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ABSTRACT 

Three in vivo and two in vitro experiments were carried out to investigate the effect of forage 

type and dietary antagonists molybdenum (Mo) and sulfur (S) on Cu metabolism in sheep. 

In experiment 1, dried grass pellets or maize silage without or with added dietary Mo and S 

were fed to Texel growing lambs to investigate the effect of forage type and antagonists on 

Cu status and performance. The maize silage fed lambs had a higher weight gain and 

rumen pH, but a lower liver Cu concentration compared with the dried grass pellets fed 

lambs. The addition of antagonists significantly reduced liver Cu status, but blood Cu 

parameters were not affected by dietary treatment. In experiment 2, grass haylage vs. 

maize silage were used to investigate the effect of forage type and antagonists on Cu 

metabolism in Swaledae growing lambs. The maize silage fed lambs had a higher weight 

gain and liver Cu status but a lower rumen pH compared with the grass haylage fed lambs. 

Liver Cu status, Pl-Cu concentration, and Cp activity were decreased by the inclusion of Mo 

and S, while Cp:Pl-Cu ratio was not affected by antagonists. In experiment 3, the 

involvement of the rumen digesta fractions on Cu metabolism in forages used in experiment 

1 and 2 plus grass silage was investigated. Cu, Mo, and S were found mainly (above 85%) 

associated with the solid phase of the fermented rumen digesta, at the expense of 

supernatant fraction. Additional Mo and S significantly reduced Cu distribution in the 

supernatant fraction due to increasing Cu incorporation into the solid phase. In experiment 

4, the effect of forage preservation on rumen pH and their interaction between Cu and 

antagonists were investigated. Rumen pH in grass silage fed lambs tended to be lower 

compared with lambs fed other forages. Lambs fed urea and fermented WCW were heavier 

than lambs fed grass silage. Liver Cu status was higher in lambs offered urea WCW or 

grass silage compared with fermented WCW. Additional antagonists substantially reduced 

liver Cu status, but had a small effect on blood Cu parameters. No effect of Cu antagonists 

were observed on liver Cu retention in lambs fed fermented WCW, whereas they 

significantly reduced liver Cu retention in lambs on urea WCW and grass silage. Blood Cu 

parameters were slightly affected by dietary treatment. In experiment 5, the effect of 

preservation of fresh grass as hay or silage on Cu distribution in rumen fluid following in 

vitro fermentation was investigated. Preservation of fresh grass as hay or silage had no 

effect of Cu distribution in the fermented rumen liquor or after pepsin-HCl digestion. These 

series of studies showed the effect of forage type on Cu metabolism. In addition, it confirms 

that dietary Mo and S are potent Cu antagonists and this potency may be reduced at a lower 

acidic rumen environment. 

 

 

 



ii 
 

 

TABLE OF CONTENTS 

Abstract …………………………………………………………………………………………………i   

Table of Contents………………………………………………………………………………...ii  

List of Tables……………………………………………………………………………………..viii   

List of Figures…………………………………………………………………………………… xiii   

Publications……………………………………………………………………………………….xiv   

Acknowledgments………………………………………………………………………………..xv 

Authors Declaration……………………………………………………………………………...xvi 

Chapter 1. Literature Review ............................................................................................. 1 

1.1. Introduction ................................................................................................................. 1 

1.2. Properties of copper .................................................................................................... 3 

1.2.1. Physical and chemical properties of copper .......................................................... 3 

1.2.2. Dietary source of copper ...................................................................................... 3 

1.2.3. Factors affecting copper status of forages ............................................................ 4 

1.3. Copper deficiency ....................................................................................................... 6 

1.4. Copper toxicity ............................................................................................................ 9 

1.5. Metabolism of copper in ruminants ........................................................................... 11 

1.5.1. Absorption .......................................................................................................... 12 

1.5.2. Transportation and intracellular uptake ............................................................... 14 

1.5.3. Copper storage................................................................................................... 16 

1.5.4. Copper excretion ................................................................................................ 17 

1.6. Copper metabolic interactions ................................................................................... 19 

1.6.1. Copper sulfur interactions ................................................................................... 19 

1.6.2. Copper-molybdenum-sulfur interactions ............................................................. 20 

1.6.3. Copper-iron interactions ..................................................................................... 23 

1.6.4. Copper zinc interactions ..................................................................................... 25 

1.7. Effect of forage type on copper metabolism .............................................................. 26 

1.8. Conclusion ................................................................................................................ 29 

Chapter 2. General materials and methods...................................................................... 30 

2.1. Forage and concentrate analysis .............................................................................. 30 

2.1.1. Dry matter .......................................................................................................... 30 

2.1.2. Ash ..................................................................................................................... 30 

2.1.3. Crude protein ..................................................................................................... 30 

2.1.4. Neutral detergent fibre ........................................................................................ 31 

2.1.5. Ether extract ....................................................................................................... 31 

2.1.6. pH determination ................................................................................................ 31 

2.2. Blood sample collection ............................................................................................ 32 



iii 
 

2.2.1. Haematology profile ........................................................................................... 33 

2.2.2. Plasma trace element determination .................................................................. 33 

2.2.3. Enzyme assays .................................................................................................. 34 

2.2.3.1. Superoxide dismutase.................................................................................. 34 

2.2.3.2. Cerulopasmin activity ................................................................................... 34 

2.3. Live weight determination ......................................................................................... 35 

2.4. Minerals determination of non-blood samples ........................................................... 35 

2.4.1. Forage and concentrate minerals determination ................................................. 35 

2.4.2. Whole liver minerals determination ..................................................................... 35 

Chapter 3. The differences in copper metabolism of growing lambs fed dried grass pellets 

or maize silage supplemented without or with molybdenum and sulfur ............................ 36 

3.1. Introduction ............................................................................................................... 36 

3.2. Materials and methods .............................................................................................. 38 

3.2.1. Animal procedures ............................................................................................. 38 

3.2.2. Animals and experimental design ....................................................................... 38 

3.2.3. Diets ................................................................................................................... 38 

3.2.4. Experimental routine .......................................................................................... 40 

3.2.4.1. Blood sample collection ............................................................................... 41 

3.2.4.2. Liveweight determination ............................................................................. 41 

3.2.5. Blood analysis .................................................................................................... 41 

3.2.6. Liver mineral analysis ......................................................................................... 41 

3.2.7. Rumen pH determination .................................................................................... 41 

3.2.8. Statistical analysis .............................................................................................. 42 

3.3. Results ...................................................................................................................... 43 

3.3.1. Health observation ............................................................................................. 43 

3.3.2. Animal performance and intake .......................................................................... 43 

3.3.3. Mineral intake ..................................................................................................... 45 

3.3.4. Rumen pH .......................................................................................................... 46 

3.3.5. Liver mineral status ............................................................................................ 47 

3.3.5.1. Liver mineral concentrations ........................................................................ 47 

3.3.5.2. Whole liver mineral content .......................................................................... 49 

3.3.5.3. Liver mineral retention.................................................................................. 50 

3.3.6. The mean of plasma mineral profile, Cu-mediated enzymes, and haematology 

profile ........................................................................................................................... 51 

3.3.7. Plasma mineral concentrations ........................................................................... 52 

3.3.7.1. Plasma copper concentration ....................................................................... 52 

3.3.7.2. Plasma molybdenum concentration ............................................................. 53 

3.3.7.3. Plasma iron concentration ............................................................................ 54 

3.3.7.4. Plasma zinc concentration ........................................................................... 55 

3.3.8. Ceruloplasmin activity......................................................................................... 56 



iv 
 

3.3.9. Ceruloplasmin to plasma copper ratio ................................................................ 57 

3.3.10. Superoxide dismutase activity .......................................................................... 58 

3.3.3.11. Haematology parameters .............................................................................. 59 

3.3.11.1. Haematocrit ................................................................................................... 59 

3.3.11.2. Haemoglobin concentration ........................................................................... 60 

3.3.11.3. Red blood cell counts .................................................................................... 61 

3.3.11.4. White blood cell counts .................................................................................. 62 

3.4. Discussion ................................................................................................................ 63 

3.5. Conclusion ................................................................................................................ 68 

Chapter 4 The effects of forage type and inclusion of molybdenum and sulfur 

supplementation on copper status in growing lambs ........................................................ 69 

4.1. Introduction ............................................................................................................... 69 

4.2. Materials and methods .............................................................................................. 71 

4.2.1. Animal procedures ............................................................................................. 71 

4.2.2. Animals and experimental design ....................................................................... 71 

4.2.3. Diets ................................................................................................................... 71 

4.2.4. Experimental routine .......................................................................................... 74 

4.2.4.1. Blood sample collection and analysis ........................................................... 75 

4.2.4.2. Liveweight determination ............................................................................. 75 

4.2.5. Blood analysis .................................................................................................... 75 

4.2.6. Liver mineral concentrations ............................................................................... 75 

4.2.7. Rumen pH determination .................................................................................... 75 

4.2.8. Statistical analysis .............................................................................................. 76 

4.3. Results ...................................................................................................................... 77 

4.3.1. Health observation ............................................................................................. 77 

4.3.2. Animal performance and intake .......................................................................... 77 

4.3.3. Mineral intake ..................................................................................................... 79 

4.3.4. Rumen pH .......................................................................................................... 80 

4.3.5. Liver mineral status ............................................................................................ 81 

4.3.5.1. Liver mineral concentration .......................................................................... 81 

4.3.5.2. Whole liver mineral content .......................................................................... 82 

4.3.5.3. Whole liver mineral retention ........................................................................ 83 

4.3.6. The mean of plasma mineral profile, Cu-mediated enzymes, and haematology 

profile ........................................................................................................................... 84 

4.3.7. Plasma mineral concentrations ........................................................................... 85 

4.3.7.1. Plasma copper concentration ....................................................................... 85 

4.3.7.2. Plasma molybdenum concentration ............................................................. 86 

4.3.7.3. Plasma iron concentration ............................................................................ 87 

4.3.7.4. Plasma zinc concentration ........................................................................... 88 

4.3.8. Ceruloplasmin activity......................................................................................... 89 



v 
 

4.3.9. Ceruloplasmin to plasma copper ratio ................................................................ 90 

4.3.10. Superoxide dismutase activity .......................................................................... 91 

4.3.11. Haematology parameters ................................................................................. 92 

4.3.11.1. Haematocrit ............................................................................................... 92 

4.3.11.2. Haemoglobin concentration ....................................................................... 93 

4.3.11.3. Red blood cell counts ................................................................................. 94 

4.3.11.4. White blood cell counts .............................................................................. 95 

4.4. Discussion ................................................................................................................ 96 

4.5. Conclusion .............................................................................................................. 101 

Chapter 5 The effects of forage type on copper distribution between rumen digesta fractions 

and the involvement of the rumen digesta fractions in the interactions between copper, 

molybdenum, and sulfur ................................................................................................. 102 

5.1. Introduction ............................................................................................................. 102 

5.2. Materials and methods ............................................................................................ 104 

5.2.1. Experimental design and basal diets ................................................................ 104 

5.2.2. Inoculum........................................................................................................... 106 

5.2.3. Vessel pH determination .................................................................................. 107 

5.2.4. Fractionation of vessel fluid .............................................................................. 107 

5.2.5. Mineral analysis of vessels fractions ................................................................. 108 

5.2.6. Statistical analysis ............................................................................................ 108 

5.3. Results .................................................................................................................... 109 

5.3.1. Gas production ................................................................................................. 109 

5.3.2. Vessels pH ....................................................................................................... 111 

5.3.3. Distribution of minerals within fluid fractions ..................................................... 112 

5.3.3.1. Copper distribution ..................................................................................... 112 

5.3.3.2. Molybdenum distribution ............................................................................ 114 

5.3.3.3. Sulfur distribution ....................................................................................... 116 

5.4. Discussion .............................................................................................................. 118 

5.5. Conclusion .............................................................................................................. 122 

Chapter 6 The effect of forage preservation and either supplemented without or with 

molybdenum and sulfur on rumen pH and on copper status in growing lambs ............... 123 

6.1. Introduction ............................................................................................................. 123 

6.2. Materials and methods ............................................................................................ 124 

6.2.1. Animal procedures ........................................................................................... 124 

6.2.2. Forage production ............................................................................................ 124 

6.2.3. Animals and experimental design ..................................................................... 124 

6.2.4. Diets ................................................................................................................. 125 

6.2.5. Experimental routine ........................................................................................ 127 

6.2.5.1. Blood sample collection ............................................................................. 129 

6.2.5.2. Liveweight determination ........................................................................... 129 



vi 
 

6.2.6. Blood analysis .................................................................................................. 129 

6.2.7. Liver mineral concentrations ............................................................................. 129 

6.2.8. Rumen pH determination .................................................................................. 129 

6.2.9. Statistical analysis ............................................................................................ 130 

6.3. Results .................................................................................................................... 131 

6.3.1. Health observation ........................................................................................... 131 

6.3.2. Animal performance and intake ........................................................................ 131 

6.3.3. Mineral intake ................................................................................................... 134 

6.3.4. Rumen pH ........................................................................................................ 136 

6.3.5. Liver mineral status .......................................................................................... 137 

6.3.5.1. Liver mineral concentrations ...................................................................... 137 

6.3.5.2. Whole liver mineral content ........................................................................ 139 

6.3.5.3. Whole liver mineral retention ...................................................................... 141 

6.3.6. The mean of plasma mineral profile, Cu-mediated enzymes, and haematology 

profile ......................................................................................................................... 143 

6.3.7. Plasma mineral concentrations ......................................................................... 145 

6.3.7.1. Plasma copper concentration ..................................................................... 145 

6.3.7.2. Plasma molybdenum concentration ........................................................... 147 

6.3.7.3. Plasma iron concentration .......................................................................... 147 

6.3.7.4. Plasma zinc concentration ......................................................................... 150 

6.3.8. Ceruloplasmin activity....................................................................................... 152 

6.3.9. Ceruloplasmin to plasma copper ratio (Cp:Pl-Cu ratio) ..................................... 152 

6.3.10. Superoxide dismutase activity ........................................................................ 155 

6.3.11. Haematology parameters ............................................................................... 156 

6.3.11.1. Haematocrit ............................................................................................. 156 

6.3.11.2. Haemoglobin concentration ..................................................................... 156 

6.3.11.3. Red blood cell counts ............................................................................... 159 

6.3.11.4. White blood cell counts ............................................................................ 159 

6.4. Discussion .............................................................................................................. 162 

6.5. Conclusion .............................................................................................................. 168 

Chapter 7 The effect of grass preservation method on Cu distribution in rumen fluid following 

in vitro fermentation ....................................................................................................... 169 

7.1. Introduction ............................................................................................................. 169 

7.2. Materials and methods ............................................................................................ 170 

7.2.1. Experimental design, forage production and chemical composition .................. 170 

7.2.2. In vitro .............................................................................................................. 171 

7.2.2.1. In vitro gas production ................................................................................ 171 

7.2.2.2. Two-stage method ..................................................................................... 171 

7.2.3. Vessel pH determination .................................................................................. 171 

7.2.4. Fractionation of vessels fluid ............................................................................ 171 



vii 
 

7.2.5. Mineral analysis of vessel fractions .................................................................. 172 

7.2.6. Statistical analysis ............................................................................................ 172 

7.3. Results .................................................................................................................... 173 

7.3.1. Gas production ................................................................................................. 173 

7.3.2. Vessel pH ......................................................................................................... 174 

7.3.3. Distribution of minerals within fluid fractions ..................................................... 175 

7.3.3.1. Distribution of copper within fluid fractions ................................................. 175 

7.3.3.2. Distribution of molybdenum within fluid fractions ........................................ 176 

7.3.3.3. Distribution of sulfur within fluid fractions ................................................... 177 

7.3.4. Distribution of minerals released to supernatant fraction in two-stage fermentation

 ................................................................................................................................... 178 

7.4. Discussion .............................................................................................................. 179 

7.5. Conclusion .............................................................................................................. 182 

Chapter 8 General discussion ........................................................................................ 183 

8.1. Introduction ............................................................................................................. 183 

8.2. Animal performance characteristics ........................................................................ 185 

8.3. Composition of the experimental diets .................................................................... 188 

8.4. Effect of forage type on Cu status ........................................................................... 190 

8.5. Conclusions and further work .................................................................................. 199 

REFERENCES .............................................................................................................. 200 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 
 

LIST OF TABLES 

 

Table 1.1. Essential macro and micro elements in animals’ diets ....................................... 1 

Table 1.2. Dietary copper concentration of animal feedstuffs ............................................. 3 

Table 1.3. Copper distribution between plant parts ............................................................ 5 

Table 1.4 the effect of additional dietary iron (mg/kg DM) on liver copper concentration 

(mg/kg DM) in experimental animals. ........................................................................ 23 

Table 3.1. Raw material composition of the experimental concentrates (g/kg DM)........... 39 

Table 3.2. Dietary treatments ........................................................................................... 39 

Table 3.3. Analysed chemical and mineral composition of the experimental diets supplying 

600 g/kg DM forage and 400 g/kg DM concentrates (60:40). .................................... 40 

Table 3.4. Intake and performance of growing labs fed diets containing dried grass pellets 

(DGP) or maize silage (MS) supplemented either without (-) or with (+) Mo and S. .. 44 

Table 3.5. Liveweight in growing lambs fed diets dried grass pellets (DGP) or maize silage 

(MS) supplemented without (-) or with (+) Mo and S. ................................................ 44 

Table 3.6. Mineral intake in growing lambs fed diets containing dried grass pellets (DGP) or 

maize silage (MS) supplemented without (-) or with (+) Mo and S. ........................... 45 

Table 3.7. Rumen pH of growing labs fed diets containing dried grass pellets (DGP) or 

maize silage (MS) supplemented either without (-) or with (+) Mo and S. .................. 46 

Table 3.8. Liver mineral concentration of (8) representative lambs slaughtering at the 

starting of the study. ................................................................................................. 47 

Table 3.9. Liver mineral concentration in growing lambs fed diets containing dried grass 

pellets (DGP) or maize silage (MS) fed either without (-) or with (+) Mo and S.......... 48 

Table 3.10. Whole liver mineral contents1 in growing lambs fed diets containing dried grass 

pelleted (DGP) or maize silage (MS) fed either without (-) or with (+) Mo and S. ...... 49 

Table 3.11. Liver mineral retention in growing lambs fed diets containing dried grass 

pelleted (DGP) or maize silage (MS) fed either without (-) or with (+) Mo and S. ...... 50 

Table 3.12. Effect of forage type dried grass pellets (DGP) and maize silage (MS) fed 

without (-) or with (+) added Mo and S on mean indicators of blood Cu status over the 

study period of lambs. ............................................................................................... 51 

Table 3.13. Plasma copper concentration in growing lambs fed diets dried containing grass 

pelleted (DGP) or maize silage (MS) supplemented without (-) or with (+) Mo and S 

(µmol/L) . .................................................................................................................. 52 

Table 3.14. Plasma molybdenum concentration of growing lambs fed diets containing 

forages dried grass pelleted (DGP) or maize silage (MS) supplemented without (-) or 

with (+) added S and Mo and S (µmol/L) .................................................................. 53 

Table 3.15. Plasma iron concentration of growing lambs fed diets containing forages dried 

grass pelleted (DGP) or maize silage (MS) supplemented without (-) or with (+) added 

S and Mo and S1 (µmol/L). ....................................................................................... 54 

Table 3.16. Ceruloplasmin to plasma copper ratio in growing lambs fed diets containing 

dried grass pelleted (DGP) or maize silage (MS) fed either without (-) or with (+) Mo 

and S. ....................................................................................................................... 57 

Table 3.17. Superoxide dismutase activity (SOD) in growing lambs fed diets containing 

dried grass pelleted (DGP) or maize silage (MS) fed either without (-) or with (+) added 

Mo and S (U/ g Hb). .................................................................................................. 58 

Table 3.18. Haematocrit (%) in growing lambs fed diets containing dried grass pelleted 

(DGP) or maize silage (MS) fed either without (-) or with (+) added Mo and S. ......... 59 

Table 3.19. Haemoglobin concentration (g/dL) in growing lambs fed diets containing dried 

grass pelleted (DGP) or maize silage (MS) fed either without (-) or with (+) added Mo 

and S. ....................................................................................................................... 60 



ix 
 

Table 3.20. Red blood cell counts (106/mm3) in growing lambs fed diets containing dried 

grass pelleted (DGP) or maize silage (MS) fed either without (-) or with (+) added Mo 

and S. ....................................................................................................................... 61 

Table 3.21. White blood cell counts (103/mm3) in growing lambs fed diets containing dried 

grass pelleted (DGP) or maize silage (MS) fed either without (-) or with (+) added Mo 

and S. ....................................................................................................................... 62 

Table 4.1. Raw material composition of the experimental concentrates (g/kg DM). .......... 72 

Table 4.2. Chemical composition of grass haylage and maize silage ............................... 72 

Table 4.3. The proposed mineral composition for the experimental diets. ........................ 73 

Table 4.4. Dietary treatments ........................................................................................... 73 

Table 4.5. Analysed chemical and mineral composition of the experimental diets supplying 

600 g/kg DM forage and 400 g/kg DM concentrates (60:40). .................................... 74 

Table 4.6. Intake, performance, and rumen pH of growing lambs fed diets based on grass 

haylage (GH) or maize silage (MS) supplemented either without (-) or with (+) Mo and 

S. .............................................................................................................................. 77 

Table 4.7. Liveweight in growing lambs fed diets based on grass haylage (GH) or maize 

silage (MS) supplemented without (-) or with (+) Mo and S. ...................................... 78 

Table 4.8. Mineral intake in growing lambs fed diets based on grass haylage (GH) or maize 

silage (MS) supplemented without (-) or with (+) Mo and S. ...................................... 79 

Table 4.9. Rumen pH of growing lambs fed diets based on grass haylage (GH) or maize 

silage (MS) supplemented either without (-) or with (+) Mo and S. ............................ 80 

Table 4.10. Liver mineral concentrations of (8) representative lambs slaughtering at the 

starting of the study. ................................................................................................. 81 

Table 4.11. Liver mineral concentrations of growing lambs fed diets based on grass haylage 

(GH) or maize silage (MS) supplemented without (-) or with (+) added Mo and S. .... 81 

Table 4.12. Whole liver minerals content of growing lambs fed diets based on forages grass 

haylage (GH) or maize silage (MS) supplemented without (-) or with (+) added S and 

Mo and S. ................................................................................................................. 82 

Table 4.13. Liver minerals retention of growing lambs fed diets based on grass haylage 

(GH) or maize silage (MS) supplemented without (-) or with (+) added S and Mo and 

S. .............................................................................................................................. 83 

Table 4.14. Effect of forage type grass haylage (GH) and maize silage (MS) fed without (-) 

or with (+) added Mo and S on mean indicators of blood Cu status over the study period 

of lambs. ................................................................................................................... 84 

Table 4.15. Plasma copper concentration of growing lambs fed diets based on forages 

grass haylage (GH) or maize silage (MS) supplemented without (-) or with (+) added S 

and Mo and S (µmol/L). ............................................................................................ 85 

Table 4.16. Plasma molybdenum concentration of growing lambs fed diets based on 

forages grass haylage (GH) or maize silage (MS) supplemented without (-) or with (+) 

added S and Mo and S (µmol/L) . ............................................................................. 86 

Table 4.17. Ceruloplasmin activity of growing lambs fed diets based on forages grass 

haylage (GH) or maize silage (MS) supplemented without (-) or with (+) added S and 

Mo and S(mg/dL). ..................................................................................................... 89 

Table 4.18. Ceruloplasmin to plasma copper ratio of growing lambs fed diets based on 

forages grass haylage (GH) or maize silage (MS) supplemented without (-) or with (+) 

Mo and S. ................................................................................................................. 90 

Table 4.19. Superoxide dismutase activity in growing fed diets based on grass haylage (GH) 

or maize silage (MS) supplemented without (-) or with (+) Mo and S (U/g of Hb). ..... 91 

Table 4.20. Haematocrit (%) in growing fed diets based on grass haylage (GH) or maize 

silage (MS) supplemented without (-) or with (+) Mo and S. ...................................... 92 



x 
 

Table 4.21. Haemoglobin concentration in growing fed diets based on grass haylage (GH) 

or maize silage (MS) supplemented without (-) or with (+) Mo and S (g/dL). ............. 93 

Table 4.22. Red blood cell counts in growing fed diets based on grass haylage (GH) or 

maize silage (MS) supplemented without (-) or with (+) Mo and S (106/mm3) . .......... 94 

Table 4.23. white blood cell counts in growing fed diets based on grass haylage (GH) or 

maize silage (MS) supplemented without (-) or with (+) Mo and S (103/mm3). ........... 95 

Table 5.1. Chemical and mineral composition of the grass silage (GS), maize silage (MS), 

dried grass pellets (DGP), and grass haylage (GH) used in the experiment............ 104 

Table 5.2. Dietary treatments. ........................................................................................ 105 

Table 5.3. The cumulative gas production of the grass silage (GS), maize silage (MS), dried 

grass pellets (DGP), and grass haylage (GH) supplemented without or with 

molybdenum and sulfur........................................................................................... 110 

Table 5.4. The effect of forage type supplemented without (-) or with (+) additional Mo and 

S on the percentage distribution of copper (%) in different fractions of in vitro fermented 

rumen fluid. ............................................................................................................. 113 

Table 5.5. The effect of forage type supplemented without (-) or with (+) additional Mo and 

S on the percentage distribution of molybdenum (%) in fractions of in vitro fermented 

rumen fluid. ............................................................................................................. 115 

Table 5.6. The effect of forage type supplemented without (-) or with (+) additional Mo and 

S on the distribution of sulfur (%) in different fractions of in vitro fermented rumen fluid.

 ............................................................................................................................... 117 

Table 6.1. Raw material composition of the experimental concentrates (g/kg DM)......... 125 

Table 6.2. Chemical composition of grass silage (GS), fermented WCW (FWCW), Urea 

WCW (UWCW). ...................................................................................................... 126 

Table 6.3. The pridected mineral composition for the experimental diets. ...................... 126 

Table 6.4. Dietary treatments ......................................................................................... 127 

Table 6.5. Composition of diets concentrate and forages grass silage (GS), fermented 

WCW (FWCW) or urea WCW (UWCW) fed without (-) or with (+) added S and Mo .

 ............................................................................................................................... 128 

Table 6.6. Effects of forage type (grass silage (GS), fermented WCW (FWCW), and urea 

treated WCW (UWCW) on weekly lamb liveweight. ................................................ 132 

Table 6.7. Effects of forage type; grass silage (GS), fermented WCW (FWCW) or urea WCW 

(UWCW) supplemented without (-) or with (+) added S and Mo and S on the 

performance and rumen pH of growing lambs. ....................................................... 133 

Table 6.8. Minerals intake in growing lambs fed diets containing grass silage (GS), 

fermented WCW, or urea WCW (UWCW) supplemented without (-) or with Mo and S.

 ............................................................................................................................... 135 

Table 6.9. The initial liver mineral status of growing lambs. ........................................... 137 

Table 6.10. Liver minerals concentration of growing lambs fed diets containing grass silage 

(GS), fermented WCW (FWCW) or urea WCW (UWCW) supplemented without (-) or 

with (+) added S and Mo and S. ............................................................................. 138 

Table 6.11. Whole liver mineral content of growing lambs fed diets containing grass silage 

(GS), fermented WCW (FWCW) or urea WCW (UWCW) supplemented without (-) or 

with (+) added S and Mo and S. ............................................................................. 140 

Table 6.12. Whole liver mineral retention of growing lambs fed diets containing grass silage 

(GS), fermented WCW (FWCW) or urea WCW (UWCW) supplemented without (-) or 

with (+) added S and Mo and S. ............................................................................. 142 

Table 4.13. Effect of forage type grass haylage (GH) and maize silage (MS) fed without (-) 

or with (+) added Mo and S on mean indicators of blood Cu status over the study period 

of lambs . ................................................................................................................ 144 



xi 
 

Table 6.14. Plasma copper concentration of growing lambs fed diets containing grass silage 

(GS), fermented WCW (FWCW) or urea WCW (UWCW) supplemented without (-) or 

with (+) added S and Mo and S (µmol/L). ............................................................... 146 

Table 6.15. Plasma molybdenum concentration of growing lambs fed diets containing grass 

silage (GS), fermented WCW (FWCW) or urea WCW (UWCW) supplemented without 

(-) or with (+) added S and Mo and S (µmol/L). ....................................................... 148 

Table 6.16. Plasma iron concentration of growing lambs fed diets containing grass silage 

(GS), fermented WCW (FWCW) or urea WCW (UWCW) supplemented without (-) or 

with (+) added S and Mo and S (µmol/L). ............................................................... 149 

Table 6.17. Plasma zinc concentration of growing lambs fed diets containing grass silage 

(GS), fermented WCW (FWCW) or urea WCW (UWCW) supplemented without (-) or 

with (+) added S and Mo and S (µmol/L). ............................................................... 151 

Table 6.18. Ceruloplasmin activity of growing lambs fed diets containing grass silage (GS), 

fermented WCW (FWCW) or urea WCW (UWCW) supplemented without (-) or with (+) 

added S and Mo and S (mg/dL). ............................................................................. 153 

Table 6.19. The ratio of Cp:Pl- Cu of growing lambs fed diets containing grass silage (GS), 

fermented WCW (FWCW) or urea WCW (UWCW) supplemented without (-) or with (+) 

Mo and S. ............................................................................................................... 154 

Table 6.20. Haematocrit (Hct%) of growing lambs fed diets containing grass silage (GS), 

fermented WCW (FWCW) or urea WCW (UWCW) supplemented without (-) or with (+) 

Mo and S. ............................................................................................................... 157 

Table 6.21. Haemoglobin concentration (g/dL) of growing lambs fed diets containing grass 

silage (GS), fermented WCW (FWCW) or urea WCW (UWCW) supplemented without 

(-) or with (+) Mo and S. .......................................................................................... 158 

Table 6.22. Red blood cell counts of growing lambs fed diets containing grass silage (GS), 

fermented WCW (FWCW) or urea WCW (UWCW) supplemented without (-) or with (+) 

Mo and S (106/mm3). .............................................................................................. 160 

Table 6.23. White blood cell counts of growing lambs fed diets containing grass silage (GS), 

fermented WCW (FWCW) or urea WCW (UWCW) supplemented without (-) or with (+) 

Mo and S (103/mm3). .............................................................................................. 161 

Table 7.1. The effects of preservation methods on the chemical composition of fresh grass 

(FG), grass silage (GS), and artificial grass hay (AGH). .......................................... 170 

Table 7.2. The effect of forage type, fresh grass (FG), grass silage (GS), and artificial grass 

hay (AGH) on the percentage distribution of copper in fractions of in vitro gas production 

fermented rumen digesta (%). ................................................................................ 175 

Table 7.3. The effect of forage type, fresh grass (FG), grass silage (GS), and artificial grass 

hay (AGH) on the percentage distribution of molybdenum in fractions of in vitro gas 

production fermented rumen digesta (%). ............................................................... 176 

Table 7.4. The effect of forage type, fresh grass (FG), grass silage (GS), and artificial grass 

hay (AGH) on the percentage distribution of sulfur in fractions of in vitro gas production 

fermented rumen digesta (%). ................................................................................ 177 

Table 7.5. The effect of forage type, fresh grass (FG), grass silage (GS), and artificial grass 

hay (AGH) on the percentage distribution of mineral in the supernatant fraction of in 

vitro two- stage fermentation of rumen digesta. ...................................................... 178 

Table 8.1. The composition of copper, molybdenum, and sulfur of the experimental diets 

(DM)- Chapters 3, 4, and 6. .................................................................................... 188 

Table 8.2. Neutral detergent fibre and nonstructural carbohydrate content of the forages 

used in Chapter 3, 4, and 6. .................................................................................... 190 

Table 8.3. Initial and final liver Cu concentration of growing lambs used in different Chapters.

 ............................................................................................................................... 198 

  



xii 
 

LIST OF FIGURES 

 

Figure 1.1. Species differ in the extent to which they store excess dietary copper in their 

livers. Ruminant species, for which the risk of copper deficiency is ever-present, store 

copper avidly while non-ruminant species, which are rarely at risk, do not ................ 11 

Figure 1.2. Copper absorption across the brush border with the help of copper transporter 

1 (Ctr1). Atox1 then shuttles the copper to be pumped out to the blood stream by ATPA

 ................................................................................................................................. 13 

Figure 1.3. Illustrating the intracellular copper pathways in hepatocyte ............................ 15 

Figure 1.4. The possible copper movement and storage within the body within the body. 16 

Figure 3.1. Plasma Zinc concentration in growing lambs fed diets containing dried grass 

pelleted (DGP) or maize silage (MS) supplemented without (-) or with (+) Mo and S.

 ................................................................................................................................. 55 

Figure 3.2. Ceruloplasmin activity of growing lambs fed diets containing dried grass pelleted 

(DGP) or maize silage (MS) supplemented without (-) or with (+) Mo and S. ............ 56 

Figure 4.1. Effect of forage type grass haylage (GH) or maize silage (MS) on weekly 

liveweight in growing lambs. ..................................................................................... 78 

Figure 4.2. Rumen pH of growing lambs fed diets based on grass haylage (GH) or maize 

silage (MS). .............................................................................................................. 80 

Figure 4.3. Plasma iron concentration of growing lambs fed diet based on grass haylage 

(GH) and maize silage (MS) supplemented without (-) or with Mo and S (µmol/L). ... 87 

Figure 4.4. Plasma zinc concentration of growing lambs fed diet based on grass haylage 

(GH) and maize silage (MS) supplemented without (-) or with Mo and S (µmol/L). ... 88 

Figure 5.1. Adapted washer cap .................................................................................... 106 

Figure 5.2. The effect of forage type grass silage (GS), maize silage (MS), dried grass 

pellets (DGP), and grass haylage (GH) supplemented without (-) or with (+) Mo and S 

on final vessels pH during the 48hrs of in vitro incubation at 39°C. ......................... 111 

Figure 6.1. The effect of forage type grass silage (GS), fermented WCW (FWCW), and 

WCW (WCW) supplemented without (-) or with (+) Mo and S on weekly liveweight.

 ............................................................................................................................... 132 

Figure 6.2. Rumen pH of the growing lambs fed forages containing grass silage (GS), 

fermented WCW (FWCW) or urea WCW (UWCW) supplemented without (-) or with (+) 

added S and Mo and S. .......................................................................................... 136 

Figure 6.3. superoxide dismutase activity of growing lambs fed diets containing grass silage 

(GS), fermented whole crop wheat (FWCW) or urea-treated whole crop wheat (UWCW) 

supplemented without (-) or with (+) Mo and S........................................................ 155 

Figure 7.1. The effect of forage type, fresh grass (FG), grass silage (GS), and artificial grass 

hay (AGH) on the in vitro cumulative gas production over a period of 48hrs at 39°C.

 ............................................................................................................................... 173 

Figure 7.2. The effect of forage type, fresh grass (FG), grass silage (GS), and artificial grass 

hay (AGH) on the final vessel pH over the period of 48hrs at 39°C. ........................ 174 

Figure 8.1. The relationship between the forage NDG content and liver Cu retention from 

sheep fed experimental diets from Chapters 3, 4, and 6. ........................................ 191 

Figure 8.2. The relationship between the Cu intake and liver Cu retention from sheep fed 

experimental diets from Chapters 3, 4, and 6. ......................................................... 191 

Figure 8.3. The relationship between the final rumen pH and liver Cu retention from sheep 

fed experimental diets from Chapters 3, 4, and 6. ................................................... 193 

Figure 8.4. Liver copper retention from sheep fed experimental diets from Chapters 3, 4, 

and 6. ..................................................................................................................... 198 

 



xiii 
 

Previous appeared work 

 

Part of the work in this thesis has appeared previously: 

Hussein, A.A., Mackenzie, A.M., Wilkinson, R.G. and Huntington, J.A. 2016. The effects 

of forage type and molybdenum and sulfur supplementation on copper status in growing 

lambs. Advances in Animal Biosciences, (7) 1, pp. 72. 

Hussein, A.A., Wilkinson, R.G., Huntington, J.A., and Mackenzie, A.M. 2016. Effect of 

forage type fed with or without molybdenum and sulfur inclusion on copper status of lambs. 

The 67th Annual Meeting of the European Federation of Animal Science, pp. 253. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiv 
 

Acknowledgments 

I would like to express my very great appreciation to my Director of studies Dr Sandy 

Mackenzie and supervisors Dr Robert Wilkinson and Dr. Jim Huntington for their guidance 

and support, and for according me a great learning opportunity. You make me want to work 

harder, learn more, and become a better person every single day. 

 

I would also like to thank technician staff at sheep unit for their assistance in animal care 

and sampling. My thanks are extended to the laboratory technician staffs for their assistance 

and advice during laboratory works. The technical assistance is greatly acknowledged. 

 

Thanks to the whole PhD community at Harper Adams University for being there for each 

other, sharing our experiences and having a fun.  

 

I would like to thank the Ministry of Higher Education and Scientific Research of Kurdistan 

Region Government (KRG) for funding my study. 

 

To my mum, Heeba, for truly instilling the belief that I could be anything I wanted to be. You 

are the first to teach me to follow all the ambitions in my heart. Not only has it led me to a 

profession and career to be proud of. I am proud of the person you raised me to be and 

thank you for all your prayers, love, and support along the way. 

 

Lastly, I have to remember the huge support, patience and help of my family, my wife 

Parzhin, my sons: Yade and Meer. Thank you very much for your support and help. 

 

Thanks a lot again to all of you. 

 

Abdulqader  

 

 

 

 

 



xv 
 

Declaration 

The work in this thesis is original.  None of this work has been presented in any previous 

application for a degree. 

 

 

 

Abdulqader Hussein 

 

 

 

 



1 
 

Chapter 1. Literature Review 

1.1. Introduction  

There are 22 minerals that have been shown to be essential in an animals’ diet in order to 

maintain normal health and production (Suttle, 2010). These minerals, based on the amount 

required by the animal, are separated into 7 major or macro elements and 15 trace or micro 

elements (Table 1.1) (Underwood, 1981). Among trace elements only copper, iodine 

manganese, zinc, cobalt, and selenium have been required to be supplemented into the 

diet of ruminant livestock in order to prevent their deficiency (Suttle, 2010). Furthermore, 

dietary supplements of other minerals such as aluminium, boron, cadmium, lithium, lead, 

and rubidium have also been shown to improve growth and health, but are not classed as 

essential (Underwood and Suttle, 2004). 

Table 1.1. Essential macro and micro elements in animals’ diets 

Macronutrient Micronutrient 

Calcium (Ca) Iron (Fe) 

Potassium (K) Iodine (I) 

Phosphorous (P) Zinc (Zn) 

Sodium (Na) Copper (Cu) 

Chlorine (Cl) Manganese (Mn) 

Magnesium (Mg) Cobalt (Co) 

Sulfur (S) Molybdenum (Mo) 
 Selenium (Se) 
 Chromium (Cr) 
 Tin (Sn) 
 Vanadium (V) 
 Fluorine (F) 
 Silicon (Si) 
 Nickel (Ni) 
 Arsenic (As) 

 

The essentiality of dietary Cu has long been established when it was shown to be required 

for growth and haemoglobin formation in laboratory rats (Elvejhem et al., 1929). Copper 

was also found to be essential for preventing diseases that are naturally caused in grazing 

animals such as diarrhoea in cattle in Somerset, UK (Ferguson et al., 1943). In addition, 

subsequent studies demonstrated that Cu was an essential component for numerous 

enzymes and proteins such as tyrosinase, ceruloplasmin, cytochrome c oxidase, lysyl 

oxidase, superoxide dismutase, and dopamine β-monooygenase (Suttle, 2010). 

Subsequently, the importance of the interaction between Cu and Mo was found when Cu 

was used as a treatment to control the diarrhoea ‘’teart’’ caused in cattle grazing herbage 

rich in Mo (Ferguson et al., 1943). Similarly, Mo was used as a means to treat Cu toxicity in 

sheep fed herbage low in Mo concentration (Dick and Bull, 1945).  
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The development of these two syndromes not only depends on the concentration of Cu in 

the diet, but also on the concentration of Mo and a third element S (Dick, 1954). A three-

way interaction between Cu, Mo, and S has been reported to be the main factor involved in 

the aetiology of clinical Cu deficiency disorders in ruminants (Suttle, 1991). The signs of 

clinical Cu deficiency are shown as swayback, reduced weight, decreased reproduction, 

alteration in wool characteristics, reduced feed intake, anaemia, cardiovascular disorders 

such as rupture of the aorta or heart failure, and impaired immune response (McDowell, 

1985; NRC, 2005; Suttle, 2010). In ruminants, Cu deficiency can be either primary due to 

the presence of inadequate Cu in the diet, or secondary due to a presence of high levels of 

Cu antagonists minerals that reduce its availability and functions (Phillippo et al., 1987a; 

1987b; Suttle, 1991). This review will discuss the nutritional and biological importance of Cu 

in ruminants. In addition, it will also discuss the difference in Cu availability between forages 

and interaction between forage type and mineral composition.     
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1.2. Properties of copper 

1.2.1. Physical and chemical properties of copper 

Copper has an atomic number of 29 and an average atomic weight of 63.546 daltons, 

belonging to the first transition metal group in the periodic table. Copper can be mostly 

found in the environment in one of the three oxidation states: Cuo (copper metal), Cu1+ 

(cuprous ion) or Cu2+ (cupric ion) (Georgievskii et al., 1982). In the biological system, 

including water, Cu can be found mainly in cupric form (Cu2+), and rarely in cuprous form 

Cu1+ (Linder and Maryam, 1996). The Cu1+ compounds are readily oxidised to Cu2+ in 

aqueous solution and Cu2+ compounds are the most oxidised state of Cu (NRC, 2005). 

Therefore, Cu is commonly found in compounds Cu2+ (Linder, 1991). 

 

1.2.2. Dietary source of copper  

Copper is a natural trace element which is widely distributed in feedstuffs (Table 1.2). 

Sources rich in Cu are whole grains, legumes, seeds, nuts, and by products. Grasses 

tended to have lower Cu content compared with legumes, and Cu content in leaves and 

stems tended to be lower than grains (Minson, 1990; McDowell, 1992). 

 

Table 1.2. Dietary copper concentration of animal feedstuffs  

Dietary source 
Copper content 

(mg/kg DM) 

Grass (Close grazing) 8 

Grass (Extensive grazing) 7 

Grass silage 3.2-10.8 

Maize silage 2- 6.4 

Alfalfa haylage 5.0-10 

Hay 3.7-15.9 

Straw 2-5.6 

Soya 21.3 

Barley 3.7-15.9 

Rolled oats and barley 5.3-61.5 

Maize grain 12-52 

Sugar beet pulp 3.2-6.1 

Molasses 5.7-15 

Soya bean meal 25 

Sources: McDowell (1992), Nicolson et al. (1999), and Li et al. (2005). 
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1.2.3. Factors affecting copper status of forages 

The copper concentration in herbage varies with soil type, geographical location, plant 

species, plant parts, stage of maturity, and climate or season (Mison, 1990; MacPherson, 

2000; Suttle, 2010). The ability of soil to provide Cu to animals via plant uptake depends on 

factors such as the level of Cu in the soil, water logging, and soil pH (Minson, 1990). The 

level of Cu in soils has been shown to be variable. For example, the total concentration of 

Cu was varied in four different Scottish soils such as olivine-gabbro (41 mg/kg DM), 

Sepernite (15 mg/kg DM), sandstone (8.5 mg/kg DM), and granite (7 mg/kg DM) (Burridge 

et al., 1983). In addition, the soil Cu concentration may in turn be affected by water irrigation 

and water logging, as freely drained soils such as basic igneous contained a higher Cu 

concentration compared with poorly drained soils (40 and 10 mg/kg respectively) (Burridge 

et al., 1983). Consequently, the Cu uptake by plant will be low if soil Cu concentration is 

low. Reddy et al. (1981) reported that the concentration of Cu in clover (Trifolium. 

subterranean) grown on a lateritic podsolic soil that contained 2.1 mg Cu/kg soil or in 

calcareous sand that contained 0.5 mg/kg soil was 12.9 and 6 mg/kg DM respectively.  

 

The application of lime in order to improve upland pastures has generally produced little 

effect on Cu uptake by plants due to a rise in soil pH. However, it is nevertheless important 

in the aetiology of Cu deficiency in the sheep grazing in hill pastures, as the uptake of Mo 

was greatly increased by liming and the Cu:Mo ratio will be changed (MacPherson, 2000). 

Increasing soil pH from approximately 5.5 to 6.5 via liming resulted in a decreased Cu 

concentration in barley from 3.5 to 3.2 mg/kg DM, whereas, Mo concentration in red clover 

was increased from 1.4 to 4.7 mg/kg DM (Burridge et al., 1983).   

 

The mean level of Cu in grass pasture in Shropshire (UK) has been found to be between 

9.18 and 9.53 mg/kg DM, whereas, in another area such as Northumberland (UK) the level 

of Cu ranged from 6.33 to 11.43 mg/kg DM (Peers and Phillips, 2011). This difference may 

be related to soil type and it can be useful to determine areas where the risk of Cu deficiency 

is low or high (Jumba et al., 1995). Copper content among grass species, grown on the 

same soil, has been found to vary widely, ranging from 4.5 to 21.1 mg/kg DM (Suttle and 

Underwood, 1991). Minson (1990) reported that temperate grasses tended to contain less 

Cu compared to legumes in the same conditions (4.7 vs. 7.8 mg/kg DM, respectively) (Table 

3.1).  
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The distribution of Cu in temperate grasses varies (Table 3.1); leaves on average contain 

35% more Cu than the stem fraction, but this is affected by the age of the plant, with little 

difference between stem and leaves in immature plants (Minson, 1990). The maturity of 

plants leads to a reduced Cu level of forages as a consequence of a decreased proportion 

of leaves and lowering of the Cu concentration of the stem (MacPherson, 2000). The 

concentration of Cu in young oat plant (Avena sativa) was 9.4 mg/kg DM and reduced to 

3.2 mg/kg DM at milk-ripe stage (MacDonald and Wilson, 1980). Seasonal change can 

cause some changes in Cu concentration in plants possibly due to the difference in soil 

temperature, as it is reported that increasing soil temperature from 12 to 20°C resulted in 

increased Cu concentration in clover plants (Trifolium. subterraneum) by 20-93% (Reddy et 

al., 1981). Likewise, Cu concentration in forage samples collected from three grass field 

and one red clover in spring was lower than in autumn (6.33 and 11.43 mg/kg DM 

respectively) (Peers and Phillips, 2011).  

 

Table 1.3. Copper distribution between plant parts 

        Species               Plant part (mg/kg) 

Grasses  leaf Stem 

 Dactulis glomerat  7.1 5.4 

 Festuca pratensis  4.9 3.5 

 Lolium perenne  5 4 

 Phleum pratense  4.6 3.2 

Legumes    

 Lotus corniculatus  9.8 7.6a 

 Medicago sativa  10.5 7.9a 

  Trifolium repens   10.5 6.9a 
aincluding petiole. 

Source; Minson (1990). 
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1.3. Copper deficiency 

Copper deficiency has usually been related to a low Cu status (Suttle, 2010) and can be 

termed ‘’hypocuprosis’’. There are many factors that have been related to Cu deficiency 

such as diet, breed, species, and Cu antagonists (Suttle, 2010). Copper deficiency in 

ruminant animals occurs when Cu levels in the diet are not sufficient to maintain optimum 

growth, health, and productivity (Underwood and Suttle, 2004). Copper deficiency can occur 

as either a primary deficiency, due to inadequate amounts of Cu in the diet, or as a 

secondary deficiency which is caused by interactions between Cu and one or more 

antagonists that reduce its availability or function (Phillippo et al., 1987a; 1987b). The Cu 

antagonists that have been shown to have the most significant effects are Mo, S, and Fe, 

and secondary Cu deficiency is generally more common and economically important as it 

may result in neonatal ataxia, depigmentation, altered keratinisation, growth retardation, 

infertility, disease susceptibility, or diarrhoea, and ataxia (MacDowell, 2003; NRC, 2005; 

Suttle, 2010). 

 

Ataxia, also referred to as ‘swayback’ is a neurological disorder affecting lambs or kids from 

Cu-deficient pregnant ewes and is characterised by hind limb staggering, lack of 

coordinated movement, associated by low Cu levels in the brain, and liver (Ivan et al., 1990; 

Alley et al., 1996). Types of ataxia may occur in neonatal lambs which are completely 

paralysed or ataxic at birth and followed by death (Woolliams et al., 1986b). The delayed 

ataxia which is recognised by spastic paralysis, uncoordination of the hind legs, stiff and 

staggering gait, swaying hind quarters, often triggered by flock disturbances. The third is 

not common and occurs in older lambs and is characterised by a transfixed stance, head 

quivering, and sometimes blindness (Suttle, 2010). In other ruminant species nerve 

disorders, such as hind limb ataxia, have been reported in moose, and in red and fallow 

deer in the United Kingdom, New Zealand, and Sweden (Barlow et al., 1964; Wilson et al. 

1979; Audigé et al., 1995). The level of the cytochrome c oxidase (COX) was found to 

decrease in the brain mitochondria of affected lambs’ (Smith et al., 1976; Alleyne et al, 

1996). The main abnormalities in the central nervous system in cases of swayback result 

from demyelination, with associated reduction of COX activity (Prohaska, 1981), along with 

a decrease in dopamine production due to reduced dopamine monoxygenase activity 

(O’Dell et al., 1976). Demyelination is associated with degeneration of the motor neuron 

activity in brain and spinal cord in the lambs (Suttle, 1988). The vulnerability of lambs to 

neonatal ataxia has been associated with severe Cu deficiency in ewes in mid pregnancy, 

when a rapid phase of myelination in the fetal central nerve system (CNS) occurs (Suttle, 

2010). Delayed ataxia is related to the deprivation of ewes in late pregnancy, when the 

second phase of spinal cord myelination occurs a few weeks after birth (Suttle, 2010).  
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A deficiency of Cu either as primary (Suttle et al., 1970) or secondary (Suttle and Field, 

1968; Kendall et al., 2000; Majak et al., 2004), can cause some abnormalities in wool and 

hair. An early sign of Cu deficiency in sheep is often associated with lack of crimp in the 

wool fibre staple (Suttle and Angus, 1976) caused by an alteration in the keratinization 

process through reducing the cross linkage of disulfide bonds (Denks et al., 1972), which 

are linked polypeptide chains of keratin fibres formed by the oxidation of –SH groups of the 

cysteine residues, between polypeptide chains (Linder, 1991). These signs have been 

induced in experiments by adding high levels of Mo and S (Kendall et al., 2000) or by rearing 

Scottish blackface lambs on improved pastures (Whitelaw et al., 1977). Copper 

supplementation can quickly restore these abnormalities in new wool growth (Underwood, 

1977).   

 

Achromotrichia or loss of the hair or wool pigment is considered as the earliest or sometimes 

only sign of Cu deficiency (Suttle, 2010) which is caused by insufficient activity of the Cu 

containing enzyme tyrosinase, an enzyme involved in melanin pigment biosynthesis (Seo 

et al., 2007). White wool develops in normally black-woolled sheep, greying of black or 

bleaching of brown hair are most obvious signs of depigmentation (Underwood, 1977; 

Suttle, 2010). Also, in the Aberdeen Angus cattle, a brownish tinge can be seen in the coat 

and the skin becomes mottled (Hansen et al., 2009).  

 

Effects of Cu deficiency on growth and performance have not always given consistent 

results. Whitelaw et al. (1979) and Woolliams et al. (1986b) demonstrated that the reduction 

in growth rate in sheep grazing on improved pasture was due to Cu deficiency. Similarly, 

Whitelaw et al. (1984) also reported the same effect in cattle. This reduction in growth rate 

was counteracted by Cu supplementation (Whitelaw et al., 1987b). Phillippo et al. (1987a; 

1987b) also reported that hypocupraemic cattle had a reduced growth rate, as a result of 

dietary Mo but attributed this to a reduction in DMI. However, Williams (2004) and Sefdeen 

et al. (2016) did not observe any effect of dietary Cu antagonists on growth. The effect of 

antagonists on intake may be due to the effect of absorbed thiomolybdate that may have a 

direct effect on Cu containing enzymes such as peptidylglycin α–amidating 

monooxygenase, which exerts an influence on appetite-regulating hormones gastrin and 

cholecystokinin (Suttle, 2010).  

 

Sub fertility in ruminant animals has been linked with clinical Cu deficiency in an early report 

by Murno (1957) suggesting a possible effect of Mo on fertility. Several authors also have 

reported the impact of the secondary Cu deficiency on sub fertility, including embryonic loss 
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(O’Grman et al., 1987), delayed onset of puberty (Phillippo et al., 1987a), decreased release 

or production of luteinised (LH) hormone or follicle stimulated hormone (FSH) (du Plessis 

et al., 1999a), and lack of signs of behaviour in sheep (du Plessis et al., 1999b). In the field, 

supplementation of Cu successfully improved molybdenum-induced subfertility in cattle 

(Black and French, 2000; Kendall et al., 2001). Mackenzie et al. (2001) also reported that 

poor conception in dairy cattle was attributed to the dietary Mo concentration in the diet and 

they showed that bolusing cattle resulted in a significant decrease in inseminations to 

confirmed conception from 2.5 to 1.7 compared with the control animals.  

 

Early observation of diarrhoea in cattle grazing on the Mo rich ‘teart’ pasture in Somerset 

and in British Colombia were shown to be prevented by Cu supplementation (Ferguson et 

al., 1943). However, Ward et al. (1978) suggested that the diarrhoea may be a manifestation 

of Mo toxicity rather than its effects on Cu metabolism. Anaemia has been reported in 

association with severe or prolonged Cu deficiency (Suttle and Field, 1968; 1969; Whitelaw 

et al., 1979). Copper is required in ferroxidase enzymes to mobilise iron for haemoglobin 

synthesis (Suttle, 2010). In lambs, anaemia has been identified as either hypochromic (red 

blood cells become pale in colour) or microcytic (which causes smaller red blood cells), 

similar to anaemia caused by iron deficiency. In contrast, in cattle and ewes it may be 

exhibited as hypochromic and microcytic (Suttle et al, 1987). Signs of oxidative stress, 

which is associated with an increase of Heinz body in red blood cells, has also been 

reported in Cu deficient lambs (Suttle et al., 1987).  

 

Copper deficiency can have an adverse effect on immune response through reducing 

immune function and elevating susceptibility to disease infection (Stable and Spears, 1989). 

Jones and Suttle (1989) reported that neutrophils from lambs and ewes with plasma Cu 

below 8 µmol/L (hypocupraemic) had significantly lower in vitro killing capacity compared 

with those with plasma Cu concentration above 8 µmol/L. Woolliams et al. (1986a) reported 

that mortality caused by infection in lambs reared on improved hill pasture were higher in 

breeds with poor Cu utilisation such as Scottish Blackface compared with Welsh Mountain. 

Innate immune function as measured by neutrophil phagocytosis (Xin et al., 1991) or 

superoxide dismutase activity (Boyne and Arthur, 1986) and adaptive immune function as 

measured by lymphocyte proliferation (Arthington et al., 1996) and antibody production 

(Gengelbach and Spears, 1998) have been shown to be reduced in secondary Cu 

deficiency.  



9 
 

1.4. Copper toxicity 

Despite Cu being an essential trace element required for numerous vital functions in the 

body, it can also be extremely toxic to ruminants (Suttle, 2010). There are marked variations 

between domestic animals regarding their tolerance to increased dietary Cu intakes (Howell 

and Gooneratne, 1987). Sheep are considered to be most sensitive to Cu toxicity compared 

with other species (Ivan, 1993; NRC, 2005). This has been attributed to their inability to 

increase biliary Cu excretion in response to increased Cu intake (Bremner, 1998) and 

limited ability to accumulate Cu bound to metallothionein (MT) in their livers (Howell and 

Gooneratne, 1987). Young animals are more sensitive than adults because they have a 

higher efficiency of absorption (NRC, 2005). Non-ruminants are more tolerant to Cu toxicity 

than ruminants and pigs are routinely fed diets with Cu levels of 125-250 mg/kg DM (well 

above physiological requirement in pigs; 3-4 mg/kg DM; NRC; 1996) to promote growth and 

feed efficiency (Hill et al., 2000). NRC (2005) set the maximum tolerable dietary Cu level in 

sheep at 15 mg/kg DM, similar to the upper limit (15 mg/kg DM) set by European 

Commission (EC, 2003). 

 

Todd (1972) reported that chronic toxicity mainly occurs in sheep and cattle and clinical 

signs in cattle are similar to those characteristics for sheep (NRC, 2005). Copper toxicity 

has been categorised by Ivan (1993) and MacDowell (2003) into two cases; first, acute 

toxicity, relatively uncommon, which may arise by accidental increase in Cu intake after 

either large oral doses of Cu, improperly formulated diets, or following parental injection of 

Cu in order to treat Cu deficient incidence. During acute Cu toxicity, animals may experience 

abdominal pain, diarrhoea, and sometimes sudden death. This usually occurs within 3 days 

following injection in sheep and 12 days in calves (Ivan, 1993). Haemolysis of red blood 

cells is also found in response to acute Cu toxicity (Linder and Hazegh-Azam, 1996). The 

second form is chronic Cu toxicity or chronic copper poisoning (CCP) and is found mainly 

in ruminants rather than mono-gastric animal and only rarely in humans (MacDowell, 2003).  

 

In ruminants CCP occurs in two phases; pre-haemolytic, which is characterised by 

accumulation of liver Cu over a period of weeks or months until it reaches a level of 1000-

1500 mg/kg DM without clinical signs and is given the term ‘silent’, and only when the liver 

Cu storage is overloaded, hepatocyte damage occurs, resulting in hepatocyte bursting 

(lysis) (Suttle, 2010; Marta Lopez-Alonso, 2012; Kumaratilake, 2014). The signs that have 

been characterised as liver necrosis resulting from haemolytic crisis typically exhibit post-

mortem as orange livers, with haemolytic anaemia, jaundice, discoloration of digests and 

tissues with dark kidneys (Bidewell et al., 2012). Histological changes such as an increase 

in the number and size of lysosomes, which is in accordance with increased lysosomal 
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enzyme activity also been noted in Cu loaded livers (Gooneratne et al., 1980). However, 

the Cu induces haemolysis mechanism is unclear, but may be related to Cu inducing 

production of superoxide radicals that result in erythrocyte membrane damage (Howell and 

Gooneratne, 1987).  

 

Some sheep breeds have been shown to be susceptible to Cu toxicity at lower dietary 

concentrations, especially when dietary Mo and S are below the range (1-2 mg/kg DM and 

1.5-2.5 g/kg DM respectively) (MacPherson et al., 1997). The tolerable concentration of Cu 

in the sheep diets is greatly affected by genetics, dietary concentration of Mo and S, period 

of exposure, dietary source of Cu, and diet composition. Suttle (1977) reported that high 

mortality has been found as a result of Cu toxicity in Finish Landrace lambs compared with 

Scottish Blackface, when these lambs were fed a diet containing 45.3 mg/kg DM of Cu. 

Suttle et al. (2002) demonstrated that liver Cu concentrations in Texel lambs fed a ration 

with moderate Cu concentration (6.1 mg/kg DM) increased to a marginally toxic level, while 

in some Suffolk and Charollais lambs fed the same diet, liver Cu concentrations reached a 

marginal toxic level.  

 

Moreover, 89 cases of Cu toxicity were recorded in sheep from diagnostic submission to 

SAC Consulting Veterinary Service (SAC C VS) from 2011 to 2015 and it is revealed that 

51% of 78 cases, that recorded for breed, were in Texel’s breed (SAC C VS Surveillance, 

2016). Liver Cu concentration of 73 of the 89 cases ranged from 577.3 to 4396.8 mg/kg 

DM, with a median value of 1548.8 mg/kg DM. Over the past two decades there has been 

a trend for cattle to be fed increasing amounts of Cu in their diet which has resulted in an 

increase in the number of cases of Cu toxicity (Livesey et al., 2002). Copper was previously 

viewed as a safe element for cattle. However, cattle now are showing significant 

accumulation of hepatic Cu at levels that are much lower than cited by ARC (1980). In a 

recent survey of UK dairy farms intakes of Cu were 120% in excess of NRC (2001) 

recommended levels (Sinclair and Atkins, 2015), and these high levels may cause Cu 

toxicity. 
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1.5. Metabolism of copper in ruminants 

Copper metabolism covers the absorption, transportation, storage, and excretion of the 

element to try to maintain homeostasis (Mercer, 1997). Certain aspects of Cu metabolism 

must be described in order to fully understand the variable effects of Cu deficiency and 

toxicity on livestock (Suttle, 2010). Modification to fluctuations in Cu supply is achieved by 

controlling Cu metabolism (Underwood and Suttle, 1999). There is a wide difference among 

species of the relative importance of each process and outcome in terms of relationships 

between dietary Cu supply and liver Cu storage and excretion (Fig. 1.1). Ruminants have 

generally adapted to a poor Cu supply and have poor control over absorption and excretion 

but actively store Cu in their livers (Suttle, 2010). By comparison, non-ruminants generally 

have an adequate supply, have control over absorption and excretion and store only a small 

quantity (NRC, 2005; Suttle, 2010). However, within ruminants there is genetic influence in 

Cu haemostasis. For example, Woolliams et al., (1982; 1983) described differences in 

sheep breed with regards to susceptibility to Cu toxicity and deficiency. Similar differences 

in cattle breeds have also been described (Ward et al., 1995; Mullis et al., 2003; Fry et al., 

2013).  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Species differ in the extent to which they store excess dietary copper in their 
livers. Ruminant species, for which the risk of copper deficiency is ever-present, store 
copper avidly while non-ruminant species, which are rarely at risk, do not.  

Source: Suttle (2010) 
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1.5.1. Absorption  

Copper absorption in mammals occurs primarily in the small intestine (Linder and Hazegh-

Azam, 1996), and in ruminants it is principally in the duodenum (Cousin, 1985; Kalinowski 

et al., 2016), although the jejunum and ileum may also contribute to Cu absorption 

(Bremner, 1980). The efficiency of Cu absorption has been found to be partially regulated 

by the dietary Cu content; when dietary Cu intake increases, the efficiency of Cu absorption 

decreases and vice versa, in order to maintain homeostasis (Trunland, 1989). There was a 

linear relationship at low doses up to 12 µg/300 g rat between the amount of oral 

administrated 64Cu and the rate of entry 64Cu into plasma in rats, which was 30%, whereas 

at higher doses 12-36 µg/ 300 g rat this relationship became non-linear and the absorption 

rate reduced to 13% (Merceau et al., 1970). Studies have indicated that the mechanism of 

Cu uptake across brush border microvilli can vary depending on the Cu concentration in the 

intestinal cells. Two different mechanisms have been proposed for Cu absorption from the 

mucosal to serosal side of the gastrointestinal tract; first, at low Cu concentrations, 

absorption was found to be mediated through non-energy dependent saturable carrier 

(active transport) and second, at higher concentrations it was found to occur via diffusion 

(Linder and Hazegh-Azam, 1996; Kalinowski et al., 2016). 

 

Studies with laboratory animals have indicated that Cu transporter protein 1 (Ctr1) is the 

principal protein that is responsible for Cu uptake across the microvilli (Harris, 2000; Lee et 

al., 2002; Suttle,2010) along with other transports such as divalent metal transporter 1 

(DMT1), and Cu transporter 2 (Ctr2) (Arrendodo et al., 2003; Blair et al., 2009; Suttle, 2010). 

Recent studies suggest that Ctr1 is an integral membrane protein that is primarily 

responsible for importing dietary Cu across the brush border (Fig. 1.2), forming a 

homotrimeric pore that is specific to Cu in the cuprous state Cu+1. However, dietary Cu is 

present in the cupric form Cu+2 and it needs to be reduced before uptake. Therefore, Cu+2 is 

reduced to Cu+1 to facilitate absorption (Kalinowski et al., 2016), via metalloreductases, or 

potentially by Fe+3 reductance enzymes such as duodenal cytochrome b (Dcytb), which is 

also able to reduce Cu+2 (Knuston, 2007). 
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Figure 1.2. Copper absorption across the brush border with the help of copper transporter 
1 (Ctr1). Atox1 then shuttles the copper to be pumped out to the blood stream by ATPA.  

Kalinowski et al. (2016) 

 

The imported Cu is delivered by the chaperones COX1, COX17, Atox1, and CCS to the 

secretory compartment (Lee and Thiele, 2002). Copper is then loaded onto Cu-dependent 

enzymes, or moved out from the basolateral membrane via a P-type ATPase, ATP7A (Vonk 

et al., 2008), into the portal blood stream, where the Cu binds to albumin or histidine (Suttle, 

2010).  

 

It is generally agreed that metallothionein (MT) in intestines regulates Cu absorption, 

however, it is not clear that MT comprises an essential component of Cu absorption, but it 

may help protect against Cu toxicity (DiSilvestro and Cousins, 1983). Sheep appear to have 

a low ability to synthesise MT (Saylor et al., 1980). Metallothionein synthesis in enterocytes 

has also been identified as having a role in the regulation of the Cu absorption (McDowell, 

1992), whereby in mucosal cells, absorbed Cu from the intestine binds to MT and is then 

sloughed off from mucosa and excreted in the faeces (Hartmann et al., 1993).  
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1.5.2. Transportation and intracellular uptake  

Once Cu is absorbed from the enterocyte, it is transported in the portal circulation where it 

is delivered to the liver and other tissues mainly bound to the carrier proteins such as 

albumin and to a lesser extent transcuprein, although amino acids such as histidine, 

threonine, and glutamine may also be involved (Linder et al., 1998; Valko et al., 2005; Vonk 

et al., 2008). The liver is the organ that distributes most of the absorbed Cu and has a 

central role for regulating Cu homeostasis within hepatocytes (Vonk et al., 2008). After Cu 

uptake by the hepatocyte via Ctr1 (Tapiero et al., 2003), Cu is then rapidly incorporated into 

a variety of intracellular Cu transporters and chaperones (Vonk et al., 2008). These 

chaperones shuttle Cu directly to their specific Cu-dependent proteins or enzymes 

(Markossian and Kurganov, 2003). 

 

Intracellular Cu transport is performed by chaperones, including Atox1, Cox17 and CCS as 

illustrated in Fig. 1.3. (Lutsenko et al., 2007). Atox1 traffics Cu to the Trans Golgi Network, 

where Cu is incorporated into Cu proteins such as Cp via ATP7B (Linder, 2010). CCS 

delivers Cu to Cu/Zn SOD (Prohaska, 2008) and COX17 directs Cu to the mitochondria for 

incorporation into cytochrome c oxidase (Leary et al., 2004). Intracellular Cu is bound to 

MTs for intracellular metal detoxification, which store excess Cu (Wang and Guo, 2006) or 

is stored in vesicular Cu pools. Data also suggests a potential role for the low-affinity Cu 

transporter CTR2 in releasing the Cu from these pools (Blair et al., 2009). If there is an 

excess of Cu, ATP7B translocates toward the canalicular membrane, thereby promoting Cu 

excretion into the bile canaliculus and eventually into the faeces. The interaction of 

COMMD1 with ATP7B suggests that COMMD1 collaborates with the function of ATP7B. It 

is suggested to have a role in the ATP7B-mediated vesicular Cu sequestration pathway (La 

Fontaine et al., 2007).  

 

The necessity of intracellular Cu transportation is emphasised by several well-known 

genetic diseases, such as Menkes disease (MD) and Wilson’s disease (WD). The MD is 

exhibited when ATP7A is mutated, while WD occurs due to ATP7B mutation (La Fountaine 

et al., 2010). ATP7A and B have similar structure and functions, although the clinical 

exhibition and pathology related to MD are completely different to WD (Kodma et al., 2012).  
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Figure 1.3. Illustrating the intracellular copper pathways in hepatocyte  

Vonk et al. (2008) 

 

The ATP7A protein is expressed in the majority of tissues except liver. In the animal model 

of MD, ATP7A is expressed in astrocytes, cerebrocytes, and neurons. This confirms the 

role of ATP7A in intracellular Cu transportation (Qian et al., 1998). ATP7A is a protein that 

is required for Cu uptake in the small intestine into the blood and also for Cu transport 

across the blood-brain epithelium (La Fontaine and Mercer, 2007; Lutsenko et al., 2007). In 

addition, ATP7A in transgolgi network (TGN) also pumps Cu to Cu containing enzyme (lysyl 

oxidase) (La Fontaine and Mercer, 2007). ATP7A protein is coded on the X-chromosome 

that is missing in human MD due to mutation (Prohaska, 2008). Patients with MD are 

characterised by low Cu absorption from small intestine and transfer into the blood, resulting 

in severe Cu deficiency in cells in most organs.  

ATP7B is the protein that has much more restricted expression (La Fontaine et al., 2010), 

with the highest expression in the liver (Kodama et al, .2012; Wada et al., 2014). The role 

of ATP7B centres on delivering Cu from the cytoplasm of the hepatocyte to the Cp located 

in the TGN (Lonnerdal, 1996). In addition, ATP7B can excrete Cu from the liver to the bile 

when the concentration of hepatic becomes elevated (Kodama et al., 2012). Patients with 

WD carry a mutation in the ATP7B gene (Llanos and Mercer, 2002; Shim and Harris, 2003), 

which results in an accumulation of Cu in the liver, with subsequent deposition of Cu in the 

central nervous system due to having inactive ATP7B, which cannot excrete liver Cu into 

the bile or incorporate it into Cp (Fatemi and Sarkar, 2002).  
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Ceruloplasmin is synthesed in the liver (Goodman et al., 2004). It has a half-life of 

approximately 2-3 days in blood plasma (Linder, 1991). Ceruloplasmin mainly transports 

Cu from liver to other tissues (Turnlund et al., 1998; Vonk et al., 2008) and approximately 

90-95% of circulation blood Cu is in the form of Cp in animals (Terada et al., 1995), while 

the remaining is loosely bound to albumin and other amino acids (Kodama et al., 2012).  

 

1.5.3. Copper storage 

After being absorbed from the intestine and transported into the blood Cu is then rapidly 

stored in the liver (Suttle, 2010; Gaetke et al., 2014). The liver is regarded as a main organ 

for Cu storage (Bremner, 1998) in sheep and it has been found that approximately half of 

the total Cu in the carcass is stored in the liver (Langlands, et al., 1984). In ruminant animals, 

normal liver Cu concentration ranges from 100-500 mg/kg DM, this level may increase to 

2000-3000 mg/kg DM during periods of Cu toxicity (Dick, 1954).  

 

McDonald et al. (2011) described a new framework model of the possible Cu movement 

and storage in the ruminant body based on kinetic models that were proposed by 

Gooneratne et al. (1989b), using 64Cu and 67Cu isotopes respectively in sheep (Figure 1.4). 

The first pool, box A, represents a temporary liver Cu storage destined for exchange with 

blood and excretion into bile. The second pool, box B represents a temporary liver Cu 

storage for incorporation into Cp. The third pool, box C represents a long-term liver Cu 

storage compartment from which excretion into bile and secretion into blood. 

 

 

(McDonald et al., 2011) 

Figure 1.4. The possible copper movement and storage within the body within the body. 

In mammals, a series of metabolic processes are carried out within liver Cu, preparing Cu 

ions for subsequent incorporation into proteins for storage, transport and excretion (Gaetke 
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et al., 2014). Bremner (1998) and Gaetke et al. (2014) proposed three distinct pathways 

involved in this process; first, preparation of Cu for secretion into the bile. Second, 

temporary storage of Cu in the liver by binding with MT. Third, the incorporation of Cu into 

the Cp for distribution throughout the body.  

 

The sub distribution of Cu in hepatocytes is important in order to elucidate changes that 

occur during Cu toxicity (Bremner, 1998). In normal circumstances, the distribution of Cu in 

the hepatocyte is 20% in the nuclear portion, 10% in microsomes, and 20% in the large 

granules of mitochondria and lysosomes, and the remainder is deposited in the cytosol 

either in Cu-depending enzymes or MT (Saylor et al., 1980; Bremner, 1998). The 

distribution of Cu in the subcellular fraction of the hepatocyte depends on total liver Cu 

rather than the physiological status of the animal, such as age, species or Cu status 

(Kumaratilake, 2014). When reaching a certain threshold of Cu concentration within cells, 

any Cu excess is sequestered into the lysosomes as a part of detoxification process where 

Cu ions are not available to initiate toxic effect (Kumaratilake, 2014). The kidneys are 

regarded as the second site of Cu storage, after the liver becomes saturated (Walsh, 1968).  

 

1.5.4. Copper excretion 

Biliary Cu secretion is quiescent in the foetus, while it is initiated after birth (Prohaska, 2006) 

in order to allow both the entero-hepatic recycling of Cu and the excretion of overload Cu. 

In sheep, biliary Cu excretion can increase as liver Cu concentrations rise (Grase et al., 

1998) however breeds may vary in this respect (Suttle et al., 2002). At high Cu intakes, the 

alleviation in hepatic Cu storage in cattle was quicker than sheep by means of biliary 

excretion (Phillippo and Graca, 1983). The lower threshold for Cu storage in lysosomes in 

the bovine may explain this difference (Lopez-Alonso et al., 2005). Compared with other 

mammals, sheep have a variant Cu phenotype and do not efficiently excrete Cu via the bile. 

Goats retained 6 to 9 times less Cu in their liver compared with sheep when exposed to 

high Cu intakes (30-60 mg/kg DM) (Zervas et al., 1990) and may also have a well-developed 

capacity for biliary Cu secretion. In sheep, the excretion of Cu from liver into the bile can be 

indirect via sequestering excess Cu as a response to Cu loading from Cu loading 

hepatocytes which elevate the number and size of lysosomes, paralleled by a rise in 

lysosomal enzyme activity (Gooneratne et al., 1980; Kumaratilake, 2014). There is also a 

direct path by which Cu is removed from hepatocyte lysosomes into the bile after 

intravenous or intraduodenal administration of tetrathiomolybdate (Gooneratne et al., 

1989b; Gooneratne, 2012). 

Gooneratne and Christensen (1997) claimed that dietary Cu increase in sheep does not 

necessarily cause a large increase in biliary Cu excretion, even a reduction in biliary Cu 
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excretion has been reported by increasing dietary Cu offered to Romney-Marsh lambs from 

6.78 to 17.78 mg/d (Grace and Gooden, 1980). Moreover, Gooneratne (2012) confirmed 

that increasing dietary Cu in sheep from 6.3 to 41.6 mg/kg DM did not elevate biliary Cu 

excretion. However, increasing Cu herbage concentrations from 8.1 to 40.5 mg/kg DM, 

elevated sheep bile Cu concentration from 0.76 to 1.97 mg/kg bile (Grace et al., 1998). 

Urinary excretion of Cu is normally small (less than 1% of ingested Cu) (Grace and Gooden, 

1980; Buckely, 1991), constant and significantly unaffected by Cu intake in all species, 

although it is increased by exposure to Mo (Gooneratne et al., 1981) in sheep, and 

(Gooneratne et al., 1987) in cattle. The majority of the endogenous losses of Cu come from 

biliary excretion and the rest are derived from saliva, gastric, intestinal juices, and Cu in 

desquamated mucosal cells (Gooneratne et al., 1981; Kim et al., 2008). High dietary Cu 

concentration in lambs increased faecal Cu concentration (Zevras et al., 1990).  
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1.6. Copper metabolic interactions 

1.6.1. Copper sulfur interactions 

Sulfur is found in all animal feed types and ranges in pasture from 0.5 to more than 5 g/kg 

DM (Suttle, 2010). Sulfur is present in plants as a component of the S containing amino 

acids methionine and cysteine. However, it can also be present as inorganic sulfate 

(MacPherson, 2000). Ruminant animals are unique due to the ability of ruminal micro-

organisms to use the sulfate to produce S-containing amino acids and the B vitamins, 

thiamine and biotin (Suttle, 2010; McDonald et al., 2011). Within the rumen, sulfate-reducing 

bacteria produce sulfide from dietary sulfur (as inorganic sulfur or sulfur amino acids) 

(Spears, 2003; Drewnoski et al., 2014). Sulfide production in the rumen is dependent on the 

ruminal degradability of dietary protein. This in turn depends on both the protein level of the 

diet and protein solubility (Ivan, 1993). In sheep, increasing dietary S intake from 0.6 to 1.9 

to 3.4 g/d as organic cystine or inorganic SO4 forms resulted in an increased ruminal sulfide 

concentration (Bird, 1970).   

 

Rumen hydrogen sulfide can be either absorbed by the rumen or inhaled via the lungs 

(Kandylis, 1984). Inhalation of sulfide from the rumen of cattle and sheep consuming feed 

(Gould et al., 1991; Hill and Ebbett, 1997) or water (Wagner et al., 1998) high in sulfate has 

been implicated as a potential cause of respiratory problems or polioencephalomalacia 

(PEM) in ruminants. Polioencephalomalacia, which is a neurological disorder and can be 

fatal, is possibly induced by the inhalation of hydrogen sulfide produced in the rumen 

(Gould, 1998). In cattle, the incidence of PEM was found to be small (0.14%). When diets 

containing 4.6 g S/kg DM and when dietary S levels were between 4.7-5.6 g/kg DM, the 

incidences of PEM increased to 0.35%. By increasing the dietary S level to above 5.6 g/kg 

DM, the incidence of PEM was 6.06% (Vanness et al., 2009). Sulfur if consumed in excess, 

has been shown to reduce Cu availability and animal performance through the formation of 

unabsorbable Cu-sulfide compound (Spears, 2003; Suttle, 2010). Bird (1970) reported that 

omasal flow of soluble Cu was reduced by approximately 50% in sheep, when dietary S 

increased from 0.8 to 2.5 g/kg DM. Suttle (1974) demonstrated that increasing dietary S 

concentration as organic (methionine) or inorganic sulfate from 1 to 4 g/kg DM in 

hypocupraimic ewes fed low molybdenum diets (0.5 mg/kg DM of Mo), markedly reduced 

lambs Cu availability based on a plasma Cu response. Moreover, applying ammonium 

sulfate fertiliser (67 kg/ha) to Bahiagrass in order to increase S level in S deficient plants 

resulted in substantially increased S level compared to unfertilised pastures (5.1 and 2.5 

g/kg respectively). This in turn caused a dramatic reduction in the liver Cu concentration of 

cattle grazing on ammonium sulfate fertilised pasture that had a lower liver Cu concentration 

(72 mg/kg DM) compared with those grazed on unfertilised pasture (204 mg/kg DM) 

(Arthington et al., 2002).  
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1.6.2. Copper-molybdenum-sulfur interactions  

Molybdenum levels in forages are reported to be relatively low (1-2 mg/kg DM), although in 

certain areas of the UK Mo can be as high as 10 mg/kg DM (Suttle, 2008a). In early 

investigations, biological antagonism between Cu and Mo was observed when Red Devon 

cattle grazing in ‘’teart’’ pasture of Somerset rich in Mo were found to exhibit clinical Cu 

deficiency exhibiting signs such as scouring and a change in coat colour (Ferguson et al., 

1943). However, the antagonist effects of Mo on Cu availability are suggested to be in part 

dependent on the dietary S content (Dick, 1953; Dick et al., 1975; Spears, 2003). It has 

been shown that increasing dietary Mo intake to 10 mg/day decreased liver Cu storage over 

a period of 3 months when lucerne hay was offered to sheep, although, the same increase 

in Mo intake had no effect on liver Cu storage in sheep fed on an oaten hay diet (Dick, 

1953). However, when inorganic sulfate (potassium sulfate) was added to oaten hay so that 

sheep on the two diets had the same intake of sulfate, as well as Cu and Mo, the difference 

between the diets in the effect of Mo on liver Cu storage was eliminated (Dick, 1953). 

Similarly, in sheep, Cu bioavailability was found not to be affected when dietary Mo 

increased from 0.5 to 4.5 mg/kg DM and S content was only 1 g/kg DM, whereas Cu 

availability was reduced by 40-70% by the addition of 3 g S/kg DM and 4 mg Mo/kg DM to 

the diet containing 1 g/kg DM and 0.5 mg/kg DM of S and Mo, respectively (Suttle, 1975).  

 

The biological interactions between Cu, Mo, and S has been extensively studied and 

reviewed Mason (1982), Gould and Kendall (2011), and Sinclair and Mackenzie (2013). 

Dietary Mo is absorbed readily and rapidly (Mills and Davis, 1987). However, in the 

presence of the rumen sulfide, which is formed from reduced dietary S such as inorganic 

sources of sulfur or sulfur-containing amino acids by micro-organisms in the rumen 

(Chidambaram et al., 1984), Mo can combine with sulfide, producing thiomolybdate 

compounds that have a high affinity to complex with Cu and form biologically unavailable 

Cu-thiomolybdate complexes (Dick et al., 1975). Suttle and McLauchlan (1976) stated that 

in the presence of dietary Mo and S, true Cu availability can be estimated in sheep using 

the following equation: 

 

 

Log A = - 1.153 - 0.076 (S) - 0.013 (S x Mo) 

 

Where (A) is true Cu availability (mg/mg), S (g/kg DM sulfur), and Mo (mg/kg DM 

molybdenum). However, this equation does not take into account the effect of dietary Fe on 

Cu absorption (Symonds and Forbes, 1993).  
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The mechanism by which thiomolybdates are produced in the rumen is proposed to be a 

stepwise hydrolysis of molybdate (MoO4) with an oxygen (O) (from a water molecule (H2O)) 

being substituted by an S from a sulfide (H2S) donor at each step (Gould and Kendall, 2011). 

This reaction is reversible and equilibria is dependent on pH and temperature (Gould and 

Kendall, 2011). Clarke and Lurie (1980) demonstrated the formation of the relative 

thiomolybdate, MoOnS 4-n
2- from molybdate and sulphide salts in aqueous media under a 

condition simulate the anaerobic rumen environment by a series of substitution between O2- 

and S2- (as presented below); 

 

 MoO4
2-        +  H+ +  HS-   ↔ H2O + MoO3S2-                                         Monothiomolybdate 

 MoO3S2-    +  H+ +  HS-   ↔ H2O + MoO2S2
2-                                 Dithiomolybdate 

 MoO2S2
2-  +  H+ +  HS-   ↔ H2O + MoOS3 2-                             Trithiomolybdate 

 MoOS3
2-    +  H+ +  HS-   ↔ H2O + MoS4

2-                                      Tetrathiomolybdate 

Source: Clarke and Lurie (1980) and Gould and Kendall (2011) 

 

Tri and tetra-TMs have been suggested to be responsible for inhibition of Cu absorption 

within the rumen, while post-absorptive effects on Cu metabolism are possibily related to di 

and tri-TM (Price et al., 1987). Later, Osman (1988) suggested that tetra-TM also may be 

involved in post-absorptive effects on Cu metabolism such as inhibition of enzyme activity. 

The TMs have been suggested to be unstable in acid solution, however, when they 

associated with the solid phase of rumen digesta they are more stable (Gould and Kendall, 

2011). In contrast, unbounded thiomolybdates in the liquid phase are readily hydrolysed in 

the abomasum. Copper is usually associated with the solid phase in the rumen digesta 

(Allen and Gawthorne, 1987), therefore possibly facilitating intraruminal formation of Cu-TM 

(Gould and Kendall, 2011). 

 

Ultimately, at low Cu:Mo ratio (<1:1) or high Mo exposure (> 8 mg/kg DM) in sheep, the 

excess of rumen TM may leave rumen, when Cu is not available for interaction, and 

transports into the bloodstream (Price et al., 1987), causing a systemic effect mainly 

involving the inhibition of Cu metabolism (Suttle, 1991). The relative importance of the 

systemic effect of absorbed thiomolybdates on blood Cu compartment appears to increase 

after observing a temporary elevation in plasma Cu concentration (Kumaratilake and 

Howell, 1989; Suttle, 2008a; Gooneratne, 2012). Hynes et al. (1984) demonstrated that 

circulating TMs in the blood led to a decrease TCA sCu fraction of plasma Cu and increased 

in TCA-insoluble Cu, which is identified as Cu bound to albumin. Suttle (1991) proposed a 

two fold physiological effects of Cu-TM-albumin in the bloodstream; the first, to trap the 

availability of Cu absorbed from the gut and delivered to the liver through the hepatic portal 



22 
 

vein, for synthesis of Cp. The second, to limit the available TM in an effective detoxification 

mechanism.   

 

Parental dose of tetra-TM in sheep has been shown to inactivate SOD activity (Suttle et al., 

1992). Similarly, it has been shown that tetra-TM in vitro inhibits functions of a wide range 

of Cu enzymes such as Cp, cytochrome oxidase, SOD activity, ascorbate oxidase, 

tyrosinase (Chidambaram et al., 1984). However, Suttle (2008a) reported that the addition 

of tetra-TM (therapeutic dose) did not inhibit Cp activity in sheep, which is possibly related 

to the affinity of TM to bind to the albumin rather than Cp (Hynes et al., 1984). Moreover, 

TM has been used as a treatment for CCP in sheep (Humphries et al., 1986; Haywood et 

al., 2004) due to promoting rapid clearance of the body Cu via biliary-faecal route (Manson 

et al., 1988). Gooneratne (2012) reported that administration of TTM (IV) to sheep fed a diet 

with high dietary Cu (41.6 mg/kg DM) resulted in increased Cu bile excretion due to 

removing Cu from hepatocytes as evidenced by a rise in lysosomal activity (β-

glucuroindase). 
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1.6.3. Copper-iron interactions  

Ruminants grazing on pasture or consuming forage-based diets are often exposed to 

excessive levels of Fe (> 500 mg/kg DM; NRC, 2005) due to soil contamination of forages 

(Standish et al., 1971), soil ingestion (Suttle and Peter, 1985), or high Fe levels in some 

feedstuffs such as alfalfa, soyhull, and grass silage (NRC, 1996; DePeters et al., 2000). 

Between farms, the herbage Fe level can vary greatly, ranging from 150-1345 mg/kg DM 

Fe (Nicol et al., 2003). High Fe levels are often reported in overgrazed pasture and in soils 

prone to waterlogging (81-2300 mg/kg DM Fe), or ground water soil (200-1000 mg/kg DM 

Fe). In both Britain and New Zealand, pasture contamination by soil has been related to 

increased Fe intake by ruminants (Suttle et al., 1975). This has been confirmed by Healy et 

al. (1972) who reported that soil ingestion in out wintered sheep and cattle can constitute 

10-25% of the total DM intake. Vaithiyanathan and Singh (1994) also reported that daily soil 

intake in sheep reared in arid areas can be 163 g/d.  

 

Suttle et al. (1982) reported that Cu absorption was dramatically decreased in ewes 

supplemented with either a chalky or clay soil, containing 2400 or 1400 mg/kg DM Fe. 

Therefore, the contamination of herbage and silage by soil or soil ingestion should be taken 

into consideration as a considerable proportion of soil in the digestive tract could become 

soluble (Healy, 1972). Hansen and Spears (2009) showed that Fe bioavailability from soil 

contamination of harvested maize green chop was elevated following in vitro ensiling. In 

addition to a Cu-Mo-S complex reducing Cu availability, the exposure of sheep and cattle 

to high levels of Fe (500-800 mg/kg DM) (Table 1.4) have been shown to result in a dramatic 

reduction in liver Cu concentration, especially in cattle, to levels which indicated severe Cu 

deficiency. Clinical signs were not observed such as reduced growth and change in hair 

texture or colour (Phillippo et al., 1987a; 1987b). However, additional Mo (5 mg/kg DM) 

produced clinical signs in cattle and calves (Phillippo et al., 1987a; 1987b). Therefore, 

clinical signs of Cu deficiency could be more related to Mo rather than Fe antagonists.  

 

Table 1.4 The effect of additional dietary iron (mg/kg DM) on liver copper concentration (mg/kg DM) 
in experimental animals. 

References 
Animal 

type 

Additional 

Fe  

Duration 

(week) 

liver Cu at 

week 0  

Final liver Cu 

(additional Fe) 

Phillippo et al.(1987a) calves 800 32 94.5 3.6 

Phillippo et al.(1987b) cattle 500 32 134 5.5 

Williams (2004) lamb 500 10 278 ~90 

Sefdeen et al. (2014) lamb 750 6 313 205 

Sefdeen et al. (2016) lamb 800 13 545 274 

 Liver Cu concentration (mg/kg DM). 
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The mechanisms by which Fe reduces Cu absorption has been proposed as; first, Fe in the 

rumen interacts with sulfide and Cu, producing an insoluble Fe-Cu-S complex, alternatively, 

Fe combines with sulfide producing Fe-S and then Cu exchanges with Fe to form insoluble 

Cu-S complex (Gould and Kendall, 2011). The second, down regulation of the non-specific 

carrier DMT1 via soluble Fe, leading to prevent the Cu from binding to DMT1 due to 

competition (Garrick et al., 2003). The role of DMT1 in intestinal Fe+2 absorption is well 

known (Arredondo et al., 2003; Kalinowski et al., 2016), and a recent experiment has 

indicated that DMT1 is physiologically related to Cu+1 carrier in intestinal cell, the presence 

of DMT1 in duodenum has been found in cattle (Hansen and Spears, 2008). Concentrations 

of intestinal DMT1 are regulated by Fe status in the body as well as dietary Fe 

concentrations. Thus, high dietary Fe may lead to impaired absorption of Cu (Hansen et al., 

2008).  
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1.6.4. Copper zinc interactions  

Zinc requirement for sheep has been set at 20-33 mg/kg DM (NRC, 1985). The level of zinc 

in pasture, according to the values recorded worldwide, can be lie between 7-100 mg/kg 

DM, with an average value falling between 20 and 36 mg/kg DM (Minson, 1990; NRC, 

2005). Industrial pollution can elevate Zn concentration in grass up to 5 to 50 fold (Mills and 

Dalgarno, 1972). The level of dietary Zn required to have a significant effect on Cu 

absorption must be at least 20 times higher than the recommended level (NRC, 2001). 

Bremner et al. (1976) demonstrated that increasing the dietary Zn level from 43 to 220 or 

420 mg/kg DM effectively reduced liver Cu concentration and liver damage, and prevented 

the onset of a haemolysis crisis in lambs’ feeding on a diet containing high level of Cu (29 

mg/kg DM).  

 

However, these levels of Zn are unlikely to occur across wide range of forages, but are 

possibly elicited during the treatment of facial eczema via large dose of Zn as zinc salt 

(Suttle, 2010). The protective effect of high Zn intake against facial eczema disease in 

sheep and cattle in New Zealand is well recognised and characterised by liver damage, loss 

of weight, photosensitising lesions particularly on the face, and death (Suttle, 2010). Van 

der Schee (1983) showed that increasing the dietary Zn concentration in Texel lambs, fed 

a diet containing 34 mg/kg DM Cu, from 45 to 225 and 479 mg/kg DM resulted in decreased 

liver Cu concentration from 1652 to 1310 and 1158 mg/kg DM respectively. Likewise, Smith 

et al. (2010) reported that supplementing Zinc oxide (ZnO) as a bolus releasing 6.628 g 

Zn/day to prevent facial eczema in dairy cows, which was also supplemented with 150 mg 

Cu/day, substantially reduced liver Cu concentration by 50%. The mechanism underlying 

the interaction between Zn and Cu has been proposed to potentially involve MT as Zn is 

suggested to induce MT (Tacnet et al., 1991). It has been suggested that Zn displaced Cu 

from the sulfhydryl binding site on MT and hence Cu bound to MT is excreted into the 

intestinal lumen (Gooneratne et al., 1989a).  
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1.7. Effect of forage type on copper metabolism 

The importance of the effect of forage type on Cu availability centers around the ability of 

the diet to meet Cu requirement and depends more on Cu availability rather than Cu 

concentration in the diet (Suttle, 2010). The aetiology of Cu deficiency in grazed ruminants 

has been partially associated with low Cu availability in fresh forages compared with 

conserved (Suttle, 1986). In early work on Cu deficiency related symptoms (diarrhoea) in 

cattle grazing on forages containing a high Mo concentration, clinical signs ceased when 

the herbage was fed as hay (Ferguson et al., 1943). Allaway (1977) also reported that 

diarrhoea in cattle grazing in fresh forages disappeared when the same forage was dried 

as hay. These authors suggested that drying forages improves Cu availability possibly due 

to a decrease in the availability of the water-soluble molybdate content in forages when 

preserved as hay (NRC, 1985).  

 

The effect of preservation method on Cu metabolism has been confirmed by Fishers et al. 

(1972) who reported that plasma Cu concentration was found to be higher in cows fed hay 

compared with grass silage. Similarly, the coefficient of Cu absorption in sheep has been 

found to be higher in hay and dried grass compared with fresh grass and grass silage (Table 

1.6). It appears that Mo and S were similar across forages, except in fresh grass, which had 

a higher Mo content. In addition, in silage the Cu concentration was approximately 3 times 

as much as other forages, while it had the lowest Cu absorption. It is suggested that 

preserving grass as silage rather than hay may result in a decrease in Cu status in 

ruminants (Suttle, 1980b). 

 

Table 1.6 illustrates the absorbability of copper (%) in fresh and conserved grass fed to 

sheep using repletion technique. 

Forages Sample no. 
Copper 

mg/kg DM 
Molybdenum 

mg/kg DM 
Sulfur 

g/kg DM 

True 
absorption of 
copper (%) 

Fresh grass 4 7.5 3.0 3.2 2.4 

Silage 3 18.8 1.0 3.6 1.3 

Dried grass 2 6.6 0.9 3.6 4.0 

Hay 3 8.1 1.2 3.4 6.1 

Adapted from (Suttle, 1980b). 
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The reasons for the effect of preservation method on Cu availability is not clear (Suttle, 

1983a), but could be related to the difference in dietary protein degradability in the rumen 

(Ivan, 1993). It has been suggested that the higher degradability of dietary protein from 

fresh grass may contribute to an increase a rumen sulfide, which in turn, reduces Cu 

availability via the formation of insoluble Cu-S complexes (Ivan, 1993). Similarly, it has been 

reported that animals grazed on summer pasture had higher plasma Cu concentration 

compared with animals grazing on lush pasture, possibly due to the lower protein 

degradability in dry pasture (Gawthorne, 1987). In addition, highly fermentable carbohydrate 

feedstuffs such as cereals could reduce rumen pH, which in turn, may increase sulfide 

absorption or break down rumen thiomolybdates, consequently enhancing Cu availability 

(Suttle, 1991). Further evidence of the effect of low rumen pH from ruminants being offered 

a silage diet in reducing potency of Cu-Mo-S interaction comes from Wang et al. (1988) 

who reported that clinical signs of Cu deficiency (diarrhoea) were exhibited in steers offered 

grass silage, containing 35 mg of Mo/kg DM, over a period of 13-14 weeks, while similar 

Mo concentration in pasture induced immediate diarrhoea (Ferguson et al., 1943). 

Moreover, the coefficient of Cu absorption has been shown to be higher in feedstuffs low in 

fibre such as cereals (0.091) compared with feedstuffs high in fibre such as fresh herbage 

(0.025), silage (0.049), and hay (0.073) (Suttle, 1986; Suttle, 2010). The effect of fibre 

content on reducing Cu absorption has been suggested to be possibly due to irreversibly 

binding with Cu, or due to indirectly elevating the dwell time in the rumen, the site of 

CuxMoxS interactions (Suttle, 1991).  

 

The inhibitory effect of antagonists on Cu metabolism has been reported to be affected by 

the basal diet being fed to animals, with Suttle (1983b) demonstrated that the inhibitory 

effect of additional Mo on Cu absorption in sheep was less in grass hay compared with 

semi-purified diet or fresh herbage, suggesting that preservation forage could decrease the 

Cu-Mo-S antagonism possibly due to lower release of Cu from dried feed into the rumen, 

the site of CuxMoxS interaction (Suttle, 1983b; 1986). The lower release of Cu from grass 

hay in the study by Plane et al. (1978) compared with grass silage (Rooke et al., 1983) 

during rumen in sacco incubation has been related to the higher lignified cell wall of the 

grass hay compared to grass silage, which may have sequestered a portion of Cu and 

prevented its release into the rumen. This is further confirmed by the work of Ibrahim et al. 

(1990) which showed that Cu solubility in maize silage in acid detergent solution (ADS), 

which provides information on the proportion of minerals associated with the plant cell, was 

greater compared with rice straw at 95% and 66%, respectively. 

 



28 
 

Furthermore, Hart et al. (2011) reported that liver Cu concentration was not affected by the 

addition of Mo and S in the cows offered maize silage (Hart et al., 2011), whereas Sinclair 

et al. (2013) demonstrated that additional Mo and S in dairy cows fed grass silage markedly 

reduced liver Cu concentration. Recently, Sinclair et al. (2017) reported that liver Cu status 

was higher in cows fed maize silage compared with grass silage and additional Mo and S 

resulted in a reduction in liver Cu status with the greater extent in the grass silage fed cows 

than the maize silage fed cows. However, the reason for this effect was not clear. Therefore, 

it appears that the antagonist effect of additional Mo and S on Cu metabolism may be 

infuenced by forage type and preservation method, although the mechanism of this effect 

is not clear (Suttle, 2010), it may be pH dependent. 
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1.8. Conclusion  

Ruminant animals are vulnerable to copper (Cu) deficiency because of rumen sulfide 

generation which then binds with molybdate and lowers copper availability from forages 

(Suttle, 2012). Copper deficiency around the UK has been found as a problem which can 

lead to economic and production losses such as an impairment of growth, infertility, 

alteration hair or wool (Suttle, 2010). Copper deficiency in ruminants is attributed to 

consumption of diets or forages that have insufficient copper (primary), or when the overall 

level of Cu in the diet seems sufficient but not available for biological functions due to 

intraruminal reactions that occur between Mo and S, producing thiomolybdate compounds 

which have a high affinity to interfere with Cu and reduce Cu absorption. While, in the 

absence of rumen-available Cu, thiomolybdates are able to be absorbed by rumen wall into 

the blood stream and deactivate Cu-containing enzymes and proteins, producing clinical 

disturbances (Suttle, 1991; Suttle, 2010; Gould and Kendall, 2011). Sinclair et al. (2017) 

investigated the how role of forage type affects the copper status in dairy cows. It was found 

that the effects of supplemental Mo and S were influenced by forage type. The effect on the 

liver Cu status was more pronounced in the case of the grass silage than the case of the 

maize silage diet supplemented with the antagonists. This would imply that dietary Cu was 

more available for uptake by the animal, or that interactions between antagonists and 

copper were more pronounced in the grass based diet. There has been limited studies on 

the effects of different forage types and how this impacts copper mobilisation in ruminants. 

Therefore, this thesis will attempt to further understanding of copper metabolism in 

ruminants by analysing the effects of the forage type on rumen fermentation characteristics 

and determining their effects on copper antagonist interaction between forage type and 

mineral levels in growing lambs. Additionally, it will investigate distribution of minerals 

between solid and liquid phases of the digesta in the rumen of animals fed different forages 

and how it’s affected by the inclusion of Mo and S. 
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Chapter 2. General materials and methods 

2.1. Forage and concentrate analysis  

Feed samples from all experimental Chapters were analysed at Harper Adams University 

according to the method of AOAC (2012) for DM (934.01), CP (990.03), EE (2003.5), and 

ash (942.05). NDF was analysed according to Van Soest et al. (1991) with the use of a 

heat-stable α-amylase (Sigma, Gillingham, UK), and expressed exclusive of residual ash. 

All feed samples were analysed in duplicate. 

2.1.1. Dry matter  

The dry matter (DM) content of feed samples was determined after weighing approximately 

100 g into a pre-weighed aluminium tray. Samples were then placed into a force-draught 

oven (Binder, Tuttlingen, Germany) at 105 °C overnight, and dried until constant weight. All 

subsequent laboratory analysis was carried out on dried samples ground through a 1 mm 

screen or a 3 mm 3creen (for the in vitro experiments) using a cyclone mill (Cyclotec, FOSS, 

Warrington, UK). 

2.1.2. Ash 

Samples were analysed for ash content by weighing 2 g of dried and ground feed into a 

pre-weighed porcelain crucible and ashed in a muffle furnace (Gallenkamp muffle furnace, 

Size 3, GAFSE 620, Gallenkamp, Loughborough, UK) to 550°C overnight. The ash 

remaining in the crucible was cooled in a desiccator to room temperature before being 

reweighed. 

 

2.1.3. Crude protein  

The nitrogen (N) content of feeds (concentrate, fresh and ensiled forages) was determined 

by the Dumas method (AOAC, 2012) using a Leco automatic analyser (FP-528 N; Leco 

Corp., St. Joseph, MI, USA) with EDTA as a standard (Sweeney, 1989). Approximately 0.15 

g of oven dried (105 °C) and ground samples were weighed in an aluminium foil tray. 

Samples were heated to 1020 °C through a mixture of O2 and CO2 and the resulting N 

oxides reduced to N2 by warmed copper fillings and the N measured with a thermal 

conductivity detector.  

 

Samples of urea-treated whole crop wheat UWCW (Chapter 4) were analysed for N content 

by Kjeldhal digestion using a Tectator 1035 auto analyser (FOSS UK, Warrington, UK), due 
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to potentially excessive gaseous N losses during the drying procedure. Approximately 1.0 

g of samples, after being milled in a grinder (Waring WSG30K Professional Spice Grinder, 

Leeds, UK), were weighed onto a Whatman No. 1 filter paper (Whatman plc, Maidstone, 

UK) and then placed in a 250 ml clean digestion tube. Following this, two tablets of kjeltab 

catalyst (3.5 g K2SO4 and 0.4 g CuSO4.5H2O; Thomson and Capper Limited, Runcorn, 

Cheshire, UK) were added. Exactly 16 ml of 98% (w/v) low nitrogen, sulphuric acid (Analar, 

VWR, Lutterworth, UK) was then added to each of the tubes. The samples were then 

digested on a heating block for 45 min. at 400 °C. Distilled water (75 ml) was added after 

allowing tubes to cool for 10 min. The estimation of nitrogen content was through back 

titration with 0.2 M hydrochloric acid.  

 

2.1.4. Neutral detergent fibre 

Neutral detergent fibre (NDF) content of the forages and concentrates was determined by 

a method adapted from Van Soest et al. (1991) using Fibertec apparatus (Tecator Fibertec 

1020 Hot extractor, FOSS, UK Ltd, Warrington, UK). NDF determination was conducted 

with alpha-amylase and was corrected for ash. 

 

2.1.5. Ether extract 

Ether extract (EE) of dietary forages and concentrates from Chapters 3, 4, and 6 were 

determined in accordance with the solvent extraction method of MAFF (1986) using a 

Soxtec apparatus (FOSS, Warrington, UK).  

 

2.1.6. pH determination 

The pH of silage samples was determined in accordance with the method of MAFF (1986). 

Approximately 50 g of fresh silage was weighed into a 250 ml beaker and then 100 ml of 

distilled water added. The beaker was swirled for half a min every 15 min for 1 h. The 

resultant liquid was then filtered through a Whatman No. 1 filter paper (Whatman, 

Maidstone, UK) into another beaker and the pH was then determined using a pH probe 

(Jenway, Stone, Stafforshire). The probe was recalibrated daily using 2 pH solutions (colour 

key buffer solution yellow pH 7.0 and colour key buffer solution red pH 4.0) (VWR, 

International LTD, Poole, UK). 
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The pH of rumen fluid collected from animals slaughtered in a commercial abattoir in 

Chapters 3, 4, and 6, as well as vessels fluid in Chapters 5 and 7 were determined using 

the pH probe, as outlined above. The pH probe was recalibrated as described above. In 

Chapters 3, 4, and 6, on the morning of slaughter, the lambs were loaded for transport to 

the abattoir at about 0600 h. The journey to the abattoir was 40 minutes and the lambs were 

then slaughtered within 1.0 h. After slaughter, rumen fluid was directly collected in to 100 

ml plastic pots and stored in a polystyrene box filled with ice. Rumen pH was determined 

(in the laboratory) within 1.0 h. after slaughter.  

 

2.2. Blood sample collection 

Blood samples were taken from lambs at 11:00 am via the jugular venepuncture using a 20 

gauge 1.5ʺ needle (Becton Dickinson Vacutainer Systems, Plymouth, UK) into 3 different 

plastic vacutainer tubes (Becton Dickinson Vacutainer Systems, Plymouth, UK).  

 

Tubes containing K2EDTA (10.8 mg/tube) were used for the determination of plasma trace 

element concentration. Tubes containing K2EDTA (7.2 mg/tube) were used for the 

determination of whole blood haematology parameters and superoxide dismutase acidity 

(SOD). Tubes containing silica, which had been sprayed onto the inner walls of the tube to 

accelerate the clotting process, were used to collect blood serum for the determination of 

ceruloplasmin (Cp). 

 

Blood samples for plasma were immediately centrifuged using a (Beckman Avanti 30) 

centrifuge at 1000 g for 15 min at a temperature of 4 ºC. The supernatant (plasma) was 

removed into 2 ml bijou tubes via disposable pipettes and stored at -20 ºC for subsequent 

trace element concentration analysis. Following the determination of haematology 

parameters in the second tubes, the remaining blood samples were pipetted with disposable 

pipettes into 2 ml bijou tubes (Sarstedt Ltd., Leicester, UK) and stored at -20 ºC for 

subsequent SOD analysis. Blood samples that were collected in the third set of tubes were 

left overnight in a refrigerator to coagulate and all tubes were then centrifuged at 1000 g for 

15 min at a 4 ºC. The supernatant (serum) was then pipetted off with plastic pipettes into 2 

ml bijou tubes and stored at – 20 ºC for subsequent Cp analysis. All stored whole blood, 

plasma, and serum samples before analyses were left at room temperature to defrost and 

then vortexed using a MT-20 vortex-mixer (Philip Harris Ltd., Shenstone, UK) to produce a 

uniform sample. 
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2.2.1. Haematology profile 

The blood samples collected in the K2EDTA (7.2 mg/tube) tubes were immediately analysed 

for haematology parameters, including white blood cells (WBC), red blood cells (RBC), 

haemoglobin (Hb), and haematocrit (Hct) using a Vet Animal Blood Counter (Woodly 

Equipment Company Ltd., Bolton, UK). Control blood (ABX Minotrol 16; Horiba ABX 

Diagnistic, Bedfordshire, UK) was used to calibrate the machine. The blood samples were 

mixed thoroughly for 15 min using a Spiramix 5 (Demley Insruments Ltd, West Sussex, UK) 

and then analysed for haematology parameters using the method described by Mackenzie 

et al. (1997) and Cope et al. (2009). 

2.2.2. Plasma trace element determination  

Prior to analysis, frozen plasma samples were defrosted to room temperature and vortexed 

thoroughly. Plasma samples were diluted in 1:20 in 0.5% of 70% HNO3 (Fisher Scientific, 

Loughborough) with Ga (Qmx Laboratories, Thaxted, Essex, UK) added to each sample as 

an internal standard at 10 µg/L as described by Cope et al. (2009). Analysis was conducted 

using a calibration graph at concentration levels of 0, 50 µ/kg, 250 µ/kg, 500 µ/kg, 2500 

µ/kg, and 5000 µ/kg in blank, standard 1, standard 2, standard 3, standard 4, standard 5 

respectively. For Mo and Mn standard concentrations of 0, 5, 25, 50, 250, and 500 µ/kg 

respectively were used. All samples were analysed for Cu, Mo, Fe, Zn, and Mn using 

Inductively Coupled Plasma-Mass Spectrometry (ICP-MS; Thermo Fisher Scientific Inc, 

Hemel Hempstead, UK). 
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2.2.3. Enzyme assays 

2.2.3.1. Superoxide dismutase  

Superoxide dismutase (SOD) activity was determined using an adapted method of Misra 

and Fridovich (1977) for use on the Cobas Mira Plus (Ransod SD125, Randox Laboratories, 

County Antrim, UK). This method employed xanthine and xanthine oxidase (XOD) to 

generate superoxide radicals that react with 2-(4-iodophenyl)-3-(4-nitrophenol)-5-phenyl 

tetrazolium chloride (I.N.T.) to form a red formazan dye. The SOD activity was then 

measured by the degree of inhibition of this reaction. Frozen heparinised blood samples 

were defrosted (to enhance lysing of cells) and vortexed using a MT-20 vortex-mixer (Philip 

Harris Ltd., Shenstone, UK). Into a 1 ml micro-centrifuge tube (Sarstedt Ltd., Leicester, UK), 

250 µL of whole blood was pipetted and a further 750 µL of purite water was added. The 

sample was vortexed and 10 µL of this sample was then added to 490 µL of 0.01 mol/L 

phosphate buffer, pH 7.0 (Ransod, Ransod Laboratories, County Antrim, UK) into a micro-

centrifuge tube and vortexed thoroughly. Samples were then transferred into Mira Cups 

(ABX diagnostics, Shefford, Bedfordshire, UK), and placed into reagent racks and analysed 

by an automated method on the Cobas Mira Plus (ABX diagnostics, Shefford, Bedfordshire, 

UK).  

 

2.2.3.2. Cerulopasmin activity  

Ceruloplasmin (Cp) activity was determined using an adapted method of Henry et al. (1974) 

for use on the Cobas Mira Plus (ABX Diagnostics, Shefford, Bedfordshire, UK). The ability 

of Cp to act as a general oxidase is utilised in this method, where Cp will oxidise p-

phenylenediamine (PPD) to produce purple products that have an absorption peak between 

530-550 nm. As PPD is also oxidised by any Cu or Fe present in the serum, a blank (CPB) 

must be run in which sodium azide inhibits the Cp activity, and the results subtracted from 

the test (CPT). Individual serum samples were pipetted into Mira cups (ABX Diagnostics, 

Shefford, Bedfordshire, UK) and placed in the required reagent rack on the Cobs Mira Plus. 

A 0.1 M solution of PPD (BDH Laboratories Supplies, Poole, Dorset, UK) was prepared in 

100 ml of 0.1 M acetate buffer and adjusted to pH 6.0. Sodium azide (BDH Laboratory 

Supplies, Pool, Dorset, UK) was prepared using 0.1% solution in pH 6.0 acetate buffer. A 

test (CPT) reagent was prepared by adding 20 ml acetate buffer pH 6.0 and 10 ml acetate 

buffer pH 6.0, 10 ml PPD solution pH 6.0 and 10 ml sodium azide solution. The activity of 

Cp (mg/dL) was calculated as: 

Ceruloplasmin activity (mg/dL) = CPT- CPB 
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2.3. Live weight determination  

Lambs were weighed once a week as specified in each experimental Chapter using a 

standard operating procedure with a weigh scale (IAE., Staffordshire, UK), and electronic 

display head by (Salter Bracknell LS300 electronic weigh scale, Staffordshire, UK). The 

scale was calibrated prior to use and between every 10 weighings using standard weights 

(F.J. Thornton and Co. Ltd., Wolverhampton, UK) for precision and accuracy.  

 

2.4. Minerals determination of non-blood samples 

2.4.1. Forage and concentrate minerals determination 

Forages and concentrates were analysed for Cu, Mo, S, Fe, Zn, and Mn concentrations 

according to the method of Cope et al. (2009) and Sinclair et al. (2013:2017). Approximately 

0.5 g of dried and ground sample was weighed into a 50 ml DigiTUBE (QMX Laboratories 

Ltd, Essex, UK), mixed with 6 ml of nitric acid (70%) (Fisher Scientific, Loughborough, UK) 

and 1 ml of 37% hydrochloric acid (HCl) (Fisher Scientific, Loughborough, UK), and placed 

into the DigiPREP (QMX Laboratories Ltd, Essex, UK) for digestion. Tubes (DigiTUBE) 

were heated to 45 °C and held for 1 minute before being increased to 65 °C and held for 

further 25 minutes. Then heat was increased to 100 °C and refluxed for 40 minutes using 

plastic watch glasses. Samples were cooled down to room temperature, and then made up 

to 50 ml with purite water and diluted in 1:20 in 2% HNO3, 1% methanol, and 0.1 % Triton 

X-100 (Fisher Scientific, Loughborough, UK) prior to analysis by Inductively Coupled 

Plasma-Mass Spectrometry (ICP-MS; Thermo Fisher Scientific Inc, Hemel Hempstead, 

UK). 

2.4.2. Whole liver minerals determination 

After slaughter, the entire liver was removed and placed into a zipped plastic bag, and 

weighed in order to determine whole liver weight. An approximately 0.250 g of fresh liver 

section (from the same place for all livers) were weighed into pre-weight 50 ml plastic tubes. 

Liver samples were oven-dried at 60 °C overnight. After this all tubes were removed from 

the oven into a desiccator and allowed to cool to room temperature in order to determine 

DM. Dried liver samples were digested with 6 ml of analytical reagent grade, 70% nitric acid 

(Fisher Scientific, Loughborough, UK) in an oven overnight at 60°C. Digested samples were 

removed from the oven and placed in a fume cupboard to reach room temperature. Samples 

were then made up to 50 ml with purite water and diluted (1:20) in 2% HNO3, 1% methanol, 

and 0.1 % Triton X-100 (Fisher Scientific, Loughborough, UK) prior to analyse by Inductively 

Coupled Plasma-Mass Spectrometry (ICP-MS) as described by Sinclair et al. (2013; 2017).  
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Chapter 3. The differences in copper metabolism of growing lambs fed dried grass 

pellets or maize silage supplemented without or with molybdenum and sulfur 

 

3.1. Introduction 

Copper-responsive disorders in animals can be caused by offering a diet deficient in Cu, or 

as a result of dietary interactions between Cu and antagonists, mainly Mo, S, and Fe that 

inhibit Cu absorption and metabolism (Phillippo et al., 1987a, 1987b; Suttle, 1990; Suttle, 

2010). The mechanism by which these minerals influence Cu haemostasis has been 

regarded as controversial and not fully understood over the years (Telfer et al., 2004; Suttle, 

2010). It has been shown that S present in the diet or from water reduces to sulfide, via 

rumen microorganisms within the anaerobic environment of the rumen, and then interacts 

with molybdate to produce a series of thiomolybdates (mono, di, tri, and tetra-

thiomolybdates) that have a high affinity for Cu forming insoluble Cu-thiomolybdate 

complexes (Dick et al., 1975; Suttle, 1991; Gould and Kendal, 2011). Thiomolybdates can 

be absorbed from the rumen, when insufficient dietary of Cu is available in the rumen or at 

high dietary Mo intake and very low Cu:Mo ratio (1:1) (Suttle, 2010), into the blood stream 

and binding with Cu-dependent enzymes such as ceruloplasmin (Cp), impairing their 

function (Price et al., 1987; Gould and Kendal, 2011). A number of studies have confirmed 

that addition of Fe (250-1200 mg/kg DM) can also reduce Cu status in sheep (Prabowo et 

al., 1988; Grace and Lee, 1990) and cattle (Bremner et al., 1987; Phillippo et al., 1987a). 

However, the antagonists’ effect of Fe on Cu is not clear (Bremner et al., 1987). 

 

Dietary ingredient and forage type has been reported to have an effect on the degree of 

thiomolybdate formation although the mechanism for this effect is still not clear (Suttle, 

1983a; Suttle, 2010). For instance, the coefficient of Cu absorption was found to be greater 

in grass hay and dried grass compared with grass silage or fresh grass (Suttle, 1980). Suttle 

(1983b) also demonstrated that the Cu absorption of conserved grass as hay was higher 

compared with fresh grass, and the antagonist effect of Mo on Cu availability was 

proportionately less when sheep were fed grass hay compared with fresh grass, with semi 

purified diets being intermediate (Suttle, 1983b). The reason for effects of forage type and 

preservation on Cu availability from forages are not clear, but may be related to the extent 

Cu releases from forages and subsequently to antagonists Suttle (1986), or difference in 

protein degradability between forages and the rate of sulfide production and CuxMoxS 

interactions, which in turn, affect Cu availability (Ivan, 1993).   
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Moreover, additional Mo and S has been found to have no effect on liver Cu status in dairy 

cows fed maize silage diet (Hart et al., 2011), whereas in dairy cows offered grass silage 

the addition of Mo and S markedly decreased liver Cu status (Sinclair et al., 2013). More 

recently, Sinclair et al. (2017) found that the effects of supplemental Mo and S were 

influenced by forage type. They showed that liver Cu status was higher in cows fed maize 

silage compared with those fed grass silage. In addition, the reduction in liver Cu 

concentration caused by the inclusion Mo and S in grass silage fed cows was greater 

compared with maize silage fed cows (Sinclair et al., 2017). However, the reason for this 

effect was not clear. Previously, Suttle (1991) discussed that low rumen pH, caused by 

feeding diets containing highly fermentable carbohydrates, may improve Cu availability due 

to absorption of produced sulfide in the rumen, or break down of rumen thiomolybdates. 

There has been limited studies investigating the effects of forage type and antagonists level 

on the Cu metabolism in sheep. Therefore, the aim of this study was to investigate the effect 

of forage type (dried grass pellets or maize silage) either without or with added Mo and S 

on the performance and Cu metabolism in growing lambs. 

 

 

 

 

 

 

 

 

 

 

 

 



38 
 

3.2. Materials and methods 

3.2.1. Animal procedures 

All procedure involving animals were carried out according to the UK Animals (Scientific 

Procedures) Act 1986 and were approved by Harper Adams University Ethic Committee.  

 

3.2.2. Animals and experimental design  

A study was carried out at Harper Adams University (at 20th of June 2014) using 40 Texel-

cross breed lambs with an initial mean body weight of 28.3 kg (s.e.d; 0.65) over a period of 

8 weeks. Eight representative lambs were slaughtered immediately prior to the start of the 

study in a commercial abattoir, and liver samples were collected and stored at -20 °C prior 

to serve as a baseline for liver Cu levels. The remaining 32 lambs (male 12 and female 20) 

were blocked according to liveweight (LW) and sex, and then randomly allocated to one of 

four treatments, with eight lambs per treatment. The lambs were housed in a well-ventilated 

shed in individual pens and bedded on wood shavings. They had free accessed to water.  

 

3.2.3. Diets  

Lambs were fed a diet with a forage to concentrate ratio of 60:40 (DM basis) to meet their 

requirements to grow at 200 g/day (AFRC, 1993). The forages were either dried grass 

pellets (DGP) (Graze-on grass Pellets, Northern Crop Driers, Melrose Farm, Melbourne, 

York, UK) or maize silage (MS), which was made at Harper Adams University. Appropriate 

concentrates were formulated to produce isonitrogenous, isoenergetic diets (Table 3.1). 

The predicted metabolisable energy (ME) for experimental diets DGP and MS (60:40) was 

11.60 and 11.70 MJ/kg DM respectively (AFRC, 1993). 
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Table 3.1. Raw material composition of the experimental concentrates (g/kg DM) 

Ingredients, 

g/kg DM 

    Concentrate Diets1 

    DGP MS 

Barley 
 

643 256 

Sugar beet pulp (Shreds) 
 

--- 125 

Soya bean meal 
 

192 487 

Molasses 
 

73 74 

Megalac 
 

35 --- 

Mins/vits1   57 58 

Total  1000 1000 

1 DGP= concentrate fed with dried grass pellets forage, MS= concentrate fed with maize silage. 

2 Mineral premix (25 kg/tonne) (Wynnstay Group P.L.C., Powys, Llansantffraid, UK). Major minerals 

(g/kg DM): Calcium, 236.2; Phosphorous, 20; Magnesium, 80; Sodium, 49.2. Trace elements (mg/kg 

DM); Iron, 3226; Iodine, 630; Cobalt, 120; Manganese, 8065; Zinc (chelates of amino acids), 2000; 

Zinc (oxide), 8057; Selenium (sodium selenite), 75.6; Selenium (Selenised yeast inactivated), 500. 

Vitamins; Vit A {E 672}, 400000 IU/kg; Vit D3 {E 671}, 80000 IU/kg. Vit E (all-rac-alpha-tocopheryl 

acetate) {3a700} 1500 mg/kg. Vit B12 cyanocobalamin 500 mcg/kg. 

 

Chemical composition and mineral concentration of the forages and concentrates were 

chosen based on predicted values of MAFF (1992). Basal diets (DGP and MS; 60:40; 

forage: concentrate ratio at DM basis) were predicted to supply 2.86 g/kg DM of S and 2.85 

mg/kg DM of Mo. To evaluate the effect of antagonists on Cu metabolism, lambs received 

diets that were either unsupplemented (-) or supplemented (+) with Mo at 3.15 mg/kg DM 

as ammonium molybdate (NH4)6Mo7O24·4H2O (Fisher Scientific, Leicester, UK), and S 

(1g/kg DM) as ammonium sulphate (NH4)2SO4 (Alfa Aesar., Ward Hill, USA) to result in 

reducing Cu absorption by 50% (Suttle and MacLauchlan, 1976). The N content of the diets 

were balanced by the addition of 0.418 kg/tonne DM as feed grade urea (Trouw Nutrition, 

Cheshire, UK). Lambs were allocated by liveweight and sex to one of four dietary treatments 

(Table 3.2). 

 

Table 3.2. Dietary treatments   

Code Treatments 

DGP- 0.60 dried grass pellets:0.40 concentrate (DM basis), no addition antagonists 

DGP+ 0.60 dried grass pellets:0.40 concentrate (DM basis), with additional Mo and S 

MS- 0.60 maize silage:0.40 concentrate (DM basis), no addition antagonists 
 

MS+ 0.60 maize silage:0.40 concentrate (DM basis), with additional Mo and S  
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Feed samples (forage and concentrates) were collected once weekly throughout the study. 

Then, at the end of the study, all feed samples were analysed for DM, Ash, CP, EE, NDF, 

and mineral contents as described in sections 2.1.1. to 2.1.5, and section 2.4.1 respectively. 

The chemical composition of the experimental diets are presented in Table 3.3. 

 

Table 3.3. Analysed chemical and mineral composition of the experimental diets supplying 600 g/kg 
DM forage and 400 g/kg DM concentrates (60:40)1. 

Item DGP- DGP+ MS- MS+ 

Chemical composition, g/kg DM    

DM, g/kg 899.1 899.5 559.2 559.6 

CP,  166.7 166.3 146.4 142.1 

EE,  22.1 23.0 20.1 20.9 

NDF,  302.7 298.8 283.4 283.9 

Ash,  85.2 87.9 68.0 66.2 

Mineral composition, mg/kg DM    

Cu,  9.3 9.5 7.9 7.8 

Mo,  1.9 4.6 2.7 4.8 

S, g/kg DM 3.7 4.3 3.5 3.9 

Fe, 458.5 462.1 263.3 256.5 

Zn,  214.1 210.2 196.1 190.3 

Mn,  198.9 193.7 155.7 158.2 
1 Diets consists of either dried grass pelleted (DGP) + concentrate or maize silage (MS) + concentrate 

at a ratio of 60:40 forage: concentrate. Diets DGP+ or MS+ received additional Mo and S, resulting 

in Mo ent 5 mg/kg DM and S content 4 g/kg DM. 

 

3.2.4. Experimental routine  

All lambs were offered fed twice a day at (08:30 and 16:30h). Forages (dried grass pellets 

and maize silage) were put into wooden troughs, and concentrates placed into plastic 

buckets. Feed refusals were collected twice a week (every Monday and Friday until the end 

of experiment) to estimate individual feed intake and feed conversion efficiency. The 

quantity of both diets offered was adjusted weekly according to the liveweight of the animal 

taken on the day of liveweight determination (section 3.2.4.2) to meet AFRC (1993) 

requirement. At the end of the study, lambs were sent to a commercial abattoir for slaughter. 

All lambs, including the eight representative lambs on day 0, were slaughtered following 

electrical stunning. Livers were collected immediately after slaughtering, weighed, and 

stored at -20°C for subsequent mineral content determination.  
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3.2.4.1. Blood sample collection  

Blood samples were collected by jugular vein puncture (section 2.2.) once a week on a 

Tuesday at 11:00h for plasma and serum (sections 3.2.5). On weeks 0, 4, and 8 an 

additional EDTA tube was collected for haematology analysis and an aliquot stored at -20°C 

for SOD analysis (section 3.2.5). Blood samples (week 0) were collected at 20th of June 

2014. 

 

3.2.4.2. Liveweight determination  

Lambs were weighed once a week on Friday at 11:00 using Standard Operating Procedure 

as described in section 2.3. Daily liveweight gain (DLWG) was calculated using regression 

analysis.  

 

3.2.5. Blood analysis 

Fresh blood samples after being collected were analysed immediately for haematocrit (Hct), 

haemoglobin concentration (Hb), red blood cell counts (RBC), and while blood cell counts 

(WBC) using using a Vet Animal Blood Counter (section 2.2.1). Frozen samples of whole 

blood, plasma, and serum were defrosted thoroughly at room temperature. Whole blood 

samples were analysed for SOD activity using a Cobas mira plus as described in section 

2.2.3.1. Plasma samples were used to determine mineral concentrations (section 2.2.2), 

and trichloroacetic acid soluble concentration (section 2.2.2.1). Blood serum samples were 

also analysed for ceruloplasmin activity (Cp) using a Cobas mira plus (section 2.2.3.2). 

 

3.2.6. Liver mineral analysis  

Liver samples were analysed for mineral concentrations using an ICP-MS as described in 

section 2.4.2. Whole liver minerals content was determined by multiplying liver mineral 

concentrations by liver weight and liver DM. Liver minerals retention was determined by 

substracting whole liver minerals content of the initial slaughter group from final whole liver 

mineral content and divided by days of the whole study period, which was 8 weeks.  

3.2.7. Rumen pH determination 

Rumen fluid samples were collected immediately after slaughter of the lambs, put into 100 

ml plastic pots and stored on ice prior to measuring pH within an hour after slaughtering 

(section 2.1.6).  
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3.2.8. Statistical analysis 

Performance, plasma minerals, haematology, and enzyme activities were analysed by 

repeated-measures ANOVA as a 2x2 factorial randomise block design with the main effects 

of forage type (F), antagonists (Ant.), and interaction between forage type and antagonists 

(Int.). Daily Liveweight gain (DLWG) was calculated by regression analysis and analysed 

by ANOVA. For plasma Cu concentration, Cp activity, Cp:Pl-Cu ratio, SOD activity, 

haemoglobin concentration, WBC counts, week zero was used as a covariate. All statistical 

analysis were conducted using Genstat version 17.1 (Lawes Agricultural Trust, VSN 

International Ltd, Oxford, UK). Significance was set at P < 0.05 and trends at P < 0.10. 

Significant differences between means were tested using the protected least significant 

difference (LSD) (Snedecor and Cochran, 1989).   
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3.3. Results 

3.3.1. Health observation  

Additional Mo and S in the current study did not produce clinical symptoms, and all lambs 

were healthy and none were removed from the study.  

 

3.3.2. Animal performance and intake 

There was no effect (P>0.05) of forage x antagonist on DLWG, DM intake, FCE (Table 3.4), 

and weekly liveweight (Table 3.5) of the lambs throughout the study. There was also no 

effect (P>0.05) of the antagonists on these parameters. However, lambs fed the maize 

silage were heavier (P<0.05) from week 3 until the end of the study compared with lambs 

fed the dried grass pellets. The DMI was not different (P>0.05) between lambs fed maize 

silage or dried grass pellets (Table 3.4). Whereas, the maize silage fed lambs had a higher 

(P<.001) DLWG compared with the dried grass pellets fed lambs. The DLWG for maize 

silage treatment groups was almost the same as predicted at 200 g/d as calculated by 

AFRC (1993), while in the dried grass pellet treatment lambs was 50 g/d lower than the 

predicted value. The FCE was also higher (P<0.001) in lambs on maize silage diet 

compared with those on dried grass pellets. 

 

 

 

 

 

 

 

 

 

 

 

 



44 
 

Table 3.4. Intake and performance of growing labs fed diets containing dried grass pellets (DGP) or 
maize silage (MS) supplemented either without (-) or with (+) Mo and S1. 

Items 
Treatment Significance 

DGP- DGP+ MS- MS+ s.e.d F A Int. 

Intake, kg/d         

Forage DMI, 0.56 0.55 0.55 0.57 0.016 0.530 0.888 0.145 

Concentrate DMI, 0.39 0.39 0.39 0.39 0.007 0.510 0.984 0.653 

Total DMI, 0.95 0.94 0.95 0.97 0.022 0.496 0.924 0.223 

DLWG, kg/d 0.15 0.15 0.20 0.19 0.016 <.001 0.794 0.484 

FCE2 0.15 0.16 0.22 0.20 0.015 <.001 0.711 0.293 
1 F= main effect of forages; A = main effect of antagonists (Mo and S); Int. = interaction between 

forage type and antagonists. 

2 FCE calculated as DLWG (kg/d) divided by DMI (kg/d) 

 

Table 3.5. Liveweight in growing lambs fed diets dried grass pellets (DGP) or maize silage (MS) 
supplemented without (-) or with (+) Mo and S1.  

Week 
Treatment Significance2 

DGP- DGP+ MS - MS + s.e.d F A Int. 

0 28.2 28.2 28.4 28.4 0.48 0.584 1.000 1.000 

1 28.2 27.2 28.6 28.4 0.77 0.166 0.288 0.464 

2 30.1 29.3 29.1 29.4 1.08 0.571 0.746 0.468 

3 31.2 30.3 32.1 32.3 0.88 0.034 0.585 0.401 

4 32.3 31.6 33.4 33.5 0.93 0.030 0.674 0.607 

5 33.3 32.8 34.7 34.6 0.98 0.031 0.688 0.823 

6 34.0 33.8 35.9 36.1 1.03 0.009 0.966 0.767 

7 34.9 34.1 37.5 37.0 0.99 <.001 0.380 0.859 

8 35.9 35.9 39.0 38.3 1.08 0.002 0.600 0.657 

1 F= main effect of forages; A = main effect of antagonists (Mo and S); Int. = interaction between 

forages and antagonists. s.e.d= standard error of differences.  

2 individual weekly data have been analysed by ANOVA, but caution should be exercised when 
interpreting individual means when the time x forage, time x antagonist, or time x forage x antagonist 
interaction is not significant. 
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3.3.3. Mineral intake  

There was no forage x antagonist interaction (P>0.05) on Cu, S, Fe, Zn, and Mn intake 

(Table 3.6). However, there was a forage x antagonist interaction (P<0.05) on Mo intake, 

which was higher in the lambs fed maize silage diet supplemented with Mo and S, followed 

by those fed dried grass pellet diet supplemented with antagonists compared with those fed 

maize silage unsupplemented with Mo and S, with the lowest Mo intake in the lambs fed 

dried grass pellets unsupplemented with Mo and S. The Mo and S supplemented lambs 

had a higher (P<0.001) S intake compared with the lambs unsupplemented with Mo and S, 

with mean values of 3.88 and 3.46 mg/d respectively. There was no effect (P>0.05) of 

additional Mo and S on Cu, Fe, Zn, and Mn intake. The dried grass fed lambs had a higher 

(P<0.001) Cu, S, Fe, Zn, and Mn intake compared with the maize silage fed lambs, but Mo 

intake was higher (P<0.001) in maize silage fed lambs than the dried grass pellets fed 

lambs. 

 

Table 3.6. Mineral intake in growing lambs fed diets containing dried grass pellets (DGP) or maize 
silage (MS) supplemented without (-) or with (+) Mo and S1. 

Mineral, 
mg/d 

Treatment Significance2 

DGP- DGP+ MS- MS+ s.e.d F A Int 

Cu 8.85 8.88 7.46 7.59 0.180 <.001 0.55 0.702 

Mo 1.85a 4.42c 2.63b 4.74d 0.077 <.001 <.001 <.001 

S 3.57 4.01 3.35 3.76 0.082 <.001 <.001 0.781 

Fe 437.3 432.6 248.9 247.8 7.32 <.001 0.575 0.733 

Zn 201.4 196.8 179.7 183.8 2.99 <.001 0.939 0.160 

Mn 189.7 187.0 148.1 152.8 2.60 <.001 0.716 0.166 

1 F= main effect of forages; A = main effect of antagonists (Mo and S); Int. = interaction between  

forages and antagonists. s.e.d= standard error of differences. 

2 a,b,c,d Means within a row with different superscripts are significantly different (P<0.05). 

 

 

 

 

 

 

 



46 
 

3.3.4. Rumen pH 

There was no forage x antagonist interaction (P>0.05) on rumen pH. There was also no 

effect (P>0.05) of the antagonists on rumen pH (Table 3.7). However, lambs offered dried 

grass pellets had a lower (P<0.05) rumen pH compared with those offered maize silage, 

with the mean values of 6.15 and 6.47 respectively. 

 

Table 3.7. Rumen pH of growing labs fed diets containing dried grass pellets (DGP) or maize silage 
(MS) supplemented either without (-) or with (+) Mo and S. 

  
Treatment Significance1 

DGP- DGP+ MS- MS+ s.e.d F A Int. 

Rumen pH 6.19 6.12 6.47 6.47 0.156 0.010 0.728 0.762 

1 F= main effect of forages; A = main effect of antagonists (Mo and S); Int. = interaction between 

forages and antagonists. s.e.d= standard error of differences. 
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3.3.5. Liver mineral status 

3.3.5.1. Liver mineral concentrations   

The mean liver concentration of Cu, Mo, Fe, Zn and Mn of the representative lambs at the 

beginning of the experiment is presented in Table 3.8. There was no forage x antagonist 

interaction (P>0.05) on liver mineral concentration (Table 3.9). There was also no effect 

(P>0.05) of Cu antagonists on liver Mo, Fe, Zn, and Mn concentration. Lambs fed diets 

supplemented with antagonists had a lower (P<0.05) liver Cu concentration compared with 

those not receiving antagonists, with mean values of 190 and 292 mg/kg DM (s.e.d, 40.1) 

respectively.  

The dried grass pellets fed lamb had a higher (P<0.05) liver Cu and Fe concentration 

compared with the maize silage fed lambs. However, forage type had no effect on liver Mo, 

Zn, and Mn concentrations (P>0.05).  

 

Table 3.8. Liver mineral concentration of (8) representative lambs slaughtering at the starting of the 
study. 

Minerals, 
mg/kg DM 

Liver mineral concentrations  Standard Deviation 

Cu,  173.6 ± 31.4 

Mo,  3.8  ± 0.8 

Fe,  351 ± 67.3 

Zn,  103.6 ± 15.1 

Mn,  20.7 ± 6.1 
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Table 3.9. Liver mineral concentration in growing lambs fed diets containing dried grass pellets (DGP) 
or maize silage (MS) fed either without (-) or with (+) Mo and S. 

Minerals, 

mg/kg DM 

Treatment Significance1 

DGP- DGP+ MS- MS+ s.e.d F A Int. 

Cu, 358 237 224 142 56.7 0.010 0.019 0.636 

Mo,  4.46 4.26 4.32 4.23 0.240 0.635 0.400 0.738 

Fe,  371.8 350.5 304.4 317 27.62 0.017 0.827 0.394 

Zn,  127.2 123.3 107.6 128 15.22 0.495 0.450 0.270 

Mn,  24.30 19.00 24.90 24.80 4.470 0.327 0.403 0.411 

1 F= main effect of forages; A = main effect of antagonists (Mo and S); Int. = interaction between 

forages and antagonists. s.e.d= standard error of differences. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



49 
 

3.3.5.2. Whole liver mineral content  

There was no forage x antagonist interaction (P>0.05) on whole liver Cu content (Table 

3.10). However, lambs offered dried grass pellets had a higher (P<0.05) whole liver Cu 

content compared with those offered maize silage, with mean values of 48.7 and 32.6 

mg/liver (s.e.d, 6.6) respectively. Similarly, lambs unsupplemented with antagonists had a 

higher (P<0.05) liver Cu contentment compared with those supplemented with Mo and S, 

with mean values of 48.6 and 32.7 mg/liver (s.e.d, 6.6) respectively. Dietary treatment had 

no (P>0.05) effect on whole liver content of Mo, Fe, Zn, and Mn. 

 

Table 3.10. Whole liver mineral contents1 in growing lambs fed diets containing dried grass pelleted 
(DGP) or maize silage (MS) fed either without (-) or with (+) Mo and S. 

Minerals, 
mg/liver 

Treatment Significance2 

DGP- DGP+ MS- MS+ s.e.d F A Int. 

Cu,  57.2 40.2 40.0 25.2 9.33 0.024 0.025 0.867 

Mo, 0.72 0.71 0.77 0.75 0.051 0.194 0.719 0.914 

Fe,  59.8 58.2 54.5 55.7 5.00 0.287 0.964 0.692 

Zn,  20.4 20.5 19.2 22.4 2.49 0.840 0.361 0.379 

Mn, 3.87 3.20 4.38 4.31 0.682 0.107 0.450 0.543 

1 whole liver minerals content = whole liver weight x liver DM x final liver Cu concentration (mg/kg 

DM). 

2 F= main effect of forages; A = main effect of antagonists (Mo and S); Int. = interaction between 

forages and antagonists. s.e.d= standard error of difference.  
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3.3.5.3. Liver mineral retention 

There was no forage x antagonist interaction (P>0.05) on whole liver retention (Table 3.11) 

for all minerals. Compared to the total liver Cu content in the initial slaughter group, lambs 

fed the dried grass pellets and the maize silage without antagonists, or dried grass pellets 

with antagonists all had a net positive retention, except lambs fed the maize silage diet 

supplemented with antagonists which had a negative retention and lost 0.07 mg Cu/kg DM 

per day. Lambs fed dried grass pellets had a lower liver Cu retention compared with the 

lambs fed maize silage, when Mo and S were included (P<0.05). There was no effect 

(P>0.05) of dietary treatment on liver retention of Mo, Fe, Zn, and Mn.  

 

Table 3.11. Liver mineral retention in growing lambs fed diets containing dried grass pelleted (DGP) 
or maize silage (MS) fed either without (-) or with (+) Mo and S1.  

Minerals,  
µg/d 

Treatment Significance2 

DGP- DGP+ MS- MS+ s.e.d F A Int. 

Cu, mg/d 0.50 0.20 0.19 -0.07 0.167 0.024 0.025 0.867 

Mo,  2.05 1.89 2.99 2.68 0.911 0.194 0.719 0.914 

Fe,  
73 45 -21 1.0 89.4 

0.287 0.964 0.692 

Zn,  
68 69 46 103 44.5 

0.840 0.361 0.379 

Mn,  11.00 -0.90 20.20 18.90 12.180 0.107 0.450 0.543 

1 Liver minerals retention were calculation by substrate whole liver minerals content at day zero from 

final whole liver Cu content divided by whole study period (days). 

2 F= main effect of forages; A = main effect of antagonists (Mo and S); Int. = interaction between 

forages and antagonists. s.e.d= standard error of difference.  
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3.3.6. The mean of plasma mineral profile, Cu-mediated enzymes, and haematology 

profile 

Repeated measures analysis indicates that there was no effect (P>0.05) of forage type, the 

addition of Mo and S, or forage type x antagonist interaction on the mean plasma Cu, Mo, 

Fe, and Zn concentrations (Table 3.12). There was also no effect (P>0.05) of dietary 

treatment on the mean Cp activity, Cp:Pl-Cu ratio, or SOD activity. Similarly, no effect 

(P>0.05) was observed of dietary treatment on the mean Hct (%), Hb concentration, RBC 

counts, or WBC counts.  

Table 3.12. Effect of forage type dried grass pellets (DGP) and maize silage (MS) fed without (-) or 
with (+) added Mo and S on mean indicators of blood Cu status over the study period of lambs1. 

Items 
Treatments Significance 

DGP- DGP+ MS- MS+ s.e.d F A Int. 

Cu, µmol/L 16.5 16.5 16.5 16.6 1.20 0.933 0.953 0.938 

Mo, µmol/L 0.38 0.39 0.41 0.54 0.184 0.115 0.223 0.279 

Fe, µmol/L 45.2 45.4 51.0 49.3 7.80 0.029 0.730 0.647 

Zn, µmol/L 12.9 13.0 11.9 11.5 1.02 0.037 0.763 0.645 

Cp, mg/dL 12.0 11.7 12.4 11.9 1.54 0.711 0.524 0.850 

Cp:Pl-Cu 0.74 0.74 0.75 0.73 0.091 0.924 0.650 0.758 

SOD, U/g of Hb 2384 2463 2529 2428 184.5 0.702 0.895 0.444 

Hct, % 31.7 30.5 31.3 29.7 1.52 0.470 0.078 0.749 

Hb, g/dL 11.9 11.6 11.7 11.2 0.55 0.398 0.158 0.820 

RBC, 106/mm3 11.7 11.1 11.2 11.0 0.56 0.342 0.195 0.542 

WBC, 103/mm3 11.1 11.9 10.5 9.6 1.50 0.111 0.895 0.396 

1 week 0 values were used as a covariate where appropriate. 

2 SOD= superoxide dismutase activity; Hct- haematocrit; Hb= haemoglobin; RBC= red blood cells; 
WBC= white blood cells. 

3 F= main effect of forages; A = main effect of antagonists (Mo and S); Int. = interaction between 
forages and antagonists. s.e.d = standard error of difference. 
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3.3.7. Plasma mineral concentrations  

3.3.7.1. Plasma copper concentration 

There was an effect (P<0.001) of time, with plasma concentrations declining over the period 

of the study. There was also a time x forage x antagonist interaction (P<0.05) on Pl-Cu 

concentration. However, there was no time x forage interaction, or time x antagonist 

interaction (P>0.05) on Pl-Cu concentration. 

There was no effect (P>0.05) of dietary treatment on Pl-Cu concentration from week 1 until 

week 7 (Table 3.13). However, at week 8, there was a forage x antagonist interaction 

(P=0.015) on Pl-Cu concentration. At week 8, the highest Pl-Cu concentration was in the 

lambs fed dried grass pellets and maize silage supplemented without and with antagonists 

respectively, and the lowest Pl-Cu concentration was in lambs fed dies grass pellets or 

maize silage supplemented with or without antagonists respectively. There was no effect 

(P>0.05) of forage type or antagonists on Pl-Cu concentration at any weekly time points.  

 

Table 3.13. Plasma copper concentration in growing lambs fed diets dried containing grass pelleted 
(DGP) or maize silage (MS) supplemented without (-) or with (+) Mo and S (µmol/L) 1.  

Week 
Treatment2 Significance3 

DGP- DGP+ MS- MS+ s.e.d F A Int. 

0 21.2 19.5 23.8 19.5 2.17 -- -- -- 

1 18.8 20.9 20.5 19.3 1.21 0.972 0.495 0.066 

2 15.9 17.4 16.9 17.7 0.95 0.271 0.098 0.598 

3 12.9 13.8 13.7 13.3 0.83 0.758 0.591 0.258 

4 15.1 14.3 15.7 15.0 0.82 0.247 0.217 0.924 

5 17.7 17.5 16.4 17.0 1.97 0.512 0.881 0.792 

6 16.1 14.0 15.6 15.1 0.91 0.715 0.054 0.249 

7 15.9 15.8 14.8 15.3 1.06 0.318 0.848 0.672 

8 15.7b 14.4a 14.3a 15.7b 0.73 0.946 0.963 0.015 

1 week 0 used as a covariate.  

2 F= main effect of forages; A = main effect of antagonists (Mo and S); Int. = interaction between 
forages and antagonists. s.e.d= standard error of difference.  

3 individual weekly data have been analysed by ANOVA, but caution should be exercised when 
interpreting individual means when the time x forage, time x antagonist, or time x forage x antagonist 
interaction is not significant. 

 

Repeated measures: s.e.d P-value 

 Time effect  0.534 <.001 

 Time x Forage effect 0.464 0.504 

 Time x Antagonist effect 0.496 0.261 

 Time x Forage x Antagonist effect 0.846 0.045 
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3.3.7.2. Plasma molybdenum concentration  

There was an effect (P<.001) of time on Pl-Mo concentration. However, there were no time 

x treatment interaction (P>0.05) on Pl-Mo concentration. 

There was no forage x antagonist interaction (P>0.05) on Pl-Mo concentration at any weekly 

time point. At week 1, and from week 4 onwards, lambs fed MS had a higher (P<0.05) Pl-

Mo concentration compared with those fed dried grass pellets (Table 3.14). From week 1 

until week 8, lambs offered diets supplemeted with Mo and S had a higher (P<0.05) Pl-Mo 

concentration compared with those offered diets no added Mo and S. 

 

Table 3.14. Plasma molybdenum concentration of growing lambs fed diets containing forages dried 
grass pelleted (DGP) or maize silage (MS) supplemented without (-) or with (+) added S and Mo and 
S (µmol/L)1. 

1 F= main effect of forages; A = main effect of antagonists (Mo and S); Int. = interaction between 

forages and antagonists. s.e.d= standard error of difference. 

2 individual weekly data have been analysed by ANOVA, but caution should be exercised when 

interpreting individual means when the time x forage, time x antagonist, or time x forage x antagonist 

interaction is not significant. 

 

Repeated measures: s.e.d P-value 

 Time effect 0.088 <.001 

 Time x Forage effect 0.056 0.414 

 Time x Antagonist effect 0.056 0.291 

 Time x Forage x Antagonist effect 0.130 0.306 

 

 
Week 

Treatment Significance 

DGP- DGP+ MS- MS+ s.e.d F A Int. 

0 1.63 0.28 1.00 1.08 0.494 0.854 0.193 0.142 

1 0.30 0.44 0.45 0.59 0.087 0.021 0.034 0.995 

2 0.24 0.36 0.29 0.39 0.045 0.230 0.003 0.696 

3 0.21 0.28 0.25 0.33 0.033 0.055 0.003 0.958 

4 0.23 0.29 0.34 0.48 0.055 <.001 0.015 0.342 

5 0.28 0.37 0.40 0.62 0.066 <.001 0.004 0.204 

6 0.21 0.28 0.31 0.45 0.046 <.001 0.003 0.238 

7 0.19 0.31 0.33 0.47 0.056 0.001 0.003 0.762 

8 0.17 0.25 0.28 0.40 0.040 <.001 0.002 0.570 
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3.3.7.3. Plasma iron concentration 

There was an effect (P<0.001) of time on Pl-Fe concentration, with concentrations 

decreasing over a period of the study. However, there was no time x treatment interaction 

(P>0.05) on Pl-Fe concentration. 

There was no forage x antagonist interaction (P>0.05) on Pl-Fe concentration throughout 

the study (Table 3.15). There was also no effect (P>0.05) of antagonists on Pl-Fe 

concentration. However, during week 7 and 8 lambs fed maize silage had a higher (P<0.05) 

Pl-Fe concentration compared with those fed dried grass pellet. 

 

Table 3.15. Plasma iron concentration of growing lambs fed diets containing forages dried grass 
pelleted (DGP) or maize silage (MS) supplemented without (-) or with (+) added S and Mo and S1 
(µmol/L).  

Week 
Treatment Significance2 

DGP- DGP+ MS- MS+ s.e.d F A Int 

0 69.3 65.3 59.9 71.4 8.71 0.789 0.544 0.223 

1 58.4 61.8 77.5 63.7 7.99 0.077 0.365 0.144 

2 45.7 44.6 70.9 60.9 14.17 0.051 0.584 0.659 

3 40.4 40.4 44.0 48.0 6.60 0.248 0.674 0.673 

4 38.7 38.4 39.1 39.3 3.75 0.814 0.978 0.920 

5 45.7 47.5 45.2 39.1 9.11 0.499 0.740 0.546 

6 37.8 37.2 36.3 41.4 5.37 0.733 0.565 0.465 

7 38.8 39.0 47.1 44.1 2.03 <.001 0.326 0.286 

8 31.8 32.8 37.5 36.0 2.74 0.032 0.901 0.519 
1 F= main effect of forages; A = main effect of antagonists (Mo and S); Int. = interaction between 

forages and antagonists. s.e.d= standard error of difference. 

2 individual weekly data have been analysed by ANOVA, but caution should be exercised when 

interpreting individual means when the time x forage, time x antagonist, or time x forage x antagonist 

interaction is not significant. 

 

Repeated measures: s.e.d. P-value 

 Time effect 3.83 <.001 

 Time x Forage effect 2.08 0.097 

 Time x Ant. Effect 2.08 0.814 

 Time x Forage x Ant. Effect 5.51 0.608 
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3.3.7.4. Plasma zinc concentration  

There was an effect (P<0.001) of time on Pl-Zn concentration. However, there was no time 

x treatment interaction (P>0.05) on Pl-Fe concentration. 

There was no effect (P>0.05) of dietary treatment on Pl-Zn concentration at any weekly time 

points (Fig. 3.1). 

  

Figure 3.1. Plasma Zinc concentration in growing lambs fed diets containing dried grass 

pelleted (DGP) or maize silage (MS) supplemented without (-) or with (+) Mo and S. Error 

bars indicate s.e.d. Individual weekly data have been analysed by ANOVA, but caution 

should be exercised when interpreting individual means when the time x forage, time x 

antagonist, or time x forage x antagonist interaction is not significant. 

 

Repeated measures: s.e.d P-value 

 Time effect 0.3517 <.001 

 Time x Forage effect 0.5519 0.398 

 Time x Antagonist effect 0.5519 0.731 

 Time x Forage x Antagonist effect 0.7242 0.090 
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3.3.8. Ceruloplasmin activity  

There was an effect (P<0.001) of time on Cp activity, with activity decreasing over a period 

of the study. However, there was no time x treatment interaction (P>0.05) on Cp activity. 

There was no effect (P>0.05) of dietary treatment on Cp activity at any weekly time points 

(Fig. 3.2).  

 

Figure 3.2. Ceruloplasmin activity of growing lambs fed diets containing dried grass pelleted 

(DGP) or maize silage (MS) supplemented without (-) or with (+) Mo and S. Week 0 values 

were used as a covariate. Error bars indicate s.e.d. Individual weekly data have been analysed 

by ANOVA, but caution should be exercised when interpreting individual means when the time x 

forage, time x antagonist, or time x forage x antagonist interaction is not significant. 

 

Repeated measures: s.e.d P-value 

 Time effect 0.689 <.001 

 Time x Forage effect 0.595 0.439 

 Time x Antagonist effect 0.615 0.315 

 Time x Forage x Antagonist effect 1.086 0.782 

 

 

 

 

5

7

9

11

13

15

17

19

1 2 3 4 5 6 7 8

C
e

ru
lo

p
la

s
m

in
 a

c
ti
v
it
y
 (

m
g

/d
L

)

Week

DGP-

DGP+

MS-

MS+



57 
 

3.3.9. Ceruloplasmin to plasma copper ratio  

There was an effect (P<0.001) of time on Cp:Pl-Cu ratio. However, there was no time x 

treatment interaction (P>0.05) on Cp:Pl-Cu ratio. 

There was no effect (P>0.05) of dietary treatment, from week 0 until week 7, on Cp:Pl-Cu 

ratio (Table 3.16). However, at week 8, lambs fed diets supplemented with Mo and S had a 

higher (P<0.05) Cp:Pl-Cu ratio compared with those not receiving Mo and S, with the mean 

values of 0.73 and 0.62 (s.e.d, 0.050) respectively.  

 

Table 3.16. Ceruloplasmin to plasma copper ratio in growing lambs fed diets containing dried grass 
pelleted (DGP) or maize silage (MS) fed either without (-) or with (+) Mo and S1. 

Week 
Treatment2 Significance3 

DGP- DGP+ MS- MS+ s.e.d F A Int. 

0 0.65 0.53 0.69 0.66 0.102 -- -- -- 

1 0.69 0.70 0.66 0.69 0.061 0.705 0.749 0.867 

2 0.91 0.77 0.97 0.81 0.101 0.594 0.054 0.896 

3 1.07 1.05 1.08 1.07 0.132 0.910 0.886 0.910 

4 0.94 0.89 0.90 0.89 0.137 0.856 0.784 0.835 

5 0.69 0.68 0.83 0.74 0.102 0.180 0.472 0.605 

6 0.48 0.57 0.51 0.47 0.064 0.421 0.599 0.173 

7 0.62 0.58 0.61 0.63 0.061 0.633 0.813 0.508 

8 0.64 0.81 0.60 0.64 0.070 0.081 0.049 0.196 

1Week 0 values were used as a covariate. 

2 F= main effect of forages; A = main effect of antagonists (Mo and S); Int. = interaction between 

forages and antagonists. s.e.d= standard error of difference. 

3 individual weekly data have been analysed by ANOVA, but caution should be exercised when 

interpreting individual means when the time x forage, time x antagonist, or time x forage x antagonist 

interaction is not significant. 

 

Repeated measures: s.e.d P-value 

 Time effect 0.043 <.001 

 Time x Forage effect 0.032 0.346 

 Time x Antagonist effect 0.032 0.329 

 Time x Forage x Antagonist effect 0.065 0.838 
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3.3.10. Superoxide dismutase activity  

There was no effect (P>0.05) of time on superoxide dismutase activity. However, there was 

time x treatment interaction (P<0.05) on SOD activity (P>0.05). 

There was no effect (P>0.05) of dietary treatment on blood SOD activity throughout the 

study (Table 3.17), except at week 8. At week 8, there was forage x antagonist interaction 

(P<0.05) on on SOD activity, with the highest value in the lambs fed dried grass pellet 

supplemented with antagonists compared with those fed other diets. 

 

Table 3.17. Superoxide dismutase activity (SOD) in growing lambs fed diets containing dried grass 
pelleted (DGP) or maize silage (MS) fed either without (-) or with (+) added Mo and S (U/ g Hb)1.  

Week 
Treatment2   Significance3 

DGP- DGP+ MS- MS+ s.e.d F A Int 

0 2229 1974 1824 1843 190.0 -- -- -- 

4 2521 2371 2536 2530 217.6 0.541 0.622 0.640 

8 2248a 2555b 2523ab 2326ab 147.5 0.966 0.667 0.023 

1 week 0 values used as a covariate. 

2 F= main effect of forages; A = main effect of antagonists (Mo and S); Int. = interaction between 
forage type and antagonists. s.e.d= standard error of difference.  

3 individual weekly data have been analysed by ANOVA, but caution should be exercised when 

interpreting individual means when the time x forage, time x antagonist, or time x forage x antagonist 

interaction is not significant. 

 

Repeated measures: s.e.d P-value 

 Time effect 61.0 0.254 

 Time x Forage effect 123.0 0.453 

 Time x Antagonist effect 114.5 0.360 

 Time x Forage x Antagonist effect 132.0 0.020 
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3.3.3.11. Haematology parameters 

3.3.11.1. Haematocrit  

There was no effect (P>0.05) of time or time x treatment interaction on blood haematocrit 

(%).  

At week 4, lambs fed diet supplemented with Mo and S had a lower Hct (%) compared with 

those fed diet no added Mo and S (P<0.05), with mean values of 29.9 and 31.9 (s.e.d, 

1.197) respectively (Table 3.18). However, at week 8, dietary treatment had no effect on 

blood Hct (%) (P>0.05). 

 

Table 3.18. Haematocrit (%) in growing lambs fed diets containing dried grass pelleted (DGP) or 
maize silage (MS) fed either without (-) or with (+) added Mo and S1. 

Week 
Treatment2   Significance3 

DGP- DGP+ MS- MS+ s.e.d F A Int 

0 28.83 32.74 33.95 31.05 2.818 -- -- -- 

4 31.79 31.42 31.93 28.38 1.268 0.100 0.034 0.103 

8 31.51 29.56 30.76 30.92 1.740 0.760 0.473 0.418 

1 week 0 values used as a covariate. 

2 F= main effect of forages; A = main effect of antagonists (Mo and S); Int. = interaction between 

forage type and antagonists. s.e.d=standard error of difference. 

3 individual weekly data have been analysed by ANOVA, but caution should be exercised when 

interpreting individual means when the time x forage, time x antagonist, or time x forage x antagonist  

interaction is not significant. 

 

Repeated measures: s.e.d P-value 

 Time effect 0.734 0.800 

 Time x Forage effect 0.783 0.135 

 Time x Antagonist effect 0.770 0.416 

 Time x Forage x Antagonist effect 1.070 0.278 
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3.3.11.2. Haemoglobin concentration  

There was no time or time x treatment interaction on haemoglobin concentration (P>0.05).  

At week 4, lambs offered dried grass pellets had a higher Hb (P<0.05) concentration 

compared with those offered maize silage, with the mean value of 11.94 and 11.29 g/dL 

(s.e.d, 0.223) respectively (Table 3.19). At week 8, there was no effect of dietary treatment 

on blood Hb concentration (P>0.05). 

 

Table 3.19. Haemoglobin concentration (g/dL) in growing lambs fed diets containing dried grass 
pelleted (DGP) or maize silage (MS) fed either without (-) or with (+) added Mo and S1. 

Week 
Treatment2 

 
Significance3 

DGP- DGP+ MS- MS+ s.e.d F A Int 

0 11.56 13.38 13.99 12.29 1.206 -- -- -- 

4 11.90 11.98 11.70 10.87 0.323 0.006 0.103 0.072 

8 11.93 11.14 11.77 11.60 0.688 0.718 0.322 0.553 

1 week 0 values used as a covariate. 

2 F= main effect of forages; A = main effect of antagonists (Mo and S); Int. = interaction between 

forage type and antagonists. s.e.d=standard error of difference. 

3 individual weekly data have been analysed by ANOVA, but caution should be exercised when 

interpreting individual means when the time x forage, time x antagonist, or time x forage x antagonist 

interaction is not significant. 

 

Repeated measures: s.e.d P-value 

 Time effect 0.244 0.990 

 Time x Forage effect 0.295 0.063 

 Time x Antagonist effect 0.291 0.849 

 Time x Forage x Antagonist effect 0.381 0.412 
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3.3.11.3. Red blood cell counts 

There was no time or time x treatment interaction on RBC counts (P>0.05). 

There was no forage x antagonist interaction (P>0.05) on RBC counts throughout the study 

(P>0.05). At week 4, lambs offered dried grass pellets tended (P<0.1) to have higher RBC 

counts compared with the lambs offered maize silage, with mean values of 11.58 and 11.09 

106/mm3 (s.e.d, 0.248) respectively (Table 3.20). During week 4 lambs offered diets 

supplemented with Mo and S also had a lower RBC counts (11.04 106/mm3) compared to 

those offered diets unsupplements with Mo and S (11.63 106/mm3) (s.e.d, 0.246) (P<0.05).  

 

Table 3.20. Red blood cell counts (106/mm3) in growing lambs fed diets containing dried grass pelleted 
(DGP) or maize silage (MS) fed either without (-) or with (+) added Mo and S.  

 

Week 

 

Treatment2  Significance3 

DGP- DGP+ MS- MS+ s.e.d F A Int 

0 10.96 12.27 12.49 11.79 0.996 -- -- -- 

4 11.76 11.40 11.50 10.68 0.354 0.061 0.024 0.378 

8 11.72 10.86 10.96 11.35 0.708 0.836 0.667 0.237 

1 week 0 values used as a covariate. 

2 F= main effect of forages; A = main effect of antagonists (Mo and S); Int. = interaction between 
forage type and antagonists. 

3 individual weekly data have been analysed by ANOVA, but caution should be exercised when 

interpreting individual means when the time x forage, time x antagonist, or time x forage x antagonist 
interaction is not significant. 

 

Repeated measures: s.e.d P-value 

 Time effect 0.248 0.656 

 Time x Forage effect 0.307 0.325 

 Time x Antagonist effect 0.304 0.375 

 Time x Forage x Antagonist effect 0.393 0.250 
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3.3.11.4. White blood cell counts 

There was no time or time x treatment interaction on white blood cell counts (P>0.05). 

At week 4 and 8, there was also no effect (P>0.05) of dietary treatment on WBC count 

(Table 3.21). 

 

Table 3.21. White blood cell counts (103/mm3) in growing lambs fed diets containing dried grass 
pelleted (DGP) or maize silage (MS) fed either without (-) or with (+) added Mo and S1. 

Week 
Treatment2 

 
Significance3 

DGP- DGP+ MS- MS+ s.e.d F A Int 

0 9.83 13.58 13.74 11.20 2.023 -- -- -- 

4 11.34 11.69 11.42 8.78 1.501 0.167 0.254 0.200 

8 10.88 12.03 9.63 10.44 1.571 0.196 0.376 0.886 

1 week 0 values used as a covariate. 

2 F= main effect of forages; A = main effect of antagonists (Mo and S); Int. = interaction between 
forage type and antagonists. 

3 individual weekly data have been analysed by ANOVA, but caution should be exercised when 

interpreting individual means when the time x forage, time x antagonists, or time x forage x antagonist 
interaction is not significant. 

 

Repeated measures: s.e.d P-value 

 Time effect 0.580 0.920 

 Time x Forage effect 0.872 0.937 

 Time x Antagonist effect 0.870 0.088 

 Time x Forage x Antagonist effect 1.045 0.156 
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3.4. Discussion 

In the current study, lambs on MS were heavier than those on DGP from week 3 onwards. 

Ware and Zinn (2005) and Salinas-Chavira et al. (2013) observed a depression in weight 

gain of steers fed pelleted diets compared with straw. The basis of this effect was attributed 

to reduce diet acceptability when offered as a pelleted diet (Salinas-Chavira et al., 2013). 

However, the feeding system in this study was restrictive, and there was no refusal in DGP 

throughout the study. The lower FCE in dried grass pellets fed lambs compared with maize 

silage reflects the poorer energy utilisation with dried grass pellets than maize silage. 

Boucque et al. (1973) found that the digestibility (determined with wethers) and the net 

energy content of whole plant maize-pellets were generally lower than those of whole plant 

maize silages, resulting in a more efficient utilisation of the DM of whole plant maize silages 

as compared to the pelleted form. Thomson and Beever (1980) showed that less organic 

matter and energy are digested in the rumen, and that total apparent digestibility of pelleted 

forage decreases as a result of an increased rate of fermentation and fractional outflow of 

particulate matter from the rumen. Thomson and Beever (1980) also reported that the 

depression in overall apparent digestibility of organic matter in the case of grasses is 

generally greater (up to 15 %) compared with legumes (3-6 %), which was attributed to the 

potentially higher structural carbohydrate content of grasses. Moreover, Knaus et al. (1999) 

showed low efficiency of utilisation of energy consumed in pellet-fed Simmental dairy cows 

compared with maize silage-fed cows was associated with the reduction in digestibility of 

forages (grass clover and whole plant maize) as a consequence of the alteration of particle 

size distribution by pelleting. It has been reported that increasing NDF from 40 to 80 g/kg 

DM resulted in diluting dietary energy and reduced gain efficiency and dietary net energy 

(Salinas-Chavira et al., 2013). This response is consistent with the higher NDF content in 

DGP compared with the MS. 

 

Replacing grass silage with maize silage has been reported to result in increased 

performance of dairy cattle and sheep (Keady et al., 2013). Keady et al. (2007) reported 

that replacing grass silage by maize silage significantly increased (20%) DLWG in beef 

cattle, and this improvement in performance was attributed to the improvement in utilisation 

of metabolisable energy. Likewise, Keady and Hanrahan (2009) demonstrated that ewes 

on MS had a higher liveweight compared with grass silage (63 and 61.2 kg) respectively. 

Therefore, other factors such as the lower efficiency of energy utilisation, and lower 

digestibility in DGP compared with MS may have contributed to the lower liveweight in the 

DGP fed lambs compared with the MS fed lambs. 
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In the present study, lambs fed DGP had a lower rumen pH compared to those on MS. Low 

rumen pH in lambs fed DGP compared to those fed MS diet is probably associated with 

smaller feed particle size of the DGP which influences the buffering capacity of the rumen. 

Pelleting forage has been found to depress rumen pH (Dafaalla and Kay, 1980) potentially 

caused by the shorter time spent eating and ruminating pelleted forage (Ørskov, 1987; 

Minson, 1990). Recently, Bofonate et al. (2016) demonstrated the shorter particles in a 

pelleted diet compared to a TMR offered to cows resulted in decreased rumination time and 

total potential digestibility of NDF, possibly as a consequence of an increased the rate of 

passage from the rumen by pelleting diet, limiting potential degradation.   

 

The addition of dietary Mo and S had no significant effect on the lamb’s performance 

characteristics. These results are in agreement with the results of Williams (2004) and 

Alimon et al. (2011). Williams (2004) reported that lambs receiving diets containing Mo at 5 

or 10 mg/kg DM (for 70 days) had no significant effect on lamb’s performance. Similarly, 

Suttle (2012) also did not find any significant effect of Mo and S on liveweight when 2 mg/kg 

DM of Mo and 3 g/kg DM of S were added to Texel lambs diet for 96 days. However, 

Humphries (1983) and Phillippo et al. (1987a;1987b) reported that additional Mo at 5 mg/kg 

DM reduced growth rate in heifers after 16 weeks of feeding. However, the reason for the 

antagonist impacting on growth rate was not clear, but in both Humphries et al. (1983) and 

Phillippo et al (1987a) studies the reduction in growth rate was accompanied by a decrease 

in feed intake, which was not affected in the current study. The antagonist effect of Mo and 

S on feed intake has been proposed to be related to the absorption of thiomolybdates, which 

may have a direct effect on Cu-dependent enzymes such as peptidylglycine α-amidating 

monooxygenase that exert its influence on the cholecytokinin and gastrin hormones, 

regulating appetite (Suttle, 2010).   

 

In the current study, there was no clinical symptoms caused by additional Mo and S. These 

findings confirm those of Wentink et al., (1999). Knowles et al. (2000) reported that there 

were no clinical signs when dietary Mo increased from 2.2 to 11.7 mg/kg DM in sheep 

grazing pasture which contained 7.8 mg Cu/kg DM over a period 224 days. Similarly, 

Williams (2004) reported that dietary Mo at 5 or 10 mg/kg DM produced no clinical 

symptoms in growing lambs. In contrast, Humphries et al. (1983) and Phillippo et al (1987a; 

1987b) reported clinical signs of Cu deficiency in calves such as a change in colour, 

infertility, skeletal lesions, reduced growth developed after 20 weeks, when liver Cu 

dramatically reduced to (3-5 mg/kg DM). Therefore, it is suggested that clinical symptoms 
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of Cu deficiency as a result of addition Mo can occur after prolonged or severe Cu deficiency 

and cattle may be more sensitive to Mo than sheep  

 

The mean liver Cu concentration by the end of this study was 292 mg/kg DM in the control 

group and 190 mg/kg DM in the added Mo and S group, which are well above deficiency 

limits (15 mg/kg DM) (Sivertsen and Plassen, 2004; Suttle, 2010). In the current study liver 

Cu concentration and retention was higher when DGP was fed compared with MS, which 

may be partially related to the higher Cu concentration in the DGP, which in turn, resulted 

in increased Cu intake by (1.4 mg/d) in lambs (Table 3.8). In general, the availability of Cu 

in dried feed was found to be higher compared with silage (Suttle, 1980a). Suttle (1980a) 

demonstrated that Cu absorption was greater in grass hay (5.2-7.2 %) or dried grass (3.1-

4.9%) compared with the maize silage (0.9-1.2%).  

 

Petit and Tremblay (1992) demonstrated that the protein degradability of silage, incubated 

in the rumen using nylon bags, was higher compared with hay potentially due to the 

extensive proteolysis that occurs in silage during wilting and ensiling processes. The lower 

Cu availability in fresh forages compared to hay has been attributed to the higher ruminal 

degradability of dietary protein from fresh forages that contributes to produce higher sulfide, 

which in turn, reduces Cu availability by the formation of insoluble Cu-sulfide complexes 

(Ivan, 1993). Therefore, the possibility of less sulfide production in DGP fed lambs due to 

their lower protein degradability may have contributed to an increase availability of Cu for 

absorption by animals. An alternative hypothesis may be related to the lower rumen pH in 

the DGP fed lambs than the MS fed, which in turn, may result in increased sulfide absorption 

and reduced potency Cu-sulfide interaction (Suttle, 1991). Crosby et al. (2004) found that 

lambs bedded on straw had a lower (15%) liver Cu concentration compared with those 

housed on an expanded metal floor, which had only access to the concentrate. Crosby et 

al. (2004) suggested that possibly the roughage intake of the straw group would have 

elevated rumination and salivation and hence increased rumen pH, which in turn, promoted 

the rumen sulfide producing ciliate protozoa and produced more sulfide. The absorption of 

up to 50% more dietary Cu (Ivan et al., 1985) and the incidence of chronic Cu toxicity 

(Dayrell et al., 1994) in fauna free sheep shows the critical role of rumen microflora and 

sulfide they produce in reducing the availability of dietary Cu.  

 

In the current study, supplementation of Mo and S into the diets resulted in a reduction in 

liver Cu concentration by approximately 35%, which is lower than the 50% as predicted 
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using the equation proposed by Suttle and MacLauchlan (1976). However, Crosby et al. 

(2004) also reported a reduction of 37% in the liver Cu concentration by the addition 4 mg/kg 

DM of Mo to Texel cross lambs. The reduction of liver Cu by the addition of Mo and S was 

probably due to the formation of insoluble Cu-thiomolybdate complexes in the rumen 

(Suttle, 1991), which would not be available for absorption, thereby liver Cu concentration 

decreased in order to meet tissue demand (Robinson et al., 1987; Williams, 2004; Suttle, 

2012).  

 

Liver Cu status has also been suggested to be depleted by addition of antagonists as a 

result of a systemic effect of absorbed thiomolybdate, which potentially reduces liver Cu 

concentration either directly by sequestering Cu from hepatocytes and increasing Cu 

excretion (Gooneratne, 2012), or indirectly where absorbed thiomolybdate in the blood 

stream may bind with Cu-albumin and forming an excretable Cu-TM-albumin complex, 

which is slowly hydrolysised (Manson, 1986), serving as a pool of slowly released Cu, thus 

resulting in a delay in the transport of Cu to tissues such as the liver (Goonerante et al., 

1989a; Suttle, 1991; 2010). In addition, absorbed thiomolybdate may bind with Cu with such 

strong affinity that Cu in Cp is not recycled back to the liver and broken down, and as such 

the half-life (2-3 d; Linder, 1991) of Cp may be altered, resulting in a reduction in liver Cu 

concentration (Williams, 2004). The increase in Pl-Cu concentration as a result of the 

addition of antagonists has been generally attributed to the presence of thiomolybdate in 

the blood stream (Williams, 2004; Robinson et al., 1987). In the current study, blood 

parameters such as Pl-Cu concentration, Cp activity, and Cp:Pl-Cu ratio were not affected 

by antagonists. Suttle (2012) also reported no effect of additional 2 mg/kg DM of Mo and 3 

g/kg DM of S on Pl-Cu in Texel ram lambs over a period of 96 days. The mean of Pl-Cu 

concentration was 16 µmol/L, which is higher than the 8-9.4 µmol/L recognised as being 

marginal for Cu deficiency (Paynter, 1987; Kendall et al., 2000; Suttle, 2010). Therefore, 

the adverse effect of additional Mo and S on liver Cu status was possibly caused by the 

direct effect of rumen thiomolybdate on Cu absorption rather than systemic effect of 

absorbed thiomolybdate.   

 

The form of stored Fe in the body is ferritin and it is principally concentrated in the liver with 

the normal concentrations in sheep ranging between 70 to 1000 mg/kg DM (Suttle, 2010). 

The liver Fe concentration in the present study were within normal range although liver Fe 

status was higher in DGP fed lambs than MS fed lambs. This effect may be due to the 

higher dietary Fe concentration of DGP which was approximately 2 times higher compared 

with MS (435 and 248 mg/d respectively), leading to higher Fe intake by lambs. Recently, 
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Sefdeen et al (2014; 2016) showed that increasing Fe concentration in lambs resulted in 

increased liver Fe concentration.  

 

The SOD activity (Cu-containing enzyme that is involved in preventing the destruction of 

membrane and intracellular structures against free radicals (Suttle, 2010), was not affected 

by dietary treatment in the present study. In addition, the mean Hct, Hb, RBC, and WBC 

were 30.1%, 11.61 g/dL, 11.28 106/mm3, and 10.77 103/mm3, and all values were within the 

normal range (Jackson and Cockcroft, 2008). The effect of forage type on Hb and RBC 

counts were observed only at week 4, when DGP fed lambs had higher values for Hb and 

RBC compared with maize silage fed lambs. This may be due to the higher Fe concentration 

in DGP, as Fe is essential for Hb formation (Dean, 2005). However, the life span of RBC is 

estimated to be 120 days (Dean, 2005), which is longer than ten week trial period. Additional 

antagonists had no effect on haematology parameters, except on one occasion at week 4, 

when additional antagonists reduced Hct and RBC. The reason for this effect was not clear. 

Ceruloplasmin is also known as ferroxidase, which is necessary for the oxidation of Fe from 

ferrous (Fe+2) to ferric (Fe+3) and enables Fe to be mobilised and transported in the blood 

stream in order to take part in Hb formation, and a reduction in Cp activity may induce 

anaemia (Suttle, 2010; Prohaska, 2006). As discussed above Cp activity and Pl-Fe 

concentration were not affected by dietary treatment. It has been reported that additional 

Mo and S produced no effect on blood haematology parameters in sheep (Williams, 2004). 

In ruminants, low Hb and Hct is often associated with anaemia caused by prolonged or 

severe Cu deficiency (Goonerante et al., 1989a; Suttle, 2010).  

 

 

 

 

 

 

 

 

 



68 
 

3.5. Conclusions  

The inclusion of Mo and S had no effect on the lamb performance or rumen pH. However, 

lambs fed DGP had a lower liveweight gain and rumen pH compared with those fed MS. 

The higher liver Cu status in the DGP fed lambs compared with the MS may be partially 

related to the higher Cu intake, or lower rumen pH that potentially contributed to an increase 

in sulfide absorption and decrease Cu-S interaction, and hence increase Cu availability in 

DGP. The dietary Cu concentration (9 mg/kg DM in DGP and 7 mg/kg DM in MS) resulted 

in an increased liver Cu concentration in the lambs on DGP diets supplemented or 

unsupplemented with antagonists and MS unsupplemented with antagonists, except lambs 

on MS diet supplemented with antagonists, which decreased liver Cu. However, additional 

antagonists substantially reduced liver Cu status and there was no forage type x antagonist 

interaction on liver Cu status. Dietary treatment had a small effect on plasma Cu 

concentration, and Cu-containing enzymes such as ceruloplasmin activity and SOD and it 

can be concluded that using these parameters to determine Cu status is insensitive.  

 

To conclude, there was no interaction between forage type and antagonists on Cu status 

throughout the study. The reasons for higher liver Cu status in the DGP fed lambs compared 

with MS may possibily be related to the lower rumen pH in DGP. Reasons for the rumen pH 

effect was in the current study was not clear and require further investigation. Using DGP 

to simulate the differences in Cu metabolism between dried vs. silage forages may not be 

ideal due to the smaller feed particle size with the consequence of a high out flow rate from 

the rumen.  
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Chapter 4 The effects of forage type and inclusion of molybdenum and sulfur 

supplementation on copper status in growing lambs 

 

4.1. Introduction 

The availability of Cu is different between feedstuffs consumed by ruminants and Cu is well 

absorbed from non-fibrous feedstuffs such as cereals compared with fresh or conserved 

forages. Suttle (2012) demonstrated that liver Cu concentration in Texel lambs reached 

values associated with Cu toxicity (1069 mg/kg DM) by feeding a concentrate diet 

containing 90.8% of whole barley grain. Conservation of grass as hay or silage generally 

improves Cu availability compared to fresh grass (Suttle, 1983b; 1986; 2010). This was 

confirmed by Suttle (1983b) who reported that Cu absorption in sheep was higher in hay 

compared with fresh herbage. In Chapter 3, dried grass pellets resulted in a higher liver Cu 

status than maize silage. In addition, the inclusion of Mo and S was found to lower liver Cu 

status, although no interaction between forage type and antagonists was observed. The 

degree of thiomolybdate produced in the rumen is due to interactions occurred between 

molybdenum and sulfur and has been reported to be affected by forage type, however, the 

reason for this effect is not clear (Suttle, 1980a; 1986; 2010). For instance, the inhibition 

effect of Mo on Cu absorption in grass hays is less than that of S, while in fresh grass a 

small increment of Mo and S greatly reduced Cu absorption, with semi-purified diet being 

intermediate (Suttle, 1983b). More recently, Sinclair et al. (2017) demonstrated that the liver 

Cu status in cows fed maize silage was higher compared with those fed grass silage, and 

the extent of reduction of liver Cu status caused by antagonists was more pronounced when 

grass silage was fed compared with maize silage, although the reason for these effects 

were not clear. Therefore, this would suggest that the forage type is an essential factor that 

should be taking in to account in calculating Cu requirements for ruminants, especially when 

dietary Mo and S are high. 

  

In Chapter 3, Texel cross breed lambs were used to investigate effects of diet on Cu 

metabolism. Breeds of sheep vary in Cu absorption and those that absorb Cu well such as 

Texel, North Ronaldsay and Suffolk breeds are more prone to Cu toxicity than deficiency 

(Suttle et al., 2012), while breeds such as Scottish Blackface or Welsh Mountain are 

relatively susceptible to Cu deficiency (Woolliams et al., 1986a;1986b). Liver Cu 

accumulation, which reflects absorptive efficiency, was found to be higher in the Texel breed 

compared with other breeds (Woolliams et al., 1983; Suttle et al., 2002). Moreover, as 

shown in Chapter 3 dried grass pellets resulted in a lower rumen pH than maize silage 

potentially due to having smaller feed particle size, however, dried forages have been 

recognised to have a higher rumen pH due to their buffering capacity and provision of more 
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saliva compared with silages such as maize that contains high level of easily digested 

carbohydrates, which depresses rumen pH (Ørskov, 1987; MacDonald, et al., 2011). 

Therefore, the aims of this study were to further evaluate the effects of forage type and 

addition of Mo and S on Cu metabolism in growing lambs using breeds more prone to Cu 

deficiency.   
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4.2. Materials and methods 

4.2.1. Animal procedures 

All procedure involving animals were carried out according to the UK Animals (Scientific 

Procedures) Act 1986 and were approved by the Harper Adams University Ethic 

Committee. 

4.2.2. Animals and experimental design 

The study was carried out at Harper Adams University (at 3rd of November 2014) using 48 

castrated male Swaledale lambs with an initial mean body weight of 27.1 kg (s.e.d; 0.35) 

over a period of 10 weeks. Eight representative lambs were slaughtered immediately prior 

to the start of the study in a commercial abattoir, and liver samples were collected and 

stored at -20 °C prior to serve as a baseline for liver Cu levels. The remaining 40 lambs 

were blocked according to liveweight (LW) and then randomly allocated to one of four 

treatments in a 2 x 2 factorial design with 10 lambs per treatment. The lambs were housed 

in a well-ventilated shed in individual pens and bedded on wood shavings. They had free 

accessed to water. 

 

4.2.3. Diets  

Lambs were fed diets with a forage to concentrate ratio of 60:40 (DM basis) to meet their 

requirements to grow at 200 g/day (AFRC, 1993). The forages were either grass haylage 

(GH) or maize silage (MS). Appropriate concentrates were formulated to obtain an 

isonitrogenous, isoenergetic diet (Table 4.1). The predicted metabolisable energy (ME) of 

the experimental diets was 11.56 and 11.65 (MJ/kg DM) for GH and MS respectively (AFRC, 

1993). The GH was from a perennial ryegrass mix sward, second cut, and harvested at 

Harper Adams University in the middle of July 2015. The MS forage was also made at 

Harper Adams University.  
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Table 4.1. Raw material composition of the experimental concentrates (g/kg DM). 

Ingredients, 
g/kg DM 

    Concentrate Diets1 

    GH MS 

Barley  352 317 

Sugar beet pulp  102 128 

Soya bean meal  315 412 

Molasses  77 77 

Megalac  86 --- 

Urea2  11 9 

Mins/vits3   57 57 

Total  1000 1000 
1 GH= concentrate fed with grass haylage forage, MS= concentrate fed with maize silage. 

2 Urea (Trouw Nutrition, Cheshire, UK). 

3 Mineral premix (25 kg/tonne) (Rumenco, Burton upon Trent, Staffordshire, UK). Major minerals 
(g/kg DM): Calcium, 185; Phosphorous, 20; Magnesium, 100; Sodium, 120; Chloride, 205; Trace 
elements (mg/kg DM); Iodine, 150; Cobalt, 90; Manganese, 3000; Zinc, 3000; Selenium (sodium 
selenite), 20. Vitamins; Vit A {E 672}, 320000 IU/kg; Vit D3 {E 671}, 100000 IU/kg. Vit E (all-rac-
alpha-tocopheryl acetate) {3a700} 2000 mg/kg. 

 

The individual components of the diet were analysed by ICP-MS (section 2.4.1) (Table 4.2) 

and trace element supply (Table 4.2) was calculated. Based on the equations of Suttle and 

MacLauchlan (1976) Mo and S was added to the diets to reduced Cu absorption by 50%. 

Levels added are presented in Table 4.3. The Mo added was in the form ammonium 

molybdate (NH4)6Mo7O24·4H2O (Fisher Scientific, Leicester, UK), and S wan in the form 

ammonium sulphate (NH4)2SO4 (Alfa Aesar., Ward Hill, USA). The N content of the diets 

were balanced with feed grade urea (Trouw Nutrition, Cheshire, UK). 

 

Table 4.2. Chemical composition of grass haylage and maize silage 

Item Grass haylage Maize silage 

Chemical composition, g/kg DM   

DM, g/kg  868 324 

CP, 96 73 

NDF, 654 381 

EE, 11 34 

Ash, 63 37 

ME, ML/kg DM1 10.0 11.30 

Mineral composition, mg/kg DM 

Cu,  6.3 4.7 

Mo,  1.4 0.5 

S, g/kg DM 1.4 0.9 

Fe,  151.2 82.8 

Zn,  22.6 20.6 

Mn,  125.7 14.5 

ME= metabolisable energy was taken from AFRC (1993) 
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Table 4.3. The predicted mineral composition for the experimental diets. 

  

Grass haylage Maize silage 

No added  
Mo and S 

Added  
Mo and S 

No added  
Mo and S 

Added  
Mo and S 

Cu, mg/kg DM 10.8 -- 10.5 -- 

Mo, mg/kg DM 2.02 3.5 1.81 3.5 

S, g/kg DM 2.42 2 2.28 2.2 

 

Therefore, lambs were allocated according to their liveweight to one of four dietary 

treatments (Table 4.4). 

Table 4.4. Dietary treatments   

Code Treatments 

GH- 0.60  grass haylage: 0.40 concentrate (DM basis), no addition of antagonists 

GH+ 0.60  grass haylage: 0.40 concentrate (DM basis), with additional Mo and S 

MS- 0.60  maize silage: 0.40 concentrate (DM basis), no addition of antagonists 
 

MS+ 0.60  maize silage: 0.40 concentrate (DM basis), with additional Mo and S  

 

Feed samples (forage and concentrates) were collected weekly throughout the study. At 

the end of the study, all feed samples were analysed for DM, Ash, CP, NDF, EE and mineral 

contents as described in sections 2.1.1. to 2.1.5, and section 2.4.1 respectively. The 

chemical composition of the experimental diets are presented in Table 4.5. 
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Table 4.5. Analysed chemical and mineral composition of the experimental diets supplying 600 g/kg 
DM forage and 400 g/kg DM concentrates (60:40)1. 

 GH- GH+ MS- MS+ 

Chemical composition, g/kg DM 

DM, g/kg  859.1 860.2 530.7 532.7 

CP, 156.0 158.1 163.9 165.8 

NDF,  450.6 452.8 290.7 292.3 

EE, 31.4 32.2 62.8 64.0 

Ash, 82.6 86.7 62.5 62.4 

Mineral composition, mg/kg DM 

Cu,  11.0 11.6 10.7 10.7 

Mo,  1.8 4.5 1.5 4.2 

S, g/kg DM 1.9 3.3 1.8 3.2 

Fe,  179.8 179.0 151.5 151.7 

Zn,  71.6 69.8 67.9 69.9 

Mn,  119.0 120.8 53.7 51.3 
1 Diets consists of either grass haylage (GH) + concentrate or maize silage (MS) + concentrate at a 
ratio of 60:40 forage: concentrate. Diets DGP+ or MS+ received additional Mo and S, resulting in a 
Mo content of 5 mg/kg DM and S content of 4 g/kg DM. 

 

4.2.4. Experimental routine  

All lambs were offered feed twice a day at (08:30 and 16:30h). The GH forage was chopped 

(approximately 5 cm length) before being fed to the lambs using a straw chopper (New Wic 

Bedding-Straw Chopper, Lancashire, UK). Forages (GH and MS) were put into wooden 

troughs, and concentrates placed into plastic buckets. Feed refusals were collected twice a 

week (every Monday and Thursday until the end of experiment) to estimate individual feed 

intake and feed conversion efficiency. The quantity of the feed offered was adjusted weekly 

according to the live weight of the animal taken on the day of live weight determination 

(section 4.2.4.2) to meet AFRC (1993) requirement. At the end of the study, lambs were 

sent to a commercial abattoir for slaughter. All lambs, including the eight representative 

lambs slaughtered on day 0, were slaughtered following electrical stunning. Livers were 

collected immediately after slaughtering, weighed, and stored at -20°C for subsequent 

mineral content determination.  
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4.2.4.1. Blood sample collection and analysis  

Blood samples were collected by jugular vein puncture (section 2.2.) once a week on 

Wednesday at 11:00h for plasma and serum analysis (sections 4.2.5). On weeks 0, 4, 8, 

and 10 an additional EDTA tube was collected for haematology analysis and an aliquot 

stored at -20°C for SOD analysis (section 4.2.5). Blood samples (week 0) were collected on 

3rd of June 2014. 

 

4.2.4.2. Liveweight determination  

Lambs were weighed once a week on Thursday at 11:00 using a standard operating 

procedure as described in section 2.3. Daily liveweight gain (DLWG) was calculated using 

regression analysis.  

 

4.2.5. Blood analysis 

Fresh blood samples after being collected were directly analysed for haematocrit (Hct), 

haemoglobin concentration (Hb), red blood cell counts (RBC), and while blood cell counts 

(WBC) using a Vet Animal Blood Counter (section 2.2.1). Frozen samples of whole blood, 

plasma, and serum were defrosted thoroughly at room temperature. Whole blood samples 

were analysed for SOD activity using a Cobas Mira Plus analyser as described in section 

2.2.3.1. Plasma samples were used to determine mineral concentration (section 2.2.2), and 

trichloroacetic acid soluble concentration (section 2.2.2.1). Blood serum samples were also 

analysed for ceruloplasmin activity (Cp) using a Cobas Mira Plus (section 2.2.3.2). 

 

4.2.6. Liver mineral concentrations  

Liver samples were analysed for mineral concentrations using an ICP-MS as described in 

section 2.4.2. Whole liver mineral content was determined by multiplying liver mineral 

concentrations by liver weight and by liver DM. Liver mineral retention was determined by 

subtracting whole liver mineral content of the initial slaughter group from final whole liver 

minerals content, divided by days of the study period.  

 

4.2.7. Rumen pH determination 

Rumen fluid samples were collected immediately after slaughter of the lambs, put into 100 

ml plastic pots and stored on ice prior to measuring pH within an hour after slaughtering 

(section 2.1.6).  
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4.2.8. Statistical analysis 

Performance, plasma minerals, haematology, and enzyme activities were analysed by 

repeated-measures ANOVA as a 2x2 factorial randomise block design with the main effects 

of forage type (F), antagonists (Ant.), and interaction between forage type and antagonists 

(Int.). Daily live weight gain (DLWG) was calculated by regression analysis and analysed 

by ANOVA. For plasma Mn concentration and Cp:Pl-Cu ratio week zero was used as a 

covariate. All statistical analysis were conducted using Genstat version 17.1 (Lawes 

Agricultural Trust, VSN International Ltd, Oxford, UK). Significance was set at P < 0.05 and 

trends at P < 0.10. Significant differences between means were tested using the protected 

least significant difference (LSD) (Snedecor and Cochran, 1989).   
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4.3. Results 

4.3.1. Health observation  

Additional Mo and S in the current study did not produce clinical symptoms, and all lambs 

were healthy and none were not removed from the study.  

 

4.3.2. Animal performance and intake  

There was no forage x antagonist interaction (P>0.05) on weekly liveweight (Table 4.7), 

DLWG, DMI, and FCE of the lambs throughout the study (Table 4.6). There was also no 

effect (P>0.05) of antagonists on these parameters. However, lambs fed the maize silage 

were heavier (P<0.05) from week 6 until the end of the study compared with lambs fed the 

grass haylage (Fig. 4.1). The grass haylage fed lambs had a higher (P<0.05) forage and 

total DMI compared with the maize silage fed lambs, although concentrate DMI was not 

different (P>0.05) between treatments. The DLWG and FCE were higher (P<0.05) in the 

maize silage fed lambs compared with the grass haylage fed lambs. 

 

Table 4.6. Intake, performance, and rumen pH of growing lambs fed diets based on grass haylage 
(GH) or maize silage (MS) supplemented either without (-) or with (+) Mo and S. 

Items 
Treatment Significance1 

GH- GH+ MS- MS+ s.e.d F A Int. 

Intake, kg/d         

Forage DMI, 0.48 0.50 0.41 0.45 0.033 0.020 0.197 0.845 

Concentrate DMI, 0.34 0.34 0.34 0.33 0.010 0.321 0.483 0.619 

Total DMI 0.82 0.85 0.75 0.78 0.041 0.029 0.398 0.992 

DLWG, kg/d 0.07 0.08 0.13 0.13 0.017 <.001 0.925 0.708 

FCE2 0.08 0.08 0.18 0.16 0.016 <.001 0.541 0.522 

1 F= main effect of forages; A = main effect of antagonists (Mo and S); Int. = interaction between 
forages and antagonists. s.e.d = standard error of difference  

2 FCE calculated as DLWG (kg/d) divided by DMI (kg/d). 
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Table 4.7. Liveweight in growing lambs fed diets based on grass haylage (GH) or maize silage (MS) 
supplemented without (-) or with (+) Mo and S1.  

Week 
Treatment Significance2 

GH- GH+ MS- MS+ s.e.d F A Int. 

0 27.3 27.3 27.0 27.0 0.35 0.276 0.920 0.920 

1 29.8 28.7 28.1 29.0 1.02 0.358 0.918 0.188 

2 29.5 29.4 29.0 29.7 0.72 0.846 0.560 0.497 

3 30.1 29.9 29.7 30.3 0.80 0.93 0.726 0.485 

4 30.3 30.5 30.9 31.3 1.09 0.373 0.654 0.898 

5 31.2 31.2 32.0 32.4 1.00 0.180 0.753 0.807 

6 31.2 31.2 32.7 33.2 0.95 0.016 0.686 0.741 

7 31.8 31.6 33.5 34.0 1.01 0.008 0.780 0.626 

8 32.5 32.6 34.5 35.0 1.12 0.008 0.708 0.803 

9 32.6 32.3 35.5 35.4 1.20 0.001 0.838 0.884 

10 32.8 32.6 36.7 36.6 1.30 <.001 0.892 0.978 
1 F= main effect of forages; A = main effect of antagonists (Mo and S); Int. = interaction between 
forages and antagonists. s.e.d = standard error of difference 

2 individual weekly data have been analysed by ANOVA, but caution should be exercised when 

interpreting individual means when the time x forage, time x antagonist, or time x forage x antagonist  
interaction is not significant. 

 

 

Figure 4.1. Effect of forage type grass haylage (GH) or maize silage (MS) on weekly 
liveweight in growing lambs. Error bars indicate s.e.d. 
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4.3.3. Mineral intake  

There was no forage x antagonist interaction (P>0.05) on Cu, S, Fe, Zn, and Mn intake 

(Table 4.8). However, there was forage x antagonist interaction (P<0.05) on Mo intake, 

which was higher in lambs fed grass haylage or maize silage supplemented with 

antagonists, intermediate in lambs fed grass haylage no added antagonists and lowest in 

lambs fed maize silage unsupplemented with antagonists, Additional antagonists resulted 

in an increased (P<0.001) in S intake in comparison with the lambs not receiving 

antagonists. There was no difference in Mo intake between lambs offered grass haylage or 

maize silage (P>0.05). Lambs offered grass haylage had a higher (P<0.05) Cu, S, Fe, Zn, 

and Mn intake compared with the lambs offered maize silage. 

 

Table 4.8. Mineral intake in growing lambs fed diets based on grass haylage (GH) or maize silage 
(MS) supplemented without (-) or with (+) Mo and S1. 

1 F= main effect of forages; A = main effect of antagonists (Mo and S); Int. = interaction between 

forages and antagonists. s.e.d = standard error of difference 

 

 

 

 

 

 

 

 

 

Minerals,  
mg/d 

Treatment Significance 

GH- GH+ MS- MS+ s.e.d F A Int 

Cu, 9.0 9.8 8.1 8.3 0.50 <.001 0.111 0.404 

Mo, 1.5b 3.1c 1.2a 3.3c 0.13 0.358 <.001 0.009 

S, g/d 1.6 2.8 1.3 2.5 0.11 0.004 <.001 0.805 

Fe,  147.6 151.4 114.2 118.1 6.73 <.001 0.424 0.986 

Zn,  58.8 59.0 51.2 54.4 2.87 0.006 0.407 0.456 

Mn,  97.7 102.1 40.5 40.0 3.67 <.001 0.455 0.351 
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4.3.4. Rumen pH 

There was no forage x antagonist interaction (P>0.05) on rumen pH. There was also no 

effect (P>0.05) of the antagonists on rumen pH (Table 4.9). However, lambs on maize silage 

had a lower rumen pH compared with those on grass haylage (P<0.001) (Fig. 4.2). 

 

Table 4.9. Rumen pH of growing lambs fed diets based on grass haylage (GH) or maize silage (MS) 
supplemented either without (-) or with (+) Mo and S. 

 
Treatment Significance1 

GH- GH+ MS- MS+ s.e.d F A Int. 

Rumen pH 6.19 6.25 6.00 5.84 0.094 <.001 0.470 0.113 

1 F= main effect of forages; A = main effect of antagonists (Mo and S); Int. = interaction between 

forages and antagonists. s.e.d = standard error of difference 

 

 

Figure 4.2. Rumen pH of growing lambs fed diets based on grass haylage (GH) or maize 

silage (MS). Error bars indicate SED. 
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4.3.5. Liver mineral status 

4.3.5.1. Liver mineral concentration   

The mean liver concentration of Cu, Mo, Fe, Zn and Mn of the lambs slaughtered at the 

beginning of the experiment is present in Table 4.10  

There was no forage x antagonist interaction on liver Cu concentration (P>0.05) (Table 

4.11). Likewise, there was no effect (P>0.05) of forage type on liver Cu concentration. 

Lambs fed diets supplemented with Mo and S had a lower (P<0.05) (41.3%) liver Cu 

concentration compared with those fed unsupplemented diets, with mean values of 131 and 

223 mg/kg DM (s.e.d; 36.9) respectively.  

Liver Mo concentration was higher (P<0.05) in lambs on grass haylage compared with those 

on maize silage, with mean values of 5.1 and 4.6 mg/kg DM (s.e.d; 0.20) respectively. There 

was no effect (P>0.05) of dietary treatment on liver Fe, Zn, and Mn concentrations (P>0.05).  

 

Table 4.10. Liver mineral concentrations of (8) representative lambs slaughtering at the starting of the 
study. 

Liver minerals, 
 mg/kg DM 

Concentration (mg/kg DM) Standard Deviation 

Cu 268.4  ± 132.3 

Mo 4.9                  ± 0.5 

Fe 416.2 ± 82.7 

Zn 217.5 ± 71.0 

Mn 31.1 ± 10.5 

 

Table 4.11. Liver mineral concentrations of growing lambs fed diets based on grass haylage (GH) or 
maize silage (MS) supplemented without (-) or with (+) added Mo and S. 

Minerals, 
mg/kg DM 

Treatments Significance 

GH- GH+ MS- MS+ s.e.d F A Int. 

Cu,  192 125 255 138 52.2 0.308 0.019 0.499 

Mo,  5.5 5.2 4.7 4.5 0.28 0.018 0.937 0.301 

Fe,  508 484 580 348 171.7 0.792 0.300 0.399 

Zn,  136.8 132.9 123.9 126.3 7.71 0.085 0.895 0.565 

Mn,  47.1 30.1 34.9 32.9 7.56 0.391 0.086 0.171 

1 F= main effect of forages; A = main effect of antagonists (Mo and S); Int. = interaction between 

forages and antagonists. s.e.d = standard error of difference. 
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4.3.5.2. Whole liver mineral content 

There was no forage x antagonist interaction (P>0.05) on whole liver content of all minerals 

(Table 4.12). There was also no effect (P>0.05) of antagonists on whole liver content of Mo, 

Zn, Fe, and Mn. However, whole liver Cu content was lower in lambs supplemented with 

Mo and S compared with the lambs not receiving antagonists (P<0.05). Forage type had no 

effect (P>0.05) on whole liver Fe and Mn content. Lambs fed maize silage had a higher 

whole liver Cu, Mo, and Zn content compared with the lambs fed grass haylage (P<0.05). 

 

Table 4.12. Whole liver minerals content1 of growing lambs fed diets based on forages grass haylage 
(GH) or maize silage (MS) supplemented without (-) or with (+) added S and Mo and S1.  

Minerals, 

mg/liver 

 Treatment Significance2 

 GH- GH+ MS- MS+ s.e.d F A Int. 

Cu,  19.5 11.5 32.9 17.0 5.76 0.028 0.007 0.337 

Mo,  0.51 0.50 0.60 0.62 0.071 0.039 0.934 0.788 

Fe,  50.0 47.6 72.5 45.7 20.39 0.482 0.320 0.408 

Zn,  13.8 12.9 15.9 16.9 1.65 0.013 0.990 0.418 

Mn,  4.7 2.9 4.5 4.3 0.83 0.310 0.097 0.198 

1 whole liver mineral content = final whole liver weight x final liver DM x final liver Cu concentration 

(mg/kg DM). 

2 F= main effect of forages; A = main effect of antagonists (Mo and S); Int. = interaction between 

forages and antagonists. s.e.d = standard error of difference 
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4.3.5.3. Whole liver mineral retention 

There was no forage x antagonist interaction on whole liver retention (P>0.05) for all 

minerals (Table 4.13). Compared to the total liver Cu content in the initial slaughter group, 

lambs fed the grass haylage had a lower whole liver Cu retention compared with those fed 

maize silage diet, with mean values of -0.12 and 0.02 mg/d respectively. Lambs fed diets 

unsupplemented with antagonists had a higher whole liver Cu retention than those fed diets 

supplemented with antagonists, with mean values of 0.03 and -0.14 mg/d respectively. 

There was no effect of antagonists on whole liver retention of Mo, Fe, Zn and Mn (P>0.05). 

There was no effect of forage type on whole liver Fe and Mn retention (P>0.05). However, 

there was an effect (P<0.05) of forage type on liver Mo, and Zn retention, which was higher 

(P<0.05) in lambs fed maize silage compared with those fed grass haylage. 

 

Table 4.13. Liver minerals retention1 of growing lambs fed diets based on grass haylage (GH) or maize 
silage (MS) supplemented without (-) or with (+) added S and Mo and S. 

Minerals,  
mg/d 

Treatment Significance2 

GH- GH+ MS- MS+ s.e.d F A Int. 

Cu,  -0.06 -0.18 0.13 -0.10 0.082 0.028 0.007 0.337 

Mo, µg/d 1.09 0.96 2.45 2.70 1.008 0.039 0.934 0.788 

Fe,  0.20 0.17 0.53 0.14 0.291 0.482 0.320 0.408 

Zn,  -0.07 -0.09 -0.04 -0.03 0.024 0.013 0.990 0.418 

Mn, µg/d 27.9 2.4 25.6 22.2 11.88 0.310 0.097 0.198 

1 liver minerals retention were calculated by substracting whole liver mineral content at day zero from 
final whole liver Cu content divided by whole study period (days). 

2 F= main effect of forages; A = main effect of antagonists (Mo and S); Int. = interaction between 
forages and antagonists. s.e.d = standard error of difference 
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4.3.6. The mean of plasma mineral profile, Cu-mediated enzymes, and haematology 

profile 

There was no forage type x antagonist interaction (P>0.05) on the mean Pl-Cu 

concentration (Table 4.14). There was also no effect (P>0.05) of forage type on the mean 

Pl-Cu concentration. However, the mean Pl-Cu concentration was higher in lambs fed diets 

unsupplemeted with antagonists compared with those fed diets supplemented with 

antagonists. There was a forage x antagonist interaction (P<0.001) on the mean Pl-Mo 

concentration, where the addition of antagonists in lambs fed grass haylage resulted in an 

increase (P<0.05) in the mean Pl-Mo concentration compared with the lambs fed grass 

haylage unsupplemented with antagonists. However, the addition of antagonists had no 

effect (P>0.05) on the mean Pl-Mo concentration in lambs fed the maize silage diet. The 

mean Pl-Fe and Zn concentrations were not affected by dietary treatment (P>0.05). 

There was no effect of forage x antagonist interaction, or forage type on the mean Cp 

activity. Lambs fed diets supplemeted with Mo and S had a lower (P<0.05) mean Cp activity 

compared with thosed fed diets unsupplemented with antagonists. No effect of dietary 

treatment was observed on the mean Cp:Pl-Cu ratio (P>0.05). The mean SOD activity also 

was not affected by dietary treatment (P>0.05). No effect was observed of dietary treatment 

on the mean of Hct (%), Hb concentration, or WBC counts (P>0.05). Lambs fed grass 

haylage has a higher RBC count compared to those fed maize silage (P<0.05). 

 

Table 4.14. Effect of forage type grass haylage (GH) and maize silage (MS) fed without (-) or with (+) 
added Mo and S on mean indicators of blood Cu status over the study period of lambs1. 

Items 
Treatments Significance 

GH- GH+ MS- MS+ s.e.d F A Int. 

Cu, µmol/L 15.1 13.5 15.1 12.8 1.542 0.637 0.015 0.673 

Mo, µmol/L 0.16 0.41 0.21 0.19 0.040 <.001 <.001 <.001 

Fe, µmol/L 46.0 44.7 46.6 46.6 6.11 0.572 0.790 0.765 

Zn, µmol/L 9.3 9.4 9.6 8.9 0.8628 0.799 0.321 0.143 

Cp, mg/dL 10.9 8.7 10.6 9.1 1.48 0.937 0.012 0.575 

Cp:Pl-Cu 0.73 0.66 0.70 0.68 0.075 0.999 0.058 0.310 

SOD, U/g of Hb 1836 1891 1880 1763 213.3 0.750 0.811 0.515 

Hct, % 37.2 39.2 37.5 37.1 1.31 0.257 0.277 0.126 

Hb, g/dL 13.0 13.6 13.0 13.1 0.40 0.296 0.171 0.182 

RBC, 106/mm3 13.5 13.7 12.8 12.7 0.42 0.004 0.969 0.619 

WBC,103/mm3 9.0 7.9 8.5 9.1 0.66 0.547 0.633 0.143 
1 week 0 values were used as a covariate where appropriate. 

2 SOD= superoxide dismutase activity; Hct- haematocrit; Hb= haemoglobin; RBC= red blood cells; 
WBC= white blood cells. 

3 F= main effect of forages; A = main effect of antagonists (Mo and S); Int. = interaction between 
forages and antagonists. s.e.d = standard error of difference. 
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4.3.7. Plasma mineral concentrations  

4.3.7.1. Plasma copper concentration 

There was an effect (P<0.001) of time on Pl-Cu concentration, with plasma levels declining 

over the period of the study. However, there was no effect (P>0.05) of time x treatment 

interaction on Pl-Cu concentration. 

There was no forage x antagonist interaction (P>0.05) on Pl-Cu concentration at any weekly 

time points (Table 4.15). Similarly, there was no effect of forage type on Pl-Cu concentration 

(P>0.05) at any weekly time points. However, during weeks 3, 8, and 10 lambs fed diets 

supplemented with Mo and S had a lower (P<0.05) Pl-Cu concentration compared with the 

lambs fed diet no added Mo and S. There was also a trend (P<0.1) for supplemented with 

antagonists lambs to have a lower Pl-Cu on all other dates. 

 

Table 4.15. Plasma copper concentration of growing lambs fed diets based on forages grass haylage 
(GH) or maize silage (MS) supplemented without (-) or with (+) added S and Mo and S (µmol/L)1. 

Week 
Treatment Significance2 

GH- GH+ MS- MS+ s.e.d F A Int. 

0 19.1 20.5 19.1 17.3 1.58 0.154 0.862 0.176 

1 20.7 19.7 21.4 17.1 2.19 0.539 0.096 0.299 

2 17.7 16.8 19.5 15.2 1.97 0.934 0.071 0.226 

3 15.5 13.6 15.6 13.6 1.29 0.925 0.038 0.916 

4 15.3 12.4 14.6 13.0 1.65 0.925 0.065 0.571 

5 14.0 11.9 14.2 12.6 1.35 0.657 0.060 0.773 

6 13.0 11.3 13.9 11.6 1.51 0.620 0.069 0.778 

7 12.1 10.8 12.7 10.6 1.23 0.795 0.069 0.669 

8 12.5 10.8 12.4 10.3 0.93 0.648 0.006 0.716 

9 13.1 11.0 11.6 9.7 1.44 0.180 0.066 0.912 

10 13.5 9.7 11.3 9.8 1.63 0.355 0.029 0.317 
1 F= main effect of forages; A = main effect of antagonists (Mo and S); Int. = interaction between 
forages and antagonists. 

2 individual weekly data have been analysed by ANOVA, but caution should be exercised when 

interpreting individual means when the time x forage, time x antagonist, or time x forage x antagonist 
interaction is not significant. 

 

 

 

 

Repeated measures: s.e.d P-value 

 Time effect 0.58 <.001 

 Time x Forage effect 0.76 0.480 

 Time x Antagonist effect 0.76 0.553 

 Time x Forage x Antagonist effect 1.09 0.260 
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4.3.7.2. Plasma molybdenum concentration  

There was an effect (P<0.001) of time on Pl-Mo concentration, which increased at week 1 

and then fluctuated. There was also a time x treatment interaction on Pl-Mo concentration 

(P<0.05). 

There was a forage x antagonist interaction (P<0.001) on Pl-Mo concentration from week 2 

until week 10 (Table 4.16). Lambs fed grass haylage supplemented with Mo and S had a 

higher Pl-Mo levels compared with all other groups from week (P<0.001). The 

unsupplemented lambs fed grass haylage had the lowest Pl-Mo concentration on weeks 2, 

3, 4, 5, 6, 8, and 10 compared with both groups fed maize silage unsupplemented Mo and 

S and grass haylage fed lambs supplemented with Mo and S.  

 

Table 4.16. Plasma molybdenum concentration of growing lambs fed diets based on forages grass 
haylage (GH) or maize silage (MS) supplemented without (-) or with (+) added S and Mo and S 
(µmol/L)1. 

Week 
Treatment2 Significance3 

GH- GH+ MS- MS+ s.e.d F A Int. 

0 0.25 0.20 0.19 0.19 0.046 0.360 0.524 0.502 

1 0.29 0.35 0.35 0.25 0.061 0.624 0.608 0.079 

2 0.15a 0.56c 0.26b 0.24b 0.041 0.001 <.001 <.001 

3 0.11a 0.47c 0.20b 0.20b 0.040 0.004 <.001 <.001 

4 0.14a 0.61b 0.20a 0.24a 0.054 <.001 <.001 <.001 

5 0.10a 0.43c 0.29b 0.20ab 0.053 0.471 0.003 <.001 

6 0.12a 0.44c 0.20a 0.20a 0.027 <.001 <.001 <.001 

7 0.22a 0.35b 0.20a 0.17a 0.029 <.001 0.018 <.001 

8 0.13a 0.35b 0.15a 0.16a 0.021 <.001 <.001 <.001 

9 0.17a 0.44b 0.15a 0.15a 0.032 <.001 <.001 <.001 

10 0.10a 0.36c 0.12ab 0.15b 0.026 <.001 <.001 <.001 
1 F= main effect of forages; A = main effect of antagonists (Mo and S); Int. = interaction between 
forages and antagonists. s.e.d = standard error of difference. 

2 a,b,c Means within a row with different superscripts are significantly different at (P<0.05). 

3 individual weekly data have been analysed by ANOVA, but caution should be exercised when 

interpreting individual means when the time x forage, time x antagonist, or time x forage x antagonist 

interaction is not significant. 

Repeated measures: s.e.d P-value 

 Time effect 0.018 <.001 

 Time x Forage effect 0.016 0.007 

 Time x Antagonist effect 0.016 <.001 

 Time x Forage x Antagonist effect 0.029 <.001 
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4.3.7.3. Plasma iron concentration 

There was an effect (P<0.001) of time on Pl-Fe concentration (Fig. 4.3). However, there 

was no effect of time x treatment interaction on Pl-Fe concentration (P>0.05).  

There was no effect (P>0.05) of dietary treatment on Pl-Fe concentration at any weekly time  

 

Figure 4.3. Plasma iron concentration of growing lambs fed diet based on grass haylage 

(GH) and maize silage (MS) supplemented without (-) or with Mo and S (µmol/L). Error bars 

indicate SED. Individual weekly data have been analysed by ANOVA, but caution should be 

exercised when interpreting individual means when the time x forage, time x antagonist, or time x 

forage x antagonist interaction is not significant. 

 

Repeated measures: s.e.d P-value 

 Time effect 2.74 <.001 

 Time x Forage effect 2.24 0.816 

 Time x Antagonist effect 2.24 0.842 

 Time x Forage x Antagonist effect 4.32 0.422 
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4.3.7.4. Plasma zinc concentration  

There was an effect (P<0.05) of time on Pl-Zn concentration (Fig. 4.4). There was no effect 

of time x treatment interaction on Pl-Zn concentration (P>0.05).  

There was no effect (P>0.05) of dietary treatment on Pl-Zn concentration throughout the 

study. 

 

Figure 4.4. Plasma zinc concentration of growing lambs fed diet based on grass haylage 

(GH) and maize silage (MS) supplemented without (-) or with Mo and S (µmol/L). Error bars 

indicate SED. Individual weekly data have been analysed by ANOVA, but caution should be 

exercised when interpreting individual means when the time x forage, time x antagonist, or time x 

forage x antagonist interaction is not significant. 

 

Repeated measures: s.e.d P-value 

 Time effect 0.40 0.012 

 Time x Forage effect 0.29 0.444 

 Time x Antagonist effect 0.29 0.612 

 Time x Forage x Antagonist effect 0.61 0.283 

 

 

 

6

7

8

9

10

11

12

13

0 1 2 3 4 5 6 7 8 9 10

P
la

s
m

a
 Z

n
 c

o
n

c
e

n
tr

a
ti
o

n
 (

µ
m

o
l/
L

)

Weeks

GH-

GH+

MS-

MS+



89 
 

4.3.8. Ceruloplasmin activity  

There was an effect (P<0.001) of time on Cp activity, with Cp activity decreasing over a 

period of the study (Table 4.17). There was no time x treatment interaction (P>0.05) on Cp 

activity.  

At week 1, there was an interaction (P<0.05) between forage type and antagonists on Cp 

activity. The highest Cp activity was in lambs fed maize silage unsupplemented with 

antagonists compared with lambs fed any of the other diets. At week 9, there was also a 

forage x antagonist interaction (P<0.05) on Cp activity. The addition of antagonists reduced 

Cp activity in lambs fed grass haylage compared with the lambs fed grass haylage diet 

unsupplemented with antagonists, while there was no difference (P>0.05) in Cp activity in 

lambs fed maize silage diets unsupplemented or supplemented with antagonists. There was 

no effect (P>0.05) of forage type on Cp activity at any weekly time points. However, during 

week 3, 4, 7 until 9 lambs fed diets supplemented with Mo and S had a lower Cp activity 

compared with lambs not receiving antagonists (P<0.05). 

 

Table 4.17. Ceruloplasmin activity of growing lambs fed diets based on forages grass haylage (GH) 
or maize silage (MS) supplemented without (-) or with (+) added S and Mo and S(mg/dL)1. 

Week 
Treatment2 Significance3 

GH- GH+ MS- MS+ s.e.d F A Int. 

0 15.4 12.6 13.6 12.1 2.04 0.441 0.149 0.641 

1 11.4a 13.2ab 14.4b 11.6a 1.33 0.479 0.559 0.020 

2 10.2 9.6 10.4 9.0 1.50 0.867 0.345 0.713 

3 11.9 7.9 10.7 8.6 1.21 0.819 0.002 0.289 

4 10.6 8.1 10.0 7.5 1.27 0.549 0.010 0.993 

5 11.1 7.6 10.7 10.8 1.44 0.178 0.104 0.090 

6 11.2 6.5 9.9 7.2 2.61 0.864 0.054 0.602 

7 8.5 6.2 8.5 6.8 1.28 0.737 0.035 0.788 

8 9.9 8.1 9.9 7.9 1.03 0.895 0.013 0.880 

9 10.8b 7.8a 9.9b 9.6A 0.81 0.597 0.016 0.016 

10 7.5 6.3 6.1 5.9 1.06 0.251 0.326 0.478 
1 F= main effect of forages; A = main effect of antagonists (Mo and S); Int. = interaction between 
forages and antagonists. s.e.d = standard error of difference. 

2 a,b Means within a row with different superscripts are significantly different at (P<0.05). 

3 individual weekly data have been analysed by ANOVA, but caution should be exercised when 

interpreting individual means when the time x forage, time x antagonist, or time x forage x antagonist 
interaction is not significant. 

 

Repeated measures: s.e.d P-value 

 Time effect 0.60 <.001 

 Time x Forage effect 0.67 0.507 

 Time x Antagonist effect 0.67 0.249 

 Time x Forage x Antagonist effect 1.05 0.141 
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4.3.9. Ceruloplasmin to plasma copper ratio  

There was an effect of time on Cp:Pl-Cu ratio (P<0.001), with Cp:Pl-Cu ratio declining at 

week two and then fluctuated (Table 4.18). There was a time x antagonist interaction on 

Cp:Pl-Cu ratio (P<0.05). There was also a trend (P=0.092) for a time x forage type x 

antagonist interaction on Cp:Pl-Cu ratio. However, there was no time x forage type 

interaction on Cp:Pl-Cu ratio (P>0.05). 

There was no forage x antagonist interaction (P>0.05) on Cp:Pl-Cu ratio an any weekly time 

points. There was also no effect of forage type on Cp:Pl-Cu ratio (P>0.05). However, there 

was an effect (P<0.05) of antagonists on Cp:Pl-Cu ratio at week 3, when lambs fed diet 

supplemented with Mo and S had lower Cp:Pl-Cu ratio compared with those had diet no 

added Mo and S, with the mean values of 0.75 and 0.77 (s.e.d, 0.101) respectively. 

 

Table 4.18. Ceruloplasmin to plasma copper ratio of growing lambs fed diets based on forages grass 
haylage (GH) or maize silage (MS) supplemented without (-) or with (+) Mo and S1. 

Week 
Treatment2 Significance3 

GH- GH+ MS- MS+ s.e.d F A Int. 

0 0.81 0.60 0.70 0.69 0.084 0.861 0.083 0.123 

1 0.62 0.64 0.69 0.68 0.064 0.235 0.913 0.701 

2 0.56 0.58 0.54 0.59 0.079 0.880 0.474 0.846 

3 0.76 0.59 0.70 0.62 0.059 0.764 0.007 0.297 

4 0.69 0.65 0.70 0.57 0.067 0.491 0.065 0.346 

5 0.77 0.66 0.76 0.85 0.068 0.071 0.978 0.050 

6 0.75 0.65 0.67 0.59 0.092 0.288 0.177 0.845 

7 0.63 0.59 0.63 0.60 0.059 0.856 0.471 0.860 

8 0.79 0.74 0.80 0.71 0.060 0.716 0.108 0.607 

9 0.89 0.81 0.85 0.89 0.103 0.787 0.782 0.412 

10 0.70 0.83 0.71 0.73 0.075 0.434 0.179 0.352 
1 week zero was used as a covariate. 

2 F= main effect of forages; A = main effect of antagonists (Mo and S); Int. = interaction between 
forages and antagonists. s.e.d = standard error of difference. 

3 individual weekly data have been analysed by ANOVA, but caution should be exercised when 

interpreting individual means when the time x forage, time x antagonist, or time x forage x antagonist 
interaction is not significant. 

 

Repeated measures: s.e.d P-value 

 Time effect 0.035 <.001 

 Time x Forage effect 0.023 0.607 

 Time x Antagonist effect 0.023 0.032 

 Time x Forage x Antagonist effect 0.053 0.150 
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4.3.10. Superoxide dismutase activity  

There was an effect of time on whole blood SOD activity (P<0.001) (Table 4.19). However, 

there was no effect (P>0.05) of time x treatment interaction on SOD activity. 

 

There was also no effect (P>0.05) of dietary treatment on SOD activity of the lambs 

throughout the study. 

 

Table 4.19. Superoxide dismutase activity in growing fed diets based on grass haylage (GH) or maize 
silage (MS) supplemented without (-) or with (+) Mo and S (U/g of Hb)1. 

Week 
Treatment Significance2 

GH- GH+ MS- MS+ s.e.d F A Int. 

0 2320 2475 2320 2243 255.3 0.527 0.830 0.526 

4 1691 1859 1864 1719 166.0 0.889 0.922 0.193 

8 1602 1586 1618 1469 201.0 0.724 0.564 0.642 

10 1836 1639 1730 1588 217.9 0.616 0.281 0.858 

1 F= main effect of forages; A = main effect of antagonists (Mo and S); Int. = interaction between 

forages and antagonists. s.e.d = standard error of difference. 

2 individual weekly data have been analysed by ANOVA, but caution should be exercised when 

interpreting individual means when the time x forage, time x antagonist, or time x forage x antagonist 
interaction is not significant. 

 

Repeated measures: s.e.d P-value 

 Time effect 62.4 <.001 

 Time x Forage effect 130.0 0.716 

 Time x Antagonist effect 130.0 0.663 

 Time x Forage x Antagonist effect 150.8 0.486 
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4.3.11. Haematology parameters 

4.3.11.1. Haematocrit  

There was a trend for the effect (P<0.1) of time on Hct level (Table 4.20). There was also 

an effect of time x forage type interaction on Haematocrit (%) (P<0.05). However, there was 

no time x forage type x antagonists, or time x antagonist interaction on Hct (%) (P>0.05). 

There was no forage x antagonist interaction on Hct level during the period of the study 

(P>0.05). At week 10, lambs supplemented with Mo and S had a lower (P<0.05) Hct (%) 

compared with lambs receiving no supplemented Mo and S, with the mean value of 37.63 

and 39.30 % respectively. 

 

Table 4.20. Haematocrit (%) in growing fed diets based on grass haylage (GH) or maize silage (MS) 
supplemented without (-) or with (+) Mo and S1.  

Week 
Treatment Significance2 

GH- GH+ MS- MS+ s.e.d F A Int. 

4 35.94 37.69 38.56 37.14 1.603 0.369 0.885 0.173 

8 38.7 39.9 35.87 35.76 1.276 <.001 0.551 0.474 

10 37.24 40.13 38.02 38.46 0.935 0.505 0.018 0.076 

1 F= main effect of forages; A = main effect of antagonists (Mo and S); Int. = interaction between 
forages and antagonists. s.e.d = standard error of difference. 

2 individual weekly data have been analysed by ANOVA, but caution should be exercised when 

interpreting individual means when the time x forage, time x antagonist, or time x forage x antagonist 
interaction is not significant. 

 

Repeated measures: s.e.d P-value 

 Time effect 0.437 0.053 

 Time x Forage effect 0.775 <.001 

 Time x Antagonist effect 0.775 0.132 

 Time x Forage x Antagonist effect 0.925 0.525 
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4.3.11.2. Haemoglobin concentration 

There was an effect (P<0.001) of time on haemoglobin concentration, with concentration 

rising by the end of the study (Table 4.21). There was also a time x forage type interaction 

on Hb concentration (P<0.001). However, there was no time x antagonist interaction, or 

time x forage type x antagonist interaction on Hb concentration (P>0.05). 

There was no forage x antagonist interaction on blood Hb concentration at any weekly time 

points (P>0.05). There was also no effect (P>0.05) of antagonists on blood Hb 

concentration. At week 8, the grass haylage fed lambs had a higher (P<0.05) blood Hb 

concentration compared with the maize silage fed lambs. At week 10, there was also a trend 

(P<0.1) for higher Hb concentration in lambs fed grass haylage compared with the lambs 

fed maize silage. 

 

Table 4.21. Haemoglobin concentration in growing fed diets based on grass haylage (GH) or maize 
silage (MS) supplemented without (-) or with (+) Mo and S (g/dL)1.  

Week 
Treatment Significance2 

GH- GH+ MS- MS+ s.e.d F A Int. 

0 11.12 11.88 11.80 11.61 0.446 0.517 0.377 0.146 

4 13.14 13.65 13.22 13.65 0.457 0.902 0.157 0.902 

8 13.63 14.08 13.05 12.88 0.359 0.002 0.586 0.233 

10 14.08 15 14.11 14.10 0.357 0.097 0.084 0.078 

1 F= main effect of forages; A = main effect of antagonists (Mo and S); Int. = interaction between 

forages and antagonists. s.e.d = standard error of difference. 

2 individual weekly data have been analysed by ANOVA, but caution should be exercised when 

interpreting individual means when the time x forage, time x antagonist, or time x forage x antagonist 

interaction is not significant. 

 

 

 

 

 

 

 

 

 

Repeated measures: s.e.d P-value 

 Time effect 0.135 <.001 

 Time x Forage effect 0.233 <.001 

 Time x Antagonist effect 0.233 0.438 

 Time x Forage x Antagonist effect 0.286 0.344 
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4.3.11.3. Red blood cell counts 

There was no effect (P>0.05) of time on RBC counts (Table 4.22). However, there was an 

effect of time x forage type interaction on the RBC counts (P<0.001). There was no effect 

of time x forage type x antagonist interaction on RBC counts (P>0.05). 

There was no forage x antagonist interaction on RBC counts throughout the study (P>0.05). 

However, at week 8, the GH fed lambs had a higher (P<0.001) RBC counts compared with 

the MS fed lambs (13.8 and 12.5 106/mm3; s.e.d., 0.28 respectively). At week 10, lambs fed 

diets supplemented with Mo and S had a higher (P<0.05) RBC counts compared with those 

not receiving the antagonists (13.7 and 13.1 106/mm3; s.e.d, 0.24) respectively.   

 

Table 4.22. Red blood cell counts in growing fed diets based on grass haylage (GH) or maize silage 
(MS) supplemented without (-) or with (+) Mo and S (106/mm3)1. 

Week 
Treatment Significance2 

GH- GH+ MS- MS+ s.e.d F A Int. 

4 13.14 13.29 13.41 13.11 0.448 0.891 0.824 0.484 

8 13.70 13.83 12.53 12.50 0.395 <.001 0.858 0.770 

10 13.11 13.96 13.17 13.42 0.34 0.335 0.031 0.224 

1 F= main effect of forages; A = main effect of antagonists (Mo and S); Int. = interaction between 

forages and antagonists. s.e.d = standard error of difference. 

2 individual weekly data have been analysed by ANOVA, but caution should be exercised when 

interpreting individual means when the time x forage, time x antagonist, or time x forage x antagonist 

interaction is not significant. 

 

Repeated measures: s.e.d P-value 

 Time effect 0.121 0.518 

 Time x Forage effect 0.258 <.001 

 Time x Antagonist effect 0.258 0.684 

 Time x Forage x Antagonist effect 0.294 0.633 
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4.3.11.4. White blood cell counts 

There was an effect (P<0.001) of time on WBC counts (Table 4.23). However, there was 

no time x treatment interaction on WBC counts (P>0.05). 

There was no effect of dietary treatment on WBC counts throughout the study (P>0.05). 

 

Table 4.23. white blood cell counts in growing fed diets based on grass haylage (GH) or maize silage 
(MS) supplemented without (-) or with (+) Mo and S (103/mm3)1. 

Week 
Treatment Significance2 

GH- GH+ MS- MS+ s.e.d F A Int. 

4 9.47 8.99 9.04 9.29 0.894 0.917 0.856 0.565 

8 8.22 7.32 7.56 8.38 0.835 0.740 0.944 0.155 

10 9.60 7.32 8.90 9.58 1.100 0.327 0.312 0.068 

1 F= main effect of forages; A = main effect of antagonists (Mo and S); Int. = interaction between 

forages and antagonists. s.e.d = standard error of difference. 

2 individual weekly data have been analysed by ANOVA, but caution should be exercised when 

interpreting individual means when the time x forage, time x antagonist, or time x foragex antagonist 

interaction is not significant. 

 

Repeated measures: s.e.d P-value 

 Time effect 0.294 <.001 

 Time x Forage effect 0.570 0.237 

 Time x Antagonist effect 0.570 0.480 

 Time x Forage x Antagonist effect 0.664 0.255 
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4.4. Discussion 

In the current study, DLWG in growing lambs on either forage were lower than the 200 g/d 

as predicted by AFRC (1993), particularly in lambs offered GH. The low DLWG in GH and 

MS fed lambs may be related to the lower DMI by lambs than predicted (1 kg DM/d) 

according to AFRC (1993) to support a weight gain of 200 g/d. As in Chapter 3, Texel cross 

lambs fed MS had a DLWG (0.195 g/d) that was close to 200 g/d when lambs consumed 

0.95 kg DM/d. In addition, the breed difference between Chapters 3 and 4 in terms of DLWG 

may be contribut to the difference in DLWG, as breed effect is not accounted for in prediction 

equation by AFRC (1993). In the currents study, lambs offered the MS diet were heavier 

compared to those offered GH. However, DMI in the GH fed lambs was greater compared 

to MS. Similar results were observed in Chapter 3, where the MS fed lambs were heavier 

compared with the DGP fed lambs. Shavers et al. (1985) also showed that cows offered 

MS had a higher daily gain compared with those offered alfalfa haylage. Similarly, Coblentz 

et al. (2015) showed a significant (16%) reduction in average daily gain of cows after 

inclusion of alfalfa haylage at a rate of 33.3% into the diet contained of maize silage 55.8% 

and Alfalfa haylage 44.2%. Coblentz et al. (2015) also reported an increase in NDF 

concentration by the inclusion of haylage. The lower weight gain by GH fed lambs may be 

associated with its higher NDF content than MS (656 vs. 381 mg/kg DM), which results in  

poor forage quality of GH and reduce organic matter digestibility and dietary energy intake 

(Salinas-Chavira et al., 2013). 

 

Similar to the results in Chapter 3, in the current study, dietary Mo and S had no effect on 

lamb performance and also produced no clinical symptoms of Cu deficiency, confirming 

findings of other authors who reported that dietary antagonists had no significant effect of 

lambs performance (Williams, 2004; Suttle, 2012; Sefdeen et al., 2016) or produce any 

clinical symptoms (Wentink et al., 1999; Knowles et al., 2000; Sefdeen et al., 2016).  

 

Rumen pH was higher in lambs offered GH compared to MS. This effect may be due to the 

higher buffering capacity in the GH, which was found to be 1.6 time as high as that in maize 

silage (Shaver et al., 1985). The high NDF content in the GH compared with MS possibily 

also attributed to an elevated rumen pH in growing lambs though producing less VFA, or 

provision of salivary buffers as a result of increased chewing time (Yang and Beauchemin, 

2007; Jalili et al., 2012). Moreover, GH feed particles were longer than MS, and diets with 

long particle size has been shown to result in animals spending more time chewing and 

ruminating, and increases saliva production, which in turn elevates rumen pH (Ørskov, 

1987). Kmicikewycz et al. (2015) reported that cows that consumed a long particle size of 
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maize silage had a higher rumen pH compared to those fed short particle size maize silage. 

Therefore, the combination of effects of forage particle length and the NDF content in the 

diet may have caused a significant impact on ruminal pH through the excretion of salivary 

buffers and increased rumen pH (Jalili et al., 2012; Kmicikewycz et al., 2015). 

 

Final liver Cu concentration of lambs whether receiving or not receiving additional Mo and 

S were 131 and 223 mg/kg DM respectively. These are well in excess of the 20 mg/kg DM 

considered to be marginal for Cu deficiency (Suttle, 2010). Compared to the whole liver Cu 

content in the initial slaughter group, all lambs had decreased levels which had a net 

negative retention, except lambs fed the maize silage diet unsupplemented with antagonists 

showing a positive retention and gained 0.13 mg/kg DM per day. This implies that 

approximately 11 mg Cu/kg DM was not sufficient to maintain liver Cu status over a period 

of 10 weeks study in Swaledale growing lambs on GH supplemented without or with 

antagonists, or MS supplemented with antagonists. Liver Cu status in the present study was 

higher in lambs fed MS than GH. Suttle (1980a) showed that the availability of Cu for 

absorption in the dried forages was higher compared with silages, although the reasons for 

this effect were unknown (Suttle, 1983a). Sinclair et al. (2017) reported that cows offered 

MS diet had higher liver Cu concentration compared with those offered GS diet (511 and 

424 mg/kg DM) respectively, and they also reported no reasons for this difference. 

Moreover, in a study that investigated the effect of floor type on Cu metabolism in lambs, 

Crosby et al. (2004) reported that liver Cu concentration was higher in lambs housed on 

expanded floor compared with those housed on straw-bedded floor (226 and 191 mg/kg 

DM; s.e.d, 12.9) respectively. They hypothesised that the lower liver Cu concentration in 

straw-bedded lambs was possibly associated with the lower rumen acidity caused by eating 

straw elevating rumination and salivation. The consequence of this was reduction in overall 

digestibility, which in turn, promoted sulfide-reducing ciliate protozoa that reduced sulfur to 

sulfide and hence decreased Cu availability. Therefore, the difference in liver Cu status 

between forages in the current study was possibily associated with low feed quality and 

feed digestibility in GH and higher rumen pH by GH. Similarly, in Chapter 3, the higher liver 

Cu status was coupled with lower rumen pH in the lambs fed dried grass pellets compared 

with lambs fed MS diet. 

 

Dietary antagonists in the present study resulted in a dramatic reduction in liver Cu 

concentration by 41.3% similar to the predicted (50%) reduction in Cu availability by the 

inclusion of 5 mg Mo/kg DM and 4 g s/kg DM using the equation of Suttle and Maclachlun 

(1976). The reduction of liver Cu status in the present study by the addition of Mo and S is 
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in accordance with the results of Chapter 3 and results that reported by Williams (2004), 

Cosby et al. (2004), Al-Kirshi et al. (2011) and Acharya et al. (2016) in sheep, and Sinclair 

et al. (2017) in cows. This is effect is due to the antagonist effect of Mo as molybdate which 

interacts with sulfide in the rumen producing thiomolybdates that have a high affinity to 

complexes which are Cu, forming insoluble Cu-TM complex and excreted via faeces (Dick 

et al., 1976). As a consequence, liver Cu concentration is depleted in order to meet tissue 

demand (Robinson et al., 1987; Suttle, 2010). Alternative hypothesis for liver Cu depletion 

due to the inclusion of Mo and S may be related to the systemic effect of absorbed 

thiomolybdates, which possibly reduce liver Cu concentration either directly by sequestering 

Cu from hepatocytes increasing Cu excretion (Gooneratne, 2012), or indirectly due to 

thiomolybdate binding with Cu with such strong affinity with Cu in the Cp protein which is 

not recycled back to liver and broken down, and as such half-life (2-3 d; Linder, 1991) of Cp 

may be altered, resulting in a reduction in liver Cu concentration (Williams, 2004). The 

results from the current study clearly indicated that inclusion of Cu antagonists significantly 

reduced Cp activity and Pl-Cu concentration compared to unsupplemented lambs. The 

reason for the observed reduction in the blood Cu was not clear whether it is arisen from 

direct effect of rumen thiomolybdates or systemic effects. Nevertheless, the reduction in Pl-

Cu concentration and Cp activity due to Cu antagonists have been attributed to the direct 

effects of rumen thiomolybdates that cause a reduction in utilisation of dietary Cu (Suttle 

and Field, 1968; Zhou et al., 2016).  

 

Robinson et al. (1987) observed that additional Mo at approximately 5 mg/kg DM into lambs 

diet that contained approximately 4 g/kg DM of S significantly decreased liver Cu 

concentration, Cp activity, and Pl-Cu concentration. The adverse effects of antagonists on 

liver Cu status has been attributed to the physiological rumen CuxMoxS interactions, 

resulting in decrease Cu availability. In the same study when the addition of dietary Mo was 

increased to 11 mg/kg DM a similar effect of antagonists was observed, but Pl-Cu 

concentration was increased. Robinson et al. (1987) suggested that the reduction in liver 

Cu status and Cp activity that accompanied increase Pl-Cu concentration may be due to 

the combined gut and systemic effects of absorbed thiomolybdates. Moreover, Williams 

(2004) attributed the reduction in Cp activity and increased Pl-Cu concentration, which was 

mirrored by reduction in liver Cu concentration, to systemic effect of thiomolybdate in sheep 

fed a diet that had a Cu:Mo ratio 1:1 or 1:2. Similarly, Mackenzie et al. (2008) demonstrated 

that offering a diet, with Cu:Mo ratio 1:1, to growing lambs resulted in a significant reduction 

in Cp activity and increased Pl-Cu concentration, but the effect of additional Mo was not at 

the Cp gene expression level. Suttle (2010) and Sinclair et al. (2017) suggested that dietary 

Cu:Mo ratio (1:1) is required for TM to be absorbed from the rumen into the blood stream 

and cause a systemic effect of impairment of Cu-containing enzymes. In the current study, 
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the dietary Cu:Mo ratio was reduced by supplementation molybdenum in both diets from 

approximately 7.3:1 to 2.2 :1, which was greater than 1.0. 

 

The use of Cp:Pl-Cu ratio rather than Pl-Cu concentration or Cp activity has been proposed 

to be more beneficial for the detection absorbed thiomolybdate in ruminants due to high 

dietary Mo and S (Mackenzie et al., 2001). In the present study, Pl-Mo concentration was 

significantly increased following the addition of antagonists, but Cp:Pl-Cu ratio was not 

affected by dietary treatment. However, Cp:Pl-Cu ratio in both added or no added 

antagonists groups were lower than threshold 1.5 regarded as indicative of the presence of 

TM in the blood (Kendall et al., 2000; Telfer et al., 2004). This result is in consistent with the 

results of Sinclair et al. (2017) who reported that addition of Mo and S resulted in a 

significant increase in Pl-Mo concentration without having an impact on Cp:Pl-Cu ratio. In 

contrast, Williams (2004) and Mackenzie et al. (2008) reported that Cp:Pl-Cu ratio was 

significantly reduced by the inclusion of Mo and S and the reason for this effect has been 

linked with the systemic effect of absorbed thiomolybdates. Therefore, the antagonist 

effects of Mo and S on liver and blood parameters in the present study may be related to 

the direct effect of the rumen thiomolybdate on Cu absorption, but the systemic effect of 

absorbed thiomolybdate was not clear.  

 

In the present study, the Cu status blood parameters such as Pl-Cu concentration, Cp 

activity, and Cp:Pl-Cu ratio were analysed to determine the antagonist effect on Cu status. 

The mean Pl-Cu concentration in the present study were 14.1 µmol/L, which is well above 

8 - 9.4 µmol/L, regarded to be marginal for Cu deficiency (Kendall et al., 2000; Telfer et al., 

2004; Suttle, 2010), and the mean value of 3-4.5 µmol/L that has been associated with 

clinical Cu deficiency in sheep (Whitelaw et al., 1983; Woolliams et al., 1986b). Plasma Cu 

has been suggested to be maintained within a normal range during depletion or repletion 

by changes in liver Cu concentration (Laven and Livesey, 2005). In the current study, there 

was no difference in Pl-Cu concentration, or Cp activity between forages. These results are 

in accordance with the Sinclair et al. (2017) who reported that Pl-Cu concentration and Cp 

activity were not affected in dairy cows fed grass silage or maize silage diets.  

 

Molybdenum in the diet is absorbed as water-soluble molybdates (Suttle, 2010), which are 

normally stored in tissues such as liver, kidney, and adrenal gland. Molybdoprotein binds to 

sulphite oxidase in the mitochondrial membrane, and to dehydrogenase and aldehyde 

oxidase in the sytosol (Johnson, 1997). In the present study, dietary treatment had little 
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effect on liver Mo status. This results are consistent with the results of Acharya et al. (2016) 

who reported that administration of Mo 27.3 mg/d had no effect on lambs liver Mo 

concentration. Sinclair et al. (2017) observed a small effect of additional S and Mo on liver 

Mo concentration and suggested that the liver may not be a major depot of Mo in dairy cows 

and was unavailable for uptake by the liver. Therefore, the results of the present study also 

confirm that the liver is not a major depot of Mo in lambs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



101 
 

4.5. Conclusion  

The results of the current study demonstrated that additional Mo and S had no effect on 

lambs performance and feed intake. Lambs offered MS based diets were heavier compared 

with those offered GH. A dietary Cu concentration 11 mg/kg DM fed with grass haylage or 

maize silage fed to Swaledale growing lambs that had a diet containing approximately 2 mg 

Mo/kg DM and S 2 g/kg DM without or with supplemented Mo and S was not enough to 

maintain liver Cu status over a period of 10 weeks as evidenced by a net reduction in liver 

Cu retention in all lambs on all dietary treatment except lambs fed maize silage 

unsupplemented with antagonists. Liver Cu status was higher in lambs fed MS compared 

with the lambs fed GH. This was in accordance with a lower rumen pH in the MS fed lambs 

than the GH fed lambs. Liver Cu and blood Cu (including plasma Cu concentration, and 

ceruloplasmin actively) status in growing lambs were significantly reduced by inclusion Mo 

and S, and this effect was probabely due to the direct effect of rumen TM on reducing Cu 

availability rather than systemic effect of absorbed thiomolybdate. To conclude, there was 

no interaction between forage type and antagonists on liver Cu status. The higher liver Cu 

status in the MS fed lambs was possibily related to a low rumen pH in these lambs, although, 

more research is needed to elucidate the role of the rumen on Cu antagonism and the 

effects of rumen pH on Cu metabolism. 
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Chapter 5 The effects of forage type on copper distribution between rumen digesta 

fractions and the involvement of the rumen digesta fractions in the interactions 

between copper, molybdenum, and sulfur 

 

5.1. Introduction 

The availability of copper (Cu) for absorption in ruminants is not necessarily dependent on 

the mineral concentration in the diet, as the solubility of Cu in the digestive tract is also a 

prerequisite for absorption (Bremner, 1970). Copper in the rumen digesta has been found 

to be mostly (above 87%) associated with the solid phase, which includes undigested plant 

material, protozoa, and bacteria (Allen and Gawthorne, 1987; Waghorn, 1990). This 

association reduces Cu solubility and hence decreases Cu available for absorption (Price 

and Chester, 1985; Price et al., 1987). Therefore, this would suggest the importance of the 

involvement of the solid phase of rumen digesta and the distribution of Cu between rumen 

digesta fractions in Cu utilisation by ruminants. 

 

In Chapter 3, liver Cu status was higher when dried grass pellet diet was offered compared 

with maize silage, while in Chapter 4, maize silage showed a higher liver Cu status 

compared with grass haylage. Dietary Cu intake in both Chapters was similar at 8.2 and 8.8 

mg of Cu/d respectively. The availability of Cu from dried forages has been found to be 

greater than fresh herbage and silages (Fisher et al., 1972; Suttle, 1980a; 1983b). In 

addition, the antagonist effect of Mo and S on Cu metabolism had been reported to be less 

in preserved forages as hay or silage (Suttle, 1986; Suttle, 2010). The reason for the 

differences in Cu metabolism between different forages was not clear, but the higher Cu 

absorption from dried forges has been associated with the lower release of Cu by these 

diets into the rumen, the site of Cu-Mo-S interaction (Suttle, 1983b). Waghorn et al. (1990) 

also showed that dried forages fed to sheep had a lower proportion of Cu present in the 

rumen supernatant fraction compared with fresh forages. Therefore, the distribution of Cu 

between rumen digesta fractions may be important as a possible explanation for the 

difference in Cu availability between forages.  

 

The effects of Cu antagonists on Cu status of growing lambs in Chapter 3 and 4 were clearly 

identified, although, the reason for this effect was not clear either due to the direct effect of 

rumen thiomolybdates on reducing the availability of Cu for absorption (Suttle, 2010), or 

due to a systemic effect of absorbed thiomolybdates sequestering Cu from liver and 

increaseing Cu excretion (Mason, 1986). The production of thiomolybdate in the rumen and 

its adverse effect on Cu utilisation via producing insoluble Cu-thiomolybdate complex has 
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been suggested as a hypothesis (Dick et al., 1975; Suttle, 1991). Grace and Suttle (1979) 

and Allen and Gawthorne (1987) reported the interaction between Cu and Mo in the rumen 

was associated with the solid phase, as they showed that that most of the Mo and Cu in the 

rumen digesta were associated with the solid phase. Price et al. (1987) also demonstrated 

that thiomolybdates, mostly tri or tetra, were found to be mainly associated with the solid 

phase, and they are more likely associated with inhibiting Cu utilisation (Price et al., 1987). 

The association of Cu and thiomolybdate with the solid phase of the rumen digesta, 

therefore, suggests that intraruminaly Cu-thiomolybdate complexes may form (Gould and 

Kendall, 2011). It has been reported that Cu association with the solid phase increased by 

the addition of Mo and S at the expense of reduced Cu distribution in the supernatant 

fraction (liquid phase) (Allen and Gawthorne, 1987), which is evidenced of Cu-

thiomolybdate complex in the rumen by which Cu availability diminished.  

 

As shown in Chapters 3 and 4, forage type had a different effect of Cu metabolism and the 

addition of Mo and S substantially reduced liver Cu status in growing lambs. Therefore, the 

aims of this study were to investigate the effect of forage type on Cu distribution in rumen 

digesta, and the interaction between Cu, Mo, and S. 
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5.2. Materials and methods 

5.2.1. Experimental design and basal diets  

The study was conducted using a batch culture in vitro gas production technique 

(Theodorou et al., 1994; Sinclair et al., 2005), which is widely accepted for evaluating 

fermentation kinetics characteristics. This technique is similar to other in vitro technique 

using substrate, anaerobic media and a rumen fluid as inoculum, except, the incubations 

are in gas-tight culture vessels, where produced gas accumulates in the head-space as 

fermentation proceeds. The experiment was designed as a 4 x 2 factorial. Forages used in 

the culture were maize silage (MS), dried grass pellets (DGP), and grass haylage (GH) that 

were used in Chapter 3 and 4, plus grass silage (GS). The chemical composition of all 

forages (DM, ash, CP, NDF, and EE) was analysed as described in Chapter 2 (section 2.1.1 

to 2.1.5). Dietary mineral content of the experimental forages was also determined as 

described in section 2.4.1. The chemical composition and mineral content of forages used 

in current study as shown in Table 5.1. 

 

Table 5.1. Chemical and mineral composition of the grass silage (GS), maize silage (MS), dried grass 
pellets (DGP), and grass haylage (GH) used in the experiment. 

Items 
Forage 

GS MS DGP GH 

  Chemical composition, g/kg DM       

DM, g/kg nd1 324 889 868 

CP,  134 73 184 96 

NDF,  421 381 426 654 

EE, 32 34 29 11 

Ash,  86 37 84 63 

NSC2, 327 475 277 176 

  Mineral composition, mg/kg DM 
   

Cu,  7.6 4.7 9.6 6.3 

Mo,  1.27 0.52 0.94 1.40 

S, g/kg DM  2.3 0.92 3.6 1.4 

1 nd = not determined. 

2 Non-structural carbohydrate (NSC) was calculated by subtracting the sum of the amounts (g/kg) 

of CP, NDF, EE, and ash from 1000 (McDonald et al., 2011)  
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All forages were freeze dried and milled to pass through a 3 mm mesh. The four forages 

were then either un-supplemented, or supplemented with 5 mg Mo/kgDM and 2 g S/kg DM 

in order to evaluate Cu distribution within fermented rumen fluid fractions. The additional 

antagonists (Mo and S) were dissolved in purite water and then 1 ml of this was added into 

treatment vessels. The nitrogen content of the mineral mix was balanced with feed grade 

urea, after the urea had been dissolved in purite water and then 1 ml of this solution was 

added to control bottles. The added Mo was in the form of ammonium molybdate 

(NH4)6Mo7O24·4H2O (Fisher Scientific, Leicester, UK), and S was in the form of ammonium 

sulfate (NH4)2SO4 (Alfa Aesar., Ward Hill, USA). The added urea was (Trouw Nutrition, 

Cheshire, UK). Dietary treatments are present in Table 5.2.  

 

Table 5.2. Dietary treatments.  

Treatment Forage type 

DGP- Dried grass pellets, no antagonists 

DGP+ Dried grass pellets, supplemental Mo + S 

GH- Grass Haylage, no antagonists 

GH+ Grass Haylage, supplemental Mo + S 

MS- Maize silage, no antagonists 

MS+ Maize silage, supplemental Mo + S 

GS- Grass silage, no antagonists 

GS+ Grass silage, supplemental Mo + S 
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5.2.2. Inoculum  

One day prior to the start of the experiment, an artificial saliva (9.8 g/l NaHCO3, 9.3 g/l 

Na2HPO4.12H2O, 0.47 g/l NaCl, 0.57 g/l KCl, 0.04 g/l CaCl2 anhyd., 0.06 g/l MgCl2 anhyd) 

was made using purite water (McDougall, 1984). All chemicals used in constituting the 

buffers solution were purchased from Sigma Aldrich, UK. The saliva was then autoclaved 

at 120˚C for 30 min and stored at 39°C. Approximately 2 grams (DM) of each experimental 

forage were weighed into 250 ml pyrex bottles. Bovine animal rumen fluid (RF) 

(approximately 5 l in total) was obtained from a freshly slaughtered cow at the ABP abattoir 

(Shrewsbury, UK), and placed in a pre-warmed thermos, filled to the top so as to minimise 

the risk of aerobic infusion and sealed before being transported to the lab for processing. 

Within approximately 45 min of collection, the rumen fluid was filtered through four layers 

of muslin cloth into an 8 L conical flask containing of artificial saliva, to create a desired ratio 

of 60:40 (v/v) (RF : saliva), and placed in the water bath at 39°C and purged with CO2. The 

initial pH of the RF: saliva mixture was then determined as described in Section 2.1.6. For 

all treatments 200 ml of RF: Saliva (60:40, v/v; pH 7.02) mixture was added to each bottle. 

The bottles were then sealed with adapted washer caps (R.H Nuttall LTD, Birmingham, UK) 

(Fig. 5.1) and incubated at 39°C. Four blank bottles were also incubated in each run in order 

to correct gas production. All treatments were incubated in quadruplicate (at 12th of May 

2015) and replicated over four separate periods. The experimental design had 8 treatments 

with 4 replicates per treatment (32 in total) in each of four periods.  

 

Figure 5.1. Adapted washer cap 
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The accumulated head-space gas pressure was measured manually at 0, 3, 6, 12, 18, 24, 

30, 36, 42, and 48 hrs, after the addition of substrates using a pressure transducer (T443; 

Bailey and MacKay Ltd., Birmingham UK), and the gas released at each time point until the 

head-space returned to ambient pressure. The gas production pressure (kPa) data was 

corrected for the substrate blank and transferred to ml according to Purcell et al. (2011) as: 

Gas production (ml) =
Vh

pa
𝑥 Pt 

Where Vh is bottle headspace volume (107.55 ml), Pa is atmospheric pressure (101.4 kPa) 

and Pt the gas pressure of a transducer (kPa). The cumulative gas production (ml/g DM) 

was determined per substrate fermented as cumulative volume per gram of DM incubated 

(Calabro et al., 2005). 

 

5.2.3. Vessel pH determination 

At the end of each run (after 48 hrs) the lids were removed from all vessels and pH was 

directly determined as described in a section (2.1.6).  

 

5.2.4. Fractionation of vessel fluid 

Following pH determination, the vessels were chilled in a freezer for approximately 1 hr to 

inhibit microbial activity. Vessel contents were then separated into four different fractions 

using the methods adapted from Price and Chester (1985) and Allen and Gawthorne, 

(1987). The first fraction, strained-solids fraction (SS), containing plant material, adherent 

bacteria, and protozoa, retained by straining the vessel content through sintered crucible 

with porosity 1 (Fisher Scientific Ltd, Leicestershire, UK). The second fraction, protozoa-

rich fraction, consisting of the precipitate obtained by centrifugation (1000 g for 10 min; 

Sigma 3-16 KL, Germany) of the fluid that passed through sintered crucible in the first 

fraction. The third fraction, bacterial-rich fraction, consisting of the precipitate obtained by 

centrifugation (25000 g for 30 min; Rotina 46 R Hettich Zentrifugen, Germany) of the 

supernatant fraction from the second fraction. This fraction consisted of bacteria and very 

fine plant particles. The fourth fraction, supernatant fraction (SN), consisted of the 

supernatant obtained from the third fraction, and contained the soluble component of the 

vessels content.  
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5.2.5. Mineral analysis of vessels fractions 

Samples from all collected fractions, except SN, were oven dried at 60°C for 48hrs. 

Approximately 0.5 g of dried SS fraction and all dried samples of PR and BR fractions were 

digested and analysed for mineral content as described in section 2.4.1. Samples of the SN 

fraction were directly analysed for mineral content as described in section 2.4.1. Rumen 

fluid:saliva mixture was not analysed for mineral content. 

 

5.2.6. Statistical analysis 

Repeated measures analysis of variance was used to analyses cumulative gas production 

as a 4 x 2 factorial design with the main effects being forage type (F), antagonists (Ant.), 

and forage x antagonist interaction (Int.). Vessel pH and mineral distribution were also 

analysed as a 4 x 2 factorial design with main effects of forage type (F), antagonists (Ant.), 

and forage x antagonists’ interaction (Int.). Runs were used as a blocking factor. Analysis 

was conducted using Genstat 17th edition (Lawes Agricultural Trust, VSN International Ltd, 

Oxford, UK). Significance was set at P<0.05 and trends at P<0.10. Significance differences 

between means were tested using the protected least significant difference (LSD) 

(Snedecor and Cochran, 1989).   

 

 

 

 

 

 

 

 

 

 

 



109 
 

5.3. Results  

5.3.1. Gas production  

Repeated measures analysis indicated that there was an effect of time (P<0.001) on 

cumulative gas production, with increasing gas production amongst all forages over the 

period of the study (Table 5.3). Similarly, there was a time x forage interaction on cumulative 

gas production (P<0.001). Maize silage had the highest cumulative gas production over the 

period of the study, followed by grass silage and dried grass pellets, while the lowest gas 

production was in the grass haylage forage, with mean values being 16.4, 15.0, 13.5, and 

11 ml/g DM (s.e.d, 0.830) respectively. There was no time x forage x antagonist interaction, 

or time x antagonist interaction on cumulative gas production (P>0.05).  

 

There was a forage x antagonist interaction (P<0.001) on cumulative gas production 

throughout the study period (Table 5.3). Compared to unsupplemented antagonists, the 

addition of antagonists reduced (P<0.05) cumulative gas production in maize silage 

throughout the study, whereas in other forages the addition of antagonists had no effect 

(P>0.05) on cumulative gas production.  

 

There was an effect of forage type on cumulative gas production (P<0.001). At time 3hrs to 

12hrs, cumulative gas production was higher in maize silage, followed by grass silage, then 

in dried grass pellets, and lowest in grass haylage. At 18hrs and 24hrs, cumulative gas 

production was higher in maize silage and grass silage, intermediated in dried grass pellets, 

and lowest in grass haylage. At 30hrs until 48hrs, cumulative grass production was higher 

in maize silage, intermediate in grass silage and dried grass pellets, and lowest in grass 

haylage. There was no effect of Mo and S on cumulative grass production throughout the 

study (P>0.05).  
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Table 5.3. The cumulative gas production of the grass silage (GS), maize silage (MS), dried grass pellets (DGP), and grass haylage (GH) supplemented without or with 
molybdenum and sulfur1. 

Time, 
hour 

Treatment2 Significance3 

GS- GS+ MS- MS+ DGP- DGP+ GH- GH+ s.e.d F A Int. 

3 3.6d 3.3cd 4.4e 3.4d 2.8bc 3.1cd 2.2a 2.4ab 0.27 <.001 0.173 0.007 

6 6.4d 6.2d 8.9e 6.8d 4.8bc 5.7cd 3.1a 3.9ab 0.55 <.001 0.555 <.001 

12 11.1d 11.1d 13.7e 10.7cd 8.6b 9.5bc 5.8a 7.0a 0.67 <.001 0.506 <.001 

18 14.7d 14.8d 17.5e 13.2cd 11.4bc 12.9cd 8.3a 10.3ab 1.01 <.001 0.753 <.001 

24 17.6d 16.2cd 20.6e 16.1cd 14.0bc 16.0cd 11.3a 13.2ab 1.27 <.001 0.436 <.001 

30 19.9d 18.2cd 23.0e 19.4d 16.4bc 18.3cd 13.4a 15.4ab 1.20 <.001 0.566 0.002 

36 21.5d 19.6cd 24.8e 21.0d 18.2bc 20.1cd 15.1a 16.9ab 1.26 <.001 0.440 0.003 

42 22.6d 20.6bcd 26.1e 22.3d 19.6bc 21.4cd 16.5a 18.2ab 1.30 <.001 0.386 0.004 

48 23.5d 21.2bcd 27.2e 23.2cd 20.5bc 22.4cd 17.7a 19.3ab 1.36 <.001 0.311 0.005 
1 F= main effect of forage type; A = main effect of antagonists (Mo and S); Int. = interaction between forages and antagonists. s.e.d = standard error of difference. 

2 a,d,c,d,e Means within a row with different superscripts are significantly different (P<0.05). 

3 individual weekly data have been analysed by ANOVA, but caution should be exercised when interpreting individual means when the time x forage, time x antagonist, 

or time x forage x antagonist interaction is not significant. 

Repeated measures: s.e.d P-value 

 Time effect 0.16 <.001 

 Time x Forage effect 0.77 <.001 

 Time x Antagonist effect 0.55 0.439 

 Time x Forage x Antagonist effect 0.83 0.1 
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5.3.2. Vessels pH 

There was no forage x antagonist interaction (P>0.05) on the final vessel pH (Fig. 5.2). 

There was also no effect (P>0.05) of antagonists on the final vessel pH. However, forage 

type had an effect on the final vessels pH (P<0.001), with maize silage resulting in the 

lowest pH (6.35), followed by grass silage (6.46) and the highest pH was in both dried grass 

pellets (6.49) and grass haylage (6.51) (s.e.d, 0.012). 

 

 

Figure 5.2. The effect of forage type grass silage (GS), maize silage (MS), dried grass 

pellets (DGP), and grass haylage (GH) supplemented without (-) or with (+) Mo and S on 

final vessels pH during the 48hrs of in vitro incubation at 39°C. Error bars indicate SED. 
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5.3.3. Distribution of minerals within fluid fractions 

5.3.3.1. Copper distribution 

In strained solid fraction, there was no forage x antagonist interaction (P>0.05) on the 

percentage of Cu distribution (Table 5.4). There was also no effect of Cu antagonists on the 

percentage of Cu distribution in this fraction (P>0.05). However, Cu proportion in strained 

solid fraction was different (P<0.001) between forages, with dried grass pellets having a 

higher Cu proportion (45.0%), followed by grass silage (38.5%) then maize silage (35.0%), 

and grass haylage had the lowest Cu proportion (26.7%) (s.e.d, 1.35).  

In the protozoa rich fraction, there was no forage x antagonist interaction (P>0.05) on the 

percentage of Cu distribution (Table 5.4). However, there was an effect (P<0.001) of the 

forage type on the of Cu distribution, the highest proportion of Cu was in grass haylage 

(32.4%), and the lowest proportion was in the dried grass pellets (23.9%), while both grass 

silage and maize silage were intermediate (27.4% and 27.1% respectively) (s.e.d, 0.86). 

The addition of the Mo and S (P<0.05) increased the percentage of Cu associated with the 

protozoa rich fraction compared with no antagonists (28.6% and 26.8%; s.e.d, 0.61) 

respectively.  

There was a forage x antagonist interaction (P<0.05) on the proportion of Cu in the bacterial 

rich fraction (Table 5.4). The addition of Mo and S increased (P<0.05) the proportion of Cu 

grass haylage supplemented with antagonists compared with no added antagonists, whilst 

other forages were not affected by addition of Mo and S (P>0.05). The proportion of Cu in 

both grass haylage (28.4%) and maize silage (27.0%) was higher (P<0.001) compared with 

grass silage (24.2%) and dried grass pellets (23.0%) (s.e.d, 0.81). There was no effect of 

antagonists on the proportion of Cu in bacteria rich fraction (P>0.05). 

In the supernatant fraction, there was a forage x antagonist interaction (P<0.001) on the 

proportions of Cu (Table 5.4). In grass silage, maize silage, and grass haylage forages 

additional Mo and S reduced (P<0.05) the proportion of Cu compared with no added 

antagonists, while in DGP the proportion of Cu was not affected (P>0.05) by Cu antagonists. 

The proportion of Cu in supernatant fraction was different (P<0.001) between forages and 

the highest proportion of Cu was in grass haylage (12.6%), followed by maize silage 

(10.9%), and then grass silage (10.0%), while the lowest proportion of Cu was in dried grass 

pellets (8.2%) (s.e.d, 0.35). 
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Table 5.4. The effect of forage type supplemented without (-) or with (+) additional Mo and S on the percentage distribution of copper (%) in different fractions of in vitro 
fermented rumen fluid1.  

Rumen 
fluid3 
fractions 

 Treatment Significance2 

GS- GS+ MS- MS+ DGP- DGP+ GH- GH+ s.e.d F A Int.  

SS 37.8 39.1 35.2 34.8 44.1 45.8 29.1 24.2 1.91 <.001 0.541 0.058 

PR 26.9 27.9 26.6 27.7 23.6 24.2 30.0 34.7 1.22 <.001 0.003 0.068 

BR 24.0ab 24.3b 26.0bc 28.0cd 24.0ab 21.9a 27.1c 29.7d 1.14 <.001 0.238 0.020 

SN 11.3c 8.6ab 12.3c 9.5b 8.2a 8.1a 13.7d 11.4c 0.50 <.001 <.001 <.001 

1 Forage type= grass silage (GS), maize silage (MS), dried grass pellets (DGP), grass haylage (GH). 

2 F= main effect of forage type; A = main effect of antagonists (Mo and S); Int. = interaction between forages and antagonists. s.e.d = standard error of difference.  

3 SS= strained solid fraction, PR= protozoal rich fraction, BR= bacterial rich fraction, SN= supernatant fraction. 

4 a,b,c,d Means within a row with different superscripts are significantly different (P<0.05). 
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5.3.3.2. Molybdenum distribution  

In strained solid fraction, there was a forage x antagonist interaction (P<0.05) on the 

percentage of Mo distribution (Table 5.5). Compared with forages unsupplemented with 

antagonists, the inclusion of Mo and S increased (P<0.05) the percentage of Mo distribution 

in grass silage, maize silage, and dried grass pellets, without having an effect (P>0.05) in 

grass haylage. The proportion of Mo was higher in forages supplemented with antagonists 

compared with forages with no added antagonists, with mean values of 37.3% and 33.3% 

respectively. There was an effect (P<0.001) of forage type on Mo proportion, with dried 

grass pellets having the highest Mo proportion (43.6%), followed by grass silage (37.5%), 

and then maze silage (34.7%), whilst the lowest Mo proportion was in grass haylage 

(25.3%) (s.e.d, 1.10). 

In the protozoa rich fraction, there was a forage x antagonist interaction (P<0.05) on the 

percentage of Mo distribution (Table 5.5). The addition of Mo and S only in grass haylage 

resulted in an increase (P<0.05) in Mo proportion in protozoa compared with no added 

antagonists, whilst the Mo proportion was not affected by addition of antagonists (P>0.05). 

Mo proportion in protozoa was higher (P<0.001) in forages supplemented with antagonists 

compared with forages no added antagonists, with mean values of 28.4% and 27% 

respectively. Similarly, the proportion of protozoa Mo was different between forages 

(P<0.001). The proportion of protozoa Mo was higher in grass haylage (33.4%), 

intermediate in both maize silage (27.4%) and grass silage (26.5%), and the lowest in dried 

grass pellets (23.3%) (s.e.d, 0.80). 

In the bacterial rich fraction, there was no forage x antagonist interaction (P>0.05) on the 

percentage of Mo distribution (Table 5.5). However, forages supplemented with antagonists 

had a lower proportion of bacteria Mo compared with the forages unsupplemented with 

antagonists, with mean values of 27.6% and 32% (s.e.d, 0.57) respectively. Likewise, there 

was an effect of forage type on the percentage of Mo distribution (P<0.001). The proportion 

of bacteria Mo was higher in grass haylage (33.3%), followed by maize silage (31.2%), and 

then grass silage (28.9%), and the lowest proportion was in dried grass pellets (25.9%) 

(s.e.d, 0.81). 

In the supernatant fraction, there was a forage x antagonist interaction (P<0.001) on the 

percentage of Mo distribution, where additional Cu antagonists reduced (P<0.05) Mo 

proportion in both dried grass pellets and maize silage, while grass silage and grass haylage 

were not affected by addition of antagonists (P>0.05) (Table 5.5). There was a lower 

(P<0.001) proportion of supernatant Mo in forages supplemented with antagonists 

compared with forages with no added antagonists, with mean values of 6.8% and 7.7% 

respectively. The proportion of supernatant Mo in grass haylage was higher (P<0.001) 

compared with other forages.  
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Table 5.5. The effect of forage type supplemented without (-) or with (+) additional Mo and S on the percentage distribution of molybdenum (%) in fractions of in vitro 
fermented rumen fluid1. 

Fluid2 
fractions 

Treatment Significance3 

GS- GS+ MS- MS+ DGP- DGP+ GH- GH+ s.e.d F A Int.  

SS 35.8bc 39.2d 32.8b 36.7cd 39.4d 47.8e 25.3a 25.4a 1.55 <.001 <.001 0.004 

PR 25.6bc 27.5cd 27.0cd 27.8d 23.9a 22.7ab 31.3e 35.4f 1.13 <.001 0.015 0.013 

BR 31.4 26.3 32.3 30.0 28.9 22.8 35.5 31.0 1.15 <.001 <.001 0.115 

SN 7.2bcd 7.0bc 7.9de 5.5a 7.8cde 6.6b 8.0de 8.2e 0.42 <.001 <.001 <.001 
1 Forage type= grass silage (GS), maize silage (MS), dried grass pellets (DGP), grass haylage (GH). 

2 SS= strained solid fraction, PR= protozoal rich fraction, BR= bacterial rich fraction, SN= supernatant fraction. 

3 F= main effect of forage type; A = main effect of antagonists (Mo and S); Int. = interaction between forages and antagonists. s.e.d = standard error of difference.  

4 a,b,c,d,e,f Means within a row with different superscripts are significantly different (P<0.05). 
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5.3.3.3. Sulfur distribution 

There was no forage x antagonist interaction (P>0.05) on the percentage of S distribution 

in any fractions of the fermented rumen fluid (Table 5.6).  

In the strained solid fraction, sulfur distribution was higher in dried grass pellets (31.3%), 

intermediate in both maize silage (26.1%) and grass silages (24.5%) and the lowest in grass 

haylage (22.6%) (s.e.d, 0.81). The proportion of strained solid S in the unsupplemented 

forages was higher (P<0.001) compared with supplemented forages, with mean values of 

27.4% and 24.95 (s.e.d, 0.58) respectively.  

The percentage of S distribution in the protozoa rich fraction was higher (P<0.001) in grass 

haylage compared with other frages. The addition of antagonists increased (P<0.05) 

protozoa S proportion, with unsupplemented and supplemented forages having mean 

values of 25.2% and 28.1% (s.e.d, 1.33) respectively. 

In the bacteria rich fraction, there was no effect (P>0.05) of addition of antagonists on S 

distribution in bacterial fraction (Table 5.9). The higher proportion of bacteria S was in grass 

silage (37.7%) and maize silages (26.2%), dried grass pellets (33.7%) being intermediate 

and the lowest proportion was in grass haylage (28.1%) (s.e.d, 1.94). 

There was no effect (P>0.05) of dietary treatment on S distribution in the supernatant 

fraction.  
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Table 5.6. The effect of forage type supplemented without (-) or with (+) additional Mo and S on the distribution of sulfur (%) in different fractions of in vitro fermented rumen 
fluid1. 

Fluid2 
fractions 

Treatments Significance3 

GS- GS+ MS- MS+ DGP- DGP+ GH- GH+ s.e.d F A Int.  

SS 25.4 23.6 26.6 25.5 32.4 30.3 25.1 20.1 1.15 <.001 <.001 0.100 

PR 22.9 25.0 23.1 26.1 20.7 23.0 34.1 38.2 2.66 <.001 0.032 0.952 

BR 37.6 37.7 37.3 35.0 33.6 33.7 28.1 28.1 2.74 <.001 0.689 0.915 

SN 14.1 13.7 13.0 13.4 13.3 13.1 12.8 13.7 0.51 0.128 0.553 0.235 

1 Forage type= grass silage (GS), maize silage (MS), dried grass pellets (DGP), grass haylage (GH). 

2 SS= strained solid fraction, PR= protozoal rich fraction, BR= bacterial rich fraction, SN= supernatant fraction. 

3 F= main effect of forage type; A = main effect of antagonists (Mo and S); Int. = interaction between forages and antagonists. s.e.d = standard error of difference. 
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5.4. Discussion 

Fermentation kinetics of soluble and insoluble fractions can be determined using the gas 

production technique described by Pell and Schofield (1993), Theodorou et al. (1994) and 

Cone et al. (1996). When feedstuffs are fermented in vitro, the gas produced (mainly CO2 

and CH4) originated primarily from the fermentation of carbohydrates and protein to a lower 

extent (Getachew et al., 1998). Hence, the feedstuffs with higher carbohydrates should 

produce a higher amount of gases with a lower pH. In the current study, non-structural 

carbohydrate (NSC) content was different between forages, with MS being a higher NSC 

compared to other forages, with the lowest content of NSC was in GH. This may result in 

MS resulting in a higher gas production and a lower pH compared to GS and DGP with the 

lowest gas production was in GH. Brown et al. (2002) reported that MS (over a period of 

72h) fermented quicker and produced more gas compared with GS or hay (255, 232, and 

226 ml; s.e.d, 11.95) respectively. The low gas production by hay was attributed to the high 

level of structural carbohydrates, causing a slower fermentation (Brown et al., 2002). The 

content of NDF in MS was lower than GS and DGP by approximately twice the value of GH, 

which explains the difference in gas production and vessl pH between forages. As a 

consequence, a lower NDF content result in an increased rate of degradation of 

carbohydrate by microbes in the MS forage (McDonald et al., 2011). Moreover, García-

Rodríguez et al. (2005) observed a higher cumulative gas production and lower pH in 

fermented MS compared to GS, and these differences between silages were attributed to 

different fermentation patterns, suggesting that maize fermented faster and to a greater 

extent (García-Rodríguez et al., 2005). In Chapter 4, the rumen pH of growing lambs fed 

MS was lower compared with GH. Therefore, the difference in gas production and pH may 

be related to differences in the NSC and NDF content between the forages.  

 

In the current study, additional Mo and S significantly reduced gas production in the MS 

forage, without having an effect on the other forages. The reason for this was not clear, but 

may be due to the decrease in sulfide gas production following the addition of Mo, hence 

this reduction may contribute to an overall reduction in gas production in silage forages 

supplemented with antagonists. Molybdenum is reported to be poison general bacterial and 

micro-organism metabolism (Bryden and Bray, 1972). In addition, sulfate and molybdate 

are both tetra-hedral aions with the same charge which would suggest that they may be 

antagonistic due to the similar chemical parameters (Huisingh et al., 1973). Kung et al. 

(2000) demonstrated a reduction in hydrogen sulfide production by 77% after the addition 

of Mo at 0.25 g (fluid basis). 
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The release of minerals into the liquid phase (supernatant) from feedstuffs during digestion 

in the rumen fluid is desirable for absorption by animals, while minerals not released from 

digested fibrous residue of the feed may be not available for absorption (Playne et al., 1978). 

Minerals in the digestive tract in order to be absorbed must be in a soluble form (Bremner, 

1970), although the solubility of minerals may be decreased owing to the formation insoluble 

complexes (Forth, 1973; Allen and Gawthorne, 1987). In addition, Price and Chester (1985) 

reported that Cu associated with solids, probably of bacterial origin, made the great 

contribution to the pool of available Cu in the duodenum. In the current study, the proportion 

of Cu in the supernatant and bacteria rich fractions was higher in MS compared with GS 

and DGP. Therefore, theoretically the availability of Cu from MS forage may be greater than 

GS or DGP. In dairy cows, Sinclair et al. (2017) reported that cows fed MS in the absence 

of antagonists had a higher liver Cu status compared with those fed GS. However, results 

in Chapter 3 showed that lambs fed DGP had a higher liver Cu status compared with those 

fed MS and contradicting that discussed above. The reason for a higher liver Cu status in 

the DGP fed lambs in Chapter 4, may be partially attributed to the higher out flow rate of 

the DGP due to its lower feed particle sieze (Thomson and Beever, 1979; Mason, 1990), 

resulting in less Cu exposed to the rumen antagonist interactions, increasing Cu availability 

(Suttle, 1991). The higher pH in DGP vs. MS in the current study supports the lower rumen 

pH in DGP vs MS in Chapter 3 that was suggested to be caused by the higher out flow rate 

of DGP 

 

In the current study, the proportion of Mo in the supernatant fraction was higher in GH 

compared with MS, suggesting the higher Mo uptake from GH, confirming the higher liver 

and plasma Mo status in lambs fed GH compared with MS in Chapter 4. In contrast, the 

higher Cu distribution in the supernatant fraction of GH vs. MS contradicts the lower liver 

Cu status observed in lambs fed GH compared with MS. The reason for a higher mineral 

presence in the supernatant fraction of GH compared with other forages was not clear. 

However, the higher pH in GH may have encouraged the activity of rumen micro-organisms, 

particularly protozoa, and increased protozoa population (Ørskov, 1987; McDonald et al., 

2011), and thus enhanced the degradation of fibre (Belanche et al., 2016) and breakdown 

of cellulose in the plant cell wall (Williams and Withers, 1991; Lee et al., 2000). Minerals in 

the cell plants are found mainly associated with the cell wall (Whitehead et al., 1985; Ibrahim 

et al., 1990). As a consequence, more minerals may be released from GH into the 

supernatant fraction compared with other forages.  
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Bremner (1970) demonstrated that water the solubility of Cu, in rumen content samples 

collected from sheep maintained on dried grass, was very low (18.8%) despite of the fact 

that over 80% of the dietary Cu in dried grass was water soluble, and concluded that Cu 

may be associated or incorporated into microbial proteins. Ward and Spears (1993) also 

demonstrated that rumen solubility of Cu was markedly decreased after ruminal incubation 

(24h) of orchard grass. Allen and Gawthorne (1987) and Price et al. (1987) investigated the 

importance of changes in Cu distribution and solubility within the ruminant alimentary tract 

and its influence on the utilisation of Cu, which is affected by a number of known factors 

without suggesting clear mechanisms by which these operate. Price and Chester (1985) 

showed that the relative Cu availability in rumen digesta, collected from sheep fed dried 

grass, and given to rats was substantially (12%) lower than that in dried grass given to 

sheep (75%) and they concluded that factors limiting Cu utilisation were associated mainly 

with the solid phase of the digesta. The results of the current study indicated that Cu, Mo, 

and S (above 85%) were present in the solid phase (strained solid, bacteria rich, and 

protozoa rich fraction) on the expense of the supernatant fraction (liquid phase). These 

results concur with the findings by Allen and Gawthorne (1987) and Waghorn et al. (1990) 

who demonstrated that Cu (above 87%), Mo, and S present in rumen digesta were found 

associated with the solid phase. Similarly, Grace and Suttle (1979) reported in the rumen 

digesta Mo was predominately associated with solid phase (undigested plant, bacteria, and 

protozoa). Price et al. (1987) demonstrated that in the rumen digesta of sheep maintained 

on dried grass, thiomolybdates (di and tri-thiomolybdate) were found predominately in the 

solid phase. It has been reported that thiomolybdates in the rumen digesta are temporary 

intermediates by associating with the solid phase to impart some stability (Gawthorne et al., 

1985; Suttle, 1991), as thiomolybdates present in the liquid phase, if they are unbound or 

not absorbed, are possibly dehydrolysed (Gould and Kendall, 2011). Therefore, the 

presence of the majority of Cu, Mo and S in association with solid phase could facilitate the 

formation insoluble Cu-thiomolybdate complexes in the rumen (Gould and Kendall, 2011) 

and reduce Cu availability (Suttle, 2010).  

 

In the current study the addition of Mo and S caused several changes in the proportion of 

Cu distribution in the fermented rumen fractions. For example, the addition of Mo and S 

significantly reduced Cu proportion in the SN fraction by increasing Cu association with the 

solid phase. Allen and Gawthorne (1987) reported that in vitro addition of 5 mg Mo/kg DM 

as tetra-thiomolybdate resulted in a substantial reduction in Cu proportion in the SN fraction, 

where the proportion of Cu reduced from 11.8% to 4.8% (s.e.d; 0.8) compared with no 

added antagonists. Price and Chester (1985) reported that samples of rumen content, 

collected from sheep fed dried grass diet supplemented with Mo (11.6 mg/kg DM), given to 

Cu-deficient rats resulted in a substantial decrease in available Cu for restoration of the 
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activity of cytochrome c oxidase in the intestine of rats. In Chapter 3 and 4, the addition of 

Mo and S markedly reduced liver Cu status of lambs fed forages that were used in the 

current study, and in Chapter 4 plasma Cu status was also decreased. However, it was not 

clear whether the reduction was due to the direct effect of thiomolybdate reducing Cu 

availability in the rumen or due to systemic effect of thiomolybdate affecting Cu metabolism 

after being absorbed from rumen. The predominate distribution of Cu, Mo and S in the solid 

phase and reducing Cu proportion in supernatant fraction following addition of Mo and S, 

therefore, support the proposed hypothesis of intraruminal formation Cu-thiomolybdate 

complex (Dick et al., 1975; Suttle, 1991; Gould and Kendall, 2011), and the role of the solid 

phase in reducing Cu availability in ruminants (Price and Chester, 1985; Allen and 

Gawthorne, 1987), and a reduction in Cu metabolism that was seen in Chapters 3 and 4. 
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5.5. Conclusion 

The current study has shown that the forage sources grass silage, maize silage, dried grass 

pellets, and grass haylage when fermented in vitro in rumen fluid, differed in Cu, Mo, and S 

distribution among digesta fractions. The highest proportion of Cu in the supernatant 

fraction in grass haylage, followed by maize silage, then grass silage, while the lowest Cu 

proportion was in dried grass pellets. In addition, Cu and Mo were mainly found to be 

associated with the solid phase (strained solid, bacteria rich, and protozoa rich fractions) at 

the expense of the supernatant fraction, and inclusion of antagonists generally reduced Cu 

proportion in the supernatant. These findings support the hypothesis suggests that an intra-

ruminal interaction between Cu, Mo and S leads to the formation insoluble Cu-

thiomolybdates complex, which are poorly absorbed but greatly excreted and hence reduce 

Cu status. 
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Chapter 6 The effect of forage preservation and either supplemented without or with 

molybdenum and sulfur on rumen pH and on copper status in growing lambs 

 

6.1. Introduction 

The results from Chapters 3, and 4 indicated that a higher liver Cu status in growing lambs 

was associated with a lower rumen pH. Crosby et al. (2004) associated the lower liver Cu 

concentration in growing lambs housed on a straw-bedded floor compared with those 

housed on an expanded-metal with lower rumen acidity, which is caused by straw intake, 

increasing rumination and saliva production and resulted in a higher rumen pH (Ørskov, 

1987). The higher rumen pH in turn encourages ciliate protozoa to reduce sulfur to sulfide, 

which in turn, may reduce dietary Cu availability (Suttle, 1979; Crosby et al., 2004; Spears 

et al., 2011). Equally, sulfide contributes to the mechanism by which Mo depresses Cu 

availability (Dick et al., 1975; Suttle, 2010). The rate of rumen sulfide production has been 

reported to be increased by continuous feeding compared with twice a day or every 4hrs 

(Suttle and Peter, 1985; Luo et al., 1996). In addition, the rate of eating fermentable 

carbohydrates, which reduces rumen pH and hence increases Cu availability due to an 

increase in sulfide absorption (Bray et al., 1975) or break down of thiomolybdates (Suttle, 

1991).  

 

In Chapter 5, the highest proportion of Cu and Mo and the highest pH was in the in vitro 

fermented GH in the rumen fluid compared with other forages. Copper absorption is 

suggested to be largely determined by synchronicity of release of Cu and its antagonists 

from feedstuffs into the rumen, the site of the CuxMoxS interactions (Suttle, 1983b; 1991). 

Therefore, preservation of forages may also affect the interaction between Cu and its 

antagonists. 

 

There has been a trend for using whole crop cereal silages for feeding ruminants in recent 

years due to the similar cost of production relative to the grass silage and potential benefits 

in forage intake and subsequently animal performance (Keady et al., 2013). However, little 

information is available of the effect of whole crop wheat silage on the metabolism of Cu in 

ruminants. Therefore, the aims of this study were to evaluate effect of forage preservation 

on rumen pH and their interaction between Cu and its antagonists (Mo and S).  
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6.2. Materials and methods 

6.2.1. Animal procedures 

All procedure involving animals were carried out according to the UK Animals (Scientific 

Procedures) Act 1986 and were approved by Harper Adams University Ethic Committee.  

 

6.2.2. Forage production 

Two whole crop wheat (WCW) silages were made, the first one was WCW harvested at 400 

g/kg treated with 4 L/tonne of additive (Whole Crop Gold, Biotal Limited, Cardiff, UK), rolled 

and sheeted to ferment and produce fermented WCW (FWCW). The second one used 

Santiago winter wheat and was harvested at 700 g/kg. It was treated with 4 kg/tonne urea 

and urease (Home n’Dry, Dugdale, Clitheroe, UK). It was also rolled and sheeted to produce 

alkalage or urea-treated WCW (UWCW). The third forage was a first cut grass silage from 

a predominately perennial ryegrass sward, which received additives (Biotal axcool gold, 

Waterford, Ireland, UK) and was ensiled in round bale. 

 

6.2.3. Animals and experimental design 

The study was carried out at Harper Adams University (at 7th of October 2015) using 68 

castrated male Scottish Blackface growing lambs with an initial mean body weight of 22.96 

kg (s.e.d; 0.309) over a period of 10 weeks. Lambs were brought from Perthshire, Scotland 

and were adapted for approximately 4 weeks prior to the start of the study and offered grass 

haylage at maintenance level. Eight representative lambs were slaughtered immediately 

prior to the start of the study at a commercial abattoir, and liver samples were collected and 

stored at -20 °C to serve as a baseline for liver Cu level (section 2.4.2). The remaining 60 

lambs were blocked according to liveweight (LW) and randomly allocated to one of six 

treatments in a 3 x 2 factorial design with 10 lambs per treatment. The lambs were housed 

in a well-ventilated shed in individual pens and bedded on wood shavings. They had free 

access to fresh water. 
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6.2.4. Diets  

Lambs were fed diets including ad libitum forage together with 300 g/day of a standard 

concentrate. The raw materials that were used to formulate the concentrate diet are 

presented in Table (6.1). The forages were either grass silage (GS), fermented WCW 

(FWCW) or urea treated WCW (UWCW). Two appropriate concentrates were formulated 

differently to allow for difference in forage CP levels (Table 6.2). One of the concentrates 

was fed with GS and UWCW forages, and other was fed with FWCW. Based on AFRC 

(1993) and the predicted intake of forage and concentrate (1 kg DM), the diet would provide 

sufficient Metabolisable Energy (ME) and Metabolisable Protein (MP) to meet requirements 

to growing at 200g/day. Predicted ME for GS, fermented WCW, and urea WCW diets was 

11.3, 10.8, and 10.6 (MJ/kg DM) respectively.  

 

Table 6.1. Raw material composition of the experimental concentrates (g/kg DM) 

Ingredients,  
g/kg DM 

 
Concentrate Diets1 

 
GS and UWCW FWCW 

Barley  530 129 

Sugar beet pulp  247 252 

Soya bean meal  96 490 

Molasses  58 59 

Mins/vits2  69 70 

Total   1000 1000 

1 GS and UWCW= concentrate fed with grass silage and urea treated WCW forages, FWCW= 
concentrate fed with fermented WCW. 

2 Mineral premix (25 kg/tonne) (Rumenco, Burton upon Trent, Staffordshire, UK). Major minerals 
(g/kg DM): Calcium, 185; Phosphorous, 20; Magnesium, 100; Sodium, 120; Chloride, 205; Trace 
elements (mg/kg DM); Iodine, 150; Cobalt, 90; Manganese, 3000; Zinc, 3000; Selenium (sodium 
selenite), 20. Vitamins; Vit A {E 672}, 320000 IU/kg; Vit D3 {E 671}, 100000 IU/kg. Vit E (all-rac-
alpha-tocopheryl acetate) {3a700} 2000 mg/kg. 

 

The individual components of the diet were analysed by ICP-MS (section 2.4.1), and the 

chemical composition of forages present in Table 6.2. Then, predicted trace element supply 

(Table 6.3) was calculated. Based on the equations of Suttle and MacLauchlan (1976), Mo 

and S was added to the diets to reduce Cu absorption by 50% from the availability of Cu in 

the diet. Levels added are presented in Table 6.3.  
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Table 6.2. Chemical composition of grass silage (GS), fermented WCW (FWCW), Urea WCW 
(UWCW). 

items 
Forage 

GS FWCW UWCW 

Chemical composition, g/kg DM  

  DM, g/kg 237.6 365.6 600.2 

  CP, 149.8 97.2 164.6 

  EE, 34.9 17.8 12.6 

  NDF, 575.6 418.3 402.5 

  Ash, 98.5 48.6 40.1 

  ME, MJ/kg DM1 11.0 10.0 10.3 

  pH 4.3 3.9 8.7 

Mineral composition, mg/kg DM  

  Cu, 10.8 6.1 7.7 

  Mo, 2.27 1.47 1.22 

  S, g/kg DM 1.40 1.10 1.29 

  Fe, 140.1 97.9 106.1 

  Zn, 34.5 22.7 21.1 

  Mn, 71.6 38.8 19.5 

ME= metabolisable energy of the forages was taken from AFRC (1993). 

 

Table 6.3. The predicted mineral composition of the experimental diets. 

Minerals, 
mg/kg DM 

GS  
no added 
Mo and S 

FWCW  
no added  
Mo and S 

UWCW  
no added  
Mo and S 

Additional 
levels of 

Mo and S 

Cu,  9.74 7.69 7.05  

Mo,  1.71 2.49 2.45 3.5 
S, g/kg DM 2.29 2.17 2.21 2 

 

The Mo added was in the form ammonium molybdate (NH4)6Mo7O24·4H2O (Fisher Scientific, 

Leicester, UK), and S was in the form of ammonium sulphate (NH4)2SO4 (Alfa Aesar., Ward 

Hill, USA). The N content of the diets were balanced with Urea (Trouw Nutrition, Cheshire, 

UK). The feed grade urea (Trouw Nutrition, Northwich, Cheshire) was added (11.2 kg/tonne 

DM) to the fermented WCW unsupplemented with antagonists diet in order to balance the 

N level. 
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Lambs were allocated according to their liveweight to one of six dietary treatments (Table 

6.4). 

Table 6.4. Dietary treatments  

Code Treatment 

GS- Grass silage, no antagonists 

GS+ Grass silage, supplemental Mo + S 

FWCW- Fermented WCW, no antagonists 

FWCW+ Fermented WCW, supplemental Mo + S 

UWCW- Urea - treated WCW, no antagonists 

UWCW+ Urea - treated WCW, supplemental Mo + S 

 

Feed samples (forage and concentrates) were collected once weekly throughout the study. 

All feed samples were analysed for DM, Ash, CP, NDF, EE and mineral contents, as 

described in sections 2.1.1. to 2.1.5, and (section 2.4.1), respectively. The chemical 

composition of the experimental diets (forage and concentrate) of predicted forage intake 

to be 1 kg/d at DM basis are presented in Table 6.5. 

 

6.2.5. Experimental routine  

All lambs were offered feed twice a day at (08:30 and 16:30). Forages (GS, FWCW, or 

UWCW) were put into wooden troughs, and concentrates placed into plastic buckets. Feed 

refusals were collected twice a week (every Saturday and Thursday until the end of 

experiment) to estimate individual feed intake and feed conversion efficiency. At the end of 

the study, 54 out of 60 lambs were sent to a commercial abattoir for slaughtering. All lambs, 

including the eight representative lambs slaughtered on day 0, were slaughtered using 

electrical stunned. Livers were collected immediately after slaughter, weighed, and stored 

at -20°C for subsequent mineral content determination. 
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Table 6.5. Composition of concentrates and forages; grass silage (GS), fermented WCW (FWCW) or urea WCW (UWCW) fed without (-) or with (+) added S and Mo1.  

Items 
Forage Concentrate 

GS FWCW UWCW GS- and UWCW-  GS+ and UWCW+ FWCW- FWCW+ 

Chemical composition, g/kg DM             

DM, g/kg  227.3 340.1 627.4 829.7 828.2 833.8 835.6 

CP,   155.7 106.1 146.1 142.1 176.7 340.5 348.1 

EE,   30.9 12.9 13.6 11.2 11 11.2 11.1 

NDF,   588.2 413.6 309.2 156.4 146.7 153.3 145 

Ash,   115.1 53.4 44.4 128.3 112.4 132.1 130 

Mineral composition, mg/kg DM  
    

Cu ,  11.54 6.86 6.74 11.15 11.26 11.26 11.52 

Mo,   1.11 0.88 1.02 1.36 19.54 1.81 19.91 

S ,g/kg  2.69 1.13 1.1 6 17.51 7.72 16.39 

Fe,   140.5 97.9 106.2 346.5 344.1 338.6 335.4 

Zn,   30.4 23.3 20.1 160.2 161.7 159.8 164.6 

Mn,   84.7 54.4 43.4 110.9 106.3 109.4 111.4 
1 Dietary treatments GS-, FWCW-, and UWCW- without including Mo and S. Diets GS+, FWCW+, and UWCW+ were included Mo 3.5 mg/kg as ammonium molybdate 

and S 2 g/kg DM as ammonium sulfate. 
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6.2.5.1. Blood sample collection  

Blood samples were collected by jugular vein puncture (section 2.2.) once a week on 

Thursday at 11:00 for plasma and serum ceruloplasmin analysis (sections 6.2.6). On weeks 

0, 4, 8, and 10 an additional EDTA tube was collected for haematology analysis and an 

aliquot stored at -20°C for SOD analysis (section 6.2.6).  

 

6.2.5.2. Liveweight determination  

Lambs were weighed once a week on Wednesday at 11:00 using the standard operating 

procedure as described in section 2.3. Daily liveweight gain (DLWG) was calculated using 

regression analysis.  

 

6.2.6. Blood analysis 

Fresh blood samples after being collected were quickly analysed for haematocrit (Hct), 

haemoglobin concentration (Hb), red blood cell counts (RBC), and white blood cell counts 

(WBC) using a Vet Animal Blood Counter (section 2.2.1). Whole blood samples were 

analysed for SOD activity using a Cobas Mira Plus as described in section 2.2.3.1. Plasma 

samples were used to determine mineral concentrations (section 2.2.2). Serum samples 

were also analysed for ceruloplasmin activity (Cp) using a Cobas Mira Plus auto-analyser 

(ABX Diagnostics, Bedfordshire, UK) (section 2.2.3.2). 

 

6.2.7. Liver mineral concentrations  

Liver samples were analysed for mineral concentrations using an ICP-MS as described in 

section 2.4.2. Whole liver minerals content was determined by multiplying liver mineral 

concentrations by liver weight and by liver DM. Liver minerals retention was determined by 

substracting whole liver mineral content of the initial slaughter group from final whole liver 

minerals content and dividing by days of the whole study period.  

 

6.2.8. Rumen pH determination 

Rumen fluid samples were collected immediately after slaughter of the lambs, put into 100 

ml plastic pots and stored on ice prior to measuring pH within an hour after slaughtering 

(section 2.1.6).  

 



130 
 

6.2.9. Statistical analysis 

Performance, plasma minerals, haematology, and enzyme activities were analysed by 

repeated-measures ANOVA as a 3x2 factorial randomised block design with the main 

effects of forage type (F), and antagonists (Ant.). Daily live weight gain (DLWG) was 

calculated by regression analysis and analysed by ANOVA. For plasma Cu and zinc 

concentrations, Ceruloplasmin activity, Cp:Pl-Cu ratio, SOD activity, Haematocrit, 

Haemoglobin concentration, and RBC counts week zero was used as a covariate. All 

statistical analysis were conducted using Genstat version 17.1 (Lawes Agricultural Trust, 

VSN International Ltd, Oxford, UK). Significance was set at P < 0.05 and trends at P < 0.10. 

Significant differences between means were tested using the protected least significant 

difference (LSD) (Snedecor and Cochran, 1989).   
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6.3. Results 

6.3.1. Health observation  

During the study, 6 lambs out of 60 were removed from the study as a result of losing more 

than 10% of the body weight due to Pneumonia. Of these three were supplemented with 

Mo and S. Removed lambs belonged to all dietary treatments, one lamb on grass silage 

supplemented antagonists, and fermented WCW unsupplemeted with antagonists 

treatment, two lambs on urea WCW supplemented without or with antagonists treatment.  

6.3.2. Animal performance and intake 

There was no forage x antagonist interaction (P>0.05) on weekly liveweight, DLWG, DMI, 

and FCE of the lambs throughout the study (Fig. 6.1 and Table 6.7). There was also no 

effect (P>0.05) of the antagonists on these parameters, except the concentrate DMI was 

lower (P<0.05) when Mo and S was supplemented compared with unsupplemented, with 

mean values of 0.23 and 0.24 kg/d respectively. Lambs fed urea WCW were heavier 

(P<0.05) from week 8, 9, and 10 compared with the lambs fed fermented WCW or GS 

forage (Table 6.6). Lambs offered urea WCW and fermented WCW had a higher (P<0.05) 

forage and total DMI compared to those offered GS. The urea WCW fed lambs also had a 

higher (P<0.001) DLWG and FCE compared with those fed fermented WCW or GS forages.  
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Figure 6.1. The effect of forage type grass silage (GS), fermented WCW (FWCW), and 

WCW (WCW) supplemented without (-) or with (+) Mo and S on weekly liveweight. Error 

bars indicate SED.  

Table 6.6. Effects of forage type (grass silage (GS), fermented WCW (FWCW), and urea treated 
WCW (UWCW) on weekly lamb liveweight. 

 
week2 

Forages Significance1,3 

GS FWCW UWCW s.e.d P-value 

0 22.9 23.0 22.9 0.22 0.983 

1 23.3 23.8 23.4 0.57 0.695 

2 24.4 24.7 25.0 0.78 0.707 

3 25.5 26.0 25.9 0.64 0.688 

4 26.4 26.9 27.3 0.58 0.323 

5 27.8 27.9 28.6 0.62 0.366 

6 28.4 28.6 29.2 0.66 0.478 

7 28.6 29.5 30.2 0.66 0.078 

8 29.0a 29.7a 31.7b 0.64 <.001 

9 29.4a 30.2a 31.6b 0.65 <.006 

10 30.4a 31.3a 32.8b 0.67 <.003 
1 s.e.d= standard error of difference. 

2 a,b superscripts within rows indicate significant difference at (P<0.05). 

3 individual weekly data have been analysed by ANOVA, but caution should be exercised when 

interpreting individual means when the time x forage, time x antagonist, or time x forage x antagonist 

interaction is not significant.
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Table 6.7. Effects of forage type; grass silage (GS), fermented WCW (FWCW) or urea WCW (UWCW) supplemented without (-) or with (+) added S and Mo and S on the 
performance and rumen pH of growing lambs1. 

Items2 

Treatment Significance 

GS- GS+ FWCW- FWCW+ UWCW- UWCW+ s.e.d F A Int. 

Intake, kg/d           

Forage DMI,  0.44 0.42 0.52 0.50 0.52 0.50 0.035 0.003 0.185 0.994 

Concentrate DMI, 0.25 0.23 0.23 0.24 0.25 0.23 0.007 0.359 0.021 0.192 

Total DMI, 0.69 0.65 0.76 0.73 0.77 0.73 0.038 0.007 0.106 0.946 

DLWG, kg/d 0.12 0.10 0.13 0.11 0.14 0.15 0.012 <.001 0.201 0.303 

FCE3  0.17 0.16 0.17 0.15 0.19 0.21 0.015 0.002 0.599 0.150 

1 F= main effect of forages; A= antagonist, Int. = interaction between forages and antagonists. s.e.d= standard error of difference. 

2 DMI= total dry matter intake, DLWG= daily liveweight gain, FCE= feed conversion efficiency. 

3 FCE calculated as DLWG (kg/d) divided by DMI (kg/d). 
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6.3.3. Mineral intake 

There was no forage x antagonist interaction (P>0.05) on Cu, Mo, Fe, Zn, or Mn intake 

(Table 6.8). However, there was a forage x antagonist interaction on S intake (P<0.05). The 

intake of S was higher in lambs fed grass silage supplemented with antagonists, followed 

by lambs fed fermented or urea WCW supplemented with antagonists, and the lambs fed 

grass silage and fermented whole crop with no added antagonists, and the lowest S intake 

in lambs fed urea WCW with no added antagonists. 

Lambs offered grass silage had a higher (P<0.001) Cu (7.63 mg of Cu/d) and S (3.91 g of 

S/d) intake compared with the lambs fed fermented WCW (6.16 mg of Cu/d and 3.40 g of 

S/d) or urea WCW (6.15 mg of Cu/d and 3.37 g of S/d) (s.e.d, 0.225 for Cu and 0.10 for S). 

Lambs fed fermented WCW had a lower Fe intake (128.7 mg/d) compared with those fed 

grass silage (142.5 mg/d) or urea WCW (137.4 mg/d) (s.e.d, 3.78). The highest Mn intake 

was in lambs fed grass silage (62.3 mg/d), followed by lambs fed fermented WCW (53.6 

mg/d), while lambs fed urea WCW had the lowest Mn intake (48.5 mg/d) (s.e.d, 1.69).   

There was no effect of addition of antagonists on Cu or Zn intake (P>0.05). The addition of 

antagonists into the diet increased Mo and S intake compared with lambs fed diets with no 

added antagonists. Lambs fed diets unsupplemented with antagonists had a higher 

(P<0.05) Fe and Mn intake compared with those fed diet supplemented with antagonists.  
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Table 6.8. Minerals intake in growing lambs fed diets containing grass silage (GS), fermented WCW, or urea WCW (UWCW) supplemented without (-) or with Mo and S.  

Minerals,  

mg/d 

Treatment Significance2 

GS- GS+ FWCW- FWCW+ UWCW- UWCW+ s.e.d F A Int. 

Cu,  7.9 7.4 6.2 6.1 6.3 6.0 0.32 <.001 0.102 0.728 

Mo,  0.83 4.96 0.87 5.11 0.89 5.09 0.139 0.519 <.001 0.868 

S, g/d 2.7b 5.1d 2.4b 4.4c 2.1a 4.7c 0.14 <.001 <.001 0.017 

Fe,  147.5 137.5 130.2 127.2 141.5 133.3 5.34 0.003 0.027 0.641 

Zn,  52.8 49.8 49.6 50.2 50.3 47.9 1.65 0.162 0.100 0.270 

Mn,  64.9 59.7 54.1 53.1 50.4 46.5 2.39 <.001 0.020 0.454 

1 F= main effect of forages; A= antagonist, Int.= interaction between forage type and antagonists. s.e.d= standard error of difference. 

2 a,b,c,d Means within a row with different superscripts are significantly different (P<0.05). 
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6.3.4. Rumen pH  

There was no forage x antagonist interaction (P>0.05) on rumen pH of lambs (Fig. 6.2). 

There was also no effect (P>0.05) of Cu antagonists on rumen pH of the lambs. However, 

there was a trend (P=0.059) for a higher rumen pH in lambs fed GS forage (6.38) compared 

with those fed urea WCW (6.22) or fermented WCW (6.21) (s.e.d, 0.077).  

 

Figure 6.2. Rumen pH of the growing lambs fed forages containing grass silage (GS), 

fermented WCW (FWCW) or urea WCW (UWCW) supplemented without (-) or with (+) 

added S and Mo and S. Error bars indicate SED. 
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6.3.5. Liver mineral status 

6.3.5.1. Liver mineral concentrations 

The mean liver concentration of Cu, Mo, Fe, Zn and Mn of the representative lambs 

slaughtered at the beginning of the experiment are presented in Table 6.9.  

There was no forage x antagonist interaction (P>0.05) on liver Cu, Mo, Zn, or Mn 

concentration (Table 6.10). However, there was a forage x antagonist interaction on liver 

Fe concentration (P<0.05). Lambs offered urea WCW supplemented without or with 

antagonists had a lower liver Fe concentration compared with lambs fed grass silage 

supplemented with antagonists or grass silage or fermented WCW unsupplemented with 

antagonists, with fermented WCW supplemented with antagonists being intermediate. 

Lambs fed urea WCW or grass silage had a higher (P<0.001) liver Cu concentration 

compared with lambs fed fermented WCW, with mean values of 188.5, 171.6, and 119.0 

mg/kg DM respectively (s.e.d, 17.58). The urea WCW fed lambs had a higher (P<0.05) liver 

Mo concentration (4.44 mg/kg DM) compared with the grass silage fed lambs (3.43 mg/kg 

DM), with lambs fed fermented WCW being intermediate (4.0 mg/kg DM) (s.e.d, 0.325). 

Liver Fe concentration was lower (P<0.001) in the lambs offered urea WCW (374 mg/kg 

DM) compared with those offered grass silage (512 mg/kg DM) or fermented WCW (468 

mg/kg DM) (s.e.d, 30.3). There was no difference between forage source on lamb liver Zn 

and Mn concentrations (P>0.05).  

Lambs offered a diet supplemented with Mo and S had a lower liver Cu and Zn 

concentration compared with the lambs not receiving antagonists (P<0.05). In contrast, 

additional antagonists resulted in an increase in the liver Mo concentration compared with 

those fed diet unsupplemented with antagonists. Adding Cu antagonists had not an effect 

on liver Fe and Mn concentrations (P>0.05). 

Table 6.9. The initial liver mineral status of growing lambs. 

Liver minerals,  
mg/kg DM 

Concentration (mg/kg DM) Standard Deviation 

Cu, 341.8 ± 124.4 

Mo, 2.5 ± 0.7 

Fe, 571.1 ± 49.2 

Zn, 100.3 ± 8.3 

Mn, 87.7 ± 49.2 
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Table 6.10. Liver minerals concentration of growing lambs fed diets containing grass silage (GS), fermented WCW (FWCW) or urea WCW (UWCW) supplemented without 
(-) or with (+) added S and Mo and S. 

Minerals, 
mg/kg DM 

Treatment Significance1 

GS- GS+ FWCW- FWCW+ UWCW- UWCW+ s.e.d F A Int. 

Cu,  208.4 134.7 131.2 106.8 237.3 139.8 24.87 <.001 <.001 0.119 

Mo, 2.47 4.39 3.40 4.59 3.50 5.38 0.460 0.013 <.001 0.453 

Fe,  538d 486bcd 503cd 433bc 336a 412ab 42.9 <.001 0.537 0.041 

Zn,  106.9 92.6 120.8 95.7 110.5 104.5 9.03 0.349 0.006 0.332 

Mn,  52.7 42.5 56.0 41.7 42.9 50.5 10.75 0.961 0.366 0.318 

 1F= main effect of forages; A = main effect of antagonists (Mo and S); Int. = interaction between forages and antagonists. s.e.d= standard error of difference. 

3 a,b,c,d Means within a row with different superscripts are significantly different (P<0.05). 
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6.3.5.2. Whole liver mineral content 

There was no forage x antagonist interaction (P>0.05) on whole liver Cu, Mo, Zn, or Mn 

content (Table 6.11). There was a forage x antagonist interaction (P<0.05) on whole liver 

Fe content, with the lowest content in lambs offered urea WCW unsupplemented with 

antagonists compared with the lambs fed any of the other diets. 

Lambs fed fermented WCW had a lower (P<0.001) liver Cu content compared with lambs 

fed urea WCW or grass silage. Liver Mo and Zn content were lower in lambs offered grass 

silage than those offered urea or fermented WCW (P<0.05). The urea WCW resulted in a 

lower liver Fe content compared with the lambs fed grass silage or fermented WCW 

(P<0.001). There was no effect of forage type on liver Mn content (P>0.05). 

There was no effect (P>0.05) of antagonists on whole liver Fe, Zn, and Mn content. 

However, lambs fed diets supplemented with Mo and S had a higher (P<0.001) whole liver 

Cu content compared with the lambs not receiving Mo and S (26.1 and 17.7 mg/liver; s.e.d, 

1.91 respectively). The addition of antagonists increased (P<0.001) liver Mo concentration 

compared with lambs fed diet no added antagonists, with mean values of 0.68 and 0.43 

mg/liver (s.e.d, 0.041) respectively.  
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Table 6.11. Whole liver mineral content of growing lambs fed diets containing grass silage (GS), fermented WCW (FWCW) or urea WCW (UWCW) supplemented without 
(-) or with (+) added S and Mo and S1. 

Minerals, 
mg/liver 

Treatment Significance2 

GS- GS+ FWCW- FWCW+ UWCW- UWCW+ s.e.d F A Int. 

Cu,  26.9 18.1 18.1 15.7 33.5 19.3 3.30 <.001 <.001 0.051 

Mo,  0.32 0.58 0.48 0.68 0.49 0.79 0.071 0.002 <.001 0.593 

Fe,  69.7b 65.0b 68.7b 62.6b 46.7a 59.1b 5.66 0.001 0.876 0.047 

Zn,  13.8 12.4 16.8 14.4 15.6 15.3 1.51 0.043 0.127 0.621 

Mn,  6.9 5.7 7.9 6.2 6.0 7.2 1.57 0.787 0.546 0.383 

1 whole liver minerals content = final whole liver weight x final liver DM x final liver Cu concentration (mg/kg DM). 

2 F= main effect of forages; A = main effect of antagonists (Mo and S); Int. = interaction between forages and antagonists. s.e.d= standard error of difference.  
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6.3.5.3. Whole liver mineral retention 

There was no forage x antagonist interaction (P>0.05) on whole liver retention for Mo, Fe, 

Zn, and Mn (Table 6.12). However, there was a forage type x antagonist interaction 

(P<0.05) on the whole liver Cu retention. Liver Cu retention in lambs fed urea WCW and 

grass silage was reduced (P<0.05) by addition of antagonists, but in lambs on fermented 

WCW addition of antagonists had no an effect (P>0.05) on liver Cu retention. 

There was no effect of forage type on liver Zn and Mn retentions (P>0.05). However, liver 

Cu retention in lambs on fermented WCW was lower (P>0.05) compared with lambs on 

urea WCW or grass silage. Liver Mo retention was also affected by forage type (P<0.05). 

Liver Mo retention was higher in lambs fed urea WCW, intermediate in lambs fed fermented 

WCW and the lowest in lambs fed grass silage. Lambs offered urea WCW had a lower liver 

Fe retention than lambs offered grass silage or fermented WCW (P<0.001). Liver Zn and 

Mn retention was not affected by forage type (P>0.05).  

There was no effect of antagonists on liver Fe, Zn, and Mn retention (P>0.05). However, 

compared with the initial group, the rate of reduction in liver Cu retention was higher 

(P<0.01) in lambs fed diets supplemented with antagonists compared with lambs fed diets 

with no added antagonists, with mean values of 0.022 and 0.09 mg/day (s.e.d, 0.029) 

respectively. Lambs fed diets supplemented with antagonists had a higher liver Mo retention 

compared with lambs fed diets unsupplemented with antagonists, with mean values of 5.87 

and 2.51 µg/day (s.e.d,0.698) respectively. 
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Table 6.12. Whole liver mineral retention of growing lambs fed diets containing grass silage (GS), fermented WCW (FWCW) or urea WCW (UWCW) supplemented without 
(-) or with (+) added S and Mo and S1.  

Minerals, 
mg/day 

Treatment Significance2 

GS- GS+ FWCW- FWCW+ UWCW- UWCW+ s.e.d F A Int. 

Cu,  -0.08b -0.20a -0.21a -0.24a 0.02b -0.22a 0.05 0.004 <.001 0.019 

Mo,µg/day  0.95 4.82 3.02 6.15 3.55 6.65 1.21 0.040 <.001 0.880 

Fe,  0.19 0.12 0.16 0.09 -0.14 -0.06 0.10 <.001 0.730 0.480 

Zn,  0.06 0.04 0.09 0.07 0.08 0.05 0.03 0.190 0.080 0.950 

Mn,  -0.36 -0.38 -0.35 -0.37 -0.37 -0.36 0.02 0.770 0.420 0.660 

 
1 liver minerals retention were calculation by substrate whole liver minerals content at day zero from final whole liver Cu content divided by whole study period (days). 
2 F= main effect of forages; A = main effect of antagonists (Mo and S); Int. = interaction between forages and antagonists. s.e.d= standard error of difference. 
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6.3.6. The mean of plasma mineral profile, Cu-mediated enzymes, and haematology 

profile 

No effect (P>0.05) was observed of dietary treatment on the mean plasma Cu and Zn 

concentrations (Table 6.13). There was an effect (P<0.05) of forage type on the mean Pl-

Mo concentration, which was higher in lambs fed urea WCW, intermediate in lambs fed 

fermented WCW, and lower in those fed grass silage. Lambs fed diet supplemented with 

Mo and S had a higher (P<0.001) mean Pl-Mo concentration compared with those fed diet 

unsupplemnted with antagonists. There was no effect (P>0.05) of forage x antagonist 

interaction, or the addition of antagonists on the mean Pl-Fe concentration. However, there 

was an effect (P<0.05) of forage type on the mean Pl-Fe concentration, which was higher 

in lambs fed grass silage, intermediate in lambs fed fermented WCW, and lower in lambs 

fed urea WCW. No effect (P>0.05) was observed of dietary treatment on the mean Cp 

activity. There was also no effect (P>0.05) of forage x antagonists interaction, or forage type 

on the mean Cp:Pl-Cu ratio, but lambs fed diets supplemented with antagonists had a lower 

(P<0.05) mean Cp:Pl-Cu ratio compared with those fed diets unsupplemented with 

antagonists. There was a forage x antagonist interaction (P<0.05) on the mean of Hb 

concentration. Compared with unsupplemented antagonists, additional Mo and S 

decreased the mean Hb concentration in lambs fed fermented WCW, but lambs fed grass 

silage or urea WCW were not affected by the addition of antagonists. The mean Hct, RBC, 

and WBC were not afftected by dietary treatment (P>0.05).  
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Table 4.13. Effect of forage type grass haylage (GH) and maize silage (MS) fed without (-) or with (+) added Mo and S on mean indicators of blood Cu status over the study 
period of lambs 1. 

Items 
Treatments Significance 

GS- GS+ FWCW- FWCW+ UWCW- UWCW+ s.e.d F A Int 

Cu, µmol/L 16.3 15.9 16.3 17.2 16.9 16.6 1.10 0.323 0.897 0.336 

Mo, µmol/L 0.08 0.71 0.10 1.07 0.21 1.20 0.173 0.002 <.001 0.061 

Fe, µmol/L 47.0 46.2 44.1 42.9 42.3 40.2 4.89 0.030 0.385 0.946 

Zn, µmol/L 8.0 7.9 8.4 7.7 8.4 7.9 0.52 0.784 0.059 0.542 

Cp, mg/dL 17.5 15.9 17.0 17.2 19.1 16.0 2.99 0.770 0.107 0.388 

Cp:Pl-Cu 1.08 0.98 1.07 1.00 1.22 0.95 0.152 0.663 <.001 0.098 

Hct, % 33.6 32.7 35.0 33.5 34.3 34.3 1.45 0.193 0.168 0.512 

Hb, g/dL 11.3 11.3 11.9 10.9 11.7 11.5 0.44 0.407 0.031 0.047 

RBC, 106/mm3 12.2 12.0 12.5 11.8 12.3 11.9 0.51 0.990 0.104 0.761 

WBC, 103/mm3 9.5 8.6 10.6 8.9 9.0 8.6 1.07 0.299 0.059 0.592 
1 week 0 values were used as a covariate where appropriate. 

2 Hct- haematocrit; Hb= haemoglobin; RBC= red blood cells; WBC= white blood cells. 

3 F= main effect of forages; A = main effect of antagonists (Mo and S); Int. = interaction between forages and antagonists. s.e.d = standard error of difference. 
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6.3.7. Plasma mineral concentrations  

6.3.7.1. Plasma copper concentration 

Repeated measures analysis indicated that there was an effect (P<0.001) of time on Pl-Cu 

concentration, with plasma concentrations declining over the period of the study (Table 

6.14). However, there was no effect of time x treatment on Pl-Cu concentration (P>0.05). 

There was no effect (P>0.05) of dietary treatment on Pl-Cu concentration throughout the 

study 
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Table 6.14. Plasma copper concentration of growing lambs fed diets containing grass silage (GS), fermented WCW (FWCW) or urea WCW (UWCW) supplemented without 
(-) or with (+) added S and Mo and S (µmol/L)1. 

week 
Treatment2 Significance3 

GS- GS+ FWCW- FWCW+ UWCW- UWCW+ s.e.d F A Int 

0 16.6 18.0 16.3 17.9 17.5 19.5 1.57 -- -- -- 

2 18.8 18.9 19.3 19.9 18.4 19.9 1.24 0.644 0.322 0.707 

4 16.3 15.5 16.3 17.1 17.0 16.9 1.01 0.326 0.899 0.517 

6 14.3 13.7 14.4 15.6 15.0 15.0 1.23 0.442 0.798 0.595 

8 15.0 14.3 15.2 16.6 16.9 15.0 1.08 0.126 0.304 0.050 

10 15.7 15.0 14.9 16.5 15.6 15.1 1.10 0.854 0.836 0.275 

 1 week zero calculated as a covariate. 

2 F= main effect of forages; A = main effect of antagonists (Mo and S); Int. = interaction between forages and antagonists. s.e.d= standard error of difference. 

3 individual weekly data have been analysed by ANOVA, but caution should be exercised when interpreting individual means when the time x forage, time x antagonist, 

or time x forage x antagonist interaction is not significant. 

 

 

 

 

Repeated measures: s.e.d P-value 

 Time effect 0.377 <.001 

 Time x Forage effect 0.503 0.914 

 Time x Antagonist effect 0.424 0.156 

 Time x Forage x Antagonist effect 0.778 0.735 
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6.3.7.2. Plasma molybdenum concentration  

There was an effect (P<0.001) of time on Pl-Mo concentration (Table 6.15). There were 

also a time x forage interaction, and time x antagonist interaction on Pl-Mo concentration 

(P<0.05). There was a trend for interaction between time and forage type and antagonist 

on Pl-Mo concentration (P<0.1). 

During week 8 and 10, there was a forage x antagonist interaction (P<0.001) on Pl-Mo 

concentration, where the increase in Pl-Mo concentrations by inclusion of Mo and S in the 

urea WCW and fermented WCW fed lambs was greater compared with the GS fed lambs. 

At week 4 until week 10, the urea WCW or fermented WCW fed lambs had a higher (P<0.05) 

Pl-Mo concentration compared with the GS fed lambs. At week 2 until week 10, the inclusion 

of Mo and S resulted in an increase in Pl-Mo concentrations compared with the lambs not 

receiving antagonists (P<0.001). 

 

6.3.7.3. Plasma iron concentration 

There was an effect (P<0.001) of time on Pl-Fe concentration, with levels decreasing over 

a period of the study (Table 6.16). There was also a time x forage interaction on Pl-Fe 

concentration (P<0.05). However, there were no time x forage x antagonist interaction or 

time x antagonist interaction on Pl-Fe concentrations (P>0.05). 

There was no effect (P>0.05) of forage x antagonist interaction on Pl-Fe concentration at 

any weekly time points. Similarly, there was no effect of antagonists on Pl-Fe concentration 

(P>0.05). However, during week 6, lambs offered urea WCW had a lower (P<0.05) Pl-Fe 

concentration compared with lambs offered grass silage or fermented WCW. At week 8 and 

10, lambs offered fermented or urea WCW had a lower Pl-Fe concentration compared with 

lambs fed grass silage (P<0.05). 
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Table 6.15. Plasma molybdenum concentration of growing lambs fed diets containing grass silage (GS), fermented WCW (FWCW) or urea WCW (UWCW) supplemented 
without (-) or with (+) added S and Mo and S (µmol/L)1. 

Week 
Treatment2 Significance3 

GS- GS+ FWCW- FWCW+ UWCW- UWCW s.e.d F A Int 

0 0.17 0.23 0.14 0.15 0.19 0.13 0.096 0.695 0.980 0.710 

2 0.04 1.04 0.08 0.95 0.18 1.21 0.183 0.332 <.001 0.788 

4 0.05 1.09 0.09 1.68 0.19 1.95 0.251 0.023 <.001 0.113 

6 0.06 0.77 0.09 1.37 0.27 1.40 0.172 0.004 <.001 0.065 

8 0.07a 0.62b 0.10a 1.25c 0.22a 1.41c 0.168 0.001 <.001 0.016 

10 0.06a 0.51b 0.13a 1.06c 0.23a 1.07c 0.137 0.001 <.001 0.041 

1 F= main effect of forages; A = main effect of antagonists (Mo and S); Int. = interaction between forages and antagonists. s.e.d= standard error of difference. 

2 a,b,c Means within a row with different superscripts are significantly different (P<0.05). 

3 Individual weekly data have been analysed by ANOVA, but caution should be exercised when interpreting individual means when the time x forage, time x antagonist, 

or time x forage x antagonist interaction is not significant. 

 

 

 

 

 

 

 

Repeated measures: s.e.d P-value 

 Time effect 0.058 <.001 

 Time x Forage effect 0.081 0.007 

 Time x Antagonist effect 0.066 0.001 

 Time x Forage x Antagonist effect 0.122 0.074 
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Table 6.16. Plasma iron concentration of growing lambs fed diets containing grass silage (GS), fermented WCW (FWCW) or urea WCW (UWCW) supplemented without 
(-) or with (+) added S and Mo and S (µmol/L) 1. 

Week 
Treatment Significance2 

GS- GS+ FWCW- FWCW+ UWCW- UWCW s.e.d F A Int 

0 73.3 45.9 44.7 47.0 49.1 52.1 15.93 0.469 0.425 0.315 

2 47.8 42.7 44.3 36.0 40.5 39.5 7.29 0.517 0.261 0.783 

4 41.3 41.5 43.8 40.6 44.4 39.0 4.61 0.972 0.311 0.696 

6 60.6 57.9 54.2 54.5 41.9 43.5 5.53 <.001 0.928 0.852 

8 44.7 40.5 36.2 38.8 35.7 37.4 3.19 0.024 0.976 0.276 

10 45.6 47.7 40.6 40.6 40.7 36.1 3.86 0.012 0.713 0.451 

1 F= main effect of forages; A = main effect of antagonists (Mo and S); Int. = interaction between forages and antagonists. s.e.d= standard error of difference. 

2 Individual weekly data have been analysed by ANOVA, but caution should be exercised when interpreting individual means when the time x forage, time x antagonist, 

or time x forage x antagonist interaction is not significant. 

 

 

 

 

 

 

Repeated measures: s.e.d P-value 

 Time effect 1.81 <.001 

 Time x Forage effect 1.93 0.042 

 Time x Antagonist effect 1.58 0.922 

 Time x Forage x Antagonist effect 3.46 0.612 
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6.3.7.4. Plasma zinc concentration 

There was an effect (P<0.001) of time on Pl-Zn concentration, with concentrations 

increasing over a period of the study (Table 6.17). There was also a time x treatment 

interaction on Pl-Zn concentration (P<0.05).  

There was no forage x antagonist interaction on Pl-Zn concentration throughout the study 

(P>0.05). There was also no effect of forage type on Pl-Zn concentration, except at week 

4. At week 4, lambs fed urea WCW had a higher (P<0.05) Pl-Zn concentrations compared 

with lambs fed fermented WCW or grass silage, with mean values of 8.85, 7.93, and 7.91 

µmol/L (s.e.d, 0.456) respectively. At week 6, the Mo and S fed lambs had a lower (P<0.05) 

Pl-Zn concentration compared with lambs fed diets unsupplemented with Mo and S, with a 

mean values of 8.3 and 9.3 µmol/L (s.e.d, 410) respectively. 
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Table 6.17. Plasma zinc concentration of growing lambs fed diets containing grass silage (GS), fermented WCW (FWCW) or urea WCW (UWCW) supplemented without 
(-) or with (+) added S and Mo and S (µmol/L)1. 

Week 
Treatment2 Significance3 

GS- GS+ FWCW- FWCW+ UWCW- UWCW s.e.d F A Int 

0 7.6 6.3 7.3 6.7 7.5 6.8 0.53 -- -- -- 

2 7.4 7.9 7.9 7.8 7.7 7.3 0.55 0.631 0.907 0.490 

4 7.9 7.9 8.7 7.2 9.0 8.7 0.60 0.047 0.090 0.194 

6 8.8 8.6 9.1 8.2 9.8 8.1 0.66 0.801 0.017 0.264 

8 9.2 8.2 9.0 8.5 8.7 7.9 0.62 0.540 0.053 0.826 

10 7.8 7.9 8.5 7.3 8.3 8.3 0.50 0.307 0.229 0.148 

1 week zero used as a covariate 

2 F= main effect of forage type; A = main effect of antagonists (Mo and S); Int. = interaction between forages and antagonists. s.e.d= standard error of difference. 

3 Individual weekly data have been analysed by ANOVA, but caution should be exercised when interpreting individual means when the time x forage, time x antagonist, 

or time x forage x antagonist interaction is not significant. 

 

 

 

 

 

Repeated measures: s.e.d P-value 

 Time effect 0.16 <.001 

 Time x Forage effect 0.27 0.046 

 Time x Antagonist effect 0.25 0.022 

 Time x Forage x Antagonist effect 0.37 0.046 
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6.3.8. Ceruloplasmin activity  

There was an effect (P<0.001) of time on Cp activity, which was increasing over a study 

period (Table 6.18). There was also a time x antagonist interaction on Cp activity (P<0.05). 

However, there was no time x forage x antagonist interaction or time x forage interaction on 

Cp activity (P>0.05). 

There was no forage x antagonist interaction on Cp activity throughout the study (P>0.05). 

There was also no effect of forage type on Cp activity (P>0.05). During week 4, lambs fed 

diets supplemented with Mo and S had a lower (P<0.05) Cp activity compared with those 

not receiving Mo and S, with mean values of 13.5 and 19.8 (s.e.d, 1.68) respectively.   

 

6.3.9. Ceruloplasmin to plasma copper ratio (Cp:Pl-Cu ratio) 

There was an effect (P<0.001) of time on Cp:Pl-Cu ratio (Table 6.19). There was also a 

time x antagonist interaction on Cp:Pl-Cu ratio (P<0.05). However, there was no (P>0.05) 

time x forage x antagonist interaction, or time x forage interaction on the Cp:Pl-Cu ratio. 

There was no effect of forage type on Cp:Pl-Cu ratio of the lambs at any weekly time points 

(P>0.05), exept at week 10, there was a forage x antagonist interaction on Cp:Pl-Cu ratio. 

At week 10, there was a forage x antagonist interaction (P=0.002) on Cp:Pl-Cu ratio, when 

the additon of antagonists reduced Cp:Pl-Cu ratio in lambs on urea WCW compared with 

lambs on urea WCW unsupplemented with antagonists, wherease there was no difference 

(P>0.05) in Cp:Pl-Cu ratio between lambs fed grass silage or fermented WCW 

unsupplemented or supplemented with antagonists. During week 4, lambs fed diets 

unsupplemented with antagonists had a higher Cp:Pl-Cu ratio compared with those fed 

diets supplemented with Mo and S, with mean values of 1.2 and 0.8 (s.e.d, 0.10) 

respectively. There was no effect of forage type on Cp:Pl-Cu ratio of the lambs at any weekly 

time points (P>0.05) 
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Table 6.18. Ceruloplasmin activity of growing lambs fed diets containing grass silage (GS), fermented WCW (FWCW) or urea WCW (UWCW) supplemented without (-) or 
with (+) added S and Mo and S (mg/dL)1. 

week  
Treatment2 Significance3 

GS- GS+ FWCW- FWCW+ UWCW- UWCW+ s.e.d F A Int. 

0 9.3 11.2 9.6 10.7 12.6 11.4 1.34 -- -- -- 

2 19.7 18.1 17.4 19.1 18.5 17.0 3.29 0.882 0.811 0.716 

4 17.1 13.7 20.2 14.4 21.9 12.2 2.95 0.593 <.001 0.330 

6 20.8 18.8 20.0 22.1 19.1 21.6 3.74 0.898 0.675 0.647 

8 19.1 18.6 17.8 19.5 23.3 20.0 3.65 0.487 0.724 0.631 

10 10.7 10.2 9.8 10.8 12.6 9.2 1.27 0.838 0.161 0.057 
1 week zero used as a covariate 

2 F= main effect of forages; A = main effect of antagonists (Mo and S); Int. = interaction between forages and antagonists. s.e.d= standard error of difference. 

3 Individual weekly data have been analysed by ANOVA, but caution should be exercised when interpreting individual means when the time x forage, time x antagonist, 

or time x forage x antagonist interaction is not significant. 

 

 

 

 

 

 

Repeated measures: s.e.d P-value 

 Time effect 1.14 <.001 

 Time x Forage effect 1.70 0.855 

 Time x Antagonist effect 0.93 0.034 

 Time x Forage x Antagonist effect 2.11 0.725 
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Table 6.19. The ratio of Cp:Pl- Cu of growing lambs fed diets containing grass silage (GS), fermented WCW (FWCW) or urea WCW (UWCW) supplemented without (-) or 
with (+) Mo and S1. 

Week 
Treatment2 Significance4 

GS- GS+ FWCW- FWCW+ UWCW- UWCW+ s.e.d F A Int. 

0 0.56 0.61 0.61 0.60 0.73 0.61 0.069 -- -- -- 

2 1.02 0.93 0.88 0.94 1.05 0.88 0.140 0.807 0.402 0.482 

4 1.04 0.80 1.25 0.84 1.32 0.70 0.168 0.594 <.001 0.293 

6 1.43 1.27 1.44 1.41 1.37 1.28 0.151 0.612 0.281 0.848 

8 1.25 1.31 1.14 1.16 1.51 1.29 0.216 0.300 0.726 0.630 

103 0.67a 0.67a 0.65a 0.65a 0.84b 0.59a 0.054 0.355 0.011 0.002 
1 week zero used as a covariate. 

2 F= main effect of forages; A= antagonists; Int. = interaction between forages and antagonist. s.e.d= standard error of difference. 

3 a,b Means within a row with different superscripts are significantly different (P<0.05). 

4 Individual weekly data have been analysed by ANOVA, but caution should be exercised when interpreting individual means when the time x forage, time x antagonist, 

or time x forage x antagonist interaction is not significant. 

 

 

 

 

 

 

Repeated measures: s.e.d P-value 

 Time effect 0.062 <.001 

 Time x Forage effect 0.050 0.367 

 Time x Antagonist effect 0.039 0.019 

 Time x Forage x Antagonist effect 0.107 0.612 
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6.3.10. Superoxide dismutase activity  

Week 0 was used as a covariate. At week 10, there was no effect (P>0.05) of dietary 

treatment on SOD activity (Fig. 6.3). 

 

Figure 6.3. superoxide dismutase activity of growing lambs fed diets containing grass silage 
(GS), fermented whole crop wheat (FWCW) or urea-treated whole crop wheat (UWCW) 
supplemented without (-) or with (+) Mo and S. Error bars indicate SED. 
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6.3.11. Haematology parameters 

6.3.11.1. Haematocrit  

There was an effect (P<0.001) of time on haematocrit (%), with values gradually increasing 

in all treatments (Table 6.20). However, there was no time x treatment interaction on Hct 

(P>0.05).  

There was no effect (P>0.05) of dietary treatment on Hct at any weekly time points.  

 

6.3.11.2. Haemoglobin concentration  

There was an effect (P<.001) of time on Hb concentration, with concentrations increasing 

in all treatments with time (Table 6.21). There was no effect of time x treatment interaction 

on Hb concentration (P>0.05).  

There was no (P>0.05) forage x antagonist interaction on Hb concentration throughput the 

study. However, there was an effect of forage type on blood Hb concentration at week 10; 

the concentration of Hb was higher in lambs fed urea WCW, intermediate in the fermented 

WCW fed lambs and lowest in lambs fed grass silage, with mean values of 12.11, 11.46, 

and 11.29 g/dL (s.e.d, 0.343) respectively. At week 10, lambs fed diets that were 

unsupplemented with Mo and S had a higher (P=0.003) blood Hb concentration compared 

with lambs not receiving antagonists, with mean values of 12.1 and 11.2 g/dL (s.e.d, 0.30) 

respectively.  
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Table 6.20. Haematocrit (Hct%) of growing lambs fed diets containing grass silage (GS), fermented WCW (FWCW) or urea WCW (UWCW) supplemented without (-) or 
with (+) Mo and S1. 

week 

Treatment2 Significance3 

GS- GS+ FWCW- FWCW+ UWCW- UWCW+ s.e.d F A Int 

 0 33.58 35.26 35.66 33.79 35.73 33.24 1.367 -- -- -- 

4 30.57 29.13 33.57 31.12 32.39 32.32 2.003 0.132 0.254 0.696 

10 35.61 34.46 37 34.71 35.83 36.02 1.495 0.641 0.212 0.496 

1 week zero used as a covariate. 

2 F= main effect of forages; A= antagonists; Int. = interaction between forages and antagonist. s.e.d= standard error of difference. 

3 Individual weekly data have been analysed by ANOVA, but caution should be exercised when interpreting individual means when the time x forage, time x antagonist, 
or time x forage x antagonist interaction is not significant. 

 

 

 

 

 

 

 

 

 

Repeated measures: s.e.d P-value 

 Time effect 0.531 <.001 

 Time x Forage effect 0.694 0.375 

 Time x Antagonist effect 0.576 0.470 

 Time x Forage x Antagonist effect 1.023 0.831 
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Table 6.21. Haemoglobin concentration (g/dL) of growing lambs fed diets containing grass silage (GS), fermented WCW (FWCW) or urea WCW (UWCW) supplemented 
without (-) or with (+) Mo and S1. 

week 

Treatment2 Significance3 

GS- GS+ FWCW- FWCW+ UWCW- UWCW+ s.e.d F A Int 

0 11.78 11.58 11.86 11.65 12.38 10.96 0.454 -- -- -- 

4 10.81 11.17 11.67 10.5 10.97 11.03 0.548 0.964 0.404 0.113 

10 11.5 11.08 12.4 10.51 12.35 11.88 0.498 0.049 0.003 0.066 

1 week zero used as a covariate. 

2 F= main effect of forages; A= antagonists Int. = interaction between forages and antagonist. s.e.d= standard error of difference. 

3 Individual weekly data have been analysed by ANOVA, but caution should be exercised when interpreting individual means when the time x forage, time x antagonist, 

or time x forage x antagonist interaction is not significant. 

 

 

 

 

 

 

 

 

Repeated measures: s.e.d P-value 

 Time effect 0.157 <.001 

 Time x Forage effect 0.212 0.121 

 Time x Antagonist effect 0.185 0.120 

 Time x Forage x Antagonist effect 0.307 0.083 
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6.3.11.3. Red blood cell counts  

There was an effect (P<0.001) of time on red blood cell counts, with the values increasing 

across all treatments (Table 6.22). However, there was no time x treatment interaction on 

RBC counts (P>0.05). 

Red blood cell counts were not affected (P>0.05) by dietary treatment at any weekly time 

points. 

 

6.3.11.4. White blood cell counts  

There was an effect (P<0.001) of time on WBC counts, with values gradually increased with 

time in all treatments (Table 6.23). There was no effect of time x treatment interaction on 

WBC counts (P>0.05). 

There was no effect (P>0.05) of forage x antagonist interaction on WBC counts in the lambs 

throughout the study. Likewise, there was no effect of forage type on WBC counts at any 

weekly time points (P>0.05). However, at week 4, lambs fed diet supplemented with 

antagonists had a lower WBC counts compared with lambs fed diet unsupplemnted with 

antagonists, with mean values of 7.9 and 9.2 103/mm3 (s.e.d,0.55) respectively. 
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Table 6.22. Red blood cell counts of growing lambs fed diets containing grass silage (GS), fermented WCW (FWCW) or urea WCW (UWCW) supplemented without (-) or 
with (+) Mo and S (106/mm3)1. 

Week 

Treatment2 Significance3 

GS- GS+ FWCW- FWCW+ UWCW- UWCW+ s.e.d F A Int 

0 12.84 13.16 12.86 12.65 12.74 12.48 0.425 -- -- -- 

4 11.30 10.85 11.76 11.03 11.78 11.19 0.619 0.615 0.104 0.951 

8 12.47 12.04 12.65 11.83 12.48 12.16 0.448 0.960 0.051 0.706 

1 week zero used as a covariate. 

2 F= main effect of forages; A= antagonists; Int. = interaction between forages and antagonist. s.e.d= standard error of difference. 

3 Individual weekly data have been analysed by ANOVA, but caution should be exercised when interpreting individual means when the time x forage, time x antagonist, 

or time x forage x antagonist interaction is not significant. 

 

 

 

 

 

 

 

 

 

Repeated measures: s.e.d P-value 

 Time effect 0.150 <.001 

 Time x Forage effect 0.294 0.511 

 Time x Antagonist effect 0.240 0.922 

 Time x Forage x Antagonist effect 0.362 0.994 
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Table 6.23. White blood cell counts of growing lambs fed diets containing grass silage (GS), fermented WCW (FWCW) or urea WCW (UWCW) supplemented without (-) 
or with (+) Mo and S (103/mm3)1. 

Week 

Treatment Significance2 

GS- GS+ FWCW- FWCW+ UWCW- UWCW+ s.e.d F A Int 

0 10.35 10.39 11.62 9.85 9.26 9.52 
1.090 0.212 0.440 0.361 

4 9.14 7.39 9.65 8.66 8.69 7.61 
0.954 0.280 0.026 0.828 

8 9.09 8.02 10.57 8.29 9.06 8.72 
1.155 0.563 0.073 0.489 

1 F= main effect of forages; A= antagonists; Int. = interaction between forages and antagonist. s.e.d= standard error of difference. 

2 Individual weekly data have been analysed by ANOVA, but caution should be exercised when interpreting individual means when the time x forage, time x antagonist, 

or time x forage x antagonist interaction is not significant. 

 

 

 

 

 

 

 

 

Repeated measures: s.e.d P-value 

 Time effect 0.302 <.001 

 Time x Forage effect 0.625 0.558 

 Time x Antagonist effect 0.510 0.259 

 Time x Forage x Antagonist effect 0.756 0.440 
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6.4. Discussion 

The pH value of whole crop forages can give a good indication of its method of preservation 

(Adamson and Reeve, 1992). The WCW that was treated with urea was well preserved, as 

reflected by the pH value, which was above 8.0. It has been suggested by Adogla-Bessa et 

al. (1999) that a pH value above 8.0 indicates successful promotion of alkaline conditions, 

limiting the proliferation of fungi and saccharolytic clostridia, which often results in aerobic 

spoilage and DM loses (Adogla-Bessa et al., 1999). Similarly, the low pH value of pH 3.9 in 

fermented WCW shows the successful conversion of water soluble carbohydrates into 

organic acids, particularly lactic acid, which eliminates enzyme activity and undesirable 

microorganisms in forage during ensiling (Merry et al., 2000). It is therefore likely that in the 

current study fermented WCW and urea WCW were well preserved. The grass silage used 

in this study seemed to be also well preserved, with a low pH 4.2 (Bond, 2006).  

 

The results of the current study demonstrated that DMI in growing lambs was higher when 

fed on either urea WCW or fermented WCW than GS, which may be due to the higher 

forage DM in WCW compared GS, as the high intake of WCW in cows has been suggested 

to possibly be associated with forage DM (Keady et al., 2007). Previous work also has 

shown that feeding WCW generally increased DMI compared to GS in cows (Leaver and 

Hill, 1995; Sinclair et al., 2003; Owens et al., 2009), or when it is partially replaced with 

fermented or urea treated WCW (Bond, 2006; Burke et al., 2007). The lack of a difference 

in DMI between lambs offered fermented WCW or urea WCW in the present study is 

consistent with the results of Leaver and Hill (1995), Phipps et al. (1995) and Walsh et al. 

(2008) who reported no significant difference in DMI between animals fed fermented WCW 

or urea WCW. The similarity in DMI between fermented WCW and urea WCW had been 

attributed to their similar chop length (Walsh et al., 2008), which was also similar in the 

current study.   

 

The higher intake in the urea WCW fed lambs is also reflected in a higher weight gain 

compared with the lambs fed GS, possibly due to the greater energy intake as a result of 

the greater DMI (Murphy et al., 2004; Walsh et al., 2008). The higher weight gain in urea 

WCW compared with GS is in agreement with the results of with the result of Murphy et al. 

(2004), Burke et al. (2007) and Walsh et al. (2008) who reported that liveweight gain was 

significantly increased when animals were offered processed or urea WCW compared to 

GS. The higher weight gain in growing lambs fed urea WCW in the current study compared 

with those fed fermented WCW was despite having a similar DMI which may be related to 

an enhancement in synchronisation of supply of additional volatile N from urea in the urea 
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WCW, and the fermentable energy in WCW, resulting in enhanced microbial growth 

(Adogla-Bessa et al., 1993; Sinclair et al., 1993), and animal performance (Bond, 2006). 

 

Performance characteristics such as intake and liveweight gain of the growing lambs were 

not affected by Cu antagonists. These results are similar to the results of Chapters 3 and 4. 

However, in the current study, 6 lambs were removed from the study due to losing weight 

as a result of being affected by pneumonia. The removed lambs were from all dietary 

treatments, therefore, the antagonists’ cause was unlikelihood. The impairment in animal 

growth rate as a result of antagonists addition has been reported to be accompanied by 

decrease in feed intake (Humphries et al., 1983; Phillippo et al., 1987a), which was not 

affected in the current study.  

 

In the current study, final liver Cu concentration averaged between 192.3 and 127.1 mg/kg 

DM in lambs fed diets supplemented without or with antagonists and these concentrations 

are well in excess of the 20 mg/kg DM considered to be marginal for Cu deficiency (Suttle, 

2010). Liver Cu status was different between lambs fed a diet, with a high liver Cu 

concentration in urea WCW and GS compared with fermented WCW fed lambs. The effect 

of forage type on liver Cu status has been also reported in dairy cows (Sinclair et al., 2017) 

who reported that liver Cu concentration in cows fed maize silage was higher than those 

fed grass silage. The higher liver Cu concentration in GS compared to fermented WCW 

may be due to the higher dietary Cu intake in GS compared with fermented WCW (Table 

6.4), as the increase in Cu intake can result in increased liver Cu concentration (Suttle, 

2012). Cu intake in urea WCW fed lambs was similar to fermented WCW fed lambs and 

lower than GS, but compared with GS, liver Cu status in lambs fed urea WCW was 

numerically higher (approximately 17 mg/kg DM) and significantly higher than fermented 

WCW. The application of urea has been found to raise the DM digestibility (Ørskov et al., 

1983). Adesogan et al. (1998) reported that the digestibility of organic matter content in DM 

of urea WCW harvested at DM of 620 g/kg was (646 g/kg), which was higher than that of 

fermented WCW (611 g/kg) harvested at lower DM 593 g/kg. Likewise, Walsh et al. (2008) 

also reported DM digestibility of urea WCW was higher compared with fermented WCW 

and GS in dairy cows. In addition, Cu in feedstuffs has been reported to be mainly 

associated with the lignocellulose (Ibrahim et al., 1990) and alkali treatment can dissolve 

the lignocellulosoic cross-linking of the cell (Hill and leaver, 1999), therefore, may allow for 

a greater Cu available for absorption by animals. Similarly, ammonia application has been 

found to decrease the NDF fraction, due to the partial solubilisation of hemicellulose 

(Haddad et al., 1994). This once again, could potentially allow for greater Cu availability. 
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Consequently, better digestibility in urea WCW may result in increased Cu available for 

absorption. However, the digestibility of forages in the current study was not determined.  

 

The adverse effect of Cu antagonists on liver Cu status is well documented (Gooneratne et 

al., 1989a; Suttle, 2010). In the current study the inclusion of Mo and S dramatically reduced 

liver Cu status and this is in agreement with the results of other Chapters in this thesis. This 

reduction in liver Cu status may be due to the formation of insoluble Cu-thiomolybdate 

complexes (Dick et al., 1975), which is biologically unavailable to the tissues, and reduces 

Cu availability by reducing Cu absorption and increased biliary Cu excretion (Robinson et 

al., 1987; Crosby et al., 2004). As a consequence, liver Cu concentration is depleted 

(Gooneratne et al., 1994; Suttle and Small, 1993; Gooneratne, 2012). Alternatively, liver Cu 

status also may be decreased systemically due to absorbed thiomolybdates into the blood 

stream, resulting in sequestering Cu from hepatocytes (Gooneratne, 2012), or rendering Cp 

to be recycled back to liver, hence reducing liver Cu (Williams, 2004). However, systemic 

effects of absorbed thiomlybdate on liver Cu status has been found to be evident by an 

increase in Pl-Cu concentration and reduction in Cp activity, which were not affected in the 

current study. Therefore, the reduction in liver Cu status in the present study was probably 

attributed to the formation of the rumen Cu-thiomolybdate complex that may cause a 

reduction in Cu availability (Suttle, 1991). 

 

The effect of forage type on the degree of thiomolybdate formation had been reported to be 

affected by the forage type and preservation methods, though, the reason for this effect is 

not fully understood (Suttle, 1983a; Ivan, 1993; Suttle, 2010). For example, the inhibitory 

effect of Mo on grass hay was less pronounced compared with fresh herbage or semi-

purified diet for lambs, possibily due to the lower release of Cu from hay into the rumen, the 

site of Cu antagonisms (Suttle, 1983b). Similarly, Sinclair et al., (2017) showed that addition 

of Mo and S resulted in a greater reduction in liver Cu retention in cows fed grass silage 

compared with maize silage, but the reason for this effect was not clear. In the current study, 

the antagonist effect of the addition of Mo and S was greater in urea WCW and GS fed 

lambs compared with fermented WCW fed lambs. The low response to Cu antagonists in 

fermented WCW compared with the urea WCW may be related to a higher Cu release form 

urea WCW due to its higher digestibility as discussed above and hence more Cu available 

in the rumen to complex with Mo and S, thereby reducing Cu availability (Suttle, 1983b). 

Compared with the grass silage, may be related to the difference in rumen pH between two 

the forages, which in turn, may affect the interaction between Cu and thiomolybdates 

(Suttle, 1991) as rumen pH in GS tended to be higher than fermented WCW and urea WCW. 

http://www.sciencedirect.com/science/article/pii/S0921448899000048#BIB10
http://www.sciencedirect.com/science/article/pii/S0921448899000048#BIB18
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In general, rumen pH can be decreased by feeding more rapidly digested starch such as 

wheat (Grant, 1994). In addition, the higher NDF content in GS forage compared with other 

forages (Table 6.5), may increase the residence time of GS in the rumen and increase 

salivation, resulting in a less acidic rumen environment (Ørskov, 1987). Crosby et al. (2004) 

demonstrated that compared with lambs fed diet unsupplemented with Mo, addition of Mo 

(4mg/kg DM) resulted in decreased liver Cu concentration to a greater extent (52%) in lambs 

housed in straw bedded floor compared with lambed housed in expanded metal floor (21%), 

when they attributed to a higher rumen pH caused by feeding straw. The higher rumen pH 

should promote a healthy rumen micro-organisms, including protozoa (Ørskov, 1987; 

Belanche et al., 2016), reduces S to sulfide (Suttle, 1995; Spears, 2003; Drewnoski et al., 

2014). Independent from its essential role in the mechanism by which Mo reduces Cu 

availability (Dick et al., 1975), sulfide also can reduce Cu availability via formation of 

insoluble Cu-sulfide complexes in the gut (Suttle, 1974; Ivan et al., 1985). Moreover, Suttle 

(1991) suggested that the antagonist effect of thiomolybdate on liver Cu could be reduced 

by a decrease in rumen pH due to the increase in sulfide absorption (Bray et al., 1975) and 

breakdown thiomolybdates.  

 

Molybdenum in the diet is absorbed as water-soluble molybdates (Suttle, 2010), which are 

normally stored in tissues such as liver, kidney, and the adrenal gland. Molybdoprotein 

binds to sulphite oxidase in the mitochondrial membrane, and to dehydrogenase and 

aldehyde oxidase in the cytosol (Johnson, 1997). Liver Mo concentration was higher in 

lambs fed WCW diets compared with GS. This possibly arises from a higher DMI by lambs 

on WCW treatments as Mo concentrations in the forages were similar. Pervious work has 

reported that when Mo is given as Mo and S or tetra-thiomolybdate, or as ammonium 

molybdate there is a resultant increase in Mo retention (Suttle and Field, 1983; Zhou et al., 

2011). However, Sinclair et al. (2013) reported a small effect of additional Mo and S in dairy 

cows on liver Mo concentration. In the current study, additional Mo and S increased liver 

Mo retention dramatically, which suggests that liver is possibly a major repository for Mo in 

growing lambs.  

 

In the current study, liver Fe status was greater for lambs fed either of the silages (GS and 

FWCW) than urea WCW diets. The same effect was observed in Pl-Fe concentration. By 

the end of the study, only lambs on urea WCW diet lost liver Fe concentration. Ibrahim et 

al. (1990) demonstrated that the acidic environment of ensiling grass silage and maize 

silage promoted elevated the solubility of Fe and other minerals compared to unfermented 

feed. Similarly, Hansen and Spears (2009) showed that inclusion of soil to the green chop 
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before ensiling, resulted in an increased Fe solubility or bioaccessibility compared with the 

addition of soil after ensiling. Therefore, by ensiling forages GS and FWCW, Fe availability 

may be increased and have resulted in increased liver and plasma Fe status in the lambs 

fed ensiled forages. However, the Fe concentration in the present study unlikely to have 

had an antagonist effect on Cu metabolism (Williams, 2004; Sefdeen et al., 2014; 2016). 

Liver status of Mn was not affected by dietary treatment. Additionally, only a small effect of 

additional Mo and S on liver Zn concentration was observed in the present study. In general, 

it has been suggested that the liver is not a major store for these elements (Suttle, 2010; 

Sinclair et al., 2013). 

 

In the current study the mean Pl-Cu concentration (16.5 µmol/L) and Cp activity (17.1 

mg/dL) were in excess of the values of 9.4 µmol/L for Pl-Cu concentration and 15 mg/dL for 

Cp activity that are considered to be deficient in lambs (Kendall et al., 2000; Suttle, 2010). 

Additional Mo and S had no significant effect on Pl-Cu concentration, and only had a small 

effect on Cp activity which was reduced on one time point. Therefore, the results of the 

current study confirm the insensitivity of Pl-Cu concentration as an indicator to assess Cu 

deficiency in ruminants (Ivan, 1993). This is due to maintaining Cu level in plasma within 

normal range, during depletion or repletion by changing liver Cu concentration (Laven and 

Livesey, 2005). In growing cattle, a meta-analysis, on the relationship between dietary Cu, 

Mo, and S and Pl-Cu concentration, Dias et al. (2013) concluded that any prediction 

equation would be limited, Pl-Cu concentration should only be used as an indicator of Cu 

status when liver Cu stores are either very high or low (Laven and Livesey, 2005; Suttle, 

2010). Alimon et al. (2011) reported that supplementation of Mo and S had no effect on 

sheep Pl-Cu concentration. Likewise, Suttle (2012) reported no effect of additional 2 mg/kg 

DM of Mo and 3 g/kg DM of S on Pl-Cu in Texel ram lambs over a period of 96 days. Plasma 

concentration of Zn and Mn was not significantly affected by dietary treatment, which is in 

agreement with the results of Alimon et al. (2011) and Sinclair et al. (2013; 2017) in sheep 

and cows respectively.   

 

The ratio of Cp:Pl-Cu was not affected by dietary treatment, except of two time points where 

it was reduced by the addition of antagonists. The Cp:Pl-Cu ratio in the current study was 

generally low. The low ratio of ratio of Cp:Pl-Cu concentration (0.6-1.0) also has been 

observed in cattle fed a diet containing low Mo (1.44-2.1 mg/kg DM) compared with the 

concentration used in the current study, which reached approximately 5 mg/kg DM in the 

supplementary diets. The reduction of Cp:Pl-Cu ratio by addition of Mo has been reported 

to be accompanied by an increase in Pl-Cu concentration, which was not affected by 
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antagonists in the current study, as an indication of the presence of thiomolybdate in the 

blood (Williams, 2004). The Cu-containing enzyme (SOD) activity, which is involved in the 

defence against free radicals in the body (Suttle, 2010) also was not affected by dietary 

treatment.  
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6.5. Conclusion  

The results of this study indicate that addition of Mo and S had no effect on lambs 

performance, but lambs fed urea WCW were heavier compared with lambs fed grass silage 

or fermented WCW. Liver Cu status was numerically higher in lambs fed urea WCW 

compared with lambs fed GS despite a higher Cu intake in the GS fed lambs. In addition, 

Cu intake was similar in both urea WCW and fermented WCW fed lambs, but liver Cu status 

was higher in lambs fed urea WCW than fermented WCW. The higher liver Cu in urea WCW 

lambs may possibly be attributed to an increase in the WCW digestibility as a result of urea 

application and hence increase the availability of Cu for absorption due the break down of 

plant cell wall releasing Cu. The addition of Mo and S had no effect on liver Cu retention of 

lambs fed fermented WCW, whilst substantially reduced liver Cu retention in lambs fed urea 

WCW or GS. Liver and plasma Fe status was higher in lambs offered silages (GS and 

fermented WCW). This confirms the findings that the bioavailability of Fe increased after 

ensiling forages (Hansen and Spears, 2009). A small effect was observed of adding of 

antagonists, within limits of this study, on plasma Cu or indicators of plasma Cu activity, and 

it can be concluded that using these parameters to assess Cu status is limited. 

 

To conclude, the use of urea to preserve WCW would be more beneficial to growing lambs 

in terms of increasing in weight gain and Cu availability, however, during the presence of 

high levels of dietary Mo and S it may be less beneficial than preserving WCW as fermented 

WCW. The reason for the difference in the Cu metabolism between lambs fed FWCW and 

lambs fed GS and urea WCW may be related to the rumen pH and its influence of Cu and 

thiomolybdate interactions. However, more research is required to elucidate the role of 

rumen pH in Cu metabolism in ruminant animals.  
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Chapter 7 The effect of grass preservation method on Cu distribution in rumen fluid 

following in vitro fermentation 

 

7.1. Introduction 

Results obtained from previous Chapters (3, 4, and 6) have demonstrated the effect of 

forage type on liver Cu status but the mechanism of this effect remains unclear. As 

discussed previously, the difference in liver Cu status may either be attributed to the 

difference in Cu intake, the effect of rumen pH on Cu x antagonists interactions, or the 

difference in Cu distribution between rumen digesta fractions.  

 

The coefficient of Cu absorption has been found to vary between feedstuffs and the 

preservation of grass as hay or silage generally improves Cu availability (Suttle, 1986). 

Fisher et al. (1972) was the first to evaluate the effect of forage preservation on plasma Cu 

concentration in cattle, with concentrations being higher when offered hay compared with 

those offered grass silage. Similarly, Suttle (1980a; 1980b; 1983b) reported that Cu 

availability based on plasma Cu concentration in lambs and ewes were higher when hay or 

dried grass was offered compared to grass silage or fresh grass. However, the reasons for 

the effects of preservation method on the Cu availability was not clear, but may possibily be 

was due to the lower extent to which Cu was released from plants into the rumen, which is 

the site of Cu interactions with its antagonists (Suttle, 1983b). The release of minerals was 

found to be different between four different species of tropical hays digested in nylon bags 

in the rumen and the proportion of minerals removed during digestion were positively related 

to the initial mineral in the hays (Playne et al., 1978). Waghorn et al. (1990) demonstrated 

that the proportion of Cu in the supernatant fraction of the rumen digesta was generally 

lower with dried feed than fresh feed. In contrast, in Chapter 5 show the higher Cu 

distribution in supernatant fraction in grass and maize silag compared with dried grass 

pellets. Waghorn et al. (1990) concluded that the difference in minerals distribution appears 

to be dependent on concentration of minerals in the feed DM rather than type of feed. 

Therefore, the aims of this study were to investigate the effects of grass preservation 

method on Cu distribution in rumen liquor following in vitro fermentation and to investigate 

whether the different in Cu distribution of the rumen digesta fractions due to the different in 

Cu content between forages or due to the difference in Cu release from plant materials.  
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7.2. Materials and methods 

7.2.1. Experimental design, forage production and chemical composition  

The experiment was conducted on grass forage preserved differently as hay, silage, or fresh 

grass. The experiment was designed as a one-way ANOVA. Forage was obtained as a first 

cut grass from a predominately perennial ryegrass sward. Grass was harvested on 25th May 

2016, using a self-propelled, precision-chop forage harvester (John Deer, 7480I, UK), and 

wilted for 24 hrs, and chopped at 10 mm. Approximately 4 kg of the chopped grass was 

frozen and kept at –20°C prior to being used as a control or fresh grass (FG), and another 

4 kg was dried in an air forced oven at 25°C for 5 days to produce artificial grass hay (AGH), 

while grass silage (GS) was produced in a small silos. Four silos were lined with a plastic 

bag and filled to the neck with approximately 2 kg of forage. The neck of the plastic bag was 

sealed with tape, and approximately 1 kg of sand was placed on the top of each silo in order 

to consolidate well. Silos were ensiled for four weeks before being opened, and stored at -

20°C before being used. Forages (FG, GH, and GS) samples were analysed for dietary 

content of DM, Ash, CP, NDF, EE, and pH as described in Chapter 2, sections; 2.1.1 to 

2.1.6. Dietary mineral content of the experimental forages were also determined as 

described in section 2.4.1. Chemical composition and minerals of the experimental diets 

are presented in Table 7.1.  

 

Table 7.1. The effects of preservation methods on the chemical composition of fresh grass (FG), grass 
silage (GS), and artificial grass hay (AGH). 

 Item FG GS AGH 

Chemical composition, g/kg DM   
DM, g/kg 245 216 920 
CP,  91 90 91 
NDF,  491 524 561 
EE, 9.5 13.1 13.4 
Ash,  79 97 81 
NSC2, 329.5 275.9 253.6 
pH3, nd 3.99 nd 
Mineral concentrations, mg/kg DM  
Cu,  6.2 6.3 6.5 
Mo,  0.6 0.7 0.8 
S, g/kg DM 0.6 0.8 0.6 

1 nd= not detected. 

2 Non-structural carbohydrate (NSC) was calculated by subtracting the sum of the amounts (g/kg) 

of CP, NDF, EE, and ash from 1000 (McDonald et al., 2011)  
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7.2.2. In vitro   

The distribution of Cu and other minerals in the rumen digesta were determined by using 

two in vitro methods, including the gas production methods to mimic the rumen (Theodorou 

et al., 1994), and the two-stage method to mimic the abomasum (Tilly and Terry, 1963). 

 

7.2.2.1. In vitro gas production 

Forages (FG, GS, and AGH) were fermented using an in vitro gas production batch culture 

technique as described in Chapter 5 section (5.2.2). All three forages were incubated (at 

19th of June 2016) in triplicate and replicated in four separate weeks. Three blank vessels 

were also incubated in each run in order to correct gas production. The experimental design 

had 9 fermentation vessels with 3 vessels for each forage. 

 

7.2.2.2. Two-stage method 

The in vitro two stage incubation method was adapted from Tilly and Terry (1963) was used. 

In the first stage, the same method of in vitro gas production was used as described in 

section 7.2.2.1. The second stage involved digestion with pepsin-HCl for 48hrs at 38°C (Tilly 

and Terry, 1963). After 48hrs of incubation vessels were removed from the incubator and 

dried in an air force oven at 60°C for 5 days. Vessels were then filled with 200 ml of freshly 

made pepsin-HCl solution, which was prepared by dissolving 2 g of pepsin (1:10,000 

biotechnology grade; Lutterworth, Leicestershire, UK) in 850 ml of purite water, and added 

to 100 ml of 1M HCl, and the solution was made up to 1L with purite water. Vessels were 

then incubated at 48°C for 48hrs, and were occasionally shaken by hand. The experimental 

design had 9 fermentation vessels with 3 vessels for each forage. 

 

7.2.3. Vessel pH determination 

At the end of each run (after 48hrs), the lids were removed from all vessels and the pH was 

directly determined, as described in a section 2.1.6.  

 

7.2.4. Fractionation of vessels fluid 

Fermented rumen liquor was fractionated into 4 fractions, including a strained solid fraction, 

protozoa rich fraction, bacteria rich fraction, and supernatant fraction as described in section 

5.2.4. Similarly, at the end of second 48hrs of pepsin-HCl digestion, vessel contents were 
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centrifuged at 30,000 g for 30 min and the supernatant was collected for subsequent mineral 

distribution determination in the strained fraction (SN). 

 

7.2.5. Mineral analysis of vessel fractions 

Samples from all collected fractions were prepared for mineral analysis as described in 

section 5.2.5. Following that samples were analysed for mineral concentrations as 

described in section 2.4.1. Samples of the SN fraction in both gas production and pepsin 

digested vessels were directly analysed for mineral content, as described in section 2.4.1. 

The mixture of rumen fluid:saliva was not analysed for its meniral content. 

 

7.2.6. Statistical analysis 

Cumulative gas production was analysed using repeated-measures as one way design 

(ANOVA) with the treatment being forage type. Vessel pH and mineral distribution were 

also as a one-way ANOVA design with the treatment being forage type. Runs were used 

as a block. Data for this study was analysed using Genstat 17th edition (Lawes Agricultural 

Trust, VSN International Ltd, Oxford, UK). Significance was set at P<0.05 and trends at 

P<0.10. Significant differences between means were tested using the protected least 

significant difference (LSD) (Snedecor and Cochran, 1989).   
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7.3. Results  

7.3.1. Gas production  

Repeated measures analysis indicated that there was an effect of time on cumulative gas 

production (Fig. 7.1). Gas production increased (P<0.001) in all forage treatment by the end 

of the experiment. However, there was no time x forage interaction on cumulative gas 

production (P>0.05).  

There was a difference (P<0.001) between forages in cumulative gas production, with gas 

production being higher in fresh grass and grass silage compared with artificial grass hay 

from time 3h until 48hrs.   

 

Figure 7.1. The effect of forage type, fresh grass (FG), grass silage (GS), and artificial grass 
hay (AGH) on the in vitro cumulative gas production over a period of 48hrs at 39°C. Error 
bars indicate SED. Individual weekly data have been analysed by ANOVA, but caution should be 
exercised when interpreting individual means when the time x forage interaction is not significant. 

 

Repeated measures: s.e.d P-value 

 Time effect 0.524 <.001 

 Time x Forage effect 0.92 0.916 
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7.3.2. Vessel pH  

The final pH by the end of the study was affected (P<0.001) by preservation methods (Fig. 

7.2). The grass silage and fresh grass forages had a lower pH compared with artificial grass 

hay, with mean values of 5.96, 5.98, and 6.08 (s.e.d, 0.021) respectively. 

 

 

Figure 7.2. The effect of forage type, fresh grass (FG), grass silage (GS), and artificial grass 

hay (AGH) on the final vessel pH over the period of 48hrs at 39°C. Error bars indicate SED. 
a,b Means with different superscripts are significantly different (P<0.05).  
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7.3.3. Distribution of minerals within fluid fractions 

7.3.3.1. Distribution of copper within fluid fractions 

Cu distribution in the strained solid, protozoa rich, and bacteria rich, and supernatant 

fractions was not affected by preservation method, and there was no (P>0.05) difference 

between fresh grass, grass silage, and artificial grass hay in the associated Cu with strained 

solid, protozoa rich, and bacteria rich, and supernatant fractions (Table 7.2).  

 

Table 7.2. The effect of forage type, fresh grass (FG), grass silage (GS), and artificial grass hay (AGH) 
on the percentage distribution of copper in fractions of in vitro gas production fermented rumen digesta 
(%)1. 

Fractions 

Forages Significance2 

 FG  GS AGH s.e.d P value 

SS 37.4 39.9 38.5 2.56 0.634 

PR 27.6 26.7 28.2 1.57 0.622 

BR 26.3 23.9 24.2 1.89 0.392 

SN 8.6 9.5 9.1 1.11 0.741 

1 SS= strained solid fraction; PR= protozoa rich fraction, BR= bacterial rich fraction, SN= supernatant 

fraction. 

2 s.e.d= standard error of difference. 
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7.3.3.2. Distribution of molybdenum within fluid fractions 

In the supernatant fraction, the proportion of Mo was higher (P<0.05) in artificial grass hay 

forage compared with fresh grass or grass silage (Table 7.3). The distribution of Mo in 

strained solid, protozoa rich, and bacteria rich fractions was not different between forages 

(P>0.05). 

 

Table 7.3. The effect of forage type, fresh grass (FG), grass silage (GS), and artificial grass hay (AGH) 
on the percentage distribution of molybdenum in fractions of in vitro gas production fermented rumen 
digesta (%)1. 

Fractions 

Forages Significance2 

 FG  GS AGH s.e.d P value 

SS 33.7 34.5 29.5 2.59 0.132 

PR 27.2 27.0 28.0 1.45 0.804 

BR 29.2 28.6 29.6 2.19 0.916 

SN 9.8a 9.8a 13.0b 0.79 <0.001 

1 SS= strained solid fraction; PR= protozoa rich fraction, BR= bacterial rich fraction, SN= supernatant 

fraction. 

2 s.e.d= standard error of difference. 
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7.3.3.3. Distribution of sulfur within fluid fractions 

The proportion of S in the supernatant fraction of artificial grass hay tended to be higher 

compared with fresh grass or grass silage (P=0.080) (Table 7.4). However, the proportion 

of S in the strained solid, protozoa rich, and bacteria rich fractions was not different (P>0.05) 

between forages.  

 

Table 7.4. The effect of forage type, fresh grass (FG), grass silage (GS), and artificial grass hay (AGH) 
on the percentage distribution of sulfur in fractions of in vitro gas production fermented rumen digesta 
(%)1. 

Fractions 

Forages Significance2 

 FG  GS AGH s.e.d P value 

SS 28.2 30.1 27.9 2.30 0.588 

PR 26.3 24.9 27.0 1.49 0.364 

BR 35.8 35.5 34.1 2.19 0.694 

SN 9.6 9.5 11.1 0.74 0.080 

1 SS= strained solid fraction; PR= protozoa rich fraction, BR= bacterial rich fraction, SN= supernatant 

fraction. 

2 s.e.d= standard error of difference. 
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7.3.4. Distribution of minerals released to supernatant fraction in two-stage 

fermentation 

The percentage of Cu released to supernatant fraction in vessel fluid after being digested 

with pepsin-HCl were not different (P>0.05) between fresh grass, grass silage, and artificial 

grass hay (Table 7.5). However, Mo released to the supernatant fraction was higher 

(P<0.001) in artificial grass hay compared with fresh grass and grass silage. Similarly, 

release of S to supernatant fraction was affected (P<0.05) by forage type, with a higher 

proportion in artificial grass hay, intermediate in grass silage and lowest proportion in fresh 

grass.   

 

Table 7.5. The effect of forage type, fresh grass (FG), grass silage (GS), and artificial grass hay (AGH) 
on the percentage distribution of mineral in the supernatant fraction of in vitro two- stage fermentation 
of rumen digesta. 

Minerals, 
 % 

Forages Significance1 

 FG GS  AGH s.e.d P-value 

Cu 12.4 13.8 13.7 2.54 0.482 

Mo 11.5a 12.1a 17.0b 1.23 <0.001 

S 29.4a 30.0ab 32.6b 1.28 0.045 

1 s.e.d= standard error of difference. 

a,b Means within a row with different superscripts are significantly different (P<0.05). 
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7.4. Discussion 

In the current study, the NDF content was highest in the AGH and lowest in FG, while GS 

was intermediate. The higher NDF content in AGH compared to others is in agreement with 

the results of Salamone et al. (2012) and Belanche et al. (2016). It is suggested that the 

incorporation of soluble carbohydrates into the NDF through the Maillard reaction may be 

attributed to the high NDF content in grass hay (Salamone et al., 2012). The lower NDF 

content in GS is possibly due to hydrolysis of soluble carbohydrates and hemi-cellulose 

during ensiling. Similar results were reported by Salamone et al. (2012). Moreover, 

degradability of protein has been reported to be greater in grass silage compared to hay or 

wilted grass due to the extensive protein break down during the ensiling process (Petit and 

Tremblay, 1992). The source of gas during in vitro incubated feedstuffs with buffered rumen 

fluid is mainly comes from the fermentation of carbohydrates, (mainly CO2 and CH4) 

(Getachew et al., 1998). Therefore, feedstuffs with high carbohydrates and protein 

degradability may produce higher amount of gasses. Similarly, gas production results in the 

present study for FG and GS were higher compared with AGH, which is in accordance with 

the results of Huntington et al. (1998), Brown et al. (2002) and Gosselink et al. (2004) who 

reported that GS and FG had a higher gas production compared with hay. Brown et al. 

(2002) suggested that the high level of structural carbohydrates in the hay may have 

resulted in slower fermentation and lower gas production.  

 

The higher gas production in FG and GS compared with AGH in the present study showed 

promoted a more acidic fermentation characterised by a higher reduction in vessel pH in 

comparison with GH, which is in line with findings reported by Benlache et al. (2016) who 

showed that FG forage had a lower pH compared with grass hay when incubated in vitro 

for 48hrs. Benlache et al. (2016) suggested that lower vessel pH in fresh grass possibly 

related to the greater availability of easily fermented carbohydrates with fresh grass 

compared with grass hay. In the current study, the content of NSC was lower in AGH 

compared with FG or GS. Therefore, the higher gas production and lower pH observed 

between FG and GS compared with and AGH may be related to the higher availability of 

easily fermented carbohydrates in FG and GS (NSC) and lower content of structural 

carbohydrates in comparison with AGH. 

 

The results of the current study demonstrated that Cu, Mo, and S were mainly 

(approximately 90%), associated with the solid phase (strained solid, bacteria rich, and 

protozoa rich fraction) at the expense of the supernatant fraction (liquid phase). These 

results are consistent with the results of Chapter 5, where Cu, Mo, and S were 
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predominately associated with the solid phase. Similarly, the predominant association of Cu 

and antagonists with the solid phase has been reported by several authors in studies 

conducted in vitro or in vivo (Grace and Suttle 1979; Allen and Gawthorne, 1987; Waghorn 

et al., 1990). The reduction in Cu availability within the digestive tract has been associated 

with a number of factors among them is the association of Cu with the solid phase of the 

rumen digesta. However, there was no suggestion of a clear mechanisms by which these 

operate (Bremner, 1970; Allen and Gawthorne, 1987; Waghorn et al., 1990). Price and 

Chester (1985) demonstrated that the relative Cu availability in the dried grass fed to sheep 

was 75%, and Cu availability of the rumen digesta, collected from sheep fed the same diet 

and given to rats, was substantially reduced up to 12%. Price and Chester (1985) concluded 

that factors limiting Cu availability mainly associated with the solid phase of the digesta, 

where Cu form insoluble complex by associating or incorporating into the bacteria, protozoa, 

or undigested plant material (solid phase) that Cu may be not released even under acidic 

condition as found in the abomasum (Waghon et al., 1990). In the current study, distribution 

of Cu in rumen digesta fractions was not affected by preservation methods and this is 

consistent with the findings of Waghorn et al. (1990) who demonstrated that the distribution 

of Cu in the solid phase was not different between six different forages (three fresh and 

three dried).  

 

The disassociation of Cu from the solid phase is important for absorption, as minerals 

require to be in a soluble form for absorption (Bremner, 1970). The release of minerals from 

the solid phase in the abomasum that has lower pH than rumen has been in part attributed 

to the rupture of micro-organisms and release of their mineral content into the abomasum 

(Waghorn et al., 1990). In the current study, pepsin-HCl digestion only slightly increased 

distribution of Cu in the supernatant fraction and forage type had no effect on Cu distribution 

which is in accordance with the results of Waghorn et al. (1990). Waghorn et al. (1990) 

concluded that the difference in Cu distribution in rumen and abomasum digesta was mainly 

related to the difference in Cu concentration in feed DM rather than difference between 

forages in releasing Cu from plant materials. In the current study, the Cu content were 

similar between FG, GS, and AGH. Therefore, no effect of preservation method of grass on 

Cu distribution either in fermented rumen or pepsin-HCl digested rumen digesta, seems to 

suggest that the concentration of Cu in feed DM may have a major effect on the Cu 

distribution and availability of Cu for absorption by animals. In contrast, the distribution of S 

was substantially increased after pepsin-HCl digestion from approximately 9% to 30%, 

which may contribute to reduce Cu absorption. Sulfur reduced to sulfide in the rumen is 

belived to interact with Cu to form insoluble Cu-sulfide a form of Cu that is unavailable to 

ruminants. In sheep, increasing dietary S in the organic or inorganic form reduced Cu 

bioavailability by 30-56%. 
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In the current study, the higher distribution of Mo in SN fraction, of AGH compared with FH 

and GS, was observed in both fermented rumen liquor and pepsin-HCl digested. In Chapter 

5, Mo distribution in SN the fraction was also higher in grass haylage compared with dried 

grass pellets, grass and maize silages. The reason for this effect was not clear, but may be 

due to the difference in mineral release from plants. Playne et al. (1978) reported that the 

difference in the rate of release minerals from 4 tropical hay during their digestion in nylon 

bag in the rumen of cattle. It has been shown that grass hay tended to have a greater NDF 

and ADF disappearances compared with fresh grass (Belanche et al., 2016) possibly due 

to the higher concentration of protozoa such as sub family Entodiniinae with a high fibrolytic 

activity (Dehority, 2003), and hence may result in release more Mo into the SN fraction, as 

the majority amount of minerals are present in the cell wall of plant materials (Ibrahim et al., 

1990). Moreover, thiomolybdates in the rumen digesta if not bound to the solid phase may 

be hydrolysed when remaining in the liquid phase (Gould and Kendall, 2011).  
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7.5. Conclusion 

Results from this study indicated that over 88% of Cu and other minerals were found to be 

associated with the solid phase (strained solid, protozoa rich, and bacteria rich fractions) at 

the expense of supernatant fraction (liquid phase). This is confirming the involvement of the 

solid phase of the digesta in reducing available Cu for absorption by ruminants. 

Preservation fresh grass as hay or silage had no significant effect of Cu distribution in the 

fermented rumen liquor or after pepsin-HCl digestion, as Cu concentrations between forage 

were similar. Therefore, the results of the present study support the findings suggest that 

the differences in distribution of Cu between digesta fractions are potentially related to the 

difference in the concentration of Cu in the feed DM rather than preservation method. 
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Chapter 8 General discussion 

 

8.1. Introduction   

Copper metabolism in ruminants has been found to be affected by the forage type being 

offered, with Fisher et al. (1972) reporting that feeding hay to cows increased plasma Cu 

levels compared to grass silage. In ewes, at low dietary Mo concentration (<2 mg/kg DM), 

the absorption of Cu was higher in hay compared to fresh grass (Suttle, 1983a). In general, 

the coefficient of Cu absorption has been found to be higher in feedstuffs low in fibre such 

as cereals and legumes compared with fresh herbage (Suttle, 1983a; 1983b). Also, 

conservation of forages as hay or silage could improve Cu availability (Suttle, 1986). It is 

also recognised that the antagonist effect of Mo and S on Cu availability is also changed by 

basal diet (Suttle, 1980a; 1980b). Early investigations by Ferguson et al. (1943) reported 

that the ‘’teart’’ condition in Somerset pasture was attributed to high level of Mo in the 

pasture (40-50 mg/kg DM) and it was alleviated when herbage was made into hay. Suttle 

(1983b) reported that the inhibitory effect of additional Mo on Cu availability in sheep was 

proportionally less in hay compared to fresh herbage (Suttle, 1983a;1983b;2010). A recent 

study in dairy cows demonstrated that the reduction in liver Cu retention caused by addition 

of Mo and S was greater in grass silage than in maize silage based diets (Sinclair et al., 

2017). The reasons for these differences were not clear, but it could be attributed to the 

effect of rumen pH and its influence on thiomolybdate formation (Gould and Kendall, 2011). 

Suttle (1991) discussed that increasing dietary Mo did not accelerate the rate of liver Cu 

depletion in sheep fed a whole grain diet possibly due to the lowering rumen pH by feeding 

a high fermentable carbohydrate diet that lowered rumen pH, resulting in increased 

absorption of sulfide and break down of thiomolybdates. Allen and Gawthorne (1987) 

reported that thiomolybdates bind with the solid phase of rumen digesta that allows them to 

avoid hydrolysis from the acid solution of the abomasum. Therefore, three lamb studies, 

and two in vitro studies were undertaken within this thesis that were designed to further 

investigate the antagonist effects of Mo and S fed with different forages on Cu metabolism 

in lambs. 

 

These series of studies were designed to examine the effects of forage type and Mo and S 

on Cu metabolism in sheep. The results from studies 1 and 2 clearly demonstrated that liver 

Cu status was affected by different forages fed to lambs and the higher liver Cu status was 

in lambs that had a lower rumen pH. Addition of Mo and S substantially reduced liver Cu 

status (study 1 and 2) and plasma Cu status (study 2). In both studies 1 and 2 no interaction 

between forage type and Cu antagonists were observed. In vitro work (study 3) was then 

conducted using the same forages that were used in the previous studies to investigate 
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whether the reduction in Cu metabolism in (study 1 and 2) was due CuxMoxS interactions 

in the rumen reducing available Cu for absorption, and depleting liver Cu or reducing plasma 

Cu concentration. It was found that Cu and its antagonists were mainly associated with the 

solid phase and the addition of Mo and S markedly reduced Cu in supernatant fraction by 

incorporation or binding Cu into the solid phase. It was concluded that the adverse effect of 

antagonists on Cu metabolism in Chapters 3 and 4 may be related to the formation of 

insoluble Cu-thiomolybdate complexes, and excreted via faeces. Another study was 

conducted (study 4) to investigate the effect of preservation of whole crop wheat (WCW) as 

fermented or urea-treated and grass silage on rumen pH and their interaction with the 

addition of Mo and S. Results from study 4 showed that rumen pH in grass silage fed lambs 

tended to be higher compared with other forages, and urea WCW and grass silage fed 

lambs had a higher liver Cu status compared with those fed fermented WCW. However, 

liver Cu retention in fermented WCW fed lambs was not affected by addition of antagonists, 

whereas, in both urea WCW and grass silage fed lambs it was significantly reduced. It was 

concluded that the lack of effect of antagonists on liver Cu retention in fermented WCW may 

possibly be attributed to the effect of the low rumen pH in fermented WCW fed lambs 

contributed to the reduction in the production of thiomolybdates. The final study (in vitro), 

aimed to investigate the difference in Cu release from forages whether related to the 

different in Cu release from forages or Cu concentration in DM of the feed. No difference in 

Cu distribution was observed between fresh grass preserved as hay or silage, or release of 

Cu from solids in to the supernatant after pepsin-HCl digestion of the rumen digesta. 
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8.2. Animal performance characteristics 

Lamb performance in this thesis was examined to evaluate the effect of forage type and 

antagonists. However, the main aim of this thesis was to study Cu metabolism and its 

influence by forage type and antagonists. The maize silage forage fed lambs compared with 

dried grass pellets (Chapter 3) or grass haylage (Chapter 4) showed a higher liveweight 

gain than lambs fed the other forages. Ware and Zinn (2005) and Salinas-Chavira et al. 

(2013) observed a lower in weight gain of steers fed pelleted diets compared with ground 

straw. The lower FCE in dried grass pellets fed lambs (Chapter 3) compared with maize 

silage reflects the poorer utilisation of energy with dried grass pellets than maize silage 

(Salinas-Chavira et al., 2013). Pelleting diets has been found to reduce the utilisation of 

energy and feed digestibility in animals (Boucque et al., 1973; Thomson and Beever, 1979; 

Knaus et al., 1999), possibly due to an increase in the proportional outflow of particulate 

matter from the rumen by feeding pelleted diets (Boucque et al., 1973).  

Within a given feed, NDF had been reported as a good measure of feed quality and plant 

maturity. For grass forages, an NDF content above 600 g/kg DM would be considered as 

low quality (Van Saun, 2006). In grass haylage (Chapter 4) the NDF content was higher 

than 600 g/kg DM, suggesting a poor quality of grass haylage. In addition, compared with 

maize silage, the NDF content of grass haylage was greater by 160 g/kg DM. It has been 

reported that increasing NDF from 40 to 80 g/kg DM in forages such as alfalfa forage fed to 

cattle has been shown to reduced final liveweight from 605 to 588 kg respectively, gain 

efficiency from 0.181 to 0.177 (g/kg DMI) and dietary net energy required for gain from 6.82 

to 6.53 (MJ/kg) (Salinas-Chavira et al., 2013). The basis of the NDF effect on weight gain 

has been attributed to a reduced utilisation of energy as a result of dilution of dietary energy 

by increasing NDF and reduced OM digestibly (Salinas-Chavira et al., 2013). It was 

recognised that ME derived from poorly digested forages, such as straw and low quality 

hay, was utilised for growth with low efficiency between 0.20-0.40 (MJ/kg). This low 

efficiency was attributed to the ‘work of digestion’, the energy required for mastication of 

fibrous feeds and propulsion of their undigested residues through the gut (McDonald et al., 

2011).  

 

Keady (2005) from the 9 comparisons in beef cattle reported that the performance of 

animals as indicated by daily liveweight gain was significantly increased (+0.23 kg/d) by 

replaceing grass silage (totally or partially) with maize silage. A few studies have been 

undertaken to evaluate the effect of maize silage and grass silage or grass haylage on 

sheep performance (Keady et al., 2013). Keady and Hanrahan (2009) showed that ewes 

fed low feed value maize silage supplemented without or with concentrate at 0.2 kg/d had 

higher liveweight than of grass silage fed ewes (65.8 and 61.4 kg respectively. The higher 



186 
 

weight gain by feeding maize silage has been attributed to an improved ME utilisation and 

dry matter digestibility (Keady et al., 2006; 2007; Walsh et al., 2008).  

 

In recent years, there has been an interest in using whole crop wheat (WCW) silages for 

feeding animals primarily due to the relative low cost of forage production and benefit in 

increased DM intake and animals performance (Keady et al., 2013). The WCW is an 

alternative feed for grass, especially in temperate grass grown place that maize silage does 

not grow well. In Chapter 6, lambs fed urea WCW had higher weight gain and FCE than 

lambs fed grass silage or fermented WCW. The replacement of grass silage with urea WCW 

at rate of 75% increased liveweight change from 0.08 kg/d in the grass silage fed cows to 

0.36 kg/d (Sinclair et al., 2007). Keady et al. (2007) concluded that replacing grass silage 

with fermented WCW resulted in an increased weight gain in beef possibly due to an 

improved utilisation of ME and increased intake. Likewise, Walsh et al. (2008) noted that 

offering fermented and urea WCW resulted in an increased intake, weight gain and in vitro 

DM digestibility in beef cattle compared with grass silage. Urea or alkaline treatment of 

WCW resulting in a reduction in NDF fraction, mainly because of solubilisation of 

hemicellulose (Haddad et al., 1995; Hill and leaver, 1999). Therefore, the application of urea 

may be contributed to an improve weight gain by growing lambs due to a reduced NDF 

fraction and increased digestibility.  

 

Texel cross store lambs growth rate has been shown to be not affected by the addition of 

Mo at 10 mg/kg DM and S 2 g/kg DM over a period of 7 weeks in the study Mackenzie et 

al. (2000) who concluded that growth rate may be an insensitive parameter Cu deficiency. 

Williams (2004) reported no effect of additional Mo (5 and 10 mg/kg DM) on lambs 

performance over 10 weeks. Alimon et al. (2011) and Suttle (2012) did not observe a 

reduction in lambs’ performance during the addition of Mo and S. In Chapter 3, 4, and 6 

additions of approximately 5 mg of Mo/kg DM and 4 g of S/kg DM was not expected to 

reduce lambs performance. In contrast, Humphries et al. (1983) and Phillippo et al. (1987a; 

1987b) reported that additional 5 mg Mo/kg DM reduced growth rate in heifers after 16-20 

weeks of feeding. The reason for this effect was not clear, but in both Humphries et al. 

(1983) and Phillippo et al. (1987a) studies the reduction in growth rate was accompanied 

by a decrease in feed intake, and reduction in liver Cu concentration to very low levels (4-5 

mg/kg DM). In Chapters 3, 4, and 6 liver Cu concentrations were above 100 mg/kg DM and 

DM intake was not affected by antagonists. The mechanism by which Mo and S effect feed 

intake has been proposed to be possibly related to the systemic effects of absorbed 

thiomolybdates, which in turn, may have a direct effect on Cu-dependent enzymes such as 
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peptidylglycine α-amidating monooxygenase that exert its influence on the cholecytoinin 

and gastrin hormones, regulating appetite (Suttle, 2010).    
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8.3. Composition of the experimental diets 

In order to be able to discuss the observed differences due to dietary Mo and S in this series 

of studies, it is appropriate to compare the diets of the three experiments described in 

Chapters 3, 4, and 6. The composition of the experimental diets is presented in Table 8.1. 

 

Table 8.1. The composition of copper, molybdenum, and sulfur of the experimental diets (DM)- 
Chapters 3, 4, and 6 1.  

Chapter 3 Diet    

DGP- DGP+ MS- MS+   

Cu, mg/kg DM 9.3 9.5 7.9 7.8   

Mo, mg/kg DM 1.90 4.60 2.70 4.80   

S, g/kg DM 3.7 4.3 3.5 3.9   

Chapter 4 
Diet   

GH- GH+ MS- MS+   

Cu, mg/kg DM 11 11.6 10.7 10.7   

Mo, mg/kg DM 1.80 4.50 1.50 4.20   

S, g/kg DM 1.9 3.3 1.8 3.2   

Chapter 6 

Diet 

Forage Concentrate 

GS FWCW UWCW 
GS- and 
UWCW-  

GS+ and 
UWCW+ 

FWCW- FWCW+ 

Cu, mg/kg DM 11.5 6.9 6.7 11.2 11.3 11.3 11.5 

Mo, mg/kg DM 1.11 0.88 1.02 1.36 19.54 1.81 19.91 

S, g/kg DM 2.7 1.1 1.1 6.0 17.5 7.7 16.4 

 
1 Mineral composition for the experimental diets for Chapters 3 and 4 was supplying 600 

g/kg DM forage and 400 g/kg DM concentrate (60:40). Diets were offered at restricted level 

at ratio of 60:40 (forage:concentrate). 
2 Feeding system for Chapter 6 was forage (ad libitum) and concentrate at 300 g/day. The 

experimental diets contained approximately 700 g/kg DM forage and 300 g/kg DM 

concentrate. 

 

The Cu contents of the diets in all three Chapters were similar to the recommendations for 

sheep as specified in NRC (1985) and NRC (2005). The Cu content in all Chapters also 

varied between diets. Therefore, this may account for the differences in liver Cu status 

between forages as described in Chapters 3, 4, and 6 and will be discussed in section 8.4. 

Molybdenum and sulfur contents of the experimental diets (unsupplemented with 

antagonists) in Chapters 3, 4, and 6 were approximately 1.5 to 2.5 mg/kg DM of M and 1.5 

to 3.5 g/kg DM of S respectively. These levels of Mo and S are reported to reduce Cu 

availability in the diet as part of a thiomolybdate complex (Suttle, 1974;1983). 
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The variations in the mineral composition within experimental diets in Chapters 3, 4, and 6 

may be attributed to the dietary components used in the formulations of the diets. These 

differences were due to the availability of feedstuffs and time of year in which the study was 

undertaken. 
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8.4. Effect of forage type on Cu status  

Dietary composition is important because it determines the proportion of the dietary Cu 

which is absorbed by animals (its availability) and this proportion can vary widely (Suttle, 

1986). Therefore, all studies described within this thesis have been conducted towards the 

understanding and control of Cu deficiency in ruminants. The availability of Cu has been 

suggested to be associated with feed type, mineral composition of the feedstuff, the 

interaction between feed type and mineral composition, and genetic constitution (Suttle, 

1983a; 1986; 2010). The effect of forage type on liver Cu status was clearly identified in this 

thesis. From Table 8.2, it appears that lambs fed forages with a lower fibre content (NDF) 

and higher easily digested material such as NSC (sugar and starch) had a higher liver Cu 

status. The impact of a high fibre content in limiting Cu absorption has been related to the 

irreversible binding of Cu, or possibly due to indirectly increasing the amount of time Cu 

resides in the rumen environment and the site of CuxMoxS interactions (Suttle, 1983a). In 

addition, the higher coefficient of Cu absorption in feedstuffs such as cereals (0.10) 

compared with hay (0.073) or fresh pasture (0.012) (Suttle, 1986) has been attributed to the 

higher proportion of readily digested carbohydrate (Suttle, 1991).  

Table 8.2. Neutral detergent fibre and nonstructural carbohydrate content of the forages used in 
Chapter 3, 4, and 6.  

 DGP MS GH GS FWCW UWCW 

Chemical composition, g/kg DM 
   

NDF 426 381 654 588.2 413.6 309.2 

NSC 277 475 176 110.1 414 486.7 

 

Using data from Chapters 3, 4, and 6, Fig 8.1 indicates the relationship between the forage 

NDF content and liver Cu retention for all treatment groups at the end of each respective 

trial. These results indicate that the regression coefficient of the NDF content to liver Cu 

retention was poorly correlated (r2 = 0.0454; y= - 0.0004x + 0.148). Fig. 8.1, however, 

indicates that the reduction in liver Cu retention was often associated with the increase in 

NDF content. 

 

The exception was dried grass pellets vs. maize silage and grass silage vs. fermented WCW 

where, despite a higher fibre content in dried grass pellets and grass silage, but liver Cu 

status was higher in lambs fed dried grass pellets and grass silage forages possibly due to 

a higher Cu intake. Fig. 8.2 shows the relationship between Cu intake and liver Cu retention 

of the data obtaining from Chapters 3, 4, and 6. These results indicate that the regression 
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coefficient of the Cu intake to liver Cu retention was also poorly correlated (r2 = 0.175; 

y=0.00729x). However, Fig. 8.2 indicates that liver Cu retention was increased by increase 

in Cu intake. 

 

 

Figure 8.1. The relationship between the forage NDG content and liver Cu retention from 

sheep fed experimental diets from Chapters 3, 4, and 6. 

 

 

Figure 8.2. The relationship between the Cu intake and liver Cu retention from sheep fed 

experimental diets from Chapters 3, 4, and 6. 
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In addition, the smaller feed particle size in dried grass pellets may have resulted in an 

increased proportional outflow of particulate matter from the rumen (Thomson and Beever, 

1979; Mason, 1990) reducing the residence time and hence increasing Cu availability due 

to avoiding expose to Cu antagonists present in the rumen (Suttle, 1983a).  

 

In Chapter 5, the results demonstrate that in vitro gas production was higher in maize silage 

forage compared with grass haylage. Similarly, in Chapter 7, gas production in vitro of 

fermented grass silage forage was higher compared with artificial grass hay. Ibrahim et al. 

(1990) demonstrated that in vitro organic matter digestibility was higher in maize silage 

compared with wheat straw (661 and 405 g/kg) respectively. Gosselink et al. (2004) found 

a strong correlation (r2 =0.90) between gas production and organic matter truly digested in 

the rumen of sheep for 12 fresh and conserved forages. As a consequence, the higher gas 

production in maize silage than grass haylage could indicate the higher digestibility of maize 

silage and hence more minerals may be released from silages than dried forages, as dried 

diets allow a considerable amount of organic matter to leave undigested from rumen may 

supply plentiful binding site for products of the CuxMoxS interactions and a decrease in Cu 

absorption (Suttle, 1991). The digestibility of forages in the Chapter 6 was not determined, 

but the application of urea has been shown to elevate DM digestibility of WCW (Ørskov et 

al., 1983). Adesogan et al. (1998) showed that the digestibility of organic matter content in 

the DM of urea WCW was higher compared fermented WCW, with mean values of 646 and 

611 (g/kg) respectively. Similarly, Walsh et al. (2008) demonstrated that the DM digestibility 

of fermented WCW was lower that urea WCW. Moreover, Cu in feedstuffs has been 

reported to be mainly associated with the lignocellulose compartment (Ibrahim et al., 1990) 

and alkali treatment can dissolve the lignocellulosoic cross-linking of the cell (Hill and 

Leaver, 1999). Similarly, ammonia application has been reported to decrease the NDF 

fraction, due to the partial solubilisation of hemicellulose (Haddad et al., 1994). The NDF 

content in Chapter 6 was lower in urea WCW compare to fermented WCW (309.2 and 413. 

g/kg DM) respectively. Therefore, applying urea to the WCW possibly contributed to an 

increase feed digestibility and break down of plant cell wall and hence a greater Cu has 

been released into the rumen and increased Cu availability for absorption by the animal.  

 

The difference in liver Cu status could be related to the effect of rumen pH and its 

subsequent effect on rumen micro-organisms and sulfide production. In Chapters 3, 4, and 

6 higher liver Cu status in lambs fed dried grass pellets, maize silage, and urea WCW 

respectively were coupled with lower rumen pH in the lambs fed these forages. However, 

results from Fig. 8.3 indicates that the regression coefficient of the rumen pH to liver Cu 

retention was very poorly correlated (r2 = - 0.012; y=0.1341x + 0.8119). Figure 8.3 also 
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indicates that liver Cu retention was slightly decreased with increase in rumen pH. Crosby 

et al. (2004) found that the lambs bedded on straw had a lower (15%) liver Cu concentration 

compared with those lambs housed on the expanded metal floor (which had access only to 

the concentrate diet with no additional roughage source). Crosby et al. (2004) suggested 

that the roughage intake by the straw group possibly would have elevated rumination and 

salivation, resulting in an increased rumen pH, which in turn, promote rumen sulfide 

producing ciliate protozoa and reduced Cu availability. A decline in ruminal or in vitro pH 

may be contribute to a reduction in total protozoal concentrations (Dehority and Orpin 1997; 

Dehority, 2005; Belanche et al., 2016). The effect of protozoa on Cu metabolism has been 

suggested to be through the reduction of sulfate and also degradation of S-containing amino 

acids in the anaerobic rumen conditions to form sulfide, which then interacts with Cu to 

produce insoluble a Cu-S complex (Dick et al., 1975; Spears, 2003; Suttle, 2010). For 

example, it was reported that rumen ciliate protozoa affects dietary Cu metabolism by 

reducing Cu absorption by up to 50% and decreases the incidence of Cu toxicity in fauna 

free (no rumen protozoa) sheep (Ivan et al., 1985). In addition, it was reported that the 

increase of protozoa population in fauna free sheep contributed to an increase in rumen 

sulfide production, decrease in Cu solubility, and liver Cu concentration compared to fauna 

free sheep (Ivan et al., 1991; Ivan and Entz, 2007). Moreover, low rumen pH has been 

reported to facilitate an enhanced sulfide absorption from the rumen (Bray et al., 1975), 

thereby, sulfide interacts with Cu to form insoluble Cu-sulfide possibly reduced. Therefore, 

the higher liver Cu status in this thesis, which was also paralled with a low rumen pH and 

fibre intake appears to confirm the adverse effect of the higher rumen pH and fibre content 

on Cu metabolism. 

 

Figure 8.3. The relationship between the final rumen pH and liver Cu retention from sheep 

fed experimental diets from Chapters 3, 4, and 6. 
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The antagonist effect of additional Mo and S on reducing liver Cu status has been well 

researched in sheep (Dick, 1953; Suttle and Field, 1968; Suttle, 2012) and cattle (Sinclair 

et al., 2013; 2017). Small increase in herbage Mo and S has been reported to cause a 

substantial reduction in Cu availability (Suttle, 1983b). In Chapters 3, 4, and 6 lambs offered 

diets unsupplemented with Mo and S had a higher liver Cu concentration compared with 

the lambs fed diets supplemented with antagonists. Crosby et al. (2004) reported that 

dietary Mo at 5 mg/kg DM fed to Texel cross lambs resulted in a substantial decrease in 

liver Cu concentration. In ruminants two possible physiological sites of CuxMoxS 

interactions have been proposed; in the first site, primary interactions between Cu, Mo, and 

S are suggested to occur in the rumen and lower gut, by which insoluble triple complex Cu-

thiomolybdate (CuMoS4) or Cu-sulfide (Cu-S) are formed (Spears, 2003; Suttle, 1991; 

Gould and Kendall, 2011). Copper in both forms are believed to be not available for 

absorption and hence liver Cu reserves would become decreased to meet tissue 

requirement for cupric proteins such as Cp (Robinson et al., 1987). The second site is 

combined between gut and post-absorptive (systemic effect) and where the produced 

rumen thiomolybdates would be absorbed into the blood circulation. Therefore, for 

thiomolybdates to have a systemic effect on tissue Cu, they first must be absorbed (Suttle, 

1991).  

 

Thiomolybdates have been used as a treatment and prevention of Cu toxicity in sheep 

(Humphries et al., 1986; Kumaratilake and Howell, 1989; Goonerante, 2012). The 

mechanism by which thiomolybdate reduced liver Cu status has been suggested to be 

either directly by removing Cu from hepatocyte lysosomes of Cu-loaded sheep as indicated 

by the increased activity of β-glucuronidase enzyme in bile after intravenously administered 

tetra-thiomolybdate and increased biliary Cu excretion (Goonerante, 2012), or indirectly. 

The first indirect mechanism is that absorbed thiomolybdate in the blood stream binds with 

Cu in albumin and producing an excretable and slowly hydrolysis Cu-TM-albumin complex 

(Manson, 1986), serving as a pool of slowly released Cu, thus resulting in delay in transfer 

of Cu to tissues including liver (Goonerante et al., 1989a; Suttle, 1991; 2010). The second, 

upregulation of hepatocyte ATP7B, which is responsible for Cu efflux from the hepatocyte 

to the bile for excretion (Linder, 2010; Wadwa et al., 2014). In cows after feeding a diet 

supplemented with Mo and S in combination with the organic Cu, the expression of Atp7b 

tended to be greater compared with cows fed a diet unsupplemented with antagonists 

(Sinclair et al., 2013). The third mechanism is that, thiomolybdates have been suggested to 

cause impairment of entero-hepatic recycling of Cu (Suttle, 2010), possibly due to absorbed 

thiomolybdate in the blood binding to Cu with a such strong affinity that Cu in Cp protein is 

not being recycled back to the liver and broken down as a result half-life time of Cp (2-3 d; 

Linder, 1991) may be altered, resulting in a decreasing liver Cu (Williams, 2004). 
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However, in this thesis in Chapters 3 and 6 blood Cu status such as Pl-Cu concentrations, 

and Cp activity were not affected by dietary addition of antagonists, except in Chapter 4, 

where Pl-Cu concentration and Cp activity were reduced. This reduction in Cp activity was 

not clear whether it was due to a direct effect of rumen thiomolybdates (Suttle and Field, 

1968; Zhou et al., 2016), or due to systemic effect of thiomolybdates (Williams, 2004; 

Mackenzie et al., 2008). Robinson et al. (1987) reported that addition of Mo (6.6 mg/kg DM) 

and S (4 g/kg DM) the lambs diet resulted in a significant reduction in liver Cu concentration, 

Pl-Cu concentration, and Cp activity, although, by increasing dietary Mo supplementation 

to 11 mg of Mo/kg DM the reduction in liver Cu concentration was accompanied by a 

decrease in Cp with an increased in Pl-Cu concentration. Robinson et al. (1987) suggested 

that the reduction in liver Cu concentration, which was accompanied by a decrease in Pl-

Cu and Cp in the case of 6.6 mg of Mo/kg DM may potentially be attributed to the gut effect 

of thiomolybdates, but at the higher level of additional Mo (11 mg/kg DM), where Pl-Cu 

concentration increased, possibly due to the systemic effect of thiomolybdate. Williams 

(2004) and Mackenzie et al. (2008) also supported the hypothesis of a systemic effect of 

thiomolybdate antagonism on Cu metabolism, when the addition of Mo at 5 -10 mg/kg DM 

resulted in an increased Pl-Cu concentration and decrease in both liver Cu concentration 

and Cp activity. The formation of systemic Cu-thiomolybdate complexes has been 

suggested to be most probably responsible for the decrease in liver Cu status and increase 

in Pl- Cu concentrations in ewes receiving Mo and S in comparison to the respective control 

ewes (De Plessis et al., 1999b). 

 

The ratio of Cp:Pl-Cu has been suggested to be more beneficial compared with Pl-Cu 

concentration in ruminants for detecting whether thiomolybdates are being absorbed into 

the blood or not (Mackenzie et al., 1997; Kendall et al., 2000; Mackenzie et al., 2001). 

Williams (2004) and Mackenzie et al. (2008) showed that the addition of Mo significantly 

reduced Cp:Pl-Cu ratio, whereas, in Chapter 4 and addition of antagonists had no effect of 

Cp:Pl-Cu ratio. Moreover, Suttle (2010) and Sinclair et al. (2017) suggested a dietary Cu:Mo 

ratio (1:1) as a threshold as indicative of TM being absorbed from rumen into the blood 

stream and causing a systemic impairment of Cu-containing enzymes. In Chapter 4, the 

dietary Cu:Mo ratio was reduced by supplementation with molybdenum in both diets from 

approximately 7.3:1 to 2.2 :1, which was greater than (1:1). Although, in studies conducted 

by Robinson et al. (1987), Williams (2004), and Mackenzie et al. (2008) the Cu:Mo ratio 

was 1:1 or less. The reduction in Pl-Cu concentration and Cp activity (in Chapter 4) appears 

to suggest that possibly a greater gut effect of thiomolybdate, however, a systematic effect 

of thiomolybdates cannot be ruled out. 
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In Chapters 5 and 7 the majority (over 85%) of Cu, Mo, and S was found to be associated 

with the solid phase. The forages that were used in Chapter 5 were the same forages fed 

to lambs in Chapters 3 and 4. The high distribution of Cu and thiomolybdate (Mo) in the 

solid phase of the rumen has been suggested to be facilitated by the formation of Cu-

thiomolybdate complexed in the rumen, as the association of TM with the solid phase 

possibly imparts some stability for the thiomolybdates in the rumen and escape from 

hydrolysis in the abomasum due to a low pH (Gawthorne et al., 1985; Suttle, 1991; Gould 

and Kendall, 2011). Moreover, in Chapter 5 the addition of Mo and S generally reduced the 

distribution of Cu in the supernatant fraction possibly due to increased Cu associated with 

the solid phase. Likewise, Allen and Gawthorne (1987) also reported that addition of 

antagonists increased Cu associated with undigested feed particles, protozoa, and bacteria 

of rumen digesta and using TCA and neutral detergent solution (NDS) to break down 

complexes, Allen and Gawthorne (1987) reported that 29-78% of the Cu remained 

unextracted in samples supplemented with antagonists compared with 1-6% for samples 

from sheep unsupplemented with antagonists, this implying that Cu was bound to the high 

molecular protein. Price and Chester (1985) showed that rumen digesta from sheep fed 

dried grass supplemented with 11 mg of Mo/kg DM given to Cu-deplete rats had a poor 

capacity to replete the activity of cytochrome oxidase in the intestine. Moreover, Suttle and 

Field (1983) reported that additional tetra-thiomolybdate in sheep diets reduced Cu 

absorption. These findings suggest that thiomolybdates cause Cu to be irreversibly bound 

to a high solid phase and thus decrease Cu absorption and deplete liver Cu status in 

Chapters 3, 4, 6. Therefore, results from this thesis confirms the hypothesis suggesting an 

intra-ruminal formation of insoluble Cu-thiomolybdate complexes, which are poorly 

absorbed and hence reduce Cu status. 

 

The degree to which thiomolybdates are produced in the rumen and its impact on how Cu 

availability is changed by basal diets being offered, although understanding of the 

mechanisms remains poor (Ivan, 1993; Suttle, 1986; Sinclair and Mackenzie, 2013). 

Results from Chapters 3 and 4 indicated that there was no significant effect of an interaction 

between forage type and Cu antagonists. However, in Chapter 6, liver Cu retention was not 

affected by the addition of Mo and S in growing lambs fed fermented WCW, while in lambs 

fed urea WCW or grass silage liver Cu retention was markedly reduced by the addition of 

antagonists. The lower inhibitory effect Mo and S on liver Cu retention in lambs fed 

fermented WCW compared with grass silage potentially related to the lower rumen pH in 

fermented WCW than grass silage, as was observed in Chapter 6. Suttle (1991) discussed 

the effect of rumen pH on reducing the inhibitory effect of Mo and increase Cu availability. 

It is stated that feeding highly fermentable carbohydrate content diets such as whole grains 

to sheep did not accelerate the rate of liver Cu depletion, when dietary Mo increased from 
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2.5 to 5 mg/kg DM possibly due to the carbohydrates lowering the rumen pH, resulting in 

increased a breakdown of thiomolybdates (Suttle, 1991). More recently, Sinclair et al. 

(2017) demonstrated that the reduction in liver Cu retention as a result of addition of Mo 

and S was greater in cows fed grass silage compared with maize silage. In Chapter 5, the 

in vitro pH of fermented maize silage was lower compared to grass silage. Moreover, Wang 

et al. (1988) reported that 13-14 weeks were required to induce diarrhoea in steers fed Mo 

rich silage, containing 35 mg/kg DM, while cattle grazing pasture containing a similar Mo 

concentration exhibited immediate diarrhoea or ’’teartness’’ (Ferguson et al., 1943).  

 

Liver Cu concentration from Chapters 3, 4, and 6 are presented in Table 8.3 and all values 

were within the normal range of 100-400 mg/kg DM (NRC, 2005) in both unsupplemented 

or Mo and S supplemented lambs. Using data obtained from Chapters 3, 4, and 6, Fig 8.4 

illustrates the liver Cu retention at the end of each respective study for three different 

breeds. These results indicate that Texel cross breed lambs had a positive liver Cu retention 

and gained approximately 2 mg of Cu/d, whereas, Swaledale and Scottish Blackface lost 

0.05 and 0.15 mg of Cu/d respectively. The mean of Cu intake in Texel cross breed (Chapter 

3) was 8.2 mg of Cu/d similar to the Cu intake in Swaledale breed (Chapter 4) (8.8 mg of 

Cu/d), with the lowest Cu intake in Scottish Blackface lambs (Chapter 6) (6.7 mg of Cu/d). 

In addition, initial liver Cu concentration was lower in Texel cross compared with other 

breeds (Table 8.3). Therefore, these differences in liver Cu retention is likely due to the 

breed effect, as the difference in Cu intake between breeds was less pronounced. Recently, 

Sefdeen (2017) reported that over a period of 10 weeks of feeding a diet containing 13.6 

mg/kg DM of Cu, liver Cu retention in Texel cross lambs was higher compared with 

Swaledale, with mean values of 1.89 and -1.12 mg of Cu/d respectively. The effect of 

genetic variation on Cu metabolism in sheep is well recognised (Suttle et al., 2002). Breeds 

such as Scottish Blackface and Welsh Mountain are generally recognised as more 

susceptible to Cu deficiency compared to Texel, North Ronaldsay and Suffolk that are more 

prone to Cu toxicity (Suttle, 2010). It has been shown that liver Cu retention in Blackface x 

Texel Scottish lambs to be higher than pure Scottish Blackface lambs (13.7% and 5.6% of 

ingested Cu respectively (Woolliams et al., 1982). These differences were attributed to the 

difference in Cu absorption, as dietary Cu absorption was found different between Scottish 

Blackface and Welsh Mountain (4.3% vs. 7.3%) respectively (Woolliams et al., 1983).   
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Table 8.3. Initial and final liver Cu concentration of growing lambs used in different Chapters.  

Chapter Breed 
Initial liver Cu 
concentration  
(mg/kg DM) 

Final liver Cu 
concentration  
(mg/kg DM) 

3 Texel cross 173.6 241.0 
4 Swaledale 268.4 177.0 
6 Scottish Blackface 323.7 159.7 

 

 

 

 

Figure 8.4. Liver copper retention from sheep fed experimental diets from Chapters 3, 4, 

and 6. 
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8.5. Conclusions and further work  

Results presented in this thesis show some novel findings with respects to the interaction 

between forage type and Cu metabolism. The effect of forage type on Cu metabolism has 

been confirmed, where liver Cu status was higher from forages that allowed a more acidic 

rumen environment either due to their higher NSC, lower NDF or rumen outflow rate. 

However, the mechanism of this effect was not clear in this thesis, but would be of interest 

for future studies. In addition, preservation of WCW as a urea WCW would be more 

beneficial than fermented in terms of increasing Cu availability. Alterations in liver Cu status 

and blood Cu due to the addition of Mo and S also have been observed. These findings not 

only confirm the hypothesis and findings from previous authors within the literature, but have 

generated ideas for future work to determine whether the antagonism effect of Mo and S 

are due to a gut effect or systemic effect of absorbed thiomolybdate. The lower impact of 

antagonists on liver Cu status in the FWCW compared with UWCW, when both had a similar 

rumen pH generate ideas. At high dietary Mo and S levels preserving WCW as FWCW than 

UWCW may be more beneficial in terms of Cu metabolism. In addition, the lower rumen pH 

from FWCW and also lower response to Cu antagonists compared with grass silage, 

suggesting that a more acidic rumen environment may alleviate the adverse effect of 

thiomolybdates on Cu availability. Additional studies are also required to study the effect of 

forage type on rumen pH and its influence on the rumen thiomolybdate formation and Cu 

metabolism. The lower liver Cu status Swaledale and Scottish Blackface lambs than Texel 

cross, confirms the genetic variation between breeds in terms of Cu metabolism. Taking 

breed of sheep into consideration would be important during feed formulation in order to 

determine Cu requirements and avoid Cu toxicity or deficiency.  

 

 

 

 

 

 

 

 



200 
 

REFERENCES 

Adamson, A.H. and Reeve, A. 1992. Nutritional evaluation of whole-crop wheat. In: Whole-

Crop Cereals, (Stark, B. A. and Wilkinson, J.M., eds), Chalcombe Publications, 

Aberystwyth, UK, pp.85-96. 

Adesogan, A.T., Owen, E. and Givens, D.I. 1998. Prediction of the in vivo digestibility of 

whole crop wheat from in vitro digestibility, chemical composition, in situ rumen 

degradability, in vitro gas production and near infrared reflectance spectroscopy. Animal 

Feed Science and Technology, 74(3), pp.259-272. 

Adogla-Bessa, T., Owen, E. and Adesogan, A.T. 1999. Ensiling of whole crop wheat with 

cellulase–hemicellulase based enzymes: 3. Comparing effects of urea or enzyme treatment 

on forage composition and stability. Animal, 82(1), pp.51-61. 

Agricultural and Food Research Council (AFRC) 1983. Energy and Protein 

Requirements of Ruminants. An advisory manual prepared by AFRC Technical Committee 

on Responses to Nutrients. CAB International, Wallingford, Oxon, UK. 

Agricultural Research Council (ARC) 1980. Nutrient Requirements of Ruminant 

Livestock. CAB International, Farham Royal, Slough, UK. 

Alimon, A.R., Ivan, M. and Jalaludin, S. 2011. Effects of different levels of dietary sulfur 

and molybdenum on concentrations of copper and other elements in plasma and liver of 

lambs fed palm kernel cake diets. British Journal of Nutrition, 106(8), pp.1224-1230. 

Al-Kirshi, R.A., Alimon, A.R. and Ivan, M. 2011. Effects of dietary molybdenum, sulfur 

and zinc on the excretion and tissue accumulation of trace elements in sheep fed palm 

kernel cake-based diets. Animal, 5(10), p.1539. 

Allaway, W.H. 1977. Perspectives of molybdenum in soils and plants. Molybdenum in the 

Environment, 2, pp.317-39. 

Allen, J.D. and Gawthornet, J.M. 1987. Involvement of the solid phase of rumen digesta 

in the interaction between copper, molybdenum and sulphur in sheep. British Journal of 

Nutrition, 58(2), pp.265-276. 

Alleyne, T., Adogwa, A., Lalla, A., Joseph, J. and John, R. 1996. Novel mitochondrial 

proteins and decreased intrinsic activity of cytochrome-C Oxidase. Molecular and Chemical 

Neuropathology, 28(1-3), pp.285-293. 

Arredondo, M., Muñoz, P., Mura, C.V. and Núñez, M.T. 2003. DMT1, a physiologically 

relevant apical Cu1+ transporter of ntestinal cells. American Journal of Physiology-Cell 

Physiology, 284(6), pp.C1525-C1530. 



201 
 

Arthington, J.D., Corah, L.R. and Blecha, F. 1996. The effect of molybdenum-induced 

copper deficiency on acute-phase protein concentrations, superoxide dismutase activity, 

leukocyte numbers, and lymphocyte proliferation in beef heifers inoculated with bovine 

herpesvirus-1. Journal of Animal Science, 74(1), pp.211-217. 

Arthington, J.D., Rechcigl, J.E., Yost, G.P., McDowell, L.R. and Fanning, M.D. 2002. 

Effect of ammonium sulfate fertilization on bahiagrass quality and copper metabolism in 

grazing beef cattle. Journal of Animal Science, 80(10), pp.2507-2512. 

Association of Official Agricultural Chemists (AOAC) 2012. Official Methods of 

Analysis. 19th edition. AOAC International, Arlington, VA. 

Audigé, L., Wilson, P.R., Morris, R.S. and Davidson, G.W. 1995. Osteochondrosis, 

skeletal abnormalities and enzootic ataxia associated with copper deficiency in a farmed 

red deer (Cervus elaphus) herd. New Zealand Veterinary Journal, 43(2), pp.70-76. 

Barlow, R.M., Butler, E.J. and Purves, D. 1964. An ataxic condition in red deer (Cervus 

elaphus). Journal of Comparative Pathology and Therapeutics, 74, pp.519-529. 

Belanche, A., Kingston-Smith, A.H. and Newbold, C.J. 2016. An Integrated Multi-Omics 

Approach Reveals the Effects of Supplementing Grass or Grass Hay with Vitamin E on the 

Rumen Microbiome and Its Function. Frontiers in Microbiology, 7. 

Bidewell, C.A., Drew, J.R., Payne, J.H., Sayers, A.R., Higgins, R.J. and Livesey, C.T. 

2012. Case study of copper poisoning in a British Dairy herd. The Veterinary Record, 

170,464. 

Bird, P.R. 1970. Sulphur metabolism and excretion studies in ruminants. III. The effect of 

sulphur intake on the availability of copper in sheep. In Proceedings of the Australian 

Society of Animal Production 8, pp. 212-218. 

Black, D.H. and French, N.P. 2000. Copper supplementation and bovine pregnancy rates: 

three types of supplementation compared in commercial dairy herds. Irish Veterinary 

Journal, 53(4), pp.213-222. 

Blair, B.G., Larson, C.A., Safaei, R. and Howell, S.B. 2009. Copper transporter 2 

regulates the cellular accumulation and cytotoxicity of Cisplatin and Carboplatin. Clinical 

Cancer Research, 15(13), pp.4312-4321. 

Bond, A. J. 2006. The effect of stage of maturity and inclusion rate of processed, whole-

crop wheat on the metabolism and performance of dairy cows. PhD Thesis, Harper Adams 

University College. 

Bonfante, E., Palmonari, A., Mammi, L., Canestrari, G., Fustini, M. and Formigoni, A. 

2016. Effects of a completely pelleted diet on growth performance in Holstein heifers. 

Journal of Dairy Science, 99(12), pp.9724-9731. 



202 
 

Boucque, C.V., Cottyn, B.G. and Buysse, F.X. 1973. Maize silages and dehydrated 

whole-maize-plant pellets of various qualities and high moisture corn for intensive beef 

production. Proceeding 5th General Meeting European Grassland Federation, Uppsala, 

Sweden. pp. 23-31. 

Boyne, R. and Arthur, J.R. 1986. Effects of molybdenum or iron induced copper deficiency 

on the viability and function of neutrophils from cattle. Research in Veterinary Science, 

41(3), pp.417-419. 

Bremner, I. 1970. Zinc, copper and manganese in the alimentary tract of sheep. British 

Journal of Nutrition, 24(3), pp.769-783. 

Bremner, I. 1980. Absorption, Transport and Distribution of Copper. Ciba Foundation 

Symposium, Excerpta Medica Journal, 79, p. 23-48 

Bremner, I. 1998. Manifestations of copper excess. The American Journal of Clinical 

Nutrition, 67(5), pp.1069S-1073S. 

Bremner, I., Young, B.W. and Mills, C.F. 1976. Protective effect of zinc supplementation 

against copper toxicosis in sheep. British Journal of Nutrition, 36(3), pp.551-561. 

Bremner, I., Humphries, W.R., Phillippo, M., Walker, M.J. and Morrice, P.C. 1987. Iron-

induced copper deficiency in calves: dose-response relationships and interactions with 

molybdenum and sulphur. Animal Production, 45(3), pp.403-414. 

Brown, V.E., Rymer, C., Agnew, R.E. and Givens, D.I. 2002. Relationship between in 

vitro gas production profiles of forages and in vivo rumen fermentation patterns in beef 

steers fed those forages. Animal Feed Science and Technology, 98(1), pp.13-24. 

Bryden, J.M. and Bray, A.C. 1972. The effect of dietary molybdenum on the reduction of 

inorganic sulphate in the rumen. In Proceedings of the Australian Society of Animal 

Production, (9), pp. 335-340. 

Buckley, W.T. 1991. A kinetic model of copper metabolism in lactating dairy cows. 

Canadian Journal of Animal Science, 71(1), pp.155-166. 

Burke, F., Murphy, J.J., O’donovan, M.A., O’mara, F.P., Kavanagh, S. and Mulligan, 

F.J. 2007. Comparative evaluation of alternative forages to grass silage in the diet of early 

lactation dairy cows. Journal of Dairy Science, 90(2), pp.908-917. 

Burridge, J.C., Reith, J.W.S. and Berrow, M.L. 1983. Soil factors and treatments affecting 

trace elements in crops and herbage. In: Trace Elements in Animal Production and 

Veterinary Practice (Suttle, N.F., Gunn, R.G., Allen, W.M., Linklater, K.A. and Wiener, G., 

eds), British Society of Animal Production Occasional Publication, Edinburgh,7, pp. 77–86. 



203 
 

Calabrò, S., Cutrignelli, M.I., Piccolo, G., Bovera, F., Zicarelli, F., , M.P. and Infascelli, 

F. 2005. In vitro fermentation kinetics of fresh and dried silage. Animal Feed Science and 

Technology, 123, pp.129-137. 

Chidambaram, M.V., Barnes, G. and Frieden, E. 1984. Inhibition of ceruloplasmin and 

other copper oxidases by thiomolybdate. Journal of Inorganic Biochemistry, 22(4), pp.231-

239. 

Clarke, N.J. and Laurie, S.H. 1980. The copper-molybdenum antagonism in ruminants. I. 

The formation of thiomolybdates in animal rumen. Journal of Inorganic Biochemistry, 12(1), 

pp.37-43. 

Coblentz, W.K., Esser, N.M., Hoffman, P.C. and Akins, M.S. 2015. Growth performance 

and sorting characteristics of corn silage-alfalfa haylage diets with or without forage dilution 

offered to replacement Holstein dairy heifers. Journal of Dairy Science, 98(11), pp.8018-

8034. 

Cone, J.W., van Gelder, A.H., Visscher, G.J. and Oudshoorn, L. 1996. Influence of 

rumen fluid and substrate concentration on fermentation kinetics measured with a fully 

automated time related gas production apparatus. Animal Feed Science and Technology, 

61(1-4), pp.113-128. 

Cope, C.M, Mackenzie, A.M., Wilde, D. and Sinclair, L.A. 2009. Effects of level and form 

of dietary zinc on dairy cow performance and health. Journal of Dairy Science, 92, pp.2128–

2135. 

Cousin, R.J. 1985. Absorption, transport and hepatic metabolism of copper and zinc: 

special reference to metallothionine and caerloplasmin. Physiological Reviews, (65), pp. 

238-309. 

Crosby, T.F., Quinn, P.J., Callan, J.J. and O'Hara, M. 2004. Effect of floor type and dietary 

molybdenum content on the liver copper concentration at slaughter and performance of 

intensively finished lambs. Livestock Production Science, 90(2), pp.181-190. 

Dafaalla, B.F.M. and Kay, R.N.B. 1980. Effect of hay particle-size on retention time, dry-

matter digestibility and rumen pH in sheep. In Proceedings of the Nutrition Society, (39), 3, 

pp. A71-A71.  

Dayrell, M.S., Arcuri, P.B., Aroreia, L.J.M. and Liziere, O. 1994. Copper toxicity in 

defaunated sheep. In Nutrition Abstracts and Reviews. Series B. Livestock Feeds and 

Feeding, 64, pp. 238A. 

Dean, L. 2005. Blood Groups and Red Cell Antigens. NCBI, Bethesda, Md, USA. 

Dehority, B.A. 2003. Rumen microbiology. Nottingham: Nottingham University Press. 



204 
 

Dehority, B.A. 2005. Effect of pH on viability of Entodinium caudatum, Entodinium 

exiguum, Epidinium caudatum, and Ophryoscolex purkynjei in vitro. Journal of Eukaryotic 

Microbiology, 52(4), pp.339-342. 

Dehority, B.A. and Orpin, C.G. 1997. Development of, and natural fluctuations in, rumen 

microbial populations. In: The Rumen Microbial Ecosystem, Springer Netherlands, pp. 196-

245. 

DePeters, E.J., Fadel, J.G., Arana, M.J., Ohanesian, N., Etchebarne, M.A., Hamilton, 

C.A., Hinders, R.G., Maloney, M.D., Old, C.A., Riordan, T.J. and Perez-Monti, H. 2000. 

Variability in the chemical composition of seventeen selected by-product feedstuffs used by 

the California dairy industry. The Professional Animal Scientist, 16(2), pp.69-99. 

Dias, R.S., López, S., Montanholi, Y.R., Smith, B., Haas, L.S., Miller, S.P. and France, 

J. 2013. A meta-analysis of the effects of dietary copper, molybdenum, and sulfur on plasma 

and liver copper, weight gain, and feed conversion in growing-finishing cattle. Journal of 

Animal Science, 91(12), pp.5714-5723. 

Dick, A.T. 1953. The control of copper storage in the liver of sheep by inorganic sulphate 

and molybdenum. Australian Veterinary Journal, 29(9), pp.233-239. 

Dick, A.T. 1954. Studies on the assimilation and storage of copper in crossbred sheep. 

Australian Journal of Agricultural Research, 5, pp.511-544. 

Dick, A.T. and Bull, L.B. 1945. Some preliminary observations on the effect of 

molybdenum on copper metabolism in herbivorous animals. Australian Veterinary Journal, 

21, pp. 70-72. 

Dick, A.T., Dewey, D.W. and Gawthorne, J.M. 1975. Thiomolybdates and the copper–

molybdenum–sulphur interaction in ruminant nutrition. The Journal of Agricultural Science, 

85(03), pp.567-568. 

DiSilvestro, R.A. and Cousins, R.J. 1983. Physiological ligands for copper and zinc. 

Annual Review of Nutrition, 3(1), pp.261-288. 

Dranks, D.M. and Campbell, P.E. 1972. Menkes kinky hair syndrome. An inherited defect 

in copper absorption with wide spread effects. Pediatrics, 50(2), pp.188-201. 

Drewnoski, M.E., Pogge, D.J. and Hansen, S.L. 2014. High-sulfur in beef cattle diets: a 

review. Journal of Animal Science, 92(9), pp.3763-3780. 

Du Plessis, S.S., Van Niekerk, F.E. and Coetzer, W.A. 1999a. The effect of dietary 

molybdenum and sulphate on the oestrus cycle and ovulation in ewes after manipulation 

with exogenous progesterone alone or in combination with FSH and LH. Small Ruminant 

Research, 33(1), pp.63-69. 

https://www.researchgate.net/journal/0004-9409_Australian_Journal_of_Agricultural_Research


205 
 

Du Plessis, S.S., Van Niekerk, F.E. and Coetzer, W.A. 1999b. The effect of dietary 

molybdenum and sulphate on sexual activity and plasma progesterone concentrations of 

ewes. Small Ruminant Research, 33(1), pp.71-76. 

Elvehjem, C.A., Steenbock, H. and Hart, E.B. 1929. Is copper a constituent of the 

hemoglobin molecule? The distribution of copper in blood. Journal of Biological Chemistry, 

83(1), pp.21-25. 

European Commission, Commission Regulation (EC) 2003. amending the conditions 

for authorisation of a number of additives in feeding stuffs belonging to the group of trace 

elements, Official Journal of the European Union, L187, pp.11-15. 

Fatemi, N. and Sarkar, B. 2002. Molecular mechanism of copper transport in Wilson 

disease. Environmental Health Perspectives, 110(5), p.695. 

Ferguson, W.S., Lewis, A.H. and Watson, S.J. 1943. The teart pastures of Somerset: I. 

The cause and cure of teartness. The Journal of Agricultural Science, 33(1), pp.44-51. 

Fisher, L.J., Lister, E.E., Jordan, W.A., Wauthy, J., Comeau, J., Brossard, G. and 

Proulx, J. 1972. Effects of plane of nutrition, confinement system, and forage preservation 

on supplemental mineral intake and content of minerals in the blood of pregnant beef cows. 

Canadian Journal of Animal Science, 52(4), pp.693-702. 

Fry, R.S., Spears, J.W., Lloyd, K.E., O’Nan, A.T. and Ashwell, M.S. 2013. Effect of 

dietary copper and breed on gene products involved in copper acquisition, distribution, and 

use in Angus and Simmental cows and foetuses. Journal of Animal Science, 91(2), pp.861-

871. 

Gaetke, L.M., Chow-Johnson, H.S. and Chow, C.K. 2014. Copper: toxicological 

relevance and mechanisms. Archives of Toxicology, 88(11), pp.1929-1938. 

García-Rodríguez, A., Mandaluniz, N., Flores, G. and Oregui, L.M. 2005. A gas 

production technique as a tool to predict organic matter digestibility of grass and maize 

silage. Animal Feed Science and Technology, 123, pp.267-276. 

Garrick, M.D., Dolan, K.G., Horbinski, C., Ghio, A.J., Higgins, D., Porubcin, M., Moore, 

E.G., Hainsworth, L.N., Umbreit, J.N., Conrad, M.E. and Feng, L. 2003. DMT1: a 

mammalian transporter for multiple metals. Biometals, 16(1), pp.41-54. 

Gawthorne, J. M. 1987. Copper interactions. In: Copper in Animals and Man (Howell, 

J.M.C. and Gawthorne, J.M., eds), Academic Press, Florida, USA, 1, pp. 79-100. 

Gawthorne, J.M., Allen, J.D. and Nader, C.J. 1985. Interactions between copper, 

molybdenum and sulphur in the rumen of sheep. In: Trace elements in man and animals: 

TEMA 5: proceedings of the fifth International Symposium on Trace Elements in Man and 



206 
 

Animals (Mills, C.F., Bremner, I. and Chesters. J.K., eds), Farnham Royal, Slough: 

Commonwealth Agricultural Bureaux, pp. 346-351. 

Gengelbach, G.P. and Spears, J.W. 1998. Effects of Dietary Copper and Molybdenum on 

Copper Status, Cytokine Production, and Humoral Immune Response of Calves1. Journal 

of Dairy Science, 81(12), pp.3286-3292. 

Georgievskii, V.I., Annenkov, B.N. and Samokhin, V.T. 1982. Mineral nutrition of 

animals: Studies in the Agricultural and Food Sciences. Butterworth, London. 

Getachew, G., Blümmel, M., Makkar, H.P.S. and Becker, K. 1998. In vitro gas measuring 

techniques for assessment of nutritional quality of feeds: a review. Animal Feed Science 

and Technology, 72(3), pp.261-281. 

Gitlin, J.D., Schroeder, J.J., Lee-Ambrose, L.M. and Cousins, R.J. 1992. Mechanisms 

of caeruloplasmin biosynthesis in normal and copper-deficient rats. Biochemical Journal, 

282(3), pp.835-839. 

Goodman, V.L., Brewer, G.J. and Merajver, S.D. 2004. Copper deficiency as an anti-

cancer strategy. Endocrine-Related Cancer, 11(2), pp.255-263. 

Gooneratne, S.R. 2012. Effects of clonidine and idazoxan on tetrathiomolybdate-induced 

copper and somal enzyme excretion into sheep bile. Research in Veterinary Science, 92(3), 

pp.456-461. 

Gooneratne, S.R. and Christensen, D.A. 1997. Effect of chelating agents on the excretion 

of copper, zinc and iron in the bile and urine of sheep. The Veterinary Journal, 153(2), 

pp.171-178. 

Gooneratne, S.R., Howell, J.M. and Cook, R.D. 1980. An ultrastructural and 

morphometric study of the liver of normal and copper-poisoned sheep. The American 

Journal of Pathology, 99(2), pp.429. 

Gooneratne, S.R., Howell, J.M. and Gawthorne, J.M. 1981. Intravenous administration 

of thiomolybdate for the prevention and treatment of chronic copper poisoning in sheep. 

British Journal of Nutrition, 46(3), pp.457-467. 

Gooneratne, S. R., Bailey, J. V., Symonds, H. W. and Christensen, D. A. 1987. Effect of 

dietary Cu, Mo and S levels on bile and urine Cu excretion in 2 breeds of cattle. Canadian 

Journal of Animal Science. 67:1188. 

Gooneratne, S.R., Buckley, W.T. and Christensen, D.A. 1989a. Review of copper 

deficiency and metabolism in ruminants. Canadian Journal of Animal Science, 69(4), 

pp.819-845. 



207 
 

Gooneratne, S.R., Laarveld, B., Chaplin, R.K. and Christensen, D.A. 1989b. Profiles of 

67Cu in blood, bile, urine and faeces from 67Cu -primed lambs: effect of 99Mo-labelled 

tetrathiomolybdate on the metabolism of recently stored tissue Cu. British Journal of 

Nutrition, 61(2), pp.355-371. 

Gooneratne, S.R., Christensen, D.A., Bailey, J.V. and Symonds, H.W. 1994. Effects of 

dietary copper, molybdenum and sulfur on biliary copper and zinc excretion in Simmental 

and Angus cattle. Canadian Journal of Animal Science, 74(2), pp.315-325. 

Gosselink, J.M.J., Dulphy, J.P., Poncet, C., Tamminga, S. and Cone, J.W. 2004. A 

comparison of in situ and in vitro methods to estimate in vivo fermentable organic matter of 

forages in ruminants. NJAS-Wageningen Journal of Life Sciences, 52(1), pp.29-45. 

Gould, D.H. 1998. Polioencephalomalacia. Journal of Animal science, 76(1), pp.309-314. 

Gould, L. and Kendall, N.R. 2011. Role of the rumen in copper and thiomolybdate 

absorption. Nutrition Research Reviews, 24(2), pp.176-182. 

Gould, D.H., McAllister, M.M., Savage, J.C. and Hamar, D.W. 1991. High sulfide 

concentrations in rumen fluid associated with nutritionally induced polioencephalomalacia. 

American Journal of Veterinary Research, 52, pp.1164-1169. 

Grace, N.D. and Gooden, J.M. 1980. Effect of increasing intakes of Zn, Cu, and Mn on 

their secretion via bile and pancreatic juice and their excretion in faeces and urine in sheep 

fed lucerne pellets. New Zealand Journal of Agricultural Research, 23(3), pp.293-298. 

Grace, N.D. and Lee, J. 1990. Effect of increasing Fe intake on the Fe and Cu content of 

tissues in grazing sheep. In: Proceedings of the New Zealand Society of Animal Production, 

50, pp. 265-268. 

Grace, N.D., Knowles, S.O., Rounce, J.R., West, D.M. and Lee, J. 1998. Effect of 

increasing pasture copper concentrations on the copper status of grazing Romney sheep. 

New Zealand Journal of Agricultural Research, 41(3), pp.377-386. 

Haddad, S.G., Grant, R.J. and Klopfenstein, T.J. 1994. Digestibility of alkali-treated wheat 

straw measured in vitro or in vivo using Holstein heifers. Journal of Animal Science, 72(12), 

pp.3258-3265. 

Hansen, S.L. and Spears, J.W. 2008. Impact of copper deficiency in cattle on proteins 

involved in iron metabolism. Federation of American Societies for Experimental Biology , 

22(1), pp.443-5. 

Hansen, S.L. and Spears, J.W. 2009. Bioaccessibility of iron from soil is increased by 

silage fermentation. Journal of Dairy Science, 92(6), pp.2896-2905. 

https://en.wikipedia.org/wiki/Federation_of_American_Societies_for_Experimental_Biology


208 
 

Hansen, S.L., Ashwell, M.S., Legleiter, L.R., Fry, R.S., Lloyd, K.E. and Spears, J.W. 

2008. The addition of high manganese to a copper-deficient diet further depresses copper 

status and growth of cattle. British Journal of Nutrition, 101(7), pp.1068-1078. 

Hansen, S.L., Ashwell, M.S., Legleiter, L.R., Fry, R.S., Lloyd, K.E. and Spears, J.W. 

2009. The addition of high manganese to a copper-deficient diet further depresses copper 

status and growth of cattle. British Journal of Nutrition, 101(7), pp.1068-1078. 

Harris, E.D. 2000. Cellular copper transport and metabolism, Annual .Review of Nutrition, 

20, pp. 291–310. 

Hartmann, H.J., Felix, K., Nagel, W. and Weser, U. 1993. Intestinal administration of 

copper and its transient release into venous rat blood serum concomitantly with 

metallothionein. Biometals, 6(2), pp.115-118. 

Haywood, S., Dincer, Z., Jasani, B. and Loughran, M.J. 2004. Molybdenum-associated 

pituitary endocrinopathy in sheep treated with ammonium tetrathiomolybdate. Journal of 

comparative pathology, 130(1), pp.21-31. 

Healy, W.B. 1972. In vitro studies on the effects of soil on elements in ruminal,“duodenal”, 

and ileal liquors from sheep. New Zealand Journal of Agricultural Research, 15(2), pp.289-

305. 

Hill, F.I. and Ebbett, P.C. 1997. Polioencephalomalacia in cattle in New Zealand fed chou 

moellier (Brassica oleracea). New Zealand Veterinary Journal, 45(1), pp.37-39. 

Hill, G.M., Cromwell, G.L., Crenshaw, T.D., Dove, C.R., Ewan, R.C., Knabe, D.A., Lewis, 

A.J., Libal, G.W., Mahan, D.C., Shurson, G.C. and Southern, L.L. 2000. Growth 

promotion effects and plasma changes from feeding high dietary concentrations of zinc and 

copper to weanling pigs (regional study), Journal of Animal Science, 78(4), pp.1010-1016. 

Howell, J. McC. and Gooneratne, S.R. 1987. The pathology of copper toxicity in animals. 

In: Copper in Animals and Man- 2 (Howell, J. McC. and Gawthorne, J. M., eds), CRC Press, 

Boca Raton, Florida, pp. 53-78. 

Huisingh, J., Gomez, G.G. and Matrone, G. 1973. Interactions of copper, molybdenum, 

and sulfate in ruminant nutrition. Federation Proceedings, 32(8), pp. 1921-1924. 

Humphries, W.R., Phillippo, M., Young, B.W. and Bremner, I. 1983. The influence of 

dietary iron and molybdenum on copper metabolism in calves. British journal of nutrition, 

49(01), pp.77-86. 

Humphries, W.R., Mills, C.F., Greig, A., Roberts, L., Inglis, D. and Halliday, G.J. 1986. 

Use of ammonium tetrathiomolybdate in the treatment of copper poisoning in sheep. The 

Veterinary Record, 119(24), pp.596-598. 

https://www.researchgate.net/publication/null?el=1_x_8&enrichId=rgreq-8eeb66548d478c42d4d1221fa639a626-XXX&enrichSource=Y292ZXJQYWdlOzI5Mjk0ODIwNztBUzozMzgyNTA2MjQ0NTQ2NjdAMTQ1NzY1NjY0MTc0OA==
https://www.researchgate.net/publication/null?el=1_x_8&enrichId=rgreq-8eeb66548d478c42d4d1221fa639a626-XXX&enrichSource=Y292ZXJQYWdlOzI5Mjk0ODIwNztBUzozMzgyNTA2MjQ0NTQ2NjdAMTQ1NzY1NjY0MTc0OA==
https://www.researchgate.net/publication/null?el=1_x_8&enrichId=rgreq-8eeb66548d478c42d4d1221fa639a626-XXX&enrichSource=Y292ZXJQYWdlOzI5Mjk0ODIwNztBUzozMzgyNTA2MjQ0NTQ2NjdAMTQ1NzY1NjY0MTc0OA==


209 
 

Huntington, J.A., Rymer, C. and Givens, D.I. 1998. The effect of host diet on the gas 

production profile of hay and high-temperature dried grass. Animal Science, 67(1), pp.59-

64. 

Ibrahim, M.N.M., Van Der Kamp, A., Zemmelink, G. and Tamminga, S. 1990. Solubility 

of mineral elements present in ruminant feeds. The Journal of Agricultural Science, 114(3), 

pp.265-274. 

Ivan, M. 1993. How dietary copper affects ruminants. Communications Branch, Agriculture 

Canada. Ottawa, Ontario, pp. 1-15. 

Ivan and T. Entz, M. 2007. Comparison of effects of Isotricha monofauna and total mixed 

fauna on dietary copper metabolism in lambs. Canadian Journal of Animal Science, 87(3), 

pp.401-405. 

Ivan, M., Veira, D.M. and Kelleher, C.A. 1985. Chronic copper toxicity in a fauna free 

sheep flock. Journal of Animal Science, 61, p.474. 

Ivan, M., Hidiroglou, M., Al-Ismaily, S.I., Al-Sumry, H.S. and Harper, R.B. 1990. Copper 

deficiency and posterior paralysis (Shalal) in small ruminants in the Sultanate of Oman. 

Tropical Animal Health and Production, 22(4), pp.217-225. 

Jackson, P. and Cockcroft, P. 2008. Clinical examination of farm animals. Blackwell 

Science Ltd, Osney Mead, Oxford, UK, pp. 302. 

Jalali, A.R., Nørgaard, P., Weisbjerg, M.R. and Nadeau, E. 2012. Effect of stage of 

maturity of grass at harvest on intake, chewing activity and distribution of particle size in 

faeces from pregnant ewes. Animal, 6(11), pp.1774-1783. 

Johnson, J.L. 1997. Molybdenum. In: Handbook of Nutritionally Essential Mineral 

Elements, (O’Dell, B.L. and Sunde, R.A., eds), Marcel Dekker, New York, pp. 413-438. 

Jones, D.G. and Suttle, N.F. 1981. Some effects of copper deficiency on leucocyte function 

in sheep and cattle. Research in Veterinary Science, 31(2), pp.151-156. 

Jumba, I.O., Suttle, N.F., Hunter, E.A. and Wandiga, S.O. 1995. Effects of soil origin and 

mineral composition and herbage species on the mineral composition of forages in the 

Mount Elgon region of Kenya. 2. Trace elements. Tropical Grasslands, 29, 47–52. 

Kalinowski, D.S., Stefani, C., Toyokuni, S., Ganz, T., Anderson, G.J., Subramaniam, 

N.V., Trinder, D., Olynyk, J.K., Chua, A., Jansson, P.J. and Sahni, S. 2016. Redox 

cycling metals: Pedaling their roles in metabolism and their use in the development of novel 

therapeutics. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1863(4), 

pp.727-748. 



210 
 

Kandylis, K. 1984. Toxicology of sulfur in ruminants: Review. Journal of Dairy Science, 

67(10), pp.2179-2187. 

Keady, T.W.J. 2005. Ensiled maize and whole crop wheat forages for beef and dairy cattle: 

effects on animal performance. In Proceedings of the XIV International Silage Conference. 

Wageningen Academic Publishers, Belfast, N. Ireland. pp. 65-82. 

Keady, T.W.J. and Hanrahan, J.P. 2008. The effects of grass silage harvest systems, 

concentrate feed level and maize silage maturity and soyabean supplementation on ewe 

and subsequent lamb performance. In Proceedings of the British Society of Animal Science, 

Scarborough, England, p.125. 

Keady, T.W.J. and Hanrahan, J.P. 2009. The effects of maturity of maize at harvest and 

soyabean supplementation, grass silage feed value and concentrate feed level on ewe and 

subsequent lamb performance. In Proceedings of the XV International Silage Conference, 

Southport, England, pp. 133-134.  

Keady, T.W.J. and Hanrahan, J.P. 2013. Effects of silage from maize crops differing in 

maturity at harvest, grass silage feed value and concentrate feed level on performance of 

finishing lambs. Animal, 7(7), pp.1088-1098. 

Keady, T.W.J., Lively, F.O., Kilpatrick, D.J. and Moss, B.W. 2007. Effects of replacing 

grass silage with either maize or whole crop wheat silages on the performance and meat 

quality of beef cattle offered two levels of concentrate. Animal, 1, 613–623. 

Kelleher, C.A. and Mason, J. 1986. Reversible inhibition of ovine ceruloplasmin by 

thiomolybdates. International Journal of Biochemistry, 18(7), pp.629-635. 

Kendall, N.R., Middlemas, C., Maxwell, H., Birch, F., Illingworth, D.V., Jackson, D.W. 

and Telfer, S.B. 2000. A comparison of the efficacy of proprietary products in the treatment 

of molybdenum induced copper deficiency. In: Trace Elements in Man and Animals 10, 

(Roussel, A.M., Anderson, R.A., and Favrier, A.E., eds), Plenum Publishers, New York, 

USA, pp.741-748. 

Kendall, N.R., Illingworth, D.V. and Telfer, S.B. 2001. Copper responsive infertility in 

British cattle: the use of a blood caeruloplasmin to copper ratio in determining a requirement 

for copper supplementation. British Society of Animal Science Occasional publication, 2, 

pp.429-432. 

Kendall, N.R., Holmes-Pavord, H.R., Bone, P.A., Ander, E.L. and Young, S.D. 2015. 

Paper: Liver copper concentrations in cull cattle in the UK: are cattle being copper loaded?, 

The Veterinary Record, 177(19), p.493. 

Kim, B.E., Nevitt, T. and Thiele, D.J. 2008. Mechanisms for copper acquisition, distribution 

and regulation. Nature Chemical Biology, 4(3), pp.176-185. 



211 
 

Kmicikewycz, A.D., Harvatine, K.J. and Heinrichs, A.J. 2015. Effects of corn silage 

particle size, supplemental hay, and forage-to-concentrate ratio on rumen pH, feed 

preference, and milk fat profile of dairy cattle. Journal of Dairy Science, 98(7), pp.4850-

4868. 

Knaus, W., Luger, K., Zollitsch, W., Gufler, H., Gruber, L., Murauer, C. and Lettner, F. 

1999. Effects of grass clover-pellets and whole plant maize-pellets on the feed intake and 

performance of dairy cows. Animal Feed Science and Technology, 81(3), pp.265-277. 

Knowles, S.O., Grace, N.D., Rounce, J.R., Litherland, D.M. and Lee, J. 2000. Dietary 

Mo as an antagonist to Cu absorption: stable isotope (65Cu) measurements in grazing 

sheep. In: Proceedings of the 10th International Symposium on Trace Elements in Man and 

Animals (Roussel, A.M., Anderson, R.A. and Favrier, A. E., eds), Etian, France. Springer, 

pp. 717–722. 

Knutson, M.D. 2007. Steap proteins: implications for iron and copper metabolism. Nutrition 

Reviews, 65(7), pp.335-340. 

Kodama, H., Fujisawa, C. and Bhadhprasit, W. 2012. Inherited copper transport 

disorders: biochemical mechanisms, diagnosis, and treatment. Current Drug Metabolism, 

13(3), pp.237-250. 

Komatsu, M., Sumizawa, T., Mutoh, M., Chen, Z.S., Terada, K., Furukawa, T., Yang, 

X.L., Gao, H., Miura, N., Sugiyama, T. and Akiyama, S.I. 2000. Copper-transporting P-

type adenosine triphosphatase (ATP7B) is associated with cisplatin resistance. Cancer 

Research, 60(5), pp.1312-1316. 

Kumaratilake, J.S. 2014. Chronic copper poisoning in sheep: liver injury. Journal of Trace 

Element Analysis, 3(1), pp. 1-22. 

Kumaratilake, J.S. and Howell, J.M. 1989. Intravenously administered tetra-

thiomolybdate and the removal of copper from the liver of copper-loaded sheep. Journal of 

Comparative Pathology, (101), pp. 177–199. 

Kung, L., Bracht, J.P. and Tavares, J.Y. 2000. Effects of various compounds on in vitro 

ruminal fermentation and production of sulfide. Animal Feed Science and Technology, 

84(1), pp.69-81. 

La Fontaine, S. and Mercer, J.F. 2007. Trafficking of the copper-ATPases, ATP7A and 

ATP7B: role in copper homeostasis. Archives of Biochemistry and Biophysics, 463(2), 

pp.149-167. 

La Fontaine, S., Ackland, M.L. and Mercer, J.F. 2010. Mammalian copper-transporting 

P-type ATPases, ATP7A and ATP7B: emerging roles. The international Journal of 

Biochemistry and Cell Biology, 42(2), pp.206-209. 

https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0CCYQFjAB&url=http%3A%2F%2Fwww.journals.elsevier.com%2Fjournal-of-comparative-pathology%2F&ei=vwkoVYa2HsT_Ur7wgZAO&usg=AFQjCNGObWTFjqIgDI97CF8t60Zr0WMaBw
https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0CCYQFjAB&url=http%3A%2F%2Fwww.journals.elsevier.com%2Fjournal-of-comparative-pathology%2F&ei=vwkoVYa2HsT_Ur7wgZAO&usg=AFQjCNGObWTFjqIgDI97CF8t60Zr0WMaBw


212 
 

Langlands, J.P., Bowles, J.E., Donald, G.E. and Smith, A.J. 1984. Deposition of copper, 

manganese, selenium and zinc in Merino sheep. Crop and Pasture Science, 35(5), pp.701-

707.  

Laven, R.A. and Livesey, C.T. 2005. The diagnosis of copper related disease, part 2: 

copper responsive disorders. Cattle Practice, 13, pp.55-60. 

Laven, R.A. and Livesey, C.T. 2006. An evaluation of the effect of clotting and processing 

of blood samples on the recovery of copper from bovine blood. The Veterinary Journal, 

171(2), pp.295-300. 

Laven, R.A., Lawrence, K.E. and Livesey, C.T. 2007. The assessment of blood copper 

status in cattle: A comparison of measurements of caeruloplasmin and elemental copper in 

serum and plasma. New Zealand Veterinary Journal, 55(4), pp.171-176. 

Leary, S.C., Kaufman, B.A., Pellecchia, G., Guercin, G.H., Mattman, A., Jaksch, M. and 

Shoubridge, E.A. 2004. Human SCO1 and SCO2 have independent, cooperative functions 

in copper delivery to cytochrome c oxidase. Human Molecular Genetics, 13(17), pp.1839-

1848. 

Leaver, J.D. and Hill, J. 1995. The performance of dairy cows offered ensiled whole-crop 

wheat, urea-treated whole-crop wheat or sodium hydroxide-treated wheat grain and wheat 

straw in a mixture with grass silage. Animal Science, 61(3), pp.481-489. 

Lee, J. and Thiele, D.J. 2002. Regulation and Function of the Copper Ion Transport 

Machinery. In Trace Elements in Man and Animals 10, Springer US, pp. 15-20. 

Lee, J., Petris, M.J. and Thiele, D.J. 2002. Characterization of mouse embryonic cells 

deficient in the ctr1 high affinity copper transporter Identification of a Ctr1-independent 

copper transport system. Journal of Biological Chemistry, 277(43), pp.40253-40259. 

Lee, S.S., Ha, J.K. and Cheng, K.J. 2000. Relative contributions of bacteria, protozoa, and 

fungi to in vitro degradation of orchard grass cell walls and their interactions. Applied and 

Environmental Microbiology, 66(9), pp.3807-3813. 

Li, Y., McCrory, D.F., Powell, J.M., Saam, H. and Jackson-Smith, D. 2005. A survey of 

selected heavy metal concentrations in Wisconsin dairy feeds. Journal of Dairy Science, 

88(8), pp.2911-2922. 

Linder, M. C. 1991. Introduction and overview of copper as an element essential for life. In: 

Biochemistry of Copper, (Linder, M. C., eds), Plenum Press, New York, pp. 1-13. 

Linder, M. C. 2010. Nutritional biochemistry of copper, with emphasis on the perinatal 

period. In: Biochemical Aspects of Human Nutrition (Avigliano, L. and Rossi, L., eds), 

Transworld Research Network, Trivandrum, Kerala, India, pp. 143–179. 



213 
 

Linder, M.C. and Hazegh-Azam, M. 1996. Copper biochemistry and molecular biology. 

The American Journal of Clinical Nutrition, 63(5), pp.797S-811S. 

Linder, M.C., Wooten, L., Cerveza, P., Cotton, S., Shulze, R. and Lomeli, N. 1998. 

Copper transport. The American Journal of Clinical Nutrition, 67(5), pp.965S-971S. 

Livesey, C.T. 2002. Investigation of copper poisoning in adult cows by the veterinary 

laboratories agency. Cattle Practice, 10(4), pp.289-294. 

Llanos, R.M. and Mercer, J.F. 2002. The molecular basis of copper homeostasis copper-

related disorders. DNA and Cell Biology, 21(4), pp.259-270. 

Lonnerdal, B., Keen, C.L. and Hurley, L.S. 1982. Trace elements in milk from various 

species. In: Trace element metabolism in man and animals, (Howell Mac. J., Gawthorne, 

J.M and White, C.L., eds), Australia Academic of Science, Cambria, pp, 249. 

López-Alonso, M. 2012. Trace minerals and livestock: not too much not too little. 

International Scholarly Research Network Veterinary Science, pp.1-18. 

López-Alonso, M., Prieto, F., Miranda, M., Castillo, C., Hernández, J.R. and Benedito, 

J.L. 2005. Intracellular distribution of copper and zinc in the liver of copper-exposed cattle 

from northwest Spain. The Veterinary Journal, 170(3), pp.332-338. 

Luo, X.G., Henry, P.R., Ammerman, C.B. and Madison, J.B. 1996. Relative bioavailability 

of copper in a copper-lysine complex or copper sulfate for ruminants as affected by feeding 

regimen. Animal Feed Science and Technology, 57(4), pp.281-289. 

Lutsenko, S., Barnes, N.L., Bartee, M.Y. and Dmitriev, O.Y. 2007. Function and 

regulation of human copper-transporting ATPases. Physiological Reviews, 87(3), pp.1011-

1046. 

Mackenzie, A.M., Illingworth, D.V., Jackson, D.W. and Telfer, S.B. 1997. The use of 

caeruloplasmin activities and plasma copper concentrations as indicators of copper status 

in ruminants. In: Trace Elements in Man and Animal-9:  Proceedings of the Ninth 

International Symposium on Trace Elements in Man and Animals (Fischer, P.W.F., L’Abb, 

M.R., Cockell, K.A. and Gibson RS eds), NRC Research Press, Ottawa, Canada. pp. 137-

138. 

Mackenzie, A.M., Evans, S., Lynn, J.N.C., Illingworth, D.V. and Wilkinson, R.G. 2000. 

The effect of molybdenum, sulphur and iron on the copper status of store lambs. In 

Proceedings of the British Society of Animal Science, pp. 88. 

Mackenzie, A.M., Moeini, M.M. and Telfer, S.B. 2001. The effect of a copper, cobalt and 

selenium bolus on fertility and trace element status of dairy cattle. British Society of Animal 

Science Occasional Publication, 2, pp.423-428. 



214 
 

Mackenzie, A.M., Williams, C.L., Edwards, S.G. and Wilkinson, R.G. 2008. The effect of 

dietary molybdenum or iron on copper status and ceruloplasmin expression in sheep. In: 

Trace Elements in Animal Production Systems (Sclegel, P, Durosoy, S. and Jongloed, A.W., 

eds), Wageningen Academic Publishers, The Netherlands, pp.281-286. 

MacPherson, A. 2000. 17 Trace-mineral Status of Forages. In: Forage evaluation in 

ruminant nutrition (Givens, D.I., Owen, E., Axford, R.F.E. and Omed, H.M., eds), CABI 

Publishing. New York. 

MacPherson, A., Milne, E.M. and MacPherson, A.J. 1997. Copper poisoning in ewes. 

The Veterinary Record, 141(24), pp.631-631. 

Majak, W., Steinke, D., McGillivray, J. and Lysyk, T. 2004. Clinical signs in cattle grazing 

high molybdenum forage. Journal of Range Management, 57(3), pp.269-274. 

Marceau, N., Aspin, N. and Sass-Kortsak, A. 1970. Absorption of copper 64 from 

gastrointestinal tract of the rat. American Journal of Physiology--Legacy Content, 218(2), 

pp.377-383. 

Markossian, K.A. and Kurganov, B.I. 2003. Copper chaperones, intracellular copper 

trafficking proteins. Function, structure, and mechanism of action. Biochemistry, 68(8), 

pp.827-837. 

Mason, J. 1982. The putative role of thiomolybdates in the pathogenesis of Mo-induced 

hypocupraemia and molybdenosis: Some recent developments. Irish Veterinary Journal, 

36(12). pp. 164–168. 

Mason, J. 1986. Thiomolybdates: mediators of molybdenum toxicity and enzyme inhibitors. 

Toxicology, 42(2-3), pp.99-109. 

Mason, J., Lamand, M., Tressol, J.C. and Mulryan, G. 1988. Studies of the changes in 

systemic copper metabolism and excretion produced by the intravenous administration of 

trithiomolybdate in sheep. British Journal of Nutrition, 59(2), pp.289-300. 

McDonald Jr, M.B. and Wilson, D.O. 1980. ASA-610 ability to detect changes in soybean 

seed quality. Journal of Seed Technology, pp.56-66. 

McDonald, P, Edwards, R.A., Greenhalgh, J.F.D., Morgan, C.A., Sinclair, L.A., 

Wilkinson, R.G. 2011. Animal Nutrition. 7th edition. Pearson, Canada.  

McDougall, E.I. 1948. Studies on ruminant saliva. 1. The composition and output of sheep's 

saliva. Biochemical Journal, 43(1), p.99. 

McDowell, L.R. 1985. Copper, molybdenum, and Sulphur. In Nutrition of Grazing Ruminant 

in Warm Climates, Academic Press Ltd., New York, pp. 237-225.  



215 
 

McDowell, L.R. 1992. Minerals in animal and human nutrition. Academic Press Inc. 

Harcourt Brace Jovanovich Publisher, San Diego, California, USA. 

McDowell, L. 2003. Minerals in Animal and Human Nutrition. 2nd edition. Elsevier Science 

B.V., Amsterdam, The Netherlands.  

Mercer, J.F. 1997. Gene regulation by copper and the basis for copper homeostasis. 

Nutrition, 13(1), pp.48-49 

Merry, R.J., Jones, R., Theodorou, M.K. 2000. The conservation of grass. In: Grass. Its 

Production and Utilization (Hopkins, A., eds), Blackwell Science, Oxford, 3, pp. 196–228. 

Mills, C.F. and Dalgarno, A.C. 1972. Copper and zinc status of ewes and lambs receiving 

increased dietary concentrations of cadmium. Nature, 239(5368), pp.171-173. 

Mills, C.F. and Davis, G.K. 1987. Molybdenum. In Trace Element in Human and Animals 

Nutrition (Mertz, W. eds), Academic Press, New York, 1, pp.429-457. 

Ministry of Agriculture, Fisheries and Food (MAFF) 1992. The analysis of agricultural 

materials. 3rd edition. A manual of the analytical methods used by the agricultural 

development and advisory service. Reference book 427.  

Mison, D. 1990. Forage in ruminant Nutrition, Academic Press, New York, USA. 

Misra, H.P. and Fridovich, I. 1977. Superoxide dismutase: a photochemical augmentation 

assay. Archives of Biochemistry and Biophysics, 181(1), pp.308-312. 

Moeini, M.M., Souri, M. and Nooriyan, E. 2008. Quality in Merghoze Goat. Pakistan 

Journal of Biological Sciences, 11(10), pp.1375-1379. 

Mullis, L.A., Spears, J.W. and McCraw, R.L. 2003. Effects of breed (Angus vs Simmental) 

and copper and zinc source on mineral status of steers fed high dietary iron. Journal of 

Animal Science, 81(1), pp.318-322. 

Munro, I.B. 1957. Infectious and non-infectious herd infertility in East Anglia. The Record, 

69, pp.125-129. 

Murphy, J.J., Kavanagh, S. and Fitzgerald, J.J. 2004. Comparative evaluation of grass 

silage, fermented whole crop wheat silage, urea-treated processed whole crop wheat silage 

and maize silage in the diet of early lactation cows. In Proceedings of the 55th Annual 

Meeting of the European Association for Aviation Association, p. 95. 

National Research council (NRC) 1985. Nutrient Requirements of Sheep, 6th edition. 

National Academy Press, Washington, DC. 

National Research Council (NRC) 1996. Nutrient requirements of beef cattle. 17th edition. 

National Academy Press, Washington, DC. 



216 
 

National Research council (NRC) 2001. Nutrient Requirements of Dairy Cattle. 7th revised 

edition. Washington, DC: National Academic Press. 

National Research council (NRC) 2005. Mineral Tolerance of Animals. 2th revised edition. 

Washington, DC: National Academic Press. 

Nicholsona, F.A., Chambersa, B.J., Williamsb, J.R. and Unwin, R.J. 1999. Heavy metal 

contents of livestock feeds and animal manures in England and Wales. Bioresource 

Technology, 70(1), pp.23-31. 

Nicol, A.M., Keeley, M.J., Guild, C.D.H., Isherwood, P. and Sykes, A.R. 2003. Liveweight 

gain and copper status of young deer treated or untreated with copper oxide wire particles 

on ten deer farms in Canterbury. New Zealand Veterinary Journal, 51(1), pp.14-20. 

O’Dell, B.L. 1976. Biochemistry and physiology of copper in vertebrates. In: Trace 

Elements in Human Health and Diseases (Prasad, A.S., eds), Academic Press, New York, 

pp. 391-413.  

O'Gorman, J., Smith, F.H., Poole, D.B.R., Boland, M.P. and Roche, J.F. 1987. The effect 

of molybdenum-induced copper deficiency on reproduction in beef heifers. Theriogenology, 

27(1), p.265. 

Ogra, Y., Chikusa, H. and Suzuki, K.T. 2000. Metabolic fate of the insoluble 

copper/tetrathiomolybdate complex formed in the liver of LEC rats with excess 

tetrathiomolybdate. Journal of Inorganic Biochemistry, 78(2), pp.123-128. 

Ørskov, E. R. 1987. The Feeding of Ruminants: Principles and Practice. Chalcombe 

Publications, UK, pp. 18-19. 

Ørskov, E.R., Reid, G.W., Holland, S.M., Tait, C.A.G. and Lee, N.H. 1983. The feeding 

value for ruminants of straw and wholecrop barley and oats treated with anhydrous or 

aqueous ammonia or urea. Animal Feed Science and Technology, 8(4), pp.247-257. 

Osman, N.I.E.D. 1988. Comparative studies on the interaction of molybdenum and sulphur 

on copper metabolism in sheep Ovis aries and red deer Cervus elaphus. PhD thesis, Lincoln 

College, University of Canterbury.  

Owens, D., McGee, M., Boland, T. and O’Kiely, P. 2009. Rumen fermentation, microbial 

protein synthesis, and nutrient flow to the omasum in cattle offered corn silage, grass silage, 

or whole-crop wheat. Journal of Animal Science, 87(2), pp.658-668. 

Paynter, D.I. 1987. The diagnosis of copper insufficiency. Copper in animals and man. In: 

The Metabolism of Copper in Man and Animals- 1 (Howell, J.M. and Gawthorne, J.M., eds), 

CRC Press, Florida, pp. 101-119. 



217 
 

Peers, D. and Phillips, K. 2011. Trace Element Supplementation of Beef Cattle and Sheep. 

Agriculture and Horticulture Development Board, pp. 1-19. 

Pell, A.N. and Schofield, P. 1993. Computerized monitoring of gas production to measure 

forage digestion in vitro. Journal of Dairy Science, 76(4), pp.1063-1073. 

Petit, H.V. and Tremblay, G.F. 1992. In Situ Degradability of Fresh Grass Conserved 

Under Different Harvesting Methods1. Journal of Dairy Science, 75(3), pp.774-781. 

Phillippo, M. and Graca, D.S. 1983, January. Biliary copper secretion in cattle. 

Proceedings of the Nutrition Society, 42,46A.  

Phillippo, M., Humphries, W.R. and Garthwaite, P.H. 1987a. The effect of dietary 

molybdenum and iron on copper status and growth in cattle. The Journal of Agricultural 

Science, 109(2), pp.315-320. 

Phillippo, M., Humphries, W.R., Atkinson, T., Henderson, G.D. and Garthwaite, P.H. 

1987b. The effect of dietary molybdenum and iron on copper status, puberty, fertility and 

oestrous cycles in cattle. The Journal of Agricultural Science, 109(2), pp.321-336. 

Phipps, R.H., Sutton, J.D. and Jones, B.A. 1995. Forage mixtures for dairy cows: the 

effect on dry-matter intake and milk production of incorporating either fermented or urea-

treated whole-crop wheat, brewers' grains, fodder beet or maize silage into diets based on 

grass silage. Animal Science, 61(3), pp.491-496. 

Playne, M.J., Echevarría, M.G. and Megarrity, R.G. 1978. Release of nitrogen, sulphur, 

phosphorus, calcium, magnesium, potassium and sodium from four tropical hays during 

their digestion in nylon bags in the rumen. Journal of the Science of Food and Agriculture, 

29(6), pp.520-526. 

Prabowo, A., Spears, J., W. Goode, L. 1988. Effects of Dietary Iron on Performance and 

Mineral Utilization in Lambs Fed a Forage-Based Diet. Journal of Animal Science, (66), pp. 

2028–2035. 

Price, J. and Chesters, J.K. 1985. A new bioassay for assessment of copper availability 

and its application in a study of the effect of molybdenum on the distribution of available Cu 

in ruminant digesta. British Journal of Nutrition, 53(2), pp.323-336. 

Price, J., Will, A.M., Paschaleris, G. and Chesters, J.K. 1987. Identification of 

thiomolybdates in digesta and plasma from sheep after administration of 99 Mo-labelled 

compounds into the rumen. British Journal of Nutrition, 58(1), pp.127-138. 

Prohaska, J.R. 2006. Copper. In: Present Knowledge in Nutrition (Filer, L.J. and Ziegler, 

E.E., eds), 7th edition. International Life Science Institute–Nutrition Foundation, Washington, 

DC. 



218 
 

Prohaska, J.R. 2008. Role of copper transporters in copper homeostasis. The American 

Journal of Clinical Nutrition, 88(3), pp.826S-829S.  

Prohaska, J.R. and Lukasewycz, O.A. 1981. Copper Deficiency Suppresses the Immune 

Response of Mice. Science, 213, pp.559-561. 

Purcell, P.J., O’Brien, M., Boland, T.M., O’Donovan, M. and O’Kiely, P. 2011. Impacts 

of herbage mass and sward allowance of perennial ryegrass sampled throughout the 

growing season on in vitro rumen methane production. Animal Feed Science and 

Technology, 166, pp.405-411. 

Qian, Y., Tiffany-Castiglioni, E., Welsh, J. and Harris, E.D. 1998. Copper efflux from 

murine microvascular cells requires expression of the menkes disease Cu-ATPase. The 

Journal of Nutrition, 128(8), pp.1276-1282. 

Reddy, G.D., Alston, A.M. and Tiller, K.G. 1981. Seasonal changes in the concentrations 

of copper, molybdenum and sulfur in pasture plants. Animal Production Science, 21(112), 

pp.498-505. 

Robinson, J., Devlin, T.J., Wittenberg, K.M. and Stanger, N.E. 1987. The influence of 

molybdenum and sulfur on various copper parameters of afaunated ram lambs of different 

sire breeds. Canadian Journal of Animal Science, 67(1), pp.65-74. 

Rooke, J.A., Akinsoyinu, A.O. and Armstrong, D.G. 1983. The release of mineral 

elements from grass silages incubated in sacco in the rumens of Jersey cattle. Grass and 

Forage Science, 38(4), pp.311-316. 

SAC Consulting Veterinary Service (SAC C VS) 2016. Lamb deaths associated with 

administration of oral minerals. The Veterinary Record, pp. 402-405. 

Salamone, A.M., AbuGhazaleh, A.A. and Stuemke, C. 2012. The effects of maturity and 

preservation method on nutrient composition and digestibility of master graze. Journal of 

Animal Research and Technology, 1(1), pp.13-19. 

Salinas-Chavira, J., Alvarez, E., Montaño, M.F. and Zinn, R.A. 2013. Influence of forage 

NDF level, source and pelletizing on growth performance, dietary energetics, and 

characteristics of digestive function for feedlot cattle. Animal Feed Science and Technology, 

183(3), pp.106-115. 

Saylor, W.W., Morrow, F.D. and Leach Jr, R.M. 1980. Copper-and zinc-binding proteins 

in sheep liver and intestine: effects of dietary levels of the metals. The Journal of Nutrition, 

110(3), pp.460-468. 

Sefdeen, S. M. 2017. Effects of iron on copper metabolism of sheep, PhD Thesis, Harper 

Adams University. 



219 
 

Sefdeen, S, Mackenzie, A.M. and Wilkinson, R.G. 2016. Effect of iron supplementation 

on hepatic copper content of growing lambs. Advances in Animal Biosciences, 5(1), pp. 31. 

Sefdeen, S, Mackenzie, A.M. and Wilkinson, R.G. 2016. Effect of dietary iron with and 

without sulphur on copper metabolism in sheep. Advances in Animal Biosciences, 7, pp. 

73. 

Seo, J.H., Yu, Y.S., Kim, J.H., Choung, H.K., Heo, J.W. and Kim, S.J. 2007. Correlation 

of visual acuity with foveal hypoplasia grading by optical coherence tomography in albinism. 

Ophthalmology, 114(8), pp.1547-1551. 

Shaver, R.D., Erdman, R.A., O’connor, A.M. and Vandersall, J.H. 1985. Effects of Silage 

pH on Voluntary Intake of Corn Silage and Alfalfa Haylage1. Journal of Dairy Science, 68(2), 

pp.338-346. 

Shim, H. and Harris, Z.L. 2003. Genetic defects in copper metabolism. The Journal of 

Nutrition, 133(5), pp.1527S-1531S. 

Sinclair, L.A. and Mackenzie, A.M. 2013. Mineral nutrition of dairy cows: supply vs. 

requirements. Recent Advances in Animal Nutrition, pp.13-30.  

Sinclair, L.A. and Atkins, N.E. 2015. Intake of selected minerals on commercial dairy 

herds in central and northern England in comparison with requirements. The Journal of 

Agricultural Science, 153(04), pp.743-752. 

Sinclair, L.A., Garnsworth, P.C., Newbold, J.R. and Buttery, P.J. 1993. Effect of 

synchronizing the rate of dietary energy and nitrogen release on rumen fermentation and 

microbial protein synthesis in sheep. The Journal of Agricultural Science, 120(2), pp.251-

263. 

Sinclair, L.A., Wilkinson, R.G. and Ferguson, D.M.R. 2003. Effects of crop maturity and 

cutting height on the nutritive value of fermented whole crop wheat and milk production in 

dairy cows. Livestock Production Science, 81(2), pp.257-269. 

Sinclair, L.A., Cooper, S.L., Huntington, J.A., Wilkinson, R.G., Hallett, K.G., Enser, M. 

and Wood, J.D. 2005. In vitro biohydrogenation of n-3 polyunsaturated fatty acids protected 

against ruminal microbial metabolism. Animal Feed Science and Technology. 123-124, 

pp.579-596.  

Sinclair, L.A., Bond, A.J., Huntington, J.A. and Readman, R.J. 2007. Effect of rate of 

substitution of processed, urea-treated whole-crop wheat for grass silage on the intake, milk 

production and diet digestibility in dairy cows and ruminal metabolism in vitro. Animal,1(4), 

pp.601-611. 



220 
 

Sinclair, L.A., Hart, K.J., Johnson, D. and Mackenzie, A.M. 2013. Effect of inorganic or 

organic copper fed without or with added sulfur and molybdenum on the performance, 

indicators of copper status, and hepatic mRNA in dairy cows. Journal of Dairy Science, 

96(7), pp.4355-4367. 

Sinclair, L.A., Johnson, D., Wilson, S. and Mackenzie, A.M. 2017. Added dietary sulfur 

and molybdenum has a greater influence on hepatic copper concentration, intake, and 

performance in Holstein-Friesian dairy cows offered a grass silage-rather than corn silage-

based diet. Journal of Dairy Science. 100(6), pp. 4365-4376. 

Sivertsen, T. and Plassen, C. 2004. Hepatic cobalt and copper levels in lambs in Norway. 

Acta Veterinaria Scandinavica, 45(2), p.69. 

Smith, B.S.W. and Wrigth, H. 1975. Effect of dietary Mo on Cu metabolism. Evidence for 

the involvement of Mo in normal binding of Cu to plasma proteins. Clinica Chimica Acta, 

62(1), pp.55-63. 

Smith, S.L., Grace, N.D., West, D.M. and Balemi, S.C. 2010. The impact of high zinc 

intake on the copper status of dairy cows in New Zealand. New Zealand Veterinary Journal, 

58(3), pp.142-145. 

Spears, J.W. 2003. Trace mineral bioavailability in ruminants. The Journal of Nutrition, 

133(5), pp.1506S-1509S. 

Spears, J.W., Lloyd, K.E. and Fry, R.S. 2011. Tolerance of cattle to increased dietary 

sulfur and effect of dietary cation-anion balance. Journal of Animal Science, 89(8), pp.2502-

2509. 

Stabel, J.R. and Spears, J.W. 1989. Effect of copper on immune function and disease 

resistance. Advances in Experimental Medicine and Biology, 258, pp. 243-252. 

Standish, J.F., Ammerman, C.B., Palmer, A.Z. and Simpson, C.F. 1971. Influence of 

dietary iron and phosphorus on performance, tissue mineral composition and mineral 

absorption in steers. Journal of Animal Science, 33(1), pp.171-178. 

Suttle, N.F. 1974. Effects of organic and inorganic sulphur on the availability of dietary 

copper to sheep. British Journal of Nutrition, 32(3), pp.559-568. 

Suttle, N.F. 1975. The role of organic sulphur in the copper-molybdenum-S interrelationship 

in ruminant nutrition. British Journal of Nutrition, 34(3), pp.411-420. 

Suttle, N.F. 1977. Reducing the potential copper toxicity of concentrates to sheep by the 

use of molybdenum and sulphur supplements. Animal Feed Science and Technology, 2(3), 

pp.235-246. 



221 
 

Suttle, N.F. 1979. Factors affecting the trace element requirements of ruminants. Journal 

of the Science of Food and Agriculture, 30, pp. 743-744. 

Suttle, N.F. 1980a. The role of thiomolybdates in the nutritional interactions of copper, 

molybdenum, and sulfur: fact or fantasy?. Annals of the New York Academy of Sciences, 

355(1), pp.195-207. 

Suttle, N.F. 1980b. Some preliminary observations on the absorbability of copper in fresh 

and conserved grass to sheep. Proceeding of the Nutrition Society, 39, pp. 63A. 

Suttle, N.F. 1983a. Assessment of the mineral and trace element status of feeds. In: Feed 

information and animal production: proceedings of the second symposium of the 

International Network of Feed Information Centres (Robards, G.E. and Packham, R. G., 

eds), Farnham Royal, Slough, pp.211-237. 

Suttle, N.F. 1983b. Effects of molybdenum concentration in fresh herbage, hay and semi-

purified diets on the copper metabolism of sheep. The Journal of Agricultural Science, 

100(3), pp.651-656. 

Suttle, N.F. 1986. Copper deficiency in ruminants; recent developments. The Veterinary 

Record, 119 (21), pp.519-522. 

Suttle, N.F. 1988. Relationships between the trace element status of soils, pasture and 

animals in relation to the growth rate of lambs. In: Geochemistry and Health (Thornton, I., 

eds), Science Reviews Limited, Northwood, UK, pp. 69–79. 

Suttle, N.F. 1991. The interactions between copper, molybdenum, and sulphur in ruminant 

nutrition. Annual Review of Nutrition, 11(1), pp.121-140. 

Suttle, N.F. 2002. Copper Deficiency-How Has the Disease and its Diagnosis Changed in 

the Last 15 Years?. Cattle Practice, 10(4), pp.275-278. 

Suttle, N.F. 2008a. Relationships between the concentrations of trichloroacetic acid-soluble 

copper and caeruloplasmin in the serum of cattle from areas with different soil 

concentrations of molybdenum. The Veterinary Record, 162, 237-240. 

Suttle, N.F. 2008b. Lack of effect of tetrathiomolybdate on ovine caeruloplasmin activity: 

diagnostic implications. The Veterinary Record, 162(18), pp.593-594. 

Suttle, N.F. 2010. Mineral nutrition of livestock. 4th edition, CABI Publishing, Wallingford, 

United Kingdom.  

Suttle, N.F. 2012. Control of hepatic copper retention in Texel ram lambs by dietary 

supplementation with copper antagonists followed by a copper depletion regimen. Animal 

Feed Science and Technology, 173(3), pp.194-200. 

http://scicurve.com/paper/18296665
http://scicurve.com/paper/18296665
http://scicurve.com/paper/18296665


222 
 

Suttle, N.F. and Field, A.C. 1968. Effect of intake of copper, molybdenum and sulphate on 

copper metabolism in sheep: I. Clinical condition and distribution of copper in blood of the 

pregnant ewe. Journal of Comparative Pathology, 78(3), pp.351-362. 

Suttle, N.F. and Field, A.C. 1969. Effect of intake of copper, molybdenum and sulphate on 

copper metabolism in sheep: IV. Production of congenital and delayed swayback. Journal 

of Comparative Pathology, 79(4), pp.453-464. 

Suttle, N.F. and McLauchlin, M. 1976. Predicting the effects of dietary molybdenum and 

sulphur on the availability of copper to ruminants. The Proceedings of the Nutrition Society, 

35(1), pp.22A-23A. 

Suttle, N.F. and Angus, K.W. 1978. Effects of experimental copper deficiency on the 

skeleton of the calf. Journal of Comparative Pathology, 88(1), pp.137-148. 

Suttle, N.F. and Field, A.C. 1983. Effects of dietary supplements of thiomolybdates on 

copper and molybdenum metabolism in sheep. Journal of Comparative Pathology, 93(3), 

pp.379-389. 

Suttle, N.F. and Peter, D.W. 1985. Rumen Sulfide Metabolism as a Major Determinant of 

Copper Availability in the Diets of Sheep. In Proceedings of Fifth International Symposium 

on Trace Elements in Man and Animals, Aberdeen, pp. 367-370. 

Suttle, N.F. and Jones, D.G. 1989. Recent developments in trace element metabolism and 

function: trace elements, disease resistance and immune responsiveness in ruminants. The 

Journal of nutrition, 119(7), pp.1055-1061. 

Suttle, N.F. and Small, J.N.W. 1993. Evidence of delayed availability of copper in 

supplementation trials with lambs on molybdenum-rich pasture. In Proceedings of the 

Eighth International Symposium on Trace Elements in Man and Animals (Anke, M., 

Meissner, D. and Mills, C.F., eds), Verlag Media Touristik, Gersdorf, Germany, pp. 651–

655. 

Suttle, N.F., Field, A.C. and Barlow, R.M. 1970. Experimental copper deficiency in sheep. 

Journal of Comparative Pathology, 80(1), pp.151-162. 

Suttle, N.F., Alloway, B.J. and Thornton, I. 1975. An effect of soil ingestion on the 

utilization of dietary copper by sheep. The Journal of Agricultural Science, 84(2), pp.249-

254. 

Suttle, N.F., Abrahams, P.W. and Thornton, I. 1982. The importance of soil type and 

dietary sulphur in the impairment of copper absorption in sheep which ingest soil. 

Proceedings of the Nutrition Society, 41, pp. 83a.  



223 
 

Suttle, N.F., Lewis, R.M. and Small, J.N.W. 2002. Effects of breed and family on rate of 

copper accretion in the liver of purebred Charollais, Suffolk and Texel lambs. Animal 

Science, 75(2), pp.295-302. 

Suttle, N.F., Jones, D.G., Woolliams, C. and Woolliams, J.A. 1987. Heinz body anaemia 

in lambs with deficiencies of copper or selenium. British Journal of Nutrition, 58(3), pp.539-

548. 

Suttle, N.F, Brebner, J., Small, J.N.W. and Mclean, K. 1992. Inhibition of ovine 

erythrocyte superoxide dismutase activity (EC 1.14.1.1) in vivo by parental ammonium 

tetrathiomolybdate. Proceedings of the Nutrition Society, 51, pp. 14A. 

Symonds, H.W. and Forbes, J.M. 1993. Mineral Metabolism. In: Quantitative aspects of 

ruminant digestion and metabolism (Forbes, J.M. and France, J., eds), 1st edition, 

Wallingford: CAB International. pp. 363-379. 

Tacnet, F., Ripoche, P., Roux, M. and Neumann, J.M. 1991. 31P-NMR study of pig 

intestinal brush-border membrane structure: effect of zinc and cadmium ions. European 

Biophysics Journal, 19(6), pp.317-322. 

Tapiero, H., Townsend, D.M. and Tew, K.D. 2003. Trace elements in human physiology 

and pathology. Copper. Biomedicine and Pharmacotherapy, 57(9), pp.386-398. 

Telfer, S.B., Kendall, N.R., Illingworth, D.V. and Mackenzie, A.M. 2004. Molybdenum 

toxicity in cattle: an underestimated problem. Cattle Practice, 12(4), pp.259-264. 

Terada, K., Kawarada, Y., Miura, N., Yasui, O., Koyama, K. and Sugiyama, T. 1995. 

Copper incorporation into ceruloplasmin in rat livers. Biochimica et Biophysica Acta (BBA)-

Molecular Basis of Disease, 1270(1), pp.58-62. 

Theodorou, M.K., Williams, B.A., Dhanoa, M.S., McAllan, A.B. and France, J. 1994. A 

simple gas production method using a pressure transducer to determine the fermentation 

kinetics of ruminant feeds. Animal Feed Science and Technology, 48(3-4), pp.185-197. 

Thomson, D.J. and Beever, D.E. 1980. The effect of conservation and processing on the 

digestion of forages by ruminants. In Digestive Physiology and Metabolism in Ruminants, 

Springer Netherlands, pp. 291-308. 

Tilley, J.M.A. and Terry, R.A. 1963. A two‐stage technique for the in vitro digestion of 

forage crops. Grass and Forage Science, 18(2), pp.104-111. 

Todd, J.R. 1972. Copper, molybdenum and sulphur contents of oats and barley in relation 

to chronic copper poisoning in housed sheep. The Journal of Agricultural Science, 79(2), 

pp.191-195. 



224 
 

Turnlund, J.R., Keyes, W.R., Anderson, H.L. and Acord, L.L. 1989. Copper absorption 

and retention in young men at three levels of dietary copper by use of the stable isotope 

65Cu. The American Journal of Clinical Nutrition, 49(5), pp.870-878. 

Underwood, E.J. 1977. Trace Elements in Human and Animal Nutrition, 4th edition. 

Academic Press, New York, pp. 302- 341. 

Underwood, E.J. 1981. The Minerals Nutrition of Livestock. 2nd edition. CABI Publishing, 

London, UK. 

Underwood, E.J. and Suttle, N.F. 1999. Copper: In: The Mineral Nutrition of Livestock, 3rd 

edition. CABI Publishing, Wallingford, UK.  

Underwood, E.J. and Suttle, N.F. 2004. The Minerals Nutrition of Livestock. 3rd edition, 

CABI Publishing, Wallingford, UK. 

Vaithiyanathan, S. and Singh, M. 1994. Seasonal influence on soil ingestion by sheep in 

an arid region. Small Ruminant Research, 14(2), pp.103-106. 

Van der Schee, W., van den Assem, G.H., and van der Berg, R. 1983. Breed differences 

in sheep with respect to the interaction between zin and the accumulation of copper in the 

liver. The Veterinary Quarterly, 5(4), pp. 171-174.  

Van Saun, R.J. 2006. Determining forage quality: Understanding feed analysis. Lamalink. 

com August, 3(8), pp.18-19. 

Van Soest, P.J. 1994. Nutritional ecology of the ruminant. 2nd edition. Cornell University 

Press, Ithaca, New York. 

Vanness, S.J., Meyer, N., Klopfenstein, T.J. and Erickson, G.E. 2009. Hydrogen sulfide 

gas levels post feeding. Nebraska Beef Cattle Reports, p.79-80. 

Vonk, W.I., Wijmenga, C. and van de Sluis, B. 2008. Relevance of animal models for 

understanding mammalian copper homeostasis. The American Journal of Clinical Nutrition, 

88(3), pp.840S-845S. 

Wadwa, J., Chu, Y.H., Nguyen, N., Henson, T., Figueroa, A., Llanos, R., Ackland, M.L., 

Michalczyk, A., Fullriede, H., Brennan, G. and Mercer, J.F. 2014. Effects of ATP7A 

overexpression in mice on copper transport and metabolism in lactation and gestation. 

Physiological Reports, 2(1), p.e00195. DOI: 10.1002/phy2.195. 

Waghorn, G.C., Shelton, I.D. and Sinclair, B.R. 1990. Distribution of elements between 

solid and supernatant fractions of digesta in sheep given six diets. New Zealand Journal of 

Agricultural Research, 33(2), pp.259-269. 



225 
 

Wagner, J.J., Loneragan, G.H., Gould, D.H. and Thoren, M. 1998. The effect of varying 

water sulfate concentration on feed yard performance and water intake of steers. Journal 

of Animal Science, 75(1), p.272. 

Walsh, K., O'Kiely, P., Moloney, A.P. and Boland, T.M. 2008. Intake, performance and 

carcass characteristics of beef cattle offered diets based on whole-crop wheat or forage 

maize relative to grass silage or ad libitum concentrates. Livestock Science, 116(1), pp.223-

236. 

Walshe, J.M. 1968. Copper: one man's meat is another man's poison. Proceedings of the 

Nutrition Society, 27(1), pp.107-112. 

Wang, T. and Guo, Z. 2006. Copper in medicine: homeostasis, chelation therapy and 

antitumor drug design. Current Medicinal Chemistry, 13(5), pp.525-537. 

Wang, Z.Y., Poole, D.B. and Mason, J. 1988. The effects of supplementation of the diet 

of young steers with Mo and S on the intracellular distribution of copper in liver and on 

copper fractions in blood. British Veterinary Journal, 144(6), pp.543-551. 

Ward, G.M. 1978. Molybdenum toxicity and hypocuprosis in ruminants: a review. Journal 

of Animal Science, 46(4), pp.1078-1085. 

Ward, J.D. and Spears, J.W. 1993. Comparison of Copper Lysine and Copper Sulfate as 

Copper Sources for Ruminants Using in vitro Methods 1, 2. Journal of Dairy Science, 

76(10), pp.2994-2998. 

Ward, J.D., Spears, J.W. and Gengelbach, G.P. 1995. Differences in copper status and 

copper metabolism among Angus, Simmental, and Charolais cattle. Journal of Animal 

Science, 73(2), pp.571-577. 

Ware, R.A. and Zinn, R.A. 2005. Effect of pelletizing on the feeding value of rice straw in 

steam-flaked corn growing-finishing diets for feedlot cattle. Animal Feed Science and 

Echnology, 123, pp.631-642. 

Wentink, G.H., Smolders, G., Boxem, T., Wensing, T., Muller, K.E. and Van den Top, 

A.M. 1999. Lack of clinical abnormalities in diary heifers with low blood and liver copper 

levels. The Veterinary Record, 145(9), pp. 258-259. 

Whitehead, D.C. 2000. Nutrient Elements in Grassland: Soil-Plant-Animal Relationships. 

CABI Publishing, Wallingford, UK, pp.220-254. 

Whitehead, D.C., Goulden, K.M. and Hartley, R.D. 1985. The distribution of nutrient 

elements in cell wall and other fractions of the herbage of some grasses and legumes. 

Journal of the Science of Food and Agriculture, 36(5), pp.311-318. 



226 
 

Whitelaw, A., Armstrong, R.H., Evans, C.C. and Fawcett, A.R. 1979. A study of the 

effects of copper deficiency in Scottish blackface lambs on improved hill pasture. The 

Veterinary Record, 104(20), pp.455-460. 

Whitelaw, A., Fawcett, A.R. and Macdonald, A.J. 1984. Cupric oxide needles in the 

prevention of bovine hypocuprosis. The Veterinary Record, 115(14), pp.357-357. 

Williams, A.G. and Withers, S.E. 1991. Effect of ciliate protozoa on the activity of 

polysaccharide‐degrading enzymes and fibre breakdown in the rumen ecosystem. Journal 

of Applied Bacteriology, 70(2), pp.144-155. 

Williams, C.L. 2004. The effects of molybdenum, iron and sulphur on copper metabolism 

and physiology of sheep. PhD Thesis, Harper Adams University College. 

Wilson, P.R., Orr, M.B. and Key, E.L. 1979. Enzootic ataxia in red deer. New Zealand 

Veterinary Journal, 27(11), pp.252-254. 

Woolliams, J.A., Suttle, N.F., Wiener, G., Field, A.C. and Woolliams, C. 1982. The effect 

of breed of sire on the accumulation of copper in lambs, with particular reference to copper 

toxicity. Animal Production, 35(3), pp.299-307. 

Woolliams, J.A., Suttle, N.F., Wiener, G., Field, A.C. and Woolliams, C.A.R.O.L. 1983. 

The long-term accumulation and depletion of copper in the liver of different breeds of sheep 

fed diets of differing copper content. The Journal of Agricultural Science, 100(02), pp.441-

449 

Woolliams, J.A., Woolliams, C., Suttle, N.F., Jones, D.G. and Wiener, G. 1986a. Studies 

on lambs from lines genetically selected for low and high copper status 1. Difference in 

mortality. Animal Production, 43(2), pp.293-301. 

Woolliams, J.A., Woolliams, C., Suttle, N.F., Jones, D.G. and Wiener, G. 1986b. Studies 

on lambs from lines genetically selected for low and high copper status 2. Incidence of 

hypocuprosis on improved hill pasture. Animal Production, 43(2), pp.303-317. 

Xin, Z., Waterman, D.F., Hemken, R.W. and Harmon, R.J. 1991. Effects of Copper Status 

on Neutrophil Function, Superoxide Dismutase, and Copper Distribution in Steers. Journal 

of Dairy Science, 74(9), pp.3078-3085. 

Yang, W.Z. and Beauchemin, K.A. 2007. Altering physically effective fiber intake through 

forage proportion and particle length: Chewing and ruminal pH. Journal of Dairy Science, 

90, 2826-2838. 

Zervas, G., Nikolaou, E. and Mantzios, A. 1990. Comparative study of chronic copper 

poisoning in lambs and young goats. Animal Production, 50(3), pp.497-506. 



227 
 

Zhou, S., Zhang, C., Xiao, Q., Zhuang, Y., Gu, X., Yang, F., Xing, C., Hu, G. and Cao, 

H. 2016. Effects of Different Levels of Molybdenum on Rumen Microbiota and Trace 

Elements Changes in Tissues from Goats. Biological Trace Element Research, 174(1), 

pp.85-92.  


	2018 Thesis front sheet
	Abdul's Thesis Final Correct Version

