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ABSTRACT   

Nowadays everything expands rapidly and growth with time, including the service structures to accommodate an 

acceptable level of service to the community. The concrete filled steel tubes is a new technique that provides some 

features compared with the normal concrete columns.in this study three concrete compressive stress strain models 

behavior have been studied to validate the adopted experimental work and find the best model that can simulate the 

actual data, using nonlinear finite element analysis in Abaqus. Then, three type of concrete strength where considered 

(C25, C40, and C60) with three Diameter of tube thickness ratios are; 165,100, and 50 for each concrete class type. 

Tests results have shown that the confinement effect in high strength concrete was higher than other types of concrete 

types, in addition to a noticeable enhancement in the ductility behavior. The adopted model was able to capture 

concrete compressive behavior accurately, for all curve’s stages. 
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1. Introduction 

The enhanced concrete column that externally rounded by steel tube, or the concrete filled steel column 

(CFST), is normally used as confinement agent to resist extra stresses generated in the concrete columns. Such 

technique used either to enhance an existing column strength, or could be casted as a new structural element in 

large span, high rise and large-scale building [1]. Due to the higher ductility, high stiffness, and higher 

strength relatively provided by the CFSTs, they are utilize for earthquake resistance structure or in 

constructing bridges piers that most of times subjected impact, dynamic loads [2, 3]. Numerous pervious and 

recent studied were focused on the CFST technique, with different types and shapes, such as circular, 

rectangular, elliptical, and square cross sections, including experimental work on their behavior subjected to 

pure axial and eccentric compression, tension, and torsion forces [4-8]. Also, different codes (ACI [9], AISC 

[10], and EC4) included design provisions for CFST columns. But only the Eurocode4 [11] presented effect of 

columns with steel confinement. 

When CFSTs columns exposed to low magnitude forces, the steel part offers no resistance of confinement 

since the concrete passions ratio is lower than the steel material. Higher load results in increasing concrete 

longitudinal strain till failure, at such point, the concrete lateral deformation will be supported by the steel 

confinement part. At this time, any extra load increasement result in extra lateral deformation in concrete part, 

which the latter causes hoop stress for the steel tube [2, 12-15] .  

 
Figure 1. Common types of CFSTs [16] 
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The idea of confining concrete with steel tube to confine and restrain the lateral deformation behavior of 

concrete column has been focused by the researchers over the past 30 years [12]. Most of previous researchers 

approved that the CFST capacity is affected by many factors such as; length over diameter, diameter of 

concrete part over steel tube thickness, type of loads, and supporting conditions.   

Schneider [17], investigated effect of wall thickness of different columns shapes (circular, rectangular, and 

square) on the nominal compressive strength capacity of short columns subjected to concentrated load. He 

concluded that the circular concrete column confined by steel tube offered higher confinement resistance after 

yielding point, higher stiffness and ductility compared with other sections.  

Tokgoz and Dundar [18] investigated CFST column with normal and fiber reinforced concrete numerically. 

He concluded that fiber reinforced CFST had higher ductility and control crack propagation. They remarked 

that the steel fiber has no significant effect on the ultimate CFST capacity. 

CFST behavior may influenced by many parameters, such as L/D and D/t ratios (L is length, D is core 

diameter, and t is wall thickness), concrete strength, and steel yield strength. considering all these effects 

experimentally is highly expensive and time consuming. Thus, the nonlinear finite element simulation 

approach may be the best solution to study and take in to account all mentioned effects [19].  

This study aims to determine best available mathematical models that can accurately predict the adopted 

experimental work through performing 3D nonlinear finite element simulation in Abaqus and compare the 

results with the analytical results of the codes and standards. The study also includes further investigation of 

effect of concrete class and D/t ratio on the performance of CFST. 

2. Prediction of confined concrete compressive stress-strain behavior introduction 

In this study, three different models were investigated to predict the behavior of confined concrete strength 

and validate the adopted experimental work, they are; Model-1, model-2, and model-3. It worth to be 

mentioned that the concrete maximum strength C33 was adopted to generate the stress-strain curves of the 

three models, since it is the strength of the adopted experimental work, as shell be clarified in next sections. 

2.1. Prediction of confined concrete compressive stress-strain behavior using Model-1 

This model is adopted by Mander et al. [20]to predict stress strain behavior of CFST columns, where the 

curve behavior in three phases illustrated in Figure (2).   the governed equations used in this model are as 

follows: 

For the ascending part, the stress is calculated as follows: 
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The strain at peak stress can be determined according to the concrete compressive strength as follows: 
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For the descending parts AB, BC, and CD, the stress strain govern equation are: 
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The confinement effect factor is determined as follows: 
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Where: 

Ec: is the concrete modulus of elasticity, MPa 

D: Diameter, mm 

t: tube thickness, mm 

Βc: is the confinement effect factor 

εc: strain at peak stress 

 

 

 
Figure 2. General stress- strain behavior of the model 1 

After programming an excel sheet to predict the stress- strain behavior of confined concrete, the results of 

model-1 (C33) as clarified in Figure (3). 

The three parts of the curves can be seen in the figure. The first phase, which no effect of steel tube 

confinement is exist. Followed by the second phase, which a gradual reduction in the strength with higher 

strain value till reaching the third phase, which continue to a fix value called the residual strength. it worth to 

ben mentioned that about 61% of the total concrete compressive strength was conserved.  

 

 
Figure 3. Results of stress- strain behavior of the model 1 

2.2. Prediction of Confined concrete compressive stress-strain behavior using Model-2 

This model is adopted by Liang [21]  to predict stress strain behavior of CFST columns, where the curve 

behavior in three phases illustrated in Figure (4). the governed equations used are as follows: 
For the ascending part OA, the stress is calculated from the following equation; 
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Where λ is a factor determined from the following equation: 
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Ec is the modulus of elasticity determined from the following equation: 

 

            
     (15) 

Gamma c is a reduction factor that considers column dimensions and quality of concrete, it is determined from 

the following equation: 

          
                     (16) 

 

The following factors are modifications factors which accounts for lateral confinement effect of concrete from 

the following equation: 
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The confinement pressure frp which is mainly depends on D/t ratio and material quality of steel tube is 

determined as follows: 
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For parts AB,BC, and CD (as clarified in Figure()), the stresses values are determined as follows: 
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The confinement effect that provided by the steel tube is determined as follows: 
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Figure 4. General stress- strain behavior of the model 1 
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The four parts of the curves can be seen in the figure (5). The first phase, which no effect of steel tube 

confinement is exist. Followed by the second phase, which is has a fix value till 0.005 strain, then reaching the 

third phase, which continue with linear gradual reduction till reaching the last phase, which is constant with 

higher strain. it worth to ben mentioned that about 50% of the total concrete compressive strength was 

conserved.  

 

 
Figure 5. Results of stress- strain behavior of the model 2 

2.3. Prediction of confined concrete compressive stress-strain behavior using Model-3 

This model is adopted by Tao [22] to predict stress strain behavior of CFST columns, where the curve 

behavior in three phases illustrated in Figure (6). the governed equations used in this model are as follows: 
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Figure 6. General stress- strain behavior of the model 3 
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The three parts of the curves can be seen in the Figure (7). The first phase, which no effect of steel tube 

confinement is exist and lock somewhat linearly behavior. Followed by the second phase, which is relatively 

constant with very small strain values, till reaching the third phase (the exponential part), which continue with 

gradual reduction in the strength with higher strain value. it worth to ben mentioned that about 41% of the 

total concrete compressive strength was conserved.  

 

 
Figure 7. results of stress- strain behavior of the model 3 

3. Experimental study 

The study included three stages of investigations. The first stage in included prediction of confined concrete 

compression behavior (stress Vs strain) through investigating three various models. The second stage will 

include finite element simulation processes and adopting a model that will give best validity of the adopted 

experimental work. The results of the second stage shall be compared with ACI code and AS5100 code results 

in addition to the adopted experimental work result. The third stage will include further investigation through 

a parametric study of concrete and tube diameter over thickness ratio. Three concrete strengths shall be 

considered low, normal, and high strength (C25, C40, and C60), and three D/t ratios (165,100,50).  

 

3.1. FEA Simulation  

Lubliner et al [14] had predicted one of the important models that has covered by Abaqus, which is called the 

concrete damage plasticity model. The model then modified by Lee and Fenves [15]. The CDP model is a 

continuum based on the theory of plasticity which assumes tow failure criteria are, the compressive crushing 

and tension stiffening. In general, yield surface hardening is characterized by two main parameters are, the 

tensile and compressive strains. The concrete damaged plasticity model is a continuum, plasticity based, 

damage model for concrete behavior. The model is governed by two basic failure mechanisms, they are; 

compressive crushing and tensile cracking. The evolution of failure surface is governed by two major 

parameters are; tensile and compressive equivalent plastic strains. These two parameters are control failure 

mechanisms under tension and compression loadings. For concrete material, the CDP model has adopted with 

parameters as illustrated in Table (1). It worth to be mentioned that linear behavior of tensile stress stain curve 

was used in the simulation. The adopted experimental work dimensions [1] are; 165 mm,1.2 mm, and 1250 

mm for Diameter, tube thickness, and length, respectively.  

 
Table 1. CDP parameters for C33 class concrete 

Property value CDP parameters reference 

D, mm 165 /  

t, mm 1.2 /  

Ac, mm
2
 21381.83             

As, mm
2
 622.017           

Fcu, MPa 33 /  
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Property value CDP parameters reference 

F’c, MPa 26.5733 
  
                 

   
    

      
[23] 

fy, MPa 375 /  

Ec, MPa 24228.17           
  [24] 

Possions ratio 0.18 0.15-0.2 [11] 

fbo/f'c 1.172892      
        

         
 [25] 

Kc 0.837922              
          [26] 

   0.410528            
   [27] 

  33.18726              [27] 

  , N/mm 0.068896               
                

         [28] 

Ft, MPa 3.196057           
  [24] 

 
a 3D deformable element, an 8-node linear brick, reduced integration, hourglass control (C3D8R), with 

dimensions 40mm, and total number of elements 13017, and total number of nodes are 36965 (including 

column neck), to reduce shear locking effect. while for steel reinforcement, a wire element 2-node linear 3-D 

truss (T3D2) embedded in the concrete element to simulate full bond. Figure (8) illustrates the FEA model. 

 
Figure 8. CFST modelling in Abaqus 

The interaction between the top head and the column is normal hard contact in addition to tangential contact 

with 0.2 friction coefficient. The streel reinforcement was inserted inside the concrete as embedded region to 

simulate full interaction bond between the steel bars and the concrete. A rigid body constrain was assigned to 

the top head to reduce computational time and neglect stresses state in them. A quasi static load was used for 

the simulation, and a continuous displacement has been applied to the top of the column head till failure. 

3.2. Validating the adopted model with the experimental work  

After predicting the confined concrete compressive stress- strain curves, the second stage is to validate those 

predicted models’ concrete materials using nonlinear finite element approach in Abaqus. The adopted 

experimental work (dimensions and materials) that will be validated are as can be seen in Figure (9) [1]. The 

column has 1250 mm length, 165 mm diameter, and 1.2 mm steel tube thickness. The concrete compressive 

strength is of class C33. The yield strength of steel tube is 375 MPa.  
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Figure 9. Test preparation and schematic view of the adopted experimental model [1] 

4. Validity results and discussion 

As clarified in table (2) and Figure (9), test results have shown that model-1 of concrete material reflected 

maximum axial pure compression force of 819 KN at 4.9 mm axial shortening. This model looks somewhat 

far from the experimental work, and for both values. While The concrete model material (model-2), the results 

have shown better results to the experimental work in term of maximum axial force, when compared relatively 

with the model-1. But model-2 stills reflect maximum force of 884 KN at axial shortening 5.44 mm, which 

still unmatched with the experimental work. The third model resulted in maximum force of 907 KN at axial 

shortening 8.03 mm. the last model is the best one in term of balancing both maximum axial force and axial 

shortening. 

Figure (10), illustrates the simulated CFST strength in term of maximum axial force and maximum 

displacement. The study has expanded to compare the theoretical results of ACI code, AS 5100, and AISC 

code, as mentioned in table (2). It worth to be mentioned that the calculated values of codes results were 

considering the factor of safety. 

 

 
Figure 10. Validity of the adopted experimental work with various concrete composite materials 

After this comprehensive comparison, model-3 of confined concrete material has been selected since it has 

reflected best matching compared to the experimental work. Figure (11) illustrates the results of FEA model 

with confined concrete material model-3. By visual inspection, the FEA results have shown similar mode of 

failure to the experimental model.  
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Table 2. Comparison of the experimental work with the FEA results and the analytical codes solution 

Model type Max axial load, KPa Max displacement, mm 

Experimental 899 11.9 

Model-1 819 4.9 

Model-2 884 5.44 

Model-3 907 8.03 

ACI 698 / 

AS 5100 619 / 

AISC 671 / 

 

 
Figure 11. Comparison of the experimental work with the FEA results 

4.1. Effect of concrete strength and confinement ratio (D/t) on the CFST ductility and capacity  

After selecting best confined concrete model material and determination of its applicability to validate the 

adopted experimental work, stage 3 in this study is to study effect of concrete class strength and different 

diameter over tube thickness ratios. Three classes in this study were investigated, they are; C25, C40, and 

C60, in addition to three D/t ratio were experienced numerically in Abaqus for each concrete class type. The 

confined concrete stress strain for various concrete classes with various d/t ratio are illustrated in Figures 

(12,13, and 15). 

From the previous figures, it can be observed that the ascending part for each class are the same for all D/t 

ratios. The d/t effect is clearly noticed in the concrete stress degradation part. Further, the confinement effect 
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for concrete class C25 differs from other classes. The ratio of degradation part for C25 of d/t somewhat less 

than other concrete classes. The concrete Class 60 have showed noticeable reduction in the strength when D/t 

ratio changes from 165 to 50. The same thing has been observed for concrete Class C40. 

 
Figure 12. Results of stress- strain behavior of  C25 concrete class and various D/t ratios 

 
Figure 13. Results of stress- strain behavior of C40 concrete class and various D/t ratios 

 
Figure 14. Results of stress- strain behavior of C60 class and various D/t ratios 
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Figure (13) illustrates CFST axial load capacity for different concrete classes and different D/t ratios. It can be 

observed that the adopted model couldn’t capture the variance in the ascending part for both C25 and C40 

concrete class, for all D/t ratios. While anticable change in the descending part were noticed for each class and 

each ratio. In the contract to concrete class C60, where both of curves load capacity parts have changed with 

changing D/t ratio. Also, it can be observed that the confinement effect in concrete C60 it more efficient than 

other concrete classes. 

In the other side, the model reflected ductility of concrete class C25 higher than other classes (C40 and C60). 

Class 60 had less ductility among other types. 

 

 
Figure 15. FEA results of model-3 for various concrete class and D/t ratios 

5. Conclusions  

Based on the stufdy results, the following conculsions can be drawn: 

 

1- The adopted Model-3 reflected best validation results to the experimental work, for both criteria, 

maximum axial force and maximum displacement. 

2- Most of the model’s curves have shown that the confinement effect starts after reaching concrete 

maximum strain. They were having the same ascending curve. 

3- The confinement effect has approved its efficiency for high strength concrete (C60), which has 

increased the axial load capacity about 1.55 for D/t ratio of 50, compared with and 165 ratios. 

4- For normal strength concrete, the results have shown some level of enhancement in the concrete 

degradation behavior about 1.25 for d/t equal to 50 compared to ratio 165.  

5- Low strength concrete C25 have shown an acceptable level of confinement effect in the degradation 

behavior part, which estimated about 1.27 for d/t ratio of 50 when compared with 165 ratio. 

6- In general, confinement effect has approved its ability to enhance the maximum axial CFSTs strength, 

and reflected an increase of the ductility. 

7- Tests results have shown that the high concrete strength CFST degradation part of the curves has 

higher slope than other types of CFSTs concrete strength, which is an indication of low ductility 

compared to others. 

8- The adopted model was able to capture the variance in the descending part, in the contract to the 

ascending part, which all models with the same concrete compressive reflected the same behavior, 

except class C60. 

9- The adopted model (model-3) couldn’t capture effect of tube thickness increase in the maximum axial 

applied force. The model have should only an enhancement in the confinement effect. 
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