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Running title: Interpreting insect declines 36 

 37 

Abstract 38 

1. Many insect species are under threat from the anthropogenic drivers of global change. 39 

There have been numerous well-documented examples of insect population declines and 40 

extinctions in the scientific literature, but recent weaker studies making extreme claims of a 41 

global crisis have drawn widespread media coverage and brought unprecedented public 42 

attention. This spotlight might be a double-edged sword if the veracity of alarmist ‘insect 43 

decline’ statements do not stand up to close scrutiny. 44 

2. We identify seven key challenges in drawing robust inference about insect population 45 

declines: establishment of the historical baseline, representativeness of site selection, 46 

robustness of time series trend estimation, mitigation of detection bias effects, and ability to 47 

account for potential artefacts of density-dependence, phenological shifts and scale-48 

dependence in extrapolation from sample abundance to population-level inference. 49 

3. Insect population fluctuations are complex. Greater care is needed when evaluating 50 

evidence for population trends, and in identifying drivers of those trends. We present 51 

guidelines for best-practice approaches that avoid methodological errors, mitigate potential 52 

biases and produce more robust analyses of time series trends. 53 
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4. Despite many existing challenges and pitfalls, we present a forward-looking prospectus for 54 

the future of insect population monitoring, highlighting opportunities for more creative 55 

exploitation of existing baseline data, technological advances in sampling and novel 56 

computational approaches. Entomologists cannot tackle these challenges alone, and it is only 57 

through collaboration with citizen scientists, other research scientists in many disciplines, and 58 

data analysts that the next generation of researchers will bridge the gap between little bugs 59 

and big data. 60 

 61 

Keywords: citizen science, detection bias, global insect decline, insect conservation, 62 

monitoring, phenological shift, population trend, sampling bias, shifting baseline, time series 63 

 64 

Introduction 65 

Populations of many insect species are declining (Wagner, 2020). For the vanishingly small 66 

proportion of these in which conservation risk has been evaluated (e.g., Langor 2019), the 67 

status and trends are at least as sobering as they are for vertebrate species (Dirzo et al., 2014; 68 

Forister et al., 2019). This will, of course, come as no surprise to entomologists, who have 69 

been reading about declining insect populations in Insect Conservation and Diversity, among 70 

other journals, for at least a decade (e.g., Shortall et al., 2009; Fox, 2013; Cardoso & Leather, 71 

2019). For the general public, however, it has come as an alarming revelation, brought to the 72 

fore by several recent studies that received worldwide media attention (e.g., Hallmann et al., 73 

2017; Lister & Garcia, 2018; Sánchez-Bayo & Wyckhuys, 2019). The quality of some of 74 

these papers has been relatively weak, either due to misinterpretation of data (Lister & 75 

Garcia, 2018) or overzealous claims (Sánchez-Bayo & Wyckhuys, 2019). The scientific 76 

response to this has been an exemplar of the nature of science as a self-correcting endeavour, 77 

with critical re-evaluation of the findings emerging rapidly (e.g., Willig et al., 2019; Cardoso 78 
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& Leather, 2019; Cardoso et al., 2019; Komonen et al., 2019; Montgomery et al., 2019; 79 

Mupepele et al., 2019; Simmons et al., 2019; Thomas et al., 2019; Wagner, 2019; Saunders 80 

et al., 2020a). The global media response has been something entirely different, but has put 81 

insect conservation firmly on the public and policy agenda (Harvey et al., 2020). As Cardoso 82 

et al. (2019) and Montgomery et al. (2019) point out, though, this spotlight could become a 83 

double-edged sword as the veracity of the more alarmist ‘insect decline’ statements faces 84 

increased scrutiny. 85 

In the rush to address ‘global insect declines’, it has never been more important to 86 

pause and think critically about what constitutes evidence for decline in the first place. For 87 

most insects, high inter-annual variability is the norm rather than the exception, (e.g., 88 

Redfearn & Pimm, 1988; Roubik, 2001), but it poses serious problems in determining what 89 

the baseline ‘reference state’ should be for historical abundance, and inherently increases the 90 

length of time series required to separate signal from noise (White, 2019). Any number of 91 

artefacts in the data compilation, analysis or interpretation of the findings could also result in 92 

an apparent change from presence to absence or high to low abundance between two time 93 

points, without there necessarily being a significant trajectory of decline in population size 94 

through time. Here, we identify seven key problems in quantitative inference about insect 95 

declines, grouped loosely as errors of baseline, trend estimation and resulting population 96 

inference. This is not intended to be a comprehensive review of the subject, but rather a 97 

framework for approaching the broad and growing literature on insect population trends 98 

through time, with selected examples to illustrate key challenges in inferring a decline in 99 

abundance. The seven problems we identify are not intended to be mutually exclusive either, 100 

and there will be substantial conceptual overlap in how they are dealt with and resolved. We 101 

conclude by presenting guidelines for best-practice approaches to mitigate bias, and a 102 
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forward-looking prospectus for the future of insect monitoring, aimed at an up-and-coming 103 

generation of researchers who can bridge the gap between little bugs and big data. 104 

 105 

The false baseline effect – One logical pre-condition for estimating rates of long term 106 

population decline is to have a sound quantitative estimate of historical population 107 

abundance. Frustratingly, such estimates are rarely available, as the vast majority of ‘decline’ 108 

studies only begin after numbers were perceived to be changing (Bonebrake et al., 2010); a 109 

similar picture is seen with pest insects, where studies are typically only started in response to 110 

outbreaks (Watt & Hicks, 2000; Hicks et al., 2008). At face value, this might suggest that 111 

current decline estimates should, on average, be underestimates of the longer-term trends (for 112 

instance, saproxylic insects, such as Rhysodes sulcatus Fabricius 1787, are thought to have 113 

been declining across Europe for the past 3000 years due to progressive loss of old-growth 114 

forests; Speight, 1989). We suspect that measured baselines might generally underestimate 115 

true historical baselines (e.g., Powney et al., 2019), but speculative backcasting from the sorts 116 

of declines found by Hallmann et al. (2017) and others (e.g., 75% decline in insect biomass 117 

since the 1980s), could be problematic from the outset. For example, Macgregor et al. (2019) 118 

found that the period from the 1980s to present was indeed a period of declining moth 119 

biomass in the UK, but the data from an even earlier ‘baseline’ period (1967 – 1982) showed 120 

that moth biomass was previously much lower than at present, and had actually increased to a 121 

peak in the 1980s (for unknown reasons) prior to the more recent decline. This is a clear 122 

example of the well-known ‘shifting baseline’ phenomenon (Soga & Gaston, 2018), in which 123 

perception of the ‘reference state’ is dependent on how comprehensive our historical 124 

knowledge is of former conditions (Figure 1). 125 

In the absence of long time series of decline, many studies use a haphazard assortment 126 

of historical data as proxies for the missing baseline (Bonebrake et al., 2010), but despite 127 
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these often being all that we have, they are rarely likely to be fit for purpose. For instance, 128 

historical quantitative surveys might have been designed to address an unrelated ecological 129 

question, and therefore (inadvertently) violate the statistical assumptions needed to produce 130 

an unbiased estimate of historical population abundance. Using data simulations, Fournier et 131 

al. (2019) describe how non-random site selection bias in the measurement of historical 132 

baseline conditions could significantly increase the probability of inferring a false decline, 133 

even when there is no long-term trend in the data. This (they argue) is because researchers are 134 

much more likely to select sites where their study organisms are known to occur, and/or are 135 

sufficiently abundant to sample. Plausibly, an above-average starting point in a time series 136 

comparison – a ‘false baseline effect’ (Figure 1) – could lead to an apparent decline through 137 

time as a simple statistical artefact of regression to the mean, especially when abundances are 138 

fluctuating widely from year to year (Fournier et al., 2019).  139 

In practice, errors of baseline estimation almost certainly have components of both 140 

shifting baseline effects (historical abundance is assumed to be accurately estimated, but 141 

there is no knowledge of trends leading up to that point in time) and false baseline effects (the 142 

appropriate reference window is known, but historical abundance is inaccurately estimated).  143 

 144 

The missing zero effect – The corollary of site-selection bias inflating average local 145 

abundance at baseline, is that unoccupied sites (i.e., true absences, not detection errors) will 146 

be under-represented in local population estimates. Assuming that these unoccupied sites are 147 

potentially occupiable (i.e., represent suitable habitat, linked by dispersal, in some sort of 148 

spatially-structured population context; Hanski, 1998; Ovaskainen & Saastamoinen, 2018), 149 

then rates of decline will be over-estimated at the local sites where abundances are measured, 150 

and unrepresentative of the wider sampling universe of potentially occupiable habitat. We 151 

call this the ‘missing zero’ effect, after the wonderful children’s mathematics book Nesta and 152 



7 
 

the Missing Zero (Leibrich, 2006) in which the loss of ‘nothing’ throws the world into chaos. 153 

Local populations might well be declining at known sites with high historical abundance, but 154 

other local populations could be increasing (concurrently) at formerly unoccupied or 155 

unsampled sites, especially if there are density-dependent feedbacks on intrinsic rates of 156 

population increase or asynchronous dynamics among local subpopulations (Pollard, 1991; 157 

Sutcliffe et al., 1996).  158 

At local scales, the missing zero effect squanders the opportunity to measure future 159 

recolonisation of unoccupied sites, through (i) natural processes associated with spatially-160 

structured population dynamics (Ovaskainen & Saastamoinen, 2018; Dallas et al., 2020), (ii) 161 

rehabilitation of sites following mitigation of threatening processes (e.g., Corlett, 2016; 162 

Pilotto et al, 2018), or (iii) as a result of extra-limital processes such as shifting geographic 163 

ranges due to climate change and species invasion (e.g., Walther et al., 2009; Hill et al., 164 

2012; Hill et al., 2017; Rabl et al., 2017). At the regional scale, missing zeros are also the 165 

connection between local abundance measures and regional occupancy changes, with which 166 

we deal separately below. 167 

 168 

The snapshot effect – Estimates of population change can be sensitive to selection bias 169 

effects in the choice of contemporary time-points, much as described for false baseline effects 170 

above. In the simplest case (i.e., a pairwise ‘snapshot’ comparison of historical versus 171 

contemporary populations; Figure 1), there is high potential for time-selection bias in 172 

contemporary estimates. Anecdotal reminiscing about how ‘numbers are not what they used 173 

to be’ (e.g., Vogel, 2017) could easily lead to ‘confirmation bias’ in the choice of a single 174 

contemporary time-point where numbers are substantially lower than average contemporary 175 

conditions (e.g., Figure 1). The motivation for selecting a particular time-point for 176 

comparison, and knowledge of fluctuations in the intervening years, are fundamentally 177 
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important considerations in evaluating snapshot data (viz criticisms about the Lister & Garcia, 178 

2018 study). 179 

Pairwise point estimates of local population change should be treated for what they 180 

really are – a time series of two points. Such paired comparisons have been used effectively 181 

for comparing differences in occupancy through time (e.g., climate-driven range expansions), 182 

but they are unavoidably weak when the focal variable is abundance. It is not inconceivable 183 

that such a limited time series could have sufficient statistical power to detect a difference in 184 

abundance, but the likelihood is very low unless the degree of spatial replication is very high. 185 

For example, LeBuhn et al. (2013) concluded that 200–300 sites, each sampled twice at an 186 

interval of 5 years, would be needed to detect 1-2% annual change in the abundance or 187 

richness of insect pollinators across a region. At single sites, though, White (2019) showed 188 

that at least 15 time points are required to have sufficient statistical power to detect non-189 

random trends in abundance through time, with shorter time series only having sufficient 190 

power when the trend slope is unusually steep and inter-annual variability in abundance 191 

unusually low (cf. Figure 1). This combination of characteristics is likely to be both rare 192 

(particularly for insects) and difficult to validate, so the more parsimonious explanation is 193 

inherently going to hold sway; i.e., that the apparent slope of the trend line is simply an 194 

artefact of the narrow window (or low frequency) of observations (Figure 1). For example, 195 

the conclusions of a long term study of pollination services in Colorado USA, changed from a 196 

‘significant decline’ when studied over a moderate time series (11 time points over a 17-yr 197 

period from 1993-2009; Thomson, 2010) to ‘no decline’ over a longer time series (20 time 198 

points over 26 years from 1993-2018; Thomson 2019). More generally, Fox et al. (2018) 199 

showed that IUCN Red List assessments based on time series of only 10 time points were 200 

unacceptably biased by stochastic artefacts of the sampling window.  201 
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Fournier et al. (2019) suggest that left-censoring of time series (Figure 1) can be a 202 

useful approach to detect and overcome potential false baseline effects (effectively a 203 

sensitivity test of whether the trend slope remains unchanged with progressive removal of 204 

early time points in the time series). They found that false baseline effects over-estimated 205 

decline slopes most substantially in time series with fewer than 10 time points (Fournier et 206 

al., 2019). The same logic could potentially be used for right-censoring short time series to 207 

overcome bias in contemporary snapshot effects (Figure 1). Framing the combination of the 208 

two approaches more generally, a walk-forward cross-validation or combinatorial k-fold 209 

cross-validation procedure for time series (e.g., Bergmeir et al., 2018) could be used to 210 

determine sensitivity to outliers in the data, when time series are shorter than the 15 time 211 

points recommended by White (2019).  212 

A salient example of just how important cross-validation could be, is the recent study 213 

of arthropod decline in Germany over a 10-year time series from 2008-2017 (Seibold et al., 214 

2019). The overall time series trend, as well as region-specific and taxon-specific trends, are 215 

heavily influenced by one or two time-points in the data (see Fig. 1 and Fig. S3-1 in Seibold 216 

et al., 2019). To their credit, the authors attempt a sensitivity analysis by dropping one year of 217 

the time series at a time, which “showed that the decline was influenced by, but not solely 218 

dependent on, high numbers of arthropods in 2008” (Seibold et al., 2019, p.672). This is 219 

equivalent to a very shallow left-censoring of the time series in the case of the 2008 data 220 

point, which (by visual inspection of the evidence in Seibold et al., 2019) will have removed 221 

a large component of the apparent trends, by itself alone. A full cross-validation would 222 

certainly nullify any remaining evidence for a general decline trend in their data. This is not 223 

to say that such a decline in arthropods is not occurring in these parts of Germany. The 224 

decline may well be real, but at face value the data provide no indication whether abundance 225 

in the next time-interval will be lower or higher than current estimates – and what is a time 226 
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series of decline for, if not to improve predictive power to understand future population 227 

change?  228 

 229 

The detection bias effect – All the arguments presented so far have assumed that variation in 230 

sample abundance is an accurate representation of variation in local population abundance. 231 

Unfortunately, few studies can achieve a complete census of all individuals in a population, 232 

so it is a practical necessity in insect monitoring that standardised sampling methods are used 233 

instead. Entomologists are well aware that most sampling methods measure activity rates not 234 

population abundance, all methods have inherent biases, and different methods have different 235 

biases that affect the accuracy of extrapolation to local abundance or population size 236 

estimates (e.g., pitfall trapping: Baars, 1979; or pollinator monitoring: Westphal et al., 2008). 237 

Such biases are not necessarily problematic if their effects are randomly distributed with 238 

respect to the spatial and temporal trends of interest. There are, however, a number of 239 

potential processes that could result in temporal autocorrelation in the detectability of 240 

individuals, such that abundance might appear to change through time simply because 241 

individuals are becoming more or less detectable. It is this potential for temporal 242 

autocorrelation in detectability that needs closer investigation. Here, we provide only a partial 243 

(and cursory) set of examples of detection bias (for further examples see Isaac & Pocock, 244 

2015), and there are likely to be many other situations in which temporal autocorrelation in 245 

detectability might occur (setting aside the apocryphal ‘car windscreen design effect’, in 246 

which declining insect splatter rates on cars could be due solely to the design of more 247 

aerodynamic modern cars; Vogel, 2017). 248 

A ‘detection effect’ might operate if the ability to capture or census individuals 249 

changes with ambient environmental conditions (regardless of their actual abundance). The 250 

most obvious example of this is that insect activity rates (and therefore probability of 251 
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detection) depend on ambient weather conditions (which are also changing through time). 252 

Detection can also change with increasing human alteration of other aspects of environmental 253 

conditions, such as artificial lighting at night. One way to monitor populations of the glow-254 

worm, Lampyris noctiluca (Linnaeus, 1767) (Coleoptera: Lampyridae) is by counting the 255 

numbers of glowing females per km of transect (Gardiner, 2007; Gardiner & Didham, 2020), 256 

but an increase in the intensity, or a change in the spectrum, of ambient background lighting 257 

through time (from street lights, for instance) could make it increasingly difficult to detect 258 

females, even when present. This is further complicated by the possibility that male glow-259 

worms have difficulty finding females against artificial background lighting, which could 260 

produce real population-level consequences over the longer term (Owens et al., 2020; Alan 261 

Stewart, pers. obs). 262 

Plausibly, in attraction-based trapping a ‘dilution effect’ could occur if an attractive 263 

stimulus from competing anthropogenic sources was itself increasing through time. For 264 

example, light trapping is used as a standard method for sampling moths, but in many rapidly 265 

urbanising areas the number of competing anthropogenic sources of light has been increasing 266 

dramatically through time (Gaston et al., 2015; Owens et al., 2020). Thus, moth captures 267 

might decline through time simply because individuals are attracted elsewhere and are not as 268 

detectable in the monitoring traps. In principle, this is no different than the well-known 269 

phenomenon that light traps catch more moths on dark moonless nights than during the full 270 

moon, as a result of less competition from other light sources (McGeachie, 1989). There 271 

might be a tendency to think of this as just an urban problem, but dilution effects could affect 272 

populations far from urban centers if artificial lighting affects regional dispersal. Such effects 273 

are not known for artificial lighting, but in agroecosystems, landscape-scale dilution effects 274 

from mass-flowering crops have caused reductions in the local capture rate of pollinators 275 

(Holzschuh et al., 2011), without necessarily changing regional population size. Naturally, 276 
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the converse ‘concentration effects’ from attraction-based trapping could plausibly occur as 277 

well, if there is temporal covariance between lower ambient resource attraction in the 278 

environment and consequent increased attraction to the baited trap, even if local population 279 

size does not change (for instance, in baited pitfall trapping for dung beetles during years of 280 

low dung availability, pheromone trapping for bark beetles when attractive volatile signals 281 

from host trees are low, or coloured pan trapping for bees during years of floral scarcity; e.g., 282 

Baum & Wallen, 2011). 283 

If artificial stimulus effects, such as attraction to light, are also compounded by an 284 

added component of source-sink dynamics in the potential mortality associated with the 285 

stimulus, then this could be a driver of real declines in abundance, over and above dilution 286 

effects (Minnaar et al., 2015). For instance, mortality is thought to be substantially higher for 287 

some species in artificially lit areas (e.g., where bat predation on moths is focused around 288 

streetlamps; Owens et al., 2020), imposing an extreme selection pressure on some local 289 

populations. Ironically, this ‘selection effect’ could also make evolving moths harder and 290 

harder to detect through time in light-trap monitoring surveys. For example, Altermatt & 291 

Ebert (2016) reared Yponomeuta cagnagella (Hübner, 1813) moths from populations in light-292 

polluted versus dark-sky regions of France and Switzerland, and found that moths from high 293 

light pollution areas had a significant (30%) reduction in flight-to-light behaviour. This type 294 

of selection effect could result in an overestimate of apparent declines in population size, due 295 

to increasing trap shyness through time.  296 

Finally, apparent local declines in abundance could occur due to a ‘depletion effect’ 297 

from removal sampling (e.g., kill-trapping of insects) in species that have low intrinsic rates 298 

of population increase and very low dispersal ability (e.g., large-bodied, flightless Carabidae 299 

beetle species in pitfall trap sampling programmes; Ward et al., 2001). The declines 300 

themselves are ‘real’ at the local level, but driven by the monitoring programme and not other 301 
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ecological causes that the monitoring programme was designed to test. We stress that it is 302 

unlikely for standardised quantitative monitoring programmes to cause population-wide 303 

decline due to over-collection (e.g., Gezon et al., 2015), although the potential risks to rare or 304 

localized species should always be evaluated carefully. In the sense that local depletion 305 

effects are unrepresentative of wider regional population changes, then this is a detection bias 306 

issue that arises due to low recruitment rates into the sampled population prior to the next 307 

sampling interval.  308 

 309 

The Andrewartha effect – When baseline identification, site selection, trend estimation, and 310 

detectability are all known to be unbiased, the natural temptation might be to infer that 311 

sample estimates of decline equate directly to the real magnitude of population decline. 312 

However, there are several reasons why caution is still needed in drawing population-level 313 

inference.  314 

The first reason is that many insect decline studies are founded on an implicit, but 315 

untested, assumption that insect dispersal rates are density-independent. Many (perhaps most) 316 

insect monitoring methods are based on detecting moving insects, such as beetles in pitfall 317 

traps, wasps and flies in Malaise traps, or aphids in suction traps. Logically this means that 318 

changes in sample abundance are only a good proxy for changes in population abundance if 319 

activity rates are density-independent. The problem is that at high population densities the 320 

frequency of dispersal events might be expected to increase in a density-dependent manner 321 

(e.g., due to local resource limitation), while at lower population densities the frequency of 322 

dispersal events might be expected to decline, and not necessarily in a linear manner (Denno 323 

& Peterson 1995; Enfjäll & Leimar, 2005; Régnière & Nealis, 2019). If this is generally the 324 

case, then movement-based monitoring techniques might overestimate population size at 325 

peak abundance, and underestimate population size in population troughs, potentially 326 
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resulting in over-estimates of rates of decline as populations get smaller (as well as the 327 

converse, as populations get larger). In rarer cases, the opposite pattern of negative density 328 

dependence in dispersal rates has also been shown in some damselfly species with unusual 329 

habitat requirements (Chaput-Bardy et al., 2010), or where conspecifics are potentially used 330 

as cues for habitat quality (Roquette & Thompson, 2007). In all of these cases, density-331 

dependence in insect movement rates is incompatible with a direct extrapolation from 332 

declining sample abundance to declining population size. We call this the ‘Andrewartha 333 

effect’ after the renowned Australian ecologist H.G. Andrewartha for whom density-334 

dependence was pure dogma, and all population processes were implicitly assumed to have a 335 

density-independent basis until proven otherwise (Andrewartha, 1961). 336 

 337 

The groundhog effect – A second potential problem in population-level inference is that 338 

sample abundances might falsely indicate a decline in population size through time because 339 

of a progressive phenological shift in insect activity in response to changing climate, or other 340 

environmental factors (Parmesan & Yohe, 2003; Cohen et al., 2018). We call this the 341 

‘groundhog effect’ because annual monitoring dates cannot simply be treated as ‘groundhog 342 

day’ for re-sampling each year across long time series, due to the very real possibility of 343 

phenological mismatch between sampling and activity periods through time. The extent of 344 

this effect is difficult to gauge, but will be most severe where monitoring windows were 345 

historically very narrow, and where the activity of target species is known to be sensitive to 346 

seasonal variation in environmental conditions (increasing the probability of peak seasonal 347 

abundances falling progressively further outside the monitoring period). Certainly, in recent 348 

studies, shifting phenological responses of species through time have been shown to explain 349 

significant variation in models of insect decline (Møller, 2019; Gardiner & Didham, 2020). 350 

The issue of shifting seasonal phenology clearly suggests that a fixed calendar-based 351 
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sampling approach can be inappropriate in some circumstances (as recognised in the pest 352 

management literature, where a degree-days approach is used), unless monitoring fully 353 

brackets the phenological window and models adjust for inconsistency of environmental 354 

responses through time (Gardiner & Didham, 2020). 355 

 356 

The popcorn effect – A final potential problem in population-level inference is validating 357 

the extent to which a small set of well measured local decline estimates can be extrapolated to 358 

reduction in local and regional abundance patterns that might ultimately lead to population 359 

extinction (in the extreme). In other words, the degree of covariance between local and 360 

regional estimates of population change is typically unknown (but see Oliver et al., 2017). 361 

There is a tendency to take a few kernels of local data and expand these into a superficially-362 

inflated shell of population response as a whole. In consumer psychology, the ‘popcorn 363 

effect’ is where a new phenomenon pops into a person’s mind and then that same 364 

phenomenon appears to pop up everywhere, in a form of unconscious bias, as if it is a 365 

generalised truth (also known as the frequency illusion effect, or Baader-Meinhof 366 

phenomenon). In the context of population change, the popcorn effect could result in 367 

misleading conclusions if there are substantial gaps in sample coverage of occupied versus 368 

unoccupied areas (e.g., the ‘missing zero effect’ referred to above), such that local declines 369 

are not representative of changes in either occupancy or average abundance across the region. 370 

 The correspondence between local decline estimates and regional occupancy trends 371 

probably depends on the commonness or rarity of species sampled. From first principles, very 372 

large local declines in aggregate measures of insect abundance, and to a certain extent 373 

biomass (e.g., Hallmann et al., 2017, 2020), must be driven predominantly by changes in the 374 

abundance of common, rather than rare species (Shortall et al., 2009). Thus, statistical 375 

support for the local decline in abundance of common species is unlikely to correspond 376 
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directly to a decline in range-wide occupancy or increased risk of extinction (barring a few 377 

celebrated examples, such as the extinction of the super-abundant Rocky Mountain locust 378 

Melanoplus spretus Walsh, 1866, Orthoptera: Acrididae, Lockwood, 2010). By contrast, it 379 

would be much more challenging to statistically ‘prove’ local declines in any of the rare 380 

species in the aggregate samples. Yet in a comprehensive analysis of occupancy trends for 381 

353 wild bee and hoverfly species in Great Britain from 1980-2013, Powney et al. (2019) 382 

showed that it was precisely these rarer species that declined the most in occupancy through 383 

time. There is of course the added complication that many occupancy studies, such as this, 384 

use relative measures of population change (e.g., inferring absences from the presences of 385 

other species in the same taxon). Equating relative population estimates to absolute 386 

population changes is not necessarily straight-forward (for instance, if all species are 387 

declining then such methods might fail to detect declines even though they are happening). 388 

Both occupancy and abundance trends provide unique, and complementary, evidence 389 

of declines, particularly if one is interested in the ecological or management implications of 390 

population declines (Wepprich et al., 2019). As Powney et al. (2019, p.3) state, “the lack of 391 

standardized monitoring data limits our understanding of the link between change in species 392 

occupancy, local abundance and [functional significance]” (pollination in their case). While 393 

rare species can be of great conservation significance, they might tend to have relatively little 394 

functional significance (in terms of contribution to ecosystem services such as pollination, 395 

pest control and so on), compared with abundant species (e.g., Winfree et al., 2015; but see 396 

Dee et al., 2019). Different management goals can require very different types of data and 397 

different requirements in terms of designing robust monitoring programmes (e.g., for 398 

pollination systems cf. LeBuhn et al., 2013; Gallant et al., 2014; and Bartholomée & Lavorel, 399 

2019). 400 

 401 
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A way forward 402 

Taken together, the seven potential challenges we have identified in accurately quantifying 403 

time series trends in insect populations suggest that much greater care is needed in evaluating 404 

the evidence for (and relative drivers of) declines. Equally, going forward, a number of key 405 

recommendations will be important to consider in monitoring prospective time series of 406 

recovery in insect populations following mitigation of threatening processes (Harvey et al., 407 

2020).  408 

(i) Baseline estimation – Studies should explicitly state the limits to inference on their 409 

selected ‘historical reference state’, in terms of time frame, representativeness of expected 410 

past conditions, and the intrinsic magnitude of inter-annual fluctuations in population 411 

abundance of the target species (as this determines the precision, accuracy and reliability of 412 

forecasting and backcasting). More than one reference site (preferably many) should be 413 

sampled to determine baseline conditions, when possible. Studies should consider site 414 

selection bias when choosing these reference sites, with the aim of minimising or mitigating 415 

non-random selection (including consideration of unoccupied, but potentially occupiable 416 

sites), and in all cases should report site selection criteria in subsequent publications 417 

(Fournier et al., 2019). Where multiple data types and approaches are used to establish 418 

baselines, the criteria for inclusion and integration should be transparent (Bonebrake et al., 419 

2010) 420 

(ii) Trend estimation – Under most circumstances, time series ‘snapshot’ comparisons 421 

between two time-points do not accurately reflect local abundance trends through time. At 422 

best, these will only show a statistical difference between the two years sampled. Where these 423 

pairwise snapshots could gain value in the future, however, is in the integration of many such 424 

pairwise estimates at many sites over many time intervals, to build a composite time series of 425 

evidence. For more robust direct measurements of population change, longer time series will 426 
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be needed. The minimum required length of time series depends on the magnitude of 427 

temporal fluctuations in abundance (a signal to noise ratio issue), and we follow Fournier et 428 

al. (2019) in suggesting that sampling artefacts in trend estimation decrease in time series 429 

with more than 10 time-points, and White (2019) in suggesting that statistical power 430 

increases in time series with more than 15 time-points. Cross-validation procedures (left-431 

censoring, leave-one-out cross validation against values with high leverage, and so on) 432 

effectively determine sensitivity of the overall trend to outliers in the data. We also encourage 433 

monitoring studies to standardise their presentation of population change estimates 434 

(standardised effect sizes for rates of change per annum, through time) and lay their 435 

predictive cards on the table by publishing forecast estimates in advance for the following 436 

year(s), then testing the accuracy of the observed vs. predicted population trajectories. 437 

Finally, given the intense demands on resources to support robust quantitative evaluation of 438 

population trajectories, even at a relatively limited number of sampling locations, we 439 

recommend that intensive monitoring programmes (typically 10-100 sites) conducted 440 

annually (e.g., Karlsson et al., 2020) are complemented by spatially extensive occupancy 441 

surveys (e.g., 100-1000 sites) at less frequent intervals (e.g., every 3 – 5 years) perhaps using 442 

citizen science programmes if data quality can be assured. The statistical bar for accurate, 443 

precise and reliable estimation of regionwide occupancy trends through time will be 444 

substantially lower (for most taxa) than it is for quantitative local abundance trends, making 445 

occupancy data the logical target for citizen science monitoring. 446 

(iii) Population inference – Studies using sampling methods in which the probability of 447 

capture of each individual is not uniform through time (which applies to essentially all 448 

quantitative insect sampling methods), should consider (and ideally test and report, where 449 

possible) the effects of relevant detection bias effects, density-dependent variation in capture 450 

probability, temporal covariance in the match between sampling period and insect activity 451 
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period, and the degree of covariance between local detection frequency and wider landscape-452 

level occupancy patterns and regional population size. 453 

At this time, there is no way of quantifying the magnitude of the collective bias that 454 

the seven issues identified here might create in insect time series data, or whether published 455 

decline estimates are typically under-estimates or over-estimates of true population change 456 

without conducting a formal meta-analysis across studies (using standardised metrics, which 457 

are not readily available). Subjectively, the examples presented above suggest to us that most 458 

biases will lead to over-estimates of reported rates of insect decline, particularly for the false 459 

baseline effect, the snapshot effect (and other published decline estimates from very short 460 

time series), the missing zero effect, most of the detection bias effects, and most inferences 461 

from sample-level to population-level statistics (the Andrewartha effect, groundhog effect 462 

and popcorn effect). The exception (in our subjective opinion, once again) could be the 463 

shifting baseline effect, in that current population trend estimates might underestimate the 464 

magnitude and rate of losses that would have been inferred if we had older and more reliable 465 

historical baseline estimates – simply because of the massive scale and intensification of 466 

anthropogenic impacts on insect populations that had already occurred prior to quantitative 467 

baseline monitoring. Converse examples of lower baseline levels in earlier time intervals, 468 

such as those found for moth biomass in the UK by Macgregor et al. (2019), and emulated 469 

here in Figure 1, serve as a useful foil for the general conceptual problem of shifting 470 

baselines, but may be the exception rather than the norm (in our opinion). 471 

Despite many existing challenges and pitfalls, opportunities for creative exploitation 472 

of existing baseline data (Bonebrake et al., 2010; Habel et al., 2019; Stepanian et al., 2020) 473 

and novel computational approaches (e.g., Outhwaite et al., 2018) may resolve some issues. 474 

Drawing inspiration from climate science, which has sought to describe trends and attribute 475 

drivers in much the same way, researchers could attempt to cross-validate proxies for insect 476 
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abundance and diversity in overlapping time periods to create a coherent time series (Figure 477 

2a). Tools for measuring population variation over time and accounting for complex 478 

ecological information (Saunders et al., 2019; Bahlai & Zipkin, 2020) already exist in 479 

different fields such as paleoecology (e.g., Wilf et al., 2001; Howard et al., 2009), and 480 

conservation genomics (Beichman et al., 2018). Other emerging approaches, like using 481 

machine learning to reverse-engineer the drivers of decline from empirical trends, may 482 

dramatically improve analysis and interpretation (Martin et al., 2018). The accessibility of 483 

such advanced data science techniques for entomological researchers is increasing, including 484 

through creative use of data science competitions to enhance inter-disciplinary collaboration 485 

(Humphries et al., 2018). 486 

Looking forward to the future of insect monitoring, we must take into account the root 487 

causes of our current data deficiency. Collection techniques have evolved though time and 488 

vary with location, but ready access to historical data is rare. Emerging technologies could 489 

facilitate the collection and availability of large quantities of data more cost-effectively, and 490 

at temporal and spatial resolutions that are currently not possible (Figure 2b). Conservation 491 

genomics, for instance, takes an entirely different approach to assessing population size 492 

variation over time (Beichman et al., 2018; Kent et al., 2018; Noskova et al., 2019). 493 

Bioacoustics is a rapidly maturing field of ecological data science, with extensive use in 494 

studies of marine mammals, birds, and some stridulating insects such as orthopterans. If we 495 

are less concerned with identification of species, but more with total abundance, then 496 

bioacoustics could also be applied to functionally relevant phenomena such as flower 497 

visitations based on insect buzzes (Jeliazkov et al., 2016). Another technology that is rapidly 498 

gaining traction in biological monitoring is the use of specialised entomological radar (Drake 499 

& Reynolds, 2012; Hu et al., 2016; Wotton et al., 2019) and more recently dopplerised 500 

weather radar networks, which may span continents (Hüppop et al., 2019). Filtering the 501 
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insect ‘noise’ from the meteorological signal in weather radar data can create a substantial, 502 

standardised dataset for insect monitoring through time (e.g. Stepanian et al., 2020). Further 503 

advances in technologies such as LiDAR (light detection and ranging; Kirkeby et al., 2016) 504 

and camera transects (Ruczyński et al., 2020) offer the prospect of new tools in the future. In 505 

many cases, species-level identification can be a challenge with remote sensing methods, and 506 

will require careful validation against conventional measures of insect population change 507 

(e.g., Wotton et al., 2019; Stepanian et al., 2020) until further tools are developed, but they 508 

show promise in helping to resolve some key issues in entomological data collection. 509 

Finally, we encourage monitoring programmes to expand collaboration between 510 

citizen scientists and researchers (e.g., MacPhail et al., 2019), in spite of some caution that 511 

has been raised about data quality, repeatability and taxonomic identification (Stribling et al., 512 

2008; Kremen et al., 2011; Falk et al., 2019). There may, however, be a need to revisit the 513 

relative costs and benefits of different citizen science approaches (including the opportunities 514 

and risks of integrating artificial intelligence; Wäldchen & Mäder, 2018; Ceccaroni et al., 515 

2019) in order to generate recommendations about which tools to adopt in insect population 516 

monitoring. The goals of citizen science programs vary along a continuum from casual 517 

engagement to intensive standardised data collection (e.g., Figure 2b), and effective citizen 518 

science programs designed to monitor insect population trends should consider: (i) where 519 

along that continuum is optimal for the scale and quality of data that are required, and (ii) 520 

how best to support the citizen scientists who take part in such activities (training, rewards, 521 

etc) (van der Wal et al., 2016). Note that these data and analytical considerations are 522 

inherently interlinked. Citizen scientists might help digitise museum collections to facilitate 523 

phenotypic and genetic analysis, as well as deploy bioacoustics sensors. Researchers might 524 

develop mathematical models that reveal previously unknown predictors which can then be 525 

incorporated into future monitoring technologies. Radar technology might guide the design of 526 
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citizen science monitoring schemes through stratified sampling of landscapes. Only through 527 

the full integration and cross-validation of these different data sources and approaches 528 

(Figure 2a,b) will we be able to realise their full potential for monitoring insect population 529 

trends. 530 

 531 

Conclusion 532 

We have made the case for a more critical approach to the study of ‘insect declines’ that 533 

avoids methodological errors to produce a robust analysis of population trends through time 534 

and the phenomena that drive them. We propose three key areas in which more focused 535 

attention is needed: on baselines, trends, and population-level understanding. The future is 536 

bright for insect monitoring, with new technologies coming online for the study of insect 537 

abundance. However, the past remains dark due to the paucity of data. We suggest that 538 

overcoming the lack of historical context will require collaboration across ecological and 539 

statistical subdisciplines to share and cross-validate methods and datasets, in order to build a 540 

much more robust composite time series of current trends. These quantitative considerations 541 

are only part of the picture, of course, and may be a moot point if we do not reinforce the 542 

importance of insects and their conservation on the public and policy agenda (Saunders et al., 543 

2020b). The recent media attention creates an exceptional opportunity for improved public 544 

understanding, and for broader funding of insect research. Just as for other components of 545 

biodiversity, raising the profile of insects and promoting a positive image may increase their 546 

perceived value to a wider sector of society and pay dividends for future conservation and 547 

restoration. A rich academic literature exists on the psychology and promotion of insects as 548 

food and feed (van Huis, 2017; Collins et al., 2019), for instance, and this type of ‘marketing’ 549 

approach applied to promoting the values of insects themselves could be a proactive way 550 

forward for insect conservation (Hart & Sumner, 2020). Once we reinforce this social licence 551 
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to operate, we need to ensure that we have robust science to document ongoing trends and to 552 

support future action. 553 
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 876 

Figure 1. Schematic representation of some of the potential pitfalls in quantitative estimation 877 

of population change through time. The trend line is a hypothetical (not empirical) time series 878 

of insect abundance values over 55 years, loosely based on the form of the trend line for moth 879 

biomass change in the UK in Macgregor et al. (2019). Without good knowledge of historical 880 

conditions, perception of changes through time can be strongly biased by shifting baseline 881 

effects. Moreover, any non-random bias toward an above-average starting point in a time 882 

series comparison could lead to a false baseline effect. This might be particularly problematic 883 

in simple pairwise snapshot effects if there is also bias in the selection of the contemporary 884 

time-point for comparison. These kinds of effects are likely to be most severe when inter-885 

variability in abundance is high. Longer time series will increase the signal to noise ratio and 886 

statistical power. Cross-validation approaches, such as left-censoring and/or right-censoring 887 

time series, have been suggested to test the sensitivity of trends to underlying bias in the data. 888 

  889 
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 890 

Figure 2. The range of complementary datasets that feed into entomological monitoring 891 

initiatives. (A) Datasets tend not to cover the most important period of monitoring: the time 892 

before substantial human impact. Attempts to integrate across these data sources have been 893 

minimal but are essential to understand older patterns and establish baselines. (B) The goals 894 

of citizen science monitoring programs vary on a continuum ranging from high emphasis on 895 

broad public engagement and education (e.g., for species that are easily identified, such as 896 

butterflies in backyard garden counts, or where substantial expert assistance can be delivered 897 

at specific times, such as in a BioBlitz), through to a higher emphasis on the collection of 898 

standardised quantitative time series data (e.g., for recording changes in regional occupancy 899 

patterns through time, or standardised transects walks for temporal trends in abundance) 900 

potentially requiring a greater investment in training of citizen scientists and data validation 901 

by experts.  902 
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