γ(nk )
≤ εn0

(
(
n− 1

νk
)
n−1
k e−

n−1
k + (

n− 1

νk
+

2

ν
)
n−1
k

+2e−(n−1
k

+2)

)
/Γ(n/k)

≤ A1ε
n
0 (A2)n
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for all n ≥ 0, all ε ∈ D(0, ε0) \ {0}. Therefore, if ε0 fulfills ε0A2 < T0, we get the estimates

(79) ||ϕk(τ,m, ε)||(ν,β,µ,k,ε) ≤ A1

∑
n≥1

||C0,n(m, ε)||(β,µ)(ε0A2)n ≤ A1A2K0

T0

ε0

1− A2
T0
ε0
,

||ψk(τ,m, ε)||(ν,β,µ,k,ε) ≤ A1

∑
n≥1

||Fn(m, ε)||(β,µ)(ε0A2)n ≤ A1A2K0

T0

ε0

1− A2
T0
ε0

for all ε ∈ D(0, ε0) \ {0}.
Using the computation rules for the formal mk−Borel transform in Proposition 6, we deduce

the following equation satisfied by ωk(τ,m, ε),

(80) Q(im)(kτkωk(τ,m, ε)) = ε−1 τk

Γ(1 + 1
k )

∫ τk

0
(τk − s)1/k

×
(

1

(2π)1/2
s

∫ s

0

∫ +∞

−∞
Q1(i(m−m1))ωk((s− x)1/k,m−m1, ε)

×Q2(im1)ωk(x
1/k,m1, ε)

1

(s− x)x
dxdm1

)
ds

s

+RD(im)
(
kδDτ δDkωk(τ,m, ε)

+
∑

1≤p≤δD−1

AδD,p
τk

Γ(δD − p)

∫ τk

0
(τk − s)δD−p−1 (kpspωk(s

1/k,m, ε))
ds

s

)

+
D−1∑
l=1

Rl(im)

(
ε∆l−dl+δl−1 τk

Γ(
dl,k
k )

∫ τk

0
(τk − s)

dl,k
k
−1(kδlsδlωk(s

1/k,m, ε))
ds

s

+
∑

1≤p≤δl−1

Aδl,pε
∆l−dl+δl−1 τk

Γ(
dl,k
k + δl − p)

∫ τk

0
(τk − s)

dl,k
k

+δl−p−1(kpspωk(s
1/k,m, ε))

ds

s

)

+ ε−1 τk

Γ(1 + 1
k )

∫ τk

0
(τk − s)1/k

×
(

1

(2π)1/2
s

∫ s

0

∫ +∞

−∞
ϕk((s− x)1/k,m−m1, ε)R0(im1)ωk(x

1/k,m1, ε)
1

(s− x)x
dxdm1

)
ds

s

+ ε−1 τk

Γ(1 + 1
k )

∫ τk

0
(τk − s)1/k 1

(2π)1/2
(

∫ +∞

−∞
C0,0(m−m1, ε)R0(im1)ωk(s

1/k,m1, ε)dm1)
ds

s

+ ε−1 τk

Γ(1 + 1
k )

∫ τk

0
(τk − s)1/kψk(s

1/k,m, ε)
ds

s

We make the additional assumption that there exists an unbounded sector

SQ,RD = {z ∈ C/|z| ≥ rQ,RD , |arg(z)− dQ,RD | ≤ ηQ,RD}

with direction dQ,RD ∈ R, aperture ηQ,RD > 0 for some radius rQ,RD > 0 such that

(81)
Q(im)

RD(im)
∈ SQ,RD

for all m ∈ R. We factorize the polynomial Pm(τ) = Q(im)k −RD(im)kδDτ (δD−1)k in the form

(82) Pm(τ) = −RD(im)kδDΠ
(δD−1)k−1
l=0 (τ − ql(m))
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where

(83) ql(m) = (
|Q(im)|

|RD(im)|kδD−1
)

1
(δD−1)k exp(

√
−1(arg(

Q(im)

RD(im)kδD−1
)

1

(δD − 1)k
+

2πl

(δD − 1)k
))

for all 0 ≤ l ≤ (δD − 1)k − 1, all m ∈ R.
We choose an unbounded sector Sd centered at 0, a small closed disc D̄(0, ρ) and we prescribe

the sector SQ,RD in such a way that the following conditions hold.

1) There exists a constant M1 > 0 such that

(84) |τ − ql(m)| ≥M1(1 + |τ |)

for all 0 ≤ l ≤ (δD − 1)k − 1, all m ∈ R, all τ ∈ Sd ∪ D̄(0, ρ). Indeed, from (81) and the
explicit expression (83) of ql(m), we first observe that |ql(m)| > 2ρ for every m ∈ R, all 0 ≤ l ≤
(δD − 1)k − 1 for an appropriate choice of rQ,RD and of ρ > 0. We also see that for all m ∈ R,
all 0 ≤ l ≤ (δD − 1)k− 1, the roots ql(m) remain in a union U of unbounded sectors centered at
0 that do not cover a full neighborhood of the origin in C∗ provided that ηQ,RD is small enough.
Therefore, one can choose an adequate sector Sd such that Sd ∩ U = ∅ with the property that
for all 0 ≤ l ≤ (δD − 1)k − 1 the quotients ql(m)/τ lay outside some small disc centered at 1 in
C for all τ ∈ Sd, all m ∈ R. This yields (84) for some small constant M1 > 0.

2) There exists a constant M2 > 0 such that

(85) |τ − ql0(m)| ≥M2|ql0(m)|

for some l0 ∈ {0, . . . , (δD − 1)k − 1}, all m ∈ R, all τ ∈ Sd ∪ D̄(0, ρ). Indeed, for the sector Sd
and the disc D̄(0, ρ) chosen as above in 1), we notice that for any fixed 0 ≤ l0 ≤ (δD − 1)k − 1,
the quotient τ/ql0(m) stays outside a small disc centered at 1 in C for all τ ∈ Sd ∪ D̄(0, ρ), all
m ∈ R. Hence (85) must hold for some small constant M2 > 0.

By construction of the roots (83) in the factorization (82) and using the lower bound estimates
(84), (85), we get a constant CP > 0 such that

(86) |Pm(τ)| ≥M (δD−1)k−1
1 M2|RD(im)kδD |( |Q(im)|

|RD(im)|kδD−1
)

1
(δD−1)k (1 + |τ |)(δD−1)k−1

≥M (δD−1)k−1
1 M2

kδD

(kδD−1)
1

(δD−1)k

(rQ,RD)
1

(δD−1)k |RD(im)|

× (min
x≥0

(1 + x)(δD−1)k−1

(1 + xk)(δD−1)− 1
k

)(1 + |τ |k)(δD−1)− 1
k

= CP (rQ,RD)
1

(δD−1)k |RD(im)|(1 + |τ |k)(δD−1)− 1
k

for all τ ∈ Sd ∪ D̄(0, ρ), all m ∈ R.
In the next proposition, we give sufficient conditions under which the equation (80) has a

solution ωk(τ,m, ε) in the Banach space F d(ν,β,µ,k,ε) where β, µ are defined above.

Proposition 9 Under the assumption that

(87) δD ≥ δl +
2

k
, ∆l + k(1− δD) + 1 ≥ 0,
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for all 1 ≤ l ≤ D−1, there exist a radius rQ,RD > 0, a constant $ > 0 and constants ζ0, ζ1, ζ2 > 0
(depending on Q1, Q2, k, CP , µ, ν, ε0, Rl,∆l, δl, dl for 0 ≤ l ≤ D) such that if

(88) ||C0,0(m, ε)||(β,µ) ≤ ζ0 , ||ϕk(τ,m, ε)||(ν,β,µ,k,ε) ≤ ζ1 , ||ψk(τ,m, ε)||(ν,β,µ,k,ε) ≤ ζ2

for all ε ∈ D(0, ε0)\{0}, the equation (80) has a unique solution ωdk(τ,m, ε) in the space F d(ν,β,µ,k,ε)
where β, µ > 0 are defined in Proposition 8 which verifies ||ωdk(τ,m, ε)||(ν,β,µ,k,ε) ≤ $, for all
ε ∈ D(0, ε0) \ {0}.

Proof We start the proof with a lemma which provides appropriate conditions in order to apply
a fixed point theorem.

Lemma 2 One can choose the constant rQ,RD > 0, a constant $ small enough and three con-
stants ζ0, ζ1, ζ2 > 0 (depending on Q1, Q2, k, CP , µ, ν, ε0, Rl,∆l, δl, dl for 0 ≤ l ≤ D) such that
if

||C0,0(m, ε)||(β,µ) ≤ ζ0 , ||ϕk(τ,m, ε)||(ν,β,µ,k,ε) ≤ ζ1 , ||ψk(τ,m, ε)||(ν,β,µ,k,ε) ≤ ζ2

for all ε ∈ D(0, ε0) \ {0} the map Hε defined by

(89) Hε(w(τ,m)) :=
ε−1

Pm(τ)Γ(1 + 1
k )

∫ τk

0
(τk − s)1/k

×
(

1

(2π)1/2
s

∫ s

0

∫ +∞

−∞
Q1(i(m−m1))w((s− x)1/k,m−m1)

×Q2(im1)w(x1/k,m1)
1

(s− x)x
dxdm1

)
ds

s

+
RD(im)

Pm(τ)

 ∑
1≤p≤δD−1

AδD,p
Γ(δD − p)

∫ τk

0
(τk − s)δD−p−1(kpspw(s1/k,m))

ds

s


+

D−1∑
l=1

Rl(im)

Pm(τ)

{
ε∆l−dl+δl−1

Γ(
dl,k
k )

∫ τk

0
(τk − s)

dl,k
k
−1(kδlsδlw(s1/k,m))

ds

s

+
∑

1≤p≤δl−1

Aδl,pε
∆l−dl+δl−1

Γ(
dl,k
k + δl − p)

∫ τk

0
(τk − s)

dl,k
k

+δl−p−1(kpspw(s1/k,m))
ds

s

}

+
ε−1

Pm(τ)Γ(1 + 1
k )

∫ τk

0
(τk − s)1/k

×
(

1

(2π)1/2
s

∫ s

0

∫ +∞

−∞
ϕk((s− x)1/k,m−m1, ε)R0(im1)w(x1/k,m1)

1

(s− x)x
dxdm1

)
ds

s

+
ε−1

Pm(τ)Γ(1 + 1
k )

∫ τk

0
(τk − s)1/k 1

(2π)1/2
(

∫ +∞

−∞
C0,0(m−m1, ε)R0(im1)w(s1/k,m1)dm1)

ds

s

+
ε−1

Pm(τ)Γ(1 + 1
k )

∫ τk

0
(τk − s)1/kψk(s

1/k,m, ε)
ds

s

satisfy the next properties.
i) The following inclusion holds

(90) Hε(B̄(0, $)) ⊂ B̄(0, $)
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where B̄(0, $) is the closed ball of radius $ > 0 centered at 0 in F d(ν,β,µ,k,ε), for all ε ∈ D(0, ε0) \
{0}.
ii) We have

(91) ||Hε(w1)−Hε(w2)||(ν,β,µ,k,ε) ≤
1

2
||w1 − w2||(ν,β,µ,k,ε)

for all w1, w2 ∈ B̄(0, $), for all ε ∈ D(0, ε0) \ {0}.

Proof We first check the property (90). Let ε ∈ D(0, ε0) \ {0} and w(τ,m) be in F dν,β,µ,k,ε. We
take ζ0, ζ1, ζ2, $ > 0 such that

||w(τ,m)||(ν,β,µ,k,ε) ≤ $ , ||C0,0(m, ε)||(β,µ) ≤ ζ0 , ||ϕk(τ,m, ε)||(ν,β,µ,k,ε) ≤ ζ1,

||ψk(τ,m, ε)||(ν,β,µ,k,ε) ≤ ζ2,

for all ε ∈ D(0, ε0) \ {0}.
Using Lemma 1 and Proposition 3 with the lower bound estimates (86) we get that

(92) || ε−1

Pm(τ)Γ(1 + 1
k )

∫ τk

0
(τk − s)1/k

×
(

1

(2π)1/2
s

∫ s

0

∫ +∞

−∞
Q1(i(m−m1))w((s− x)1/k,m−m1)

×Q2(im1)w(x1/k,m1)
1

(s− x)x
dxdm1

)
ds

s
||(ν,β,µ,k,ε)

≤ 1

Γ(1 + 1
k )(2π)1/2

C3||w(τ,m)||2(ν,β,µ,k,ε)
CP (rQ,RD)

1
(δD−1)k

≤ 1

Γ(1 + 1
k )(2π)1/2

C3$
2

CP (rQ,RD)
1

(δD−1)k

Moreover, for 0 ≤ p ≤ δD − 1 and by means of Proposition 2 i), we deduce

(93) ||RD(im)

Pm(τ)

AδD,p
Γ(δD − p)

∫ τk

0
(τk − s)δD−p−1(kpspw(s1/k,m))

ds

s
||(ν,β,µ,k,ε)

≤
AδD,pk

pC2.1|ε|

Γ(δD − p)CP (rQ,R)
1

(δD−1)k

||w(τ,m)||(ν,β,µ,k,ε)

≤
AδD,pk

pC2.1ε0

Γ(δD − p)CP (rQ,R)
1

(δD−1)k

$.

With the help of Proposition 2 ii) and due to the assumptions of (87) we also get that

(94) ||Rl(im)

Pm(τ)

ε∆l−dl+δl−1

Γ(
dl,k
k )

∫ τk

0
(τk − s)

dl,k
k
−1(kδlsδlw(s1/k,m))

ds

s
||(ν,β,µ,k,ε)

≤ kδlC2.2

Γ(
dl,k
k )CP (rQ,RD)

1
(δD−1)k

|ε|∆l−dl+δl+k(δl−δD)+dl,k sup
m∈R
| Rl(im)

RD(im)
|||w(τ,m)||(ν,β,µ,k,ε)

≤ kδlC2.2

Γ(
dl,k
k )CP (rQ,RD)

1
(δD−1)k

ε
∆l−dl+δl+k(δl−δD)+dl,k
0 sup

m∈R
| Rl(im)

RD(im)
|$.
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and that

(95) ||Rl(im)

Pm(τ)

Aδl,pε
∆l−dl+δl−1

Γ(
dl,k
k + δl − p)

∫ τk

0
(τk − s)

dl,k
k

+δl−p−1(kpspw(s1/k,m))
ds

s
||(ν,β,µ,k,ε)

≤
|Aδl,p|kpC2.2

Γ(
dl,k
k + δl − p)CP (rQ,RD)

1
(δD−1)k

|ε|∆l−dl+δl+k(δl−δD)+dl,k sup
m∈R
| Rl(im)

RD(im)
|||w(τ,m)||(ν,β,µ,k,ε)

≤
|Aδl,p|kpC2.2

Γ(
dl,k
k + δl − p)CP (rQ,RD)

1
(δD−1)k

ε
∆l−dl+δl+k(δl−δD)+dl,k
0 sup

m∈R
| Rl(im)

RD(im)
|$.

Using Lemma 1 and Proposition 3 again with the lower bound estimates (86) we get that

(96) || ε−1

Pm(τ)Γ(1 + 1
k )

∫ τk

0
(τk − s)1/k

×
(

1

(2π)1/2
s

∫ s

0

∫ +∞

−∞
ϕk((s− x)1/k,m−m1, ε)

× R0(im1)w(x1/k,m1)
1

(s− x)x
dxdm1

)
ds

s
||(ν,β,µ,k,ε)

≤ 1

Γ(1 + 1
k )(2π)1/2

C3||ϕk(τ,m, ε)||(ν,β,µ,k,ε)||w(τ,m)||(ν,β,µ,k,ε)
CP (rQ,RD)

1
(δD−1)k

≤ 1

Γ(1 + 1
k )(2π)1/2

C3ζ1$

CP (rQ,RD)
1

(δD−1)k

Moreover, using Proposition 4, we also get

(97) || ε−1

Pm(τ)Γ(1 + 1
k )

∫ τk

0
(τk − s)1/k 1

(2π)1/2
(

∫ +∞

−∞
C0,0(m−m1, ε)

×R0(im1)w(s1/k,m1)dm1)
ds

s
||(ν,β,µ,ε) ≤

1

Γ(1 + 1
k )(2π)1/2

C4ζ0$

CP (rQ,RD)
1

(δD−1)k

Finally, from Lemma 1 and Proposition 1, one gets

(98) || ε−1

Pm(τ)Γ(1 + 1
k )

∫ τk

0
(τk − s)1/kψk(s

1/k,m, ε)
ds

s
||(ν,β,µ,k,ε)

≤ C1

Γ(1 + 1
k )CP (rQ,RD)

1
(δD−1)k minm∈R |RD(im)|

||ψk(τ,m, ε)||(ν,β,µ,k,ε)

≤ C1

Γ(1 + 1
k )CP (rQ,RD)

1
(δD−1)k minm∈R |RD(im)|

ζ2

Now, we choose $, ζ0, ζ1, ζ2 > 0 and rQ,RD > 0 such that
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(99)
1

Γ(1 + 1
k )(2π)1/2

C3$
2

CP (rQ,RD)
1

(δD−1)k

+

δD−1∑
p=1

|AδD,p|kpC2.1ε0

Γ(δD − p)CP (rQ,R)
1

(δD−1)k

$

+

D−1∑
l=1

kδlC2.2

Γ(
dl,k
k )CP (rQ,RD)

1
(δD−1)k

ε
∆l−dl+δl+k(δl−δD)+dl,k
0 sup

m∈R
| Rl(im)

RD(im)
|$

+

δl−1∑
p=1

|Aδl,p|kpC2.2

Γ(
dl,k
k + δl − p)CP (rQ,RD)

1
(δD−1)k

ε
∆l−dl+δl+k(δl−δD)+dl,k
0 sup

m∈R
| Rl(im)

RD(im)
|$

+
1

Γ(1 + 1
k )(2π)1/2

(C3ζ1 + C4ζ0)$

CP (rQ,RD)
1

(δD−1)k

+
C1

Γ(1 + 1
k )CP (rQ,RD)

1
(δD−1)k minm∈R |RD(im)|

ζ2 ≤ $

Gathering all the norm estimates (92), (93), (94), (95), (96), (97), (98) with the constraint
(99), one gets (90).

Now, we check the second property (91). Let w1(τ,m), w2(τ,m) be in F d(ν,β,µ,k,ε). We take
$ > 0 such that

||wl(τ,m)||(ν,β,µ,k,ε) ≤ $,

for l = 1, 2, for all ε ∈ D(0, ε0) \ {0}. One can write

(100) Q1(i(m−m1))w1((s− x)1/k,m−m1)Q2(im1)w1(x1/k,m1)

−Q1(i(m−m1))w2((s− x)1/k,m−m1)Q2(im1)w2(x1/k,m1)

= Q1(i(m−m1))
(
w1((s− x)1/k,m−m1)− w2((s− x)1/k,m−m1)

)
Q2(im1)w1(x1/k,m1)

+Q1(i(m−m1))w2((s− x)1/k,m−m1)Q2(im1)
(
w1(x1/k,m1)− w2(x1/k,m1)

)
and using Lemma 1 and Proposition 3 with the lower bound estimates (86) we get that

(101) || ε−1

Pm(τ)Γ(1 + 1
k )

∫ τk

0
(τk − s)1/k

×
(

1

(2π)1/2
s

∫ s

0

∫ +∞

−∞
(Q1(i(m−m1))w1((s− x)1/k,m−m1)Q2(im1)w1(x1/k,m1)

−Q1(i(m−m1))w2((s− x)1/k,m−m1)

×Q2(im1)w2(x1/k,m1))
1

(s− x)x
dxdm1

)
ds

s
||(ν,β,µ,k,ε)

≤ 1

Γ(1 + 1
k )(2π)1/2

C3

CP (rQ,RD)
1

(δD−1)k

× ||w1(τ,m)− w2(τ,m)||(ν,β,µ,k,ε)(||w1(τ,m)||(ν,β,µ,k,ε) + ||w2(τ,m)||(ν,β,µ,k,ε))

≤ 1

Γ(1 + 1
k )(2π)1/2

C32$

CP (rQ,RD)
1

(δD−1)k

||w1(τ,m)− w2(τ,m)||(ν,β,µ,k,ε)
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From the estimates (93), (94), (95), (96), (97), (98) and under the constraints (87), we deduce
that

(102) ||RD(im)

Pm(τ)

AδD,p
Γ(δD − p)

∫ τk

0
(τk − s)δD−p−1(kpsp(w1(s1/k,m)− w2(s1/k,m)))

ds

s
||(ν,β,µ,k,ε)

≤
|AδD,p|kpC2.1|ε|

Γ(δD − p)CP (rQ,RD)
1

(δD−1)k

||w1(τ,m)− w2(τ,m)||(ν,β,µ,k,ε)

≤
|AδD,p|kpC2.1ε0

Γ(δD − p)CP (rQ,RD)
1

(δD−1)k

||w1(τ,m)− w2(τ,m)||(ν,β,µ,k,ε)

and

(103) ||Rl(im)

Pm(τ)

ε∆l−dl+δl−1

Γ(
dl,k
k )

∫ τk

0
(τk − s)

dl,k
k
−1(kδlsδl(w1(s1/k,m)− w2(s1/k,m))

ds

s
||(ν,β,µ,k,ε)

≤ kδlC2.2

Γ(
dl,k
k )CP (rQ,RD)

1
(δD−1)k

|ε|∆l−dl+δl+k(δl−δD)+dl,k sup
m∈R
| Rl(im)

RD(im)
|||w1(τ,m)−w2(τ,m)||(ν,β,µ,k,ε)

≤ kδlC2.2

Γ(
dl,k
k )CP (rQ,RD)

1
(δD−1)k

ε
∆l−dl+δl+k(δl−δD)+dl,k
0 sup

m∈R
| Rl(im)

RD(im)
|||w1(τ,m)−w2(τ,m)||(ν,β,µ,k,ε)

and that

(104) ||Rl(im)

Pm(τ)

Aδl,pε
∆l−dl+δl−1

Γ(
dl,k
k + δl − p)

∫ τk

0
(τk − s)

dl,k
k

+δl−p−1

× (kpsp(w1(s1/k,m)− w2(s1/k,m))
ds

s
||(ν,β,µ,k,ε)

≤
|Aδl,p|kpC2.2

Γ(
dl,k
k + δl − p)CP (rQ,RD)

1
(δD−1)k

|ε|∆l−dl+δl+k(δl−δD)+dl,k

× sup
m∈R
| Rl(im)

RD(im)
|||w1(τ,m)− w2(τ,m)||(ν,β,µ,k,ε)

≤
|Aδl,p|kpC2.2

Γ(
dl,k
k + δl − p)CP (rQ,RD)

1
(δD−1)k

ε
∆l−dl+δl+k(δl−δD)+dl,k
0

× sup
m∈R
| Rl(im)

RD(im)
|||w1(τ,m)− w2(τ,m)||(ν,β,µ,k,ε)

and that

(105) || ε−1

Pm(τ)Γ(1 + 1
k )

∫ τk

0
(τk − s)1/k

(
1

(2π)1/2
s

∫ s

0

∫ +∞

−∞
ϕk((s− x)1/k,m−m1, ε)

R0(im1)(w1(x1/k,m1)− w2(x1/k,m1))
1

(s− x)x
dxdm1

)
ds

s
||(ν,β,µ,k,ε)

≤ 1

Γ(1 + 1
k )(2π)1/2

C3||ϕk(τ,m, ε)||(ν,β,µ,k,ε)||w1(τ,m)− w2(τ,m)||(ν,β,µ,k,ε)
CP (rQ,RD)

1
(δD−1)k

≤ 1

Γ(1 + 1
k )(2π)1/2

C3ζ1||w1(τ,m)− w2(τ,m)||(ν,β,µ,k,ε)
CP (rQ,RD)

1
(δD−1)k
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together with

(106) || ε−1

Pm(τ)Γ(1 + 1
k )

∫ τk

0
(τk − s)1/k 1

(2π)1/2
(

∫ +∞

−∞
C0,0(m−m1, ε)R0(im1)

× (w1(s1/k,m1)− w2(s1/k,m1))dm1)
ds

s
||(ν,β,µ,k,ε)

≤ 1

Γ(1 + 1
k )(2π)1/2

C4ζ0||w1(τ,m)− w2(τ,m)||(ν,β,µ,k,ε)
CP (rQ,RD)

1
(δD−1)k

Now, we take $ and rQ,RD such that

(107)
1

Γ(1 + 1
k )(2π)1/2

C32$

CP (rQ,RD)
1

(δD−1)k

+
∑

1≤p≤δD−1

|AδD,p|kpC2.1ε0

Γ(δD − p)CP (rQ,RD)
1

(δD−1)k

+
∑

1≤l≤D−1

kδlC2.2

Γ(
dl,k
k )CP (rQ,RD)

1
(δD−1)k

ε
∆l−dl+δl+k(δl−δD)+dl,k
0 sup

m∈R
| Rl(im)

RD(im)
|

+
∑

1≤p≤δl−1

|Aδl,p|kpC2.2

Γ(
dl,k
k + δl − p)CP (rQ,RD)

1
(δD−1)k

ε
∆l−dl+δl+k(δl−δD)+dl,k
0 sup

m∈R
| Rl(im)

RD(im)
|

+
1

Γ(1 + 1
k )(2π)1/2

C3ζ1 + C4ζ0

CP (rQ,RD)
1

(δD−1)k

≤ 1

2

Bearing in mind the estimates (101), (102), (103), (104), (105), (106) with the constraint
(107), one gets (91).

Finally, we choose $ and rQ,RD such that both (99) and (107) are satisfied. This yields our
lemma. 2

We consider the ball B̄(0, $) ⊂ F d(ν,β,µ,k,ε) constructed in Lemma 2 which is a complete metric

space for the norm ||.||(ν,β,µ,k,ε). From the lemma above, we get that Hε is a contractive map
from B̄(0, $) into itself. Due to the classical contractive mapping theorem, we deduce that the
map Hε has a unique fixed point denoted by ωk(τ,m, ε) (i.e Hε(ωk(τ,m, ε)) = ωk(τ,m, ε)) in
B̄(0, $), for all ε ∈ D(0, ε0) \ {0}. Moreover, the function ωk(τ,m, ε) depends holomorphically
on ε in D(0, ε0) \ {0}. By construction, ωk(τ,m, ε) defines a solution of the equation (80). This
yields the proposition. 2

In the next proposition, we construct analytic solutions of the equation (72).

Proposition 10 Let the assumption (87) hold. We also choose the sectors Sd and SQ,RD in
such a way that (84) and (85) hold. We take the radius rQ,RD as prescribed in Proposition 9.
We also assume that the inequalities (88) hold for ζ0, ζ1, ζ2 constructed in Proposition 9. Notice
that the inequalities for ζ1, ζ2 can be satisfied if ε0 is small enough due to the estimates (79)).

Let Sd,θ,h′|ε| be a bounded sector with aperture π/k < θ < π/k+2δ (where 2δ is the small aper-
ture of the unbounded sector Sd), with direction d and radius h′|ε| for some h′ > 0 independent
of ε. We choose 0 < β′ < β.

Then, the equation (72) with initial condition U(0,m, ε) ≡ 0 has a solution (T,m) 7→
U(T,m, ε) defined on Sd,θ,h′|ε| × R for some real number h′ > 0 for all ε ∈ D(0, ε0) \ {0}.
Let ε ∈ D(0, ε0) \ {0}, then for each T ∈ Sd,θ,h′|ε|, the function m 7→ U(T,m, ε) belongs to the
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space E(β′,µ) and for each m ∈ R, the function T 7→ U(T,m, ε) is bounded and holomorphic on
Sd,θ,h′|ε|. Moreover, the function U(T,m, ε) can be written as a Laplace transform of order k in
the direction d,

(108) U(T,m, ε) = k

∫
Lγ

ωdk(u,m, ε)e−( u
T

)k du

u

along a halfline Lγ = R+e
iγ ∈ Sd ∪ {0} (the direction γ may depend on T ), where ωdk(τ,m, ε)

defines a continuous function on (D̄(0, ρ) ∪ Sd)× R×D(0, ε0) \ {0} which is holomorphic with
respect to (τ, ε) on (D̄(0, ρ) ∪ Sd) × D(0, ε0) \ {0} and satisfies the estimates : there exists a
constant $d (independent of ε) such that

(109) |ωdk(τ,m, ε)| ≤ $d(1 + |m|)−µe−β|m|
| τε |

1 + | τε |2k
exp(ν|τ

ε
|k)

for all τ ∈ D(0, ρ) ∪ Sd, all m ∈ R, all ε ∈ D(0, ε0) \ {0}.

Proof Taking into account the requirements stated above in Proposition 10, we get that all
the assumptions of Proposition 9 are fulfilled. Therefore, the formal mk−Borel transform
ωk(τ,m, ε) =

∑
n≥1 Un(m, ε)τn/Γ(n/k) of the formal series Û(T,m, ε) constructed in Propo-

sition 9 is convergent with respect to τ on D(0, ρ) as series with coefficients in the Banach
space E(β,µ). Moreover, this function ωk(τ,m, ε) can be extended as an analytic function with

respect to τ on the sector Sd, denoted ωdk(τ,m, ε), that belongs to the Banach space F d(ν,β,µ,k,ε)
and satisfies the bounds ||ωdk(τ,m, ε)||(ν,β,µ,k,ε) ≤ $d where $d is a constant independent of ε
in D(0, ε0) \ {0}. This means that (109) must hold. As a result, we get that the formal series
Û(T,m, ε) ∈ TE(β,µ)[[T ]] is mk−summable in the direction d (see Definition 3). By construc-
tion, its mk−sum U(T,m, ε) in direction d defines a holomorphic function on the sector Sd,θ,h′|ε|
described above in Proposition 10 with values in E(β,µ), for all ε ∈ D(0, ε0) \ {0}. On the other
hand, the series C0(T,m, ε), F (T,m, ε) ∈ TE(β,µ)[[T ]] are convergent. Therefore, these series are
mk-summable in any direction d and their mk−sums satisfy

Ldmk(ϕk(τ,m, ε))(T ) = C0(T,m, ε) , Ldmk(ψk(τ,m, ε))(T ) = F (T,m, ε)

for all T ∈ D(0, T0/2). Finally, using the properties for the sum, product and derivative of
mk−sums described in (56), we deduce that the mk−sum U(T,m, ε) in direction d satisfies the
equation (76) as a function of (T,m) on Sd,θ,h′|ε| ×R, for all ε ∈ D(0, ε0) \ {0}, since the formal

series Û(T,m, ε) satisfies the equation (76). As a result, the function U(T,m, ε) also satisfies
the equation (72) as a function of (T,m) on Sd,θ,h′|ε| × R, for all ε ∈ D(0, ε0) \ {0}. 2

5 Analytic solutions of a nonlinear initial value Cauchy problem
with complex parameter

Let k ≥ 1 and D ≥ 2 be integers. For 1 ≤ l ≤ D, let dl, δl,∆l ≥ 0 be nonnegative integers. We
assume that

(110) 1 = δ1 , δl < δl+1,

for all 1 ≤ l ≤ D − 1. We make also the assumption that

(111) dD = (δD − 1)(k + 1) , dl > (δl − 1)(k + 1) , ∆D = dD − δD + 1



34

for all 1 ≤ l ≤ D− 1. Let Q(X), Q1(X), Q2(X), Rl(X) ∈ C[X], 0 ≤ l ≤ D, be polynomials such
that

(112) deg(Q) ≥ deg(RD) ≥ deg(Rl) , deg(RD) ≥ deg(Q1) , deg(RD) ≥ deg(Q2),

Q(im) 6= 0 , RD(im) 6= 0

for all m ∈ R, all 0 ≤ l ≤ D − 1.
We consider the following nonlinear initial value problem

(113) Q(∂z)(∂tu(t, z, ε)) = (Q1(∂z)u(t, z, ε))(Q2(∂z)u(t, z, ε)) +
D∑
l=1

ε∆ltdl∂δlt Rl(∂z)u(t, z, ε)

+ c0(t, z, ε)R0(∂z)u(t, z, ε) + f(t, z, ε)

for given initial data u(0, z, ε) ≡ 0.
The coefficient c0(t, z, ε) and the forcing term f(t, z, ε) are constructed as follows. We consider

sequences of functions m 7→ C0,n(m, ε), for n ≥ 0 and m 7→ Fn(m, ε), for n ≥ 1, that belong to
the Banach space E(β,µ) for some β > 0, µ > max(deg(Q1) + 1,deg(Q2) + 1) and which depend
holomorphically on ε ∈ D(0, ε0). We assume that there exist constants K0, T0 > 0 such that
(71) hold for all n ≥ 1, for all ε ∈ D(0, ε0). We deduce that the functions

C0(T, z, ε) =
∑
n≥0

F−1(m 7→ C0,n(m, ε))(z)Tn , F(T, z, ε) =
∑
n≥1

F−1(m 7→ Fn(m, ε))(z)Tn

represent bounded holomorphic functions on D(0, T0/2) × Hβ′ × D(0, ε0) for any 0 < β′ < β
(where F−1 denotes the inverse Fourier transform defined in Proposition 7). We define the
coefficient c0(t, z, ε) and the forcing term f(t, z, ε) as

(114) c0(t, z, ε) = C0(εt, z, ε) , f(t, z, ε) = F(εt, z, ε).

The functions c0 and f are holomorphic and bounded on D(0, r)×Hβ′ ×D(0, ε0) where rε0 <
T0/2.

We make the additional assumption that there exists an unbounded sector

SQ,RD = {z ∈ C/|z| ≥ rQ,RD , |arg(z)− dQ,RD | ≤ ηQ,RD}

with direction dQ,RD ∈ R, aperture ηQ,RD > 0 for some radius rQ,RD > 0 such that

(115)
Q(im)

RD(im)
∈ SQ,RD

for all m ∈ R.

Definition 4 Let ς ≥ 2 be an integer. For all 0 ≤ p ≤ ς−1, we consider open sectors Ep centered
at 0, with radius ε0 and opening π

k + κp, with κp > 0 small enough such that Ep ∩ Ep+1 6= ∅, for
all 0 ≤ p ≤ ς − 1 (with the convention that Eς = E0). Moreover, we assume that the intersection
of any three different elements in (Ep)0≤p≤ς is empty and that ∪ς−1

p=0Ep = U \ {0}, where U is
some neighborhood of 0 in C. Such a set of sectors {Ep}0≤p≤ς−1 is called a good covering in C∗.
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Definition 5 Let {Ep}0≤p≤ς−1 be a good covering in C∗. Let T be an open bounded sector
centered at 0 with radius rT and consider a family of open sectors

Sdp,θ,ε0rT = {T ∈ C∗/|T | < ε0rT , |dp − arg(T )| < θ/2}

with aperture θ > π/k and where dp ∈ R, for all 0 ≤ p ≤ ς − 1, are directions which satisfy the
following constraints: Let ql(m) be the roots of the polynomials (82) defined by (83) and Sdp,
0 ≤ p ≤ ς − 1 be unbounded sectors centered at 0 with directions dp and with small aperture. We
assume that
1) There exists a constant M1 > 0 such that

(116) |τ − ql(m)| ≥M1(1 + |τ |)

for all 0 ≤ l ≤ (δD − 1)k − 1, all m ∈ R, all τ ∈ Sdp ∪ D̄(0, ρ), for all 0 ≤ p ≤ ς − 1.
2) There exists a constant M2 > 0 such that

(117) |τ − ql0(m)| ≥M2|ql0(m)|

for some l0 ∈ {0, . . . , (δD − 1)k − 1}, all m ∈ R, all τ ∈ Sdp ∪ D̄(0, ρ), for all 0 ≤ p ≤ ς − 1.
3) For all 0 ≤ p ≤ ς − 1, for all t ∈ T , all ε ∈ Ep, we have that εt ∈ Sdp,θ,ε0rT .

We say that the family {(Sdp,θ,ε0rT )0≤p≤ς−1, T } is associated to the good covering {Ep}0≤p≤ς−1.

In the next first main result, we construct a family of actual holomorphic solutions to the
equation (113) for given initial data at t = 0 being identically equal to zero, defined on the sectors
Ep with respect to the complex parameter ε. We can also control the difference between any two
neighboring solutions on the intersection of sectors Ep ∩ Ep+1 and show that it is exponentially
flat of order at most k.

Theorem 1 We consider the equation (113) and we assume that the constraints (110), (111),
(112) and (115) hold. We also make the additional assumption that

(118) δD ≥ δl +
2

k
, ∆l + k(1− δD) + 1 ≥ 0,

hold for all 1 ≤ l ≤ D− 1. Let the coefficient c0(t, z, ε) and forcing term f(t, z, ε) be constructed
as in (114). Let a good covering {Ep}0≤p≤ς−1 in C∗ be given, for which a family of sectors
{(Sdp,θ,ε0rT )0≤p≤ς−1, T } associated to this good covering can be considered.

Then, there exist a radius rQ,RD > 0 large enough, ε0 > 0 small enough and a constant
ζ0 > 0 small enough such that if

||C0,0(m, ε)||(β,µ) < ζ0

for all ε ∈ D(0, ε0) \ {0}, then for every 0 ≤ p ≤ ς − 1, one can construct a solution up(t, z, ε)
of the equation (113) with up(0, z, ε) ≡ 0 which defines a bounded holomorphic function on the
domain (T ∩D(0, h′))×Hβ′ ×Ei for any given 0 < β′ < β and for some h′ > 0. Moreover, there
exist constants 0 < h′′ ≤ h′, Kp,Mp > 0 (independent of ε) such that

(119) sup
t∈T ∩D(0,h′′),z∈Hβ′

|up+1(t, z, ε)− up(t, z, ε)| ≤ Kpe
−Mp

|ε|k

for all ε ∈ Ep+1 ∩ Ep, for all 0 ≤ p ≤ ς − 1 (where by convention uς = u0).
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Proof Using Proposition 10, one can choose rQ,RD > 0 large enough, ε0 > 0 small enough and
ζ0 > 0 small enough such that

||C0,0(m, ε)||(β,µ) ≤ ζ0

for all ε ∈ D(0, ε0) \ {0} such that for each direction dp with 0 ≤ p ≤ ς − 1, one can construct a
function Udp(T,m, ε) which satisfies Udp(0,m, ε) ≡ 0 and solves the equation

(120) Q(im)(∂TU(T,m, ε)) = ε−1 1

(2π)1/2

∫ +∞

−∞
Q1(i(m−m1))U(T,m−m1, ε)

×Q2(im1)U(T,m1, ε)dm1

+
D∑
l=1

Rl(im)ε∆l−dl+δl−1T dl∂δlT U(T,m, ε)

+ ε−1 1

(2π)1/2

∫ +∞

−∞
C0(T,m−m1, ε)U(T,m1, ε)dm1

+ ε−1 1

(2π)1/2

∫ +∞

−∞
C0,0(m−m1, ε)U(T,m1, ε)dm1 + ε−1F (T,m, ε)

where
C0(T,m, ε) =

∑
n≥1

C0,n(m, ε)Tn , F (T,m, ε) =
∑
n≥1

Fn(m, ε)Tn

are convergent series in D(0, T0/2) with values in E(β,µ), for all ε ∈ D(0, ε0) \ {0}. The function
(T,m) 7→ Udp(T,m, ε) is well defined on the domain Sdp,θ,h′|ε| × R where h′ > 0 is some real
number, for all ε ∈ D(0, ε0) \ {0}. Moreover, Udp(T,m, ε) can be written as a Laplace transform
of order k in the direction dp,

(121) Udp(T,m, ε) = k

∫
Lγp

ω
dp
k (u,m, ε)e−( u

T
)k du

u

along a halfline Lγp = R+e
iγp ∈ Sdp∪{0} (the direction γp may depend on T ), where ω

dp
k (τ,m, ε)

defines a continuous function on (D̄(0, ρ) ∪ Sdp)×R×D(0, ε0) \ {0} which is holomorphic with
respect to (τ, ε) on (D̄(0, ρ) ∪ Sdp) ×D(0, ε0) \ {0} for any m ∈ R and satisfies the estimates :
there exists a constant $dp (independent of ε) such that

(122) |ωdp
k (τ,m, ε)| ≤ $dp(1 + |m|)−µe−β|m|

| τε |
1 + | τε |2k

exp(ν|τ
ε
|k)

for all τ ∈ D(0, ρ) ∪ Sdp , all m ∈ R, all ε ∈ D(0, ε0) \ {0}. It is worth noticing that all the

functions τ 7→ ω
dp
k (τ,m, ε) are analytic continuation on the sectors Sdp of a common function

denoted by

ωk(τ,m, ε) =
∑
n≥1

Un(m, ε)
τn

Γ(nk )

which is a convergent series on D(0, ρ) with coefficients in E(β,µ) and where Un(m, ε) ∈ E(β,µ)

are the coefficients of the formal series Û(T,m, ε) =
∑

n≥1 Un(m, ε)Tn solution of the equation
(120), for all ε ∈ D(0, ε0) \ {0}. Using the estimates (122), we get that the function

(T, z) 7→ Udp(T, z, ε) = F−1(m 7→ Udp(T,m, ε))(z)
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defines a bounded holomorphic function on Sdp,θ,h′|ε| × Hβ′ , for all ε ∈ D(0, ε0) \ {0} and any
0 < β′ < β. For all 0 ≤ p ≤ ς − 1, we define

(123) up(t, z, ε) = Udp(εt, z, ε) =
k

(2π)1/2

∫ +∞

−∞

∫
Lγp

ω
dp
k (u,m, ε)e−( u

εt
)keizm

du

u
dm.

By construction (see 3) in Definition 5), the function up(t, z, ε) defines a bounded holomorphic
function on the domain (T ∩D(0, h′))×Hβ′ × Ep. Moreover, we have up(0, z, ε) ≡ 0 and using
the properties of the Fourier inverse transform from Proposition 7, we deduce that up(t, z, ε)
solves the main equation (113) on (T ∩D(0, h′))×Hβ′ × Ep.

Now, we proceed to the proof of the estimates (119). Let p ∈ {0, . . . , ς − 1}. Using the
fact that the function u 7→ ωk(u,m, ε) exp(−( uεt)

k)/u is holomorphic on D(0, ρ) for all (m, ε) ∈
R× (D(0, ε0) \ {0}), its integral along the union of a segment starting from 0 to (ρ/2)eiγp+1 , an
arc of circle with radius ρ/2 which connects (ρ/2)eiγp+1 and (ρ/2)eiγp and a segment starting
from (ρ/2)eiγp to 0, is equal to zero. Therefore, we can write the difference up+1 − up as a sum
of three integrals,

(124) up+1(t, z, ε)− up(t, z, ε) =
k

(2π)1/2

∫ +∞

−∞

∫
Lρ/2,γp+1

ω
dp+1

k (u,m, ε)e−( u
εt

)keizm
du

u
dm

− k

(2π)1/2

∫ +∞

−∞

∫
Lρ/2,γp

ω
dp
k (u,m, ε)e−( u

εt
)keizm

du

u
dm

+
k

(2π)1/2

∫ +∞

−∞

∫
Cρ/2,γp,γp+1

ωk(u,m, ε)e
−( u

εt
)keizm

du

u
dm

where Lρ/2,γp+1
= [ρ/2,+∞)eiγp+1 , Lρ/2,γp = [ρ/2,+∞)eiγp and Cρ/2,γp,γp+1

is an arc of circle

with radius connecting (ρ/2)eiγp and (ρ/2)eiγp+1 with a well chosen orientation.

We give estimates for the quantity

I1 =

∣∣∣∣∣ k

(2π)1/2

∫ +∞

−∞

∫
Lρ/2,γp+1

ω
dp+1

k (u,m, ε)e−( u
εt

)keizm
du

u
dm

∣∣∣∣∣ .
By construction, the direction γp+1 (which depends on εt) is chosen in such a way that cos(k(γp+1−
arg(εt))) ≥ δ1, for all ε ∈ Ep∩Ep+1, all t ∈ T ∩D(0, h′), for some fixed δ1 > 0. From the estimates
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(122), we get that

(125) I1 ≤
k

(2π)1/2

∫ +∞

−∞

∫ +∞

ρ/2
$dp+1(1 + |m|)−µe−β|m|

r
|ε|

1 + ( r|ε|)
2k

× exp(ν(
r

|ε|
)k) exp(−cos(k(γp+1 − arg(εt)))

|εt|k
rk)e−mIm(z)dr

r
dm

≤
k$dp+1

(2π)1/2

∫ +∞

−∞
e−(β−β′)|m|dm

∫ +∞

ρ/2

1

|ε|
exp(−(

δ1

|t|k
− ν)(

r

|ε|
)k)dr

≤
2k$dp+1

(2π)1/2

∫ +∞

0
e−(β−β′)mdm

∫ +∞

ρ/2

|ε|k−1

( δ1|t|k − ν)k(ρ2)k−1
×

( δ1|t|k − ν)krk−1

|ε|k
exp(−(

δ1

|t|k
−ν)(

r

|ε|
)k)dr

≤
2k$dp+1

(2π)1/2

|ε|k−1

(β − β′)( δ1|t|k − ν)k(ρ2)k−1
exp(−(

δ1

|t|k
− ν)

(ρ/2)k

|ε|k
)

≤
2k$dp+1

(2π)1/2

|ε|k−1

(β − β′)δ2k(ρ2)k−1
exp(−δ2

(ρ/2)k

|ε|k
)

for all t ∈ T ∩D(0, h′) and |Im(z)| ≤ β′ with |t| < ( δ1
δ2+ν )1/k, for some δ2 > 0, for all ε ∈ Ep∩Ep+1.

In the same way, we also give estimates for the integral

I2 =

∣∣∣∣∣ k

(2π)1/2

∫ +∞

−∞

∫
Lρ/2,γp

ω
dp
k (u,m, ε)e−( u

εt
)keizm

du

u
dm

∣∣∣∣∣ .
Namely, the direction γp (which depends on εt) is chosen in such a way that cos(k(γp−arg(εt))) ≥
δ1, for all ε ∈ Ep ∩ Ep+1, all t ∈ T ∩D(0, h′), for some fixed δ1 > 0. Again from the estimates
(122) and following the same steps as in (125), we get that

(126) I2 ≤
2k$dp

(2π)1/2

|ε|k−1

(β − β′)δ2k(ρ2)k−1
exp(−δ2

(ρ/2)k

|ε|k
)

for all t ∈ T ∩D(0, h′) and |Im(z)| ≤ β′ with |t| < ( δ1
δ2+ν )1/k, for some δ2 > 0, for all ε ∈ Ep∩Ep+1.

Finally, we give upper bound estimates for the integral

I3 =

∣∣∣∣∣ k

(2π)1/2

∫ +∞

−∞

∫
Cρ/2,γp,γp+1

ωk(u,m, ε)e
−( u

εt
)keizm

du

u
dm

∣∣∣∣∣ .
By construction, the arc of circle Cρ/2,γp,γp+1

is chosen in such a way that cos(k(θ−arg(εt))) ≥ δ1,
for all θ ∈ [γp, γp+1] (if γp < γp+1), θ ∈ [γp+1, γp] (if γp+1 < γp), for all t ∈ T , all ε ∈ Ep ∩ Ep+1,
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for some fixed δ1 > 0. Bearing in mind (122) and (22), we get that

(127) I3 ≤
k

(2π)1/2

∫ +∞

−∞

∣∣∣∣∣
∫ γp+1

γp

max
0≤p≤ς−1

$dp(1 + |m|)−µe−β|m|
ρ/2
|ε|

1 + (ρ/2|ε| )
2k

× exp(ν(
ρ/2

|ε|
)k) exp(−cos(k(θ − arg(εt)))

|εt|k
(
ρ

2
)k) e−mIm(z)dθ

∣∣∣ dm
≤
k(max0≤p≤ς−1$dp)

(2π)1/2

∫ +∞

−∞
e−(β−β′)|m|dm× |γp − γp+1|

ρ/2

|ε|
exp(−

( δ1|t|k − ν)

2
(
ρ/2

|ε|
)k)

× exp(−
( δ1|t|k − ν)

2
(
ρ/2

|ε|
)k)

≤
2k(max0≤p≤ς−1$dp)|γp − γp+1|

(2π)1/2(β − β′)
sup
x≥0

x1/ke
−(

δ1
|t|k
−ν)x × exp(−

( δ1|t|k − ν)

2
(
ρ/2

|ε|
)k)

≤
2k(max0≤p≤ς−1$dp)|γp − γp+1|

(2π)1/2(β − β′)
(
1/k

δ2
)1/ke−1/k exp(−δ2

2
(
ρ/2

|ε|
)k)

for all t ∈ T ∩D(0, h′) and |Im(z)| ≤ β′ with |t| < ( δ1
δ2+ν )1/k, for some δ2 > 0, for all ε ∈ Ep∩Ep+1.

Finally, gathering the three above inequalities (125), (126) and (127), we deduce from the
decomposition (124) that

|up+1(t, z, ε)− up(t, z, ε)| ≤
2k($dp +$dp+1)

(2π)1/2

|ε|k−1

(β − β′)δ2k(ρ2)k−1
exp(−δ2

(ρ/2)k

|ε|k
)

+
2k(max0≤p≤ς−1$dp)|γp − γp+1|

(2π)1/2(β − β′)
(
1/k

δ2
)1/ke−1/k exp(−δ2

2
(
ρ/2

|ε|
)k)

for all t ∈ T ∩D(0, h′) and |Im(z)| ≤ β′ with |t| < ( δ1
δ2+ν )1/k, for some δ2 > 0, for all ε ∈ Ep∩Ep+1.

Therefore, the inequality (119) holds. 2

6 Existence of k−summable formal series in the complex pa-
rameter of the initial value problem

6.1 k−Summable formal series and Ramis-Sibuya Theorem

We recall the definition of k−Borel summability of formal series with coefficients in a Banach
space, see [1].

Definition 6 Let k ≥ 1 be an integer. A formal series

X̂(ε) =
∞∑
j=0

aj
j!
εj ∈ F[[ε]]

with coefficients in a Banach space (F, ||.||F) is said to be k−summable with respect to ε in the
direction d ∈ R if
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i) there exists ρ ∈ R+ such that the following formal series, called formal Borel transform of
X̂ of order k

Bk(X̂)(τ) =
∞∑
j=0

ajτ
j

j!Γ(1 + j
k )
∈ F[[τ ]],

is absolutely convergent for |τ | < ρ,

ii) there exists δ > 0 such that the series Bk(X̂)(τ) can be analytically continued with respect
to τ in a sector Sd,δ = {τ ∈ C∗ : |d − arg(τ)| < δ}. Moreover, there exist C > 0, and K > 0
such that

||B(X̂)(τ)||F ≤ CeK|τ |
k

for all τ ∈ Sd,δ.

If this is so, the vector valued Laplace transform of order k of Bk(X̂)(τ) in the direction d is
defined by

Ldk(Bk(X̂))(ε) = ε−k
∫
Lγ

Bk(X̂)(u)e−(u/ε)kkuk−1du,

along a half-line Lγ = R+e
iγ ⊂ Sd,δ ∪ {0}, where γ depends on ε and is chosen in such a way

that cos(k(γ − arg(ε))) ≥ δ1 > 0, for some fixed δ1, for all ε in a sector

Sd,θ,R1/k = {ε ∈ C∗ : |ε| < R1/k , |d− arg(ε)| < θ/2},

where π
k < θ < π

k + 2δ and 0 < R < δ1/K. The function Ldk(Bk(X̂))(ε) is called the k−sum of

the formal series X̂(t) in the direction d. It is bounded and holomorphic on the sector Sd,θ,R1/k

and has the formal series X̂(ε) as Gevrey asymptotic expansion of order 1/k with respect to ε
on Sd,θ,R1/k . This means that for all π

k < θ1 < θ, there exist C,M > 0 such that

||Ldk(Bk(X̂))(ε)−
n−1∑
p=0

ap
p!
εp||F ≤ CMnΓ(1 +

n

k
)|ε|n

for all n ≥ 1, all ε ∈ Sd,θ1,R1/k .

Now, we state a cohomological criterion for k−summability of formal series with coefficients
in Banach spaces (see [2], p. 121 or [14], Lemma XI-2-6) which is known as the Ramis-Sibuya
theorem in the literature. This result is a crucial tool in the proof of our main result (Theorem
2).

Theorem (RS) Let (F, ||.||F) be a Banach space over C and {Ep}0≤i≤ς−1 be a good covering in
C∗. For all 0 ≤ p ≤ ς − 1, let Gp be a holomorphic function from Ep into the Banach space
(F, ||.||F) and let the cocycle Θp(ε) = Gp+1(ε)−Gp(ε) be a holomorphic function from the sector
Zp = Ep+1 ∩ Ep into E (with the convention that Eς = E0 and Gς = G0). We make the following
assumptions.

1) The functions Gp(ε) are bounded as ε ∈ Ep tends to the origin in C, for all 0 ≤ p ≤ ς − 1.

2) The functions Θp(ε) are exponentially flat of order 1/k on Zp, for all 0 ≤ p ≤ ς − 1. This
means that there exist constants Cp, Ap > 0 such that

||Θp(ε)||F ≤ Cpe−Ap/|ε|
k

for all ε ∈ Zp, all 0 ≤ p ≤ ς − 1.

Then, for all 0 ≤ p ≤ ν − 1, the functions Gp(ε) are the k−sums on Ep of a common
k−summable formal series Ĝ(ε) ∈ F[[ε]].
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6.2 Construction of k−summable formal series in the complex parameter of
the initial value problem

In this subsection, we establish the second main result of our work, namely the existence of a
formal power series in the parameter ε whose coefficients are bounded holomorphic functions on
the product of a sector with small radius centered at 0 and a strip in C2, that is a solution of
the equation (113) and which is the common Gevrey asymptotic expansion of order 1/k of the
actual solutions up(t, z, ε) of (113) constructed in Theorem 1.

The second main result of this work can be stated as follows.

Theorem 2 Let us assume that the hypotheses of Theorem 1 hold. Then, there exists a formal
power series

û(t, z, ε) =
∑
m≥0

hm(t, z)εm/m!

solution of the equation (113), whose coefficients hm(t, z) belong to the Banach space F of bounded
holomorphic functions on (T ∩D(0, h′′))×Hβ′ equipped with supremum norm, where h′′ > 0 is
constructed in Theorem 1, and such that the functions up(t, z, ε) defined in Theorem 1, seen as
holomorphic functions from Ep into F, are its k−sums on the sectors Ep, for all 0 ≤ p ≤ ς − 1.
In other words, for all 0 ≤ p ≤ ς − 1, there exist two constants Cp,Mp > 0 such that

(128) sup
t∈T ∩D(0,h′′),z∈Hβ′

|up(t, z, ε)−
n−1∑
m=0

hm(t, z)
εm

m!
| ≤ CpMn

p Γ(1 +
n

k
)|ε|n

for all n ≥ 1, all ε ∈ Ep.

Proof We consider the family of functions up(t, z, ε), 0 ≤ p ≤ ς − 1 constructed in Theorem
1. For all 0 ≤ p ≤ ς − 1, we define Gp(ε) := (t, z) 7→ up(t, z, ε), which is by construction a
holomorphic and bounded function from Ep into the Banach space F of bounded holomorphic
functions on (T ∩D(0, h′′))×Hβ′ equipped with the supremum norm, where T is introduced in
Definition 5, h′′ > 0 is set in Theorem 1 and β′ > 0 is the width of the strip Hβ′ on which the
coefficients c0 and f are defined with respect to z (see (114)). Bearing in mind the estimates
(119), we see that the cocycle Θp(ε) = Gp+1(ε) − Gp(ε) is exponentially flat of order k on
Zp = Ep ∩ Ep+1, for any 0 ≤ p ≤ ς − 1.

From Theorem (RS) stated above, there exists a formal power series Ĝ(ε) ∈ F[[ε]] such that
the functions Gp(ε) are the k−sums on Ep of Ĝ(ε) as F−valued functions, for all 0 ≤ p ≤ ς − 1.
We set

Ĝ(ε) =
∑
m≥0

hm(t, z)εm/m! =: û(t, z, ε).

It remains to show that the formal series û(t, z, ε) satisfies the main equation (113). Since the
functions Gp(ε) are the k−sums of Ĝ(ε), we have in particular that

(129) lim
ε→0,ε∈Ep

sup
t∈T ∩D(0,h′′),z∈Hβ′

|∂mε up(t, z, ε)− hm(t, z)| = 0

for all 0 ≤ p ≤ ς − 1, all m ≥ 0. Now, we choose some p ∈ {0, . . . , ς − 1}. By construction, the
function up(t, z, ε) is a solution of (113). We take the derivative of order m ≥ 0 with respect to
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ε on the left and right handside of the equation (113). From the Leibniz rule, we deduce that
∂mε up(t, z, ε) verifies the following equation

(130) Q(∂z)(∂t∂
m
ε up(t, z, ε)) =

∑
m1+m2=m

m!

m1!m2!
(Q1(∂z)∂

m1
ε up(t, z, ε))(Q2(∂z)∂

m2
ε up(t, z, ε))

+

D∑
l=1

( ∑
m1+m2=m

m!

m1!m2!
∂m1
ε (ε∆l)tdl∂δlt Rl(∂z)∂

m2
ε up(t, z, ε)

)

+
∑

m1+m2=m

m!

m1!m2!
∂m1
ε c0(t, z, ε)R0(∂z)∂

m2
ε up(t, z, ε) + ∂mε f(t, z, ε)

for all m ≥ 0, all (t, z, ε) ∈ (T ∩D(0, h′′))×Hβ′ × Ep. If we let ε tend to zero in (130) and if we
use (129), we get the recursion

(131) Q(∂z)(∂thm(t, z)) =
∑

m1+m2=m

m!

m1!m2!
(Q1(∂z)hm1(t, z))(Q2(∂z)hm2(t, z))

+
D∑
l=1

m!

(m−∆l)!
tdl∂δlt Rl(∂z)hm−∆l

(t, z)

+
∑

m1+m2=m

m!

m1!m2!
(∂m1
ε c0)(t, z, 0)R0(∂z)hm2(t, z) + (∂mε f)(t, z, 0)

for all m ≥ max1≤l≤D ∆l, all (t, z) ∈ (T ∩ D(0, h′′)) × Hβ′ . Since the functions c0(t, z, ε) and
f(t, z, ε) are analytic with respect to ε at 0, we know that

(132) c0(t, z, ε) =
∑
m≥0

(∂mε c0)(t, z, 0)

m!
εm , f(t, z, ε) =

∑
m≥0

(∂mε f)(t, z, 0)

m!
εm

for all ε ∈ D(0, ε0), all z ∈ Hβ′ . On other hand, one can check by direct inspection from the
recursion (131) and the expansions (132) that the formal series û(t, z, ε) =

∑
m≥0 hm(t, z)εm/m!

solves the equation (113). 2
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B5, Res. Inst. Math. Sci. (RIMS), Kyoto, 2008.

[17] A. Lastra, S. Malek, J. Sanz, On Gevrey solutions of threefold singular nonlinear partial
differential equations. J. Differential Equations 255 (2013), no. 10, 3205–3232.

[18] A. Lastra, S. Malek, J. Sanz, Continuous right inverses for the asymptotic Borel map in
ultraholomorphic classes via a Laplace-type transform, J. Math. Anal. Appl. 396 (2012), no.
2, 724–740.
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