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ABSTRACT   

In this paper, the regular Bayes method and robust Bayes method were used to estimate the parameter (p) 

and the survival function of the Binomial distribution in the case of prior data conflict for two simulation 

experiments. The first experiment was in the case of unconflicted prior data. The simulation results of the 

first experiment showed that the robust Bayes method is best by using the comparative criterion (IMSE). The 

second experiment was in case of prior data conflict. The simulation results showed that the robust Bayes 

method is best by using the comparative criterion (IMSE). Thus, the robust Bayes method is best in both 

cases to estimate the parameter (p) and the survival function of the Binomial distribution. 
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1. Introduction 

In statistical inference there are several methods of estimation, As the Bayes method, as is known, depends 

mainly on the prior distribution or prior information, the prior distribution is combined with the distribution of 

observations to obtain the posterior distribution according to the rule of Bayes. When we combine the prior 

distribution with the distribution of observation, we may have a problem which is prior data conflict [1]. This 

means that the prior information does not necessarily correspond to the sample information under study. 

Therefore, the existence of this problem should be verified by using a method for modeling the prior 

distribution parameters [2]. After the prior distribution is modeled, the standard deviation of the prior 

distribution is extracted and compared to the standard deviation of the posterior distribution [3]. If the 

standard deviation of the posterior distribution is less than the standard deviation of the prior distribution, then 

there is a prior data conflict [4]. From here, the main objective of the research is to obtain the best estimate in 

the case of prior data conflict from the model through which we get a set of prior distributions and thus get a 

set of posterior distributions [5, 1]. Therefore, we obtain more accurate and efficient estimators so that this 

method is called the robust Bayes method. The regular Bayes method and the robust Bayes method will be 

used to estimate the parameter (P) and the survival function of the Binomial distribution and compare the 

methods by using (IMSE). 

 

2. The estimation of methods 

The parameter (P) and the survival function of the Binomial distribution will be estimated using the regular 

Bayes method and the robust Bayes method. 
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2.1. Regular Bayes 

The Bayes estimator, which relies primarily on the prior information, considers that the parameter to be 

estimated is a random variable. Thus, the random variable has a distribution called the prior distribution and 

then the prior distribution is combined with the distribution of the sample under study in accordance with the 

rule Bayes to get the posterior distribution. After obtaining the posterior distribution, we get the Bayes 

estimator using one of the loss functions. In this paper the quadratic loss function is used to obtain the Bayes 

estimator [6]: 

 

       
 
                       (1) 

 

The appropriate prior distribution is the beta distribution as follows: 

         
 

      
              (2) 

 

Using the Bayes rule, we get the posterior distribution as follows: 

 
 

            
                   (3) 

 

2.1.1. Bayesian estimation for the parameter (P) 

From equation (4) which represents the posterior distribution, we get the Bayes estimator for parameter (P) as 

follows [7]: 

 

   
   

     
      (4) 

 

2.1.2. Bayesian estimation for the survival function 

From equation (4), we get the Bayes estimator for the survival function as shown below [8]: 
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2.2. Robust Bayesian method 

2.2.1. Checking for prior data conflict 

The problem of the prior data conflict can be tested by modeling the prior distribution parameters as described 

in the following steps [9,10]: 

 

       
 
            (6) 

 

The prior distribution of parameter (P) is the beta distribution as follows: 

         
 

      
                (7) 

Next we need to modeling the parameters of the prior distribution in two ways: 

 

The first method: It is the method of conditional expectation as described below: 

            
 

   
 

   
 

  
                    

   
 

  
                                



 PEN Vol. 8, No. 1, March 2020, pp.284- 297 

286 

Then, we replace the parameters                   with the prior distribution to get the prior 

distribution with the updated parameters: 

           
 

                
             

            (8) 

 

Method 2: In this method, the prior distribution of the updated parameters can be determined in two steps, as 

follows [4]: 

Step 1: If the model can be written in the form of (canonical exponential family) as shown below: 
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Step 2: The prior distribution can be constructed through the following model: 

                                   

                          
 

   
               

 
  

  
  

 

      
 

                        
  

  
                                     

 

      
   

The prior distribution with the updated parameters is then: 

           
 

                
             

          (10) 

From the equation above we extract the standard deviation as follows: 

           
        

    
        (11) 

From equation (1) that represents the distribution of Binomial and equation (10) that represents the prior 

distribution and using the Bayes rule, we get the posterior distribution as follows: 

 
 

                      
                 

              (12) 

From the above equation, we extract the standard deviation for the posterior distribution as follows: 

               
        

    
    (13) 

 

Then, the standard deviation of the prior distribution is compared with the standard deviation of the posterior 

distribution. If the value of the standard deviation of the prior distribution is greater than the value of the 

standard deviation of the posterior distribution. This means that there is a problem of prior data conflict and to 

solve this problem from the following steps. 
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2.2.2 Address the problem of prior data conflict 

The problem of prior data conflict is addressed by the form             
 
  which is presented by [1]. 

There is also another model presented by [5]. The model is    
 
      

 
       

 
  . Through this model, we 

get a set of posterior distributions, which is called (generalized iLuck-model) and as shown below [4]: 
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Equations (15-18) represent a set of prior distributions and thus we get a set of posterior distributions as 

follows: 
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Equations (19-22) represent a set of posterior distributions. By using the quadratic loss function, we get the 

following equation which represents the iLuck-model: 
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  (24) 

The posterior distribution can therefore be written in its final form as follows: 

           
 

                
             

          (25) 

   
                   

 
             

                   

 
 

 

2.2.3. Robust Bayesian to estimate the parameter (P) 

From equation (25), we get the robust Bayes estimator of parameter (P) using the quadratic loss function as 

follows: 
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      (26) 

 

2.2.4. Robust Bayesian to estimate the survival function 

From equation (25), we get the robust Bayes estimator of the survival function using the quadratic loss 

function as follows: 

         
 

                
 

  

        
                        

    (27) 

 

The program was written using R and according to the following steps: 

 

The first step 

This stage is one of the basic stages in which the default values are selected so that they depend on them 

mainly the subsequent stages and the default values are selected as follows: 

Different default values for parameter (p) and prior distribution parameters         were selected as shown in 

the following tables: 

Table 1. Table of default values in case of prior data unconflicted 

Model P 
      

Lower Upper Lower Upper 

1 0.1 0.01 0.1 10 12 

2 0.2 0.02 0.2 10 12 

3 0.3 0.03 0.3 10 12 

4 0.4 0.04 0.4 10 12 

5 0.5 0.05 0.5 10 12 

6 0.4 0.05 0.4 10 12 

 

Table 2. Table of default values in case of prior data conflict 

Model P 
      

Lower Upper Lower Upper 

1 5.0 0.3 0.5 2 4 

2 5.0 0.4 0.6 2 4 

3 5.0 0.3 0.5 5 7 

4 5.0 0.4 0.6 5 7 

5 5.0 0.3 0.5 10 12 

6 5.0 0.4 0.6 10 12 

 

The replicate of the experiment was equal to 1000. 

The second step 

At this stage, the data is generated by the instruction within the R program for the distribution of Binomial. 

Third Step 

At this stage the problem of prior data conflict is tested whether or not by comparing the standard deviation 

and the standard error of the mean for the prior distribution with the standard deviation and the standard error 

of the average for the posterior distribution. If the standard deviation and standard error of the mean for the 

prior distribution is greater than the value of the standard deviation and error of the posterior distribution, 

there will be prior data conflict using formula Eqs. 11 and 13. 

The fourth step 
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At this stage, the parameter (p) and the survival function  are estimated according to the regular Bayes method 

and the robust Bayes method. 

 

The fifth step 

At this stage, the estimation methods are compared using by (IMSE) as follows [11]: 
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Where, 

r: The frequency of experiment. 

tn : The sample size for each experiment  it  

The simulation results will then be analyzed to estimate the parameter (P) and the survival function of the 

Binomial distribution according to subsequent tables as follows: 

Table 3. Integrated mean square error (IMSE) for the parameter (P) in case of  prior data unconflicted 

M
o
d
el

 

   

Lower Upper 

10 12 

   
P K n          

    
Lower upper 

1 0.01 0.1 0.1 

1 10 0.006105 0.002362 

2 20 0.001623 0.001209 

4 40 0.001138 0.000894 

Best Robust Bayesian Estimator 

2 0.02 0.2 0.2 

1 10 0.005990 0.003090 

2 20 0.003512 0.002229 

4 40 0.001055 0.000731 

Best Robust Bayesian Estimator 

3 0.03 0.3 0.3 

1 10 0.009127 0.004608 

2 20 0.003920 0.002091 

4 40 0.001173 0.000793 

Best Robust Bayesian Estimator 

4 0.04 0.4 0.4 

1 10 0.013262 0.006026 

2 20 0.004645 0.002449 

4 40 0.001240 0.000786 

Best Robust Bayesian Estimator 

5 0.05 0.5 0.5 

1 10 0.016659 0.006938 

2 20 0.005068 0.002478 

4 40 0.001282 0.000718 

Best Robust Bayesian Estimator 

6 0.05 0.4 0.4 

1 10 0.012577 0.005444 

2 20 0.004400 0.002319 

4 40 0.000409 0.000244 

Best Robust Bayesian Estimator 
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Figure1. Shows model (1) for the (pmf)  in the case of prior data unconflicted 

 
Figure 2. Shows model (1) for the (cdf)  in the case of prior data unconflicted 

 

From Table 3 which shows (IMSE) to compare the estimation methods for parameter (p) in the case of 

unconflicted prior data, the simulation results showed the following: 

1. The simulation results showed that the robust Bayes estimator for parameter (P) is better than the 

regular Bayes estimator by using IMSE as a criterion for comparing. 

2. The simulation results showed that the best model is model (1). 

3. 3. The simulation results showed that IMSE decreases in case of increasing the sample size and this 

corresponds to statistical theory. 

4. Figure (1) illustrates the behaviour of a function (pmf) for model (1) and Figure (2) shows the 

behaviour of (cdf) for model (1). 

Table 4. Integrated mean square error (IMSE) for the  survival function  in case of  prior data unconflicted 

M
o

d
el

 

   

Lower upper 

10 12 

   
  k n                Lower Upper 

1 0.01 0.1 0.1 

5 10 0.019722 0.010686 

10 20 0.010539 0.007429 

20 40 0.008633 0.007207 

Best Robust Bayesian Estimator 
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M
o

d
el

 
   

Lower upper 

10 12 

   
  k n                Lower Upper 

2 0.02 0.2 0.2 

5 10 0.036682 0.017008 

10 20 0.023583 0.014465 

20 40 0.012673 0.009412 

Best Robust Bayesian Estimator 

3 0.03 0.3 0.3 

5 10 0.051084 0.021409 

10 20 0.031874 0.017438 

20 40 0.019501 0.012958 

Best Robust Bayesian Estimator 

4 0.04 0.4 0.4 

2 10 0.070779 0.028195 

4 20 0.047031 0.023959 

8 40 0.026544 0.016323 

Best Robust Bayesian Estimator 

5 0.05 0.5 0.5 

2 10 0.097546 0.037579 

4 20 0.057222 0.026510 

8 40 0.031539 0.016851 

Best Robust Bayesian Estimator 

6 0.05 0.4 0.4 

2 10 0.068898 0.028235 

4 20 0.044183 0.022412 

8 40 0.008372 0.006161 

Best Robust Bayesian Estimator 
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 Figure 3. Model (1) for the survival function  in the case of prior data unconflicted 

 
From Table 4, which shows (IMSE) to compare the estimation methods for the survival function in the case of 

unconflicted prior data, the simulation results showed the following: 

1. The simulation results showed that the robust Bayes estimator for the survival function is better than 

the regular Bayes estimator by using (IMSE) as a criterion for comparing. 

2. The simulation results showed that the best model is model (1). 

3. The simulation results showed that (IMSE) decreases in case of increasing the sample size and this 

corresponds to statistical theory. 

4. Figure 3 illustrates the behavior of a survival function for model (1). 

Table 5. Integrated mean square error (IMSE) for the  parameter (P)in case of  prior data conflict 

M
o
d
el

 

   

lower upper 

2 4 

   
P K n          

    Best 
Lower upper 

1 0.3 0.5 0.5 

5 10 0.006121 0.005225 

Robust 

Bayesian 

Estimator 

10 20 0.002207 0.002041 

20 40 0.000832 0.000802 

2 0.4 0.6 0.6 

5 10 0.005728 0.004898 

10 20 0.002369 0.002206 

20 40 0.000770 0.000743 

M
o

d
el

 

   

5 7 

   
P k n          

    Best 
Lower upper 

3 0.3 0.5 0.5 
2 10 0.005229 0.003931 Robust 

Bayesian 4 20 0.002113 0.001837 



 PEN Vol. 8, No. 1, March 2020, pp.284- 297 

293 

M
o

d
el

 
   

lower upper 

2 4 

   
P K n          

    Best 
Lower upper 

8 40 0.000777 0.000725 Estimator 

4 0.4 0.6 0.6 

2 10 0.005108 0.004025 

4 20 0.002009 0.001758 

8 40 0.000744 0.000699 

M
o

d
el

 

   

10 12 

   
P k n          

    Best 
Lower upper 

5 0.3 0.5 0.5 

1 10 0.005558 0.003024 

Robust 

Bayesian 

Estimator 

2 20 0.002085 0.001445 

4 40 0.000795 0.000649 

6 0.4 0.6 0.6 

1 10 0.005402 0.003077 

2 20 0.002062 0.001445 

4 40 0.000791 0.000651 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Model (5) for the (pmf)  in the case of prior data conflict 
 

Figure 5. Model (5) for the (cdf)  in the case of prior data conflict 
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From Table (5), which shows (IMSE) to compare the estimation methods for parameter (p) in the case of prior 

data conflict, the simulation results showed the following: 

1. The simulation results showed that the robust Bayes estimator for parameter (P) is better than the 

regular Bayes estimator by using IMSE as a criterion for comparing. 

2. The simulation results showed that the best model is model (5). 

3. 3. The simulation results showed that IMSE decreases in case of increasing the sample size and this 

corresponds to statistical theory. 

4. Figure 4 illustrates the behavior of a function (pmf) for model (5) and Figure 5 shows the behavior of 

(cdf) for model (5). 

Table 6. Integrated mean square error (IMSE) for the survival function  in case of  prior data conflict 

M
o

d
el

 

   

Lower upper 

2 4 

   
  k n                Best 

Lower Upper 

1 0.3 0.5 0.5 

5 10 0.034545 0.028961 

Robust 

Bayesian 

Estimator 

10 20 0.024535 0.022408 

20 40 0.016549 0.015884 

2 0.4 0.6 0.6 

5 10 0.032064 0.026952 

10 20 0.022817 0.021025 

20 40 0.016745 0.016075 

M
o
d
el

 

   

Lower upper 

5 7 

   
  k n                Best 

Lower Upper 

3 0.3 0.5 0.5 

2 10 0.027907 0.020847 

Robust 

Bayesian 

Estimator 

4 20 0.020612 0.017634 

8 40 0.017146 0.015815 

4 0.4 0.6 0.6 

2 10 0.026458 0.019954 

4 20 0.020877 0.017867 

8 40 0.016666 0.015492 

M
o

d
el

 

   

Lower upper 

10 12 

   
  k n                Best 

Lower Upper 

5 0.3 0.5 0.5 

1 10 0.028392 0.015736 

Robust 

Bayesian 

Estimator 

2 20 0.023755 0.014419 

4 40 0.016926 0.013868 

6 0.4 0.6 0.6 

1 10 0.027082 0.014751 

2 20 0.021034 0.014121 

4 40 0.016913 0.013565 
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From Table 6, which shows (IMSE) to compare the estimation methods for the survival function in the case of 

prior data conflict, the simulation results showed the following: 

1. The simulation results showed that the robust Bayes estimator for the survival function is better than 

the regular Bayes estimator by using (IMSE) as a criterion for comparing. 

2. The simulation results showed that the best model is model (6). 

3. The simulation results showed that (IMSE) decreases in case of increasing the sample size and this 

corresponds to statistical theory. 

4. Figure 6 illustrates the behaviour of a survival function for model (6). 

3. Application side 

From the experimental side, the results showed that in the case of prior data conflict, the robust Bayes method 

is best by using the  Integrated mean square error  (IMSE) as a criterion for comparing. 

 

4. Describing the real data 

Figure 6. Model (6) for the survival function in the case of prior data conflict 
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Mortality data for patients with breast cancer were collected from Yarmouk Teaching Hospital for the period 

from 2010 to 2017. The data collected are as follows: 

 

Table7. Real data 

Year 2010 2011 2012 2013 2014 2015 2016 2017 

X 3 4 2 3 2 4 1 0 

 

5. Goodness of fit 

Easy fit program was used for goodness of fit  based on real data and we found that it is distributed Binomial 

distribution  as shown below: 

Table 8. Kolmogorov-Smirnov 

Sample Size 

Statistic 

P-Value 

Rank 

8 

0.37884 

0.1536 

1 

 

Table 9. Estimation of parameter (P) in case of prior data conflict 

   

   

Lower Upper 

4 6 

      s.d prior s.d posterior 
Lower Upper 

5.0 5.0 0.603595 0.042 0.006646 

 

Table 10. Estimation of the survival function in case of prior data conflict 

Lower Upper x          

5.0 5.0 

0 1.0000000000 

1 0.9999999805 

2 0.9999996926 

3 0.9999974868 

4 0.9999858386 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 8. the survival function for real data in 

the case of prior data conflict 

Figure 7. the (cdf) for real data in the case of prior 

data conflict 
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From Table 8, the real data follow the distribution of Binomial, and from the experimental side the simulation 

results showed that the method of the robust Bayes is better in the case of prior data conflict. So, this method 

was used to estimate the parameter (P)  and survival function as shown in Table 9  and 10.  Figure 8 shows the 

behavior of the survival function as decreasing as the value of (X) increases. 

 

6. Conclusions 

1. The simulation results showed that the robust Bayes method is best for estimating parameter (P) in the case 

of unconflicted prior data and in the case of prior data conflict using the IMSE comparison criterion. 

2. The simulation results showed that the robust Bayes method is best for estimating the survival function in 

the case of unconflicted prior data and in the case of prior data conflict using the IMSE. 

3. The simulation results showed that if the sample size increases, the integrated mean square error (IMSE) 

decreases and this corresponds to the statistical theory. 

4. The applied side has shown that the data collected from Yarmouk Teaching Hospital follow the Binomial 

distribution. 

5. The applied side has shown that the survival function is decreasing and this is consistent with the statistical 

theory for the survival function analysis. 
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