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Abstract  24 

Experimental diets were formulated to evaluate a “pure” poultry meat meal (PMM) 25 

source in diets formulated for juvenile gilthead sea bream (Sparus aurata L.). The digestible 26 

protein contribution of fish meal in a control diet was substituted by 25, 50 and 75% of a 27 

processed poultry meat meal (PMM) on a digestible crude protein (DCP) basis and by 5% and 28 

10% for an enzyme treated feather meal (EFM) and also a spray-dried haemaglobin meal 29 

(SDHM) respectively. In a consecutive trial, diets were designed to assess the value of a “pure” 30 

(defatted) poultry protein substituting the fish meal (FM) protein content. Experimental diets 31 

included: a control diet, two test diets where 75% of FM was replaced by a full fat PMM 32 

(PMM75) or a defatted grade of PMM (dPMM75) and two test diets where 50% of FM was 33 

substituted for defatted PMM (dPMM50) or a 50:50 blend of soybean meal and defatted PMM 34 

(SBM/dPMM) to produce a composite product This soybean/dPMM blend was tested to 35 

enhance the nutritional value of this key plant ingredient commonly employed in sea bream 36 

diets that can be deficient in specific amino acids and minerals.  In the first trial, gilthead sea 37 

bream grew effectively on diets containing up to the 75% replacement of FM attaining a mean 38 

weight of 63.6 g compared to 67.8 g for the FM control fed group.  For the consecutive trial, the 39 

fishmeal based control diet yielded the highest SGR followed by dPMM50 and SBM/dPMM 40 

blend inclusion but were not significant.  41 

Carcass FA profiles of gilthead sea bream conformed to the expected changes in relation 42 

to the dietary FA patterns, with the 18:1n-9 representative of the poultry lipid signature 43 

becoming more apparent with PMM inclusion. The ratio of n-3/n-6 fatty acids was greatly 44 

affected in sea bream fed the full fat PMM at 75% inclusion due to fish oil exclusion. 45 
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De-fatted dPMM however allowed more of the fish oil to be used in the diet and 46 

reducing this latter effect in sea bream carcass hence restoring the higher total omega-3 HUFA 47 

fatty acids namely EPA & DHA and n-3/n-6 ratio.  It is concluded that poultry meat meal can be 48 

modestly incorporated into formulated diets for seabream and can be used in conjunction with 49 

soybean meal without any fundamental changes in performance and feed efficiency. 50 

 51 

KEY WORDS: poultry meat meal, de-fatted meal, enzyme treated feather meal, spray-52 

dried haemoglobin meal, gilthead sea bream, growth, feed utilization, HUFA fatty acids (n-3/n-53 

6 ratio,  54 

Introduction 55 

The scope for replacing fish meal (FM) in feeds for commercially valuable fish species in 56 

aquaculture is of prime importance to meet sustainable production in many regions of the world 57 

(Hatlen, Jakobsen, Crampton, Alm, Langmyhr, Espe, & Waagbø, 2015; Moutinho, Martínez-58 

Llorens,Tomás-Vidal, Jover-Cerdá, Oliva-Teles, & Peres, 2017). Suitable alternative proteins 59 

have been evaluated with much success, most notably those obtained from plant by-products 60 

such as soybean meals (SBM), various legumes and pulses e.g. beans and peas (Drew, 61 

Borgeson, & Thiessen, 2007; Gatlin, Barrows, Brown, Dabrowski, Gaylord, Hardy, Herman, 62 

Hu, Krogdhal, Nelson, Overturf, Rust, Sealey, Skonderg, Souza, Stone, Wilson, & Wurtele, 63 

2007; Hardy 2010; Kumar, Sándor, Nagy, Fazekas, Havasi, Sinha, De-Boeck, 2016; Rostamian, 64 

Eagderi, S., Masoudi, Salar & Asadian, 2016; Novriadi, Spangler, Rhodes, Hanson & Davis 65 

2017).  66 

In Europe, due to public concern and legislative control, limitations exist on exploiting 67 

animal derived proteins and fats in aquafeeds (SECA 2010). This has been the case for over a 68 
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decade, but specific category III sources (material derived from animals fit for human 69 

consumption) are now allowed after recent approval by the European Food Safety Authority 70 

(EFSA 2013). These currently include blood meal (BM) from porcine origin and now rendered 71 

poultry by-products (PBM) are once again feasible in commercial fish diets within the European 72 

Union (EU). Animal by-products are routinely available for use in compound diets for fish and 73 

crustacean throughout the world (Bureau Harris, Bevan, Simmons, Azevedo & Cho 2000; 74 

Moutinho et al. 2017; El-Husseiny Hassan, El-Haroun, & Suloma 2018). In the 1990’s bovine 75 

spongy encephalopathy (BSE) considered to be the major constraint of using animal by-product 76 

in UK and Europe. The nutritional potential of by-products derived from poultry as secondary 77 

protein sources in marine fish diets have been advocated in numerous studies to date. Since 78 

then, there have been considerable progressions globally in the use of high quality low 79 

temperature fish meal (LT FM’s) and a new generation of processed animal by-products from 80 

category III sources involving optimized temperature and pressure treatments with enzyme 81 

hydrolysis. These have provided a prerequisite for more extensive nutritional trials involving 82 

more balanced diet substitutions based on digestible protein, amino acids and energy basis. 83 

Similarly, novel processes outlined by (Rebafka & Kulshrestha 2009; El-Haroun, Azevedo & 84 

Bureau 2009; Abwao, Safina, Ondiba, Ogello, & Obiero 2017) such as improved cooking and 85 

drying temperatures similar to those used for FMs are a better strategy to improve the quality 86 

and nutrients availability of rendered animal proteins. Following the same pattern, addition of 87 

exogenous enzymes to the batch cooker, associated with low-temperature and low-pressure 88 

processing, has been one of the alternatives used to mitigate effects of overheating the feather 89 

meal, improving the quality of the end product and saving energy (Pedersen et al. 2012).  90 
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The present investigation was performed to validate the suitability of different grades and 91 

processing of PMM as a replacement for fishmeal in diets for gilthead sea bream juveniles. We 92 

aimed to confirm their effects on growth performance feed utilization efficiency and changes in 93 

muscle fillet lipid composition. Additionally, information about chemical composition and 94 

nutritional values of specialized blood protein and feather meals as supplements in diets for such 95 

species are required for feed manufacturers. Therefore, evaluation of category III premium 96 

processed animal proteins (PAP’s) is a necessary step towards their potential re-introduction 97 

into the Aquafeed sector in Europe. More economic production of such high value marine fish 98 

species such as gilthead sea bream based on a range of alternative feed ingredients and animal 99 

by-products are destined to be at the forefront of these objectives. 100 

It was also of interest to examine a blend of soya bean meal with PMM as a strategy to evaluate 101 

any complimentary benefits of such combinations in complex formulations with lower fishmeal 102 

inclusions typical in modern day formulations for marine fish species. These diets were 103 

formulated under the advice of the collaborating company to extend the use of PAPS in marine 104 

fish diets. It was not the aim to correct for any specific amino acid deficiencies such as 105 

methionine but to test the maximum feasible inclusion of PMM. Enzyme treated feather meal 106 

(EFM) and also a spray-dried hemoglobin meal (SDHM) were included as supplements to 107 

evaluate their nutritional enhancement potential in terms of their protein contribution to partially 108 

reduce the fish meal content of seabream diets. Additionally, the opportunity to record the fatty 109 

acid composition of sea bream fed a fish meal control diet with fish oil against higher 110 

substitution of Poultry Meat Meal was undertaken to assess the extent of changes in the major 111 

Omega-3 (n-3) HUFA’s such as EPA and DHA (eicosapentaenoic and docosahexaenoic acids 112 

respectively). This is because of the high fat content in PMM and a consequent reduction in fish 113 
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oil to accommodate a consistent diet lipid content. A de-fatted PMM was also tested to allow 114 

fish oil in the formulation to maintain the optimum level of total n-3 in the diets. This is 115 

important from the retail and consumer perspective and is of topical interest. 116 

Materials and methods 117 

 Generic fish and experimental conditions 118 

The first feeding trial was conducted in a closed re-circulating seawater system conforming 119 

to a Recirculating aquaculture system (RAS) design for specific nutrition research. The 120 

experimental facility consisted of sixteen 110-L volume fibreglass (square) tanks connected to a 121 

biological and mechanical filtration unit (sponge filters, protein skimmer and submerged 122 

biological filter beds). Each tank was supplied with filtered seawater (salinity: 33 ± 1 ppt; 123 

temperature: 22 ± 1 ºC) at a rate of 10 L min-1 and continuously aerated so that oxygen levels 124 

were kept close to saturation. Besides, natural seawater was used to renew ~20% of the water 125 

system volume every week. Throughout the study, monitoring of the principal water quality 126 

parameters resulted in average values of: 7.5 for pH (Hanna pH210 benchtop meter), 0.15 mg L-127 

1 for total ammonia nitrogen (Hanna chemical test kits) and 91.5% saturation for DO (YSI 128 

model 85 portable meter). Photoperiod followed a cycle of 12 h dark, 12 h light. Fish husbandry 129 

and experiments conformed to the local institutional Animal Welfare Ethics Committee Codes 130 

of Practice and were in accordance with the UK Animal Scientific Procedures Act, 1986. At the 131 

beginning of the experiment, a pooled sample of fish (25 seabream) was taken for determining 132 

chemical body composition (initial carcass sample). At the end of the experiment, 3 fish were 133 

sampled from each tank, 9 per treatment in total. Fish were killed with an excess concentration 134 

of anesthetic (MS 222, Tricaine methanesulfonate) and then individually weighed. The fish 135 
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were then pooled per tank (final carcass sample) for chemical analyses. The combined fish 136 

samples were ground in a coffee grinder and stored at −20 °C until analyzed. 137 

Trial 1 138 

Fish stock and feed management 139 

The juvenile gilthead sea bream (Sparus aurata L.) used in Trial 1 were obtained from a 140 

commercial hatchery in France (Aquastream, Ploemeur) and acclimatized to the environmental 141 

conditions for a period of 4 weeks prior to trial commencement. During that period, they were 142 

fed a commercial marine fish diet (Skretting Salmon Nutra) twice daily to apparent satiation. At 143 

the start of the trial, fish were group weighed (initial individual weight: 22.7 ± 0.5 g, mean ± 144 

SD) and re-stocked at a density of 25 fish per tank. Fish were hand fed to 3% body weight per 145 

day twice daily. Following the one day of feed deprivation each week, the fish were weighed, 146 

and the feeding rate recalculated to correct for biomass changes and maintain accurate feeding 147 

level. 148 

Diet preparation and experimental design 149 

For this investigation, FM (LT94) was provided by Skretting Ltd, Longridge, Preston, 150 

Lancashire, UK and the protein sources used in this trial were obtained from Prosper De Mülder 151 

Group, Market Harborough, UK (PMM) (Now Saria Group GmbH) and from Skretting Ltd, 152 

Longridge, Preston, Lancashire, UK (Hi-Pro soybean meal, SBM). The processing method and 153 

origin of poultry derived-proteins included in the four experimental diets was as follows: the 154 

poultry meat meal (PMM) grade is derived from mixed species poultry material (i.e. chickens, 155 

turkeys, ducks and geese slaughtered fit for human consumption) minced to < 3 mm and 156 

introduced into a continuous process (Rotadisc) in the presence of natural fats to evaporate the 157 

water, and subsequently sterilized (residence time: 90 min, maximum temperature: 125 ºC). The 158 
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resulting material is concentrated by an expeller press to remove fat. The protein rich fraction is 159 

subsequently cooled and milled. From this product, the enzyme treated feather meal (EFM) was 160 

provided by Prosper de Mülder Group (now Saria Group GmbH), Market Harborough, U.K. Mixed 161 

feathers are heated to 50 °C for 30 min in the presence of a commercial enzyme additive of fungal 162 

source (Synergen™, Alltech Biotechnology) containing amylase, cellulose, phytase, xylanase, -163 

glucanase, pectinase and an active protease, 12,700 HUT g-1 (E.C.3.4.23.18). This enzyme 164 

hydrolysis step (keratinolysis), likely results in the cuticle layer being partially degraded and smaller 165 

peptides produced, however there appears to be no effect on di-sulphide bonds in Keratin per se 166 

according to Considine (2000) although the concentration of cysteine increases in the enzyme 167 

treated product. The treated feathers are subsequently processed at 200 kpa for 15 min at a 168 

temperature of 125 °C. The resulting ground meal is dried in a Rota-disc drier to 5% moisture and 169 

ground to an average particle size of 300 microns (µ). 170 

The spray-dried haemoglobin meal (SDHM; Spray-dried porcine animal blood cells-AP301®) was 171 

supplied by APC Inc. Europe S.A., Barcelona, Spain. The specifications of the different test 172 

ingredients utilized in both trials are given in Table 1. A FM based diet served as the control dietary 173 

formulation (Table 2). Using pre-established digestibility coefficients (Davies Gouveia, Laporte, 174 

Woodgate & Nates 2009), five experimental diets (PMM25, PMM50, PMM75, SDHM10 and 175 

EFM5) were derived from the basal formulation to achieve specific replacement of the protein 176 

component of FM replacement levels with various animal by-products (25, 50 and 75%) for PMM; 177 

5% for EFM and 10% for SDHM while maintaining digestible protein and lipid levels constant at 178 

40% and 15% respectively across all dietary treatments in compliance with the nutritional 179 

requirements for gilthead sea bream NRC (2011). During feed preparation, all macro-ingredients, 180 

vitamins and minerals premixes were uniformly mixed together before the addition of marine fish oil 181 
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and de-ionised water. The resulting mixture was extruded through a 3 mm aperture die of a California 182 

pellet mill. Pellets were air-dried by convection in a warm air cabinet (37 ºC) and stored in plastic 183 

sealed containers throughout the duration of the study. Each diet was fed to 3 replicate groups of fish 184 

for a period of 9 weeks. 185 

Trial 2 186 

Fish stock and feed management 187 

The juvenile gilthead sea bream (Sparus aurata L.) used in Trial 2 were obtained from a 188 

commercial hatchery in France (Aquastream, Ploemeur) and acclimatized to the environmental 189 

conditions for 4 weeks before the start of the experiment. During that period, they were fed a 190 

propriety commercial marine fish diet (Skretting Salmon Nutra) as in trial 1. At the start of the 191 

trial fish were group weighed (initial individual weigh: 10.07 ± 0.05 g, mean ± SD) and re-192 

stocked at a density of 50 fish per tank. Fish were hand fed to 4% body weight per day twice 193 

daily and corrected at each weekly weighing as described in trial 1.  194 

In Trial 2, five semi-purified diets were designed to attain a target of 400 gkg-1 digestible 195 

protein, 150 gkg-1 lipids and formulated to meet current known nutritional requirements for 196 

gilthead sea bream juveniles (Table 3). For the 4 experimental diets, the FM in the control diet 197 

was partially replaced by the following ingredients: PMM (75% FM substitution level), a 198 

defatted grade of the same PMM (50 and 75% FM substitution level) and a 50:50 mixture of 199 

defatted PMM (dPPM) provided by Prosper de Mülder Group, Market Harborough, UK and 200 

SBM (Hi-Pro SBM; 50% FM replacement level) provided by Skretting Ltd, Longridge, Preston, 201 

Lancashire, UK. In this study, a further defatting of the material was achieved.  Deffated PMM 202 

(dPMM) was obtained following hexane extraction: PMM was soaked and mixed for 24 h and 203 

filtered through a 100 µ sieve to remove the fat and solvent mixture; the defatted sample was 204 
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then air dried to remove traces of solvent. Each diet was fed to 3 replicate groups of fish for a 205 

period of 6 weeks. 206 

Water quality 207 

The water temperature was maintained at 25±1 0C for the sea bream for best growth) with a 208 

salinity of 33-34 ppt. The photoperiod was maintained at12-h light: 12-h dark by means of 209 

artificial daylight simulation. All fish were held in 65 L fiberglass tanks (40 cm length, 17.5 cm 210 

width and 27-38 cm depth) on the basis of the Guelph model (tanks were made with a sloping 211 

floor so that faecal material could be voided and recovered in external conical transparent 212 

separation chambers fitted with a valve). Within the system, the flow rates applied enabled a 213 

complete exchange of three to five volumes per hour. All principal water quality parameters 214 

were controlled on a regular basis during the course of the study to remain within satisfactory 215 

limits. 216 

Analytical methods of feeds and body composition 217 

Proximate analysis of ingredients, experimental diets and fish conformed to standard AOAC 218 

methods (AOAC 2003). Essential amino acids were determined by Eclipse Scientific Group 219 

(Chatteris, Cambrideshire, England) using standard protocols. Samples were first digested using 220 

6N HCl and tryptophan treated separately with 4 N Methane sulphonic acid. Digested samples 221 

were subsequently diluted with HPLC grade water. All samples were subjected to pre-column 222 

derivatisation with o-Phthaldialdehyde OPA with gradient HPLC using a Nucleosil C18 5 um, 223 

60 x 4 mm, Knauer column at ambient temperature with subsequent fluorescence detection at 224 

330-365 nm excitations and 440-530 nm emission. A gradient elusion was employed with the 225 

mobile phase being; A, 0.1 M sodium acetate, pH 6.95 and methanol: tetrahydrofuran (92.5: 5: 226 

2.5) and B, methanol: tetrahydrofuran (97.5: 2.5) with a flow rate of 1.2 ml min-1. In Trial 2, the 227 
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fatty acid profile of the experimental diets was determined (FM, PMM75, dPMM75) along with 228 

the corresponding final carcass samples by Eclipse Scientific group; Cambridgeshire; UK; 229 

(Table 4) following FAME preparation and subsequent GLC separation and quantification with 230 

standard FAME fatty acids (Table 7). Table 1 shows the nutritional composition including the 231 

essential amino acid profiles of the test ingredient sources. Both tables 2 and 3 present the diet 232 

formulations, their nutritional analysis and also essential amino acid profiles for trials 1 and 2 233 

respectively. 234 

Statistical treatments 235 

Statistical analysis of data was performed using one-way analysis of variance (ANOVA) at 236 

the 5% level of significance. Tukey’s post hoc analysis was applied to mean values where 237 

appropriate (Minitab 13 for windows, Minitab Inc., State College, USA). 238 

Results 239 

Trial 1  240 

Growth performance and feed utilisation 241 

Growth performance and feed utilization for gilthead sea bream fed the experimental diets 242 

are presented in Table 4. Fish showed on average a 200% increase in weight gain with all 243 

treatments producing specific growth rates (SGR’s) comparable to the control diet, there were 244 

no significant differences (P = 0.71) in SGR between (FM) diet 1.7 % day-1 and the highest 245 

PMM level of 75% dietary protein replacement (1.6 % day-1), however a significant (P<0.05) 246 

reduction of feed intake with increasing PMM substitution apparent at the highest level (0.9 g 247 

fish-1 day-1) compared to (1.0 g fish-1 day-1) for the FM fed group.  248 

However, a significant (P<0.05) decrease of feed conversion ratios (FCR) values were 249 

obtained for SDHM10, EFM5 and PMM25 groups (1.30-1.37), also, fish fed higher inclusion 250 
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level of PMM showed improving in FCR (1.37) compared to the FM group (1.43) consistent 251 

with the other parameters but not deemed significant (P<0.05).  252 

A weight gain (g) and weight gain (%) of gilthead sea bream fed the SDHM10 and PMM25 253 

diets were apparently more efficient (P≥0.05) than fish fed FM, following the same pattern 254 

converting dietary protein to live weight gain (protein efficiency ratio (PER) were 1.62 and 1.60 255 

vs. 1.5 for fish fed SDHM10 and PMM25 diets vs. fish fed FM (Table 4). On the other hand, the 256 

PER of fish fed PMM75 was significantly (P<0.05) lower (1.4) compared to all other 257 

experimental groups (1.5-1.6, Table 6). However, there were not reflected by the direct 258 

calibration of apparent net protein utilization (aNPU) for a group of fish which ranged from 259 

21.4% to 23.6%. No statistical differences (P>0.05) were found in the proximate composition of 260 

whole fish carcass (Table 4). Considering the pattern of protein retention relative to the amount 261 

of protein fed, aNPU observed across treatments were found not to be statistically different 262 

(P>0.05). 263 

Health related parameters 264 

Following the 9-week period in trial 1, the different diets tested did not significantly 265 

(P>0.05) influence the condition factor (K) or hepato-somatic index (HSI) of the fish. No 266 

significant (P>0.05) differences were found in the hematocrit value, haemoglobin concentration 267 

or Red Blood cell count (RBCC) among the blood samples analysed. Values ranged from 36.5 268 

to 42.0 (Hct, %), 7.2 to 7.8 (Hb, g dL-1), 2.2 to 2.7 (RBCC 106 mm-3) respectively within the test 269 

groups, against 39.00 (Hct, %), 7.7 (Hb, g dL-1) and 2.4 (RBCC 106 mm-3) for the control diet 270 

(Table 5). 271 

Trial 2  272 

Growth performance and feed utilisation 273 
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After 42 days of feeding, significant (P<0.05) differences were found in live weight gain and 274 

SGR of gilthead sea bream juveniles receiving PMM and defatted PMM (dPMM; Table 6). Fish 275 

fed with the control diet had a mean weight gain that was significantly (P<0.05) higher than 276 

those fed with PMM75 and dPMM75. The same pattern was observed with SGR (FM: 3.6% / 277 

day; dPMM50: 3.5% / day; SBM/dPMM: 3.4% / day; PMM75: 3.2 % / day and dPMM75: 3.2% / 278 

day).  279 

Feed conversion ratios were significantly (P<0.05) improved for diets including the 280 

alternative protein sources in comparison with the control diet. A similar trend was observed for 281 

PER: fish fed the blend of SBM/dPMM and dPMM75 were more efficient at converting protein 282 

into live weight gain with PERs of 1.5 and 1.3 respectively. Likewise, superior aNPU values 283 

were obtained form the PMM75 and dPMM75 levels with the PMM75 (aNPU ~25.4%) 284 

significantly (P<0.05) better than the FM fed gilthead sea bream (21.6%). The SBM/dPMM 285 

blend also resulted in a significantly (P<0.05) higher aNPU (27.76%) compared to the dPMM50 286 

and FM groups (22.7% and 21.6% respectively). The PER from gilthead sea bream fed the 287 

blend of dPMM75 and SBM/dPMM was significantly (P<0.05) higher (1.3 and 1.5) 288 

respectively compared to the FM group (1.1).  289 

No major significant differences (P>0.05) were observed in gross nutrient composition of 290 

fish carcasses analyzed at the end of this trial (Table 6). The FA analysis of the PMM diets 291 

demonstrated the expected trend associated with diet lipid composition (i.e. lipid sources; Table 292 

7). In the control diet, where lipid was primarily of marine origin, the ratio of n-3/n-6 fatty acids 293 

was highest (2.53). In PMM75, where poultry fat accounted for ~50% of the total lipid content, 294 

this ratio decreased to 0.41. This was largely a consequence of a reduction in 20:5n-3 (from 295 

1.4% to 0.8%) and 22:6n-3 (from 1.9% to 0.9%) as well as an augmentation of 18:2n-6 (from 296 
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1% to 6.7%). The amount of animal fat present in PMM 75 diet was also reflected by an 297 

increase in 16:0 and 18:1n-9 when compared to the control diet. Finally, the utilization of a 298 

defatted source of PMM in dPMM75 allowed restoration of the n-3/n-6 FA’s ratio at 1.14. For 299 

this diet, compared to the one where 75% of FM was replaced with full fat PMM, the amount of 300 

18:1n-9 decreased from 32.9% to 24.3% while the level of 18:2n-6 varied from 6.7% to 4.4% in 301 

the tissues of gilthead sea bream. 302 

Discussion 303 

This evaluation of a premium grade PMM and refined blood and feather meal proteins in 304 

diets for gilthead sea bream follows the previous foundation studies of Davies et al. (2009). 305 

Consequently, the trials acted as a prerequisite for more accurate substitution of processed 306 

animal proteins (PAP’s) into balanced diet formulations for this species in contemporary aqua 307 

feeds. On this basis, the substitution of FM with PMM and EFM as well as SDHM was effective 308 

due to prior knowledge of the protein and energy digestibility data compared to the other 309 

previous studies using gross nutrient levels. 310 

Trial 1 validates the efficacy of using up to 75% of the dietary protein as PMM (57% of diet) 311 

with performance of juvenile gilthead sea bream attaining the same criteria measured as those 312 

fed a control diet. There was only a slight indication of a reduced palatability encountered at this 313 

level for this ingredient, with seabream adapting to its inclusion. Growth and feed utilization 314 

indicators supported the use of PMM and strategic use of EFM and SDHM as reported for this 315 

fish species (Serwata 2007; Yones & Metwalli 2016; El-Husseiny et al. 2018). The overall EAA 316 

profile of the PMM75 diet was similar to a high-quality FM protein control. In our 317 

investigation, we replaced LT FM with the test ingredient at commercially acceptable levels and 318 

found that a majority of EAA’s exceeded requirement levels as expressed as percent of protein 319 
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for all diets, except for 75% inclusion of PMM where both methionine and histidine was below 320 

the reported requirement for sea bream by Peres & Olivia-Teles (2009). It should be noted that 321 

these workers used a mixture of whole protein and crystalline amino acids in semi-purified diets 322 

for sea bream. Given the inefficiency of crystalline amino acids utilization in some species this 323 

could elevate the apparent requirements of essential amino acids and is not strictly comparable 324 

with the present study with whole protein sources.  A better comparison arises from the data 325 

found for sea bream and related species in the NRC 2011 Nutrient Requirements of Fish and 326 

Shrimp. 327 

The trend in decreasing SGR for gilthead sea bream, although deemed not significant, may 328 

have reflected these shortages of EAA’s. Thus, specific deficiencies of these amino acids may 329 

have caused reduction in growth performance; furthermore, the lower growth performance 330 

observed in gilthead seabream may be due to a slightly reduced palatability of the PMM 331 

compared to fishmeal. The other factor that could be the major reason for declining the growth 332 

may be due to the varying quality of tested PMM, which are significantly influenced by their 333 

processing methods (Shapawi, Ng & Mostafa 2007; Rostamian et al. 2016). It was interesting 334 

that diets only supplemented with either a SDHM and and EFM showed as good a performance 335 

as the FM group and superior to the higher levels of PMM inclusion (50 and 75%). These diets 336 

complied with the amino acid pattern of the fish meal diet meeting all EAA requirements for 337 

this species.  These results could be explained due to the use of the commercial enzyme 338 

SynergenTM that can help to enhance the degradation of the keratin structure in feather meal to 339 

small peptides and increase the overall cysteine amino acid concentration in the feather meal; 340 

however we based our EFM inclusion on a previous protein digestibility coefficient of 25% for 341 

gilthead sea bream (Davies et al. 2009) although individual EAA digestibility may be higher for 342 
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this species. In the latter study, higher inclusions of feather meal were used for digestibility 343 

determination and this may have explained the much-reduced DC for this ingredient. Only 5% 344 

feather meal was included in the current investigation and may not be strictly comparable to the 345 

conditions of the study by Davies et al 2009. 346 

 The FCR and PER values were significantly improved indicating enhanced nutritional value 347 

of SDHM10. Indeed, combinations of animal proteins may show complementary amino acid 348 

profiles. Such synergistic characteristics of complementary proteins need to be examined for 349 

further FM replacement by exploring various protein blends. For example, the histidine level in 350 

SDHM is appreciably higher than those found in FM and PMM. Although isoleucine 351 

concentration is lower in SDHM, it is nonetheless a valuable source of leucine (12% of total 352 

protein) which is an EAA for gilthead sea bream (4.5% of dietary protein). 353 

In Trial 2, the control diet produced the overall best growth performance of juvenile gilthead 354 

sea bream compared to other treatments containing poultry meat meals (PMM’s) although the 355 

defatted PMM and blended PMM with SBM produced favorable results although not deemed to 356 

be significantly different to FM alone. However, improved protein utilization efficiency was 357 

also seen in terms of the aNPU reported for gilthead sea bream fed PMM and dPMM at 75% 358 

total protein replacement. These values are in accordance with data reported for this species by 359 

Nengas Alexis & Davies (1999) and Laporte (2007). Consequently, fish fed the SBM/dPMM 360 

blend as a partial FM replacement grew as well as the fish fed the FM and exhibited the best 361 

productivity values in terms of FCR, PER and aNPU. Although both protein sources are said to 362 

be deficient in methionine (Nengas et al. 1999; Hertrampf & Piedad-Pascual 2000), combining 363 

SBM and PMM might result in a partial improvement of the EAA compared to the use of SBM 364 

alone as soybean meal is a major plant ingredient in marine fish diets within low fishmeal 365 
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formulations. This blend may mitigate the effects of the lower methionine, arginine and lysine 366 

content in SBM in gilthead sea bream diets. This result tends to confirm an optimal substitution 367 

rate of FM by PMM between 25 and 50% for this particular marine species. For most 368 

carnivorous fish, the recommended substitution rates of FM by PBM (studies with sub adult fish 369 

mainly) would generally range from 25 to 50% (Nengas et al. 1999; Turker, Yigit, Ergün, 370 

Karaali & Erteken 2005; Yigit, Erdem, Koshio, Ergün,Türker & Karaali 2006; Wang, Han, 371 

Zheng & Bureau 2008; Yu 2008; Li, Wang, Zheng, Jiang & Xie 2009; Booth, Allan & 372 

Anderson 2011; Metts, Rawles, Brady, Thompson, Gannam, Twibell & Webster 2011; 373 

Moutinho et al. 2017) but the feasibility of even higher or total replacement without amino acid 374 

supplementation was reported by some authors (Takagi, Hosokawa, Shimeno & Ukawa 2000; 375 

Saadiah, Abol-Munafi & Utama 2011). Removing the poultry fat component of PMM to test a 376 

75% FM replacement with a relatively “pure” protein source did not yield any improvement 377 

compared with the same inclusion level of the original full fat PMM (indicating the minimal 378 

influence of dietary lipid on production performance). PMM75 and dPMM75 diets appeared to 379 

be equally palatable to the fish since exactly the same amount of feed were consumed (FI = 0.98 380 

g fish-1 day-1). By comparison with dPMM50, the SBM/dPMM blend did not lead to a 381 

significant reduction of feed intake in sea bream. While the efficacy of SBM to replace FM in 382 

diets for gilthead sea bream was also examined by several researchers (El-Haroun & Bureau. 383 

2007), limited information is available on the use of blends of SBM and animal protein 384 

concentrates in this species (De Francesco, Parisi, Pérez-Sánchez, Gómez-Réqueni, Médale, 385 

Kaushik, Mecatti & Poli 2007; Dias et al. 2009). Palatability and EFA profile of PMM are 386 

presumed to be the main factors limiting the growth of gilthead sea bream, when full fat grades 387 

of PMM are included at a high level, as seen in trial 1.  The blending of SBM with dPMM 388 
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appeared to raise the amino acid levels towards those observed in the dPMM50 diet and only 389 

methionine seemed to remain below the reported requirement levels for sea bream by Peres & 390 

Olivia-Teles (2009). Separate short-term and long-term palatability trials are to be encouraged 391 

to test limitation on feed intake for gilthead sea bream before practical use of such ingredients 392 

can be applied in feed manufacture. Carcass FA profiles of gilthead sea bream conformed to the 393 

expected changes in relation to the dietary FA patterns, with the 18:1n-9 (oleic) representative 394 

of the poultry lipid signature becoming apparent. Agreeing with what is usually described in 395 

wild or farmed gilthead sea bream (Mnari, Bouhlel, Chraief, Hammami, Romdhane, El Cafsi & 396 

Chaouch 2007), 16:0, 18:1n-9 were the principal saturated fatty acid (SFA) and mono 397 

unsaturated fatty acid (MUFA) regardless the dietary regime. 22:6n-3 (was the dominant highly 398 

unsaturated fatty acids (HUFA) within the carcass of fish fed FM and defatted (dPMM75), 399 

whereas 18:2n-6 appeared to be the primary HUFA in the carcass of fish fed PMM75. Marine 400 

fish are usually not known to have the ability to elongate and desaturate C18n-3 HPUFA 401 

(linolenic) to effectively generate the long chain C20:5n-3 and C22:6n-3 (eicosapentaenoic and 402 

docosahexaenoic) FA’s respectively (Greene 1990). Within the context of total FO replacement, 403 

the lack of a well-balanced FA profile (Sargent, Henderson & Tocher 2002) and a lower 404 

palatability (Regost, Arzel, Robin, Rosenlund & Kaushik 2003) or digestibility (Caballero, 405 

Obach, Rosenlund, Montero, Gisvol, Izquierdo 2002) are likely to limit the success of marine 406 

fish production when other lipid sources are utilized at the expense of fish oils. In this study, sea 407 

bream requirements for EFA’s were likely met since diet manipulation did not result in a 408 

reduction of FO below 50% of the total dietary lipid content for this species, and a total n-3 in 409 

the diet of 3.1 % of the oil (0.4% of the diet) was retained in a PMM level of 75% inclusion 410 

(trial II). The minimum requirement for the Gilthead sea bream was found to be 0.4% of the diet 411 
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by Ibeas, Cejas, Fores, Badia, Gomez & Hernández (1997) for EPA: DHA. No pathological 412 

signs of essential fatty acid deficiencies such as skin hemorrhaging or fin erosion were observed 413 

in our study and fish were in excellent condition throughout.  414 

It is well established from the literature that the nature of dietary oil influences carcass 415 

quality and FA pattern in fish tissues and organs for the gilthead sea bream (Izquierdo, Montero, 416 

Robaina, Caballero, Rosenlund & Ginés 2005; Caballero, Torstensen, Robaina, Montero & 417 

Izquierdo 2006; De Francesco et al. 2007; Piedad-Pascual et al. 2007). However, Aoki 418 

Shimazu, Kukushige, Akano, Yamagata & Watanabe (1996); Wang et al. (2008); Li et al. 419 

(2009); Booth et al. (2011) did not find any noticeable difference in the flesh quality between 420 

adult red sea bream (Pagrus major), Malabar grouper (Epinephelus malabaricus) and Australian 421 

snapper (Pagrus auratus, Sparidae) respectively fed with or without FM as a dietary protein 422 

source. In terms of human consumption and consumer acceptance high levels of HUFA in fish 423 

muscle that can be obtained with proper diet manipulation would be a desirable benefit (Kaushik 424 

1997; Trushenski & Boesenberg 2009). The varying ratios of n-3 to n-6 and n-9 ratios resulting 425 

from the dietary changes within the current study may have such implications for gilthead sea 426 

bream; especially if the fish are fed diets containing a standard PMM over a longer time course and 427 

particularly gilthead sea bream attaining harvestable weight. It may also be possible to enhance 428 

marine fish diets containing poultry meat meals with selected algal products like Schizochytrium sp 429 

containing high levels of DHA (docosahexaenoic acid) constituting the bulk of their n-3 fatty acids 430 

and around 25% of the dry biomass. This could be provided during the final phase of production in a 431 

‘finisher’ diet. The algal meal and extracted oil would complement such diets for sea bream and sea 432 

bass allowing for optimization of the n-3 profile in the flesh of fish for the consumer. This concept 433 



 
 

20

has been explored for Atlantic salmon (Salmo salar) by Kousoulaki, Nengas Sweetman & Berge 434 

(2016) with promising results. 435 

Future processing of PMM to remove residual fat could be employed at the finishing phase of 436 

production to mitigate the changing of n-3 to n-6 & n-9 ratios in compliance to consumer demands 437 

for a defined product with high omega-3 highly un-saturated fatty acid (HUFA) lipids notably EPA 438 

and DHA. The trend towards a reduced n-3/n-6 ratio in the fillets of farmed salmon has been well 439 

documented recently with much concern that the combined EPA and DHA levels have been 440 

reduced by as much as 50% over the last 15 years mainly due to the increased utilization of 441 

vegetable oils like Canola and soybean oils in salmonid feeds (Sprague, Dick & Tocher 2016). 442 

Indeed, we see this potential here with sea bream, if diets with higher animal fat levels are 443 

constructed. Evidence for correction by using defatted PMM is shown in our study to allow more 444 

formulation space for alternative oil sources richer in both EPA and DHA hence restoring the same 445 

profile of fatty acids in the control fishmeal diet for seabream. 446 

The present investigation confirms that PMM is an effective protein concentrate supporting 447 

growth and development of juvenile gilthead sea bream replacing up to 75% of FM protein. 448 

There may be additional benefits by the inclusion of supplementary levels of 5 and 10% 449 

respectively of EFM and SDHM as premium grade ingredients to provide enhanced EAA 450 

contribution and enhanced palatability of diets with reduced fishmeal levels. However, despite a 451 

trend in the technical improvement of rendered animal by-products over the last two decades, 452 

the threshold for maximizing dietary inclusion has not been realized compared to the earlier 453 

findings of Nengas et al. (1996 & 1999). The cost benefit analysis of further technological 454 

processing must be re-assessed as well as more work to using supplementary crystalline amino 455 

acid in conjunction with these protein sources. 456 
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Clearly there is still much scope in developing feeds for gilthead sea bream and other marine 457 

species based on a new generation of by-products, contributing towards a bio-secure and 458 

sustainable agenda for the aquafeed sector within a European context and beyond. As a result of 459 

this research, EU dependency on imported alternative protein sources for use in aquaculture 460 

feeds such as soya bean meal could be adding a measured contribution to global food security 461 

by reducing plant ingredient imports. The research has also contributed to the Common 462 

Fisheries Policy of aligning sustainable wild fisheries with sustainable aquaculture development 463 

by considering alternative strategies. The scientific evidence leading to regulatory change at the 464 

EU level involved significant industry investment in research and development leading to 465 

improved competitiveness of the EU aquaculture industry, a reduction in the environmental 466 

impact of fish farming and improved fish health and welfare.  467 

New scientific information concerning the safety and efficacy of inclusion of mono-PAPs in 468 

farmed fish diets was established in the last decade. This has now led to regulatory change at the EU 469 

level (Regulation introduced Feb 2013), permitting re-authorization of the use of mono-PAPs in 470 

aquaculture diets. However, in the UK and some EU countries it is the retailer that restricts their use 471 

due to the sensitivity of the consumer with regard to animal protein products in the food chain. 472 

Conclusion 473 

The results from this study showed that processed animal proteins have good nutritive value 474 

and can be a valuable protein source for gilthead sea bream diets. Modest levels of these 475 

ingredients can be used in gilthead sea bream feeds without detriment in a balanced formulation. 476 

Novel techniques for producing processed animal protein and coupling with exogenous 477 

enzymes associated with low-temperature and low-pressure processing, has been one of the 478 

alternatives used to improving the quality of processed animal protein. Key opportunities may 479 
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arise from the use of specific exogenous enzymes such as proteases and solid state fermentation 480 

products to achieve superior digestibility of rendered animal material in aquafeeds. Also, 481 

various ensiling methods to stabilize the protein component and fats could be applied as well as 482 

natural ant-oxidants. The use of various feed additives such lactobacillus and probiotics with the 483 

addition of organic carbohydrates is a relatively economic approach to achieve effective ensiling 484 

and protein hydrolysis.            485 

It is evident that further characterization of processed animal proteins (PAPS) and some 486 

refinements of the diet formulation for seabream are required to obtain comparable levels of 487 

performance with conventional higher fish meal-based diets for marine fish species. More work 488 

will be needed to support the aqua-feed industry in addressing both the retailers and consumer 489 

confidence for fish fed animal by-products in the UK and Europe although widely accepted in 490 

other parts of the world. These must also enable production of marine fish without altering the 491 

amount of invaluable HUFA lipids in the fillets of fish to ensure maintaining the healthy 492 

benefits to the consumer.  493 
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Table 1 Proximate composition and essential amino acid profile of the test ingredients was used in 1 
Trials 1 and 2 g kg-1 based on dry matter 2 

 Experimental ingridients 

 FM LT94 1 EFM2 SDHM3 PMM2 dPMM2 SBM1 

Proximate composition        

Dry matter  926.0 899.0 908.0 941.0 947.0 878.0 

Crude protein  730.0 811.0 909.0 620.0 700.0 500.0 

Crude lipid  119.0 63.0 28.0 166.0 57.0 8.0 

Gross energy (MJ Kg-1) 21.2 22.9 22.2 20.9 20.2 19.6 

Ash  133.0 22.0 31.0 170.0 157.0 73.0 

EAA composition*        

Arginine 41.40 36.60 36.90 41.70 39.30 36.50 

Histidine 17.30 7.70 69.00 11.40 10.70 7.70 

Isoleucine 25.60 19.50 5.50 18.20 17.10 21.30 

Leucine 50.40 39.10 123.30 43.50 41.00 36.40 

Lysine 52.50 26.00 82.80 38.30 36.10 30.90 

Threonine 31.00 23.70 33.10 25.60 24.10 19.00 

Tryptophan 6.90 7.90 11.00 5.50 5.10 7.00 

Valine 31.60 28.00 84.70 28.60 27.00 25.40 

Methionine 19.50 8.20 7.40 10.00 9.40 6.90 

Phenylalanine 27.70 22.20 65.40 23.10 21.70 24.40 

aDCP‡ (%) 87.50 21.70 82.80 79.20 79.20 87.00 

1 Skretting Ltd, Longridge, Preston, Lancashire, UK 3 
2 Prosper De Mülder Group, Market Harborough, UK 4 
3 American Protein Corporation (APC), Ankeny, Iowa, USA 5 
* Manufacturer specifications 6 
 aDCP‡ = Apparent digestibility crude protein 7 
 8 
 9 
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Table 2 Formulation, proximate composition (g kg-1), essential amino acid profile of the experimental diets (g 16 g-1 10 
N) and essential amino acid requirements (g 16 g-1 N) in Trial #1. 11 

 
Experimental diets 

Requirement10 
FM  PMM25 PMM50 PMM75 EFM5 SDHM10 

Fish meal LT941 640.0 480.0 320.0 160.0 608.0 576.0  
Poultry meat meal2 0.0 190.0 380.0 570.0 0.0 0.0  
Enzyme treated feather meal2 0.0 0.0 0.0 0.0 108.0 0.0  
Spray-dried haemoglobin meal3 0.0 0.0 0.0 0.0 0.0 68.0  
Marine fish oil 74.0 67.7 62.2 56.7 70.0 79.5  
Starch4 113.3 113.3 113.3 113.3 113.3 113.3  
Dextrin5 56.7 56.7 56.7 56.7 56.7 56.7  
Vitamin6 5.0 5.0 5.0 5.0 5.0 5.0  
Mineral7 5.0 5.0 5.0 5.0 5.0 5.0  
Cellulose8 106.0 82.3 57.8 33.3 34.0 96.5  
Proximate composition        
Dry matter 965.70 961.80 952.10 953.70 961.80 963.30  
Crude protein  460.80  467.70  486.20  530.50  489.70  474.40   
Crude lipid  121.50  114.10  126.50  140.60  144.00  180.10   
Gross energy (MJ Kg-1) 20.44  20.57  20.61  20.82  21.80  20.92   
Ash  94.80 102.40  108.10  97.30  112.60 92.60  
Essential Amino acid profile9        

Arginine 
2.91* 
(6.31)+ 

2.97 (6.35) 3.04 (6.25) 3.10 (5.85) 3.16 (6.44) 3.04 (6.41) 5.55 

Histidine 1.06 (2.29) 1.01 (2.16) 0.96 (1.98) 0.91 (1.72) 1.09 (2.22) 1.38 (2.90) 1.98 
Isoleucine 2.00 (4.35) 1.85 (3.95) 1.69 (3.48) 1.54 (2.90) 2.11 (4.32) 1.84 (3.87) 2.55 
Leucine 3.32 (7.21) 3.32 (7.09) 3.31 (6.82) 3.31 (6.24) 3.58 (7.31) 3.75 (7.91) 4.75 
Lysine 3.56 (7.74) 3.40 (7.27) 3.24 (6.66) 3.07 (5.80) 3.67 (7.49) 3.72 (7.84) 5.13 
Threonine 1.86 (4.03) 1.88 (4.02) 1.90 (3.91) 1.92 (3.63) 2.02 (4.12) 1.87 (3.95) 2.89 
Tryptophan 0.49 (1.07) 0.47 (1.01) 0.46 (0.94) 0.44 (0.82) 0.55 (1.13) 0.51 (5.36) 0.75 
Valine 2.75 (5.97) 2.61 (5.57) 2.46 (5.07) 2.32 (4.37) 2.92 (5.96) 3.00 (3.63) 3.21 
Methionine 1.33 (2.89) 1.19 (2.54) 1.05 (2.15) 0.90 (1.70) 1.35 (2.76) 1.24 (2.62) 2.60 
Phenylalanine 1.73 (3.76) 1.74 (3.72) 1.75 (3.59) 1.75 (3.30) 1.89 (3.85) 1.97 (4.14) 5.7611 
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1 Skretting Ltd. Longridge, Preston, Lancashire, UK 12 
2 Prosper De Mülder Group, Market Harborough. UK 13 
3 American Protein Corporation (APC), Ankeny, Iowa, USA 14 
4 Starch from corn (Sigma S4126) 15 
5 Dextrin type II from corn (Sigma D2130) 16 
6 Sigma-Aldrich Chemical. 17 
7 Skretting Aquaculture, Longridge Preston, UK. 18 
8 Sigma (C8002) 19 
9 Calculated 20 
10 Peres and Oliva-Teles (2007) 21 
11 Phenylalanine + tyrosine. 22 
* Percentage of the diet. 23 
+ Percentage of the protein. 24 
 25 
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Table 3 Formulation, proximate composition (g kg-1), essential amino acid profile of the experimental diets (g 16 g-1 26 
N) and essential amino acid requirements (g 16 g-1 N) in in Trial #2. 27 

 
Experimental diets 

Requirement10 
FM  PMM75 dPMM50 dPMM75 SBM/dPMM 

Fish meal LT941 640.0 160.0 320.0 160.0 320.0  
Poultry meat meal2 0.0 570.0 0.0 0.0 0.0  
Defatted poultry meat meal2 0.0 0.0 333.0 495.0 194.0  
Soybean meal (de-hulled)3 0.0 0.0 0.0 0.0 194.0  
Marine fish oil 73.0 57.0 100.0 110.0 100.0  
Starch4 113.0 113.0 113.0 113.0 113.0  
Dextrin5 57.0 57.0 57.0 57.0 57.0  
Vitamin6 5.0 5.0 5.0 5.0 5.0  
Mineral7 5.0 5.0 5.0 5.0 5.0  
Additive (Vitamin C) 1.0 1.0 1.0 1.0 1.0  
Cellulose8 106.0 32.0 66.0 54.0 11.0  
Proximate composition       
Moisture 865.80 886.50 860.70 873.10 877.70  
Crude protein  456.70 476.50 460.80 454.40 454.80  
Crude lipid  114.70 148.20 114.10 131.30 133.00  
Gross energy (MJ Kg-1) 16.86 17.54 16.60 17.14 17.32  
Ash  83.70 110.30 97.40 100.80 87.80  
Essential Amino acid profile9       
Arginine 2.91*(6.31)+ 3.10 (6.51) 2.76 (5.99) 2.67 (5.88) 2.92 (6.43) 5.55 
Histidine 1.06 (2.29) 0.91 (2.00) 0.88 (1.92) 0.79 (1.75) 0.98 (2.15) 1.98 
Leucine 3.32 (7.21) 3.31 (7.25)  3.03 (6.57) 2.86 (6.29) 3.16 (6.95) 4.75 
Lysine 3.56 (7.74) 3.07 (6.73) 2.98 (6.48) 2.68 (5.89) 3.08 (6.78) 5.13 
Threonine 1.86 (4.03) 1.92 (4.21) 1.73 (3.76) 1.66 (3.65) 1.76 (3.88) 2.89 
Tryptophan 0.49 (1.07) 0.44 (0.96) 0.42 (0.90) 0.38 (0.83) 0.48 (1.06) 0.75 
Valine 2.75 (5.97) 2.32 (5.08) 2.28 (4.94) 2.02 (4.46) 2.39 (5.26) 3.21 
Methionine 1.33 (2.89) 0.90 (1.98) 0.98 (2.12) 0.80 (1.76) 0.98 (2.16) 2.60 
Phenylalanine 1.73 (3.76) 1.75 (3.83) 1.59 (3.45) 1.51 (3.32) 1.76 (3.87) 5.7611 
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1 Skretting Ltd. Longridge, Preston, Lancashire, UK. 28 
2 Prosper De Mülder Group, Market Harborough, UK. 29 
3 American Protein Corporation (APC), Ankeny, Iowa, USA. 30 
4 Starch from corn (Sigma S41126). 31 
5 Dextrin type II from corn (Sigma D2130). 32 
6 Sigma-Aldrich Chemical. 33 
7 Skretting Aquaculture, Longridge Preston, UK. 34 
8 Sigma (C8002). 35 
9 Calculated. 36 
10 Peres and Oliva-Teles (2007). 37 
11 Phenylalanine + tyrosine. 38 
* Percentage of the diet. 39 
+ Percentage of the protein. 40 
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Table 4 Growth performances, feed utilization parameters and proximate composition of gilthead sea bream fed the 41 
experimental diets of Trial 1 (means ± SE). 42 

 
Experimental diets 

SEM 
FM  PMM25 PMM50 PMM75 EFM5 SDHM10 

Growth performance        
Initial weight (g)  22.85 ± 0.54 22.42 ± 0.28 22.67 ± 0.29 22.91 ± 0.21 22.67 ± 0.32 22.66 ± 0.53 0.17 
Final weight (g)  67.75 ± 0.55abc 68.99 ± 1.16abc 63.87 ± 0.14ab 63.58 ± 2.18a 69.77 ± 0.40bc 70.69 ± 1.47c 3.04 
Weight gain (g)  44.88 ± 0.02abc 46.57 ± 1.44abc 41.20 ± 0.15ab 40.67 ± 2.05a 47.10 ± 0.26bc 48.03 ± 1.52c 3.13 
Weight gain (%) 1 195.5 ± 4.57ab 207.8 ± 9.02ab 181.9 ± 3.00ab 177.4 ± 8.10a 207.9 ± 3.24ab 212.2 ± 9.37b 14.70 
Feed intake (g fish-1 day-1)  1.02 ± 0.02b 0.98 ± 0.03ab 0.91 ± 0.01ab 0.89 ± 0.04a 0.98 ± 0.01ab 0.99 ± 0.02ab 0.05 
SGR (% day-1)2 1.72 ± 0.02ab 1.78 ± 0.05ab 1.64 ± 0.02ab 1.62 ± 0.05a 1.78 ± 0.02ab 1.80 ± 0.05b 0.08 
FCR 3 1.43 ± 0.02c 1.33 ± 0.01ab 1.39 ± 0.02bc 1.37 ± 0.01bc 1.32 ± 0.02ab 1.30 ± 0.02a 0.05 
PER 4 1.52 ± 0.02b 1.60 ± 0.01bc 1.48 ± 0.02b 1.37 ± 0.01a 1.55 ± 0.02bc 1.62 ± 0.02c 0.09 
aNPU (%)5  21.40 ± 0.65a 22.19 ± 0.63a 21.42 ± 2.89a 22.43 ± 3.62a 22.78 ± 1.14a 23.62 ± 4.17a 0.85 

 Initial FM  PMM25 PMM50 PMM75 EFM5 SDHM10 
SEM 

Carcass composition g kg-1       

Moisture  686.0 ± 0.24  676.2 ± 0.13  663.2 ± 0.54  670.8 ± 1.84  662.4 ± 1.77  676.5 ± 0.05  668.5 ± 1.85 0.83 
Crude protein 522.4 ± 0.08  420.1 ± 0.84 397.6 ± 1.35 409.5 ± 1.11 412.3 ± 1.55 415.4 ± 1.11 407.4 ± 2.43 4.29 
Crude lipid 336.4 ± 0.65  285.9 ± 0.96 304.7 ± 0.39 293.2 ± 1.48 290.3 ± 0.50 274.5 ± 0.48 290.8 ± 0.66 1.97 
Ash  105.0 ± 0.14  83.7 ± 0.03 82.7 ± 0.21 84.2 ± 0.30 86.5 ± 0.47 83.9 ± 0.40 84.1 ± 0.53 0.80 
Gross energy (MJ Kg-1) 25.03 ± 0.00  20.04 ± 0.99  20.92 ± 0.34   20.44 ± 0.43  19.95 ± 0.23  19.99 ± 0.38  20.34 ± 0.70  1.83 

Values are presented as means of three replicates ± SE. One-way Anova with Tukey’s pair wise comparison test (†) or 43 
Kruskal Wallis’s test with post hoc multiple comparison testing (‡) in the case of a lake of normality in the data set were 44 
utilized to reveal significant differences between treatments. In each row, values with the same superscripts are not 45 
significantly different (P>0.05). 46 
1 Weight gain (%) = 100 × (mean final weight - mean initial weight) / men initial weight. 47 
2 FCR: feed intake / weight gain. 48 
3 SGR: 100 × [(ln mean final weight-ln mean initial weight) / days]. 49 
4 PER: mean weight gain / mean protein intake. 50 
5aNPU: 100 × (protein deposition / digestible protein intake).51 
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Table 5 Morphometric measurements and general haematological indices of gilthead sea bream assessed on termination of Trial 1 52 
(means ± SE). 53 

 
Experimental diets 

SEM 
FM  PMM25 PMM50 PMM75 EFM5 SDHM10 

General morphometry        
Condition factor (K) 1 2.06 ± 0.02  2.08 ± 0.00  2.09 ± 0.03  2.11 ± 0.03  2.08 ± 0.02  2.10 ± 0.03  0.02 
Hepatosomatic index (%)2 1.32 ± 0.28  1.41 ± 0.03  1.35 ± 0.03  1.36 ± 0.13  1.30 ± 0.08  1.35 ± 0.04  0.04 
Haematocrit (%) 39.00 ± 1.80 36.50 ± 1.90 38.53 ± 3.71 41.97 ± 1.30 39.33 ± 2.76 37.05 ± 2.05 1.94 
Haemoglobin (g dL-1) 7.65 ± 0.60  7.24 ± 0.11 7.72 ± 0.99 7.63 ± 0.24 7.74 ± 0.12  7.81 ± 0.12 0.20 
RBCC (×106 mm-3) 2.40 ± 0.20 2.20 ± 0.13 2.73 ± 0.44 2.59 ± 0.13 2.71 ± 0.14 2.34 ± 0.15 0.22 

Values are presented as means of three replicates ± SE. One-way Anova with Tukey’s pairwise comparison test or 54 
Kruskal Wallis’s test with post hoc multiple comparison testing in the case of a lake of normality in the data set were 55 
utilized to reveal significant differences between treatments. In each row, values with the same superscripts are not 56 
significantly different (P > 0.05). 57 
1  K: (fish weight (g) × 100) / (fish length (cm))3. 58 
2  Hepatosomatic index: 100 × (liver weight / whole body weight). 59 

60 
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Table 6 Growth performances, feed utilization parameters and proximate composition of gilthead sea bream fed the experimental 61 
diets of Trial 2 (means ± SE). 62 

 

Experimental diets 
SEM 

FM  PMM75 dPMM50 dPMM75 SBM/Dpmm 

Growth performance       
Initial weight (g) † 10.07 ± 0.06 10.08 ± 0.05 9.92 ± 0.14  10.14 ± 0.07 10.19 ± 0.10 0.10 
Final weight (g) † 35.31 ± 1.23b 31.32 ± 0.50a 33.35 ± 0.16ab 30.95 ± 0.46a 33.67 ± 0.38ab 1.80 
Weight gain (%)1 † 250.6 ± 13.2b 210.7 ± 6.6a 236.5 ± 6.2ab 205.4 ± 5.2a 230.3 ± 1.9b 18.61 
Feed intake (g fish-1 day-1)‡ 1.39 ± 0.01a 0.98 ± 0.02b 1.14 ± 0.03ab 0.98 ± 0.03b 1.01 ± 0.03ab 0.18 
SGR (% day-1) 2 † 3.58 ± 0.10b 3.24 ± 0.06a 3.47 ± 0.05ab 3.19 ± 0.05a 3.41 ± 0.01ab 0.16 
FCR 3† 1.93 ± 0.07b 1.62 ± 0.01a 1.71 ± 0.06ab 1.65 ± 0.03a 1.50 ± 0.05a 0.30 
PER4 † 1.12 ± 0.04a 1.28 ± 0.01abc 1.26 ± 0.04ab 1.31 ± 0.03bc 1.45 ± 0.05c 0.12 
aNPU (%)5 † 21.64 ± 0.88a 25.43 ± 0.16bc 22.71 ± 0.59ab 24.77 ± 0.45abc 27.76 ± 1.24c 2.61 

Carcass composition g kg-1 

Initial FM  PMM75 dPMM50 dPMM75 SBM/dPMM 
SEM 

      
Moisture  706.0 ± 0.4 693.0 ± 0.5 700.0 ± 0.5 708.0 ± 0.9 696.0 ± 0.1 689.0 ± 0.2 0.74 
Crude protein  486.0 ± 0.2 521.0 ± 0.7 526.0 ± 0.8 521.0 ± 0.4  514.0 ± 0.1 510.0 ±0 .3 1.44 
Crude lipid  217.0 ± 1.3 296.0 ± 1.6 293.0 ± 1.2 310.0 ± 0.2  308.0 ± 0.1 310.0 ± 0.8 3.60 
Ash  133.0 ± 0.1 108.0 ± 0.2b 122.0 ± 0.4a 118.0 ± 0.1ab 121.0 ± 0.3a 112.0 ± 0.1ab 0.78 
Gross energy (MJ Kg-1) 22.1 ± 0.0 25.4 ± 0.2  24.8 ± 0.2  25.1 ± 0.1 25.1 ± 0.1  25.4 ± 0.1  1.27 

Values are presented as means of three replicates ± SE. One-way Anova with Tukey’s pairwise comparison test (†) or 63 
Kruskal Wallis’s test with post hoc multiple comparison testing (‡) in the case of a lake of normality in the data set were 64 
utilized to reveal significant differences between treatments. In each row, values with the same superscripts are not 65 
significantly different (P>0.05). 66 
1 Weight gain (%) = 100 × (mean final weight - mean initial weight) / men initial weight. 67 
2 FCR: feed intake / weight gain. 68 
3 SGR: 100 × [(ln mean final weight-ln mean initial weight) / days]. 69 
4 PER: mean weight gain / mean protein intake. 70 
5aNPU: 100 × (protein deposition / digestible protein intake). 71 

72 
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Table 7 Fatty acid composition of experimental diets and resulting carcasses (expressed as weight percent of total fatty 73 
acid) of gilthead sea bream fed the experimental diets of Trial 2 (means ± SE). 74 

 Diets   
SEM 

Carcasses   
SEM 

 FM  PMM75 dPMM75 FM  PMM75 dPMM75 

14:0 9.0 4.3 7.6 2.41 5.2 ± 0.1 3.4 ± 0.1 5.0 ± 0.1 0.99 
16:0 23.4 24.6 24.3 0.62 18.7 ± 0.2 19.4 ± 0.6 19.0 ± 0.2 5.46 
18:0 3.7 6.1 5.5 1.25 3.6 ± 0.1 4.3 ± 0.2 3.5 ± 0.6 0.44 
Total SFA 40.4 38.1 41.8 1.87 31.1 30.0 31.2 0.67 
16:1n-7 11.4 8.2 10.5 1.65 9.4 ± 0.1 8.6 ± 0.1 9.8 ± 0.1 0.61 
18:1n-9 18.7 32.9 24.3 7.16 20.5 ± 0.4 30.1 ± 0.9 23.1 ± 0.2 4.97 
20:1n-9 9.2 3.4 3.7 3.27 5.3 ± 0.1 2.7 ± 0.1 2.7 ± 0.0 1.50 
22:1n-11 9.3 2.4 2.9 3.85 4.9 ± 0.1 2.1 ± 0.1 2.3 ± 0.1 1.56 
Total MUFA 49.5 47.5 42.5 3.61 41.4 44.4 39.1 2.66 
18:2n-6 1.0 6.7 4.4 2.87 2.4 ± 0.2 8.8 ± 0.1 5.2 ± 0.1 3.21 
20:4n-6 0.1 0.2 0.3 0.10 0.6 ± 0.0 0.6 ± 0.0 0.7 ± 0.0 0.06 
Total n-6 1.7 7.6 5.6 3.00 4.8 11.0 7.7 3.10 
18:3n-3 0.4 0.7 0.8 0.21 0.8 ± 0.1 1.5 ± 0.1 1.2 ± 0.1 0.35 
18:4n-3 0.3 0.2 0.6 0.20 1.5 ± 0.1 1.0 ± 0.0 1.4 ± 0.1 0.27 
20:5n-3 1.4 0.8 2.3 0.75 7.5 ± 0.2 4.0 ± 0.1 6.0 ± 0.2 1.76 
22:5n-3 0.1 0.3 0.5 0.20 2.1 ± 0.1 1.3 ± 0.1 1.6 ± 0.1 0.40 
22:6n-3 1.9 0.9 1.9 0.58 10.5 ± 0.4 5.4 ± 0.2 6.8 ± 0.1 2.64 
Total n-3 4.3 3.1 6.4 1.67 23.3 13.7 17.7 4.82 
Total PUFA 6.0 10.7 12.0 3.16 28.1 24.7 25.4 1.80 
Ratio n-3/n-6 2.53 0.41 1.14 1.08 4.8 1.2 2.3 0.78 
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