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Abstract 

  The high nutritional value of leafy salads and convenience to the consumer has 

resulted in continuing growth of the leafy vegetable market. The shelf-life of leafy 

vegetables, including spinach, is relatively short (7-14 days) and is influenced by storage 

conditions. 

  This project investigated the effect of storage temperature and light exposure on 

quality maintenance during the storage of baby leaf spinach. A series of experiments 

(Experiments 1-5) were conducted to conclude that quality loss of spinach leaves is 

accelerated with increasing temperature and light intensity during storage, temperature 

having a greater effect (Experiment 5). Low intensity light, however, improved leaf texture 

maintenance when compared with samples stored in the dark. In addition to observed 

responses, results from Experiments 1 and 2 (reported in Chapter 3) helped to identify 

leaf textural and visual quality as the best indicators of shelf-life. 

 The fresh produce industry is keen on developing new methods, e.g. pre-storage 

treatments that will enhance or maintain nutritional value of the product, retain its colour 

and texture. There is enough evidence in the literature to suggest that pre-storage hot 

water treatment might be a good option. Most of the studies, however, have been 

conducted on lettuce. Thus, the decision was made to investigate whether hot water 

treatment is also a good solution for improving the quality or extending the shelf-life of 

baby leaf spinach. Based on the results from Experiments 6 and 7, it was concluded that 

hot water treatments have limited commercial potential for quality improvement of spinach 

leaves.  
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Outline of the thesis 

 

In Chapter one, a brief introduction to the problems associated with the short shelf-

life of leafy vegetables is given. The literature review covers the aspect of heat treatment 

prior to storage on quality changes during subsequent storage. Furthermore, the literature 

relevant to quality changes and the effects of temperature and light exposure during the 

storage of leafy vegetables has been reviewed. Quality loss is associated with changes in 

texture, visual and nutritional quality, and microbial contamination. 

Chapter two describes general methodology used in the experiments detailed in 

the thesis. In instances where it is necessary, additions to the methodologies are given in 

the appropriate Chapters. 

Chapter three and four report the results from experiments that investigated the 

effects of temperature and light exposure during storage on quality changes of baby leaf 

spinach. Only one stressor (either temperature or light) was used at a time. In Chapter 

five, the effects of temperature and light exposure, both stressors applied simultaneously, 

on quality changes of baby leaf spinach are reported. 

Chapter six presents the findings from experiments that investigated whether pre-

storage hot water treatments can potentially be used by industry to enhance or maintain 

postharvest quality of spinach leaves. Finally, Chapter seven contains discussion of the 

findings from all experiments detailed in the thesis, final conclusions and 

recommendations for future work.  
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Chapter 1 Literature review 

1.1 Spinach – growth, harvest and storage 

 

Plate 1.1 Spinach as grown in the field (view from the top) 

Spinach is quick-maturing (3 weeks), cool-season vegetable crop. Spinach 

produces a rosette of leaves (Plate 1.1) that may be wrinkled (savoy or semi-savoy types) 

or smooth (flat leaf types). Leaves are typically oval, rounded, or triangular and are born 

on a short stem. In general, baby leaf spinach is planted on 80-inch-wide (203 cm) beds 

(Plate 1.2). 



2 
 

 

Plate 1.2 Spinach beds in the field (overview) 

Spinach seeds are planted 1-2 cm deep, depending on the method of planting and 

soil conditions. It can be grown successfully on a variety of soils, but a fertile sandy loam 

high in organic matter is preferred. Spinach has relatively shallow root system and relies 

on frequent, short irrigations to maintain uniformly moist soil for maximum leaf production. 

Spinach that is sold as bagged salad mixes is usually mechanically harvested (Plate 1.3 

A). A machine with a front cutter bar is run on the top of the plant beds. The cutter bar 

clips the leaves and attached petioles off the plant. The height of the cutter bar can be 

adjusted to control the amount of petiole that is included. The leaves are lifted by 

conveyor belt into bins on trailers (Plate 1.3 B) and transported to the processing plant for 

sorting, washing, air drying, and packaging into a variety of different bagged spinach 

products. 
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Plate 1.3 Process of mechanical harvesting of spinach leaves. (A) A machine with a front cutter bar 

runs on the top of the plant beds. (B) The leaves are lifted by conveyor belt into bins on trailers. 
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There is a need for keeping loads from overheating. If the processing stage is 

delayed, the spinach is typically vacuum cooled and stored for a short period of time at 

low (close to 1 °C) temperature; spinach is quite perishable and will yellow when stored at 

higher than recommended temperatures. The main cause of postharvest losses in 

spinach, however, is not leaf yellowing but rather decay associated with mechanical 

damage during harvest and postharvest operations. 

Spinach is widely grown across the UK by a number of companies (e.g. Anglia 

Salads, Essex; Emmett Ltd, Lincolnshire; G’s Fresh, Cambridgeshire and West Midlands; 

PDM Produce Ltd, Shropshire; Intercrop Ltd and Southern Salads, Kent; Kemp Herbs, 

Norfolk; Vitacress Salads Ltd, Hampshire; Scotherbs Ltd, Scotland) that are members of 

British Leafy Salads Association. 

The high nutritional value of leafy salads and convenience to the consumer has 

resulted in continuing growth of the leafy vegetable market, i.e. in 2010, this market 

accounted for over £700 million of UK business. Consumers care more and more about 

what they eat and fresh produce has been recognised as a healthy food, rich in 

antioxidants (Pandrangi and LaBorde, 2004; Bergquist et al., 2006; Llorach et al., 2008). 

The key issue for retailers regarding leafy vegetables is their short shelf-life (7-14 days), 

which is influenced by initial quality at harvest (Clarkson et al., 2003, Newman et al., 2005, 

Zhang et al., 2007, Wagstaff et al., 2010) and subsequent storage conditions (Garcia-

Gimeno and Zurera-Cosano, 1997, Piagentini et al., 2005, Martinez-Sanchez et al., 2006). 

Due to the fact, that shelf-life of leafy vegetables is relatively short, new technique for 

maintaining textural, visual and nutritional quality of fresh produce is required. Care must 

also be taken regarding microbial contamination of leafy vegetables either via reducing 

microbial counts (using different pre-storage treatments listed in Table 1.1) or reducing 

microbial growth during storage (selecting appropriate storage conditions). The end of 

shelf-life means that the product is no longer suitable for sale and consumption. 

Furthermore, it needs to be disposed and this may cause a financial loss to the retailer 

and producer.  
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1.2 Opportunities for manipulating postharvest quality of leafy vegetables 

There is a large volume of literature reporting quality loss during the storage of 

leafy vegetables (Allende et al., 2004b, Murata et al., 2004, Pandrangi and LaBorde, 

2004, Hagen et al., 2009). This is often a result of a combination of physical and/or 

biochemical changes, and microbial spoilage, the main attributes used to assess the 

quality of leafy vegetables are texture, sensory and nutritional quality, and microbial 

contamination. Thus, it is of interest to the fresh produce industry, to develop a method 

(pre-storage treatment) that will enhance or maintain nutritional value of the product, as 

well as retain its colour and texture. 

There are number of pre-storage treatments that could be used by the industry 

(Table 1.1). Most of them are used mainly as disinfectants, however, it is worth 

mentioning that some of the washing treatments, including pure water (Murata et al., 

2004; Gomez et al., 2008; Koukounaras et al., 2009), chlorinated water (Delaquis et al., 

1999, 2004; Li et al., 2001b; Garcia et al., 2003) or aqueous ozone (Alexopoulos et al., 

2013; Baur et al., 2004; Martinez-Sanchez et al., 2008a) can preserve the quality of fresh 

produce during subsequent storage. In addition, some other treatments like gaseous 

ozone (Klockow and Keener, 2009; Bermudez-Aguirre and Barbosa-Canovas, 2013), UV-

light treatments (Artes-Hernandez et al., 2009; Selma et al., 2008; Escalona et al., 2010) 

and irradiation (Rajkowski and Fan, 2008; Lester et al., 2010a) have also been used, as 

an alternative to chlorine, to reduce microbial counts on leafy vegetables prior to storage 

as these treatments do not leave any residues on the product. 

The question that needs to be answered is whether it is possible to find optimal 

conditions for the storage of spinach leaves? Another question that needs to be 

addressed is whether short, pre-storage treatments can enhance the quality of spinach 

leaves during subsequent storage or at least reduce or delay spinach deterioration, thus 

extending its shelf-life?  
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The aim for this research was, to find optimal conditions for storage of spinach 

leaves. Storage temperature is the most important factor that affects quality of leafy 

vegetables (Jacxsens et al., 2002; Bergquist et al., 2006; Luo et al., 2009), whereas 

current knowledge on the impact of light conditions during storage is scarce (Lester et al., 

2010b). Thus, a series of experiments were conducted, where bags with spinach supplied 

by PDM Produce Ltd, were stored under different temperature (factor 1) and light (factor 

2) conditions. These factors were chosen, based on the practicality issues, as it is not so 

difficult to set them up in the cold stores. It was of interest for our industrial partner to 

know how the quality of spinach will change when bags are stored under different 

conditions, and they wanted to know how these two factors affect the quality of baby leaf 

spinach. 

There is enough evidence in the literature to suggest that hot water treatments can 

improve/maintain postharvest quality of leafy vegetables. Most of the studies mentioned in 

Table 1.1, however, have been conducted on lettuce or rocket leaves. Whilst, there was 

only one paper (Gomez et al., 2008), reporting improved shelf-life of spinach treated with 

hot water at 40 °C for 3.5 min prior to storage, these samples were subsequently stored at 

23 °C. It is a common practice in the UK, to store spinach under refrigerated conditions, 

thus it was of interest to investigate whether hot water treatments can be recommended 

as a viable technique for improving postharvest quality of spinach if samples were to be 

subsequently stored under commercial conditions. 

The following literature review focuses on: (i) how the quality of leafy vegetables 

changes during storage and how these changes are affected by temperature and light 

conditions during storage, (ii) the effects of pre-storage treatments on quality changes of 

leafy vegetables during storage.  
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1.3 Changes in the quality of leafy vegetables during storage 

There is increasing evidence that the concentration of antioxidants in fresh 

produce is important to human nutrition (Stanner et al., 2004, Gordon, 2012). Antioxidants 

such as ascorbic acid, carotenoids and flavonoids are suggested to be involved in 

protection against a range of chronic cardiovascular diseases in humans (Diplock, 1991, 

Yang et al., 1996). These phytochemicals are present in leafy vegetables, including 

lettuce (Lactuca sativa sp.), spinach (Spinacia oleracea L.) and endive (Cichorium intybus 

L.). The antioxidant activity varies among the individual compounds, therefore not only the 

total concentration should be considered as being important, but rather the composition of 

these compounds (Singh et al., 2006, Llorach et al., 2008). 

Several authors (Pandrangi and LaBorde, 2004, Bergquist et al., 2006, Martinez-

Sanchez et al., 2008a, Luo et al., 2009, Spinardi and Ferrante, 2012) attempted to 

determine the effect of storage temperature on quality maintenance during the storage of 

leafy vegetables. Temperature of storage was found to be the key factor affecting the rate 

of quality loss, thus changes during storage under different temperature regimes are 

reviewed. 

Fresh produce is exposed to various light conditions during its displayed shelf-life. 

Thus, it is not surprising that in recent years, there has been an increasing interest in 

studying the effects of light exposure during storage on changes in the quality of chard 

(Beta vulgaris L. var. vulgaris) (Sanz et al., 2008), Chinese kale (Brassica oleracea var. 

alboglabra) (Noichinda et al., 2007), kale (Brassica oleracea L. var. acephala) (Kobori et 

al., 2011) lettuce (Martinez-Sanchez et al., 2011, Zhan et al., 2012, Zhan et al., 2013) 

rocket (Eruca sativa) (Barbieri et al., 2011) and spinach (Lester et al., 2010b). It is clear 

that industry cannot ignore the role of light exposure during the storage of leafy 

vegetables, as a number of authors reported effects of light exposure on their texture 

(Sanz et al., 2008, Martinez-Sanchez et al., 2011, Medina et al., 2012), visual quality 

(Sanz et al., 2008, Kobori et al., 2011, Martinez-Sanchez et al., 2011, Medina et al., 2012) 

and nutritional quality (Noichinda et al., 2007, Lester et al., 2010b, Martinez-Sanchez et 
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al., 2011, Zhan et al., 2013). These effects of light exposure during storage are also 

reviewed. 

Finally, a number of workers have reported benefits of a short, high temperature 

treatment prior to subsequent storage at low temperature (Delaquis et al., 2004, Murata et 

al., 2004, Martin-Diana et al., 2005). Temperature treatments can be applied either in the 

form of air or water (Lurie, 1998); however, water has been suggested to be a better 

medium in terms of heat transfer efficiency (Fallik, 2004) and practicality. Thus, the effects 

of hot water treatments on quality changes in leafy vegetables during subsequent storage 

will also be discussed in this review. 

1.3.1 Textural and physiological changes 

Quality loss during the storage of leafy vegetables may be accelerated by changes 

in the metabolic activity of harvested leaves. A large and growing body of literature has 

reported respiratory activity and associated changes in the gas composition within the 

bags during the storage of lettuce (Allende et al., 2004a, Del Nobile et al., 2006, Escalona 

et al., 2006, Martinez-Sanchez et al., 2011), spinach (Allende et al., 2004b, Pandrangi and 

LaBorde, 2004, Conte et al., 2008, Medina et al., 2012), cabbage (Brassica oleracea var. 

capitata) (Gomez-Lopez et al., 2005, Vandenkinderen et al., 2008), kale (Kobori et al., 

2011), mizuna (Brassica rapa L. ssp. nipposinica) (Martinez-Sanchez et al., 2008a), 

watercress (Nasturtium officinale) (Martinez-Sanchez et al., 2008a), salad rocket (Eruca 

vesicaria) and wild rocket (Diplotaxis tenuifolia) leaves (Martinez-Sanchez et al., 2006, 

Martinez-Sanchez et al., 2008a). 

Respiration rate is a measure of physiological activity of leaf tissue (Pirovani et al., 

1998) and it increases in response to tissue damage (e.g. during processing stage), thus it 

is not surprising that several authors have reported high respiration rate as a result of 

tissue damage in harvested leaves of lettuce (King et al., 1991, McKellar et al., 2004), 

spinach (Allende et al., 2004b, Escalona et al., 2010) and wild rocket (Martinez-Sanchez 

et al., 2006). Respiration uses O2 and produces CO2 and this can change the gas 

composition inside the bag and lead to anaerobic conditions unless semi-permeable or 
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permeable packaging is used (Pirovani et al., 1998, Allende et al., 2004b, Martinez et al., 

2005, Del Nobile et al., 2006). A high respiration rate indicates high metabolic activity and 

this may result in a decrease in dry matter content, due to carbohydrate and protein 

breakdown (Masih et al., 2002). 

Respiration rate has been shown to increase with increasing temperature of 

storage of rocket, mizuna and watercress leaves (Martinez-Sanchez et al., 2008a). These 

authors observed significant increase in the respiration rate of baby leaves stored at 8 and 

12 °C, when compared with those stored at 1 °C, whereas the difference between 

samples stored at 1 and 4 °C was not always significant. A significantly higher respiration 

rate has also been reported for lettuce stored at 25 °C when compared with samples 

stored at 5 °C (Oliveira et al., 2010). The oxygen content in the bags stored at 25 °C 

decreased from 20% to 0.8% after 3 days, while in lettuce stored at 5 °C oxygen 

concentration decreased to 8% after 10 days of storage. Similarly, carbon dioxide 

concentration in lettuce bags stored at 25 °C increased to 11% after 3 days, while in 

samples stored at 5 °C the carbon dioxide level reached 6% after 10 days of storage. In 

the case of spinach, the respiration rate of the leaves stored at 5 °C was lower than those 

stored at 8 °C (Artes-Hernandez et al., 2009), and this was further confirmed by more 

pronounced changes in the gas composition inside the bags. 

Light exposure has been reported to affect the respiration rate during the storage 

of chard (Sanz et al., 2008) and lettuce (Martinez-Sanchez et al., 2011). Continuous light 

during storage has been reported to support photosynthetic activity during the storage of 

Chinese kale (Noichinda et al., 2007), lettuce (Zhan et al., 2013) and spinach leaves 

(Toledo et al., 2003a) as indicated by higher sugar content in light-stored samples when 

compared with their dark-stored counterparts. Too much light and associated increased 

level of sugars, however, may be responsible for inducing the leaf senescence, most likely 

via hexokinase function (Yoshida, 2003). 

Texture loss during storage, evaluated by the fracture of leaves, is a major 

problem in leafy vegetables and according to Martin-Diana et al. (2006) texture loss is the 
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main reason for tissue deterioration in lettuce. Marked reduction in texture has also been 

reported during the storage of spinach leaves at 10 °C (Babic et al., 1996). These authors 

suggested that pectolytic bacteria belonging to the genus Pseudomonas sp. were 

probably involved in the process of textural quality degradation. Care must be taken as 

cultivar differences in leaf texture have been reported by Taniwaki et al. (2009) who 

determined the texture of four different cultivars of cabbage (Brassica oleracea L. var. 

capitata) using a texture measurement device (AMC; Applied Vibro-Acoustics Inc., 

Higashi-Hiroshima, Japan). 

 Several authors have reported fresh weight (FW) loss during the storage of leafy 

vegetables (Ihl et al., 2003, Noichinda et al., 2007, Conte et al., 2008, Manolopoulou et 

al., 2010); however, in most of these studies only a slight (up to 4%) decrease in FW took 

place. Several authors reported significantly higher FW loss during the storage of chard 

(Sanz et al., 2008), Chinese kale (Noichinda et al., 2007) and lettuce (Martinez-Sanchez 

et al., 2011, Zhan et al., 2012, Zhan et al., 2013) as a result of light exposure when 

compared with dark-stored counterparts. The above mentioned weight loss was shown to 

correlate with the higher numbers of stomata that remained open in light-stored leaves 

compared with their dark-stored counterparts (Noichinda et al., 2007, Martinez-Sanchez et 

al., 2011). Excess water loss leads to a loss of turgor and decrease in textural quality of 

leafy vegetables (Martin-Diana et al., 2006, Wagstaff et al., 2007, Aguero et al., 2008). 

One of the characteristics of tissue breakdown during storage is membrane 

disruption, which is often quantified by solute leakage assays (Marangoni et al., 1996, 

Wagstaff et al., 2007). A correlation between solute leakage and quality deterioration was 

found (Allende et al., 2004b) during the storage of spinach leaves. This finding is 

supported by Wagstaff et al. (2010) who demonstrated that lettuce with reduced 

membrane permeability and modified cell wall properties exhibited improved shelf-life. 

Light exposure during storage has been reported to reduce solute leakage from lettuce 

(Martinez-Sanchez et al., 2011) and spinach leaves (Kar and Choudhuri, 1986) when 

compared with their dark-stored counterparts. Martinez-Sanchez et al. (2011) suggested 

that this may be related to changes in gas composition inside the bags with fresh produce. 
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As textural and physiological changes during the storage of leafy vegetables 

depend on the temperature and light conditions during storage, low storage temperature 

(0-4 °C) and low intensity light are recommended for commercial storage of these 

products. 

1.3.2 Development of off-odours and off-flavours 

 Sensory evaluation of food relies on the human perception of it. Among the 

attributes that can be assessed in this way are overall visual quality, taste and 

development of off-odours. Significant changes in all these attributes have been reported 

in iceberg lettuce (Lactuca sativa var. capitata) stored for 5 days at 7 °C (Gomez-Lopez et 

al., 2005). On the other hand, Baur et al. (2005) have only reported a significant decrease 

in visual quality of iceberg lettuce stored for 7 days at 4 °C, while development of off-

odours was not significant. In contrast, development of off-odours has been reported after 

only 3 days of storage at 7 °C (Gomez-Lopez et al., 2005). Thus, it is not surprising that 

others reported off-odours in Romaine lettuce stored for 8 days at 5 °C, (Luo, 2007) and 

10 days at 7 °C (Martinez-Sanchez et al., 2011), respectively. 

Other authors (Piagentini et al., 2002, Allende et al., 2004b) have also reported 

significant changes in the general appearance and development of off-odours as main 

problems during the storage of fresh-cut spinach. In a recent study, slight to moderate 

development of off-odours was reported in spinach leaves after 10 days of storage at 5 °C 

(Artes-Hernandez et al., 2009), while these changes were already severe in the samples 

stored at 8 °C. Development of off-odours during the storage of spinach has also been 

reported after 12 days at 7 °C (Medina et al., 2012). This suggests that even a small 

difference in storage temperature may have a major impact on the development of off-

odours inside the bag with fresh produce. 

To test the hypothesis that the rate of development of off-odours is temperature 

dependent, Piagentini et al. (2005) conducted a study, where they monitored the changes 

in this attribute in iceberg lettuce stored at four different temperature regimes. They found 

that development of off-odours took place after 6 days of storage at 9 °C, while at 20 °C 
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this commercially unacceptable change had already occurred after 2 days. No 

development of off-odours was observed after 10 days of storage if the samples were kept 

in the temperature below 5 °C. No development of off-odours was found in a similar study 

with cabbage (Gomez-Lopez et al., 2005) or rocket leaves (Martinez-Sanchez et al., 2006) 

after 9 days of storage at 7 °C and 14 days of storage at 4 °C, respectively. 

 No significant change in the development of off-flavours was found during the 

storage of lettuce for 7 days at 4 °C (Baur et al., 2005), while a significant change in this 

parameter was reported for iceberg lettuce (Gomez-Lopez et al., 2005) and Romaine 

lettuce (Martinez-Sanchez et al., 2011) stored at 7 °C for 5 and 10 days, respectively. On 

the other hand, slight to moderate development of off-flavours was reported in spinach 

leaves after 10 days of storage at 5 °C (Artes-Hernandez et al., 2009), while these 

changes were already severe in the samples stored at 8 °C. What we know about the loss 

of sensory quality in leafy vegetables is that these changes are accelerated with 

increasing temperature of storage. Thus, to prevent the development of off-odours and 

off-flavours, leafy vegetables should always be kept at low refrigerated temperature; this 

should limit the decline in their sensory quality.  
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1.3.3 Visual quality changes 

 Visual quality is important as fresh leafy vegetables with a good appearance are 

preferred by customers. In most leafy vegetables green colour is the key quality 

characteristic as it adds to attractiveness and any colour alteration of the leaves might be 

recognised as a symptom of senescence (Ferrante et al., 2004, Wagstaff et al., 2007, 

Koukounaras et al., 2009), reducing their marketability. In the case of endive which is 

white, however, the greening of the leaves as a result of chlorophyll formation has a 

negative effect on customer perception (Charles et al., 2008). Similarly, some leafy 

vegetables are supposed to be red (e.g. red oak leaf lettuce) due to the presence of other 

pigments, e.g. anthocyanin (Mou, 2005). 

 The visual quality of leafy vegetables, e.g. kale (Lefsrud et al., 2007), lettuce (Barg 

et al., 2009) and spinach (Bergquist et al., 2006) has been reported to be affected by the 

maturity stage at harvest, mainly due to changes in the concentration of leaf pigments. 

Several authors have reported a decrease in visual quality during the storage of leafy 

vegetables (Ferrante et al., 2004, Noichinda et al., 2007, Gomez et al., 2008, 

Koukounaras et al., 2009, Medina et al., 2012). Luo et al. (2009) have demonstrated that 

in the case of spinach leaves, the loss of visual quality is accelerated with increasing 

temperature of storage. A similar observation has been reported for kale (Kobori et al., 

2011). Leaf colour changes are not only affected by the storage temperature but also by 

the light conditions during storage. Martinez-Sanchez et al. (2011) observed stronger 

colour alteration in light-stored Romaine lettuce leaves when compared with their dark-

stored counterparts. 

Monitoring the colour changes during the storage of leafy vegetables is important 

in terms of determining visual quality loss. Commonly used parameters of colour in 3D 

colour space are: either 1. hue angle which describes the basic colour, luminance and 

chroma, i.e. colour saturation (Clydesdale, 1978) or 2. leaf lightness (from black to white), 

greenness (from green to red) and yellowness (from blue to yellow) values (Abbott, 1999). 

These techniques have been used to assess leaf colour changes in lettuce (Ihl et al., 

2003, Baur et al., 2005, Martinez-Sanchez et al., 2011), spinach (Pandrangi and LaBorde, 
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2004, Conte et al., 2008, Artes-Hernandez et al., 2009), rocket leaves (Koukounaras et 

al., 2009) and endive (Charles et al., 2008). 

 Seasonal differences in the colour characteristics of spinach leaves have been 

reported (Conte et al., 2008); however, no changes were observed when spinach was 

stored at 5 °C for 13 days. In contrast, Tudela et al. (2013) reported significant changes in 

leaf lightness, greenness and yellowness during the storage of spinach at 7 °C for 10 

days. Leaf lightness and yellowness values increased after 3 and 7 days, respectively. 

Changes in leaf colour characteristics have also been reported by others during 

refrigerated storage of lettuce (Kenny and O'Beirne, 2009, Manolopoulou et al., 2010) and 

rocket leaves (Koukounaras et al., 2009). Leaves became darker during the storage of 

lettuce (Kenny and O'Beirne, 2009, Manolopoulou et al., 2010), while leaf lightness 

increased in rocket leaves over the storage period (Koukounaras et al., 2009). This could 

be explained by tissue browning that occurs as a result of the oxidation of phenolic 

compounds, due to tissue damage, often observed during the storage of lettuce 

(Hisaminato et al., 2001, Murata et al., 2004) and leaf yellowing in rocket (Koukounaras et 

al., 2009). Significant differences in leaf colour changes have been reported in lettuce 

leaves stored at 0 and 5 °C (Manolopoulou et al., 2010), where colour was better 

preserved in lettuce leaves that were stored at 0 °C. 

During the storage of chard leaves at 4 °C the leaf lightness value (L*) increased in 

light-stored samples when the bags with high O2 permeability were used. No change in 

the L* value took place in the dark stored counterparts regardless the permeability of the 

bags (Sanz et al., 2008). On the other hand, L* value decreased in light-stored samples if 

film O2 permeability was low. No change in leaf yellowness (b*) value took place in the 

dark stored counterparts regardless the permeability of the bags (Sanz et al., 2008), while 

b* value decreased in the light-stored samples. Decrease in L* and b* values resulted in 

greenish-brown, darker leaves. 

It has been reported (Toledo et al., 2003a) that yellowing of spinach leaves stored 

at 8 °C was faster in the case of light-stored leaves when compared with their dark-stored 
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counterparts. Leaves may become more yellow (Plate 1.4) due to chlorophyll loss with 

simultaneous retention of carotenoids (change in the chlorophyll: carotenoids ratio). 

 

Plate 1.4 Visual quality loss during extended storage of spinach leaves 

Colour alteration usually results from chlorophyll degradation and/or tissue 

browning (Toivonen and Brummell, 2008). Colour changes can also occur due to changes 

in carotenoid content, however, because of antioxidant properties of this group of 

compounds these changes will be discussed in the consideration of nutritional quality 

changes (1.3.4.2.2 Nutritional quality changes - carotenoids). 

1.3.3.1 Changes in chlorophyll content 

 A number of studies have found a decrease in chlorophyll concentration during the 

storage of Chinese kale (Noichinda et al., 2007), Swiss chard (Beta vulgaris L.) (Ferrante 

et al., 2004) rocket leaves (Ferrante et al., 2004, Koukounaras et al., 2009) and spinach 

(Kopas-Lane and Warthesen, 1995, Piagentini et al., 2002, Gomez et al., 2008). On the 

other hand, some authors have reported chlorophyll content to be relatively stable during 

the storage of endive (Ferrante et al., 2004) lettuce (Spinardi and Ferrante, 2012) and 

spinach (Bergquist et al., 2006, Conte et al., 2008). 
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 Studies on spinach (Kopas-Lane and Warthesen, 1995, Piagentini et al., 2002) 

have reported small but significant changes in chlorophyll concentration during storage. A 

marked decrease in chlorophyll concentration during the storage of spinach leaves has 

been reported by Gomez et al. (2008). These authors stored spinach at 23 °C, whereas 

others used much lower temperatures, e.g. 4-5 °C (Kopas-Lane and Warthesen, 1995, 

Piagentini et al., 2002). Chlorophyll degradation has been reported to be enhanced with 

increasing storage temperature (Gnanasekharan et al., 1992, Pandrangi and LaBorde, 

2004). On the other hand, no difference in chlorophyll retention was found between lettuce 

leaves stored at 4 and 10 °C (Spinardi and Ferrante, 2012). No correlation, however, was 

found between chlorophyll content and colour change during the storage of spinach 

leaves (Pandrangi and LaBorde, 2004, Bergquist et al., 2006). 

 Decrease in chlorophyll concentration was found to be more pronounced in light-

stored spinach leaves (Kopas-Lane and Warthesen, 1995). This view is supported by 

Ferrante et al. (2004) who also observed stronger colour alteration in light-stored rocket 

leaves when compared with their dark-stored counterparts. In contrast, higher chlorophyll 

retention was observed in light-stored Chinese kale (Noichinda et al., 2007) and Swiss 

chard leaves (Ferrante et al., 2008). 

 No change in chlorophyll content was observed during dark storage of lettuce for 

14 days at either 4 or 10 °C (Spinardi and Ferrante, 2012). Similar to spinach, enhanced 

degradation of carotenoids and chlorophyll during light storage has been reported for 

rocket leaves (Ferrante et al., 2004), while no difference was found in the concentration of 

these pigments between light- and dark-stored Swiss chard leaves (Ferrante et al., 2004, 

Ferrante et al., 2008). Kopas-Lane and Warthesen (1995) have also reported enhanced 

chlorophyll a and b degradation in light-stored spinach, while the content of both 

chlorophylls remained relatively stable during dark storage. In contrast, low intensity light 

has recently been shown to be useful for carotenoids and chlorophyll a and b preservation 

during the storage of Chinese kale (Noichinda et al., 2007) and Romaine lettuce (Zhan et 

al., 2013). These differences might be due to different sensitivity to light of the plants used 

in these studies and/or due to different light intensities used by all these authors. 
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 Previous studies have found that chlorophyll a: b ratio is relatively stable during the 

storage of leafy vegetables (Pandrangi and LaBorde, 2004, Bergquist et al., 2006, 

Noichinda et al., 2007, Conte et al., 2008). In both Chinese kale (Noichinda et al., 2007) 

and spinach (Conte et al., 2008) this ratio increased during storage after 2 to 4 days. This 

change took place due to an increase in chlorophyll a with a simultaneous decrease in 

chlorophyll b. After that change, both chlorophyll a and b, and thus total chlorophyll 

content were quite stable. It has been suggested that chlorophyll b was transformed to 

chlorophyll a prior to its degradation (Noichinda et al., 2007), and this might explain why 

chlorophyll b catabolites were not found during the storage of spinach (Piagentini et al., 

2002). This view is supported by Rudiger (2002) who reviewed the biosynthetic pathway 

of chlorophylls. Based on structural similarities of both chlorophyll a and b, it has been 

suggested that both compounds are synthesized through the same pathway with an 

additional step of chlorophyll a to chlorophyll b transformation (Rudiger, 2002). 

Furthermore, Rudiger (2002) claimed that chlorophyll b can be reduced back to 

chlorophyll a, and has proposed a “chlorophyll cycle”. Over the years, significant progress 

has been made in the understanding of chlorophyll degradation and this process has been 

reviewed elsewhere (Matile et al., 1999, Thomas et al., 2001, Hortensteiner, 2006) and 

thus will not be discussed in more detail here.  
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1.3.3.2 Tissue browning 

 Tissue browning is one of the main causes of quality loss during the storage of 

leafy vegetables (Hisaminato et al., 2001, Ferrante et al., 2004, Degl'Innocenti et al., 

2007). The key factors involved in this process are tissue integrity, phenylalanine 

ammonia-lyase (PAL; EC 4.3.1.5) activity, polyphenol content, and polyphenol oxidase 

(PPO; EC 1.14.18.1) activity (Martinez and Whitaker, 1995, Hisaminato et al., 2001, Kang 

and Saltveit, 2003, Degl'Innocenti et al., 2005, Degl'Innocenti et al., 2007). 

 A considerable amount of literature dealing with polyphenol biochemistry and 

subsequent reactions leading to tissue browning has been published (Martinez and 

Whitaker, 1995, Sheptovitsky and Brudvig, 1996, Hisaminato et al., 2001, Murata et al., 

2004). Briefly, the shikimate pathway leads to L-phenylalanine synthesis, which then 

enters the phenylpropanoid pathway. L-phenylalanine is transformed by PAL into 

cinnamic acid that is subsequently further converted into hydroxyphenols. Finally, PPO 

transforms them into quinones, which then polymerize resulting in tissue browning. Both 

PAL and PPO require molecular oxygen for their activity (Martinez and Whitaker, 1995, 

Degl'Innocenti et al., 2007, Toivonen and Brummell, 2008), which might decrease during 

storage due to oxygen depletion inside the bag. 

A correlation between PAL activity and tissue browning has been reported during 

the storage of lettuce (Hisaminato et al., 2001, Murata et al., 2004), and this suggests that 

de novo biosynthesis of polyphenols is necessary to cause tissue browning. Furthermore, 

in lettuce the activity of PAL and polyphenol content has been observed to increase after 

3 days of storage, while PPO activity was relatively stable during storage (Hisaminato et 

al., 2001, Baur et al., 2004). This shows that if the concentration of phenolic substrates is 

not high enough even the high activity of PPO cannot cause an immediate tissue 

browning. 

Degl’Innocenti et al. (2005) have attempted to explain the biochemistry behind 

tissue browning of lettuce leaves during storage. They investigated the activities of all 

enzymes potentially involved in the browning process in two lettuce cultivars differing in 
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their susceptibility to browning. PAL activity was induced earlier in the less susceptible 

cultivar (Red Salade Bowl, RSB), reaching a maximum value after 3 h, while in the same 

time a decrease in PAL activity was observed in the more susceptible cultivar (Green 

Salade Bowl, GSB). After 6 h, however, this pattern reversed, a decrease in PAL activity 

being observed in RSB, while the activity of this enzyme increased in GSB. These authors 

also reported only a slight increase in the overall concentration of phenolic compounds 

during storage and they did not find any significant difference in phenolic content between 

both cultivars. In contrast to other authors (Hisaminato et al., 2001, Baur et al., 2004), they 

reported a strong decrease in PPO activity during the storage of both cultivars of lettuce. 

On the other hand, significant difference between cultivars has been reported for the 

activity of peroxidase (POD; EC 1.11.1.7), and it has been suggested (Degl'Innocenti et 

al., 2005) that this enzyme may also play a role in tissue browning. This view is supported 

by other authors (Martin-Diana et al., 2005, Rico et al., 2008) who found that with 

decreasing POD activity the extent of tissue browning decreases. 

 In the study of Pereyra et al. (2005) the peak in PAL activity during the storage of 

lettuce correlated well with the intensity of tissue damage and these authors observed 

tissue browning to occur first in the most highly damaged leaves. This is somewhat 

different from the findings of Degl’Innocenti et al. (2005) who observed that the peak in 

PAL activity in lettuce after 3 h, did not lead to intensive tissue browning. Furthermore, in 

a subsequent study where Degl’Innocenti et al. (2007) investigated the sensitivity of 

different crops (endive, lettuce, and rocket) to tissue browning, they reported peaks in PAL 

activity after approximately 6 h in lettuce, 12 h in rocket leaves, and 72 h in endive but 

there was no correlation between peak timing and tissue browning. Both endive and 

lettuce (belonging to Asteraceae family) exhibited some browning already after 72 h of 

storage, while no visible symptoms of tissue browning could be seen in the case of rocket 

leaves (Brassicaceae family). It can be concluded from those studies (Degl'Innocenti et 

al., 2005, Degl'Innocenti et al., 2007) that timing of peak in PAL activity cannot be used 

consistently as an indicator of subsequent browning. Furthermore, it may also suggest 

significant differences between crops belonging to different families. 
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 It has recently been suggested that leafy vegetables with high concentration of 

ascorbic acid (AsA) are less susceptible to enzymatic browning (Degl'Innocenti et al., 

2007, Bottino et al., 2009). This claim has been made based on the results obtained from 

studies where the sensitivity of different leafy vegetables to tissue browning was 

investigated (Degl'Innocenti et al., 2007). These authors reported tissue browning during 

the storage of lettuce and endive, while no browning occurred during the storage of rocket 

leaves. An absence of tissue browning has also been observed during the storage of 

spinach (Bottino et al., 2009). Both authors (Degl'Innocenti et al., 2007, Bottino et al., 

2009) suggested that it was due to the action of AsA on PPO activity, which led to lowered 

concentration of quinones, thus delaying the polymerization reaction. However, it does not 

fully fit with the previous findings, where Degl’Innocenti et al. (2005) demonstrated higher 

susceptibility to browning in GSB lettuce, while GSB was the cultivar that had significantly 

higher AsA content at harvest compared to RSB, which was less susceptible to browning. 

Furthermore, it has previously been suggested by these authors and others (Hisaminato 

et al., 2001, Baur et al., 2004) that PPO cannot cause severe tissue browning if the 

concentration of phenolic substrates is not sufficient. 

 Light exposure during storage reduced visual quality and accelerated tissue 

browning of Romaine lettuce (Martinez-Sanchez et al., 2011) and chard (Sanz et al., 

2008). In a recent study light exposure during storage has been reported to affect the 

activity of enzymes involved in tissue browning – PAL, PPO and POD (Zhan et al., 2012). 

Both low (7 μmol m–2 s–1) and high (34 μmol m–2 s–1) intensity light increased the activity of 

PAL, during the storage of Romaine lettuce, when compared with their dark-stored 

counterparts. Interestingly, the activity of PPO and POD was increased and decreased 

when samples were exposed to either low or high intensity light, respectively. 

1.3.4 Nutritional quality changes 

 Plants produce active oxygen species (AOS) during cellular metabolism; however, 

in response to environmental stresses, e.g. temperature stress, AOS production, as well 

as the activity of antioxidant enzymes - ascorbate peroxidase (APX; EC 1.11.1.11), 
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catalase (CAT; EC 1.11.1.6), and superoxide dismutase (SOD; EC 1.15.1.1) may increase 

(Tsang et al., 1991, Eraslan et al., 2007). AOS include such compounds as superoxide 

radicals (O2
-), singlet oxygen (1O2) and highly reactive hydroxyl radicals (OH-). SOD 

catalyses the dismutation of superoxide (O2
-) to H2O2 which is then transformed to H2O 

and O2 by simultaneous action of APX and CAT. To mitigate AOS, plants may also induce 

the biosynthesis of antioxidants, including AsA which is involved in the reduction of AOS 

through the ascorbate-glutathione cycle (Figure 1.1) (Mittler, 2002, Potters et al., 2002, 

Meyer, 2008). Other antioxidants, like carotenoids and flavonoids have also been 

suggested to play an important role as AOS scavengers (Chu et al., 2000, Fraser and 

Bramley, 2004, Hernandez et al., 2009). AOS may also play a role of signalling molecules. 

Thus, as a result of cross-talk, they may induce different defence responses within plants, 

e.g. in response to pathogens or to multiple stresses (Mittler, 2002, de Pinto et al., 2006, 

Fujita et al., 2006). Senescence of broccoli (Brassica oleracea var. italica) has been found 

to be delayed as a result of enhanced activity of the ascorbate-glutathione cycle 

(Shigenaga et al., 2005), thus suggesting its role in extending the shelf-life of fresh 

produce. 

 

Figure 1.1 Overview of ascorbate-glutathione cycle in plants. NADPH -  nicotinamide adenine 

dinucleotide phosphate (reduced form); NADP
+
- nicotinamide adenine dinucleotide phosphate 

(oxidised form); GSH – reduced glutathione; GSSG - oxidised glutathione; DHAR - 

dehydroascorbate reductase; DHA – dehydroascorbic acid; AsA – ascorbic acid; APX - ascorbate 

peroxidase; SOD - superoxide dismutase (based on Mittler, 2002). 

 Light quantity may have an impact on the activity of antioxidant enzymes as the 

activity of the following enzymes - SOD, CAT, APX, monodehydroascorbate reductase 

(MDHAR; EC 1.6.5.4), dehydroascorbate reductase (DHAR; EC 1.8.5.1), and glutathione 
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reductase (GR; EC 1.6.4.2) - was found to be increased in lettuce grown at high intensity 

light (Zhou et al., 2009). The increase in the activity of MDHAR and DHAR with increasing 

light intensity has previously been reported during the growth of Arabidopsis thaliana 

(Bartoli et al., 2006), while Toledo et al. (2003b) did not observe any differences in the 

activity of these enzymes in spinach leaves stored under low intensity light when 

compared with their dark-stored counterparts. This can be explained by different 

responses of leaves to light exposure during growth and during storage; alternatively, it 

may also be due to a different plants and/or different light intensities used in those studies. 

In their studies, Bartoli et al. (2006) and Zhou et al. (2009) used irradiances in the range of 

50-250 and 200-1200 µmol m-2 s-1, respectively, and these are relatively higher than 20-25 

µmol m-2 s-1 used by Toledo et al. (2003b). 

1.3.4.1 Biochemistry of selected antioxidants 

1.3.4.1.1 Ascorbic acid (AsA) 

In the last decade, there has been an increasing interest in AsA biosynthesis and 

its role in plants (Conklin, 2001, Hancock and Viola, 2005, Ishikawa et al., 2006). Progress 

has been made in understanding the pathways and key enzymes involved have been 

identified. Multiple pathways have been suggested to be involved in the biosynthesis of 

AsA (Hancock and Viola, 2005). It is worth noting that the concentration of this bioactive 

compound in plant tissue can be regulated not only by inducing its biosynthesis, but also 

through limitation of its turnover, which might actually be more important in terms of 

antioxidant content manipulation during the storage of leafy vegetables. 

Several reviews have described the biosynthesis of AsA (Smirnoff, 1996, Smirnoff 

and Wheeler, 2000, Hancock and Viola, 2005, Ishikawa and Shigeoka, 2008), and will be 

used as a main source of information regarding this section. 

Multiple biosynthetic pathways may exist, however D-glucose is recognised as a 

precursor of AsA. There is strong evidence that the biosynthesis of AsA proceeds via a D-

mannose/L-galactose pathway and that this route is the most significant source of AsA in 

plants (Conklin et al., 1999, Smirnoff and Wheeler, 2000, Hancock and Viola, 2005, 
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Ishikawa et al., 2006, Ishikawa and Shigeoka, 2008). This pathway proceeds via GDP-D-

mannose and L-galactose, and the final aldonolactone precursor of AsA is L-galactono-1, 

4-lactone. This last step of AsA biosynthesis is catalysed by L-galactono-1, 4-lactone 

dehydrogenase located on the mitochondrial membrane (Millar et al., 2003). 

In the pathway proposed by Ishikawa and Shigeoka (2008) no inversion of carbon 

skeleton occurs, while the pathway with inversion of carbon skeleton has previously been 

proposed by Smirnoff (1996). Ishikawa and Shigeoka (2008) reviewed the available 

information on other enzymes, which may play a role in AsA biosynthesis. These enzymes 

are as follows: L-galactose dehydrogenase, GDP-mannose pyrophosphorylase, GDP-

mannose 3‘, 5‘-epimerase and L-galactose-1- phosphate phosphatase. The activity of L-

galactose dehydrogenase has been reported to be regulated by AsA (Mieda et al., 2004), 

thus suggesting that biosynthesis of AsA is regulated by its concentration in the tissue. 

In 1990, a group of scientists from Washington State University (Loewus et al., 

1990, Saito et al., 1990) proposed a non-inversion pathway of AsA biosynthesis that starts 

from D-glucose, which is then converted to D-glucosone, L-sorbosone and finally to AsA. 

There is, however, no recent information available to support the role of this pathway in 

plants, thus this pathway remains debated. 

Ascorbic acid concentration in the plant tissue can also be increased through 

enhanced turnover of this compound. The level of AsA is regulated by MDHAR and DHAR 

(Smirnoff, 1996, Conklin, 2001, Chen et al., 2003, Ishikawa and Shigeoka, 2008). These 

two enzymes are responsible for the turnover of AsA. This process follows two steps, first 

dehydroascorbic acid (DHA) is reduced to monodehydroascorbic acid (MDHA), and then 

further to ascorbic acid (AsA) (Davey et al., 2000, Potters et al., 2002, Ishikawa et al., 

2006). The reaction catalysed by DHAR uses glutathione (GSH) as a reductant. While 

DHA is converted back to AsA, GSH is oxidised to GSSG (oxidised glutathione). 

Furthermore, the redox state of AsA has been shown to be associated with the redox 

state of GSH, and these components together contribute to the ascorbate-glutathione 

cycle (Smirnoff, 1996, Potters et al., 2002, Chen et al., 2003). Ascorbic acid peroxidases 
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(APXs) play a key role in H2O2 metabolism in this cycle. APX uses AsA as an electron 

donor to reduce H2O2 (generated by SOD from AOS) to water, while AsA is converted into 

MDHA. AsA is regenerated in the ascorbate-glutathione cycle by DHAR and GSSG is 

regenerated by GR (Davey et al., 2000, Shigenaga et al., 2005, Ishikawa and Shigeoka, 

2008, Meyer, 2008). If this is not the case, MDHA can be oxidised further to DHA which 

may then undergo a reduction to AsA, catalysed by DHAR, or it may undergo an 

irreversible hydrolysis to 2, 3-diketogulonic acid (Yang and Loewus, 1975, Davey et al., 

2000, Chen et al., 2003). 

The oxidised form of ascorbic acid can be converted back into reduced form in the 

human body. Thus, both forms have to be considered when determining the concentration 

of total AsA (AsA + DHA). The activity of both reduced and oxidised forms of ascorbic acid 

has been investigated in spinach (Gil et al., 1999). These authors have suggested that 

when AsA is oxidised it loses most of its antioxidative activity. This suggests that 

determining the AsA: DHA ratio might be important in terms of human nutrition. 

In addition, AsA seems to be metabolised into oxalic and tartaric acid (Yang and 

Loewus, 1975, Smirnoff, 1996, Conklin, 2001, Nakata, 2003, Ishikawa et al., 2006). The 

formation of calcium oxalate crystals occurs in idioblasts and has been reported to be 

regulated by calcium itself (Nakata, 2003).  
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1.3.4.1.2 Carotenoids 

It has been suggested that to enhance carotenoid concentrations in crops a good 

understanding of their biochemistry is needed (Kopsell and Kopsell, 2006). The 

information on carotenoid biosynthesis has recently been reviewed (Botella-Pavia and 

Rodriguez-Concepcion, 2006, Kopsell and Kopsell, 2006) and this pathway seems to be 

conservative among plants. 

Like all isoprenoids, carotenoids are synthesized from the 5-carbon isoprene units, 

isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP). 

Addition of three IPP molecules to one DMAPP unit generates geranylgeranyl 

diphosphate (GGPP), a common precursor for several groups of plastid isoprenoids. In 

the first step of carotenoid biosynthesis, phytoene synthase (PSY; EC 2.5.1.32) catalyses 

the two-step conversion of two molecules of GGPP into pre-phytoene pyrophosphate 

(PPPP) and then into phytoene. In this process two molecules of GGPP are joined in a 

condensation reaction with the loss of hydrogen and the diphosphate group from C-1’ of 

the same molecule. Cleavage of the C-1 diphosphate group of the resulting PPPP, 

followed by a 1-1’ rearrangement, results in the formation of phytoene. Phytoene has the 

basic C40 skeleton of carotenoids, and all subsequent reactions in the pathway involve 

chemical conversions of this basic structure. A series of desaturation reactions convert 

colourless compound phytoene into yellow, orange, and red carotenoids by creating the 

conjugated double bonds that form the chromophore. There are four desaturation steps 

between phytoene and lycopene. 

A branching point in the plant carotenoid pathway is marked by the cyclization of 

lycopene, which is converted into either α-carotene or β-carotene by the enzyme lycopene 

cyclase (LYC; EC 5.5.1.19). Xanthophylls are hydroxyl-, epoxy-, furanoxy- and oxy- 

derivatives of the carotenes formed in the late stages of the pathway. The first 

xanthophylls are formed from cyclic carotenoids such as α-carotene (lutein) and β-

carotene (zeaxanthin, violaxanthin and neoxanthin) by the introduction of hydroxy groups 

in positions C3 and C3’ of the ionone rings, followed by epoxidation at the 5, 6 and 5’, 6' 

positions. Xanthophylls undergo light-dependent epoxidation/de-epoxidation cycles by the 
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interconversion of zeaxanthin and violaxanthin and this conversion is known as 

xanthophyll cycle, and plays a key role in response to excess light (Muller et al., 2001). 

Zeaxanthin is readily converted to violaxanthin via antheraxanthin by introducing 5, 6- 

epoxy groups into the 3-hydroxy rings, a reaction catalyzed by the enzyme zeaxanthin 

epoxidase (ZEP; EC 1.14.13.90). In the leaves under excess light, violaxanthin 

deepoxidase (VDE; EC 1.10.99.3) catalyses the two-step de-epoxidation reaction that 

transforms violaxanthin back into zeaxanthin, which is much more efficient in dissipating 

the excess excitation energy (Demmig-Adams et al., 1996). Return to low-light conditions 

results in the transformation of zeaxanthin into violaxanthin (Muller et al., 2001). In the last 

step of the pathway, violaxanthin is transformed into neoxanthin by the activity of 

neoxanthin synthase (NSY; EC 5.3.99.9) (Botella-Pavia and Rodriguez-Concepcion, 

2006). 

Knowledge of changes in the concentrations of individual antioxidants during the 

storage of leafy vegetables is important (DuPont et al., 2000, Martinez-Sanchez et al., 

2006, Llorach et al., 2008, Martinez-Sanchez et al., 2008b) due to their health promoting 

properties. It has recently been suggested that antioxidants may also improve the shelf-

life of fresh produce (Bergquist et al., 2006). Several authors have investigated the effect 

of different storage temperatures (Chu et al., 2000, Pandrangi and LaBorde, 2004, 

Bergquist et al., 2005, Bergquist et al., 2006, Bergquist et al., 2007) and light exposure 

(Noichinda et al., 2007, Lester et al., 2010b, Kobori et al., 2011, Martinez-Sanchez et al., 

2011, Zhan et al., 2013) on antioxidant content in leafy vegetables. The main antioxidants 

in leafy vegetables are AsA, carotenoids, and flavonoids. Information on changes in the 

concentration of these compounds is reviewed.  
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1.3.4.2 Antioxidant content of leafy vegetables 

1.3.4.2.1 Total ascorbic acid (ascorbic acid and dehydroascorbic acid) 

 The concentration of AsA generally declines during the storage of curly kale 

(Brassica oleracea L. var. acephala) (Hagen et al., 2009), Chinese kale (Noichinda et al., 

2007), lettuce (Martinez-Sanchez et al., 2012, Spinardi and Ferrante, 2012), Swiss chard 

(Gil et al., 1998) wild rocket leaves (Martinez-Sanchez et al., 2006) and spinach (Gil et al., 

1999, Hodges et al., 2001, Hodges and Forney, 2003, Bergquist et al., 2006, Bergquist et 

al., 2007). Bergquist et al. (2007) reported, however, that AsA concentration may also 

increase during storage, thus suggesting that AsA biosynthesis can occur after harvest. 

This view is supported by Lester et al. (2010b) who demonstrated that AsA was well 

preserved in mid- and bottom-canopy spinach leaves but not in the top-canopy leaves 

stored under continuous light for 9 days at 5 °C. Initial AsA content in top-canopy leaves 

was higher than in medium- or bottom-canopy leaves, thus regardless the decline, AsA 

content in these leaves after 9 days of storage was not lower when compared with older 

leaves. Higher AsA content in baby spinach leaves compared to mature leaves has 

previously been reported (Bergquist et al., 2006). In the case of lamb’s lettuce 

(Valerianella olitoria) leaves, both AsA and DHA content increased after 1 day of dark 

storage at 4 °C and then declined (Ferrante et al., 2009). Most of the studies mentioned 

above have also reported a decrease in AsA: DHA ratio during storage; this decrease 

occurs through AsA oxidation and/or degradation. On the other hand, the ratio actually 

increased (cut leaves) or decreased (whole leaves) after 1 day of storage in lamb’s lettuce 

leaves (Ferrante et al., 2009) and then declined (cut leaves) or increased (whole leaves) 

after 5 days of storage. After 8 days of storage AsA: DHA ratio (in both cut and whole 

leaves) was not significantly different from the initial value. Due to the fact, that DHA can 

be converted back to AsA, it is important to quantify the concentration of both forms of 

ascorbic acid (Gil et al., 1999, Lee and Kader, 2000) which contribute to the total AsA 

pool. 

In contrast to spinach (Gil et al., 1999, Bergquist et al., 2006, Bergquist et al., 

2007, Bottino et al., 2009), curly kale (Hagen et al., 2009), mizuna and watercress 
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(Martinez-Sanchez et al., 2008b), different lettuce varieties (iceberg, Romaine, 

continental, red oak leaf and lollo rosso) have been reported to contain more DHA, and 

lower AsA: DHA ratio (Beltran et al., 2005, Degl'Innocenti et al., 2005, Llorach et al., 2008, 

Martinez-Sanchez et al., 2011), which varies between cultivars (Llorach et al., 2008). In 

some studies, no DHA at all was found in iceberg lettuce (Kenny and O'Beirne, 2009). On 

the other hand, Singh et al. (2006) reported significant differences in AsA content between 

different cultivars of cabbage. 

Ascorbic acid content in lettuce declines during storage (Kenny and O'Beirne, 

2009, Aguero et al., 2011, Martinez-Sanchez et al., 2012, Spinardi and Ferrante, 2012). 

Degl’Innocenti et al. (2005) demonstrated the differences between lettuce cultivars in the 

way AsA and DHA behave during storage. In their study, the concentration of DHA 

increased (AsA remained unchanged) in the case of RSB cultivar, while a decrease in 

both AsA and DHA was observed in GSB cultivar, where AsA disappeared within 3 days 

of storage. This inconsistent pattern (increase/decrease) in AsA content changes during 

storage has also been observed by other authors (Murata et al., 2004, Beltran et al., 2005, 

Martinez-Sanchez et al., 2011) in experiments with iceberg lettuce. In addition to AsA to 

DHA conversion, AsA can also be transformed into oxalic acid (Yang and Loewus, 1975) 

and this has been observed during the storage of spinach (Toledo et al., 2003b). 

The effect of storage temperature of 2 and 10 °C on AsA content in harvested 

spinach has been investigated (Bergquist et al., 2006, Bergquist et al., 2007). They found 

a smaller loss of AsA at the lower storage temperature. Furthermore, they observed a 

decrease in AsA: DHA ratio during storage, suggesting faster degradation or metabolism, 

or higher oxidation of AsA. This process was more pronounced at higher storage 

temperature. Overall, loss of AsA during storage occurs faster with increasing storage 

temperature (Davey et al., 2000, Lee and Kader, 2000), no difference in AsA retention, 

however, was found between lettuce stored at 4 and 10 °C (Spinardi and Ferrante, 2012). 

The increase in AsA has been observed during growth of lettuce (Zhou et al., 

2009) and Arabidopsis (Bartoli et al., 2006, Yabuta et al., 2007) in response to high 

intensity light, while Yoshimura et al. (2000) reported that light had no effect on AsA 
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content in spinach. On the other hand, a decrease in AsA : DHA ratio in response to high 

intensity light has been found both in spinach (Yoshimura et al., 2000) and lettuce (Zhou 

et al., 2009). In the case of spinach, it was clearly due to increased DHA content in 

response to high intensity light. 

It has been demonstrated that light manipulation during storage may be used to 

improve nutritional quality of leafy vegetables (Toledo et al., 2003b, Noichinda et al., 2007, 

Lester et al., 2010b). Several authors have found slower AsA loss during light-storage of 

Chinese kale (Noichinda et al., 2007), lettuce (Zhan et al., 2012, Zhan et al., 2013) and 

spinach leaves (Toledo et al., 2003b, Lester et al., 2010b) when compared with their dark-

stored counterparts. Better retention of AsA has also been observed in light-stored spring-

grown rocket leaves, whereas no difference between two storage conditions was 

observed for summer-grown leaves (Barbieri et al., 2011). Lester et al. (2010b) observed 

higher AsA content in light-stored spinach in cultivar Lazio, but not in the case of cultivar 

Samish, where no difference in AsA content between two storage conditions was found 

for top- and medium-canopy leaves after 9 days of storage. Toledo et al. (2003b) found no 

difference in the activity of enzymes involved in AsA biosynthesis and metabolism (L-

galactono-1, 4-lactone dehydrogenase, MDHAR and DHAR) between light- and dark-

stored leaves. These authors suggested that higher biosynthesis of AsA could be due to 

increased availability of soluble carbohydrates in light-stored leaves. 

On the other hand, a significantly higher increase in DHA content was found in 

dark-stored lettuce (Zhan et al., 2012, Zhan et al., 2013), rocket (Barbieri et al., 2011) and 

spinach leaves (Lester et al., 2010b). The increase in DHA compensated the loss in AsA 

content and resulted in similar total AsA content between dark and light-stored samples. 

No difference in total AsA between dark and light-stored lettuce has been reported by 

Martinez-Sanchez et al. (2011). It is also worth noting that no difference in total AsA 

content between dark and light-stored spinach leaves was reported for cultivar Lazio while 

differences were observed in cultivar Samish (Lester et al., 2010b), thus highlighting 

different responses among cultivars. 
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Another important factor that may influence the effect of light exposure on AsA and 

other bioactive compounds (e.g. carotenoids) is leaf age as the response to light has been 

shown to be different in spinach leaves of different maturity (Lester et al., 2010b). 

Furthermore, the initial concentration of AsA and carotenoids in plants of different age 

varies (Bergquist et al., 2006, Bergquist et al., 2007). AsA concentration is higher in 

younger plants (Bergquist et al., 2006, Bergquist et al., 2007, Lester et al., 2010b), while 

carotenoid concentration increases with plant maturity (Bergquist et al., 2006). 

1.3.4.2.2 Carotenoids 

 The carotenoid concentration of leafy vegetables prior to storage is affected by 

environmental conditions during growth, e.g. light intensity (Eskling and Akerlund, 1998, 

Lefsrud et al., 2006) and air temperature (Lefsrud et al., 2005). Thus, it is not surprising 

that plant pigments concentration differs between seasons (Kopsell et al., 2004, Mou, 

2005) and plants of different maturity (Lefsrud et al., 2007). Furthermore, differences 

among cultivars, types and genotypes in β-carotene and lutein content have been 

reported for Lactuca sp. (Mou, 2005) and Brassica sp. (Kopsell et al., 2004, Singh et al., 

2006). 

Postharvest storage may cause changes in the concentration of these bioactive 

compounds. Several studies have reported changes in carotenoids during the storage of 

spinach leaves under different conditions (Pandrangi and LaBorde, 2004, Bergquist et al., 

2006, Bergquist et al., 2007, Bunea et al., 2008). The findings, however, have been 

inconsistent and contradictory. 

 A decrease in carotenoid content during storage has been reported in endive, 

Swiss chard and rocket leaves (Ferrante et al., 2004), and spinach (Pandrangi and 

LaBorde, 2004, Bunea et al., 2008, Tudela et al., 2013). In contrast, an increase in 

carotenoid content has been reported during the storage of spinach leaves (Bergquist et 

al., 2006, Bergquist et al., 2007), which suggests that synthesis of carotenoids may occur; 

however, this change was not always significant. They concluded that carotenoids are 

quite well preserved during storage. Bergquist et al. (2006) suggested that these 
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differences could occur due to different cultivars used in these studies or due to different 

growth stages of harvested plants that were used. 

 The major carotenoids found in spinach are lutein, β-carotene, violaxanthin and 

neoxanthin (Kopas-Lane and Warthesen, 1995, Pandrangi and LaBorde, 2004, Bergquist 

et al., 2006, Bergquist et al., 2007, Bunea et al., 2008). Both Bergquist et al. (2006) and 

Bunea et al. (2008) observed that lutein comprised around 40% of total carotenoids. 

Lutein has also been found to be the main carotenoid in kale (Lefsrud et al., 2005, Lefsrud 

et al., 2006, Nilsson et al., 2006, Lefsrud et al., 2007) and white cabbage (Nilsson et al., 

2006). 

The composition of individual carotenoids changes during storage. The 

concentrations of lutein and violaxanthin have been reported to decrease during the 

storage of spinach leaves (Pandrangi and LaBorde, 2004, Bunea et al., 2008), while 

Bergquist et al. (2006) observed an increase in these carotenoids after 9 d of storage. In 

the case of β-carotene, a decrease in its concentration in stored spinach has been 

observed (Kopas-Lane and Warthesen, 1995, Pandrangi and LaBorde, 2004, Bunea et 

al., 2008), while the results were inconsistent in another study (Bergquist et al., 2006), 

where β-carotene concentration was relatively stable, and in some cases it increased. 

 Storage temperature may influence the concentration of carotenoids (Pandrangi 

and LaBorde, 2004, Bergquist et al., 2006, Yang et al., 2010). Higher loss in carotenoid 

content with increasing temperature of storage has been reported in kale (Kobori et al., 

2011) when authors compared samples stored at 1 and 11 °C. On the other hand, no 

difference in carotenoid content was reported between lettuce stored at 4 and 10 °C 

(Spinardi and Ferrante, 2012). 

Higher loss of carotenoids was also observed in spinach with increasing storage 

time and storage temperature (Pandrangi and LaBorde, 2004). These results are 

contradictory to Bergquist et al. (2006) who reported higher concentration of lutein and 

violaxanthin in harvested spinach stored at 10 °C. In their research, the only carotenoid 

that was better preserved at 2 °C was β-carotene, while neoxanthin was not affected by 
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storage temperature. Pandrangi and LaBorde (2004), however, did not observe significant 

differences in lutein and neoxanthin concentration between spinach leaves stored for 6 

days at 10 °C and those stored for 8 days at 4 °C, respectively. The retention of these 

carotenoids might be less sensitive to changes in temperature during storage. 

Furthermore, all-trans β-carotene has been found to be more stable than 9-cis β-carotene 

when spinach was stored at 4 °C (Pandrangi and LaBorde, 2004), while retention of both 

isomers was not significantly different at higher storage temperature. This may explain 

better retention of β-carotene at lower storage temperatures (Bergquist et al., 2006). 

Kobori et al. (2011) observed no changes in neoxanthin, violaxanthin, lutein and β-

carotene content during dark storage of kale at 1 °C. The content of all investigated 

carotenoids, however, declined during dark storage at 11 °C. The same pattern was 

observed for violaxanthin and β-carotene in light-stored samples, whereas the content of 

lutein and neoxanthin remained relatively stable. No significant difference in the content of 

neoxanthin and β-carotene was found between two storage conditions, while lutein 

content was significantly higher in light-stored samples. The content of violaxanthin was 

higher in the dark-stored counterparts due to the fact that in response to light exposure 

during storage violaxanthin was transformed to zeaxanthin. This transformation takes 

place within the “xanthophyll cycle” that is involved in photoprotection by responding to 

changes in the light intensity (Muller et al., 2001). 

Kopas-Lane and Warthesen (1995) have reported enhanced carotenoids 

degradation in light-stored spinach. These authors found that all investigated carotenoids 

(lutein, neoxanthin, violaxanthin, β-carotene) were quite stable in dark-stored spinach, 

while a decrease in their concentration was apparent after 4 days in light-stored samples. 

Only all-trans β-carotene decreased in dark stored samples, however, its decrease in the 

light was stronger. All investigated carotenoids (lutein, neoxanthin, violaxanthin, all-trans 

β-carotene, 9-cis β-carotene and 13-cis β-carotene) decreased in the light stored 

samples. This finding is partially supported by Lester et al. (2010b), who reported 

carotenoids (lutein/zeaxanthin, β-carotene and violaxanthin) to be relatively stable or even 

increase during dark storage of two spinach cultivars - Lazio and Samish. In cultivar Lazio, 
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β-carotene and violaxanthin content was significantly higher in mid- and bottom-canopy 

leaves stored in the dark, while no difference between two storage conditions was 

observed in top-canopy leaves. On the other hand, in cultivar Samish significantly higher 

β-carotene and violaxanthin content was reported for top- and mid-canopy leaves, while 

there was no difference in bottom-canopy leaves. This suggests that quality changes 

during the storage of spinach leaves of different cultivars and maturity follow a different 

pattern. Furthermore, changes in carotenoid content during light- and dark-storage are 

influenced by growing conditions as Barbieri et al. (2011) observed higher carotenoids 

content in the spring-grown rocket leaves stored in the light, while no difference between 

two storage conditions was found in the summer-grown leaves. This could be explained 

by different light intensity over two growing seasons. 

 The pigment concentration in leafy vegetables may also be affected by irradiance 

level (Lefsrud et al., 2006). These authors found that irradiance of 335 µmol m-2 s-1 

significantly increased lutein and β-carotene concentration in kale, while none of the 

irradiance levels investigated (125, 200, 335, 460, and 620 µmol m-2 s-1) had any effect on 

the concentration of these compounds in spinach, when values were given on FW basis; 

however, on a dry weight (DW) basis significant differences in lutein and β-carotene 

concentration were reported in spinach, whereas they were not significant in kale. The 

different outcome based on DW and FW reported by these authors can be explained by 

the change in moisture content in response to different irradiance levels. The change in 

moisture content in response to increasing irradiance was found to be higher in kale than 

in spinach resulting in higher dilution of plant pigments in kale.  
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1.3.4.2.3 Flavonoids 

 Flavonoids are a group of metabolites that play a role in plants protection against 

damage induced by abiotic (e.g. UV radiation, wounding) and biotic (e.g. pathogens and 

predators) stressors (Harborne and Williams, 2000, Pourcel et al., 2007). These 

compounds have also been suggested to be important for human health. Their medicinal 

and nutritional properties have been reviewed elsewhere (Harborne and Williams, 2000, 

Nijveldt et al., 2001). 

 In the last decade, there has been an increasing interest in the flavonoid content of 

fresh produce because of their antioxidant properties (Gil et al., 1999, DuPont et al., 2000, 

Bergquist et al., 2005, Llorach et al., 2008). The most common flavonoids in leafy 

vegetables are quercetin, kaempferol and luteolin, and their glycosides (Crozier et al., 

1997, DuPont et al., 2000, Llorach et al., 2008, Martinez-Sanchez et al., 2008b). 

 In lettuce, flavonoids have been found to be present mainly in the form of quercetin 

conjugates (Crozier et al., 1997, DuPont et al., 2000, Arabbi et al., 2004, Llorach et al., 

2008). The presence of five quercetin conjugates in lettuce has been reported (DuPont et 

al., 2000). These authors have identified following compounds: quercetin 3-O-galactoside, 

quercetin 3-O-glucoside, quercetin 3-O-glucuronide, quercetin 3-O-(6-O-malonyl) 

glucoside and quercetin 3-O-rhamnoside. The quercetin 3-O-glucoside was the dominant 

form of flavonoids found in this study. In the recent study, Llorach et al. (2008) identified 

the presence of new flavonoids in red lettuce varieties (red oak leaf and lollo rosso). 

These were: quercetin-7-O-glucuronide-3-O-(6”-O-malonyl)-glucoside and quercetin-7-O-

glucoside-3-O-(6”-O-malonyl)-glucoside. The concentration of quercetin conjugates was 

lower in the inner leaves of lettuce when compared with outer leaves (Crozier et al., 

1997). Moreover, the concentration of quercetin was shown to be significantly different 

between lettuce varieties (Crozier et al., 1997, DuPont et al., 2000, Llorach et al., 2008). 

In addition to quercetin conjugates, DuPont et al. (2000) described the presence of 

luteolin 7-O-glucuronide and cyanidin conjugates [cyanidin 3-O-glucoside and cyanidin 3-

O-[(6-O-malonyl) glucoside] in the green- and red-leafed varieties of lettuce, respectively. 

The presence of quercetin and luteolin conjugates in lettuce has been confirmed in more 
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recent studies (Arabbi et al., 2004, Heimler et al., 2007, Llorach et al., 2008). The 

presence of cyanidin in red lettuce has also been reported by others (Ferreres et al., 

1997b, Arabbi et al., 2004, Llorach et al., 2008). 

 In endive, DuPont et al. (2000) reported the presence of three kaempferol 

conjugates, kaempferol 3-O-glucoside, kaempferol 3-O-glucuronide, and kaempferol 3-O-

[(6-O-malonyl) glucoside]. The presence of kaempferol conjugates in endive has been 

confirmed by Llorach et al. (2008). In contrast, the presence of kaempferol, quercetin, 

luteolin and apigenin has been reported by Arabbi et al. (2004) when these authors 

analysed the flavonoid content of endive, and this finding is supported by others (Heimler 

et al., 2007, Heimler et al., 2009). Furthermore, seasonal variation in the concentration of 

individual flavonoids has been reported (Arabbi et al., 2004). 

 Significant difference in flavonoid content between salad rocket and wild rocket 

leaves has been reported (Heimler et al., 2007, Martinez-Sanchez et al., 2007). In the 

case of wild rocket leaves, both kaempferol and quercetin conjugates were found 

(Martinez-Sanchez et al., 2006, Heimler et al., 2007, Martinez-Sanchez et al., 2008b). 

Even though they were both present, the concentration of quercetin conjugates was 

relatively high, while that of kaempferol was very low. In contrast, salad rocket leaves 

have been reported to contain a relatively high concentration of kaempferol, while 

quercetin content was much lower (Martinez-Sanchez et al., 2007, Martinez-Sanchez et 

al., 2008b). In addition, Martinez-Sanchez et al. (2007) identified the presence of 

isorhamnetin-glucosides in both rocket and wild rocket leaves and this finding has been 

confirmed (Martinez-Sanchez et al., 2008b, Jin et al., 2009). 

Both kaempferol and quercetin conjugates have been reported to be present in 

mizuna and watercress leaves (Martinez-Sanchez et al., 2008b). In addition, mizuna 

leaves also contained isorhamnetin 3, 7-di-O-glucoside. All compounds mentioned above 

(quercetin, kaempferol and isorhamnetin) have been reported to be present in pak choi 

(Brassica rapa L. ssp. chinensis L. (Hanelt.)) leaves (Rochfort et al., 2006). The 

composition of individual flavonoids varied among 11 cultivars investigated in their study. 
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Harbaum et al. (2007) also observed significant differences among different pak choi 

cultivars. In both studies kaempferol was the main flavonoid present in pak choi leaves 

followed by isorhamnetin, whereas the concentration of quercetin was very low in all 

cultivars. 

Kaempferol and quercetin derivatives have also been confirmed to be the main 

flavonoids present in kale (Olsen et al., 2009, Olsen et al., 2010, Schmidt et al., 2010a, 

Schmidt et al., 2010b, Zietz et al., 2010, Kobori et al., 2011). In addition, Schmidt et al. 

(2010a, b) have also reported the presence of isorhamnetin in some kale cultivars, while 

in some other cultivars isorhamnetin was not found. Furthermore, similar to other red leafy 

vegetables, cyanidin derivatives were also found in the red variety of curly kale (Olsen et 

al., 2010). Recently, the list of identified flavonoids that are present in kale leaves 

expanded up to 71 (Schmidt et al., 2010b). Schmidt et al. (2010a) have also observed 

significant differences between different genotypes of kale in terms of both total flavonoids 

and individual flavonoids composition. 

 Spinach lacks flavonoids common among other leafy vegetables, e.g. kaempferol, 

quercetin and luteolin (Ferreres et al., 1997a). While these compounds are absent, some 

other flavonoids have been found to be present, and these are unique for spinach 

(Ferreres et al., 1997a, Edenharder et al., 2001). A number of flavonoids (Table.1.2) have 

been identified in spinach leaves (Ferreres et al., 1997a, Gil et al., 1999, Bergquist et al., 

2005, Cho et al., 2008) and they include glucuronides and glycosides of oxygenated 

flavonols (Ferreres et al., 1997a, Gil et al., 1999). 

Analysis of spinach extracts (Ferreres et al., 1997a, Gil et al., 1999) confirmed the 

presence of ten flavonoids. Among them Ferreres et al. (1997a) identified some previously 

unknown compounds. These were compounds number 3, 7, 11 and 16 from Table 1.2. 

These flavonoids were confirmed in a subsequent study by Gil et al. (1999). Both papers 

(Ferreres et al., 1997a, Gil et al., 1999) have also confirmed the presence of other 

flavonoids in spinach leaves; these were compounds number 1, 9, 10, 18, 19, and 21 

(Table 1.2). The presence of some flavonoids previously reported (Ferreres et al., 1997a, 
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Gil et al., 1999) has also been confirmed by other authors (Kidmose et al., 2001, Howard 

et al., 2002, Bergquist et al., 2005, Pandjaitan et al., 2005). In addition to those previously 

described, Bergquist et al. (2005) identified another two compounds, patuletin-3-O-β-D-(2-

p-coumaroylglucopyranosyl-(1→6)-[β-D-apiofuranosyl-(1→2)]-β-D-glucopyranoside and 

patuletin-3-O-β-D-(2''-feruloylglucopyranosyl)-(1→6)-β-D-glucopyranoside. Recently, in 

their study on flavonoid content in spinach, Cho et al. (2008) confirmed the presence of 

another 9 flavonoids, extending the list of flavonoids in spinach leaves up to 21 (Table 

1.2).  
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Table 1.2 List of flavonoids identified in spinach extracts. 

Peak Compound Reference 

1 
Patuletin-3-O-β-D-glucopyranosyl-(1 → 6)-[β-D-

apiofuranosyl-(1 → 2)]-β-D-glucopyranoside 

Ferreres et al., 1997; Gil et al., 1999; 
Kidmose et al., 2001; Howard et al., 2002; 

Bergquist et al., 2005; Pandjaitan et al., 2005; 
Cho et al., 2008; Bottino et al., 2009 

2 
Patuletin-3-O-β-D-glucopyranosyl-(1 → 6)-β-D-

glucopyranoside 
Cho et al., 2008 

3 
Spinacetin-3-O-β-D-glucopyranosyl-(1 → 6)-[β-D-

apiofuranosyl-(1 → 2)]-β-D-glucopyranoside 

Ferreres et al., 1997; Gil et al., 1999;  
Kidmose et al., 2001; Howard et al., 2002; 

Bergquist et al., 2005; Pandjaitan et al., 2005; 
Cho et al., 2008; Bottino et al., 2009 

4 Compound 6 isomer Cho et al., 2008 

5 Compound 7 isomer Cho et al., 2008 

6 
Patuletin-3-O-β-D-(2 -p-coumaroylglucopyranosyl-(1 → 

6)-[β-D-apiofuranosyl-(1 → 2)]-β-D-glucopyranoside 
Bergquist et al., 2005; Cho et al., 2008 

7 
Patuletin-3-O-β-D-(2''-feruloylglucopyranosyl)-(1 → 6)-

[β-D-apiofuranosyl-(1 → 2)]-β-D-glucopyranoside 

Ferreres et al., 1997; Gil et al., 1999;  
Howard et al., 2002; Bergquist et al., 2005; 

Pandjaitan et al., 2005; Cho et al., 2008 

8 Compound 1 isomer Cho et al., 2008 

9 
Spinacetin-3-O-β-D-glucopyranosyl-(1 → 6)-β-D-

glucopyranoside 

Ferreres et al., 1997; Gil et al., 1999; 
Howard et al., 2002; Pandjaitan et al., 2005; 

Cho et al., 2008 

10 
Spinacetin-3-O-β-D-(2''-ρ-coumaroylglucopyranosyl-(1 
→ 6)-[β-D-apiofuranosyl-(1 → 2)]-β-D-glucopyranoside 

Ferreres et al., 1997; Gil et al., 1999;  
Howard et al., 2002; Pandjaitan et al., 2005; 

Cho et al., 2008 

11 
Spinacetin-3-O-β-D-(2''-feruloylglucopyranosyl)-(1 → 
6)-[β-D-apiofuranosyl-(1 → 2)]-β-D-glucopyranoside 

Ferreres et al., 1997; Gil et al., 1999; 
Kidmose et al., 2001; Howard et al., 2002; 

Bergquist et al., 2005; Pandjaitan et al., 2005; 
Cho et al., 2008; Bottino et al., 2009 

12 
Patuletin-3-O-β-D-(2''-ρ-coumaroylglucopyranosyl-(1 

→ 6)-β-D-glucopyranoside 
Cho et al., 2008; Bottino et al., 2009 

13 
Patuletin-3-O-β-D-(2''-feruloylglucopyranosyl)-(1 → 6)-

β-D-glucopyranoside 
Bergquist et al., 2005; Cho et al., 2008 

14 Patuletin derivative Cho et al., 2008 

15 Patuletin derivative Cho et al., 2008 

16 
Spinacetin-3-O-β-D-(2''-feruloylglucopyranosyl)-(1 → 

6)-β-D-glucopyranoside 

Ferreres et al., 1997; Gil et al., 1999; 
Howard et al., 2002; Bergquist et al., 2005; 

Cho et al., 2008; Bottino et al., 2009 

17 Spinatoside 
Kidmose et al., 2001; Bergquist et al., 2005; 

Cho et al., 2008 

18 Jaceidin-4'-β-D-glucuronide 

Ferreres et al., 1997; Gil et al., 1999;  
Kidmose et al., 2001; Howard et al., 2002; 
Pandjaitan et al., 2005; Cho et al., 2008;  

Bottino et al., 2009 

19 
5,3',4'-Trihydroxy-3-methoxy-6:7-

methylendioxyflavone-4' -β-D-glucuronide 

Ferreres et al., 1997; Gil et al., 1999;  
Kidmose et al., 2001; Howard et al., 2002; 

Bergquist et al., 2005; Cho et al., 2008;  
Bottino et al., 2009 

20 
5,4'-Dihydroxy-3-methoxy-6:7-methylendioxyflavone-4' 

-β-D-glucuronide 
Cho et al., 2008 

21 
5,4'-Dihydroxy-3,3'-dimethoxy-6:7-

methylendioxyflavone-4'-β-D-glucuronide 

Ferreres et al., 1997; Gil et al., 1999;  
Kidmose et al., 2001; Howard et al., 2002; 

Bergquist et al., 2005; Pandjaitan et al., 2005; 
Cho et al., 2008; Bottino et al., 2009 
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In a study of flavonoid content in commercial cultivars and advanced breeding 

lines of spinach, Howard et al. (2002) found a significant difference in total flavonoid 

content between them. A difference in flavonoid content between different genotypes of 

spinach has also been reported by Cho et al. (2008). Furthermore, differences in 

individual flavonoids reported in both studies (Howard et al., 2002, Cho et al., 2008) were 

even more significant; some compounds were present in high concentrations in some of 

the cultivars, while the concentrations of the same compounds were very low in others. 

 A decrease in flavonoid content in lettuce and endive after 7 days of dark storage 

at 1 °C has been observed (DuPont et al., 2000). In contrast, Ferreres et al. (1997b) did 

not observe significant changes in flavonoid content of lollo rosso lettuce leaves during 14 

days of storage at 5 °C. In the case of wild rocket leaves, the concentration of flavonoids 

increased or was stable during 14 days of storage at 4 °C in the leaves stored in 

controlled atmosphere, while it decreased during air storage (Martinez-Sanchez et al., 

2006). Flavonoid concentrations have also been reported to be relatively stable by Jin et 

al. (2009) who monitored the changes in quercetin, kaempferol, isorhamnetin and cyanidin 

content in salad rocket and wild rocket leaves during 14 days of storage at 4 °C. These 

authors suggested that changes in flavonoid content may be affected by pre-harvest 

conditions (e.g. light). This view is supported by Harbaum-Piayda et al. (2010) who 

observed significant changes in flavonoid composition in pak choi leaves cultivated at two 

different temperatures (9 and 22 °C) with or without UV light exposure. Flavonoid content 

in pak choi leaves cultivar Hangzhou You Dong Er was relatively stable during 20 days of 

storage at 2 °C (Harbaum-Piayda et al., 2010), which is in agreement with the previous 

study, where these authors (Harbaum et al., 2008) did not observe significant changes in 

flavonoid content during the storage of the same pak choi cultivar at either 4 or 20 °C. In 

the same study (Harbaum et al., 2008) one of the cultivars used (Xue Li Hong) showed a 

significant increase in flavonoid content during 6 days of storage followed by a decline on 

day 8. In the case of two cultivars (Hangzhou You Dong Er and Shanghai Qing) flavonoid 

content was higher after 6 days of storage at 4 °C when compared with leaves stored at 

20 °C. On the other hand, no difference between two storage temperatures was observed 
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for two other cultivars used in that study. The flavonoid content was also reported to be 

stable during the storage of curly kale for 6 weeks at 1 °C (Hagen et al., 2009) and kale 

for 15 days at 1 and 10 °C (Kobori et al., 2011). 

The concentration of total flavonoids in spinach seems to be stable during storage 

(Gil et al., 1999, Bergquist et al., 2005), but Bottino et al. (2009) found that this was only 

the case for intact spinach leaves, not in fresh-cut spinach. Moreover the concentration of 

individual compounds such as spinacetin-3-(2”-feroylglucosyl)(1-6)[apiosyl(1-2)]-

glucoside, jaceidin glucuronide, 5,3’,4’-trihydroxy-3-methoxy-6:7-methylenedioxiflavone-4’-

glucuronide, patuletin-3-glucosyl-(1-6)[apiosyl(1-2)]-glucoside, patuletin-3-(2”-

feroylglucosyl)-(1-6)[apiosyl(1-2)]-glucoside, patuletin-3-gentiobioside, and spinatoside-4’-

glucuronide, and thus the composition of flavonoids, has been reported to change 

significantly during storage (Bergquist et al., 2005, Bottino et al., 2009). The increase in 

total flavonoids resulted from increased concentration of the following compounds: 

spinacetin-glucuronide, jaceidin-glucuronide, patuletin-3-(2”-feroylglucosyl)-(1-

6)[apiosyl(1-2)]-glucoside, 5,4’-dihydroxy-3,3’-dimethoxy-6:7-methylenedioxyflavone-4’-

glucuronide. Simultaneously the concentration of some other compounds (patuletin-3-

glucosyl-(1-6)[apiosyl(1-2)]-glucoside, patuletin-3-gentiobioside, and spinacetin-

glucuronide) decreased during storage (Bergquist et al., 2005, Bottino et al., 2009). In 

addition, 5,3’4’-trihydroxy-3-methoxy-6:7-methylenedioxyflavone-4’glucuronide has been 

found to be the main flavonoid in baby leaf spinach (Bergquist et al., 2005) and its 

concentration was found to be rather stable during storage (Bergquist et al., 2005, Bottino 

et al., 2009). 

The effect of different storage temperatures on flavonoid content has also been 

investigated (Chu et al., 2000, Bergquist et al., 2005). No significant difference in flavonoid 

content was observed between kale samples stored at 1 and 10 °C (Kobori et al., 2011). 

On the other hand, significant decrease in flavonoid content in sweet potato leaves during 

storage has been reported (Chu et al., 2000). They found that flavonoid losses were much 

higher at 25 °C when compared with leaves stored at 4 °C. Flavonoids seem to be quite 
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stable during the storage of spinach, as no significant difference has been observed when 

leaves were stored at 2 and 10 °C (Bergquist et al., 2005). 

Knowledge of changes in the concentrations of individual antioxidants, e.g. 

carotenoids and flavonoids, during the storage of leafy vegetables is important because 

changes in these compounds affect antioxidant capacity of fresh produce. The changes in 

the concentration of carotenoids reported by different groups are inconsistent. A number 

of studies (Kopas-Lane and Warthesen, 1995, Pandrangi and LaBorde, 2004, Bunea et 

al., 2008) reported a decrease in lutein and β-carotene content during the storage of 

spinach leaves, whereas Bergquist et al. (2006) observed an increase in the concentration 

of these carotenoids. Nonetheless, both Bergquist et al. (2006) and Pandrangi and 

LaBorde (2004) noticed that changes in the concentrations of individual compounds are 

temperature dependent. 

Total flavonoid content seems to be relatively stable during refrigerated storage of 

salad rocket (Jin et al., 2009), wild rocket (Jin et al., 2009), pak choi (Harbaum et al., 

2008), curly kale (Hagen et al., 2009) and spinach (Gil et al., 1999, Bergquist et al., 2005, 

Bottino et al., 2009). Although total flavonoid content may remain stable, the composition 

of individual compounds may change (Bergquist et al., 2005, Bottino et al., 2009). This is 

mainly due to the fact that the concentrations of some compounds may increase while the 

concentrations of others may decrease at the same time, and vice versa. Furthermore, the 

changes in these compounds vary among different plant commodities and cultivars.  
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1.3.5 Changes in microbial counts 

There is a substantial number of papers dealing with the aspect of quality loss of 

leafy vegetables during storage due to microbial action (Babic et al., 1996, Babic and 

Watada, 1996, Garcia-Gimeno and Zurera-Cosano, 1997, Allende et al., 2004a, Allende 

et al., 2004b, Ragaert et al., 2007, Conte et al., 2008, Medina et al., 2012). Raw plant 

material is never free from microorganisms and even the washing treatments are not 

sufficient to remove all of them from the leaf surface. 

 The end of shelf-life for fresh produce is not only defined by the loss of sensory 

and nutritional quality; it may also be compromised by high microbial counts (Jacxsens et 

al., 2002), since consumption of fresh produce contaminated with microorganisms may 

pose health risk to humans. Quality loss during storage due to the presence of spoilage 

microorganisms should not be underestimated. The knowledge of the microbial 

populations that may be present on various leafy vegetables is of key importance for the 

fresh produce industry. Furthermore, there is considerable interest in determining how 

these microbial counts change during storage under different conditions. 

1.3.5.1 Identified microflora 

 Native microbial populations have been identified for lettuce (King et al., 1991); 

spinach (Babic et al., 1996) and Swiss chard leaves (Ponce et al., 2002). In the case of 

lettuce the microflora was dominated by bacteria belonging to the genera Pseudomonas 

sp., Erwinia sp. and Serratia sp. (King et al., 1991). Bacteria that were also present, 

although in much lower numbers, belong to Flavobacterium sp., Xanthomonas sp., 

Janthinobacterium sp. and Alcaligenes sp. King et al. (1991) have also reported a 

populations of yeasts that belong to the genera Cryptococcus sp., Pichia sp., Torulaspora 

sp. and Trichosporon sp. In addition, small number of moulds belonging to Penicillium sp., 

Rhizopus sp., Cladosporium sp., Phoma sp. and Aspergillus sp. were also found on 

lettuce leaves (King et al., 1991). 

In spinach, the microflora identified consisted mainly of the families 

Pseudomonadaceae (Pseudomonas fluorescens), Enterobacteriaceae (Citrobacter 
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freundii, Serratia sp.), Micrococcaceae (Staphylococcus xylosus), lactic acid bacteria and 

yeasts (Cryptococcus sp.)(Babic et al., 1996). A high percentage of Pseudomonas 

isolates, which were the dominant population, had pectolytic, proteolytic and lipolytic 

activity. Thus, Babic et al. (1996) suggested that they could possibly be involved in the 

process of leaf tissue deterioration. 

In comparison with lettuce (King et al., 1991) and spinach (Babic et al., 1996), 

different groups of microorganisms were identified on Swiss chard leaves (Ponce et al., 

2002). The bacteria that were found belong to the genera Micrococcus sp. (M. sedentarius 

and M. roseus), Bacillus sp. (B. pumilus and B. subtilis) and Lactobacillus sp. (L. 

paracesei). In addition, several genera of moulds including Alternaria sp., Botrytis sp., 

Aspergillus sp., Penicillium sp., Microsporium sp. and Fusarium sp. were also found to be 

present on Swiss chard leaves (Ponce et al., 2002). This suggests that different 

microorganisms may be present on the leafy vegetables already on the harvesting day, 

due to environmental conditions during growth and differences among leaf characteristics 

(e.g. leaf surface and shape) among crops. 

In addition to spoilage microorganisms that are always present on leafy 

vegetables, there is a great concern about human pathogens, e.g. Escherichia coli O157: 

H7, Listeria monocytogenes or Salmonella sp., which may also be found on/in fresh 

produce (Luo et al., 2009, Caponigro et al., 2010, Khalil and Frank, 2010, Oliveira et al., 

2010). Although contamination of leafy vegetables with human pathogens will not be 

discussed in detail within this review, care must be taken within the supply chain due to 

the fact that temperature of storage affects their growth. 

Several authors (Li et al., 2001a, Luo et al., 2009, Khalil and Frank, 2010, Oliveira 

et al., 2010) have investigated the behaviour of E. coli O157:H7 on leafy vegetables 

during storage at different temperatures. Khalil and Frank (2010) reported that E. coli 

O157:H7 did not grow on lettuce stored at either 8 or 12 °C; though pathogen growth was 

observed at 15 °C. This finding is in agreement with other authors (Li et al., 2001a, 

Oliveira et al., 2010), who observed a decline in E. coli O157:H7 population on lettuce 
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stored at 5 °C. Furthermore, these authors also observed E. coli O157:H7 growth on 

lettuce stored at 15 °C (Li et al., 2001a) and 25 °C (Oliveira et al., 2010), respectively. In 

the case of spinach leaves, E. coli O157:H7 growth was observed at 8 and 12 °C (Luo et 

al., 2009, Khalil and Frank, 2010); being significantly faster at 12 °C. If the spinach leaves 

were stored at either 1 or 5 °C, the population of pathogen decreased (Luo et al., 2009). 

Similar to E. coli O157:H7, the population of Salmonella sp. decreased on lettuce 

stored at 5 °C, while an increase was observed at 25 °C (Oliveira et al., 2010). On the 

other hand, L. monocytogenes was able to grow on lettuce at both 5 and 25 °C (Oliveira et 

al., 2010); the growth was faster with increasing temperature. This is in agreement with 

Jacxsens et al. (2002) who reported that L. monocytogenes managed to survive, as 

expected, on lettuce stored at 2 °C, while the growth of this pathogen was only observed 

at 4, 7 and 10 °C. Again, growth was significantly faster at 7 and 10 °C, when compared 

with samples stored at 4 °C. These findings give evidence that pathogens do not behave 

in the same way on lettuce and spinach and that low storage temperature is important. 

1.3.5.1.1 Mesophilic and psychrotrophic microorganisms 

 Mesophilic (bacteria with optimum growing conditions at moderate temperature, 

neither too hot nor too cold, typically between 10 and 40 °C) and psychrotrophic (bacteria 

with optimum growing conditions at low temperature, e.g. below 10 °C) bacteria are 

commonly found on lettuce (King et al., 1991, Delaquis et al., 1999, Li et al., 2001b), 

spinach (Babic et al., 1996, Allende et al., 2004b, Luo et al., 2009), cabbage (Gomez-

Lopez et al., 2005), endive (Allende et al., 2008a, Allende et al., 2008b), wild rocket 

(Martinez-Sanchez et al., 2006) and Swiss chard leaves (Ponce et al., 2002) during 

refrigerated storage. The populations of mesophilic and psychrotrophic bacteria increase 

during storage due to the fact that even low storage temperature does not inhibit their 

growth (Babic et al., 1996, Jacxsens et al., 2002, Allende et al., 2004b). A number of 

studies (Babic and Watada, 1996, Jacxsens et al., 2002, Pandrangi and LaBorde, 2004, 

Luo et al., 2009) have demonstrated that microbial counts were lower when leafy 

vegetables were kept at lower temperatures. This can be explained by changes in the lag-
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phase length of spoilage microorganisms, which increases with decreasing storage 

temperature (Jacxsens et al., 2002). On the other hand, no difference in bacterial growth 

on lettuce leaves was observed when samples were stored at 2, 5 or 7.5 °C (King et al., 

1991). This discrepancy might be due to the fact that the range of temperatures used by 

King et al. (1991) was relatively low when compared with those used by Jacxsens et al. 

(2002). 

 The growth of mesophilic and psychrotrophic microorganisms may also be 

affected by the gas composition inside the bags (Babic and Watada, 1996). These authors 

have demonstrated that low oxygen content inside the bag reduces their numbers when 

compared with perforated bags; but, this was only observed when samples were stored at 

5 °C, while at 10 °C this effect was lost. 

 It has been suggested that the growth of psychrotrophic bacteria could be 

enhanced by tissue damage (King et al., 1991, Babic et al., 1996, Allende and Artes, 

2003) due to solute leakage that provides nutrients for bacterial growth. Babic et al. (1996) 

used low temperature scanning electron microscopy to identify areas covered with 

microorganisms. Leaf areas with severe damage were covered with bacteria, while only 

low numbers of bacteria were found on healthy unbroken leaves. 

 McKellar et al. (2004) found that loss of quality during the storage of lettuce at 4 °C 

correlated with increasing numbers of psychrotrophic bacteria and Pseudomonas sp. On 

the other hand, others (Jacxsens et al., 2002, Allende et al., 2008a) have not found an 

association between microbial counts and quality loss because the shelf-life of fresh 

produce is often compromised by the loss of its sensory quality before microbial counts 

reach high numbers. This suggests that high microbial counts are not a reason for leaf 

tissue deterioration but rather the result of it, as tissue damage needs to occur first to 

support their growth.  
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1.3.5.1.2 Lactic acid bacteria 

 The population of lactic acid bacteria on leafy vegetables on the day of harvest is 

often very small compared with mesophilic and psychrophilic bacteria (Li et al., 2001b, 

Ponce et al., 2002, Luo, 2007, Conte et al., 2008) and sometimes it may be so small that 

this group of microorganisms may not be detected (Babic and Watada, 1996, Delaquis et 

al., 1999). Lactic acid bacteria counts usually remain low during refrigerated storage of 

spinach (Babic et al., 1996, Allende et al., 2004b, Allende et al., 2006, Conte et al., 2008), 

while an increase has been observed during the storage of lettuce (Luo, 2007). This could 

be due to differences in packaging films (in terms of oxygen transmission rate - OTR) 

used for storage of spinach and lettuce leaves. It has been observed (McKellar et al., 

2004) that gas composition changes (reduced O2, increased CO2 content) in packages 

with low OTR support the growth of lactic acid bacteria. This may explain why the 

population of lactic acid bacteria in lettuce did not change during 6 days of storage at 0-2 

°C and then started to increase (Aguero et al., 2011). Overall, lactic acid bacteria do not 

seem to play an important role during microbial spoilage of spinach (Babic et al., 1996) or 

lettuce (Jacxsens et al., 2002), due to low numbers during the storage of these 

commodities. 

1.3.5.1.3 Yeasts and moulds 

 Although yeasts and moulds probably do not play an important role during 

microbial spoilage of leafy vegetables (Babic et al., 1996, Babic and Watada, 1996, 

Jacxsens et al., 2002) their growth is promoted when the gas composition inside the bag 

becomes anaerobic (King et al., 1991). Changes in the atmosphere inside the bag often 

take place when OTR of the film used for storage is not sufficient or when samples are 

stored at inappropriate temperature. 

 The yeast and mould counts on lettuce (King et al., 1991, Li et al., 2001b, Allende 

et al., 2004a, Allende et al., 2006) and spinach (Babic and Watada, 1996, Conte et al., 

2008, Luo et al., 2009, Escalona et al., 2010) are usually low; but the slow increase may 

still take place during refrigerated storage. The population of yeasts and moulds on lettuce 
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increased during 6 days of storage at 0-2 °C (Aguero et al., 2011) and 5 °C (Allende and 

Artes, 2003, Allende et al., 2006) and then remained stable (Allende et al., 2006, Aguero 

et al., 2011) and eventually declined in the end of storage (Aguero et al., 2011). In the 

case of spinach leaves the population of yeasts and moulds increased during 3 days of 

storage at 1, 5, 8 and 12 °C, and then remained stable (Luo et al., 2009), whereas other 

authors observed slow growth during the storage at 5 °C for 6 days (Artes-Hernandez et 

al., 2009), 10 days (Conte et al., 2008), 12 days (Allende et al., 2004b) and 14 days 

(Escalona et al., 2010), respectively. 

 No significant difference was found for growth of yeasts on lettuce stored at 2, 5 

and 7.5 °C (King et al., 1991) and only slight difference in their counts was observed 

between spinach leaves stored at 5 and 8 °C (Artes-Hernandez et al., 2009). On the other 

hand, significantly faster growth of these microorganisms was reported when Li et al. 

(2001b) compared yeasts and moulds populations on lettuce stored at 5 and 15 °C. This 

suggests that small difference in storage temperature does not lead to a significant 

increase of yeast and mould counts. 

Low temperature is essential during the storage of leafy vegetables. It is clear that 

the growth of different groups of microorganisms is enhanced with increasing temperature 

of storage. Low temperature not only decreases the growth of spoilage microorganisms, 

but it also reduces the survival of human pathogens, e.g. E.coli O157:H7 and Salmonella 

sp. that may be present on the raw plant material. Thus, to preserve the quality of leafy 

vegetables and meet food safety requirements (FSA, 2011), the temperature along the 

supply chain should be kept low, preferably below 5 °C.  
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1.4 High temperature treatment 

Temperature may also affect the quality of leafy vegetables during storage if 

applied as a treatment prior to storage. Temperature treatments can be applied either in 

the form of air or water (Lurie, 1998). Water has been suggested to be a better medium in 

terms of heat transfer efficiency (Fallik, 2004) and practicality. The effects of hot water 

treatments on quality changes in leafy vegetables during subsequent storage are 

reviewed below. 

1.4.1 Effect of hot water treatment on quality maintenance 

 Heat treatment (50 °C) of lettuce with either water for 90 s (Murata et al., 2004) or 

calcium lactate (15g/l, w/v in water) for 60 s (Martin-Diana et al., 2006) improved 

organoleptic quality and texture maintenance during storage, thus extending shelf-life. 

Calcium lactate is a firming agent used as a food additive in order to precipitate residual 

pectin, thus strengthening the structure of the food (Luna-Guzman and Barrett, 2000; 

Martin-Diana et al., 2006). Texture of lettuce was also maintained when hot (47 °C) 

chlorinated (100 ppm) water was applied for 3 min prior to storage (Delaquis et al., 1999, 

Delaquis et al., 2004). Thermal treatment reduced the loss of turgor during storage, 

possibly due to higher activity of pectin methylesterase (PME; EC 3.1.1.11), an enzyme 

related to textural changes in the tissue. This resulted in improved crispiness of lettuce 

(Martin-Diana et al., 2006). This effect is not consistently observed; no difference in 

texture was found between lettuce treated with hot (50 °C for 60 s) and cold (4 °C for 60 s) 

water prior to storage (Baur et al., 2005, Martin-Diana et al., 2005) and a decrease in 

textural quality of lettuce was observed when leaves were treated with hot water (50 °C) 

for 2 min prior to storage (Moreira et al., 2006). This decrease in texture may be a 

consequence of too long treatment time at this high (50 °C) temperature, justifying why 

others (Baur et al., 2005, Martin-Diana et al., 2005) treated the lettuce for only 60 s 

instead of 2 min used by Moreira et al. (2006). This also supports the findings of others 

(Delaquis et al., 1999, Delaquis et al., 2004) who observed that with the temperature of 

treatment and treatment time being too high and too long, leaf tissue might be damaged 

as measured by increased solute leakage. Interestingly, lower solute leakage during 
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storage was observed in spinach leaves treated with hot (40 °C) water for 3.5 min prior to 

storage, when compared with untreated leaves (Gomez et al., 2008). Overall, to reduce 

the chance of damage resulting from thermal treatment, the time of treatment should be 

reduced with increasing temperature (Fallik, 2004). 

 Several authors (Gomez et al., 2008, Martinez-Sanchez et al., 2008a) have made 

an attempt to determine the effect of hot water treatment on the respiration rate of fresh 

produce. Hot water treatment (50 °C for 60 s) of rocket, mizuna and watercress baby 

leaves increased the respiration rate if samples were subsequently stored at 8 °C 

(Martinez-Sanchez et al., 2008a) but no change in the respiration rate in response to hot 

water treatment was observed, however, if the leaves were stored at 4 °C. In contrast, hot 

water (40 °C for 3.5 min) treatment had no effect on respiration rate of spinach leaves 

subsequently stored at 23 °C (Gomez et al., 2008). 

 Others (Odumeru et al., 2003, McKellar et al., 2004, Baur et al., 2005, Martinez-

Sanchez et al., 2008a) have also compared respiration rates in response to hot and cold 

water treatment. The treatments used in those studies differed. Baur et al. (2005) and 

Martinez-Sanchez et al. (2008a) used hot water treatment at 50 °C for 60 s, while 

McKellar et al. (2004) and Odumeru et al. (2003) used chlorinated water (100 ppm) in 

their studies. 

 No significant difference in the gas composition in bags containing lettuce leaves 

treated with either cold (4 °C for 90 s) or hot (50 °C for 60 s) water prior to storage was 

observed during 5 days of storage at 4 °C (Baur et al., 2005). From day 6, the oxygen 

content was lower and carbon dioxide content was higher in the case of lettuce treated 

with hot water prior to storage and it was concluded that respiration rate increases with 

increasing temperature of treatment. 

 Other studies (Odumeru et al., 2003, McKellar et al., 2004) investigated the effect 

of cold and hot water treatment on respiration rate of lettuce stored at 4 °C. In contrast to 

the studies mentioned above, these authors used chlorinated water (100 ppm) applied at 

47±2 °C for 30, 60 or 180 s (Odumeru et al., 2003) and at 48 °C for 30 s (McKellar et al., 
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2004), respectively. McKellar et al. (2004) observed significantly higher CO2 production 

during the storage of fresh-cut lettuce washed with hot (48 °C for 30 s) chlorinated water 

when compared with samples washed with cold (4 °C) chlorinated water prior to storage. 

In contrast, lettuce washed with hot (47±2 °C for 30, 60 or 180 s) chlorinated water had a 

lower oxygen consumption and carbon dioxide production rate when compared with 

lettuce washed with cold (4 °C for 30 s) chlorinated water (Odumeru et al., 2003). 

No difference in the development of off-odours (Delaquis et al., 2004, Murata et 

al., 2004, Baur et al., 2005) and off-flavours (Baur et al., 2005) has been reported for 

lettuce treated with hot water at 50 °C for 60 s prior to storage. Care must be taken 

because sensory analyses of food often rely on public perception, thus small differences 

in food quality may not be detected. 

1.4.2 Effect of hot water treatment on visual quality 

 The decrease in visual quality of leafy vegetables may occur due to chlorophyll 

loss or tissue browning (Toivonen and Brummell, 2008). Chlorophyll loss during storage 

was slower in spinach treated with hot water (40 °C) for 3.5 min (Gomez et al., 2008) and 

in rocket leaves treated with hot water (50 °C) for 30 s prior to storage (Koukounaras et 

al., 2009), but no effect on colour changes in response to hot water (50 °C) treatment for 

60 s has been reported in lettuce (Baur et al., 2005). The yellowing process of rocket 

leaves was reduced by hot water (50 °C) treatment for 30 s prior to storage (Koukounaras 

et al., 2009). 

Other studies have shown that hot water (50 °C) treatment for either 60 s (Baur et 

al., 2005, Martin-Diana et al., 2005), 90 s (Murata et al., 2004) or 120 s (Moreira et al., 

2006) reduced the browning process in lettuce during storage. Browning has also been 

reported to be delayed when lettuce was treated with hot (47 °C) chlorinated (100 ppm) 

water for 3 min (Delaquis et al., 1999, Delaquis et al., 2004) or hot (50 °C) chlorinated (20 

ppm) water for 90 s (Li et al., 2001b) prior to storage. Delaquis et al. (2004) reported that 

the temperature of chlorinated water used for washing treatments can be increased from 

47 °C up to 51 °C with a simultaneous reduction in exposure time from 180 down to 60 s. 
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Martin-Diana et al. (2005) suggested that the reduced browning process in lettuce 

in response to heat treatment is due to reduced activity of PPO and POD, while other 

authors believe that it is due to suppression of PAL activity (Delaquis et al., 1999, Saltveit, 

2000, Delaquis et al., 2004). This latter view is supported by the study of Murata et al. 

(2004) who found that hot water treatment blocked the induction of PAL, affected the 

accumulation of phenolic compounds and reduced tissue browning. In another study, it 

has been reported that the content of small heat shock proteins increased in hot water 

treated spinach leaves (Gomez et al., 2008), thus suggesting their role in quality 

maintenance during storage. 

1.4.3 Effect of hot water treatment on nutritional quality 

 Temperature treatment prior to storage may affect the concentration of 

antioxidants, including AsA, carotenoids and flavonoids, when it is applied as a stressor, 

such as a rapid change in temperature of the environment, at least 10 °C from the optimal 

growth temperature (Li et al., 1999). It is important to identify the optimal dose, 

temperature and time of exposure (Schoffl et al., 1998). Sublethal dose may induce 

positive responses in plants, which later protect them from the damage due to oxidative 

stress. Unfortunately, information on the effects of heat treatment on antioxidant content in 

leafy vegetables is scarce. There are only a few papers reporting the effect of high 

temperature treatment on AsA content in leafy vegetables during storage (Murata et al., 

2004, Moreira et al., 2006, Gomez et al., 2008), while little information exists on the 

effects of heat treatment on carotenoids (Updike and Schwartz, 2003, Aman et al., 2005) 

and flavonoids. 

Hot water (40 °C) treatment for 3.5 min and hot water (50 °C) treatment for 90 s 

had no effect on AsA content in spinach (Gomez et al., 2008) and lettuce (Murata et al., 

2004), respectively. In contrast, Moreira et al. (2006) observed a decrease in AsA content 

in lettuce in response to hot water treatments. AsA loss was enhanced with increasing 

temperature of treatment and with longer treatment time. Heat treatment resulted in a 

reduction in carotenoid concentration in spinach (Aman et al., 2005). It has also been 



53 
 

reported to cause trans to cis isomerisation of β-carotene and lutein in spinach (Updike 

and Schwartz, 2003, Aman et al., 2005), and kale (Updike and Schwartz, 2003). 

1.4.4 Effect of hot water treatment on changes in microbial populations 

 Microorganisms are usually found on the leaf surface and/or within a few outer cell 

layers. Delaquis et al. (1999) reported that chlorinated (100 ppm) water applied for 3 min 

at 47 °C reduced the initial microbial population in lettuce by 3 log cfu g-1. Only 1 log 

reduction was observed when the water temperature was 4 °C. Numbers of 

psychrotrophic microorganisms, yeasts and moulds were significantly reduced by both 

cold (4 °C) and hot (47 °C) water treatments during 10 days of storage, when compared 

with untreated samples. In a later study, Delaquis et al. (2004) found that 50 °C treatment 

for 1 min might be a good alternative to 47 °C treatment for 3 min. This finding is 

supported by Baur et al. (2005) who found that this treatment gave better reduction in 

microbial counts on  lettuce (total bacteria, Pseudomonads and Enterobacteriaceae) when 

compared with a cold water wash (4 °C) for 1 min. 

The decrease in mesophilic and psychrotrophic microorganisms, 

Enterobacteriaceae counts, yeast, and mould populations in iceberg lettuce in response to 

warm (20 °C) and hot (50 °C) water treatments applied for 90 s has also been reported (Li 

et al., 2001b). Counts of aerobic bacteria, coliforms and Enterobacteriaceae were also 

reduced on lettuce washed with either hot water at 47 °C for 2 min (followed by rinsing in 

cold water at 4 °C for 1 min) or cold water at 5 °C for 3 min (Rajkowski and Fan, 2008). A 

number of studies (Delaquis et al., 1999, Li et al., 2001b, Odumeru et al., 2003, Delaquis 

et al., 2004) have reported that hot water treatment was more efficient than cold water in 

reducing microbial counts. In contrast, no difference in washing efficiency between cold 

and hot water was observed by Rajkowski and Fan (2008). 

Other authors have reported no effect of heat shock treatments on microbial 

counts in lettuce (Murata et al., 2004), rocket leaves, mizuna and watercress (Martinez-

Sanchez et al., 2008a). Furthermore, microbial counts after 12 days of storage at 4 °C 

were significantly higher on lettuce treated with hot water prior to storage when compared 
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with control (Murata et al., 2004). Similarly, the reduction in microbial counts (mesophilic 

bacteria, psychrophilic bacteria, yeasts and moulds) in lettuce in response to hot water 

treatment (50 °C for 1 min) was lost after 4 days and in counts of Enterobacteriaceae after 

10 days of storage at 5 °C (Li et al., 2001b), respectively. This might be due to the tissue 

damage, as a result of treatment application, and may lead to solute leakage from the 

leaves, thus supporting the growth of microorganisms (Moreira et al., 2006), and in this 

way limiting the effectiveness of a hot water treatment. 

1.5 Conclusions 

This review highlights the importance of keeping fresh leafy vegetables under 

refrigerated temperature to reduce a loss in their quality. All determinants of quality, the 

loss of texture, development of off-odours and off-flavours, visual quality (leaf colour, 

chlorophyll degradation and/or tissue browning), changes in AsA, carotenoids and 

flavonoids are temperature dependent. 

 Textural and physiological changes have been shown in several studies to be 

accelerated with increasing temperature of storage. Similarly, development of off-odours 

and off-flavours was noticed early during storage in the bags (containing leafy vegetables) 

that were kept at high temperatures, whereas in counterparts stored at low storage 

temperature (0-4 °C) these changes were often not significant. 

 Loss of visual quality in leafy vegetables is accelerated with increasing 

temperature of storage. These changes are often related to chlorophyll degradation and 

the process of enzymatic browning. Tissue browning takes place faster as a result of 

texture loss. The substrates and enzymes involved in it are localized in different cell 

compartments, thus tissue disruption needs to occur prior enzymatic tissue browning. As 

texture loss is accelerated with increasing temperature of storage, tissue browning is 

observed earlier in the leafy vegetables (e.g. lettuce, endive) stored at higher 

temperatures. In some species (e.g. spinach, rocket leaves) no tissue browning has been 

observed during storage. This might be due to differences in polyphenol biochemistry. 
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 In terms of nutritional quality changes, these are also affected by temperature 

during storage. AsA loss is accelerated at higher temperatures. Although, total 

carotenoids and flavonoids concentrations may be quite stable during storage, the 

concentrations of individual compounds are usually different at various temperatures. 

Furthermore, the growth of microorganisms that are present on/in leafy vegetables 

is also faster at higher temperature. Low temperature during storage is recommended to 

reduce the risk of pathogen development in bags containing fresh produce, an issue of 

importance in the light of recent outbreaks of E. coli bacteria. 

It has been reported that light exposure during storage improves texture of the 

leaves, as indicated by lower solute leakage. On the other hand, visual quality of leafy 

vegetables is often reduced in light-stored samples. Leaves are lighter and more yellow 

when stored under high intensity light conditions. 

The effect of light exposure during storage on nutritional quality of leafy vegetables 

is not clear. Some authors have reported a decline in carotenoid content in spinach leaves 

stored in the light, while others found carotenoids to be either relatively stable or increase 

during storage. Similarly, changes in AsA content varied between spinach cultivars. 

Differences between leaves in response to light conditions during storage were also 

reported between seasons and due to plant maturity. 

A number of studies have reported positive effects of pre-storage hot water 

treatments on shelf-life of lettuce, spinach and rocket leaves. However, positive effects of 

hot water treatment were not always convincing as the differences observed early in the 

storage between hot water treated and control samples were usually lost after several 

days of storage. Furthermore, microorganisms’ counts that were initially reduced as an 

effect of washing (hot water being more efficient than cold water) were similar or even 

higher in the end of storage, thus suggesting that microbial growth occurs faster on heat-

treated leaves. 

 The recent knowledge on the effects of hot water treatments on nutritional quality 

of leafy vegetables is scarce and requires further investigation. It is worth noting that 
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although different aspects of quality loss during storage have been discussed separately 

for the purpose of this review, the interactions between them take place during the shelf-

life of fresh produce. 

Objectives for this study are: 

• To determine the effect of storage temperature on quality maintenance during the 

storage of baby leaf spinach; 

• To determine the effect of light exposure during storage on quality maintenance of 

baby leaf spinach; 

• To determine the effect of a combination of temperature and light conditions on 

quality maintenance during the storage of baby leaf spinach; 

• To determine the effect of hot water treatment prior to storage on quality changes 

of baby leaf spinach during refrigerated storage.  



57 
 

Hypotheses to be tested: 

• Storage temperature manipulation does not affect the concentration of bioactive 

compounds (AsA and carotenoids) of baby leaf spinach; 

• Storage temperature manipulation does not affect visual or textual quality of 

spinach leaves; 

• Manipulating light conditions (light quantity) of postharvest environment does not 

affect nutritional quality (AsA and carotenoids) of harvested spinach leaves; 

• Manipulating light conditions (light quantity) of postharvest environment does not 

affect visual or textural quality of baby leaf spinach; 

• Temperature treatment applied immediately after harvest does not affect nutritional 

quality (AsA and carotenoids) of baby leaf spinach; 

• Temperature treatment prior to storage does not affect visual or textural quality of 

baby leaf spinach; 

• The stability of particular compounds (AsA and those different from AsA, e.g. 

carotenoids, chlorophylls) during storage is important in terms of maintaining both 

nutritional and visual quality of baby leaf spinach, thus extending its shelf-life.  
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Chapter 2 General materials and methods 

 The aim of this study was to determine the effect of temperature and light 

exposure during storage on quality characteristics of baby leaf spinach. Furthermore, the 

response of spinach leaves to hot water treatments prior to storage was investigated. The 

experiments reported within this thesis are listed below (each experiment was repeated 

twice with similar results): 

• In Experiment 1, 81 bags with baby leaf spinach were kept at three different 

temperatures (1±1, 10±1, 20±2 °C) for 9 days under low intensity light (30-35 μmol 

m–2 s–1) conditions. 

• In Experiment 2, the range of temperatures used was smaller than in experiment 

1; 12 bags with baby leaf spinach were kept at 1±1 and 6±1 °C for 7 days under 

low intensity light (30-35 μmol m–2 s–1) conditions. 

• In Experiment 3, 18 bags with baby leaf spinach were kept at 1±1 °C for 7 days 

under three different light conditions – in the dark, under low intensity light (30-35 

μmol m–2 s–1) or high intensity light (130-140 μmol m–2 s–1) conditions. 

• In Experiment 4, 24 bags with baby leaf spinach were kept at 1±1 °C for 10 days 

under continuous (24 h) low intensity light (30-35 μmol m–2 s–1) or photoperiod of 6 

h high intensity light (130-140 μmol m–2 s–1)/18 h dark conditions. 

• In Experiment 5, 24 bags with baby leaf spinach were kept at 1±1 °C or 10±1 °C 

for 7 days under two different light conditions - low intensity light (30-35 μmol m–2 

s–1) or high intensity light (130-140 μmol m–2 s–1). 

• In Experiment 6, baby leaf spinach was subjected to hot water (40, 45 or 50 °C) 

treatment for 0, 30, 60 or 120 s. Leaves were subsequently washed with cold 

water (4 °C) for 120 s and then carefully blotted with absorbent paper, before 

storage at 4 °C in the dark for 10 days. 

• In Experiment 7, baby leaf spinach was subjected to hot water treatment at 45 °C 

for 0 or 60 s and were then subsequently washed in cold (4 °C) distilled water 

containing 100 µL L−1 active chlorine (Cl) (Koukounaras et al., 2009) for 120 s. 
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Leaves were carefully blotted with absorbent paper, before storage at 4 °C in the 

dark for 10 days. 

In all experiments spinach samples were stored in Sanyo Versatile Environmental Test 

Chambers (SANYO Electric Co., Ltd, Japan). Samples were blocked across the shelves, 

so that corresponding treatments were exposed to similar conditions. 

2.1 Plant material and handling 

 For experiments 1-5 baby leaf spinach (Spinacia oleracea L.) (in 180-200 g bags; 

the weight of a single leaf would normally be between 0.5-1.0 g), that was commercially 

bagged in 35 µm single layer of biaxially oriented polypropylene film (ASP Packaging Ltd, 

UK), designed for commercial storage of baby leaf salads, was supplied by PDM Produce 

Ltd, Shropshire, TF10 9BN, UK. Packaging thickness was assumed to be the same 

between experiments; however, it was not measured. Thus, the data obtained in different 

experiments cannot be directly compared due to the fact that changes in film thickness 

may affect O2, CO2 and water vapour permeability and light transmission (Del Nobile et 

al., 2006) and in this way changing the gas composition inside packages, which may have 

further consequences, e.g. by affecting leaf texture (Kar and Choudhuri, 1986, Martinez-

Sanchez et al., 2011). These leaves were washed in cold (4 °C) water and subsequently 

dried with ambient (18-20 °C) air prior to the bagging step; bags were flushed with 

ambient air and sealed at PDM to avoid the situation where gas composition/volume of air 

in the bags would differ between the samples. The bags with baby leaf spinach that were 

used came directly from the production line (i.e. this was the spinach that would otherwise 

be send to the Supermarkets, e.g. ASDA, Sainsbury’s or Co-operative). 

For experiments 6-7, baby leaf spinach (Spinacia oleracea L.) cultivar Toucan was 

commercially grown at PDM Produce Ltd. For each experiment, approximately 3 kg of 

leaves were collected at harvest and transported to the laboratory (~15 minutes) in 

insulated opaque containers and treated immediately on arrival. 

In experiment 6, spinach leaves (20.0±1.0 g) were subjected to hot water (40, 45 

or 50 °C) treatment for 0, 30, 60 or 120 s (using different shaking water baths (Grant 
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Instruments Ltd, UK) with distilled water and baskets made of stainless steel) prior to 

storage. Leaves were subsequently washed with cold water (4 °C) for 120 s and then 

carefully blotted with absorbent paper, before storage at 4 °C. For packaging, leaves were 

placed in polypropylene trays 15 cm × 10cm × 4 cm and lids were covered with a 35 µm 

film (ASP Packaging Ltd, UK) designed for commercial storage of baby leaf salads. In 

experiment 6, spinach leaves were stored under dark conditions and were analysed after 

storage at 4 °C for 10 days. 

In experiment 7, spinach leaves (80.0±1.0 g) were subjected to hot water 

treatment at 45 °C for 0 or 60 s and were then subsequently washed in cold (4 °C) distilled 

water containing 100 µL L−1 active chlorine (Cl) (Koukounaras et al., 2009) for 120 s. 

Chlorinated water was prepared by mixing 4 ml of 10-15% sodium hypochlorite solution 

(Sigma-Aldrich, UK) with 5 l of deionised water, pH of the solution was measured at 8.9. 

Chlorine was chosen as it is most common chemical sanitising solution used in the fresh 

produce industry (Table 1.1.). Leaves were carefully blotted with absorbent paper, before 

storage at 4 °C. For packaging, leaves were placed in polypropylene trays 20 cm × 13cm 

× 5 cm (Plate 2.1) and lids were covered with a 35 µm film (ASP Packaging Ltd, UK) 

designed for commercial storage of baby leaf salads. In experiment 7, spinach leaves 

were stored under dark conditions and were analysed on the day of harvest and after 

storage at 4 °C for 5 and 10 days. 
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Plate 2.1 Spinach leaves placed in polypropylene tray (20 cm × 13cm × 5 cm) with lid covered with 

a 35 µm film (ASP Packaging Ltd, UK). 

The photosynthetically active radiation (PAR) was measured with quantum sensor 

(Skye Instruments Ltd, UK). Storage temperature was recorded continuously with 

TinytagTM temperature loggers (Gemini Data Loggers Ltd, UK). Spinach leaves were 

prepared for further analyses (gas composition analyses, solute leakage measurement, 

total ascorbic acid, and total carotenoids and chlorophylls content determination, leaf 

colour evaluation) on the harvesting day and after being collected from storage. 

2.2 Measurements 

2.2.1 Gas composition analyses 

 Gas composition (O2 and CO2) in individual bags was monitored using a MAP test 

3050 analyser (HITECH Instruments, UK). The volume of 0.20 ml of gas from each 

package was analysed when bags were removed from storage. 

2.2.2 Solute leakage determination 

Solute leakage was determined according to the method of Wagstaff et al. (2007). 

Approximately 5.0 g of spinach leaves, with an even distribution of size and stage of 

development, were transferred from each bag to 500 ml beakers, to which 200 ml of 

deionised water was added. This step was followed by 3 h incubation at ambient 
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temperature (20.0±2.0 °C). Conductivity was subsequently measured in micro Siemens 

(µS) using a Jenway model 4510 conductivity meter (Bibby Scientific Ltd, UK) and 

calculated per g FW. Samples were removed from the bathing solution and slowly frozen 

at −20.0±2.0 °C to ensure maximum disruption of membranes prior to re-measuring the 

conductivity using the same method as for fresh tissue. Solute leakage was then 

expressed as a percentage of maximum conductivity. 

2.2.3 Total ascorbic acid extraction and determination 

 Ascorbic acid was extracted and analysed using a method described by Bergquist 

et al. (2006) with some modifications. Spinach leaves (50.0±2.0 g) were chopped with a 

sharp knife. Spinach tissue (5.00±0.01 g) was placed in a 50 ml tube to which 25 ml of 

cold (4 °C) 1.5% (15 g/l w/v in H2O) meta-phosphoric acid (HPO3) (Acros Organics, UK) 

was added. Samples were immediately homogenized with a Silverson SL2 mixer 

(Silverson Machines Ltd, UK), and then put on ice. Processed samples were transferred 

to a freezer (-70 °C) for storage. Prior to analysis, spinach extracts were thawed in 

lukewarm water, in the dark. The extracts were centrifuged at 3,480 x g (g – force of 

gravity) for 40 min at 4 °C. Supernatants were filtered with Sep Pak filters (Phenomenex, 

UK) and 1.5 ml was collected in Eppendorf tubes. Following filtration, extracts were 

microfuged at 9,300 x g for 5 min. Finally, 500 µl were transferred into HPLC vials for AsA 

determination. Another 500 µl were transferred to new 1.5 ml Eppendorf tubes and mixed 

thoroughly using a vortex, with an equal volume of 1% (11 mg/ml w/v in 1 M K2HPO4/H2O 

(1/4, v/v)) DTT solution (DL-Dithiothreitol)(Fisher Scientific, UK). The DTT solution 

samples were left for 40 min at room temperature (20.0±2.0 °C), and then microfuged at 

9,300 x g for 5 min. Samples were transferred into HPLC vials for total AsA (AsA + DHA) 

determination. 

Samples were analysed using an Agilent 1100 HPLC (Agilent, UK) with a Luna 5 

µm NH2 100 A column (250 mm × 4.6 mm) (Phenomenex, UK) at a flow rate of 1.2 ml 

min-1 and pressure in the range of 70-80 bars. The mobile phase consisted of 25% 15 

mmol l-1 (1.725 g/l w/v in H2O) of NH4H2PO4 (mono ammonium phosphate) (Sigma-
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Aldrich, UK) and 75% of acetonitrile (Fisher Scientific, UK); pH was adjusted to 3.9 with 1 

M ortho-phosphoric acid (H3PO4) (Acros Organics, UK). Freshly prepared eluent was 

degassed for 30 min in an ultrasonic bath. The concentration of AsA and DHA was 

determined according to external AsA standards (Acros Organics, UK) of 10, 25, 50 and 

100 ppm. The volume of 20 µl of each sample was analysed in this process. 

2.2.4 Chlorophyll and total carotenoid determination 

 The concentration of chlorophylls and total carotenoids was determined using the 

method of Lichtenthaler and Wellburn (1983), with modifications of Edwards et al. (1998). 

A portion (50.0±1.0 g) of the leaf material was freeze-dried and ground into powder. The 

volume of 0.50±0.01 g was transferred to a 50 ml tube and 40 ml of 80% (acetone/H2O 

(4/1, v/v)) acetone (Fisher Scientific, UK) containing 1 mg of magnesium carbonate 

(Fisons Scientific Apparatus Ltd, UK), to stabilize pigments, and 0.5 mg of sodium bisulfite 

(Sigma-Aldrich, UK) - drying agent, was added. Each tube was covered with a lid, and left 

for 24 hours in the dark for the extraction to proceed. Extracts were subsequently 

centrifuged at 15,000 x g for 15 min. Approximately 4.5 ml of supernatant was transferred 

to a quartz cuvette and the absorbance of extracts was measured spectrophotometrically 

at 480, 645, 663 and 710 nm. The concentrations of chlorophyll a, b and total carotenoids 

were determined using spectrophotometer readings in equations given by Lichtenthaler 

and Wellburn (1983). 

Equations used: 

Chlorophyll a 

chl a (µg ml-1) = [12.21 * (A663 – A710)]-[2.81 * (A645-A710)] 

Chlorophyll b 

chl b (µg ml-1) = [20.13 * (A645-A710)]-[5.03 * (A663-A710)] 

Total carotenoids 

Total carotenoids (µg ml-1) = ([1000 * (A480-A710)]-[3.27 * chl a (µg ml-1)]-[104 * chl b (µg 

ml-1)])/200  
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2.2.5 Fresh and dry weight determination 

Aluminium cups were weighed on an electronic balance and filled with 

approximately 4.0 g of chopped spinach leaves for fresh weight (FW) determination. The 

cups were transferred to an oven (75±2 °C) for 48 h, and then placed in 105±2 °C for 60 

min. The weight of the aluminium cups with fresh and dried spinach tissue was quantified 

and moisture content was determined. 

2.2.6 Leaf colour measurements 

 Leaf colour was measured with a Minolta CR-300 chroma meter (Minolta, Japan) 

calibrated using the manufacturer’s standard white plate (Plate 2.2). Leaf colour changes 

were quantified for 10 leaves (Plate 2.3 A, B) from each sample in the L*, a* and b* colour 

space (Abbott, 1999). The chroma meter was frequently calibrated to give the accurate 

readings. 

 

Plate 2.2 Minolta being calibrated using the manufacturer’s standard white plate. 
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Plate 2.3 (A) Sample of spinach leaves showing uniformity of leaf colour. (B) Taking measurement 

of spinach leaf colour using Minolta. 

2.2.7 Statistical analyses 

Data are presented as mean values. Results were analysed using one-way 

ANOVA to identify significant differences between the treatments and two-way ANOVA to 

identify factors that had significant effect on quality changes during the storage of baby 

leaf spinach. Tukey’s test was used to allow comparisons between individual treatments. 

All statistical analyses were performed using GenStat 14th Edition software (Payne et al., 

2010).  
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Chapter 3 Effect of storage temperature on quality changes of baby leaf spinach 

3.1 Introduction 

The shelf-life of leafy vegetables, such as spinach is relatively short. Thus, it is not 

surprising that in recent years, there has been an increasing interest in finding the way to 

extend it. As reviewed in Chapter 1, one approach is to establish the optimum storage 

conditions that will reduce quality loss during storage. The quality of spinach is defined by 

its appearance (visual quality), texture, nutritional quality (level of antioxidants) and 

microbial contamination. It is not clear, however, which of these parameters are best 

describing the shelf-life. 

The quality of spinach (visual, textural and/or nutritional quality) has been reported 

to decline during storage (Pandrangi and LaBorde, 2004; Bergquist et al., 2006; Luo et al., 

2009). A significant decline in visual quality of the leaves was found with increasing 

storage temperature from 4 to 20 °C (Pandrangi and LaBorde, 2004), from 2 to 10 °C 

(Bergquist et al., 2006) and from 1 to 12 °C (Luo et al., 2009). Bergquist et al. (2006) have 

also reported a significant decline in AsA with increasing temperature of storage. Luo et 

al. (2009) observed higher respiration rate and increased solute leakage in samples 

stored at 12 °C when comparing with those stored at 1 °C. On the other hand, no 

significant differences in chlorophyll and carotenoid content were found between spinach 

leaves stored at 2 and 10 °C (Bergquist et al., 2006), while a significant decline in pigment 

content, when compared with samples stored at 4 °C, was reported in samples stored at 

10 and 20 °C already after 4 days of storage (Pandrangi and LaBorde, 2004). Available 

information suggests that visual quality, texture (as indicated by solute leakage) and AsA 

content are good indicators of shelf-life, while the use of plant pigment content as a quality 

measure is not clear. Thus, it is necessary to investigate and identify the best indicator of 

shelf-life. 

 Experiment 1 was conducted to better understand physiological/biochemical 

changes of spinach leaves during storage and the effect of temperature. Bagged spinach 

was stored at three different temperatures of 1, 10 and 20 °C. In Experiment 2, the range 

of temperatures was narrowed and spinach leaves were stored at 1 and 6 °C, 
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respectively. This range of temperatures was chosen to determine the best indicators of 

shelf-life. 

The following null hypothesis was tested: storage temperature does not affect the 

maintenance of nutritional, textural and/or visual quality characteristics of spinach leaves. 

The aim of this study was: (i) to investigate the effect of storage temperature on quality 

changes of spinach leaves, (ii) to identify which quality measures can potentially be used 

as good indicators of shelf-life.  
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3.2 Materials and Methods 

3.2.1 Plant material and handling 

Spinach used in Experiment 1 was harvested on 25th of July and 9th of August 

2011. Spinach was bagged at PDM Produce Ltd and transported to the laboratory (~15 

minutes) in insulated opaque containers as described in section 2.1. 

In Experiment 1, bags with baby leaf spinach were kept at three different 

temperatures (1±1, 10±1 and 20±2 °C) under continuous (24 hours) low intensity light (30-

35 μmol m–2 s–1) conditions for 9 days. These temperatures have been used by other 

research groups (Pandrangi and LaBorde, 2004; Bergquist et al., 2006; Luo et al., 2009). 

The actual observed average temperatures were 1.3, 10.3 and 20.8 °C as recorded with 

TinytagTM temperature loggers (Gemini Data Loggers Ltd, UK). All measurements (gas 

composition, solute leakage, total ascorbic acid, and total carotenoids and chlorophylls 

content, leaf colour) were taken on the harvesting day and then when samples were 

collected from storage. 

Based on the results from Experiment 1, a decision was made to narrow the 

temperature range to be used in Experiment 2. Spinach used in Experiment 2 was 

harvested on 2nd and 12th of September 2011. Spinach was bagged at PDM Produce Ltd 

and transported to the laboratory (~15 minutes) in insulated opaque containers as 

described in section 2.1. Bags with baby leaf spinach were kept at two different 

temperatures (1±1 and 6±1 °C) under continuous (24 hours) low intensity light (30-35 

μmol m–2 s–1) conditions for 7 days. These temperatures were used to see whether 

significant differences in the quality of spinach leaves that were observed between 

samples stored at 1 and 10 °C would still be there. Temperatures of 1 and 5 °C have 

previously been used by Luo et al. (2009). A storage temperature of 5 °C was also used 

by Allende et al. (2004b), while others (Medina et al., 2012; Tudela et al., 2013) kept 

spinach at 7 °C. The actual observed average temperatures were 1.2 and 5.8 °C as 

recorded with TinytagTM temperature loggers (Gemini Data Loggers Ltd, UK). All 

measurements (solute leakage assay, total ascorbic acid, total carotenoids, chlorophylls 
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content determination, leaf colour evaluation) were taken on the harvesting day and then 

when samples were collected from storage after 3 and 7 days. 

In Experiment 1, nutritional quality of spinach declined significantly after only 1 day 

of storage at 10 °C. Consequently decision was made to analyse the samples early during 

storage at 1 and 6 °C. Thus, spinach leaves were sampled after 3 days of storage; a 

sampling time previously used by others (e.g. Gil et al., 1999; Allende et al., 2004b; 

Pandrangi and LaBorde, 2004; Luo et al., 2009; Lester et al., 2010b). Although significant 

differences in visual, textural and nutritional quality of spinach leaves between samples 

stored at 1 and 10 °C were already observed after 5 days of storage, decision was made 

to analyse samples after 7 days of storage. This sampling time was previously used by 

others (e.g. Gil et al., 1999; Tudela et al., 2013) and is justified by the smaller range of 

temperatures (1 and 6 °C) used in Experiment 2. 

3.2.2 Measurements 

 All measurements were taken following the methods described in Chapter 2. 

3.2.3 Statistical analyses 

Each experiment was repeated twice with very similar results (verified by the 

Bartlett's homogeneity test and CV (%) values). Data are presented as mean values from 

two experiments that were used as blocks. Results were analysed using one-way ANOVA 

to identify the factors/treatments that had a significant effect on quality changes during the 

storage of baby leaf spinach. Tukey’s test was used to allow the comparisons between 

individual treatments. All statistical analyses were performed using GenStat 14th Edition 

software (Payne et al., 2010).  
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3.3 Results 

3.3.1 Leaf dry matter 

In Experiment 1, leaf dry matter at harvest was 5.4%. It did not change significantly 

throughout the storage period in spinach samples stored at 1 (5.4-5.6%) and at 10 °C 

(5.2-5.4%). A significant (P<0.001) increase in dry matter (6.1%), however, was observed 

after 3 days of storage at 20 °C, which was associated with enhanced water loss from 

these samples. 

In Experiment 2, leaf dry matter at harvest was 5.7%. It did not change significantly 

throughout the storage period in spinach samples stored at 1 (5.8-6.0%) and at 6 °C (5.6-

6.0%). 

3.3.2 Gas composition 

Experiment 1 

Temperature of storage had a significant (P<0.001) effect on gas composition 

inside the bags with spinach leaves. In the case of spinach leaves stored at 1 °C, the 

oxygen level remained high and carbon dioxide was not detected during the 7 day storage 

period (Table 3.1), suggesting low respiration. A small decrease in oxygen level with 

simultaneous increase in carbon dioxide throughout the storage period was found in the 

bags stored at 10 °C, whereas a substantial drop in oxygen content associated with an 

increase in carbon dioxide took place in bags with spinach that were stored at 20 °C 

already after 1 day of storage (Table 3.1). After 4 days of storage at 20 °C, gas 

composition inside these bags was close to anaerobic conditions. It is clear from the Table 

3.1 that not in all bags with spinach the sum of O2 and CO2 gives around 21%. This may 

be explained by the fact that film permeability to O2 and CO2 and thus diffusion of these 

gases is temperature dependent (Siracusa, 2012), with CO2 diffusion through the film (out 

of the bag) being faster with increasing temperature of storage. Gas composition in the 

bags stored at 20 °C may be further affected by anaerobic respiration (Saenmuang et al., 

2012).  
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Table 3.1 Changes in the gas composition inside the bags with baby leaf spinach stored at different 

temperatures (1, 10 and 20 °C) for 7 days. Data represent mean values from 6 replicates. 

Time of storage Storage temperature O2 CO2 

Day 0  19.4% 0.0% 

Day 1 

1 °C 20.9% a 0.0% b   

10 °C 19.0% a 0.7% b 

20 °C 12.2% b 6.8% a 

Day 2 

1 °C 20.9% a 0.0% c   

10 °C 18.8% b 1.1% b 

20 °C 6.6% c 10.6% a 

Day 3 

1 °C 20.9% a 0.0% b   

10 °C 19.3% a 0.3% b 

20 °C 4.0% b 12.0% a 

Day 4 

1 °C 20.9% a 0.0% c   

10 °C 17.6% b 2.3% b 

20 °C 1.9% c 13.4% a 

Day 5 

1 °C 20.9% a 0.0% c   

10 °C 18.4% b 0.6% b 

20 °C 1.3% c 13.5% a 

Day 6 

1 °C 19.8% a 0.0% c   

10 °C 13.9% b 4.6% b 

20 °C 1.6% c 14.0% a 

Day 7 

1 °C 20.9% a 0.0% c 

10 °C 17.3% b 2.4% b 

20 °C 1.6% c 14.0% a 

within columns, for each day, different letters indicate that values are significantly different 

(P<0.05). O2: 1 d (P<0.001; SEM=0.387, CV=2.0%), 2 d (P<0.001; SEM=0.318, CV=3.0%), 3 d 

(P<0.001; SEM=1.184, CV=6.0%), 4 d (P<0.001; SEM=0.207, CV=2.4%), 5 d (P<0.001; 

SEM=0.448, CV=4.3%), 6 d (P=0.008; SEM=0.856, CV=12.8%), 7 d (P=0.031; SEM=0.347, 

CV=2.2%). CO2: 1 d (P<0.001; SEM=0.365, CV=13.4%), 2 d (P<0.001; SEM=0.365, CV=9.7%), 3 

d (P<0.001; SEM=0.746, CV=12.4%), 4 d (P=0.006; SEM=0.568, CV=6.8%), 5 d (P<0.001; 

SEM=0.401, CV=14.4%), 6 d (P=0.023; SEM=1.097, CV=10.3%), 7 d (P=0.031; SEM=1.052, 

CV=9.1%). 

3.3.3 Solute leakage 

Experiment 1 

After 3 days of storage, solute leakage decreased from 2.7% (initial value) to 2.3% 

in samples stored at 1 and 10 °C (Figure 3.1), whereas a significant (P=0.005) increase to 

6.3% was observed in samples stored at 20 °C. From that point, samples stored at 20 °C 

were not suitable for solute leakage determination. Their texture was already lost and high 
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amount of solute was present in the bag, which is why the data for those samples do not 

go beyond 3 days of storage. From day 5, solute leakage increased in the case of spinach 

leaves stored at 10 °C, while it remained at similar level during storage at 1 °C (Figure 

3.1). This led to significant (P<0.05) differences in solute leakage being observed between 

spinach samples stored at 1 and 10 °C. 

 
Figure 3.1 Solute leakage from spinach leaves stored for 9 days (d) at three different temperatures 

(1, 10 and 20 °C). Solute leakage: 3 d (P=0.005; SEM=0.888, CV=30.6%), 5 d (P=0.039; 

SEM=0.522, CV=20.1%), 7 d (P=0.047; SEM=0.521, CV=3.0%), 9 d (P<0.001; SEM=1.197, 

CV=4.2%). Different letters indicate that values are significantly different (P<0.05). Each data point 

is the mean of 6 replicates. 

Experiment 2 

In the subsequent study, where spinach leaves were stored at 1 and 6 °C, no 

significant difference in solute leakage was observed after 3 days of storage. After 7 days, 

however, solute leakage from spinach leaves stored at 6 °C (1.0%) was significantly 

(P<0.001) higher (Figure 3.2) when compared with those stored at 1 °C (0.6%). 
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Figure 3.2 Solute leakage from spinach leaves stored for 7 days (d) at two different temperatures 

(1 and 6 °C). Solute leakage: 3 d (P=0.736; SEM=0.096, CV=31.1%), 7 d (P=0.002; SEM=0.079, 

CV=31.4%). Different letters indicate that values are significantly different (P<0.05). Each data 

point is the mean of 6 replicates. 

3.3.4 Total ascorbic acid (ascorbic acid (AsA) + dehydroascorbic acid (DHA)) 

Experiment 1 

 A significant (P<0.001) decrease from 3.14 mg g-1 DW (at harvest) to 2.50 and 

1.05 mg g-1 DW in AsA content with increasing temperature of storage was already 

observed after 1 day of storage at 10 and 20 °C, respectively (Table 3.2). AsA content 

was relatively stable during 9 days of storage in spinach stored at 1 °C, whereas its 

content significantly (P<0.001) decreased in samples stored at 10 and 20 °C; AsA loss 

being more pronounced at 20 °C (Table 3.2).  
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Table 3.2 Effect of storage temperature on ascorbic acid (AsA) and dehydroascorbic acid (DHA) 

content on a dry weight (DW) basis in spinach leaves stored for 9 days at three different 

temperatures (1, 10 and 20 °C). Data represent mean values from 6 replicates. 

Storage temperature [°C] 
AsA [mg/g DW] 

storage time [days] 

  0 1 3 5 7 9 

1 

3.49 

3.14 a 3.28 a 3.05 a 2.85 a 3.36 a 

10 2.50 b 1.65 b 1.33 b 0.92 b 0.47 b 

20 1.05 c 0.84 c X X X 

Significance: 
Treatment   <0.001 <0.001 <0.001 <0.001 <0.001 

SEM   0.075 0.096 0.095 0.107 0.102 

CV    3.2% 4.8% 8.6% 3.7% 4.3% 

Storage temperature [°C] 
DHA [mg/g DW] 

storage time [days] 

  0 1 3 5 7 9 

1 

0.27 

0.25 b 0.63 b 0.50 a 0.53 a 0.20 b 

10 0.35 a 0.29 b 0.52 a 0.32 a 0.82 a 

20 0.38 a 1.54 a X X X 

Significance: 
Treatment   <0.001 0.006 0.926 0.319 <0.001 

SEM   0.021 0.254 0.170 0.148 0.098 

CV   7.3% 58.3% 26.6% 79.4% 43.7% 

within columns, for each day, different letters indicate that values are significantly different 

(P<0.05). 

X-samples were not suitable for further analysis. 

The highest DHA content was observed in spinach leaves stored at 20 °C (Table 

3.2). After 1 day of storage, DHA content in samples stored at 20 °C was not significantly 

different from counterparts stored at 10 °C; nonetheless, DHA content in these samples 

was significantly (P<0.001) higher than in samples stored at 1 °C. After 3 days of storage 

DHA content in samples stored at 20 °C was 1.54 mg g-1 DW and was significantly 

(P=0.006) higher than in other samples. No significant difference was observed between 

samples stored at 1 and 10 °C until 9 days of storage. After 9 days, DHA content 

increased to 0.82 mg g-1 DW in samples stored at 10 °C and was then significantly 

(P<0.001) higher than 0.20 mg g-1 DW observed in samples stored at 1 °C. 



75 
 

In the case of total AsA content (AsA + DHA), the pattern was similar to the one 

observed for AsA content (Figure 3.3). After 1 day of storage, total AsA content decreased 

from 3.76 mg g-1 DW (at harvest) to 2.85 and 1.43 mg g-1 DW in samples stored at 10 and 

20 °C, respectively. Total AsA content was relatively stable throughout the storage period 

in samples stored at 1 °C (Figure 3.3). This led to significantly (P<0.001) higher total AsA 

content being observed in those samples when compared with their counterparts stored at 

10 and 20 °C. Overall, total AsA content decreased with increasing temperature of 

storage, with an exception of day 3, when no significant difference was observed between 

samples stored at 10 and 20 °C. This was due to a significant increase in DHA content in 

samples stored at 20 °C. 

 

Figure 3.3 Changes in total AsA (AsA + DHA) content (■ – coloured bar (AsA) and □ – uncoloured 

bar (DHA)), on a dry weight (DW) basis in spinach leaves stored for 9 days (d) at 1, 10 and 20 °C. 

Total AsA: 1 d (P<0.001; SEM=0.082, CV=2.0%), 3 d (P<0.001; SEM=0.286 CV=20.2%), 5 d 

(P<0.001; SEM=0.199, CV=4.6%), 7 d (P<0.001; SEM=0.147, CV=11.9%), 9 d (P<0.001; 

SEM=0.132, CV=5.8%). Different letters indicate that values are significantly different (P<0.05). 

Each data point is the mean of 6 replicates.  
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Experiment 2 

 After 3 days of storage, AsA content in spinach stored at 1 °C was 3.67 mg g-1 DW 

and was significantly (P=0.006) higher than 3.43 mg g-1 DW in samples stored at 6 °C. 

After 7 days, however, no difference in AsA content was observed between these 

samples. On the other hand, after 3 days of storage, there was no difference in DHA 

content between spinach leaves stored at 1 and 6 °C, while the difference became 

significant (P<0.001) after 7 days of storage; DHA content was significantly higher at 1 °C 

when compared with the samples stored at 6 °C (Table 3.3). 

Table 3.3 Effect of storage temperature on ascorbic acid (AsA) and dehydroascorbic acid (DHA) 

content on a dry weight (DW) basis in spinach leaves stored for 7 days at two different 

temperatures (1 and 6 °C). Data represent mean values from 6 replicates. 

Storage temperature [°C] 
AsA [mg/g DW] DHA [mg/g DW] 

storage time [days] 

  0 3 7 0 3 7 

1 
4.23 

3.67 a 3.62 a 
0.15 

0.16 a 0.21 a 

6 3.43 b 3.46 a 0.17 a 0.13 b 

Significance: 
Treatment   0.006 0.472   0.663 <0.001 

SEM   0.053 0.145   0.012 0.008 

CV    35.5% 58.6% 
 

14.2% 39.6% 

within columns, for each day, values with different letters are significantly different (P<0.05). 

After 3 days of storage total AsA content decreased; a stronger decrease was 

observed in samples stored at 6 °C when compared with those stored at 1 °C (Figure 3.4). 

After 7 days of storage, total AsA content remained at similar level but was no longer 

significantly higher at 1 °C, when compared with counterparts stored at 6 °C.  
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Figure 3.4 Changes in total AsA (AsA + DHA) content on a dry weight (DW) basis in spinach 

leaves stored for 7 days (d) at 1 and 6 °C. Total AsA: 3d (P=0.005, SEM=0.051, CV=4.1%), 7 d 

(P=0.265, SEM=0.143, CV=11.6%). Different letters indicate that values are significantly different 

(P<0.05). Each data point is the mean of 6 replicates. 

3.3.5 Total carotenoid and chlorophyll content 

Experiment 1 

 There was no significant difference in total carotenoid content between spinach 

leaves stored at 1, 10 and 20 °C during 3 days of storage. From day 5, however, total 

carotenoid content in spinach leaves stored at 1 °C was significantly higher when 

compared with samples stored at 10 °C, where total carotenoid content declined (Table 

3.4). 

 There was no significant difference in chlorophyll a and b content between spinach 

leaves stored at 1, 10 and 20 °C during 3 days of storage. The concentration of both 

chlorophyll a and b declined in the samples stored at 10 °C. Thus, from day 5, the content 

of chlorophyll a and b in spinach stored at 1 °C was significantly higher than in spinach 

stored at 10 °C (Table 3.4), with an exception of day 7, when no significant difference 
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between storage conditions was observed in chlorophyll b content (Table 3.4). Chlorophyll 

a: b ratio decreased with increasing temperature of storage.  
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Table 3.4 Changes in chlorophyll a, b, a:b ratio and on total carotenoid content on a dry weight 

(DW) basis in spinach leaves stored for 9 days at three different temperatures (1, 10 and 20 °C). 

Storage temperature [°C] 
chlorophyll a [mg/g DW] 

storage time [days] 

  0 1 3 5 7 9 

1 

19.56 

17.87 a 20.58 a 21.32 a 17.67 a 20.72 a 

10 22.19 a 19.66 a 17.05 b 15.19 b 14.38 b 

20 22.05 a 18.99 a X X X 

Significance: 
Treatment   0.079 0.491 <0.001 0.014 <0.001 

SEM   1.394 0.915 0.593 0.561 0.356 

CV    8.7% 11.4% 9.3% 7.0% 6.8% 

Storage temperature [°C] 
chlorophyll b [mg/g DW] 

storage time [days] 

  0 1 3 5 7 9 

1 

5.43 

4.71 a 5.32 a 5.52 a 4.71 a 5.56 a 

10 5.92 a 5.34 a 4.48 b 4.36 a 4.38 b 

20 6.15 a 5.86 a X X X 

Significance: 
Treatment   0.044 0.467 0.002 0.123 <0.001 

SEM   0.389 0.340 0.165 0.143 0.093 

CV    8.8% 12.9% 8.8% 5.7% 7.2% 

Storage temperature [°C] 
chlorophyll a: b ratio 

storage time [days] 

  0 1 3 5 7 9 

1 

3.6 

3.79 a 3.87 a 3.86 a 3.75 a 3.73 a 

10 3.74 b 3.68 a 3.81 b 3.48 b 3.28 b 

20 3.59 c 3.24 b X X X 

Significance: 
Treatment   <0.001 <0.001 0.031 <0.001 <0.001 

SEM   0.014 0.053 0.017 0.015 0.013 

CV    0.5% 1.2% 0.7% 1.4% 0.5% 

Storage temperature [°C] 
total carotenoids [mg/g DW] 

storage time [days] 

  0 1 3 5 7 9 

1 

4.98 

4.73 a 5.78 a 5.80 a 5.01 a 5.86 a 

10 5.57 a 5.40 a 4.74 b 4.37 b 4.78 b 

20 5.60 a 5.50 a X X X 

Significance: 
Treatment   0.186 0.518 0.007 0.016 <0.001 

SEM   0.358 0.239 0.211 0.148 0.148 

CV    8.3% 11.5% 12.5% 8.9% 5.6% 

within columns, for each day, different letters indicate that values are significantly different 
(P<0.05). X – samples were not suitable for further analysis.  
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Experiment 2 

 Total carotenoid content remained relatively stable during storage and was only 

slightly but not significantly higher in spinach leaves stored at 1 °C when compared with 

samples stored at 6 °C (Table 3.5). 

Table 3.5 Changes in chlorophyll a, chlorophyll b, ratio and total carotenoid content on a dry weight 

(DW) basis in spinach leaves stored for 7 days at two different temperatures (1 and 6 °C). Data 

represent mean values from 6 replicates. 

Storage temperature [°C] 
chlorophyll a [mg/g DW] chlorophyll b [mg/g DW] 

storage time [days] 

  0 3 7 0 3 7 

1 
 10.32 

11.64 a 8.98 a 
 2.25 

2.33 a 2.13 a 

6 10.86 b 7.99 b 2.43 a 1.75 b 

Significance: 
Treatment   0.003 0.002 

 
0.37 0.011 

SEM   0.167 0.201 
 

0.077 0.096 

CV    5.4% 8.5% 
 

11.7% 17.7% 

Storage temperature [°C] 
chlorophyll a: b ratio total carotenoids [mg/g DW] 

storage time [days] 

  0 3 7 0 3 7 

1 
4.59 

 

5.13 a 4.29 a 
2.05 

 

2.46 a 1.95 a 

6 4.51 b 4.89 a 2.33 a 1.86 a 

Significance: 
Treatment   0.030 0.236 

 
0.059 0.202 

SEM   0.188 0.345 
 

0.099 0.102 

CV    14.1% 27.1% 
 

7.5% 9.6% 

within columns, for each day, different letters indicate that values are significantly different 

(P<0.05). 

After 3 days of storage, chlorophyll a content was significantly (P=0.003) higher in 

spinach leaves stored at 1 °C when compared with the samples stored at 6 °C (Table 3.5). 

Its content decreased after 7 days of storage, however the content of chlorophyll a was 

still significantly (P=0.002) higher in spinach leaves stored at 1 °C. In the case of 

chlorophyll b, no difference in its content was observed after 3 days of storage, whereas 

after 7 days chlorophyll b content decreased in spinach samples stored at 6 °C. This led 

to significantly (P=0.011) lower chlorophyll b content being observed in those samples 

(Table 3.5). After 3 days of storage, chlorophyll a: b ratio was significantly higher in 
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spinach leaves stored at 1 °C (Table 3.5). The ratio, however, declined during storage at 1 

°C while it did not change at 6 °C. Thus, after 7 days of storage there was no significant 

difference between the two storage temperature regimes. 

3.3.6 Leaf colour changes 

Experiment 1 

 There was no significant difference (between storage temperatures of 1 and 10 °C) 

in leaf lightness value during 3 days of storage; however from day 5, spinach leaves 

stored at 10 °C were significantly lighter when compared with their counterparts stored at 

1 °C (Table 3.6). Leaf lightness value did not change much throughout 9 day storage 

period at 1 °C (Figure 3.5), while an increase was observed in the case of spinach leaves 

stored at 10 °C. 

There was no difference (between storage temperatures) in greenness value 

throughout the storage period (Table 3.6), with an exception of day 5, when spinach 

leaves stored at 10 °C were significantly greener than counterparts stored at 1 °C.  
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Table 3.6 Leaf colour changes during the storage of spinach leaves at three different temperatures 

(1, 10 and 20 °C) for 9 days. Data represent mean values from 6 replicates. 

Storage temperature [°C] 
L* (lightness) 

storage time [days] 

  0 1 3 5 7 9 

1 

46.31 

47.08 a 47.22 ab 45.99 b 47.04 b 46.53 b 

10 47.26 a 46.11 b 47.31 a 48.41 a 51.31 a 

20 47.31 a 47.78 a X X X 

Significance: 
Treatment   0.883 0.043 0.019 0.030 <0.001 

SEM   0.351 0.470 0.385 0.436 0.500 

CV    1.0% 0.4% 1.1% 0.8% 0.2% 

Storage temperature [°C] 
a* (greenness) 

storage time [days] 

  0 1 3 5 7 9 

1 

-16.18 

-16.89 a -16.46 a -16.23 a -16.79 a -16.97 a 

10 -16.92 a -16.66 a -16.98 b -16.66 a -17.22 a 

20 -16.46 a -16.84 a X X X 

Significance: 
Treatment   0.342 0.524 0.045 0.716 0.557 

SEM   0.243 0.233 0.258 0.246 0.293 

CV    2.3% 0.7% 2.6% 2.4% 1.8% 

Storage temperature [°C] 
b* (yellowness) 

storage time [days] 

  0 1 3 5 7 9 

1 

26.63 

28.09 a 27.27 b 26.49 b 28.27 b 28.7 b 

10 28.34 a 28.20 b 29.85 a 30.62 a 35.68 a 

20 27.65 a 31.39 a X X X 

Significance: 
Treatment   0.702 <0.001 <0.001 0.029 <0.001 

SEM   0.591 0.630 0.599 0.741 0.802 

CV    3.2% 1.0% 3.0% 3.1% 3.5% 

within columns, for each day, different letters indicate that values are significantly different 

(P<0.05). X – samples were not suitable for further analysis.  
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Figure 3.5 Changes in leaf lightness value (L*) during the storage of spinach leaves for 9 days (d) 

at three different temperatures (1, 10 and 20 °C). L*: 1 d (P=0.883; SEM=0.351, CV=1.0%), 3 d 

(P=0.043; SEM=0.470 CV=0.4%), 5 d (P=0.019; SEM=0.385, CV=1.1%), 7 d (P=0.030; 

SEM=0.436, CV=0.8%), 9 d (P<0.001; SEM=0.500, CV=0.2%). Different letters indicate that values 

are significantly different (P<0.05). Each data point is the mean of 6 replicates. 

Leaf yellowness increased with increasing temperature of storage (Table 3.6). 

Yellowing of the leaves was already observed after 3 days of storage at 20 °C. These 

samples were significantly (P<0.05) more yellow than those stored at 1 and 10 °C (Table 

3.6). No significant difference (between storage temperatures of 1 and 10 °C) in leaf 

yellowness was found during 3 days of storage. From day 5, however, spinach leaves 

stored at 10 °C were significantly (P<0.05) more yellow when compared with their 

counterparts stored at 1 °C (Table 3.6). Leaf yellowness value did not change much 

throughout 9 day storage period at 1 °C (Figure 3.6), while an increase was observed in 

the case of spinach leaves stored at 10 °C. 
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Figure 3.6 Changes in leaf yellowness value (b*) during the storage of spinach leaves at three 

different temperatures (1, 10 and 20 °C) for 9 days (d). b*: 1 d (P=0.702; SEM=0.591, CV=3.2%), 3 

d (P<0.001; SEM=0.630 CV=1.0%), 5 d (P<0.001; SEM=0.599, CV=3.0%), 7 d (P=0.029; 

SEM=0.741, CV=3.1%), 9 d (P<0.001; SEM=0.802, CV=3.5%). Different letters indicate that values 

are significantly different (P<0.05). Each data point is the mean of 6 replicates. 

Experiment 2 

No difference was observed in leaf lightness between spinach leaves stored at 1 

and 6 °C throughout 7 day storage period (Table 3.7). No difference was also observed in 

leaf greenness and yellowness after 3 days of storage; however, after 7 days of storage 

spinach leaves stored at 6 °C were significantly (P=0.003) greener and more yellow than 

those stored at 1 °C (Table 3.7).  
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Table 3.7 Leaf colour changes during the storage of spinach leaves for 7 days at two different 

temperatures (1 and 6 °C). Data represent mean values from 6 replicates. 

Storage temperature [°C] 
L* (lightness) 

storage time [days] 

  0 3 7 

1 
44.82 

46.84 a 45.93 a 

6 46.72 a 47.83 a 

Significance: 
Treatment   0.797 0.057 

SEM   0.338 0.576 

CV    0.6% 7.2% 

Storage temperature [°C] 
a* (greenness) 

storage time [days] 

  0 3 7 

1 
-15.06 

-16.19 a -15.51 a 

6 -16.02 a -16.59 b 

Significance: 
Treatment   0.614 0.003 

SEM   0.225 0.243 

CV    1.7% 7.3% 

Storage temperature [°C] 
b* (yellowness) 

storage time [days] 

  0 3 7 

1 
24.71 

27.61 a 26.45 b 

6 27.03 a 30.19 a 

Significance: 
Treatment   0.461 <0.001 

SEM   0.546 0.717 

CV    2.5% 12.9% 

within columns, for each day, different letters indicate that values are significantly different 

(P<0.05).  
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3.4 Combined analysis 

In both experiments, samples stored at 1 °C behaved in a similar way. Although 

solute leakage values at harvest differed between experiments, being 2.7% in Experiment 

1 and 0.8% in Experiment 2, no significant increase during storage was observed in these 

samples. 

Only small differences in AsA, DHA and total AsA content of spinach was 

observed between both experiments. In Experiment 1, the content of AsA was 3.49 mg g-1 

DW, DHA 0.27 and total AsA 3.76 mg g-1 DW, while in Experiment 2, these values were 

4.23, 0.15 and 4.38 mg g-1 DW, respectively. In both experiments, AsA and total AsA 

content remained relatively stable in the samples stored at 1 °C. In the case of DHA, in 

Experiment 1, its content remained relatively stable, while an increase was observed in 

Experiment 2. 

Although plant pigment content (chlorophyll a and b, total carotenoids) was 

significantly higher in spinach leaves used in Experiment 1, their content remained 

relatively stable throughout the storage period in both experiments, with the exception that 

chlorophyll a declined after 7 days of storage at 1 °C (Experiment 2). Similarly, no 

differences between experiments were observed in leaf colour characteristics. Visual 

quality of spinach leaves was well maintained in the samples stored at 1 °C. 

To find out, whether it is possible to observe any trends, combined analyses were 

conducted, where mean values obtained at 6, 10 and 20 °C were compared with 

corresponding values obtained at 1 °C. One must be aware that in the case of samples 

stored at 20 °C, the end of shelf-life was already observed after 3 days of storage, thus 

the data after 7 days of storage at 20 °C are not included in the combined analysis. 

After 3 days of storage, solute leakage increased with increasing temperature of 

storage from 1 to 6 °C; however, no significant difference was observed between samples 

stored at 1 and 10 °C. Substantial increase in solute leakage was observed in samples 

stored at 20 °C. After 7 days of storage, solute leakage from samples stored at 6 and 10 

°C was significantly higher than from those stored at 1 °C. 
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 After 3 days of storage, AsA content decreased with increasing storage 

temperature (Table 3.8). The AsA content in spinach leaves stored at 6, 10 and 20 °C 

were 93.5, 50.3 and 25.6% of those stored at 1 °C, respectively. After 7 days of storage, 

there was a slight (4.4%) non-significant decrease in AsA content in samples stored at 6 

°C when compared with those stored at 1 °C (Table 3.8). A significant decrease in AsA 

content was observed in samples stored at 10 °C, where in comparison with the samples 

stored at 1 °C, AsA content decreased by 67.7%. 

After 3 days of storage, inconsistent changes in DHA content were observed. In 

the samples stored at 6 °C, DHA content did not change significantly (increased by 6%) 

when compared with samples stored at 1 °C, while a decrease by 54% and increase by 

144% was observed in the samples stored at 10 and 20 °C, respectively. After 7 days of 

storage, DHA content decreased with the increase in temperature of storage from 1 to 6 

and from 1 to 10 °C (Table 3.8), where in comparison with the samples stored at 1 °C, 

DHA content decreased by 38 and 39%, respectively. 

After 3 days of storage, total AsA content decreased by 6, 50 and 39 % in spinach 

samples stored at 6, 10 and 20 °C, respectively. After 7 days of storage, the pattern was 

very similar to the one observed for AsA (Table 3.8); however, due to a significant 

decrease in DHA content at 6 °C, total AsA content in these samples was significantly 

lower when compared with those stored at 1 °C.  
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Table 3.8 Changes in the concentration of bioactive compounds (AsA, DHA, total AsA, and total 

carotenoids) in spinach leaves stored at three different temperatures (6, 10 and 20 °C) in 

comparison with samples stored at 1 °C. 

AsA  (% of 1 °C) 
Storage temperature 3 days 7 days 

6 °C 93.5% 95.6% 

10 °C 50.3% 32.3% 

20 °C 25.6% X 

DHA (% of 1 °C) 
Storage temperature 3 days 7 days 

6 °C 106.0% 61.9% 

10 °C 46.0% 60.4% 

20 °C 244.0% X 

Total AsA (% of 1 °C) 
Storage temperature 3 days 7 days 

6 °C 94.0% 93.7% 

10 °C 49.6% 36.7% 

20 °C 60.9% X 

Total carotenoids (% of 1 °C) 
Storage temperature 3 days 7 days 

6 °C 94.7% 95.4% 

10 °C 93.4% 87.2% 

20 °C 95.2% X 

            
X – samples were not suitable for further analysis. 

 After 3 days of storage, there was no significant difference in total carotenoid 

content between the samples stored at 1, 6, 10 and 20 °C. After 7 days of storage, 

however, total carotenoid content decreased with the increase in temperature of storage 

from 1 to 10 °C (Table 3.8), while no significant difference was observed between 

samples stored at 1 and 6 °C. 

After 3 days of storage, there was no significant difference in chlorophyll a content 

between the samples stored at 1, 6, 10 and 20 °C. After 7 days of storage, chlorophyll a 

content decreased by 11 and 14% in the samples stored at 6 and 10 °C, respectively. In 

the case of chlorophyll b, no significant difference between the samples was observed 

after 3 days of storage. After 7 days of storage, however, a significant decrease was 

observed at 6 °C, where – in comparison with the samples stored at 1 °C - chlorophyll b 

content decreased by 18%. 
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 After 3 days of storage, a significant increase in leaf yellowness was observed in 

the samples stored at 20 °C, while no difference was found between those stored at 1 and 

6 and 1 and 10 °C. After 7 days of storage, leaves became significantly more yellow at 

both 6 and 10 °C, when compared with the samples stored at 1°C. 

3.5 Discussion 

 Two experiments were conducted to determine the effect of storage temperature 

on quality changes of spinach. In Experiment 1, a broad range of temperatures (1, 10 and 

20 °C) was used, while in the subsequent experiments the temperature range was 

narrowed to 1 and 6 °C. Experiment 1 was conducted in July and August, while 

Experiment 2 was conducted in September. This can account for the seasonal differences 

in the quality of the leaves. No difference was observed in dry matter content between 

leaves used in both experiments. The initial quality of the leaves used in Experiment 1, 

however, was lower when compared with those used in Experiment 2. The texture of the 

leaves used in Experiment 1 (indicated by higher solute leakage at harvest) was worse 

than those used in Experiment 2. Plant pigment content was higher in spinach leaves 

used in Experiment 1; however, these leaves were significantly lighter and more yellow (at 

harvest) when compared with those used in Experiment 2. Finally, nutritional quality of the 

leaves used in Experiment 1 was also a bit lower than those used in Experiment 2. 

 The replication number in Experiments 1 and 2 was low – 6 replicates, thus the 

validity of the data is limited. The findings from these preliminary experiments, however, 

may still be used as an indication of how the quality of baby leaf spinach responds to 

temperature changes during storage. 

Gas composition 

Previous studies have found a decrease in O2 concentration with simultaneous 

increase in CO2 concentration after 3 days of storage of spinach at 5 °C (Allende et al., 

2004b; Conte et al., 2008) and 7 °C (Tudela et al., 2013) in the dark. The key issue with 

high respiration rate is its inverse relationship with shelf-life. 
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The studies mentioned above (Allende et al., 2004b; Conte et al., 2008; Tudela et 

al., 2013) reported an increase in CO2 development inside the bags with spinach during 

storage. In agreement with those studies CO2 development was also observed in our 

study, in bags with spinach stored at 10 and 20 °C. This was, however, not the case in the 

bags that were stored at 1 °C, where respiration was very low and was balanced by the 

photosynthetic activity of the leaves (Toledo et al., 2003a) and/or oxygen transmission 

rate (OTR) of the bag. 

Artes-Hernandez et al. (2009) observed an increase in the respiration rate when 

comparing spinach leaves stored in the dark at 8 °C with those stored at 5 °C. Increased 

respiration rate of spinach with increasing temperature of storage from 1 to 12 °C has also 

been reported by Luo et al. (2009). In agreement with those studies, respiration rate also 

increased with increasing temperature of storage in our study. A significant increase in the 

respiration rate in the samples stored at 20 °C was observed already after 1 day of 

storage. From day 2, respiration rate of spinach stored at 10 °C was significantly higher 

when compared with samples stored at 1 °C. Findings from this study and those of others 

(Artes-Hernandez et al., 2009; Luo et al., 2009) give clear evidence that respiration rate is 

sensitive to changes in the storage temperature. 

Texture 

 Tissue breakdown during storage is often quantified by measuring solute leakage 

(Marangoni et al., 1996, Wagstaff et al., 2007). An increase in solute leakage has 

previously been reported during the storage of spinach (Hodges et al., 2001, Allende et 

al., 2004b, Gomez et al., 2008). Similar to others, an increase in solute leakage over time 

was observed when spinach leaves were stored at 6, 10 and 20 °C. The values observed 

were in the same range as those reported for spinach by Allende et al. (2004b) and others 

(Medina et al., 2012, Tudela et al., 2013), but lower than reported by Gomez et al. (2008). 

This is not surprising, as Gomez et al. (2008) stored spinach leaves at 23 °C which is a 

higher temperature than 5 °C used by Allende et al. (2004b) and 7 °C used by others 

(Medina et al., 2012, Tudela et al., 2013). Furthermore, 23 °C is higher than the range of 
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temperatures used here (1, 6, 10 and 20 °C) and a substantial increase in solute leakage 

was already observed after 3 days of storage at 20 °C. A significant increase in solute 

leakage was also observed in the samples stored at 10 °C, which is in agreement with 

Babic et al. (1996) who observed a marked decrease in textural quality of spinach leaves 

when stored at 10 °C. 

 Luo et al. (2009) determined the effect of storage temperature on solute leakage 

from spinach leaves. They found a significant increase in solute leakage in samples 

stored at 12 °C, while no difference was observed between those stored at 1, 5 and 8 °C. 

In agreement with their study, solute leakage significantly increased with increasing 

temperature of storage from 1 to 20 °C. Interestingly, in this study, even a small difference 

in storage temperature (1 vs. 6 °C) significantly reduced the textural quality of spinach 

leaves as indicated by increased solute leakage. 

 In the case of spinach leaves stored at 1 °C, solute leakage values did not change 

over the storage period and remained relatively low. A significant increase in solute 

leakage, however, was observed after 4, 5 and 7 days of storage at 20, 10 and 6 °C, 

respectively. This is in agreement with Allende et al. (2004b) who observed an increase in 

solute leakage from spinach leaves after 6 days of storage at 5 °C, however, in contrast 

with others (Medina et al., 2012, Tudela et al., 2013) who observed an increase in solute 

leakage after 12 days of storage at 7 °C. 

Nutritional quality 

 AsA content has previously been reported to decrease during the storage of 

spinach (Gil et al., 1999, Bergquist et al., 2006, Bergquist et al., 2007, Bottino et al., 

2009). In agreement with these studies, AsA content decreased over time in our study. 

Bergquist et al. (2006) has previously observed better retention of AsA in spinach leaves 

stored at 2 °C when compared with samples stored at 10 °C. In agreement with these 

studies, the content of AsA was significantly higher in the samples stored at 1 °C when 

compared with those stored at 10 °C.  
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 Changes in the content of DHA in spinach leaves were inconsistent as previously 

reported by Bergquist et al. (2006). This is in contrast with other studies that reported an 

increase in DHA content during the storage of spinach (Gil et al., 1999, Bottino et al., 

2009). 

 A number of studies (Hodges et al., 2001; Bergquist et al., 2006, 2007; Bottino et 

al., 2009) have reported a decline in total AsA content during dark storage of spinach. 

This was, however, not the case when spinach was stored under continuous light (26.9 

μmol m–2 s–1) at 4 °C (Lester et al., 2010b). AsA content remained relatively stable during 

the storage at 1 and 6 °C under continuous light (30-35 μmol m–2 s–1) conditions in our 

study. A decrease in total AsA content, however, was already observed after 1 day of 

storage in samples stored at 10 and 20 °C. Better retention of AsA at lower storage 

temperatures has previously been reported by Bergquist et al. (2006). This suggests that 

at higher storage temperatures, total AsA content is rapidly lost. 

Visual quality 

Leaf colour changes may be related to chlorophyll degradation (Pandrangi and 

LaBorde, 2004). Chlorophyll content was reported to decrease during the storage of 

spinach at 4, 10 and 20 °C (Pandrangi and LaBorde, 2004), while others (Bergquist et al., 

2006, Conte et al., 2008)  reported chlorophyll concentration to be relatively stable during 

the storage of spinach leaves at 2 and 10 °C (Bergquist et al., 2006) and 5 °C (Conte et 

al., 2008). This could be explained by the fact that both Bergquist et al. (2006) and Conte 

et al. (2008) stored spinach leaves in the dark, whereas chlorophyll degradation is 

enhanced by light (Kopas-Lane and Warthesen, 1995, Ferrante et al., 2004). Chlorophyll 

content in spinach leaves declined in the samples stored at 6 and 10 °C in our study. 

Inconsistent changes were observed in samples stored at 1 °C; where chlorophyll content 

either declined (Experiment 2) or remained relatively stable (Experiment 1). No change in 

chlorophyll content was observed during 3 days of storage at 20 °C, which suggests that 

changes in pigment content are relatively slow. Low intensity light was used in this study, 

thus it is not clear whether this can be used as the only explanation. 
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An increase in chlorophyll degradation rate with increasing storage temperature 

from 4 to 20 °C has previously been observed by others (Pandrangi and LaBorde, 2004). 

On the other hand, Bergquist et al. (2006) have not reported significant differences 

between spinach leaves stored at 2 and 10 °C. In agreement with Pandrangi and LaBorde 

(2004) the loss of chlorophyll a and b was accelerated with increasing temperature of 

storage from 1 to 10 °C in our study. Pandrangi and LaBorde (2004) observed a decrease 

in chlorophyll content after 2 days of storage at 10 and 20 °C, and 6 days of storage at 4 

°C, respectively. In our study, decline in chlorophyll content was observed after 5 and 7 

days of storage at 10 and 6 °C, respectively. The difference in chlorophyll retention may 

be a consequence of studying a different cultivar to other studies, or else seasonal 

differences previously reported by Bergquist et al. (2006) and Conte et al. (2008). 

Several authors have reported a decrease in visual quality during the storage of 

spinach (Luo et al., 2009; Medina et al., 2012; Tudela et al., 2013). In agreement with 

these studies, visual quality of spinach declined during storage at 1, 6, 10 and 20 °C. 

Conte et al. (2008), however, did not observe any changes in visual quality of spinach 

leaves stored at 5 °C for 13 days. 

Luo et al. (2009) have demonstrated that in spinach leaves, the loss of visual 

quality is accelerated with increasing temperature of storage from 1 to 12 °C. These 

authors observed only a small decline in visual quality of spinach stored for 12 days at 1 

and 5 °C, while visual quality of spinach was maintained during 13 days storage at 5 °C 

(Conte et al., 2008). In agreement with those studies, only a small colour alteration was 

observed in spinach stored at 1 °C. Furthermore, spinach leaves in our study became 

significantly lighter and more yellow with increasing temperature of storage. 

Visual quality loss was reported after 7 days (Tudela et al., 2013) and 9 days 

(Medina et al., 2012) of storage at 7 °C, while Luo et al. (2009) observed visual quality 

loss after 9 and 12 days of storage at 12 and 8 °C, respectively. In our study, visual quality 

declined after 3, 5 and 7 days of storage at 20, 10 and 6 °C, respectively. 

Care must be taken though, when comparing different studies as seasonal 
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differences in colour parameters of spinach leaves have been reported by Conte et al. 

(2008). Furthermore, leaf colour changes are not only affected by the storage temperature 

but also by the light conditions during storage. Martinez-Sanchez et al. (2011) observed 

stronger colour alteration in light-stored Romaine lettuce leaves when compared with 

dark-stored counterparts, that may explain why the difference in leaf colour was already 

observed when storage temperature increased from 1 to 6 °C. 

Based on the results obtained in this study, the suggestion can be made that leaf 

textural and visual quality are the best indicators of shelf-life. These parameters were 

found to respond rapidly to changes in the temperature of storage. Both, solute leakage 

and leaf colour changed with increasing temperature of storage, which resulted in textural 

and visual quality loss. Differences in textural and visual quality of the leaves were 

observed even between samples stored at 1 and 6 °C, which confirms that changes in 

these parameters are sensitive to environmental changes. On the other hand, significant 

differences in plant biochemistry – the content of AsA, total carotenoids and chlorophylls 

were only observed between samples stored at 1 and 10 °C but not between those stored 

at 1 and 6 °C. This limits the use of these parameters as indicators of shelf-life as they are 

not sensitive enough to environmental changes. 

The null hypothesis tested in this research has to be rejected as it has been found 

that all parameters that were measured were affected by changes in the temperature of 

storage. 

3.6 Conclusions 

 Quality loss of spinach leaves is accelerated with increasing temperature of 

storage. This can be associated with the visual and textural quality loss that has been 

reported to occur already at 6 °C. Nutritional quality was less sensitive to changes in 

storage temperature. After 7 days of storage, no significant difference in AsA and total 

carotenoid content was observed between samples stored at 1 and 6 °C. At 10 °C, 

however, nutritional quality of spinach was significantly reduced. The data obtained in this 

study suggest that to maintain the quality of spinach leaves during storage, bags with 
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baby leaf spinach should be kept at refrigerated temperature below 6 °C. If that is not an 

option, the time of exposure to abusive temperature, throughout the supply chain, should 

be reduced to a minimum. 

 As mentioned above, textural quality loss, as indicated by increased solute 

leakage from the leaves is a good measure of shelf-life as it was very sensitive to changes 

in temperature of storage. The same can be said about visual quality loss, which is mainly 

associated with yellowing of spinach leaves. Both parameters indicated quality loss after 

3, 5 and 7 days of storage at 20, 10 and 6 °C, respectively. On the other hand, plant 

pigment content did not respond to changes in temperature. In the case of samples stored 

at 20 °C, the end of shelf-life was already observed after 3 days of storage, while no 

significant changes were yet observed in plant pigment content. This suggests that these 

changes are too slow to be consistently used as indicators of shelf-life, as visual quality 

loss clearly precedes changes in leaf biochemistry. Although, a significant difference was 

found in AsA content between samples stored at 1 and 10 °C, changes in this parameter 

were not sensitive enough when spinach leaves were stored at 1 and 6 °C. Furthermore, 

inconsistent changes at different storage temperatures were observed for DHA content. 

 It is clear that from commercial perspective, leaf textural and visual qualities 

(sensory quality) are of key importance as people buy with their eyes. If fresh produce 

does not look good, no one will buy it even if the nutritional content is improved.  
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Chapter 4 Effect of light conditions on quality changes of baby leaf spinach 

4.1 Introduction 

Fresh produce is exposed to various light conditions during its displayed shelf-life. 

Leafy vegetables are an interesting crop group as the marketed product is composed of 

leaves that can maintain photosynthetic activity during postharvest storage. It is not 

surprising that in recent years, there has been an increasing interest in studying the 

effects of light on quality changes during the storage of leafy vegetables such as chard 

(Sanz et al., 2008), Chinese kale (Noichinda et al., 2007), lettuce (Martinez-Sanchez et 

al., 2011, Zhan et al., 2012, Zhan et al., 2013) and spinach (Lester et al., 2010b). The 

response of a number of different quality characteristics has been studied and a number 

of authors have reported the effects of light exposure on leaf texture (Sanz et al., 2008, 

Martinez-Sanchez et al., 2011, Medina et al., 2012), visual quality (Sanz et al., 2008, 

Kobori et al., 2011, Martinez-Sanchez et al., 2011, Medina et al., 2012) and nutritional 

quality (Noichinda et al., 2007, Lester et al., 2010b, Martinez-Sanchez et al., 2011, Zhan 

et al., 2013). 

 Light exposure has been reported to decrease respiration rate during the storage 

of lettuce (Martinez-Sanchez et al., 2011), which means that carbohydrates already 

present in the leaves at harvest, do not have to be broken down to be used as an energy 

supply to prevent the leaves from reaching senescence stage. Continuous light exposure 

during storage, has also been reported to support maintenance of photosynthetic activity 

of Chinese kale (Noichinda et al., 2007), lettuce (Zhan et al., 2013) and spinach leaves 

(Toledo et al., 2003a). Increased sugar level, however, may be responsible for inducing 

leaf senescence, most likely via hexokinase function (Yoshida, 2003). According to these 

authors, if sugar content in the leaves is too high and reaches saturation point, 

photosynthetic activity will be repressed. Thus, to avoid greater senescence in light-stored 

leaves, light intensity should be relatively low, so that leaves can photosynthesize and 

senescence is not induced. 
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Light exposure during storage has been reported to reduce the solute leakage 

from lettuce (Martinez-Sanchez et al., 2011) and spinach leaves (Kar and Choudhuri, 

1986) when compared with their dark-stored counterparts. Martinez-Sanchez et al. (2011) 

suggested that this may be related to changes in gas composition inside the bags with 

fresh produce. Gas composition inside the bags with leafy vegetables, however, is only an 

indicator of the balance between photosynthesis and respiration. Photosynthetic activity is 

maintained in light-stored leaves (Toledo et al., 2003a), while it is not the case in dark-

stored counterparts. Thus, lower level of CO2 would be expected to be observed in the 

bags kept in the light. Furthermore, low respiration rate in light-stored leaves (Martinez-

Sanchez et al., 2011) would not result in CO2 development inside the bags. Leaves that 

can maintain their photosynthetic activity during storage and have sufficient energy supply 

(e.g. carbohydrates) to maintain the stability of cell walls are expected to better maintain 

their texture (Clarkson et al., 2003; Wagstaff et al., 2010). 

Several authors have found slower AsA loss during light-storage of leafy 

vegetables, including Chinese kale (Noichinda et al., 2007), lettuce (Zhan et al., 2012, 

Zhan et al., 2013) and spinach leaves (Toledo et al., 2003b, Lester et al., 2010b) when 

compared with dark-stored counterparts. Toledo et al. (2003b) suggested that this could 

be due to higher availability of carbohydrates – precursors of AsA. Lester et al. (2010b), 

however, observed that the effect is cultivar specific with higher AsA content in light-stored 

spinach in cultivar Lazio but not in cultivar Samish, where no difference in AsA content 

between two storage conditions was found after 6 days of storage. The level of DHA can 

also be influenced by light levels and significantly greater DHA content was found in dark-

stored lettuce (Zhan et al., 2012, Zhan et al., 2013) and rocket (Barbieri et al., 2011). 

However, inconsistent changes in DHA content were reported in two cultivars of spinach 

(Lester et al., 2010b), while Toledo et al. (2003b) did not observe any difference in DHA 

content between dark and light-stored spinach leaves until day 16. Total AsA is a sum of 

its reduced (AsA) and oxidized (DHA) form. Thus, the increase in DHA may compensate 

the loss in AsA and result in similar total AsA content between dark and light-stored 

samples. No difference in total AsA between dark and light-stored lettuce has been 
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reported by Martinez-Sanchez et al. (2011). It is not clear from the literature, how light 

exposure during storage affects the balance between AsA and DHA. The response of the 

leaves during storage may be affected by pre-harvest conditions, i.e. the amount of light 

the crop received before being harvested, which will differ between growing seasons. 

Experiment 3 was conducted to investigate the effect of light conditions during 

storage on quality changes of cold-stored spinach. Bagged spinach was stored under 

three different light intensities (in the dark or under continuous low (30-35 μmol m–2 s–1) or 

high (130-140 μmol m–2 s–1) intensity light) at 1 °C. In Experiment 4, the range of light 

intensities was narrowed (only low and high intensity light were used). In Experiment 4, to 

ensure that all the leaves received similar amount of light, the time of exposure to high 

intensity light (130-140 μmol m–2 s–1) was reduced to 6 h, while for the remaining time (18 

h) spinach leaves were kept in the dark. These treatments were chosen to (i) determine 

the effect of light exposure on quality changes during the storage of spinach and (ii) to 

investigate whether the observed response was due to light intensity or the amount of light 

received by the leaves. 

 This Chapter reports findings from two independent experiments conducted with 

field-grown spinach. The aim was to determine the effect of light conditions during storage 

on changes in the quality characteristics of commercially bagged spinach. 

The following null hypothesis was tested: light conditions (intensity + photoperiod) 

during storage do not affect the maintenance of nutritional, textural and/or visual quality 

characteristics of baby leaf spinach.  
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4.2 Materials and Methods 

4.2.1 Plant material and handling 

Spinach used in Experiment 3 was harvested on 3rd and 28th of October 2011. 

Spinach was bagged at PDM Produce Ltd and transported to the laboratory (~15 minutes) 

in insulated opaque containers as described in section 2.1. 

In Experiment 3, bags with baby leaf spinach were kept under three different light 

levels (in the dark or under continuous low (30-35 μmol m–2 s–1) or high (130-140 μmol m–

2 s–1) intensity light) at 1±1 °C for 7 days. Light intensities in the range 20-35 μmol m–2 s–1 

have been used by others (Toledo et al., 2003b; Noichinda et al., 2007; Lester et al. 

2010b; Zhan et al., 2012, 2013), while Martinez-Sanchez et al. (2011) stored lettuce under 

the light intensity of 6±1 μmol m–2 s–1. On the other hand, Ferrante et al. (2004) stored 

rocket, chicory and Swiss chard leaves under high intensity light of 150 μmol m–2 s–1. The 

actual observed average temperature was 1.2 °C as recorded with TinytagTM temperature 

loggers (Gemini Data Loggers Ltd, UK). All measurements (gas composition, solute 

leakage, total ascorbic acid, and total carotenoids and chlorophylls content, leaf colour) 

were taken on the harvesting day and then when samples were collected from storage. 

Based on the results from Experiment 3, the decision was made to investigate 

whether the effect of light exposure during storage was due to light intensity or the amount 

of light received by the leaf. Spinach used in Experiment 4 was harvested on 23rd and 27th 

of July 2012. Spinach was bagged at PDM Produce Ltd and transported to the laboratory 

(~15 minutes) in insulated opaque containers as described in section 2.1. Bags with baby 

leaf spinach were kept at 1±1 °C under continuous (24 hours) low intensity light (30-35 

μmol m–2 s–1) or photoperiod of 6 h high intensity light (130-140 μmol m–2 s–1) with 18 h 

dark per 24 hours for 10 days. The total amount of light received by the leaves was similar 

over a 24 hour period. The effect of short day (SD) on quality changes in lettuce has 

previously been studied by Martinez-Sanchez et al. (2011). The actual observed average 

temperature was 1.4 °C as recorded with TinytagTM temperature loggers (Gemini Data 

Loggers Ltd, UK). All measurements (gas composition, solute leakage, total ascorbic acid, 
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and total carotenoids and chlorophylls content, leaf colour) were taken on the harvesting 

day and then when samples were collected from storage. 

4.2.2 Measurements 

 All measurements were taken following methods described in Chapter 2. 

4.2.3 Statistical analyses 

Each experiment was repeated twice with very similar results (verified by the 

Bartlett's homogeneity test and CV (%) values). Data are presented as mean values from 

two experiments that were used as blocks. Results were analysed using one-way ANOVA 

to identify the factors/treatments that had significant effect on quality changes during the 

storage of baby leaf spinach. Tukey’s test was used to allow the comparisons between 

individual treatments. All statistical analyses were performed using GenStat 14th Edition 

software (Payne et al., 2010).  
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4.3 Results 

4.3 a) Experiment 3 

4.3.1 Leaf dry matter 

Leaf dry matter at harvest was 6.1%. It did not change significantly throughout the 

storage period in spinach samples stored in the dark (6.2-6.4%) and under low intensity 

light (6.1-6.3%). A significant (P<0.001) increase in dry matter (7.1-7.2%), however, was 

observed already after 3 days of storage under high intensity light conditions. This was 

associated with enhanced water loss from these samples. 

4.3.2 Gas composition 

Light conditions during storage had a significant (P<0.001) effect on gas 

composition inside the bags with spinach leaves. In the case of spinach leaves stored at 1 

°C under light (low intensity light, high intensity light) conditions, oxygen level remained 

high and carbon dioxide was not detected during 7 day storage period, suggesting that 

under both conditions respiration was compensated by photosynthetic activity of the 

leaves (Table 4.1). Decrease in oxygen level with simultaneous increase in carbon dioxide 

throughout the storage period was found in the bags stored at 1 °C in the dark. The 

concentration of CO2 in those bags increased from 0.0% to 2.5% and 3.1% after 3 and 7 

days of storage, respectively.  
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Table 4.1 Changes in the gas composition inside the bags with spinach stored for 7 days at 1 °C 

under different light conditions (dark (DK), low intensity light (LL) and high intensity light (HL)). Data 

represent mean values from 6 replicates. 

Time of storage Light conditions O2 CO2 
Day 0   20.9% 0.0% 

Day 3 

dark (DK) 17.7% b 2.5% a 

low intensity light (LL) 20.9% a 0.0% b 

high intensity (HL) 20.5% a 0.0% b 

Day 7 

dark (DK) 17.3% b 3.1% a 

low intensity light (LL) 20.9% a 0.0% b 

high intensity (HL) 20.6% a 0.0% b 

within columns, for each day, different letters indicate that values are significantly different 

(P<0.05). O2: 3 d (P<0.001; SEM=0.347, CV=2.2%), 7 d (P<0.001; SEM=0.423, CV=1.7%). CO2: 3 

d (P<0.001; SEM=0.244, CV=4.0%), 7 d (P<0.001; SEM=0.473, CV=5.2%). 

4.3.3 Solute leakage 

After 3 days of storage, solute leakage decreased significantly (P<0.05) from 4.6% 

(initial value) to 3.5% in samples stored under low intensity light at 1 °C (Figure 4.1), 

whereas no significant change was observed in samples stored at 1 °C either in the dark 

(4.3%) or under high intensity light (4.4%) conditions. After 7 days, a small increase in 

solute leakage was observed in the samples stored in the dark (4.8%) or under high 

intensity light (4.9%) conditions, while a small non-significant decrease occurred under 

low intensity light (3.2%). 
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Figure 4.1 Solute leakage from spinach leaves stored for 7 days (d) at 1 °C under different light 

conditions (dark (DK), low intensity light (LL) and high intensity light (HL)). Solute leakage: 3 d 

(P=0.010; SEM=0.170, CV=4.1%), 7 d (P<0.001; SEM=0.232, CV=5.3%). Different letters indicate 

that values are significantly different (P<0.05) at each time point. Each data point is the mean of 6 

replicates. 

4.3.4 Total ascorbic acid (ascorbic acid (AsA) + dehydroascorbic acid (DHA)) 

The content of AsA in spinach leaves decreased during the 7 day storage period. 

A significant (P<0.001) decrease in AsA content from 4.12 mg g-1 DW (initial value) to 

3.26 mg g-1 DW was already observed after 3 days in samples stored under high intensity 

light conditions, while no change took place in those stored in the dark or under low 

intensity light conditions, where AsA content was 4.14 and 4.16 mg g-1 DW, respectively 

(Table 4.2). After 7 days, AsA content decreased in all samples, the loss being more 

pronounced with increasing light intensity.  
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Table 4.2 The content of ascorbic acid (AsA) and dehydroascorbic acid (DHA) on a dry weight 

(DW) basis in spinach leaves stored for 7 days at 1 °C under three different light conditions (dark 

(DK), low intensity light (LL) and high intensity light (HL)). Data represent mean values from 6 

replicates. 

Light 
conditions 

AsA [mg/g DW] DHA [mg/g DW] 
storage time [days] 

  0 3 7 0 3 7 

DK 

4.12 

4.14 a 3.75 a 

0.05 

0.25 a 0.68 ab 

LL 4.16 a  3.18 ab 0.31 a 1.04 a 

HL 3.26 b 3.04 b 0.08 b 0.25 b 

Significance: 
Treatment   <0.001 0.040 

 
0.003 0.040 

SEM   0.156 0.298 
 

0.055 0.254 

CV    3.0% 6.2% 
 

11.5% 66.3% 

within columns, for each day, different letters indicate that values are significantly different 

(P<0.05). 

DHA content in spinach increased during the 7 day storage period. The lowest 

DHA content was observed in spinach leaves stored at 1 °C under high intensity light 

conditions (Table 4.2). After 3 days of storage, DHA content in these samples was 0.08 

mg g-1 DW and was significantly (P=0.003) lower than in the counterparts stored in the 

dark (0.25 mg g-1 DW) or under low intensity light conditions (0.31 mg g-1 DW). After 7 

days of storage DHA content increased in all samples (Table 4.2). The highest DHA 

content of 1.04 mg g-1 DW was found in the samples stored under low intensity light 

conditions. 

In the case of total AsA content (AsA + DHA), the pattern was similar to the one 

observed for AsA (Figure 4.2). No difference in total AsA content was observed between 

spinach leaves stored in the dark and under low intensity light conditions. Total AsA 

content in those samples, however, was significantly (P<0.001) higher than in 

counterparts stored under high intensity light conditions (Figure 4.2). 
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Figure 4.2 Changes in total AsA (AsA + DHA) content on a dry weight (DW) basis in spinach 

leaves stored for 7 days (d) at 1 °C under different light conditions (dark (DK), low intensity light 

(LL) and high intensity light (HL)). Total AsA: 3 d (P<0.001; SEM=0.132 CV=3.2%), 7 d (P<0.001; 

SEM=0.455, CV=11.1%). Different letters indicate that values are significantly different (P<0.05) at 

each time point. Each data point is the mean of 6 replicates. 

4.3.5 Total carotenoid and chlorophyll content 

After 3 days of storage total carotenoid content significantly (P=0.008) increased in 

spinach leaves stored at 1 °C under high intensity light conditions, while it remained 

relatively stable in the samples stored in the dark or under low intensity light conditions 

(Table 4.3). After 7 days, however, total carotenoid content increased in spinach leaves 

stored in the dark and under low intensity light conditions and was no longer significantly 

lower when compared with the samples stored under high intensity light conditions (Table 

4.3). 

 Chlorophyll a content increased after 3 days of storage under high intensity light 

conditions, and was then significantly (P<0.001) higher when compared with the samples 

stored in the dark or under low intensity light conditions (Table 4.3). After 7 days, 

however, chlorophyll a content decreased in the samples stored in the light (both low 
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intensity light and high intensity light), while its content did not change in those stored in 

the dark. Thus, after 7 days the highest chlorophyll a content was observed in dark-stored 

samples. In the case of chlorophyll b, an increase was observed in all samples after 3 

days of storage (Table 4.3). The highest increase being observed in spinach leaves stored 

under high intensity light conditions. After 7 days, however, chlorophyll b content 

decreased in the samples stored in the light, while its content did not change in those 

stored in the dark. Thus, after 7 days the highest chlorophyll b content was observed in 

dark-stored samples. 

Table 4.3 Chlorophyll a, chlorophyll b, a: b ratio and total carotenoid content on a dry weight (DW) 

basis in spinach leaves stored for 7 days at 1 °C under different light conditions (dark (DK), low 

intensity light (LL) and high intensity light (HL)). Data represent mean values from 6 replicates. 

Light 
conditions 

chlorophyll a [mg/g DW] chlorophyll b [mg/g DW] 
storage time [days] 

  0 3 7 0 3 7 

DK 

17.75 

19.85 b 20.20 a 

4.63 

5.28 b 5.27 a 

LL 18.04 b 15.95 b 5.03 b 4.39 b 

HL 23.10 a 18.54 ab 6.02 a 4.79 ab 

Significance: 
Treatment   <0.001 0.038  0.001 0.007 

SEM   0.868 1.523 
 

0.203 0.237 

CV    1.6% 6.2% 
 

1.8% 6.3% 

Light 
conditions 

chlorophyll a: b ratio total carotenoids [mg/g DW] 
storage time [days] 

  0 3 7 0 3 7 

DK 

3.83 

3.76 a 3.83 a 

5.09 

4.95 b 5.75 a 

LL 3.59 a 3.63 a 4.90 b 5.32 a 

HL 3.84 a 3.87 a 5.60 a 5.38 a 

Significance: 
Treatment   0.317 0.324  0.008 0.076 

SEM   0.164 0.313 
 

0.200 0.202 

CV    3.0% 6.2% 
 

1.8% 6.3% 

within columns, for each day, different letters indicate that values are significantly different 

(P<0.05). 

4.3.6 Leaf colour changes 

There was no significant difference (between light conditions) in leaf lightness (L*) 

value after 3 days of storage. After 7 days, however, spinach leaves stored under light 
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conditions (low intensity light, high intensity light) were significantly lighter when compared 

with their counterparts stored in the dark (Table 4.4). There was no difference in 

greenness (a*) value throughout the storage period (Table 4.4). 

Table 4.4 Leaf colour changes during the storage of spinach leaves for 7 days at 1 °C under 

different light conditions (dark (DK), low intensity light (LL) and high intensity light (HL)). Data 

represent mean values from 6 replicates. 

Light conditions 
L*(lightness) 

storage time [days] 

  0 3 7 

DK 

42.17 

42.24 a 41.72 b 

LL 41.93 a 43.23 a 

HL 43.03 a 43.62 a 

Significance: 
Treatment   0.189 0.003 

SEM   0.541 0.603 

CV    1.1% 0.9% 

Light conditions 
a* (greenness) 

0 3 7 

DK 

-15.23 

-15.15 a -15.42 a 

LL -15.53 a -16.01 a 

HL -15.74 a -16.03 a 

Significance: 
Treatment   0.101 0.097 

SEM   0.288 0.336 

CV    1.5% 1.7% 

Light conditions 
b* (yellowness) 

0 3 7 

DK 

26.48 

26.56 b 26.84 b 

LL 26.95 ab 28.36 ab 

HL 28.16 a 29.52 a 

Significance: 
Treatment   0.051 0.001 

SEM   0.647 0.764 

CV    2.0% 2.0% 

within columns, for each day, different letters indicate that values are significantly different 

(P<0.05). 

Leaf yellowness (b*) increased with increasing intensity of light during storage 

(Table 4.4). No significant difference in leaf yellowness was observed between spinach 
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leaves stored in the dark and under low intensity light conditions; however leaves stored 

under high intensity light conditions were significantly more yellow than dark-stored 

counterparts already after 3 days of storage (Figure 4.3). 

 

Figure 4.3 Changes in leaf yellowness value (b*) during the storage of spinach leaves for 7 days at 

1 °C under different light conditions (dark (DK), low intensity light (LL) and high intensity light (HL)). 

b*: 3 d (P=0.051; SEM=0.647 CV=2.0%), 7 d (P=0.001; SEM=0.764, CV=2.0%). Different letters 

indicate that values are significantly different (P<0.05) at each time point. Each data point is the 

mean of 6 replicates. 

4.3 b) Experiment 4 

4.3.7 Leaf dry matter 

Leaf dry matter at harvest was 6.9%. It did not change significantly throughout the 

storage period in spinach samples stored under continuous (24 hours) low intensity light 

conditions (6.7-6.9%) and those stored under SD (6 h of high intensity light followed by 18 

h in the dark) conditions (6.7-7.3%). 

4.3.8 Gas composition 

No significant difference was found in gas composition inside the bags with 

spinach stored under continuous (24 hours) low intensity light and SD conditions (6 hours 

high intensity light/ 18 hours dark) during 10 days of storage at 1 °C, suggesting that 



109 
 

under both conditions respiration was compensated by photosynthetic activity of the 

leaves, thus no significant increase in CO2 concentration was observed (Table 4.5). 

Table 4.5 Changes in the gas composition inside the bags with spinach stored for 10 days at 1 °C 

under different light conditions (low intensity light (24 h) (LL (24 h)) and high intensity light/dark 

(6/18 h) (HL/DK (6/18 h)). Data represent mean values from 12 replicates. 

Time of storage Light conditions O2 CO2 
Day 0   20.6% 0.0% 

Day 5 
LL (24 h) 20.0% a 0.0% a 

HL / DK (6/18 h) 19.2% a 0.2% a 

Day 10 
LL (24 h) 20.4% a 0.0% a 

HL / DK (6/18 h) 20.5% a 0.0% a 

within columns, for each day, different letters indicate that values are significantly different 

(P<0.05). O2: 5 d (P=0.832; SEM=0.292, CV=3.7%), 10 d (P=0.846; SEM=0.195, CV=2.1%). CO2: 

5 d (P=0.827; SEM=0.027, CV=2.0%), 10 d (P=0.852; SEM=0.021, CV=1.4%). 

4.3.9 Solute leakage 

No significant difference was observed in solute leakage from spinach leaves 

stored under continuous (24 hours) low intensity light and SD (6 hours high intensity light/ 

18 hours dark) during 10 days of storage at 1 °C. Only a slight, non-significant decrease 

from 0.6% (initial value) to 0.5% was reported after 5 days of storage for both treatments. 

After 10 days, solute leakage returned to initial level of 0.6% under both storage 

conditions. 

4.3.10 Total ascorbic acid (ascorbic acid (AsA) + dehydroascorbic acid (DHA)) 

The content of AsA in the samples stored under continuous low intensity light 

increased significantly from 3.54 mg g-1 DW to 4.15 mg g-1 DW after 10 days of storage 

suggesting increased synthesis of AsA. On the other hand, AsA content did not change in 

samples stored under SD conditions. Thus, after 10 days of storage, AsA content in the 

samples stored under continuous low intensity light was significantly (P=0.003) higher 

than in those stored under SD conditions (Table 4.6). In contrast to AsA, the content of 

DHA did not change significantly over the storage period (Table 4.6).  
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Table 4.6 The content of ascorbic acid (AsA) and dehydroascorbic acid (DHA) on a dry weight 

(DW) basis in spinach leaves stored for 10 days at 1 °C under two different light conditions (low 

intensity light (24 h) (LL (24 h)) and high intensity light/dark (6/18 h) (HL/DK (6/18 h)). Data 

represent mean values from 12 replicates. 

Light conditions 
AsA [mg/g DW] DHA [mg/g DW] 

storage time [days] 

  0 5 10 0 5 10 

LL (24 h) 
3.54 

3.94 a 4.15 a 
0.41 

0.41 a 0.46 a 

HL / DK (6/18 h) 3.63 a 3.66 b 0.34 a 0.41 a 

Significance: 
Treatment   0.130 0.003  0.386 0.164 

SEM   0.138 0.113 
 

0.054 0.023 

CV    15.5% 17.3% 
 

32.8% 25.7% 

within columns, for each day, different letters indicate that values are significantly different 

(P<0.05). 

No significant difference in either AsA or DHA was observed after 5 days of 

storage, however, due to the fact that the content of both compounds was slightly higher 

in the samples stored under continuous low intensity light, total AsA content was 

significantly (P=0.049) higher in these samples (Figure 4.4). After 10 days, due to an 

increase in AsA in the samples stored under continuous low intensity light,  total AsA 

content in those samples was significantly (P=0.002) higher than in their counterparts 

stored under SD conditions.  



111 
 

 

Figure 4.4 Changes in total AsA (AsA + DHA) content on a dry weight (DW) basis in spinach 

leaves stored for 10 days (d) at 1 °C under different light conditions (low intensity light (24 h) (LL 

(24 h)) and high intensity light/dark (6/18 h) (HL/DK (6/18 h)). Total AsA: 5 d (P<0.049; SEM=0.128 

CV=13.1%), 10 d (P=0.002; SEM=0.117, CV=16.2%). Different letters indicate that values are 

significantly different (P<0.05) at each time point. Each data point is the mean of 12 replicates. 

4.3.11 Total carotenoid and chlorophyll content 

There was no significant difference in the content of total carotenoids, chlorophyll a 

and b between spinach samples stored under continuous low intensity light and those 

stored under SD conditions (Table 4.7).  
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Table 4.7 Chlorophyll a, chlorophyll b, ratio and total carotenoid content on a dry weight (DW) basis 

of spinach leaves stored for 10 days at 1 °C under different light conditions (low intensity light (24 

h) (LL (24 h)) and high intensity light/dark (6/18 h) (HL/DK (6/18 h)). Data represent mean values 

from 12 replicates. 

Light conditions 
chlorophyll a [mg/g DW] chlorophyll b [mg/g DW] 

storage time [days] 

  0 5 10 0 5 10 

LL (24 h) 
9.61 

8.95 a 9.02 a 
2.72 

2.70 a 2.76 a 

HL / DK (6/18 h) 9.25 a 9.19 a 2.80 a 2.87 a 

Significance: 
Treatment   0.173 0.344 

 
0.195 0.077 

SEM   0.575 0.169 
 

0.383 0.147 

CV    4.2% 8.7% 
 

16.2% 2.9% 

Light conditions 
chlorophyll a: b ratio total carotenoids [mg/g DW] 

storage time [days] 

  0 5 10 0 5 10 

LL (24 h) 
3.53 

3.32 a 3.27 a 
3.11 

3.17 a 3.32 a 

HL / DK (6/18 h) 3.30 a 3.20 a 3.27 a 3.31 a 

Significance: 
Treatment   0.312 0.746 

 
0.308 0.860 

SEM   0.104 0.146 
 

0.093 0.230 

CV    7.2% 9.3% 
 

5.5% 9.8% 

within columns, for each day, different letters indicate that values are significantly different 

(P<0.05). 

Spinach leaves stored under continuous low intensity light were significantly lighter 

(L*) than those stored under SD conditions after 5 days of storage (Table 4.8). This 

difference, however, was no longer present after 10 days of storage. No difference 

between two storage conditions was observed for leaf greenness (a*) and leaf yellowness 

(b*) values over the 10 day storage period (Table 4.8).  
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Table 4.8 Leaf colour changes during the storage of spinach leaves for 10 days at 1 °C under 

different light conditions (low intensity light (24 h) (LL (24 h)) and high intensity light/dark (6/18 h) 

(HL/DK (6/18 h)). Different letters indicate that values are significantly different (P<0.05). Data 

represent mean values from 12 replicates. 

Light conditions 
L* (lightness) 

storage time [days] 

  0 5 10 

LL (24 h) 
46.84 

48.36 a 47.97 a 

HL / DK (6/18 h) 47.45 b 47.68 a 

Significance: 
Treatment   <0.001 0.494 

SEM   0.36 0.268 

CV    5.5% 9.8% 

Light conditions 
a* (greenness) 

0 5 10 

LL (24 h) 
-15.92 

-16.34 a -16.78 a 

HL / DK (6/18 h) -16.53 a -16.71 a 

Significance: 
Treatment   0.724 0.361 

SEM   0.186 0.263 

CV    11.6% 12.5% 

Light conditions 
b* (yellowness) 

0 5 10 

LL (24 h) 
26.93 

29.17 a 30.48 a 

HL / DK (6/18 h) 29.43 a 30.47 a 

Significance: 
Treatment   0.859 0.894 

SEM   0.494 0.122 

CV    4.6% 10.5% 

within columns, for each day, different letters indicate that values are significantly different 

(P<0.05).  
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4.4 Discussion 

 Two experiments were conducted to determine the effect of light exposure on 

quality changes during the storage of spinach and to investigate whether the observed 

response was due to light intensity or the amount of light received by the leaves. 

Experiment 3 was conducted in October 2011, while Experiment 4 in July 2012. This 

could account for the differences in the quality of the leaves. Leaf dry matter content was 

significantly higher in Experiment 4. The quality of the leaves used in Experiment 3 was 

lower when compared with those used in Experiment 4. Texture of the leaves used in 

Experiment 3 (indicated by higher solute leakage at harvest) was worse than those used 

in Experiment 4. Plant pigment content was higher in spinach leaves used in Experiment 

3; leaves used in Experiment 4 were significantly lighter and more yellow (at harvest) 

when compared with those used in Experiment 3. Finally, nutritional quality did not differ 

between experiments. 

Gas composition 

 Previous studies have found a decrease in O2 concentration with simultaneous 

increase in CO2 concentration already after 3 days of storage of spinach at 5 °C (Allende 

et al., 2004b; Conte et al., 2008) and 7 °C (Tudela et al., 2013) in the dark. In agreement 

with those studies CO2 development was also observed in our study, in bags with spinach 

stored in the dark. In the light-stored counterparts, however, no change in the gas 

composition was observed, suggesting that respiration was compensated by 

photosynthetic activity of the leaves (Toledo et al., 2003a). Similarly, the amount of CO2 

produced, as a result of respiration, was used in the photosynthesis by spinach leaves 

stored under SD conditions (6 h light/18 h dark). Monitoring the changes in gas 

composition inside the bags with spinach is a useful indicator of the balance between 

photosynthesis and respiration. Increase in respiration, as indicated by higher CO2 

development would indicate tissue deterioration. 

The increase in dry matter content was only observed in the spinach samples 

stored under continuous high light conditions. This increase resulted from enhanced water 

loss which was probably associated with higher numbers of stomata that remained open 
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in light-stored leaves when compared with dark-stored samples as has previously been 

reported by others (Noichinda et al., 2007, Martinez-Sanchez et al., 2011). 

Texture 

Excess water loss leads to a loss of turgor and thus the decrease in textural quality 

of the leaf (Martin-Diana et al., 2006, Wagstaff et al., 2007, Aguero et al., 2008). In 

agreement with other studies (Kar and Choudhuri, 1986, Martinez-Sanchez et al., 2011), 

solute leakage from spinach leaves was reduced by exposure to low intensity light when 

compared with dark-stored samples. No difference in solute leakage was found between 

samples stored under continuous low intensity light and those stored under SD conditions. 

This would suggest that, it is the amount of light received by the leaf rather than the light 

intensity that is responsible for reducing the solute leakage. The stability of cell walls 

(Wagstaff et al., 2010) was probably better maintained in spinach leaves that received 

certain amount of light during storage. No benefit of light exposure during storage, 

however, was noticed when light level/amount was too high. Too much light probably can 

lead to excess oxidative stress that caused tissue damage (Foyer and Shigeoka, 2011). 

Nutritional quality 

In our study, there was no significant difference in the content of AsA between 

samples stored in the dark and under continuous low intensity light. This is in contrast with 

other studies (Toledo et al., 2003b, Lester et al., 2010b, Zhan et al., 2013) that reported 

better retention of AsA in light-stored samples. It is important to note that here AsA 

content is reported on dry weight (DW) basis while others (Toledo et al., 2003b, Zhan et 

al., 2013) reported its content on fresh weight (FW) basis, meaning that loss of leaf water 

will have a significant influence on AsA content and changes may be due to the water loss 

rather than physiological changes in AsA biosynthesis. Higher FW loss was indeed 

observed during the storage of leafy vegetables under light conditions when compared 

with dark-stored counterparts (Sanz et al., 2008, Martinez-Sanchez et al., 2011, Zhan et 

al., 2012, Zhan et al., 2013). Thus, it could be expected that difference in AsA content 

between light and dark-stored samples would be smaller when expressed on DW basis 

(Bergquist et al., 2006). Furthermore, seasonal (Barbieri et al., 2011) and cultivar (Lester 
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et al., 2010b) differences have been reported. Lester et al. (2010b) observed higher AsA 

content in light-stored spinach in cultivar Lazio, but not in the case of cultivar Samish, 

where no difference in AsA content between two storage conditions was found for top- 

and medium-canopy leaves after 9 days of storage. These cultivar differences may 

explain why no difference in AsA content between samples stored in the dark and under 

low intensity light was found in our study. On the other hand, significant decrease in AsA 

content was found under high intensity light conditions (Experiment 3), suggesting that if 

the level of oxidative stress is too high, nutritional quality of spinach leaves will be 

reduced. Exposure of spinach leaves to high intensity light probably leads to increase in 

AOS, which then need to be scavenged by AsA. Thus, the more AOS is produced, more 

AsA needs to be oxidised. This was further confirmed in Experiment 4, where only 6 h 

exposure to high intensity light resulted in lower AsA content after 10 days of storage at 1 

°C when compared with samples stored under continuous low intensity light conditions. 

It has been reported by several authors (Lester et al., 2010b, Martinez-Sanchez et 

al., 2011, Zhan et al., 2013) that the loss in AsA may be compensated by the increase in 

DHA. This was indeed the case in spinach leaves stored in the dark or under continuous 

low intensity light (Experiment 3), where decline in AsA content was associated with an 

increase in DHA. No difference in total AsA was observed in our study between spinach 

leaves stored in the dark and those stored under low intensity light conditions. This is in 

agreement with others who also did not report differences in total AsA during the storage 

of spinach (Lester et al., 2010b) and lettuce (Martinez-Sanchez et al., 2011), respectively. 

Decline in total AsA was observed in spinach leaves stored under continuous high 

intensity light conditions, which suggests that a certain amount of total AsA was lost, 

probably due to DHA being degraded further e.g. to 2, 3-diketogulonic acid. Interestingly, 

total AsA content remained relatively stable during 10 day storage under SD conditions, 

while an increase was observed under continuous low intensity light. This increase was 

associated with biosynthesis of AsA, as DHA content in those samples was retained. The 

different response of spinach leaves stored under continuous low intensity light between 

Experiment 3 and 4 would suggest that changes in nutritional quality during the storage of 
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spinach leaves are influenced by pre-harvest conditions, e.g. the amount of light received 

during the growing season. It could be possible that leaves used in Experiment 3 

(harvested in October) were more sensitive to the light during storage probably because 

during their growth they received far less light than leaves used in Experiment 4 

(harvested in July). 

Total carotenoid content was found to be relatively stable under all storage 

conditions tested. This is in agreement with Bergquist et al. (2006) and Lester et al. 

(2010b) who reported carotenoids to be relatively stable or even increase during the 

storage of spinach. Kopas-Lane and Warthesen (1995), however, have reported 

enhanced carotenoids degradation in light-stored spinach. It is important to note that total 

carotenoid content reported in this study and those of Bergquist et al. (2006) and Lester et 

al. (2010b) was on DW basis while Kopas-Lane and Warthesen (1995) reported them on 

FW basis, whereas the water loss during storage is significantly higher in light-stored 

samples. 

Visual quality 

Chlorophyll content decreased in light-stored samples when compared with dark-

stored counterparts. This is in agreement with Kopas-Lane and Warthesen (1995) and 

Ferrante et al. (2004) who demonstrated that chlorophyll degradation was enhanced by 

light exposure during the storage of spinach and rocket leaves, respectively. 

Conte et al. (2008) did not observe any changes in colour of spinach leaves stored 

in the dark at 5 °C for 13 days. Similar to their study; no changes in leaf colour was 

observed, in this work in dark stored spinach leaves. With increasing light intensity, 

however, spinach leaves became significantly lighter and more yellow. Similar 

observations have previously been reported by Toledo et al. (2003b) who found that 

yellowing of spinach leaves stored at 8 °C was faster in the case of light-stored leaves 

when compared with their dark-stored counterparts. According to these authors leaves 

may become more yellow due to chlorophyll loss with simultaneous retention of 

carotenoids - change in the chlorophyll: carotenoids ratio. Stronger colour alteration has 
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also been observed in light-stored lettuce (Martinez-Sanchez et al., 2011) when compared 

with dark-stored counterparts. 

Effect of photoperiod 

No differences in the quality of lettuce stored under continuous (24 hours) low 

intensity light and photoperiod (low intensity light/ dark (12/12 h)) were reported by 

Martinez-Sanchez et al. (2011) with respect to gas composition, visual quality, leaf colour 

changes, solute leakage, AsA, DHA and total AsA. Similar to their study, no differences 

were observed in our study in all these parameters, with an exception of AsA and total 

AsA. The concentration of AsA and total AsA was lower in spinach samples stored under 

SD conditions (high intensity light/ dark (6/18 h)). This suggests that even relatively short 

exposure to high intensity light may lead to an excess oxidative stress that accelerates 

AsA degradation, thus reducing nutritional quality of spinach leaves. 

The findings from Experiment 3 and 4 suggest that exposure to continuous low 

intensity light may improve texture maintenance of spinach leaves. This could be 

associated with photosynthesis that still occurs during postharvest storage. Light intensity, 

however, has to be low enough not to cause excess oxidative stress, which would lead to 

accelerated senescence. As has been shown in Experiment 4, no significant difference in 

textural and visual quality was observed between samples stored under continuous low 

intensity light and those stored under photoperiod conditions. Nutritional quality (AsA and 

total AsA content), however, was better if samples were stored under continuous low 

intensity light. 

Nutritional quality was the only parameter affected by photoperiod, whereas light 

intensity was found to affect texture, plant pigment content, leaf colour and nutritional 

quality of spinach. Thus, light intensity seems to be more important than the total amount 

of light received by the leaf. It is clear, that light intensity should be adjusted accordingly 

during spinach displayed shelf-life. Where possible, retailers should keep spinach at 

refrigerated temperature under continuous low intensity light. 

The null hypothesis tested in this research has to be rejected as it has been found 
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that all parameters that were measured were affected by changes in light conditions 

during storage. 

4.5 Conclusions 

Experiment 3 has shown that nutritional content of the leaves (AsA, DHA, total 

AsA, and total carotenoids) was preserved during the storage of spinach under continuous 

low intensity light conditions. Low intensity light exposure during storage also prevented 

development of CO2 in the bags; this would reduce the development of off-odours. 

Furthermore, solute leakage, which indicates membrane damage/texture loss, was 

reduced in the samples stored under continuous low intensity light. On the other hand, 

decrease in chlorophyll content in light-stored spinach leaves resulted in leaves being 

lighter and more yellow when compared with their dark-stored counterparts. Although this 

difference was detected using the chroma meter, it would be almost impossible to notice 

from the consumer point of view. 

Experiment 4 has investigated the effect of photoperiod (6 h of high intensity light/ 

18 h in the dark) in comparison with continuous (24 h) low intensity light on quality 

changes of spinach. The total amount of light received by the leaf in both treatments was 

very similar. Nutritional quality of the leaves stored under SD conditions was reduced, 

while no other differences were found between the treatments. This decrease was due to 

oxidative stress induced by high intensity light. This finding suggests that it is light 

intensity rather than total amount of light received by the leaf that will affect its quality 

during postharvest storage. 

Overall, storage of spinach leaves under continuous low intensity light conditions 

seems to be beneficial for spinach quality by improving its texture without any loss in the 

nutritional quality of the product. The main focus for future research should be on 

optimizing light intensity/level during displayed shelf-life of spinach.  
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Chapter 5 Influence of temperature and light on quality of baby leaf spinach 

5.1 Introduction 

Leafy vegetables are exposed to various temperature and light conditions during 

their displayed shelf-life. The shelf-life of spinach is relatively short (7-10 days) and, 

similar to other leafy vegetables, is influenced by initial quality at harvest (Wagstaff et al., 

2010) and subsequent storage conditions (Piagentini et al., 2005). Thus, it is not 

surprising that, in recent years, there has been an increasing interest in studying the 

effects of temperature (Pandrangi and LaBorde, 2004, Bergquist et al., 2006) and light 

(Lester et al., 2010b) on changes in the quality of spinach during storage. 

It has already been demonstrated that the quality of spinach is affected by both 

temperature (Chapter 3) and light conditions (Chapter 4) during storage. Quality of 

spinach was found to decline with increasing temperature of storage and light intensity. In 

both studies only one of the factors varied, i.e. in Chapter 3 a range of temperatures (1, 6, 

10 and 20 °C) was used, while light conditions (low intensity (30-35 μmol m–2 s–1) light) 

were the same; in Chapter 4 a range of light conditions (dark, low intensity (30-35 μmol m–

2 s–1) and high intensity (130-140 μmol m–2 s–1) light) was used at one storage temperature 

(1 °C). 

It is not known if changes in the quality of spinach leaves would respond in the 

same way over the range of temperatures (1 and 10 °C) if stored under different light 

conditions (low intensity (30-35 μmol m–2 s–1) and high intensity (130-140 μmol m–2 s–1) 

light). A key question is whether the effect is additive or is there an interaction between 

storage temperature and light conditions? 

Experiment 5 was conducted to investigate the effect of temperature and light 

conditions during storage on quality changes of spinach. In contrast to Chapter 3 and 4 

both factors varied (2 x 2 factorial experiment). Bagged spinach was stored under two 

different light levels (under continuous low (30-35 μmol m–2 s–1) or high (130-140 μmol m–2 

s–1) intensity light) at either 1 or 10 °C. These treatments were chosen to (i) determine the 

effect of light intensity on quality changes during the storage of spinach at two different 
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temperatures, (ii) to investigate how the quality of spinach stored under two light 

intensities changes with increasing temperature of storage, (iii) to determine whether there 

is an interaction between both factors, and (iv) to identify which of these two factors has 

larger effect on quality maintenance of spinach. 

The following null hypothesis was tested: temperature and light conditions affect 

the maintenance of nutritional, textural and/or visual quality characteristics of baby leaf 

spinach independent of each other.  
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5.2 Materials and Methods 

5.2.1 Plant material and handling 

Spinach used in Experiment 5 was harvested on 12th of August 2011 and 10th of 

August 2012. Spinach was bagged at PDM Produce Ltd and transported to the laboratory 

(~15 minutes) in insulated opaque containers as described in section 2.1. 

In Experiment 5, bags with baby leaf spinach were kept under two different light 

conditions – continuous (24 hours) low intensity (30-35 μmol m–2 s–1) or high intensity 

(130-140 μmol m–2 s–1) light at 1±1 °C or 10±1 °C for 7 days. These treatments have 

already been used in Chapter 3 and 4. The actual observed average temperatures were 

1.1-1.3 and 9.7-10.0 °C as recorded with TinytagTM temperature loggers (Gemini Data 

Loggers Ltd, UK). The photosynthetically active radiation (PAR) was measured with 

quantum sensor (Skye Instruments Ltd, UK). Spinach leaves were prepared for further 

analyses (gas composition analyses, solute leakage, total ascorbic acid, and total 

carotenoids and chlorophyll content, leaf colour) on the harvesting day and after 3 and 7 

days of storage, respectively. 

5.2.2 Measurements 

 All measurements were taken following methods described in Chapter 2. 

5.2.3 Statistical analyses 

Experiment was repeated twice with very similar results (verified by the Bartlett's 

homogeneity test and CV (%) values). Data are presented as mean values from two 

experiments that were used as blocks. Results were analysed using one-way ANOVA and 

two-way ANOVA to identify the treatments/factors that had significant effect on quality of 

baby leaf spinach. Tukey’s test was used to allow the comparisons between individual 

treatments. All statistical analyses were performed using GenStat 14th Edition software 

(Payne et al., 2010). 
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5.3 Results 

5.3 Experiment 5 

5.3.1 Leaf dry matter 

Leaf dry matter at harvest was 6.7%. After 3 days of storage, dry matter remained 

in the range 6.9-7.2% for all the treatments. A significant (P<0.001) difference in dry 

matter between treatments was observed after 7 days of storage. In spinach stored at 1 

°C under low intensity and high intensity light dry matter was in the range 6.8-7.1% and 

6.9-7.3%, respectively. In samples stored at 10 °C under low intensity light dry matter was 

in the range 7.0-7.4% and was slightly but non-significantly higher, whereas significantly 

higher dry matter of 7.4-8.1% was found in samples stored at 10 °C under high intensity 

light. Changes in dry matter are associated with water loss. 

5.3.2 Gas composition 

The gas composition for all the treatments did not change during the 7 day storage 

period (Table 5.1). In the case of spinach leaves stored at either 1 or 10 °C under light 

(low intensity light, high intensity light) conditions, oxygen level remained high and carbon 

dioxide was not detected.  
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Table 5.1 Changes in the gas composition inside the bags with spinach stored for 7 days at 1 or 10 

°C under different light conditions (low intensity light (LL) and high intensity light (HL)). Data 

represent mean values from 6 replicates. 

Time of storage Light conditions Temperature O2 CO2 
Day 0   

 
20.9%  0.0% 

Day 3 

low intensity light (LL) 1 °C  20.7% a  0.0% a 

low intensity light (LL) 10 °C  20.9% a  0.0% a  

high intensity light (HL) 1 °C  20.5% a  0.0% a  

high intensity light (HL) 10 °C  20.7% a  0.0% a  

Day 7 

low intensity light (LL) 1 °C  20.9% a  0.0% a  

low intensity light (LL) 10 °C  20.6% a  0.0% a  

high intensity light (HL) 1 °C  20.7% a  0.0% a  

high intensity light (HL) 10 °C  20.9% a  0.0% a  

within columns, for each day, different letters indicate that values are significantly different 

(P<0.05). O2: 3 d (P=0.802; SEM=0.301, CV=3.9%), 7 d (P=0.852; SEM=0.295, CV=2.5%). 

5.3.3 Solute leakage 

After 3 days of storage, there was no significant difference in solute leakage 

between the treatments (Figure 5.1). For all the treatments (LL at 1 °C, LL at 10 °C, HL at 

1 °C and HL at 10 °C) solute leakage on average was in the range of 1.2 – 1.3%. After 7 

days of storage, solute leakage significantly increased in all treatments, with the exception 

of samples stored at 1 °C under low intensity light conditions. Solute leakage increased 

with increasing temperature of storage and increasing light intensity (Figure 5.1). Thus, 

the highest solute leakage of 4.1% was observed in samples stored at 10 °C under high 

intensity light, while the lowest (1.5%) at 1 °C under low intensity light. 
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Figure 5.1 Solute leakage from spinach leaves stored for 7 days (d) at 1 or 10 °C under different 

light conditions (low intensity light (LL) and high intensity light (HL)). Solute leakage: 3 d (P=0.362; 

SEM=0.370, CV=9.7%), 7 d (P<0.001; SEM=0.169, CV=5.3%). Different letters indicate that values 

are significantly different (P<0.05) at each time point. Each data point is the mean of 6 replicates. 

5.3.4 Total ascorbic acid (ascorbic acid (AsA) + dehydroascorbic acid (DHA)) 

Temperature had a main effect on AsA content after 3 days of storage, and the 

content of AsA significantly (P<0.001) decreased in samples stored at 10 °C when 

compared with their counterparts stored at 1 °C (Table 5.2), while no effect of light 

intensity was observed. After 7 days, however, both temperature (P<0.001) and light 

(P=0.022) had a significant effect on AsA content in spinach. The highest AsA content of 

2.16 mg g-1 DW was observed in the samples stored at 1 °C under low intensity light. The 

content of AsA significantly decreased (1.63 mg g-1 DW) when samples were stored at the 

same temperature under high intensity light conditions. Even greater AsA loss was found 

in the samples stored at 10 °C (Table 5.2). A significant interaction (P=0.035) was found 

between temperature and light conditions after 7 days of storage. This was due to AsA 

content being higher at 1 °C under low intensity light when compared with their 

counterparts stored at 1 °C under high intensity light, while no difference between the light 

conditions was observed at 10 °C (Table 5.2), where AsA content was 0.65 and 0.67 mg 

g-1 DW in the samples stored under low intensity and high intensity light, respectively. 
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Table 5.2 The content of ascorbic acid (AsA) and dehydroascorbic acid (DHA) on a dry weight 

(DW) basis in spinach leaves stored for 7 days at 1 or 10 °C under different light conditions (low 

intensity light (LL) and high intensity light (HL)). Data represent mean values from 6 replicates. 

Light 
conditions Temperature 

AsA [mg/g DW] DHA [mg/g DW] 
storage time [days] 

0 3 7 0 3 7 

LL 1 °C 

2.81 

2.35 a 2.16 a 

0.19 

0.16 a 0.47 a 

LL 10 °C 1.39 b 0.65 c 0.14 a 0.39 ab 

HL 1 °C 2.40 a 1.63 b 0.21 a 0.19 b 

HL 10 °C 1.53 b 0.67 c 0.24 a 0.46 a 

  

Storage time 
[days] 

Factor Mean SEM P Mean SEM P 

3 

Light conditions 
LL 1.87 

0.062 

0.317 
0.15 

0.018 

0.009 
HL 1.96 0.23 

Temperature 
1 °C 2.37 

<0.001 
0.19 

0.888 
10 °C 1.46 0.19 

Significance of interaction: 
Light conditions x Temperature 0.087 0.634  0.026 0.324 

   CV 13.7% CV 41.4% 

Storage time 
[days] 

Factor Mean SEM P Mean SEM P 

7 

Light conditions 
LL 1.41 

0.082 

0.022 
0.43 

0.060 

0.080 
HL 1.15 0.33 

Temperature 
1 °C 1.90 

<0.001 
0.33 

0.139 
10 °C 0.66 0.42 

Significance of interaction: 
Light conditions x Temperature 0.116 0.035  0.085 0.008 

  CV 27.3% CV 19.7% 

within columns, for each day, different letters indicate that values are significantly different 

(P<0.05). 

After 3 days of storage, there was no significant difference in DHA content 

between the treatments. After 7 days, a significant interaction (P=0.008) was found 

between temperature and light conditions. The lowest DHA content of 0.19 mg g-1 DW 

was found in the samples stored at 1 °C under high intensity light (Table 5.2). DHA 

content in these samples was lower than in other samples, where DHA content increased. 
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 In the case of total AsA content (AsA + DHA), the pattern was similar to the one 

observed for AsA (Figure 5.2). No difference in total AsA was observed after 3 d of 

storage between spinach leaves stored under two light conditions. The content of total 

AsA significantly (P<0.001) decreased in samples stored at 10 °C when compared with 

their counterparts stored at 1 °C (Figure 5.2). After 7 days, however, both temperature 

(P<0.001) and light (P=0.049) had a significant effect on total AsA content in spinach. The 

highest total AsA content of 2.63 mg g-1 DW was observed in the samples stored at 1 °C 

under low intensity light. The content of total AsA significantly decreased (1.82 mg g-1 DW) 

when samples were stored at the same temperature under high intensity light conditions. 

Even greater total AsA loss was found in the samples stored at 10 °C (Figure 5.2). 

 

Figure 5.2 Changes in total AsA (AsA + DHA) content on a dry weight (DW) basis in spinach 

leaves stored for 7 days (d) at 1 or 10 °C under different light conditions (low intensity light (LL) and 

high intensity light (HL)). Total AsA: 3 d (P<0.001; SEM=0.199, CV=13.2%), 7 d (P<0.001; 

SEM=0.129, CV=11.3%). Different letters indicate that values are significantly different (P<0.05). 

Each data point is the mean of 6 replicates.  

A significant interaction (P=0.016) was found between temperature and light 

conditions after 7 days of storage. This was due to total AsA content being higher at 1 °C 

under low intensity light when compared with their counterparts stored at 1 °C under high 
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intensity light, while no difference between the light conditions was observed at 10 °C 

(Figure 5.2), where total AsA content was 1.04 and 1.13 mg g-1 DW in the samples stored 

under low intensity and high intensity light, respectively. 

5.3.5 Total carotenoid and chlorophyll content 

After 3 days of storage, there was no significant difference in total carotenoid 

content between the treatments (Table 5.3). Total carotenoid content in all treatments was 

in the range of 2.86 – 3.21 mg g-1 DW. After 7 days of storage, both temperature 

(P=0.023) and light (P=0.012) had a significant effect on total carotenoid content (Table 

5.3). Total carotenoid content remained relatively stable in all treatments, with an 

exception of spinach leaves stored at 10 °C under high intensity light condition, where 

total carotenoid content decreased to 1.89 mg g-1 DW.  
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Table 5.3 Total carotenoid content on a dry weight (DW) basis in spinach leaves stored for 7 days 

at 1 or 10 °C under different light conditions (low intensity light (LL) and high intensity light (HL)). 

Data represent mean values from 6 replicates. 

Light 
conditions Temperature 

total carotenoids [mg/g DW] 
storage time [days] 

0 3 7 

LL 1 °C 

3.16 

3.21 a 2.70 a 

LL 10 °C 2.87 a 2.49 a 

HL 1 °C 2.93 a 2.69 a 

HL 10 °C 2.86 a 1.89 b 

  
Storage time 

[days] 
Factor Mean SEM P 

3 

Light conditions 
LL 3.04 

0.131 

0.981 
HL 2.90 

Temperature 
1 °C 3.07 

0.210 
10 °C 2.87 

Significance of interaction: 
Light conditions x Temperature 0.227 0.213 

      CV 10.4% 

Storage time 
[days] 

Factor Mean SEM P 

7 

Light conditions 
LL 2.60 

0.093 

0.012 
HL 2.29 

Temperature 
1 °C 2.70 

0.023 
10 °C 2.19 

Significance of interaction: 
Light conditions x Temperature 0.247 0.185 

 CV 9.0% 

within columns, for each day, different letters indicate that values are significantly different 

(P<0.05). 

After 3 days of storage, chlorophyll a content declined in all samples except the 

one stored at 1 °C under low intensity light (Table 5.4). Thus, chlorophyll a content was 

found to decrease significantly with increasing temperature (P<0.001) and light intensity 

(P=0.006). After 7 days, no significant difference in chlorophyll a content was found 

between samples stored at 1 °C under low intensity and high intensity light conditions. 

The content of chlorophyll a in the samples stored at 10 °C under low intensity light was 

significantly lower than in those mentioned above. A much greater decline in chlorophyll a 
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content was observed in the samples stored at 10 °C under high intensity light conditions 

(Table 5.4). 

After 3 days of storage, chlorophyll b content declined in all samples except those 

stored at 1 °C under low intensity light (Table 5.4). Thus, chlorophyll b content was found 

to decrease significantly with increasing temperature (P=0.001) and light intensity 

(P=0.004). After 7 days, no significant difference in chlorophyll b content was found 

between samples stored at 1 °C under low intensity and high intensity light and those 

stored at 10 °C under low intensity light conditions. Decline in chlorophyll b content, 

however, was observed in the samples stored at 10 °C under high intensity light 

conditions (Table 5.4).  
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Table 5.4 Chlorophyll a and chlorophyll b content on a dry weight (DW) basis in spinach leaves 

stored for 7 days at 1 or 10 °C under different light conditions (low intensity light (LL) and high 

intensity light (HL)). Different letters indicate that values are significantly different (P<0.05). Data 

represent mean values from 6 replicates. 

 

5.3.6 Leaf colour changes 

After 3 days of storage, leaf lightness (L*) value increased significantly (P=0.002) 

with increasing temperature of storage (Table 5.5). On the other hand, there was no 

significant difference in leaf lightness between the light conditions. After 7 days of storage, 

both temperature (P<0.001) and light intensity (P=0.026) had a significant effect on leaf 

lightness. Spinach leaves became lighter with increasing temperature of storage and light 

intensity. A significant interaction (P=0.014) was found between temperature and light 

conditions after 7 days of storage. This was due to leaf lightness being higher at 10 °C 

under high intensity light when compared with their counterparts stored at 10 °C under low 

intensity light, while no difference between the light conditions was observed at 1 °C 

(Table 5.5). 
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After 3 days of storage, there was no significant difference in leaf greenness (a*) 

value between all treatments stored at 1 or 10 °C under low intensity or high intensity light 

(Table 5.5). After 7 days, the greenness value was significantly (P<0.001) lower in the 

samples stored at 10 °C when compared with their counterparts stored at 1 °C. A 

significant interaction (P=0.029) was found between temperature and light conditions after 

7 days of storage. This was due to leaf greenness being higher at 10 °C under high 

intensity light when compared with their counterparts stored at 10 °C under low intensity 

light, while no difference between the light conditions was observed at 1 °C (Table 5.5). 
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After 3 days of storage, there was no significant difference in leaf yellowness (b*) 

value between samples stored at 1 °C under low intensity or high intensity light (Table 

5.5), while spinach leaves stored at 10 °C were significantly (P=0.009) more yellow than 

those stored at 1 °C. The highest increase in leaf yellowness value was observed at 10 °C 

under high intensity light. After 7 days, still no difference was observed between samples 

stored at 1 °C under low intensity or high intensity light (Table 5.5). Spinach leaves stored 

at 10 °C were significantly (P<0.001) more yellow when compared with those stored at 1 

°C (Table 5). Leaf yellowness also increased with increasing light intensity (P=0.001) due 

to severe yellowing of the leaves when stored at 10 °C under high light conditions. This 

led to significant interaction (P<0.001) being observed between temperature and light 

conditions. 

5.4 Discussion 

 Experiment 5 was conducted in August 2011 and August 2012. No significant 

difference in the quality of the leaves was observed between two growing seasons. It was 

possible to analyse the data together using two-way ANOVA, where experiments were 

used as blocks. The treatments used in this Experiment 5 have previously been used in 

Chapter 3 and 4. 

Gas composition 

 The increase in temperature of storage from 1 to 10 °C has previously been 

reported (Chapter 3) to affect gas composition inside the bags with spinach, while no 

change in the gas composition was observed in light-stored samples (Chapter 4). In 

agreement with the data reported in Chapter 4 no CO2 development was reported in this 

study inside the bags with spinach, suggesting that respiration was fairly low and was 

compensated by photosynthetic activity of the leaves (Toledo et al., 2003a). This is 

however in contrast with Chapter 3, where with increasing storage temperature, 

respiration increased. This different response may be partly explained by the fact that the 

number of bags that were used in both experiments differed. The number of bags per 

treatment/storage conditions in Experiment 1 (Chapter 3) and Experiment 5 were 42 and 
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12, respectively and this could be accounted for small changes in the gas composition 

inside the bags and within the growing cabinets. The difference between experiments 

could also be due to differences in film thickness, which has not been measured. 

Furthermore, the difference between two experiments was in the sampling times. In 

Experiment 1, samples were collected daily, while in Experiment 5 samples were 

analysed only on day 3 and 7. 

 Increase in dry matter has previously been reported with increasing temperature 

(Chapter 3) and light intensity (Chapter 4). In agreement with these findings, the highest 

dry matter was found in the samples stored at 10 °C under high intensity light conditions 

probably due to high transpiration. This treatment was then followed by spinach leaves 

stored at 10 °C under low intensity light conditions. This finding suggests that storage 

temperature affects dry matter more than light intensity. 

Texture 

 A significant (P=0.039) increase in solute leakage has previously been reported 

(Chapter 3) after 5 days of storage when comparing samples stored at 1 and 10 °C. In 

agreement with these findings no difference in solute leakage between spinach leaves 

stored at 1 and 10 °C was observed until day 7 of storage, when solute leakage indeed 

increased in samples stored at 10 °C, regardless of light intensity. Low intensity light has 

previously been shown (Chapter 4) to reduce solute leakage from the leaves compared 

with the samples stored under high intensity light. The same observation was reported in 

this study for spinach leaves stored either at 1 and 10 °C. This observation suggests that 

increase in both storage temperature and light intensity reduces textural quality of the 

leaves, which is in agreement with Luo et al. (2009) who observed an increase in solute 

leakage with increasing temperature of storage from 1 to 12 °C. Our findings are further 

supported by Babic et al. (1996) who observed marked decrease in textural quality of 

spinach leaves when leaves were stored at 10 °C. The possible mechanism relates to 

tissue dehydration (Aguero et al., 2008), which has been demonstrated to increase with 

increasing storage temperature (Pandrangi and LaBorde, 2004) and light intensity (Lester 
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et al., 2010b). In agreement with these studies, dry matter significantly increased in 

spinach leaves stored at 10 °C under high intensity light. 

Nutritional quality 

 A decline in AsA content has previously been reported with storage temperature 

increasing from 1 to 10 °C (Chapter 3) and light intensity from 30-35 μmol m–2 s–1 to 130-

140 μmol m–2 s–1 (Chapter 4). A similar response was observed in this study, however, 

storage temperature had a significant (P<0.001) effect on AsA content already after 3 

days of storage, while significant (P=0.022) differences between two light conditions were 

observed after 7 days of storage. High intensity light led to AsA loss, and this could be 

explained by high oxidative stress that will cause tissue damage (Foyer and Shigeoka, 

2011). This suggests that changes in AsA are more sensitive to changes in the 

temperature of storage than to intensity of light. Interestingly, a significant (P=0.035) 

interaction was found between storage temperature and light. This was due to a stronger 

decline in AsA content under high intensity light when spinach was stored at 1 °C, 

whereas no difference between light conditions was observed at 10 °C. Changes in the 

content of DHA in spinach leaves were inconsistent, as has previously been reported by 

Bergquist et al. (2006). Total AsA content has previously been reported to decline with 

storage temperature increasing from 1 to 10 °C (Chapter 3) and light intensity from 30-35 

μmol m–2 s–1 to 130-140 μmol m–2 s–1 (Chapter 4). In agreement with these findings, total 

AsA declined with increasing temperature already after 3 days of storage, while the 

difference between light conditions was not observed until day 7. 

 A decline in total carotenoid content has previously been reported with storage 

temperature increasing from 1 to 10 °C (Chapter 3). On the other hand, light intensity had 

no effect on total carotenoid content (Chapter 4). This is in agreement with others 

(Bergquist et al., 2006, Lester et al., 2010b) who reported carotenoids to be relatively 

stable or even increase during the storage of spinach. In this study, both temperature 

(P=0.023) and light intensity (P=0.012) had a significant effect on total carotenoid content 

after 7 days of storage. This was, however, mainly due to a significant decline in total 

carotenoid content in spinach leaves stored at 10 °C under high intensity light, while light 
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intensity had no effect on total carotenoid content in spinach stored at 1 °C. On the other 

hand, total carotenoid content declined with increasing storage temperature in the 

samples stored under high intensity light conditions, while non-significant decline was 

observed under low intensity light conditions. 

Visual quality 

 The content of chlorophyll a and b has previously been reported to decline with 

storage temperature increasing from 1 to 10 °C (Chapter 3), while no difference was 

observed between spinach leaves stored under low and high intensity light (Chapter 4). In 

agreement with these findings the content of both chlorophylls declined with increasing 

temperature from 1 to 10 °C and was not affected by light intensity in samples stored at 1 

°C in this study. Storage of spinach leaves under high intensity light at 10 °C led to a 

significant decline in the content of both chlorophylls. 

 Leaf lightness and yellowness have previously been reported to increase with 

increasing temperature of storage (Chapter 3), while light intensity had no effect on leaf 

colour (Chapter 4). These parameters increased with increasing temperature. Leaf 

lightness and yellowness also increased with increasing light intensity, however, the 

increase was only observed in the case of spinach leaves stored at 10 °C, while no effect 

of light was found when spinach was stored at 1 °C, which supports the findings from 

Chapter 4. Significant interactions between temperature and light conditions during 

storage were found for all leaf colour parameters – lightness (P=0.014), greenness 

(P=0.029) and yellowness (P<0.001). These were mainly due to changes observed at 10 

°C between two light conditions, while no difference between light conditions was found at 

1 °C. 

 Similar effect of increasing storage temperature and light intensity after 7 days of 

storage was found in terms of solute leakage, total carotenoids, chlorophyll a and b, and 

leaf colour. This led to cumulative effect of both factors, i.e. out of all treatments the 

quality of spinach stored at 10 °C under high intensity light was the lowest. Nutritional 

quality of spinach was affected by storage temperature already after 3 days of storage 
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while light had no effect until day 7. Interaction between storage temperature and light 

intensity was found for nutritional (AsA, DHA) and visual (leaf colour) quality after 7 days 

of storage, which means that both factors should be considered during displayed shelf-life 

of spinach. 

5.5 Conclusions 

 The results obtained in this study clearly support the findings of Chapter 3 (Effect 

of storage temperature on quality changes of baby leaf spinach) and 4 (Effect of light 

conditions on quality changes of baby leaf spinach). In the case of spinach leaves quality 

loss (i.e. membrane integrity, total AsA content and leaf colour) is accelerated with 

increasing temperature (Chapter 3) and intensity of light (Chapter 4). The rise in 

temperature caused more severe damage to the leaves than increase in the intensity of 

the light. Increase in storage temperature from 1 to 10 °C significantly reduced the quality 

of spinach leaves, as indicated by increased solute leakage, decline in the content of AsA, 

total AsA, total carotenoids and chlorophylls and reduced visual quality - leaf colour. 

Increase in light intensity from 30-35 μmol m–2 s–1 to 130-140 μmol m–2 s–1 resulted in 

decline of chlorophylls and total carotenoids, and reduced visual quality of spinach leaves 

stored for 7 days at 10 °C, while no effect of light was observed in samples stored at 1 °C. 

On the other hand, the increase in light intensity reduced nutritional quality (AsA and total 

AsA content) of the leaves when stored at 1 °C, while no difference was found between 

spinach leaves stored at 10 °C. This could be explained by the strong decline in the 

content of this bioactive compound already in response to the temperature rise. This 

means that spinach leaves are less responsive to changes in the light intensity when 

stored at 1 °C. Nonetheless, high intensity light may reduce nutritional quality of the 

leaves, even when they are stored at low temperature. Low storage temperature and low 

intensity light should thus be used to maintain the quality of spinach leaves during their 

displayed shelf-life. Both excessive temperature and intensive light lead to oxidative stress 

in spinach leaves, in this way inducing their senescence.  
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Chapter 6 Effect of hot water treatments on quality of baby leaf spinach 

6.1 Introduction 

There is potential to impose a postharvest period of heat to manipulate leaf 

biochemistry. A number of workers have reported benefits of periods of hot water 

treatment immediately after harvest to either visual quality or biochemical properties of 

leafy vegetables. These benefits have included reduced enzymatic browning of fresh-cut 

lettuce by repressing induction of phenylalanine ammonia-lyase (PAL) activity (Murata et 

al., 2004); maintained leaf colour in rocket (Koukounaras et al., 2009) and reduced tissue 

breakdown and chlorophyll loss in spinach (Gomez et al., 2008). Whilst Gomez et al. 

(2008) reported that hot water treatment at 37-43 °C for 3.5 min extended the shelf-life of 

spinach leaves, their results were obtained following storage at 23 °C. Commercial 

growers, however, routinely store spinach leaves at refrigerated temperatures (0-5 °C) 

and it has been demonstrated by Zhang et al. (2009) with broccoli that the response to hot 

water treatment may vary between the samples subsequently stored under different 

temperature regimes. 

Before hot water treatments can be recommended as a viable technique for 

improving postharvest quality of spinach, it is necessary to determine whether they could 

potentially be used for spinach leaves stored at commercially realistic refrigerated 

temperatures. The level of heat stress (i.e. temperature and duration) imparted by hot 

water treatment therefore needs to be great enough to elicit an antioxidant response but 

not so high as to lead to irreversible tissue damage (Delaquis et al., 1999). 

This Chapter reports findings from 2 experiments conducted with field-grown 

spinach. The aim was to determine the effect of hot water treatment prior to storage on 

changes in the quality characteristics of baby leaf spinach during storage. The hypothesis 

tested was: hot water treatment prior to storage does not affect the maintenance of 

texture, nutritional and/or visual quality characteristics of baby leaf spinach. 
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6.2 Materials and Methods 

6.2.1 Plant material and handling 

Spinach (Spinacia oleracea L.) cultivar Toucan was commercially grown at PDM 

Produce Ltd, Shropshire, TF10 9BN, UK. For each experiment, approximately 3 kg of 

leaves were collected at harvest (April 2012 – Experiment 6; 18th and 21st of May 2012 – 

Experiment 7) and transported to the laboratory (~15 minutes) in insulated opaque 

containers and treated immediately on arrival. 

In Experiment 6, spinach was subjected to hot water (40, 45 or 50 °C) treatment 

for 0, 30, 60 or 120 s. Leaves were subsequently washed with cold water (4 °C) for 120 s 

and then carefully blotted with absorbent paper, before storage at 4 °C in the dark for 10 

days. 

In Experiment 7, spinach was subjected to hot water treatment at 45 °C for 0 or 60 

s and was then subsequently washed in cold (4 °C) distilled water containing 100 µL L−1 

active chlorine (Cl) (Koukounaras et al., 2009) for 120 s. Leaves were carefully blotted 

with absorbent paper, before storage at 4 °C in the dark for 10 days. 

6.2.2 Measurements 

All measurements were taken following methods described in Chapter 2. 

6.2.3 Statistical analyses 

Each experiment was repeated twice with very similar results (verified by the 

Bartlett's homogeneity test and CV (%) values). Data are presented as mean values from 

two experiments that were used as blocks. Results were analysed using two-way ANOVA 

to identify the factors/treatments that had significant effect on quality changes during the 

storage of baby leaf spinach. Tukey’s test was used to allow the comparisons between 

individual treatments. Results were analysed using one-way ANOVA to identify whether 

the treatment had significant effect on quality changes of baby leaf spinach. All statistical 

analyses were performed using GenStat 14th Edition software (Payne et al., 2010).  
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6.3 Results 

6.3 a) Experiment 6 

6.3.1 Gas composition 

 Hot water treatments at 40 and 45 °C had no effect on changes in CO2 

concentration inside the packages with spinach leaves when compared with unheated 

samples (Table 6.1); the CO2 concentration in these samples on average did not exceed 

0.2%. In contrast, hot water treatment at 50 °C significantly (P<0.001) enhanced average 

CO2 concentration in the packages up to 0.67 and 0.85% in samples treated for 60 and 

120 s, respectively. The increase being more pronounced (P=0.020) with increasing 

treatment time (Table 6.1), however, this trend was only observed in case of samples 

treated at 50 °C. A significant (P=0.014) interaction between temperature of treatment and 

treatment time was observed. This was accounted for the samples treated at 50 °C, as no 

difference in the gas composition inside the packages with spinach was found between 

unheated samples and those treated with hot water at 40 and 45 °C for 30, 60 and 120 s, 

respectively.  
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Table 6.1 Changes in the concentration of O2 [%] and CO2 [%] in response to hot water treatments 

at 40, 45 or 50 °C for 0, 30, 60 or 120 s, respectively. O2 and CO2 concentrations were determined 

after 10 days of storage at 4 °C.  

Temperature [°C] Treatment Time [s] O2 CO2 

 
0 20.8% a 0.1% c 

40 30 20.8% a 0.1% c 

40 60 20.8% a 0.1% c 

40 120 20.9% a 0.0% c 

45 30 20.9% a 0.0% c 

45 60 20.7% a 0.2% c 

45 120 20.7% a 0.2% c 

50 30  20.6% ab   0.3% bc 

50 60 20.2% b   0.7% ab 

50 120 20.1% b 0.9% a 

Different letters indicate that values are significantly different (P<0.05). Data represent mean values 

from 6 replicates.O2 (P<0.001; SEM=0.191, CV=3.4%), CO2 (P<0.001; SEM=0.210, CV=2.6%). 

6.3.2 Solute leakage 

 After 10 days of storage, significant (P=0.007) differences in solute leakage were 

observed between spinach leaves treated with various hot water treatments prior to 

storage (Figure 6.1). Hot water treatments at 40 and 45 °C, however, had no significant 

effect on solute leakage when compared with unheated samples (Figure 6.1). Solute 

leakage values for samples treated with hot water at 40 °C were in the range from 4.18 to 

4.35%. In the case of spinach leaves treated at 45 °C for 30 or 60 s and at 50 °C for 30 s 

solute leakages were 3.20, 3.82 and 3.97%, respectively. Solute leakage increased in 

samples treated with hot water at 45 °C for 120 s (10.62%), at 50 °C for 60 s (10.23%). 

Hot water treatment at 50 °C for 120 s resulted in the greatest membrane damage 

(19.79%). Solute leakage increased significantly (P=0.004) with increasing treatment time. 

This trend, however, was only observed in samples treated at 45 and 50 °C. A significant 

(P=0.023) interaction was found between temperature of the treatment and treatment 

time, which informs that the response to increase in treatment time (from 30 to 120 s) was 

different over three temperatures (40, 45 and 50 °C) tested.  
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Figure 6.1 Solute leakages [%] from spinach leaves treated with hot water at 40, 45 or 50 °C for 0, 

30, 60 or 120 s, respectively. Solute leakage was determined after 10 days of storage at 4 °C. 

Solute leakage (P=0.007; SEM=2.506, CV=40.0%). Different letters indicate that values are 

significantly different (P<0.05). Where data points are close together one letter refers to those 

points. Each data point is the mean of 6 replicates. 

6.3.3 Leaf colour changes 

 Among leaf colour characteristics measured, only leaf yellowness was affected by 

hot water treatments (Table 6.2). There was no significant difference observed between 

unheated leaves and those treated either with hot water at 40 °C for 30, 60 or 120 s or 

those treated with hot water at 45 °C for 30 or 60 s, respectively. Spinach leaves treated 

with hot water at 45 °C for 120 s and those treated with hot water at 50 °C for 30 or 60 s 

were significantly more yellow than unheated control. 

The maximum treatment (temperature and duration) that did not result in a 

significant reduction in the quality of spinach leaves stored for 10 days at 4 °C was a hot 

water treatment at 45 °C applied for 60 s. This treatment was selected for further study to 

determine its effect on the nutritional quality of cold-stored spinach leaves. 
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6.3 b) Experiment 7 

6.3.4 Gas composition 

 No significant difference between heated (hot water treatment at 45 °C applied for 

60 s) spinach and unheated control was found in the gas composition inside the packages 

after 5 and 10 days of storage. The concentration of CO2 increased over time with a 

simultaneous decrease in the concentration of O2 (Table 6.3). 

Table 6.3 Changes in O2 and CO2 concentrations [%] in response to hot water treatments at 45 °C 

for 0 s (unheated) or 60 s (heated), respectively. Gas composition inside the packages was 

determined after 5 and 10 days of storage at 4 °C, respectively. 

Time of storage Treatment O2 CO2 

Day 5 
Unheated 17.98% a 2.87% a 

Heated 17.94% a 2.91% a 

Day 10 
Unheated 17.58% a 3.27% a 

Heated 17.28% a 3.57% a 

Different letters indicate that values are significantly different (P<0.05). Data represent mean values 

from 12 replicates.O2: 5 d (P=0.721; SEM=0.128, CV=3.0%), 10 d (P=0.678; SEM=0.255, 

CV=3.6%). CO2: 5 d (P=0.757; SEM=0.180, CV=2.5%), (P=0.699; SEM=0.251, CV=3.2%). 

6.3.5 Solute leakage 

Solute leakage from unheated and heated spinach leaves decreased to 0.77 % 

(unheated) and 0.58 % (heated) after 5 days of storage and remained lower until 10 days 

of storage – 1.00 % (unheated) and 0.87 % (heated) when compared with initial value of 

1.37 % (Figure 6.2). No significant difference was observed between unheated and 

heated samples throughout the storage period. 
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Figure 6.2 Solute leakage from spinach leaves subjected to hot water treatment applied at 45 °C 

for 0 s (unheated) or 60 s (heated) prior to storage. Solute leakage was determined after 5 and 10 

days of storage at 4 °C, respectively. Solute leakage: 5 d (P=0.084; SEM=0.214, CV=31.2%), 10 d 

(P=0.362; SEM=0.084, CV=9.7%). Different letters indicate that values are significantly different 

(P<0.05). Each data point is the mean of 12 replicates. 

6.3.6 Total ascorbic acid (ascorbic acid (AsA) + dehydroascorbic acid (DHA)) 

No significant difference was found in AsA content between heated and unheated 

samples throughout the storage period (Table 6.4). DHA content decreased from 0.36 to 

0.23 mg g-1 DW in heated samples after 5 days of storage, and was significantly 

(P<0.001) lower than in unheated samples. After 10 days, however, DHA content in these 

samples increased to 0.41 mg g-1 DW and was no longer significantly different when 

compared with unheated samples (Table 6.4).  



147 
 

Table 6.4 Effect of hot water treatment applied at 45 °C for 0 s (unheated) or 60 s (heated) prior to 

storage on ascorbic acid (AsA) and dehydroascorbic acid (DHA)) concentration on a dry weight 

(DW) basis in spinach leaves after 5 and 10 days of storage at 4 °C, respectively. Different letters 

indicate that values are significantly different (P<0.05). Data represent mean values from 12 

replicates. 

Treatment 
AsA [mg/g DW] DHA [mg/g DW] 

storage time [days] 

  0 5 10 0 5 10 

unheated 
6.78 

6.62 a 6.13 a 
0.36 

0.38 a 0.35 a 

heated 6.43 a 5.89 a 0.23 b 0.41 a 

Significance: 
Treatment   0.500 0.438   <0.001 0.385 

SEM   0.197 0.180   0.024 0.044 

CV    13.7% 11.8%   48.5% 63.4% 

Total AsA content decreased after 10 d of storage from 7.14 mg g-1 DW at day 0 to 

6.48 and 6.30 mg g-1 DW in unheated and heated samples, respectively (Figure 6.3). No 

difference in total AsA was observed between unheated and heated leaves throughout the 

storage period.  
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Figure 6.3 Effect of hot water treatment applied at 45 °C for 0 s (unheated) or 60 s (heated) prior to 

storage on total ascorbic acid (ascorbic acid (AsA) + dehydroascorbic acid (DHA)) concentration 

[mg g
-1

 DW] in spinach leaves after 5 and 10 days of storage at 4 °C, respectively. Total AsA: 5 d 

(P=0.229; SEM=0.282, CV=13.2%), 10 d (P=0.642; SEM=0.129, CV=11.3%). Different letters 

indicate that values are significantly different (P<0.05). Each data point is the mean of 12 

replicates. 

6.3.7 Total carotenoid and chlorophyll content 

No difference was found in chlorophyll a and b content between the samples 

during storage (Table 6.5). No significant difference was found for chlorophyll a: b ratio. 

Change was observed in total carotenoid content after 10 days of storage where it 

decreased significantly in unheated spinach leaves from 2.83 mg g-1 DW at day 0 to 2.56 

mg g-1 DW, while it did not change significantly in heated leaves. This resulted in 

significantly (P=0.049) higher total carotenoid content being observed in heated samples 

(Table 6.5). No correlation was found between leaf colour changes and plant pigment 

content of spinach leaves.  
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Table 6.5 Chlorophyll a and chlorophyll b, ratio and total carotenoid content on a dry weight (DW) 

basis in spinach leaves subjected to hot water treatment at 45 °C for either 0 s (unheated) or 60 s 

(heated). Spinach leaves were subsequently stored for 10 days at 4 °C. Different letters indicate 

that values are significantly different (P<0.05). Data represent mean values from 12 replicates. 

Treatment 
chlorophyll a [mg/g DW] chlorophyll b [mg/g DW] 

storage time [days] 

  0 5 10 0 5 10 

unheated 
8.32 

8.04 a 7.31 a 
1.73 

1.77 a 1.55 a 

heated 7.83 a 7.87 a 1.76 a 1.65 a 

Significance: 
Treatment   0.474 0.138   0.852 0.229 

SEM   0.201 0.256   0.049 0.058 

CV    11.4% 11.2%   15.6% 12.0% 

Treatment 
chlorophyll a: b ratio total carotenoids [mg/g DW] 

storage time [days] 

  0 5 10 0 5 10 

unheated 
4.81 

4.54 a 4.72 a 
2.83 

2.79 a 2.56 b 

heated 4.45 a 4.77 a 2.75 a 2.85 a 

Significance: 
Treatment   0.314 0.184   0.644 0.049 

SEM   0.140 0.082   0.062 0.099 

CV    4.5% 6.1%   7.8% 12.2% 

6.3.8 Leaf colour changes 

At harvest, all leaves had a dark green colour. Leaf colour changed during 10 days 

of storage at 4 °C. Leaf lightness and yellowness values increased, while the greenness 

value decreased (Table 6.6). No significant difference in leaf colour between unheated 

and heated samples was found after 5 days of storage. After 10 days heated leaves were 

significantly lighter, greener and more yellow than unheated counterparts.  
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Table 6.6 Effect of hot water treatments at 45 °C for 0 s (unheated) or 60 s (heated) on leaf colour 

changes during the storage of spinach leaves for 10 days at 4 °C. Different letters indicate that 

values are significantly different (P<0.05). Data represent mean values from 12 replicates. 

Treatment 
L* (lightness) 

storage time [days] 

  0 5 10 

unheated 
41.99 

42.73 a 43.27 b 

heated 42.72 a 44.15 a 

Significance: 
Treatment   0.983 0.018 

SEM   0.354 0.366 

CV    4.5% 6.5% 

Treatment 
a* (greenness) 

0 5 10 

unheated 
14.99 

-15.84 a -15.79 a 

heated -15.89 a -16.11 b 

Significance: 
Treatment   0.743 0.037 

SEM   0.177 0.152 

CV    6.1% 7.4% 

Treatment 
b* (yellowness) 

0 5 10 

unheated 
25.81 

27.35 a 28.16 b 

heated 27.78 a 30.36 a 

Significance: 
Treatment   0.392 <0.001 

SEM   0.503 0.495 

CV    10.0% 13.1% 
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6.4 Discussion 

A number of authors have reported benefits of hot water treatment on the shelf-life 

of spinach (Gomez et al., 2008) and rocket (Koukounaras et al., 2009). In the work 

reported here, spinach was treated with hot water at 40, 45 and 50 °C covering the 

optimum temperatures reported by both Gomez et al. (2008) and Koukounaras et al. 

(2009). Data obtained in Experiment 6 suggest that the maximum ‘safe’ hot water 

treatment that did not result in a significant deterioration in the quality of spinach leaves 

was hot water treatment at 45 °C applied for 60 s prior to storage. Treatment for a longer 

time, or at a higher temperature, proved counterproductive as the damage observed 

would result in a decreased shelf-life even if increased antioxidant content was observed. 

For instance, the level of solute leakage markedly increased in samples treated with hot 

water at 50 °C suggesting that cellular integrity was adversely affected. This is in 

agreement with work on tissue integrity in lettuce that reported solute leakage to be 

enhanced with increasing temperature and treatment time (Delaquis et al., 1999, Delaquis 

et al., 2004). Solute leakage was unaffected by hot water treatment at 45 °C for 60 s when 

compared with the control but Gomez et al. (2008) reported a reduction in solute leakage 

following hot water treatment at 40 °C for 3.5 min. This discrepancy might be due to the 

fact that these authors used a markedly higher storage temperature (23 °C) than the one 

used in this study. The storage temperature used in the current study (4 °C) was chosen 

to be representative of typical commercial storage conditions. 

The maximum hot water treatment of 45 °C applied for 60 s was hotter and of a 

shorter duration than the 40 °C for 3.5 min suggested by Gomez et al. (2008) for spinach.  

However, Gomez et al. (2008) only studied one duration of hot water treatment (3.5 min) 

at moderate temperatures (37, 40 and 43 °C) making direct comparison difficult. In 

contrast, Koukounaras et al. (2009) recommended a maximum hot water treatment for 

rocket at 50 °C for 30 s but did not study lower temperatures. In the study reported here, 

heat treatments at 50 °C applied for 30 s or longer damaged spinach leaves and led to 

significant changes in colour, solute leakage and respiration after 10 days. 
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Using the maximum acceptable treatment (45 °C for 60 s), the respiration rate was 

not affected when spinach leaves were subsequently stored at 4 °C. A similar observation 

has previously been reported (Martinez-Sanchez et al., 2008a) for mizuna and watercress 

leaves treated with hot water at 50 °C for 60 s and then subsequently stored at 4 °C. The 

same treatment did not increase the respiration rate of rocket leaves when subsequently 

stored at 8 °C (Koukounaras et al., 2009). This work identified that hot water treatment at 

45 °C for 60 s did not increase tissue respiration in spinach, which is associated with 

decreased shelf-life (Masih et al., 2002, Martinez-Sanchez et al., 2008a). 

Solute leakage remained low in all samples, regardless of whether tissue received 

the hot water treatment or not, further indicating that this treatment does not cause 

significant loss to tissue integrity. The values observed were in the same range as those 

reported for spinach by Allende et al. (2004b) and others (Medina et al., 2012, Tudela et 

al., 2013), but lower than reported by Gomez et al. (2008). This is not surprising as 

Gomez et al. (2008) stored spinach leaves at 23 °C which is a higher temperature than 4 

°C used here and 5 °C used by Allende et al. (2004b). Furthermore, a marked decrease in 

textural quality of spinach leaves has already been observed when leaves were stored for 

5 days at 10 °C (Babic et al., 1996), suggesting that higher storage temperature may 

cause damage to the leaves. 

A significant decrease in total AsA content was observed after 10 days of storage, 

an observation that has previously been reported by other authors (Gil et al., 1999, 

Bergquist et al., 2006, Bergquist et al., 2007, Bottino et al., 2009). No significant difference 

in AsA content was observed between heated and unheated spinach leaves. In support, 

others have found that hot water treatments had no effect on AsA content in spinach 

(Gomez et al., 2008) and rocket leaves (Koukounaras et al., 2009), respectively. The 

content of DHA in spinach leaves remained at a similar level during the storage period. 

This is in contrast with other studies that reported an increase in DHA content during the 

storage of spinach (Gil et al., 1999, Bottino et al., 2009), while inconsistent changes in 

DHA content have also been reported by Bergquist et al. (2006). 
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Leaf lightness increased during the storage of unheated spinach leaves, a different 

response to that reported by Conte et al. (2008) who did not observe any changes in leaf 

lightness, greenness and yellowness when spinach leaves were stored for 13 d at 5 °C. 

On the other hand, in this work, after 10 days of storage at 4 °C, spinach leaves were 

significantly more yellow than at day 0. Spinach leaves treated at 45 °C for 60 s were 

significantly lighter, greener and more yellow after 10 days when compared with unheated 

leaves. These results are in contrast with the response of rocket leaves (Koukounaras et 

al., 2009) which were significantly less green, less yellow and darker when treated with 

hot water at 50 °C for 30 s. Care must be taken when using leaf colour as a measure of 

postharvest quality; in darker leaves green colour may be masked by the presence of 

other pigments. 

Leaf colour changes may be related to chlorophyll degradation (Pandrangi and 

LaBorde, 2004) and it was observed that chlorophyll content decreased during the storage 

of unheated spinach leaves. This was in agreement with Pandrangi and LaBorde (2004), 

but in contrast to those reporting chlorophyll concentrations to be relatively stable during 

the storage of spinach leaves (Bergquist et al., 2006, Conte et al., 2008). The difference in 

chlorophyll retention may also be a consequence of studying a different cultivar to other 

workers, or else seasonal differences previously reported (Bergquist et al., 2006, Conte et 

al., 2008). In this study only chlorophyll a concentration decreased during storage, while 

chlorophyll b remained relatively stable. This is in contrast to Kopas-Lane and Warthesen 

(1995) and Noichinda et al. (2007) who reported chlorophyll b degradation to occur faster 

in spinach and Chinese kale, respectively. On the other hand, Pandrangi and LaBorde 

(2004) did not find any difference in chlorophyll a and b degradation rate, while Bergquist 

et al. (2006) observed a decrease in chlorophyll a: b ratio. In contrast to reported 

observations with rocket (Koukounaras et al., 2009) and spinach (Gomez et al., 2008), 

chlorophyll retention was not affected by hot water treatment at 45 °C for 60 s in this 

study. The difference may be due to several factors; Gomez et al. (2008) kept spinach at 

23 °C, while spinach was kept at 4 °C in this study; rocket leaves have a different texture 

to spinach leaves which may affect heat transfer properties. Furthermore, different 
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methods were used to quantify chlorophyll content of the leaves. Gomez et al. (2008) 

used chlorophyll meter (SPAD-502, Minolta) while a spectrophotometer was used in this 

study. 

The effect of hot water treatment at 45 °C on carotenoid content of spinach has not 

been previously reported but it is known that cooking temperatures, i.e. 98 °C, can 

degrade carotenoids (Aman et al., 2005). Compared with untreated leaves, hot water 

treatment at 45 °C for 60 s gave leaves with significantly higher total carotenoid content 

after 10 days of storage. The difference in carotenoid concentration after 10 days in this 

work was either associated with increased biosynthesis and/or with reduced carotenoid 

breakdown in the heated leaves, but further work will be needed to establish the 

underlying mechanism. Total carotenoid concentration in unheated spinach leaves 

declined throughout the storage period. This is in agreement with previous findings 

(Pandrangi and LaBorde, 2004, Bunea et al., 2008) but in contrast to those reporting 

carotenoids to be relatively stable during the storage of spinach leaves (Bergquist et al., 

2006, Bergquist et al., 2007, Lester et al., 2010b). No correlation was found between 

chlorophyll and total carotenoid content and leaf colour changes during the storage of 

spinach leaves. Similar observation has previously been reported (Pandrangi and 

LaBorde, 2004, Bergquist et al., 2006). Bergquist et al. (2006) suggested that it was due 

to the loss of colour being unevenly distributed. 

Although there were some benefits to the maintenance of carotenoid content in the 

leaves, overall, data presented in this Chapter suggest that hot water treatment at 45 °C 

for 60 s (the maximum ‘safe’ treatment) does not increase the shelf-life of spinach leaves. 

This is in contrast to the findings of Gomez et al., (2008), and suggests that the maximum 

hot water treatment for spinach (45 °C for 60 s) does not offer a practical method for 

producers for shelf-life extension or antioxidant concentration increase. Treatment for a 

longer time or at a higher temperature would result in unacceptable tissue damage and is 

not commercially viable. 
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6.5 Conclusions 

The postharvest hot water treatment at 45 °C for 60 s applied immediately after 

harvest was identified as the maximum stress treatment that could be applied before 

subsequent damage was observed in spinach leaves. Subsequent studies showed that 

this hot water treatment did not prolong the shelf-life of spinach; increase tissue quality or 

either maintain or increase total AsA content. The treatment did appear to protect total 

carotenoid concentration compared to untreated samples. Results presented here indicate 

that hot water treatments have limited commercial potential for quality improvement of 

spinach leaves.  
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Chapter 7 General discussion, conclusions and recommendations for future study 

The aim of this research was to investigate whether postharvest quality of baby 

leaf spinach can be improved or maintained either through optimising storage conditions 

(temperature and light) or by imposing a pre-storage stress (hot water treatment). 

 The current knowledge on the role of temperature and light exposure during 

storage and the effects of pre-storage hot water treatments on quality of leafy vegetables 

have been reviewed in Chapter 1. Seven duplicated experiments were conducted with 

field-grown spinach to improve our understanding of the role of temperature and light 

exposure during storage and whether pre-storage hot water treatments could be used by 

industry to improve or maintain the quality of baby leaf spinach. 

 In this chapter, the experiments will be summarized and compared with the 

published data. Broader questions will be addressed using the combined data, 

recommendations will be made for optimising spinach leaf quality and areas for future 

work will be identified.  
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7.1 Effect of storage temperature on quality changes of spinach leaves 

 The first objective of this project was to determine the effect of storage 

temperature on quality changes of baby leaf spinach. Furthermore, there was a need to 

identify which of the quality measures (from those used in this study) can potentially be 

used as good indicators of shelf-life. 

 All quality measures studied, with an exception of leaf greenness (a* value), 

responded to storage temperature with rapid deterioration in quality at 20 °C. This 

deterioration slowed as the temperature was reduced and based on the results obtained 

in Experiment 1, 2 and 5, it can be concluded that storage of spinach leaves at 1 °C 

maintained spinach leaf quality. This could be observed in  the development of CO2 inside 

the bags, solute leakage, changes in AsA, total AsA and plant pigment content 

(chlorophyll a and b, and total carotenoids), and leaf colour changes. 

The most responsive quality measures to temperature were AsA and total AsA 

content, development of CO2, solute leakage, leaf yellowness and lightness. In contrast, 

changes in plant pigment content were inconsistent and are not well suited to being used 

as indicators of shelf-life. 

The content of AsA and total AsA declined with temperature increasing from 1 to 

10 or 20 °C already after 1 day of storage. This rapid change in AsA content is not 

surprising as it is a key antioxidant in leaf tissue (Conklin, 2001; Mittler, 2002). Its role is to 

scavenge AOS that are produced in excess under stress conditions, e.g. increase in 

temperature. Plant cells have a capability to reduce the damage caused by AOS using 

antioxidant enzymes (SOD, APX, GR, CAT) and metabolites, including AsA and GSH, to 

transform AOS to less toxic compounds, e.g. water, using AsA as an electron donor 

(Mittler, 2002; Foyer and Noctor, 2009). In the reaction catalysed by APX, AsA is changed 

into DHA. Thus, changes in antioxidant content are a good indication of oxidative stress 

(Mittler, 2002). On the other hand, AsA content was found to be relatively stable during 

the storage of spinach leaves at 1 °C. Better retention of AsA in spinach leaves stored at 

lower temperature could be explained by either its biosynthesis or reduced turnover due to 
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higher activity of AsA-GSH cycle that is responsible for regeneration of AsA (Mittler, 2002; 

Blokhina et al., 2003). This finding suggests that storage at low temperature helps in 

maintaining nutritional quality of baby leaf spinach during its shelf-life. 

Rapid decline in AsA observed in spinach leaves stored either at 10 or 20 °C 

clearly suggests that cells were under strong oxidative stress and probably were not able 

to scavenge all AOS, which usually results in damage to cellular components, e.g. 

membrane lipids and proteins (Mittler, 2002). Peroxidation of membrane lipids occurs 

when AOS react with unsaturated fatty acids which lead to increased solute leakage. Lipid 

peroxidation of membranes is another reflection of stress-induced damage at the cellular 

level. 

Severe tissue damage in spinach leaves stored at 20 °C was also reflected in high 

respiration rate as indicated by strong development of CO2 inside the bags reported 

already after 1 day of storage. Spinach leaves have relatively high respiration rate and it 

has been reported by others (Martinez-Sanchez et al., 2008a) that respiration rate of leafy 

vegetables increases with increasing temperature of storage from 1 to 12 °C. Higher 

respiration rate is associated with reduced shelf-life. Proteins (Masih et al., 2002), lipids 

and carbohydrates (Buchanan-Wollaston, 1997) are often used as substrates for 

respiration. No development of CO2  was observed in bags with spinach stored at 1 °C, 

which suggests that the respiration was balanced by photosynthesis (Toledo et al., 2003a) 

and/or that film permeability to O2 and CO2 met physiological requirements of baby leaf 

spinach (Martinez et al., 2005). 

As already mentioned above, oxidative stress leads to increased solute leakage. 

Thus, it is not surprising that in the study reported here (Experiment 1, 2 and 5), solute 

leakage increased significantly with increasing temperature of storage from 1 to 6, 10 and 

20 °C after 7, 5 and 3 days of storage, respectively. This finding is in agreement with the 

findings of Luo et al. (2009) who observed increased solute leakage from spinach leaves 

when comparing the samples stored at 1 and 12 °C. The values observed in our study 

were in the same range as those reported by others (Allende et al., 2004b, Luo et al., 
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2009, Medina et al., 2012, Tudela et al., 2013) but lower than reported by Gomez et al. 

(2008). This is not surprising as Gomez et al. (2008) stored spinach leaves at 23 °C, 

which is a higher temperature than the one used by us and others (Allende et al., 2004b, 

Luo et al., 2009, Medina et al., 2012, Tudela et al., 2013). A marked decrease in textural 

quality of spinach leaves has already been observed when leaves were stored at 10 °C 

(Babic et al., 1996), explaining why higher storage temperature would cause damage to 

the leaves. In contrast to Luo et al. (2009), who did not observe any difference in solute 

leakage between spinach leaves stored at 1, 5 and 8 °C, in our study (Experiment 2), 

even a small difference in storage temperature (1 vs. 6 °C) significantly reduced textural 

quality of spinach leaves. 

Increase in solute leakage indicates the severity of the damage caused by AOS. 

The loss of texture may also be related to solubilisation of cell wall pectin and loss of 

carbohydrates as a result of enhanced respiration. These modifications reduce cell wall 

strength and cell to cell adhesion, leading to leaf softening (Clarkson et al., 2003). To 

reduce the damage from AOS, plants evolved the ability to regulate membrane fluidity in 

response to changes in temperature (Murata and Los, 1997); this can be achieved 

through saturation/unsaturation of membrane fatty acids. Membrane fluidity decreases 

with decreasing temperature of storage. The fact that solute leakage differed significantly 

between spinach leaves stored at 1, 6, 10 and 20 °C suggests that plants can show 

remarkable responses even to such small changes in temperature. 

Leaf lightness (L* value) and leaf yellowness (b* value) increased with increasing 

temperature of storage (Experiment 1, 2 and 5), while leaf greenness (a* value) did not 

respond to changes in temperature. Leaf yellowness (b* value) increased significantly with  

storage temperature increasing from 1 to 6, 10 and 20 °C after 7, 5 and 3 days of storage, 

respectively. Leaf lightness (L* value) on the other hand, increased with temperature 

increase from 1 to 10 °C, whereas no difference in this parameter was observed between 

spinach leaves stored at 1 and 6 °C. Our findings are in agreement with Luo et al. (2009) 

who have also demonstrated that in spinach, the loss of visual quality is accelerated with 

increasing temperature of storage. It is not surprising that from all leaf colour 
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characteristics (L*, a* and b*) the strongest changes were reported for leaf yellowness, as 

the process of leaf yellowing is the main issue associated with the loss of visual quality 

during the storage of spinach leaves. Leaf yellowing is often associated with changes in 

plant pigment content, e.g. changes in chlorophyll content or chlorophyll: carotenoid ratio 

(Toivonen and Brummell, 2008), however, as the changes in chlorophylls and carotenoids 

were inconsistent in our study, it is difficult to find a clear correlation between plant 

pigment content and leaf colour changes. Other groups (Pandrangi and LaBorde, 2004; 

Bergquist et al., 2006) also could not find a correlation between pigment content and 

visual quality of the leaves. This suggests that leaf colour, as measured with a chroma 

meter, may be influenced not only by pigment content but also by changes in texture and 

water content because plant pigments are often determined on DW basis, while leaf 

colour is always assessed on fresh tissue. Furthermore, plant pigments are not 

homogenously distributed within the leaf, so there might be a mismatch between the 

readings. 

Overall, the loss of chlorophyll was accelerated with increasing temperature of 

storage (Experiment 1, 2 and 5) which is probably related to higher activity of enzymes 

involved in chlorophyll degradation (Hortensteiner, 2006) and enhanced membrane 

disruption (Ferrante et al., 2004) as indicated by increased solute leakage, because 

chlorophyllase, enzyme involved in chlorophyll degradation, is separated from its 

substrate and does not come into contact with it until membrane integrity is reduced 

(Hortensteiner, 2006). This may explain, why no change in chlorophyll content was 

observed during 3 days of storage at 20 °C, suggesting that changes in plant pigment 

content are relatively slow. Changes in chlorophyll content were inconsistent between 

experiments. Inconsistent changes were observed in samples stored at 1 °C; where 

chlorophyll content either declined (Experiment 2 and 5) or remained relatively stable 

(Experiment 1). Good retention of chlorophyll has previously been reported (Bergquist et 

al., 2006, Conte et al., 2008), while Pandrangi and Laborde (2004) observed a decline in 

chlorophyll content during the storage of spinach. An increase in chlorophyll degradation 

rate with increasing storage temperature from 4 to 20 °C has previously been observed by 
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others (Gnanasekharan et al., 1992, Pandrangi and LaBorde, 2004). On the other hand, 

Bergquist et al. (2006) have not reported significant differences between spinach leaves 

stored at 2 and 10 °C. 

Total carotenoid content was found to be relatively stable during 3 days of storage 

at 1, 6, 10 and 20 °C (Experiment 1, 2 and 5). After 7 days of storage, however, changes 

in total carotenoid content were inconsistent between experiments. In Experiment 1, total 

carotenoid content decreased with increase in storage temperature from 1 to 10 °C, while 

no difference between these storage temperatures was observed in Experiment 5. 

Inconsistent changes in carotenoid content have previously been reported. A decrease in 

carotenoid content with increasing temperature of storage has been reported by 

Pandrangi and LaBorde (2004), while Bergquist et al. (2006) suggested that synthesis of 

carotenoids may occur and that carotenoids are quite well preserved during storage. 

All these data helped us to identify leaf texture and colour (leaf yellowness) as the 

best indicators of shelf-life as both parameters clearly indicated quality loss after 3, 5 and 

7 days of storage at 20, 10 and 6 °C, respectively. Although, a significant difference was 

found in AsA content between samples stored at 1 and 10 °C, changes in this parameter 

were not sensitive enough as no difference was found between spinach leaves stored at 1 

and 6 °C. Bergquist et al. (2006) investigated the effect of storage temperature on AsA 

retention in baby leaf spinach. Similar to our findings, they found better retention of AsA in 

spinach leaves stored at 2 °C when compared with their counterparts stored at 10 °C and 

suggested that AsA content may be a good predictor of shelf-life. The finding from our 

study (Experiment 2), however, suggests that AsA may not be the best parameter for 

determining the shelf-life of spinach. On the other hand, changes in plant pigment content 

were inconsistent and are not suitable as indicators of shelf-life.  
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7.2 Effect of light exposure during storage on quality changes of spinach leaves 

Another objective of this project was to determine the effect of light exposure 

during storage on quality changes of baby leaf spinach and to investigate whether the 

observed responses were due to the light intensity or the total amount of light received by 

the leaves. 

Not all quality measures studied responded to light environment. In general, high 

light led to deterioration in postharvest quality and this effect was most marked in leaf 

membrane integrity, antioxidant content and leaf colour. On the other hand, membrane 

integrity maintenance was improved by exposure of spinach leaves to low intensity light, 

whereas chlorophyll a and b content decreased. There was little response to photoperiod 

suggesting that the key factor in postharvest response was light intensity, with high light 

intensity leading to oxidative stress and quality loss. 

Based on the results obtained in Experiment 3, 4 and 5 it can be concluded that 

during the storage of spinach leaves at 1 and 10 °C under light conditions (30-35 and 130-

140 μmol m–2 s–1) respiration was compensated by the photosynthetic activity of the 

leaves (Toledo et al., 2003a) as no CO2 development was detected inside the bags. No 

photosynthesis could occur in the dark, thus development of CO2, as observed, was 

expected to take place in dark-stored samples (Experiments 3, 6 and 7). 

In agreement with other studies (Kar and Choudhuri, 1986, Martinez-Sanchez et 

al., 2011) solute leakage from spinach leaves was reduced by exposure to low intensity 

light (Experiment 3) when compared with their dark-stored counterparts. No benefit of light 

exposure during storage, however, was observed when light intensity was too high as 

solute leakage increased with increasing light intensity (Experiment 3 and 5). High 

intensity light may lead to excess oxidative stress that will cause tissue damage (Foyer 

and Shigeoka, 2011), which is often associated with increased lipid peroxidation (Hodges 

and Forney, 2003). The possible mechanism may also relate to tissue dehydration 

(Aguero et al., 2008) which has been demonstrated to increase with increasing storage 

temperature (Pandrangi and LaBorde, 2004) and light intensity (Lester et al., 2010b). 
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Furthermore, due to photosynthetic activity of spinach leaves stored under light 

conditions, the pool of carbohydrates may be increased (Toledo et al., 2003b), thus 

supplying substrates for respiration, whereas in the dark photosynthesis cannot proceed. 

This may result in leaf membrane lipids being used in respiration (Buchanan-Wollaston, 

1997), which would lead to texture loss and could possibly explain why solute leakage 

from spinach leaves stored under low intensity light condition was improved when 

compared with their dark-stored counterparts. 

Ascorbic acid content was found to be relatively stable during the storage of 

spinach leaves under low intensity light at 1 °C (Experiment 1, 2, 3, 4 and 5) or in the dark 

at 1 °C (Experiment 3) or 4 °C (Experiment 7). No significant difference in the content of 

AsA was found between samples stored in the dark and under continuous low intensity 

light. This is in contrast with other studies (Toledo et al., 2003b, Lester et al., 2010b) that 

reported better retention of AsA in light-stored samples. It is important to note that in our 

study AsA content is reported on dry weight (DW) basis while Toledo et al. (2003b) 

reported it on fresh weight (FW) basis. Furthermore cultivar differences have been 

reported by Lester et al. (2010b) who observed higher AsA content in light-stored spinach 

in cultivar Lazio, but not in the case of cultivar Samish, where no difference in AsA content 

between two storage conditions was found for top- and medium-canopy leaves after 9 

days of storage. This may explain why no difference in AsA content between samples 

stored in the dark and under low intensity light was found in our study. 

The loss of AsA was enhanced with increasing light intensity (Experiments 3, 4 

and 5), which could possibly be explained by the increased water loss (Aguero et al., 

2008). Decline in AsA content in spinach leaves stored under high light intensity may also 

be due to oxidative stress, where the level of AOS produced in response to high light 

exceeds the capacity of cells to scavenge them, thus leading to photooxidative damage 

(Asada, 2006). AsA acts not only as an antioxidant itself but plays a role in 

photoprotection, being a cofactor for violaxanthin deepoxidase in the xanthophyll cycle 

(Eskling et al., 1997). The xanthophyll cycle, where under high intensity light violaxanthin 

is transformed to zeaxanthin, is responsible for non-photochemical quenching of AOS, 



164 
 

which are mainly generated in the reaction centres of photosystem I and II. The 

xanthophyll cycle is induced by changes in pH across thylakoid membranes, which result 

from exposure to high intensity light (Asada, 2006). 

Changes in the content of DHA in spinach leaves were inconsistent between 

experiments, as previously reported by Bergquist et al. (2006). The content of DHA is 

often used as an indication of stress in the leaf; however, care is needed as DHA can 

undergo further conversion, e.g. an irreversible hydrolysis to 2, 3-diketogulonic acid (Yang 

and Loewus, 1975). 

Spinach leaves stored under light conditions (low intensity and high intensity light) 

were significantly lighter than their dark-stored counterparts (Experiment 3) but in terms of 

leaf yellowness, leaves stored under low intensity light were not significantly different from 

those stored in the dark. Increase in leaf lightness could be explained by a decrease in 

chlorophyll: carotenoids ratio. Leaf greenness (a* value) was not affected by light 

conditions during storage at 1 °C (Experiment 3 and 5). 

Kopas-Lane and Warthesen (1995) suggested that chlorophyll degradation is 

enhanced by light exposure during storage. Chlorophyll content decreased in samples 

stored under low intensity light when compared with their dark-stored counterparts, 

whereas no difference in chlorophyll content was observed between leaves stored under 

low and high intensity light conditions at 1 °C (Experiment 3 and 5). 

Light exposure had no effect on total carotenoid content. This may be explained by 

their important role in photosynthesis and protection of chlorophylls and chloroplasts from 

photooxidative damage (Demmig-Adams et al., 1996). Furthermore, as already mentioned 

above, carotenoids may be transformed from one to another (xanthophyll cycle) in 

response to changes in light intensity. 

Overall, increase in light intensity from 30-35 and 130-140 μmol m–2 s–1 resulted in 

a decline in AsA, DHA and total AsA, and increased solute leakage from spinach leaves. 

In contrast, change in light intensity had no effect on plant pigment content and leaf colour 

characteristics after 7 days of storage at 1 °C (Experiment 3 and 5). 
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To answer the question whether these observed responses were due to the light 

intensity or total amount of light received by the leaves, an experiment was conducted 

where spinach leaves received similar amounts of light by being exposed either to 

continuous (24 hours) low intensity light (30-35 μmol m–2 s–1) or a short day (SD) 

photoperiod of 6 hours high intensity light (130-140 μmol m–2 s–1) with 18 hours in the 

dark. 

No differences in the quality of spinach stored under continuous (24 hours) low 

intensity light and SD (high intensity light/ dark (6/18 hours)) were observed (Experiment 

4) with respect to gas composition, texture and visual quality (plant pigment content and 

leaf colour), however, the concentration of AsA and total AsA was lower in spinach leaves 

stored under SD conditions (high intensity light/ dark (6/18 hours)). This suggests that 

even relatively short exposure to high intensity light (130-140 μmol m–2 s–1) may lead to an 

excess oxidative stress that accelerates AsA degradation, thus reducing nutritional quality 

of spinach leaves. This observation suggests, that exposure of spinach leaves to high 

intensity light (130-140 μmol m–2 s–1) for only 6 hours, still induces stress response and 

production of AOS, which need to be scavenged within AsA-GSH cycle with concomitant 

decline in AsA. Further investigation should be carried out to identify the threshold in light 

intensity that does not compromise spinach quality, so that recommendations can be 

made to retailers and the supply chain.  
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7.3 Effect of temperature and light on quality of baby leaf spinach 

It was clear from the previous experiments that both temperature and light 

conditions during storage are important in terms of quality maintenance during the storage 

of spinach. There were questions that still needed to be answered: how the changes in 

the quality of spinach leaves would respond over the range of temperatures (1 and 10 °C) 

if stored under different light conditions (low intensity (30-35 μmol m–2 s–1) and high 

intensity (130-140 μmol m–2 s–1) light)? Would the effect be additive or is there an 

interaction between two factors? Finally, which of two factors – temperature or light – has 

a greater effect on the quality of spinach? 

In Experiment 5, solute leakage increased with increasing temperature of storage 

from 1 to 10 °C and light intensity from 30-35 to 130-140 μmol m–2 s–1. This finding was in 

agreement with findings from Experiment 1 and 3. The effect of temperature and light 

conditions during storage on leaf texture was additive as the lowest solute leakage was 

observed in spinach leaves stored at 1 °C under low intensity light followed by samples 

stored under high intensity light at the same temperature. The highest solute leakage was 

reported for spinach leaves stored at 10 °C under high intensity light condition. It also 

gives clear evidence that storage temperature has a greater effect on leaf texture than 

intensity of light. 

In Experiment 5, AsA and total AsA content declined with increasing temperature, 

while increase in light intensity significantly reduced AsA and total AsA content only in 

case of samples stored at 1 °C, but not those stored at 10 °C. This finding is in agreement 

with findings from Experiment 1 and 3. It does suggest that storage temperature has a 

much greater effect on nutritional quality of spinach leaves, whereas the effect of light on 

AsA content at higher temperature seems to be minor. 

No differences in plant pigment content (chlorophyll a, b and total carotenoids) 

were observed in Experiment 5 between spinach leaves stored at 1 and 10 °C under low 

intensity light. This finding is in contrast with Experiment 1, where plant pigment content 

decreased with increasing temperature of storage. No difference was also observed 
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between spinach leaves stored at 1 °C under low and high intensity light conditions, which 

was in agreement with findings from Experiment 3, where light had no effect on plant 

pigment content in spinach. This lack of consistency further supports the statement that 

plant pigments are not good indicators of shelf-life. Interestingly, the greatest decline in all 

plant pigments was reported in spinach leaves stored at 10 °C under high intensity light 

conditions, which suggests that these compounds are very sensitive to changes in light 

intensity when stored at higher temperature. This may be due to chemical reactions (e.g. 

degradation of chlorophyll) that are faster at 10 than at 1 °C being further accelerated 

(additive effect) by oxidative stress induced by excessive light. 

In experiment 5, leaf lightness (L* value) and yellowness (b* value) increased with 

increasing temperature from 1 to 10 °C, while these parameters were not affected by light 

intensity when spinach was stored at 1 °C. These findings are in agreement with 

Experiment 1 and 3. Interestingly, as a result of interaction between temperature and light 

conditions during storage, the greatest decline in visual quality of the leaves was reported 

in spinach leaves stored at 10 °C under high intensity light conditions, which suggests that 

these parameters are very sensitive to changes in both temperature and light intensity. 

Production of AOS in plant cells increases with increasing temperature from 1 to 

10 °C and is further enhanced by exposure to high intensity light which causes additional 

damage at cellular level. These two stresses combined together may cause damage to 

photosynthetic apparatus, which would probably induce leaf senescence as physiological 

processes in the cell could not be maintained. Enhanced quality deterioration in spinach 

leaves stored at 10 °C under high intensity light conditions, gives clear evidence that the 

response of leaves subjected to a combination of two different stresses is different from 

the response to each of them applied independently (Experiment 1 and 3). Thus, studying 

plant responses to multiple stresses is a serious challenge; it requires good understanding 

of different signalling pathways and the interactions (cross-talk) between them (Fujita et 

al., 2006). These complex signalling networks include several components, e.g. AOS, 

plant hormones (abscisic acid, salicylic acid, jasmonic acid and ethylene) and kinases. 
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The mechanisms how these pathways are coordinated in the cell, however, are still not 

yet well understood. 

Hewezi et al. (2008) have conducted a study, where they investigated gene 

expression patterns in sunflower (Helianthus annuus L.) plants exposed to high 

temperature and high light stresses applied individually and in combination. They found 

that the expression of number of genes was induced in response to a particular stress. 

Based on their observations, suggestion can be made that the response of a plant to two 

different stresses cannot be deduced from results obtained with these stresses applied 

independently from each other. 

There is a clear message to the industry sector that even though the temperature 

of storage is a key factor affecting the quality maintenance of baby leaf spinach, having 

greater effect on spinach quality than light, the role of the latter one cannot be 

underestimated. Light has been reported to affect textural and nutritional quality of 

spinach leaves when bags were stored at 1 °C (Experiment 3), and the important role of 

light has been demonstrated with increasing temperature of storage (Experiment 5). 

The reasons why temperature may have a greater effect on quality of spinach 

leaves than light exposure have been discussed in the sections 7.1 and 7.2. Briefly, both 

stresses induce production of AOS which is enhanced with increasing dose (temperature 

or light intensity). Based on the results obtained in this research it can be postulated that 

increase in temperature within the range studied, enhances the respiration rate and alters 

activity of the enzymes involved in metabolism, including those responsible for scavenging 

of AOS, cell wall/membrane degradation and biosynthesis/turnover of phytochemicals. On 

the other hand, with increasing light intensity within the range studied, membrane integrity 

and antioxidant content were the only parameters that were affected. Care must also be 

taken when interpreting these observations because the range of temperature studied 

was bigger than the range of light intensities, i.e. the highest temperature of 20 °C caused 

severe damage to the leaf, where the end of shelf-life was reached after 3 days of 

storage, while the effect of highest light intensity was less pronounced. The combined 
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study gives clear indication about the important role of temperature and light exposure 

during the storage of baby leaf spinach and highlights the necessity to consider both 

factors in the future studies. 

7.4 Effect of pre-storage hot water treatment on quality changes of spinach leaves 

Another question to be answered was whether pre-storage hot water treatments 

can enhance or maintain postharvest quality of spinach leaves? The pre-storage hot water 

treatment at 45 °C for 60 s applied immediately after harvest was identified as the 

maximum heat shock treatment that could be used before subsequent damage was 

observed in spinach leaves. A second more detailed study showed that this hot water 

treatment did not prolong the shelf-life of spinach or increase tissue quality. The treatment 

did appear to protect total carotenoid concentration compared to untreated samples. 

Results indicate that hot water treatments have limited commercial potential for quality 

improvement of spinach leaves. This finding is in contrast with findings of Gomez et al. 

(2008) and Koukounaras et al. (2009) who reported improved quality of spinach and 

rocket leaves in response to pre-storage hot water treatments at 40 °C for 3.5 min and 50 

°C for 30 s, respectively. This different response may be explained by different 

temperature conditions during subsequent storage (Gomez et al., 2008) or sensitivity of 

different commodities. This finding gives valuable information to the industry, as in 

contrast to number of papers reporting benefits of pre-storage hot water treatment on 

quality maintenance during subsequent storage of lettuce (Murata et al., 2004; Martin-

Diana et al., 2006), rocket (Koukounaras et al., 2009) and spinach (Gomez et al., 2008), 

this is not the case, when spinach is stored under commercial, refrigerated conditions.  
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7.5 Broader questions 

Does antioxidant content correlate with shelf-life? 

 There was a need to answer the question whether the content of particular 

compounds, i.e. antioxidants (AsA or carotenoids), is important in terms of shelf-life 

improvement in spinach as suggested by Bergquist et al. (2006). To answer this question, 

correlation analyses were conducted (Appendix 1). Neither AsA nor total carotenoid 

content correlated with shelf-life related characteristics (e.g. solute leakage, leaf colour), 

thus it can be concluded that shelf-life in spinach is not associated with the content of 

these particular antioxidants. 

How does chlorophyll content relate to leaf texture? 

Another intriguing question was why there was a difference in solute leakage 

values between experiments. A moderate correlation (r=0.535) was found between total 

chlorophyll content and solute leakage (Figure 7.1). To confirm, whether the correlation is 

correct the data for all experiments was checked. High total chlorophyll content 

(Experiment 1 and 3) was indeed associated with higher solute leakage. This finding is 

supported by others (Cuppett et al., 1999) who found a correlation between total 

chlorophyll content and the level of nitrogen applied in the fertilizer. Increasing the 

nitrogen level leads to darker green leaves. These leaves, however, were found to be 

softer (Cuppett et al., 1999), which is likely to result in shorter shelf-life (Clarkson et al., 

2003) during postharvest storage. Leaf strength was also found to be reduced in response 

to applied nitrogen in iceberg lettuce (Newman et al., 2005), however, these authors 

observed that this loss in texture can be reduced if plants are grown with addition of 

calcium. This means that the level of nitrogen in the fertilizer should be carefully adjusted 

bearing in mind its effect on postharvest quality of the product. This might be a challenge 

for breeders and growers as there is a high consumer demand for dark green leaves, 

however, if the quality of the product could be maintained and its shelf-life extended this 

might be a feasible solution. 
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Figure 7.1 Correlation between total chlorophyll content [mg/g DW] and solute leakage from 

spinach leaves during storage. Data points include readings from experiments 1, 2, 3, 4, 5 and 7, 

excluding the values from high (10 and 20 °C) temperature of storage. 

Are leaf colour parameters correlated with each other? 

 Care must be taken when comparing different studies as seasonal differences in 

colour parameters of spinach leaves have been reported by Conte et al. (2008). 

Furthermore, using leaf greenness (a* value) as a measure of postharvest quality might 

be a bit misleading as dark green leaves could often be seen (by Minolta) as less green 

when compared with bright green leaves. To support the latter statement, correlation 

analyses were conducted. The outcome from these analyses is presented on Figure 7.2. It 

can be seen (Figure 7.2 A) that leaf lightness (L* value) correlates (r=0.601) well with leaf 

yellowness (b* value). An even stronger correlation (r=-0.746) was found between leaf 

greenness (a* value) and leaf yellowness (Figure 7.2 B). This means, that with increasing 

yellowness spinach leaves become lighter and greener. Thus, as mentioned before bright 

green leaves are recognised as being greener than their dark green counterparts. 
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Figure 7.2 Correlations between leaf colour characteristics: (A) between leaf yellowness (b*) and 

lightness (L*), (B) between leaf greenness (a*) and yellowness (b*). Data points include readings 

from all experiments.  



173 
 

Do changes in chlorophyll a: b ratio correlate with leaf colour changes? 

In addition to correlations mentioned above, a weak, nonetheless significant 

(P<0.05) correlation (r=-0.260) was found between chl a: chl b ratio and leaf lightness (L* 

value). This correlation suggests that with decreasing chl a: chl b ratio leaf lightness 

increases, which could be explained by the fact that chl b is brighter than chl a 

(Hortensteiner, 2006). Interestingly, the ratio did not correlate with other colour 

characteristics – leaf greenness (a* value) and yellowness (b* value), which suggests that 

chl a: chl b ratio is not a good indicator for assessing the quality of baby leaf spinach. 

Are pre-harvest conditions important in terms of postharvest shelf-life? 

Finally, a number of authors (Bergquist et al., 2006; Conte et al., 2008) reported 

seasonal differences in the quality of spinach leaves. Even though Boese and Huner 

(1990) suggested that spinach was not stressed when grown at the temperature of 5 °C, 

they did observe an increase in the leaf thickness and strength compared with the leaves 

grown at 16 °C. Antioxidant content, however, was not determined in their study. 

Interestingly, in our research, the highest AsA content was found in Experiment 7, 

conducted on spinach grown at the lowest average temperature of 8.7 °C, while the 

lowest content was reported in Experiment 5, when the temperature (14.9 °C) was 

highest. This may suggest that growth at low temperature may actually induce some 

stress related responses leading to increased nutritional value of baby leaf spinach, thus 

requiring further investigation.  
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7.4 Overall conclusions 

A. Storage temperature affected nutritional quality of baby leaf spinach. Quality loss 

was accelerated with increasing temperature of storage; 

B. Storage temperature affected visual and textural quality of baby leaf spinach. 

Visual quality declined (spinach leaves were more yellow) with increasing 

temperature of storage; 

C. Light conditions during storage affected nutritional quality of baby leaf spinach. 

High intensity light led to oxidative stress and loss of nutritional value of spinach; 

D. Light conditions during storage affected visual quality of baby leaf spinach. With 

increasing light intensity, spinach leaves became lighter and more yellow; 

E. Light conditions during storage affected texture of baby leaf spinach. Texture was 

well maintained under low intensity light conditions, whereas high intensity light led 

to tissue damage; 

F. Both temperature and light conditions during storage are important with respect to 

quality maintenance in baby leaf spinach;  

G. Pre-storage hot water treatment affected nutritional quality of baby leaf spinach 

(higher total carotenoid content) but had no effect on leaf texture; 

H.  Pre-storage hot water treatment affected visual quality of baby spinach. Heated 

spinach leaves were lighter and more yellow than their unheated counterparts; 

I. Shelf-life in spinach is not associated with the content of antioxidants; 

J. Leaf greenness (a* value) should not be used as a measure of quality of spinach.  
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7.5 Recommendation for future studies 

Effect of hot water treatments on individual carotenoids and flavonoids in spinach 

 As mentioned in the literature review (Chapter 1) information on changes in 

carotenoids and flavonoids in response to hot water treatments is not available. To our 

knowledge, this is the first time (Chapter 6) when the effect of hot water treatment at 45 °C 

for 60 s on total carotenoid content of spinach has been reported. More detailed analysis 

– changes in the concentrations of individual compounds, e.g. lutein and β-carotene – 

however, is still missing. It is important to understand changes in the carotenoid 

biochemistry of spinach in response to hot water treatment because different carotenoids 

play a different role in human health. For the same reason it would be interesting to 

investigate changes in individual flavonoids – a group of compounds that possess 

antioxidant capacity and have also been reported to be important to humans. 

Effect of light exposure during storage on membrane integrity 

 Maintaining membrane integrity seems to be one of the key factors in terms of 

extending the shelf-life of spinach. The role of membrane in postharvest physiology has 

been reviewed (Marangoni et al., 1996). More recently, Wagstaff et al. (2010) 

demonstrated that lettuce with reduced membrane permeability and modified cell wall 

properties exhibited improved shelf-life. Light exposure during storage has been reported 

to reduce solute leakage from lettuce (Martinez-Sanchez et al., 2011) and spinach leaves 

(Kar and Choudhuri, 1986) when compared with dark-stored counterparts. A similar 

observation was reported in our study (Experiment 3). The mechanism behind this 

response, however, remains unclear. Thus, it would be useful to conduct more detailed 

analyses (similar to those of Wagstaff et al. (2010)) of cell wall properties of spinach 

leaves stored under low intensity light and in the dark. Better understanding of this 

mechanism could be beneficial for plant breeders, so that the new cultivars, possibly with 

extended shelf-life would appear on the market.  
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Manipulating light quality during storage 

 Information on the effects of light quality manipulation during the storage of 

spinach is scarce. Only studies that compared light- and dark-stored leaves have been 

conducted (Kopas-Lane and Warthesen, 1995; Toledo et al., 2003b; Lester et al., 2010b). 

Thus, to consider potential application of photobiology in postharvest storage of spinach, a 

better understanding of the effects of different light wavelengths on plant’s biochemistry is 

necessary. 

Plants have specific photoreceptors that sense different wavelengths of light. 

These are phytochromes (red and far red light), cryptochromes (blue light)                    

and phototropins (Gyula et al., 2003, Karpinski et al., 2003). The signal transduction 

pathways that are regulated by phytochrome (Quail, 2002, Schafer and Bowler, 2002, 

Gyula et al., 2003), cryptochrome and phototropins (Quail, 2002, Gyula et al., 2003, 

Liscum et al., 2003) have been reviewed and the expression of large numbers of genes is 

induced in response to light. 

Due to the different wavelengths being absorbed by different pigments in plant 

leaves (Lefsrud et al., 2008) it may be expected that the change in light spectrum may 

influence the concentration of these compounds. Recently, light emitting diodes (LEDs) 

have been found to be a useful and promising tool to investigate the effect of light 

wavelength manipulation on plant biochemistry (Ohashi-Kaneko et al., 2007, Lefsrud et 

al., 2008, Li and Kubota, 2009). 

Light manipulation can be used to improve nutritional quality of spinach by 

increasing the concentration of bioactive compounds (Ohashi-Kaneko et al., 2007; Lefsrud 

et al., 2008; Li and Kubota, 2009), e.g. neither blue nor red light applied individually had a 

significant effect on AsA content in spinach, whereas when both blue and red light were 

applied simultaneously AsA increased (Ohashi-Kaneko et al., 2007). Blue light enhanced 

carotenoid and chlorophyll concentrations in spinach (Matsuda et al., 2007, Ohashi-

Kaneko et al., 2007). LEDs can either be used as the only source of light during storage or 

in addition (light supplementation) to white light. 
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Use of metabolomics in postharvest studies 

 It seems that in the near future, postharvest studies should consider the use of 

metabolomics (Cevallos-Cevallos et al., 2009; Kim et al., 2011). 1H NMR metabolite 

profiling might be a solution, as it is a fast and simple method for determining the 

presence of specific compounds within the leaf tissue (Kim et al., 2011). Furthermore, 

being able to screen multiple compounds at a time, means that biochemical pathways 

could be constructed and this would improve our understanding of leaf biochemistry. 

Recommendation for growers and retailers 

 In agreement with Nunes et al. (2009), who suggested that temperature 

maintenance in the supply chain is the most important factor affecting the quality and 

shelf-life of fresh produce; it has been found in this research that storage temperature has 

a greater effect on quality of baby leaf spinach than intensity of light during storage. The 

role of light exposure, however, cannot be underestimated as it has been reported that it 

may also affect the quality of spinach. Based on the obtained results, recommendation 

can be made to keep spinach at low refrigerated temperature, ideally close to 1 °C, under 

low intensity light conditions.  
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Appendix 2 

HPLC chromatogram of ascorbic acid (AsA). 
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Appendix 3 

 

Indicative data of temperature variation in the growing cabinets as recorded with Tinytag
TM

 

temperature loggers (Gemini Data Loggers Ltd, UK) during the storage of spinach samples at 1, 10 

and 20 °C during the 10 days (240 hours) period.  
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Appendix 4 

 

Indicative data of light intensity variation in the growing cabinets as recorded with quantum sensor 

(Skye Instruments Ltd, UK) during the storage of spinach. 
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