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ABSTRACT   

Zero-inflated negative binomial regression (ZINB) models are commonly used for count data that show 

overdispersion and extra zeros. The correlation among variables of the count data leads to the presence of a 

multicollinearity problem. In this case, the maximum likelihood estimator (MLE) will not be an efficient 

estimator as the value of the mean squared error (MSE) will be large. Several alternative estimators, such as 

ridge estimators, have been proposed to solve the multicollinearity problem. In this paper, we propose an 

estimator called an almost unbiased ridge estimator for the ZINB model (AUZINBRE) to solve the 

multicollinearity problem in the correlated count data. The performance of the AUZINBRE is investigated 

using a Monte Carlo simulation study. The MSE is used as a measure to compare the results of the 

proposed estimators with those of the ridge estimators and the MLE. In addition, the AUZINBRE is applied 

to a real dataset. 
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1. Introduction 

In regression models for count data, the binomial model is very popular when the counts are bounded whereas 

the Poisson model is very popular when the counts are unbounded. The binomial model can involve 

explanatory variables that lead to a binomial regression model. This occurs when the counts exhibit more 

variability than the binomial model and so the overdispersion is modeled by supposing that the model 

parameter itself has a distribution. The negative binomial regression model is one of the most popular models 

for accounting the overdispersion when the Poisson mean has a gamma distribution. However, when extra 

zeros exist in the count data, the zero-inflated negative binomial (ZINB) regression model is used to account 

for the inflation of the extra zeros. The ZINB model can be seen as a mixture of a negative binomial 

distribution and a degenerate distribution at zero [1-3]. 

Suppose we have count data,              Hence,    are random variables that have a negative binomial 

distribution. 
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where μ is the expected value       ,   represents the parameter that quantifies the overdispersion amount, 

and   is the dependent variable. The variance of   is μ μ
 
  . The negative binomial distribution approaches 

to a Poisson distribution when    . 
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In some situations, however, a huge number of zeros may be included in the count data. Hence, a zero-inflated 

negative binomial (ZINB) regression model is used for such kind of count data [1, 2, 3]. In the presence of 

multicollinearity among the explanatory variables, the variance of the maximum likelihood estimator (MLE) 

will be inflated [3]. In order to overcome this multicollinearity problem, authors have proposed several other 

estimators. For example, [4] used a ridge regression (RE) for the negative binomial regression models. [3]  

proposed a Liu-type estimator for the negative binomial regression models. However, these estimators may 

have a large bias. In order to solve this problem, the almost unbiased ridge estimator (AURE) was proposed by 

[5] for linear regression models. Hence, in this paper, we propose the AURE for the ZINB (AUZINBRE) 

model in order to tackle the multicollinearity problem and decrease the variance of the MLE to obtain a 

reliable estimator. We demonstrate the performance of the AUZINBRE by a Monte Carlo simulation study 

with different sample sizes and different combinations of the correlation levels. Moreover, we also use a real 

dataset to show the performance of the AURE and compare it with those of other estimators. 

This work is organized as follows. Section 2 reviews the methodology of the zero-inflated negative binomial 

regression model. In Section 3, the ridge estimator is presented for the ZINB model. In Section 4, we propose 

the almost unbiased ridge regression estimator for the ZINB model (AUZINBRE). In addition, several 

estimation methods are presented for obtaining the values of the almost unbiased ridge parameter. Section 5 

investigates the behavior of the AUZINBRE using a simulation experiment. In Section 6, the performance of 

the AUZINBRE is also investigated using a real dataset. Finally, in Section 7, the conclusion is given. 

 

2. Zero-inflated negative binomial regression models 

Suppose we have observations that have two possible cases for each observation. If the first case occurs with 

probability   , the count is zero, whereas if the second case occurs with probability     , the counts will 

follow the negative binomial model. The ZINB distribution composes the logit distribution and the negative 

binomial distribution. Thus, the values of   are 0, 1, 2, 3, and so on. Hence, for a ZINB random variable  , the 

probability function is written as 

                                                   
             

 

 
 
  
         

       
      

      
   

 

 
 
  
   

 

 
 
 
             

                              

The ZINB distribution can be seen as a mixture distribution that assigns a probability    for extra zeroes and a 

probability      for a negative binomial distribution. The mean of the ZINB distribution is             

and the variance is                        . This ZINB distribution approaches to the zero-

inflated Poisson (ZIP) distribution when     whereas it will be reduced to the negative binomial 

distribution when    . Moreover, the ZINB distribution will be reduced to the Poisson distribution when 

both       and      [6]. 

The ZINB regression model relates   and   to explanatory variables such that 

                                                    
                               

                                                                               

where    and     are d- and q-dimensional vectors of explanatory variables of the ith observation. The   and   

are the corresponding vectors of regression coefficients, respectively. The MLE of the ZINB model parameters 

can be obtained using the iteratively weighted least squares (IWLS) algorithm [7]. 

 

3. Zero-inflated negative binomial ridge estimator 

In the regression models, multicollinearity among the explanatory variables is an important problem that may 

lead to undesirable results. Hence, the MLE estimator may not be reliable as the eigenvalues will be small for 

the highly correlated explanatory variables [8, 9, 10]. Alternative estimators have been proposed by authors to 

solve the multicollinearity problem. For example, [4] proposed the ridge estimator (RE) to tackle the 

multicollinearity problem for linear regression. In the RE, a positive amount is added to the diagonal of    .  

The RE was proposed by [11] for the ZIP model. The zero-inflated negative binomial ridge regression 

estimator (ZINBRE) is defined as 
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where       is the MLE. The parameter     is called the ridge parameter. When the ridge parameter is zero, 

we have               . However, we have                     when     [12]. The matrix    

          where       
   . 

The mean squared error (MSE) of the MLE for the ZINB is defined as 

                                                                
 
           

                                                                  
 

  

 
                                                                                                            

where   is the eigenvalue of the matrix      . The MSE of the ZINBRE is given by 

                                                                     
 
                                                      

                                                                      
  
 

      
 

 
       

  
 

      
 

 
                                                             

where        and   is the eigenvector of the matrix      . 

 

4. The almost unbiased zero-inflated negative binomial ridge estimator 

In the ridge regression models, the RE may have a large bias when the   value is large. [5] proposed an 

alternative estimator, called almost unbiased ridge estimator (AURE), to tackle the multicollinearity problem 

in linear regression models. Hence, in this work, we present the almost unbiased ridge estimator for the zero-

inflated negative binomial (AUZINBRE) model. The AUZINBRE can overcome the multicollinearity problem 

and is able to decrease the bias of the ZINBRE. The AUZINBRE is defined by 

                                                                   
  
                                                                           

By having the expectation of equation (7), we have 

                                                                 
  
            

                                                                            
  
          

  
         

                                                                            
  
          

  
       

                                                                            
  
                                                                              

The bias of the AUZINBRE is obtained by 

                                                                        

                                                                                 
  
       

                                                                                 
  
  

                                                                        
  

      
                                                                                      

 
    

The variance of the AUZINBRE is obtained by 

                                                     
  
                       

  
   

 
 

                                                                  
  
          

  
               

  
   

 
 

                                                     
  

  
    

  

      
  

 

                                                                                          
 
    

where              
  

            [11]. The MSE of the AUZINBRE is calculated using equations (9) 

and (10) 
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4.1 Obtaining the value of the parameter   

Several methods have been proposed to obtain estimated values of the ridge estimator,  , because no specific 

method is available for estimating  . In this paper, values of   for the AUZINBRE in the ZINB regression 

model were suggested from [13] and [14]. The estimated values of   are as follows 

   
   

    
  

    
 
 

                  
      

    

     
 

 

       
    

          
    

     
 

 

  
    
    

  

where     is the ith element of        ,   is the eigenvector of the       matrix,     
   

  
 ,      and 

     are the maximum and minimum eigenvalues of the       matrix. [13] proposed    and    for the ridge 

parameter in the linear regression model. [14] proposed    and    as estimators for   in the linear regression 

model. Hence, we will investigate the performance of these four estimators for the AUZINBRE using the MSE 

as a measure and compare the results with those of the ZINBRE and MLE. 

 

5. Monte Carlo Simulation study 

In order to investigate the behavior of the AUZINBRE, a Monte Carlo (MC) simulation study is conducted. 

Using the MSE as a measure, the MSE values of the AUZINBRE are compared with those of the ZINBRE and 

MLE with different multicollinearity levels. The MSE measure is obtained by 

                                                          
        

 
        

 
                                                                                

    

where     represents the ith simulated value of   . We use        to be the simulation number of the MC 

experiment. 

 

5.1 The simulation design 

The design of the explanatory variables,   
                  in the MC experiment was generated by the 

following formula 

                                                    
 

                                                                                   

where   represents the correlation level between the explanatory variables and  's are independent random 

variables that were simulated from the uniform distribution. We set the size of the explanatory variables to be 

    and    . The   is the key point in the MC experiment, so it was set to be 0.85, 0.95 and 0.99. 

A binary variable was then generated from the binomial distribution using    
        

          
. The value of    

was set to be 1 and   contains the intercept term only. The value of the intercept   was set to be 0, 1 and 2 as it 

affects the probability of having zeros and ones [11]. Then, we obtain the binary variables that have values of 

one from the Poisson distribution with                       . The sum of the coefficient 

regression parameters   was assumed to be 1 and the intercept of the Poisson model was always set to be zero. 

The response variable,  , of the AUZINBRE model was generated using equation (2) with different sample 

sizes           and 200. 

 

5.2 The simulation results 

In this section, the simulated results of the MSE, calculated using equation (13), are presented for the 

AUZINBRE, ZINBRE and MLE. The values of the MSE for the AUZINBRE, ZINBRE and MLE in the ZINB 

regression model are shown in Tables 1- 6 for the different estimators,            and    under various 

combinations of     and  . 
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Table 1. Estimated MSE when     and the                      for the estimators. The best values are in 

bold font 

n   MLE ZINBRE AUZINBRE 

                                

100 0.85 3.128 1.711 1.258 1.078 1.079 1.534 0.877 0.668 0.669 

0.90 4.336 1.756 1.385 1.160 1.161 1.594 1.029 0.745 0.746 

0.99 37.261 1.957 1.914 1.794 1.791 1.924 1.854 1.643 1.639 

150 0.85 3.792 1.792 1.373 1.198 1.199 1.638 0.990 0.769 0.769 

0.90 5.263 1.833 1.518 1.299 1.299 1.701 1.189 0.882 0.883 

0.99 45.188 1.987 1.972 1.910 1.910 1.974 1.947 1.831 1.831 

200 0.85 3.617 1.814 1.360 1.196 1.197 1.670 0.963 0.755 0.755 

0.90 4.995 1.852 1.511 1.303 1.303 1.731 1.171 0.878 0.879 

0.99 41.532 1.988 1.972 1.910 1.910 1.977 1.947 1.830 1.830 

 

  

Table 2. Estimated MSE when     and the                      for the estimators. The best values are in 

bold font 

n   MLE ZINBRE AUZINBRE 

                                

100 0.85 4.510 3.852 3.748 3.389 3.389 3.739 3.547 2.956 2.956 

0.90 6.308 3.857 3.742 3.372 3.367 3.740 3.528 2.917 2.914 

0.99 54.893 3.840 3.723 3.123 3.124 3.704 3.490 2.531 2.531 

150 0.85 4.985 3.903 3.756 3.486 3.486 3.816 3.544 3.070 3.070 

0.90 7.106 3.906 3.763 3.453 3.453 3.820 3.555 3.013 3.013 

0.99 65.437 3.926 3.871 3.271 3.271 3.856 3.750 2.733 2.733 

200 0.85 5.275 3.916 3.786 3.594 3.594 3.837 3.592 3.248 3.248 

0.90 7.409 3.911 3.774 3.554 3.554 3.827 3.571 3.176 3.177 

0.99 64.578 3.915 3.774 3.334 3.334 3.834 3.698 2.811 2.812 

 

 

Table 3. Estimated MSE when     and the                      for the estimators. The best values are in 

bold font 

n   MLE ZINBRE AUZINBRE 

                                

100 0.85 4.356 1.945 1.951 1.917 1.917 1.892 1.904 1.839 1.839 

0.90 5.767 1.946 1.956 1.917 1.917 1.894 1.913 1.839 1.839 

0.99 43.535 1.971 1.982 1.951 1.951 1.947 1.966 1.911 1.911 

150 0.85 4.961 1.946 1.956 1.923 1.923 1.894 1.913 1.850 1.850 

0.90 6.589 1.949 1.962 1.924 1.924 1.899 1.925 1.853 1.853 

0.99 50.200 1.987 1.992 1.977 1.977 1.975 1.985 1.956 1.956 

200 0.85 4.685 1.946 1.955 1.924 1.924 1.894 1.911 1.852 1.852 

0.90 6.122 1.949 1.961 1.926 1.926 1.900 1.923 1.856 1.856 

0.99 45.357 1.988 1.993 1.979 1.979 1.976 1.986 1.958 1.958 



 PEN Vol. 8, No. 1, March 2020, pp.248- 255 

253 

Table 4.  Estimated MSE when     and the                      for the estimators. The best values are in 

bold font 

n   MLE ZINBRE AUZINBRE 

                                

100 0.85 8.287 3.987 3.984 3.972 3.972 3.974 3.969 3.945 3.945 

0.90 11.524 3.985 3.982 3.967 3.967 3.969 3.964 3.934 3.934 

0.99 101.106 3.973 3.980 3.916 3.916 3.946 3.960 3.836 3.83 

150 0.85 6.639 3.991 3.989 3.980 3.980 3.983 3.979 3.960 3.960 

0.90 8.961 3.990 3.987 3.976 3.976 3.979 3.973 3.953 3.953 

0.99 76.004 3.974 3.982 3.923 3.923 3.949 3.965 3.849 3.849 

200 0.85 7.820 3.993 3.991 3.979 3.979 3.986 3.982 3.958 3.958 

0.90 10.105 3.992 3.990 3.977 3.977 3.984 3.980 3.953 3.953 

0.99 86.143 3.983 3.989 3.938 3.939 3.968 3.978 3.880 3.881 

 

 

Table 5: Estimated MSE when     and the                       for the estimators. The best values are in 

bold font. 

n   MLE ZINBRE AUZINBRE 

                                

100 0.85 9.491 2.032 2.025 2.034 2.007 2.042 2.036 2.046 2.008 

0.90 11.893 2.032 2.022 2.035 2.006 2.042 2.032 2.044 2.007 

0.99 72.709 2.060 2.063 2.065 1.990 2.067 2.072 2.098 1.986 

150 0.85 10.008 2.003 2.010 2.020 2.006 2.002 2.015 2.023 2.005 

0.90 11.500 2.014 2.014 2.025 2.005 2.016 2.019 2.031 2.005 

0.99 71.568 2.047 2.043 2.072 2.006 2.065 2.052 2.135 2.009 

200 0.85 8.373 1.997 2.001 1.997 1.995 1.990 1.997 1.991 1.988 

0.90 9.937 1.993 1.997 1.994 1.993 1.995 1.993 1.986 1.986 

0.99 56.805 2.000 2.002 2.001 1.996 1.996 2.002 1.996 1.991 

 

Table 6: Estimated MSE when     and the                      for the estimators. The best values are in 

bold font 

n   MLE ZINBRE AUZINBRE 

                                

100 0.85 41.720 3.993 3.992 3.965 3.974 3.986 3.985 3.943 3.953 

0.90 42.297 4.113 4.022 4.346 3.983 4.265 4.052 4.605 3.973 

0.99 72.709 4.377 4.572 5.389 3.970 4.816 5.106 6.419 3.943 

150 0.85 11.216 3.998 3.997 3.994 3.994 3.996 3.995 3.989 3.989 

0.90 13.910 3.998 3.997 3.996 3.995 3.997 3.995 3.991 3.991 

0.99 95.220 3.991 3.993 3.984 3.985 3.983 3.988 3.970 3.971 

200 0.85 12.066 3.998 3.998 3.990 3.991 3.996 3.995 3.982 3.983 

0.90 15.637 3.997 3.997 3.985 3.987 3.994 3.994 3.974 3.976 

0.99 84.436 3.986 3.987 3.977 3.983 3.976 3.988 3.961 3.968 

 

We can see from Tables 1- 6 that as the level of the multicollinearity,  , increases and fixed number of   and 

 , the values of the MLE increase. Thus, it has a negative impact on the MLE estimator. On the other hand, 

this is not always true for the AUZINBRE and ZINBRE where it can be shown in many cases that increasing 

the level of multicollinearity has a positive impact on the AUZINBRE and ZINBRE. For the number of 

explanatory variables  , we can see that when   increases, the MSE of all estimators increases with fixed 

values of   and  . 

All the   estimators of the AUZINBRE are better than the corresponded   estimators of the ZINBRE as they 

have smaller values of the MSE. In contrast, the MLE has the largest values of the MSE. Among the   
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estimators of the AUZINBRE, the estimators    and    outperform the estimators    and    as they have 

smaller MSE values. 

It can be concluded from the simulation study that the MSE of AUZINBRE is always smaller than those of the 

ZINBRE and the MLE. Moreover, the AUZINBRE with the    and    improved the performance of the 

AUZINBRE compared with the ZINBRE and the MLE in all of the cases. All the selection methods of   are 

superior to the MLE in terms of MSE. Furthermore,    and     are the optimal estimation methods for   of the 

AUZINBRE. In contrast, the values of the MLE estimator are the poorest compared with the other estimators. 

 

6. Real data application 

In this section, we consider the wildlife fish dataset [15]. The biologists of the state wildlife want to model the 

number of fish caught by fishermen at a state park. Some visitors did not catch any fish so there are excess 

zeros in the data. Some visitors do not fish, but there is no data on whether a person fished or not. 

The wildlife fish dataset consists of 250 groups that went to a park. The people in each group were asked the 

following questions: how many fish did they catch (count), how many children were in the group (child), how 

many people were in the group (persons) and whether they brought a camper to the park or not (camper). The 

response variable is the number of fish that were caught and it depends on 5 variables as described in Table 7. 

 

Table 7: The description of the explanatory variables of the wildlife fish data. 

Variable names Description 

nofish represents whether the trip was not just for fishing, 0 if no 1 and if yes. 

livebait represents whether live bait was used or not, 0 if no and 1 if yes. 

camper represents whether or not they brought a camper. 

persons represents how many total persons on the trip. 

child represents how many children present 

We fitted the ZINB regression model to the wildlife fish dataset. Then, we calculated the estimators 

AUZINBRE, ZINBRE and MLE. The MSE values and the coefficient estimated values of the ZINB model for 

the wildlife fish dataset for different estimators are presented in Table 8. It can be seen that the value of the 

MSE of the AUZINBRE is the smallest in comparison with the ZINBRE and the MLE. Furthermore, the    

and then the    estimators of the ridge parameter have the best performance among the other AUZINBRE 

estimators,    and    as they have small MSE values. 

Table 8: The estimated coefficient parameters and the estimated MSE for the AUZINBRE, ZINBRE and 

MLE.  

 MLE ZINBRE AUZINBRE 

                        

Intercept 0.502 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.002 

nofish -1.691 -0.055 -1.687 -0.128 -0.127 -0.110 -1.691 -0.248 -0.246 

livebait -0.087 0.014 -0.083 0.032 0.032 0.028 -0.087 0.061 0.061 

camper 0.090 0.040 0.090 0.067 0.067 0.068 0.090 0.100 0.100 

persons -0.015 -0.090 -0.015 -0.115 -0.115 -0.129 -0.015 -0.128 -0.128 

child 0.005 -0.114 0.004 -0.174 -0.173 -0.182 0.005 -0.236 -0.235 

MSE 332.897 138.653 134.252 121.318 121.495 131.067 119.828 94.422 94.680 

 

7. Conclusions 

This study proposed an almost unbiased ridge regression estimator for the zero-inflated negative binomial 

regression model to tackle the multicollinearity problem. The proposed estimator was able to overcome the 

inflation problem of the maximum likelihood estimation method for estimating the parameters of the ZINB 

model. A Monte Carlo simulation experiment was conducted to investigate the behavior of the proposed 

estimator using the MSE measure. Furthermore, a real dataset was used to see the performance of the proposed 
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estimator. The results showed that the performance of the AUZINBRE is better than that of the MLE and 

ZINBRE as the MSE values of the AUZINBRE were smaller than those of the other estimators when 

multicollinearity exists. 

For the AUZINBRE, the performance of the    and    estimators were better than that of the    and    as 

their values of the MSE were smaller than those of the other ridge estimators. Therefore, we recommended the 

   and    for estimating the ridge regression parameter for the AUZINBRE model. 
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