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Abstract 

Ensemble learning is a common machine learning technique applied to business and economic analysis in which several 

classifiers are combined using majority voting for better forecasts as compared to those of individual classifier. This study 

presents a counterexample, which demonstrates that ensemble learning leads to worse classifications than those from 

individual classifiers, using two events and three classifiers. If there is an outstanding classifier, we should follow its 

forecast instead of using ensemble learning. 
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1. Introduction 

The impact of artificial intelligence on society has increased due to the availability of big data and rapid advances in 

computer technology. The application of machine learning, an aspect of artificial intelligence, in business and economic 

analysis has been explored in energy economics by Tso and Yau (2005), Weron (2014), Ziel and Steinert (2016), and 

Lago et al. (2018); stock price forecasting by Zhang et al. (1998), Hegazy et al. (2013), Rather et al. (2015), and 

Moghaddam et al. (2016); early warning systems by Tanaka et al. (2016); financial hazard map by Tanaka et al. (2018); 

and credit risk assessment by Angelini et al. (2008), Khashman (2009), Khashman (2010), Khemakhem and Boujelbene 

(2015), and Hamori et al. (2018). 

Ensemble learning, among others, is one of the most useful machine learning techniques, in which multiple learners are 

trained to solve the same problem. Several classifiers are combined and majority voting is used, which leads to better 

forecasts than from an individual classifier. Bagging (Breiman, 1996), random forest (Breiman, 2001), and boosting 

(Schapire 1999; Shapire and Freund 2012) are well-known methods of ensemble learning. This idea has also been 

extended to Chen and Guestrin’s (2016) XGboost and Ke et al.’s (2017) Light GBM.  

As compared to deep learning, ensemble learning through methods, such as random forest has several merits. Deep 

learning requires tedious hyper parameter setting, while random forest requires simple hyper parameter setting; only the 

number of trees. Deep learning is a black box and provides results that are difficult to interpret, while random forest 

uncovers important variables. Furthermore, deep learning requires high machine power and computational cost to 

obtain high performance, while random forest does not. Thus, there are many applications of ensemble learning in 

economic and business data. For example, Tanaka et al. (2016) and Tanaka et al. (2018) use a random forest approach 

for risk management. 

It is generally believed that ensemble learning leads to better classification than an individual classifier (Lantz, 2015). 

This study sets up a simple example model using two events and three classifiers to provide a counter example that 

demonstrates that ensemble learning leads to worse classification than that of individual classifier. To the best of our 

knowledge, this is the first study that emphasizes the problem of ensemble learning.  

In section 2, we illustrate the model and counter example. Section 3 summarizes the conclusion.  
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2. Model and Counter Example 

For simplicity, assume that there are two events, A or B to classify and three classifiers—M1, M2, and M3. Events A and 

B are assumed to be exclusive. For example, each classifier forecasts whether stock prices will rise or fall in the next 

period. Then, we consider three cases. 

Case 1: Each classifier has the same accuracy rate with          . 

Table 1 indicates the situations where the majority vote leads to answer A. For example, M1 and M2 forecast Event A but 

M3 forecasts Event B in Situation 1. According to the majority vote, we choose Event A in this situation. Similarly, we 

choose Event A for situations 2, 3, and 4 based on majority vote. 

 

Table 1. Majority Rule 

 M1 M2 M3 

Situation 1 A A B 

Situation 2 A B A 

Situation 3 B A A 

Situation 4 A A A 

Then, the probability that majority rule will lead to each classification is given by Table 2. 

 

Table 2. Majority Rule: Case 1 

 Event A Event B 

Situation 1                     

Situation 2                     

Situation 3                     

Situation 4                     

 

In summary, if we use majority rule and forecast Event A using M1, M2, and M3, then the probability that the true event 

is Event A can be calculated as follows: 
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Thus,                  Therefore, the majority rule leads to a better forecast than from each classifier. As a 

numerical example, we have                   and                  . 

Case 2: One classifier has a low accuracy rate with    and the others have a high accuracy rate with            
     . 

Then, the probability that the majority rule leads to each classification is given in Table 3. In summary, if we use majority 

rule and forecast Event A using M1, M2, and M3, then the probability that the true event is Event A can be calculated as 

follows: 

  
                      

   

  
                      

                            
        

        
 

               
  

 

Let                 
 . Then, the   function can be drawn in the        plane, as shown in Figure 1. 
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Table 3. Majority Rule: Case 2 

 Event A Event B 

Situation 1                           

Situation 2                           

Situation 3                           

Situation 4                           

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.                 
  function 

 

From Figure 1,      is established for            . This example also indicates that majority rule leads to a 

better forecast than from each classifier. As a numerical example, we have                                and 

                             . 

Case 3: One classifier has a high accuracy rate with    and the others have a low accuracy rate with            
     . 

Then, the probability that the majority rule leads to each classification is given in Table 4. In summary, if we use majority 

rule and forecast Event A using M1, M2, and M3, then the probability that the true event is Event A can be calculated as 

follows: 

Let                 
 . Then,   function can be drawn in the        plane, as shown in Figure 2. 

 

Table 4. Majority Rule: Case 3 

 Event A Event B 

Situation 1                           

Situation 2                           

Situation 3                           

Situation 4                           
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Figure 2.                 
  function 

 

For         , we have    
     

     (See case 2). We also have 

      
                

Figure 3 illustrates                          
  in the        plane. As is clear from Figure 3, it does not 

necessarily hold true that      for any   . Figure 3 indicates that      for         
  (majority rule leads to a 

better forecast than   ), whereas      for   
       (majority rule leads to a worse forecast than   ).1 As a 

numerical example, we have                                and                              . 

Thus, we show that majority rule does not necessarily lead to a better classification than from an individual classifier. 

Note that if there is an outstanding classifier, we should not choose majority rule but follow its forecast. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.                          
  functions 

 

3. Conclusions 

The impact of artificial intelligence on society has increased significantly due to the availability of big data and rapid 

advances in computer technology. Ensemble learning, among others, is one of the most useful machine learning 
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techniques, in which multiple learners are trained to solve the same problem. It is generally believed that ensemble 

learning leads to better classification than that of each classifier alone (Lantz 2015). 

We demonstrate that ensemble learning does not necessarily lead to better classification than from each classifier using 

two events and three classifiers. The main results are as follows: 

(1) When all the classifiers have an equal accuracy rate, ensemble learning always leads to better forecasts. 

(2) When one classifier has a low accuracy rate and the others have high accuracy rates, ensemble learning always leads 

to better forecasts. 

(3) When one classifier has a high accuracy rate and the others have low accuracy rates, ensemble learning does not 

necessarily lead to better forecasts. We should follow the forecasts of an outstanding classifier (if it exists) instead of 

using ensemble learning. 

Thus, this study presents a simple counter example that demonstrates that ensemble learning leads to worse classification 

than from an individual classifier. We should adopt the forecast of an outstanding classifier instead of using ensemble 

learning. 
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