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Photoluminescence of 1-D Copper(I) Cyanide Chains:  A Theoretical Description 

 

Craig A. Bayse,*a Timothy P. Brewster,b and Robert D. Pikeb 

 

a Department of Chemistry and Biochemistry, Old Dominion University, Hampton Boulevard, 

Norfolk, Virginia 23529 

b Department of Chemistry, College of William and Mary, Williamsburg, VA 23187 

 

Abstract 

 

Solid copper(I) cyanide occurs as extended one-dimensional chains with interesting 

photophysical properties.  To explain the observed luminescence spectroscopy of CuCN, we 

report a series of computational studies using short bare and potassium-capped [Cun(CN)n+1]
– (n 

= 1, 2, 3, 4, 5 and 7) chains as CuCN models.  Based upon TD-DFT calculations of these model 

chains, the excitation transitions in the UV spectrum are assigned as Laporte-allowed π-π 

transitions from MOs with Cu 3dπ and CN π character to empty MOs with Cu 4p and CN π* 

character.  Transitions between the HOMO (3dz) and LUMO (Cu 4p and CN π*) are symmetry 

forbidden and are not assigned to the bands in the excitation spectrum.  The emission spectrum is 

assumed to arise from transitions between the lowest triplet excited state and the ground state 

singlet.  The lowest energy triplet for the model networks has a bent structure due to distortions 

to remove the degeneracies in the partially occupied MOs of the linear triplet.  The S0–T gap for 

the bent triplet chains is consistent with the emission wavelength for bulk CuCN. 

 
 corresponding authors:  cbayse@odu.edu ; rdpike@wm.edu 
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Introduction 

Organic and inorganic solid state luminescent materials are currently a subject of active 

research since they are potentially important in device displays.1  Luminescent solids also have 

potential application in molecular sensing systems, since chemisorption of small molecules has been 

shown to alter luminescence behavior.2  In reference to these applications, we are interested in the 

luminescence of copper(I) cyanide and its amine derivatives.3  While CuCN luminesces at the 

border of the UV and the visible, the amine-bearing CuCN complexes emit in the visible region. 

Nevertheless, the photophysical behavior of the CuCN-amine networks appears to be closely related 

to that of CuCN itself.3  Therefore, in the present contribution we have undertaken a computational 

examination of CuCN. 

Structurally, copper(I) cyanide is a very unusual inorganic salt. While most inorganic salts 

form 2D or 3D arrays, CuCN forms unidimensional polymer chains consisting of two-coordinate 

metal centers and bridging cyano ligands. Two CuCN phases are known. In both phases carbon and 

nitrogen sites are crystallographically disordered, thus the chains may be represented as –X≡X–Cu–

X≡X–Cu–, where X represents disordered carbon and nitrogen atoms (Figs 1A and 1B).  In the 

common (and commercial) low temperature modification of CuCN, these chains are wavy (X–Cu–

X = 176.7–179.0o and Cu–X–X = 174.0–179.4o).4  Alternating rows of undulating chains are offset 

from one another by ca. 50o.  By way of contrast, in the high temperature form of CuCN the chains 

are strictly linear (X–Cu–X, Cu–X–X = 180.0o) and all chains are parallel to one another.5  Metal-

metal interactions are common for Cu(I) compounds;6 such contacts are typically judged by 

comparison to the sum of two Cu van der Waals radii, 2.8 Å. However, the nearest Cu…Cu 

distances in low and high temperature forms of CuCN are ca. 3.09 and 3.78 Å, respectively. When 

CuCN is reacted with simple amines (L), the resulting CuCN-L products are 1D chains in which Cu 

is 3- or 4-coordinate.7  Bridging diamine ligands cross-link CuCN chains to form 2D or 3D 

networks.3 In many cases these networks are penetrated by independent CuCN chains which thread 

through the pores in the network. 

As indicated above, copper(I) cyanide is a luminescent material, showing a broad excitation 

feature in the near UV and intense emission at the UV/visible borderline (max = 392 nm).3c 

Surprisingly, CuCN luminescence has remained essentially unstudied to date.  Studies in aqueous 

solution by Stevenson have shown photoluminescent behavior in [Cu(CN)2]
–.8 UV 

photoexcitation of this anion leads to an interesting range of behaviors. The primary fate of 
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singlet [Cu(CN)2]
–* is electron ejection. However, competing with this process is intersystem 

crossing producing a triplet state. The resulting triplet species may undergo electron ejection or 

react with [Cu(CN)2]
– to form an excimer. In the presence of certain nucleophilic species, such 

as halide ions or amines, [Cu(CN)2]
–* reacts to form exciplexes. A number of possible 

photophysical causes for luminescence in Cu(I) complexes are recognized.9  These include metal to 

ligand charge transfer (MLCT), halide to ligand charge transfer (XLCT), metal cluster centered 

transitions (CC), single metal centered transitions (MC) and ligand centered transitions (LC). Since 

cyanide is the only ligand in CuCN, XLCT is obviously not a valid option, and transitions of the LC 

type may also be ruled out since cyanide has a large band gap.  The absence of close Cu…Cu 

contacts argues against CC transitions in CuCN.  Nevertheless, even though CC behavior is unlikely 

in the case of CuCN itself, a number of CuCN-amine networks contain Cu…Cu of <2.8 Å.3,10 

Transitions of CC nature should not be completely ruled out in these cases. 

Elimination of XLCT, LC and CC phenomena leaves the MC and MLCT as possible 

photophysical sources of luminescence behavior in CuCN.  MC transitions are dependent only on 

the metal orbitals while MLCT is modulated by the ligand orbitals.  Therefore, the question is: What 

role does cyanide play in the donor and acceptor states associated with CuCN luminescence? In the 

current study, we sought to determine the relative importance of MC, specifically 3d → (4p, 4s), 

and MLCT contributions in the observed luminescence behavior in CuCN using density functional 

theory (DFT) and time-dependent DFT (TD-DFT).  The latter is an economical method for 

determining electronic transitions in chemical systems with an accuracy that often rivals the highest 

level ab initio methods.11  TD-DFT has been applied to a number of extended π systems12,13,14,15,16 

and luminescent transition metal complexes17 with notable problems describing CT states.   

 

Theoretical Methods 

 Models of the copper(I) cyanide chains were optimized using Gaussian 0318 at the DFT 

level using the SVWN,19 BLYP,20,21 BP86, 20,22 HCTH/40723 and mPW1PW9124 exchange-

correlation (xc) functionals.  The copper atoms were represented by the Ermler-Christiansen 

relativistic effective core potential (RECP) basis set25 modified to include the 4p contractions of 

Couty and Hall.26  Basis sets for the carbon and nitrogen atoms were the split-valence triple- 

plus polarization functions (TZVP) representations of Dunning.27   The potassium atoms were 

represented by the Hay-Wadt RECP basis set.28  The excitation spectrum of the model chains 
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were obtained using TD-DFT to generate all transitions to singlet states less than 5.2 eV (5.4 eV 

for the n = 1 chain).  Optimizations and TD-DFT calculations of selected models were also 

performed using an extended basis set in which the Cu and K basis sets were uncontracted, a set 

of f-type polarization functions were added to Cu and diffuse functions were added to all atoms 

except K (BSII).   

 

Results and Discussion 

Geometry optimization.  In this study, short bare-anionic and potassium-capped chains of CuCN 

are used to model the electronic structure of the solid-state material.  These chains are 

constructed such that all Cu(I) ions are coordinated by two cyanides (Cun(CN)n+1) and 

constrained to cylindrical symmetry in the ground state (Dh and Cv).  For the K-capped 

models, the counterion is added to each end of the chain to maintain a symmetric environment 

and to neutralize the negative charge of the [Cun(CN)n+1]
– complex ions.29  The latter prevents 

underestimation of the electron binding energy known for anions within DFT, but may shift the 

excitation energies to shorter wavelengths due to the overall positive charge.  Potassium was 

selected as the counterion because it is commonly used as a mineralizing agent for CuCN. 

The fully symmetric isomers of the odd K-capped CuCN chains ({K2[Cun(CN)n+1]}
+; n = 

1 (1K), 3, (3K), 5 (5K), 7 (7K)) with the carbon end of all cyano groups oriented toward the center 

copper were optimized in using five xc functionals:  SVWN, BLYP, BP86, HCTH/407 and 

mPW1PW91 (Table 1 (BLYP only) and Supplementary Table 1).  The geometries of the 

analogous bare [Cun(CN)n+1]
– anions were calculated in the BLYP functional only (Table 1) and 

are generally similar to the K-capped cations.  With each functional, the Cu–C bond distances to 

the central copper are longer than those of the outer coppers by ~0.02 Å due to the symmetrical 

environment around the metal.  The Cu−C, Cu−N and C–N distances for the inner copper centers 

are often identical within the chains with the exception of the mPW1PW91 model for which the 

distances for the terminal cyano are slightly longer.  The local density approximation (SVWN) 

generally produces bond distances to the formally positive copper and potassium ions that are 

0.03–0.06 Å shorter than those obtained by the other functionals.  The Cu−C and Cu−N distances 

for BLYP, BP86, HCTH/407 and mPW1PW91 functionals are comparable to the experimental 

Cu–X bond distances (HT 1.870,5 LT 1.82–1.874 Å).  The C−N distances are longer than those in 

the linear HT phase (1.12) and comparable to the distances in the LT phase (1.145–1.178).   In 
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comparison to the BLYP results, the C–N distances in the mPW1PW91 functional and the 

distances around the copper center for the BP86 functional are slightly shorter than the BLYP 

values.   

The disorder in the X-ray structures of the CuCN network allows for no definitive pattern 

in the orientation of the alternating cyanide groups.  The geometries of the unique isomers30 of 

the bare anionic and K-capped (Cu(CN)2) and (Cu3(CN)4) chains were calculated at the BLYP 

level for comparison to the fully symmetric isomers (Table 2).  Isomers are labeled by the 

direction of the cyanide group within the chain (Chart 1):  R for the CN orientation and L for the 

NC orientation.  There are three unique isomers for the n = 1 chain (1RL1 [NC−Cu−CN]–, 

1LR [CN−Cu−NC]– and 1RR=1LL [CN−Cu−CN]–).  The symmetric isomer 1K having the 

normal carbon linkage to the central copper is ~20 kcal/mol lower in energy than 1LR
K for which 

nitrogen bonds to the metal (isocyanide).  The Cu−N distances in this isomer are shorter (1.835 

Å) and the terminal N–K distances are longer (2.815 Å) than those of 1K.  The isomer with 

asymmetric linkages, 1RR
K, lies ~10 kcal/mol above 1K.  In this case, the Cu−C and Cu−N 

distances (1.853 and 1.857 Å, respectively) are shorter than either of the symmetric isomers.  

Although these distances are similar, the C–K distance is ~0.15 Å longer than N–K (2.817 versus 

2.645 Å).  The geometries and energies of the bare anion isomers of 1 are similar to those of the 

K-capped system (Table 2).  Based upon the foregoing observations it can be reasoned that the 

higher energy of LR and RR isomers are due to the unfavorable coordination of terminal 

isocyanides.   

 Of the ten unique n = 3 isomers (Chart 1), four are Dh (3RRLL3, 3LRLR, 3RLRL, 3LLRR) 

and six are Cv (3RRRR, 3RLLR, 3RRRL=3RLLL, 3LLLR=3LRRR, 3RLRR=3LRLL, 3RRLR=3LRLL).   The 

relative energies of each of these isomers calculated at the DFT(BLYP) level for both the bare 

and K-capped ions are listed in Table 2.  The isomer with alternate Cu coordination spheres 

(3RLRL = [NC−Cu−CN−Cu−NC−Cu−CN]–) is ~1.5 kcal/mol less stable than 3.  Both of the 

symmetric isomers with terminal isocyanide linkages (3LRLR, 3LLRR) lie 21–23 kcal/mol above 3, 

with the alternating chain 2LRLR being ~2 kcal/mol less stable than 2LLRR.  With the exception of 

3RRRL, the remaining isomers each have at least one terminal isocyanide linkage and, as a result, 

are destabilized by ~10 kcal/mol.  The 3RRRL isomer reverses the linkage of one of the central 

cyanides and is slightly more stable (< 0.1 kcal/mol) than the fully symmetric isomer 3.   
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Geometries were calculated for ten of the 36 unique {K2[Cu5(CN)6]}
+ isomers, those with 

normal cyanide linkages at the terminal positions, due to the higher relative energies obtained for 

the smaller model isomers containing terminal isocyanide linkages.  Most of the n = 5 isomers lie 

1.7 kcal/mol higher in energy than the fully symmetric chain 5.  The isomer with alternating 

symmetric Cu coordination, 5RLRLRL, is 3 kcal/mol above 5.  The lowest energy isomers are 

those with asymmetric coordination for all but one copper ion which has NC–Cu–CN 

coordination: 5, 5RRRRRL, 5RRRRLL.  The stability of these isomers, as well as that of 3 and 3RRRL, 

demonstrate a preference for chains with minimal ‘defects’ in the orientation of the cyanides, a 

situation which is difficult to determine from the X-ray data since defects may appear at different 

sites in the chains, leading to disorder.   

The geometries of the even-numbered bare anionic and K-capped CuCN chains 

[Cun(CN)n+1]
– (n = 2 and 4) were optimized at the DFT(BLYP)/BSI for the isomers with terminal 

normal linkage of the cyanides only. The bond distances for the single isomer of the n = 2 chain 

(22RLL=2RRL) and the four unique isomers of the n = 4 chain (44RRRRL=4RLLLL, 

4RRLRL=4RLRLL, 4RRRLL=4RRLLL, 4RLLRL=4RLRRL) are similar to those for the odd chains.  As for 

the odd chains, there is a preference for asymmetric coordination spheres all of the copper 

centers but one.  The isomers 4 and 4RRRLL are 1.5 kcal/mol below the two isomers having two 

coppers with normal cyanide linkages (Table 2). 

  

Excitation spectra.  The UV/Vis spectra of the fully symmetric bare and K-capped [Cun(CN)n+1]
– 

chains were simulated by TD-DFT using both pure (BLYP, BP86, HCTH/407 and SVWN) and 

hybrid (mPW1PW91) xc functionals.  Analysis of the transitions shows that the dominant bands 

(oscillator strength > 0.1, Table 3 (BLYP only) and Supplementary Table 2) are the Laporte-

allowed transitions between MOs of π symmetry (Fig 2).  Other Laporte-allowed transitions (- 

and -) have oscillator strengths at least one order of magnitude lower than those of the π-π 

transitions.  For the n = 1 chains, the pure xc functionals (BLYP, BP86, HCTH/407 and SVWN) 

produce a single high intensity band (230–240 nm) within the range of the calculation.  This 

band is consistent with the observed max for the UV spectrum of [Cu(CN)2]
– in solution (234 

nm).31  The hybrid mPW1PW91 xc functional obtains no transitions with oscillator strengths 

above 0.1 for these chains, but produces a similar pattern to those of the pure functionals in 3K 

shifted to lower wavelengths by 30–50 nm (Supplementary Table 2).   
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The single band for 1 and 1K predominantly consists of contributions from transitions 

from the occupied 3πg MO (HOMO−2) to the empty 4πu MO (1, LUMO; 1K, LUMO+2).  These 

are the highest occupied and lowest unoccupied π-type MOs.  The band for 1K also includes 

lesser contributions from transitions from 3πg to 5πu (LUMO+4) and 7u (HOMO−3) to the 10g 

MO (LUMO+1).  This band has previously been assigned as MLCT,32 but the present 

calculations show a significant amount of metal and cyano character in both MOs (Fig 2).  The 

character of these MOs may explain why the excitation bands derived from the hybrid 

mPW1PW91 functional are consistently lower that those of the pure functionals.  Hybrid 

functionals generally outperform pure functionals because CT often occurs between MOs that 

are localized on different parts of the molecule,11 as is often true for MLCT bands in d6 TM 

complexes.17  In each of the model CuCN chains, the donor and acceptor MOs are delocalized 

over the length of the chains such that extended polyenes and polyynes are a better analogy.  

Within these species, pure functionals often give similar or better results than hybrid functionals 

so long as the excitations are not CT in nature.  For example, the BLYP functional obtains better 

overall results in comparison to B3LYP for the Q bands of chlorophyll and the S bands of 

zeaxanthin, a xanthophyll.13b In addition, the error for longest wavelength transition of 

H−CC−CC−H calculated using BLYP/TZVP is only 0.1 eV compared to 0.45 eV at B3LYP.33 

The hybrid functional significantly overestimates the transition energies for polyynes as in the 

case of our CuCN model chains.  BLYP also produces better vertical singlet-triplet gaps for 

polyenes than B3LYP, underestimating these by ~0.2 eV.34  The BP86 functional performs as 

well as B3LYP for the long-axis polarized band of a series of condensed acenes for which 

transitions are between bonding MOs.  However, the predicted excitation energies for the short-

axis polarized band diverge due to the ionic nature of the excited state.14   

Increasing the length of the chain adds one or more excitation bands at longer wavelength 

(Table 3).  The lowest energy transition for the n = 2, 3, 4, 5 and 7 chains are the excitations 

from the highest occupied to the lowest unoccupied π-type MO.  For example, the 314 nm band 

for 3 and the 276 nm band for 3K correspond to the excitation from 6πg (HOMO-3) to 7πu (3, 

LUMO; 3K, LUMO+2) MO.  Likewise, the longest wavelength bands in the n = 5 and n = 7 

chains are 9πg (HOMO-4) to 10πu (5, LUMO; 5K, LUMO+2) and 12πg (HOMO-4) to 13πu (7, 

LUMO; 7K, LUMO+2), respectively.  For the even chains, for which inversion symmetry is lost, 

the longest wavelength bands are 9π (HOMO-2) to 10π (LUMO+2) for 2K and 15π (HOMO-3) 
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to 16π (LUMO+2) for 4K.  In each of these cases, the donor MO has antibonding character 

between the Cu 3dπ AOs and the CN π bonds and the acceptor MO has bonding character 

between the Cu 4p AOs and the CN π* fragments.  Additional bands arise from transitions 

to/from π MOs lying lower in energy than these occupied MOs or higher than these unoccupied 

MOs.  For example, for 3K the second intense line (240.6 nm) results from excitation from 6πu 

(HOMO-6) to 7πg (LUMO+3) and the third (238.6 nm) from the 6πg (HOMO-3) to 8πu 

(LUMO+4) transition.  The lower energy occupied MOs are generally antibonding between the 

Cu 3dπ AOs and the CN π fragments, although some low energy MOs such as 5πg for 5K (Fig 2) 

show bonding interaction between copper and carbon.  The higher virtual MOs are generally 

bonding combinations of the Cu 4p AOs and CN π* and include contributions from the K 4p 

MOs as an artifact of the capped models.  

From these data, we can see that as the chain length becomes longer, the longest 

wavelength transition for the K-capped chains approaches an asymptotic value of 300 nm, short 

of the experimental max by ~40 nm.  The intensity of the line, based upon the oscillator strength, 

also increases as the wavelength increases, mirroring the extinction pattern in the experimental 

spectrum. For example, the transition lines for 7K are shown in Fig 3 with their intensities as 

predicted by the oscillator strength.  The long wavelength bands are twice as intense as the short 

wavelength bands, giving a good approximation of the stair-step shape seen in the experimental 

spectrum (compare Fig 11A in ref 3c).  The approach of the calculated spectra to an asymptotic 

value is expected by analogy to the extended π systems of polyynes.16  However, the limiting 

value is approached more quickly for the K-capped CuCN chains than for polyyne oligomers, for 

which a limit has not been reached at 24 carbon atoms.  For the bare-anionic chains, additional 

bands are also obtained as the chain length increases, but these do not approach an asymptotic 

value for the model chain lengths calculated.  For 7, the long wavelength π-π transitions also 

decrease in intensity from a maximum at the 278.8 nm band (Table 3).  The transition between 

the highest occupied and lowest unoccupied π MOs is calculated to occur at ~460 nm with an 

oscillator strength of 0.03.  Of the two model types, we believe the K-capped provide the better 

overall representation of solid-state CuCN because the pattern in the line intensities and the 

convergence to a limiting wavelength are consistent with the excitation spectrum in Fig 11A in 

reference 3c.  The fact that the limiting wavelength is found at energies higher than those from 

experiment can be attributed to the overall positive charge of the chain models.  The errors in 
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these gas-phase models may also be attributed to the lack of intermolecular interactions 

necessarily present in the solid state. 

Note that the TD-DFT calculations do not predict a significant contribution to the 

excitation spectrum from the HOMO-LUMO transition.  The HOMOs are metal-centered MOs 

of  or g symmetry consisting of the in-phase combination of sdz2 hybrid AOs.  For the bare 

anions, transitions from these MOs to the π-type LUMOs are symmetry-forbidden and the 

oscillator strength of the HOMO-LUMO transition is zero.  The LUMOs for the K-capped chains 

are the asymmetric combination of potassium 4s AOs (u) such that the HOMO/LUMO 

transition is both symmetry-allowed(→) and Laporte-allowed(g→u), but TD-DFT assigns 

small oscillator strengths to these transitions.  For example, the HOMO-LUMO transition for 3K 

has an oscillator strength two orders of magnitude lower than the highest energy π-π transition.  

The LUMO and LUMO+1, the symmetric K 4s combination, as well as the transitions to these 

MOs, are artifacts of the K-capped model.   

Luminescence excitation in Cu(I) has variously been described as arising from MC or 

MLCT transitions. Let us consider how these descriptions harmonize with the relevant MOs 

described above. As shown in Fig 2, copper components of the highest occupied π MOs are 

largely 3dxz/3dyz, while those of cyanide are essentially π-bonding. The lowest unoccupied π 

MOs may be described as Cu 4px/4py and cyano π*. Therefore, the transition between these 

orbitals can be regarded as MC (3d→4p) or MLCT (3d→πCN*). However, it can also be seen as 

LMCT (πCN→4p) or even as ligand centered (πCN→πCN*), although this latter description is 

probably the least reasonable. Nevertheless, it is probably most useful to regard the excitation in 

CuCN as involving a combination of π-symmetry MC and CT components or simply as an intra-

chain π-π transition.  Since electrons are excited from occupied MOs with antibonding character 

between the dπ Cu AOs and the π CN fragments to unoccupied MOs with bonding character 

between the Cu p AOs and π* CN fragments, we may expect to find Cu–cyano bonding 

strengthened upon excitation, while C≡N bonding would be weakened. 

 

Emission spectra.  The emission spectrum of CuCN is assumed to arise from transition from the 

lowest excited state triplet to the ground state.  Lifetime studies of soluble Cu(I) cyano species 

have suggested that emission is usually a phosphorescence phenomenon.8,31,32  We assume that 

this triplet forms through intersystem crossing from the photoexcited singlet states and do not 



 10 

model this process explicitly.  For the K-capped chains 1K, 3K, and 5K, adiabatic S–T gaps were 

determined using the optimized geometries (DFT/BLYP) of the lowest triplet state in the Dh 

and C2v point groups.  Vertical S–T gaps calculated by a TD-DFT calculation generating the 

triplet excited states are generally similar to the linear adiabatic S0–T gaps. 

 For 1K, the lowest energy linear triplet lies 4.83 eV above the ground state and is 

energetically equivalent to emission of a 257 nm photon.  The unpaired electrons occupy the 3πg 

(3e) and 4πu (1e) MOs, linking this excited state to the lowest energy transition (232.2 nm, 4πu 

 3πg) calculated by the TD-DFT calculation.  Because the partially occupied 4πu MO has Cu–C 

bonding and C–N antibonding character, the central Cu–C and C–N distances are slightly shorter 

(1.868 Å) and longer (1.187 Å), respectively, than the ground state singlet values.  Vibrational 

analysis shows that this species has a single imaginary frequency which characterizes it as a 

transition state for bending of the linear chain.  Based upon these results, the C2v geometries of 

the chains were determined under the assumption that upon excitation of an electron to a 

degenerate MO, the structure will relax via some distortion.  The optimized structure of the 

lowest C2v triplet state (b2) shows that distortions are localized around the central copper center 

where the chain is bent by 97.8° and the Cu–C distances are elongated by 0.14 Å relative to 1.  

The C–N and N–K bond distances are slightly longer than in the ground state.  Significant 

distortions are also found in the optimized structure of the triplet state of the [Au(SCN)2]
– dimer 

assumed to contribute to the luminescence properties of K[Au(SCN)2].
35 

The bending of the chain is consistent with a distortion to remove the degeneracies of the 

partially occupied 3πg and 4πu MOs which decompose as b2 + a2 and a1 + b1 in C2v symmetry 

(Fig 4).  The relaxation of the triplet geometry reduces the energy gap to the ground state by ~1 

eV and shifts the wavelength of the predicted emission to 330 nm.  The bent structure also 

concentrates the spin density on the central copper center (1.368), with some spin density found 

on the carbons of the central cyanide groups (0.271).  The spin for the linear triplets is also 

predominately found on the central copper atom (1.307); however greater spin distribution is 

seen throughout the chain, especially through the entire central cyanide ligands (C: 0.153, N: 

0.183).  Both the linear and bent structures are well-represented by triplet densities with very 

little spin contamination (S2 = 2.002). 

 The triplet states for 3K and 5K leads to similar features in the optimized structures (Fig 

5), with the exception that the linear triplets are minima on their respective potential energy 
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surfaces.  The linear S0–T gaps shift to longer wavelengths due to the smaller band gap observed 

for longer chains.  The bent C2v S0–T gaps are found at slightly higher energies relative to the 

ground state.  The bent triplet was also determined for the lowest energy n = 3 chain, 3RRRL
K.  

The optimized structure of the 3A' state features a bend in the chain at a terminal copper with 

little distortion in the rest of the chain.  The S0–T gap for this structure is slightly smaller than 

that of 3K (329.6 nm).  In both chains, the overall length of the chain is reduced in the C2v triplet 

by 1.5 Å, and the bend in the chain results in a significant displacement of the central copper 

center from its position in the linear chain as defined by the positions of the potassium centers 

(see Fig 5).  

 The apparent bending of the triplet excited state is relevant to what is known about the 

photoexcitation of [Cu(CN)2]
– in solution.  Horváth and Stevenson have both noted the tendency 

of [Cu(CN)2]
–* to form exciplexes (e.g. with halide or amine ligands) or excimers in 

solution.8,31,32  It may well be that the bending of the excited state triplet lies behind exciplex or 

excimer formation. Such bending would open up a coordination site, easing formation of an 

additional metal covalent interaction with incoming nucleophile. In the case of the solution-

phase excimers, this nucleophile would be another [Cu(CN)2]
– anion which could form a bridge 

though the cyano group, however, cuprophilic Cu…Cu interaction cannot be ruled out.  

Although the S0-T gaps for the model chains are similar to the emission wavelength of 

CuCN, comparisons to solid-state CuCN are more difficult due to concerns over the flexibility of 

the chains, the available space in the crystalline lattice and interchain interactions. Crystal 

structures of CuCN-L networks suggest that bending in the extended chains can be facile.  For 

example independent CuCN chains threaded through CuCN-diamine networks show cyano-Cu-

cyano bond angles ranging from nearly 180o to less than 150o.3b,3c,11e,11f,11j No doubt these angles 

are affected by packing effects, but they clearly reveal significant flexibility in CuCN chain bond 

angles. In addition, as-yet-unpublished results in our lab show that CuCN spontaneously absorbs 

liquid- or vapor-phase amines at room temperature to form CuCN-L phases on the surface of the 

solid. The known CuCN-L phases can be recognized via X-ray diffraction.7  These phases show 

significant bending of the cyano-Cu-cyano angle due to formation of 3- and occasionally 4-

coordinate Cu. Therefore, it appears that CuCN bending can indeed occur at room temperature in 

the solid state. However, insufficient space may be available within the crystal lattice to allow 

for the large distortions obtained for the bent triplet structures, but, in the solid state, distortions 



 12 

may not be as significant due to anchoring of the ends of the chain in the lattice.  These 

restrictions in the movement of the chain may limit the bending to a single Cu(CN)2 unit.  A 

reduction in the magnitude of the distortion necessarily reduces the S0-T gap and shifts the 

emission to longer wavelengths.  Finally, relaxation of the triplet through some inter-chain 

interaction similar to excimer formation in solution phase is also a possibility in the solid state.  

However, as the copper centers are not always aligned well for Cu…Cu interactions, inter-chain 

interactions may be more likely to take the form of 3-cyano bridging of copper centers.   

Therefore, the role of the bent excited state triplet is speculative pending further 

experimentation.  Nevertheless, data for CuCN-L networks may provide circumstantial support 

for the DFT results.  We have noted that three-coordinate copper centers in CuCN-L complexes 

luminesce at longer wavelengths than those of CuCN.3c  It may be theorized that the lower 

energy emission in CuCN-L is also the result of lower site symmetry at the Cu(I) center. Since 

the three-coordinate copper centers in CuCN-L are already bent (and therefore have lower local 

symmetry), no reorganizational energy is required for emissive relaxation. We have observed in 

some networks containing both 2-coordinate and 3-coordinate Cu centers that the HE band 

breaks into separate components at low temperature.3c Moreover, the higher energy feature in the 

HE band matches the emission energy of CuCN itself very closely. It follows that the 

observation of distinct HE and LE emission bands may be the result of multiple energetically 

accessible triplet states. Multiple states would arise through additional lower symmetry states in 

structurally complex CuCN-L networks, wherein copper sites are no longer symmetrically or 

energetically equivalent. 

 

Conclusions 

 Although there have been many reports of photoluminescent behavior in solid Cu(I) 

compounds,9 there have been relatively few involving CuCN-based materials.3,36  The preceding 

DFT study addresses a number of questions about the properties of the parent salt CuCN 

important to the understanding and design of CuCN-based MONs. As we move from CuCN to 

CuCN-L networks two generalizations stand out: (1) although excitation energy is essentially 

unchanged, CuCN-L emits at lower energy than does CuCN, and (2) CuCN-L materials often 

show distinct high and low energy emission peaks (HE and LE). These HE and LE emission 

bands have been variously ascribed to MLCT and MC excitations.  In contrast, our TD-DFT 
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studies on isolated model chains suggest that the excitation spectrum appears to arise from 

intrastrand π-π transitions resulting from excitations from occupied to unoccupied π-type MOs. 

Given the similarity in experimental excitation spectra between CuCN and CuCN-L, it appears 

that the CuCN excitation mechanism is not substantially altered in CuCN-L.  

Luminescence emission is a more complicated matter. The behavior of CuCN and CuCN-

L are quite distinct. The present computational results suggest that a bent triplet state is 

responsible for the relatively high energy CuCN emission. This is an interesting conclusion since 

it suggests the formation of a distinct locus for emission behavior. Additional bonding at this 

bent copper site, leading to the exciplex and excimer formation previously noted in [Cu(CN)2]
–, 

would thus be facilitated. Moreover, under this scenario the lower energy luminescence emission 

noted in lower symmetry three-coordinate CuCN centers could be due to the lack of 

reorganizational energy associated with triplet formation. 
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Figure 1.  (A) High-temperature phase of CuCN  X-ray structure.4 (B) Low-temperature phase 

of CuCN X-ray structure.5 (Ball and stick X-ray representations.  Cu atoms orange, disordered 

C/N atoms grey.) 
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Figure 2.  MO diagram for 1K, 2K and 3K.  The HOMO and HOMO+1 are artifacts of the K-capped chains and do not occur in the 

bare anionic chains. 
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Figure 3.  TD-DFT(BLYP) transition energies and oscillator strengths for 7K. 

 

 

Figure 4.  Walsh diagram of the distortion of the π MOs of the triplet state of 1K in C2v 

symmetry. 
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Figure 5. Structures of the bent triplet geometries of 3K, 3RRRL
K, and 5K optimized at the 

unrestricted DFT/BLYP level.  
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Table 1.  Bond distances (Å) for the fully symmetric isomers of the bare and K-capped chains [Cun(CN)n+1]
– (n = 1, 3, 5, 7) at the 

DFT(BLYP) level. 

 1 Cu–C C–N N–K          

1 anion 1.885 1.177           

 K-capped 1.878 1.174 2.648          

  Cu–C C–N N–Cu Cu–C C–N N–K       

3 anion 1.875 1.174 1.860 1.857 1.175        

 K-capped 1.875 1.173 1.856 1.853 1.174 2.642       

  Cu–C C–N N–Cu Cu–C C–N N–Cu Cu–C C–N N–K    

5 anion 1.874 1.173 1.857 1.850 1.173 1.860 1.856 1.174     

 K-capped 1.874 1.173 1.855 1.848 1.173 1.855 1.852 1.174 2.639    

  Cu–C C–N N–Cu Cu–C C–N N–Cu Cu–C C–N N–Cu Cu–C C–N N–K 

7 anion 1.874 1.173 1.855 1.849 1.173 1.856 1.850 1.173 1.859 1.856 1.174  

 K-capped 1.874 1.172 1.855 1.847 1.173 1.855 1.847 1.173 1.855 1.852 1.174 2.638 

 

Table 2.  DFT(BLYP)/BSI energies (kcal/mol) of the isomers of the CuCN model chains. 

 E+ZPE   E+ZPE      

n = 1 bare K-cap n = 3 bare K-cap n = 4 K-cap n = 5 K-cap 

11RL 0.0 0.0 33RRLL 0.0 0.0 4RRRRL=4RLLLL 0.0 55RRRLLL 0.0 

1LR 7.56 19.76 3LLRR 16.54 19.84 4RRLRL=4RLRLL 1.50 5RLLRRL 1.53 

1RR=1LL 7.05 9.16 3RLRL 1.07 1.46 4RRRLL=4RRLLL 0.01 5RRLRLL 1.50 

   3LRLR 18.39 21.27 4RLLRL=4RLRRL 

 

1.51 5RLRLRL 2.98 

   3RRRR=3LLLL 9.16 9.16   5RRRRRL=5RLLLLL 0.00 

   3RLLR=3LRRL 8.99 10.64   5RRLLRL=5RLRRLL 1.51 

   3RRRL=3RLLL -0.21 -0.02   5RRRRLL=5RRLLLL 0.01 

   3LLLR=3LRRR 16.72 19.80   5RLLLRL=5RLRRRL 1.51 

   3RLRR=3LRLL 8.80 10.65   5RRLRRL=5RLLRLL 1.52 

   3RRLR=3LRLL 9.20 10.64   5RRRLRL=5RLRLLL 1.49 
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Table 3.  BLYP wavelengths (nm) and oscillator strengths (f) for π-π transitions (TD-DFT) and adiabatic S0-T gaps (nm) for bare 

anionic and K-capped symmetric chains [Cun(CN)n+1]
– (n = 1, 2, 3, 4, 5, 7)  

 

n  , nm         S0-T gap, nm 

(linear) 

S0-T gap, nm 

(bent) 

1 anion 

f 

237.8 

0.21 

          

 K-capped 

f 

232.2 

0.39 

        262.9 330.5 

2 anion 

f 

271.1 

0.48 

246.7 

0.20 

         

 K-capped 

f 

264.9 

0.60 

244.5 

0.18 

         

3 anion 

f 

314.2  

0.47 

246.0 

0.26 

243.1 

0.30 

230.5 

0.26 

       

 K-capped 

f 

275.6 

0.78 

240.6 

0.50 

238.6 

0.11 

      296.9 328.1 

4 anion 

f 

344.6 

0.13 

320.7 

0.13 

286.1 

0.16 

263.0 

0.51 

259.8 

0.26 

249.3 

0.17 

     

 K-capped 

f 

288.6 

0.40 

271.8 

0.66 

256.3 

0.44 

239.9 

0.11 

238.1 

0.11 

      

5 anion 

f 

398.2 

0.12 

315.2 

0.17 

291.0 

0.27 

283.6 

0.77 

273.1 

0.17 

246.3 

0.24 

243.4 

0.16 

236.9 

0.34 

   

 K-capped 

f 

292.6 

0.70 

268.9 

0.60 

265.5 

0.49 

249.5 

0.14 

242.7 

0.30 

    304.5 328.1 

7 anion 

f 

458.5 

0.03 

380.1 

0.08 

344.1 

0.14 

322.4 

0.13 

305.7 

0.36 

281.5 

0.15 

278.8 

0.79 

271.9 

0.50 

267.1 

0.18 

  

 K-capped 

f 

297.9 

0.71 

282.0 

0.43 

280.1 

0.75 

268.1 

0.14 

263.5 

0.38 

258.6 

0.37 

257.1 

0.14 
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