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Abstract 

Wind resource assessment is fundamental when selecting a site for wind energy projects. Wind is influenced by 

several environmental factors and understanding its spatial variability is key in determining the economic viability of 

a site. Numerical wind flow models, which solve physical equations that govern air flows, are the industry standard 

for wind resource assessment. These methods have been proven over the years to be able to estimate the wind 

resource with a relatively high accuracy. However, measuring stations, which provide the starting data for every wind 

estimation, are often located at some distance from each other, in some cases tens of kilometres or more. This adds 

an unavoidable amount of uncertainty to the estimations, which can be difficult and time consuming to calculate with 

numerical wind flow models. For this reason, even though there are ways of computing the overall error of the 

estimations, methods based on physics fail to provide planners with detailed spatial representations of the uncertainty 

pattern. In this paper we introduce a statistical method for estimating the wind resource, based on statistical learning. 

In particular, we present an approach based on ensembles of regression trees, to estimate the wind speed and 

direction distributions continuously over the United Kingdom (UK), and provide planners with a detailed account of 

the spatial pattern of the wind map uncertainty. 
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1. Introduction 

Wind energy plays a key role in reducing the level of CO2 emissions required to mitigate the worst effects of climate 

change. By 2020 the UK has pledged to produce 30% of its electricity from renewable sources [1], compared to 

17.8% today [2]. With the depletion of conventional sources and the increase of global warming Renewable Energy 

Sources (RES) have attracted the interest of investors. Among all RES, wind energy has had a substantial growth 

over the last five years, reaching a global installed capacity of around 370 GW (gigawatts) at the end of 2014 with an 



overall turnover of 277 billion Euros [3]. Moreover, according to the latest statistics [4], electricity produced from 

onshore wind farms is becoming cheaper than other traditional sources of electricity such as nuclear, coal, and 

combined gas cycle. In the United States the unsubsidized levelized cost of 1 MWh (megawatthour) produced by 

onshore wind is already lower or equal to all other sources of electricity. 

When selecting a site for investing in a wind energy project, wind resource assessment plays a fundamental role. 

Meteorological stations collect climate data, but they are sparsely located and therefore do not provide the full data 

coverage necessary for the optimal placement of wind farms. In order to obtain an estimate of the wind characteristics 

in unknown locations, a way to model the wind field is required. In the last decades, multiple models have been 

developed for this scope and the research in the field has focused on two main directions: numerical wind flow models 

(i.e. methods based on physics, also referred to as physical methods) and statistical methods. Physical methods 

model the wind field by solving physical equation, such as the equations that govern the mass and momentum-

conservation laws, or computational-fluids dynamic models. Statistical methods on the contrary, estimate the wind 

resource by correlating past observations with environmental data, such as elevation, slope, and temperature. Both 

methods have been widely used in literature, at various scales and with different level of accuracy. Below we present 

an extensive overview of the literature to provide the reader with a classification of wind resource assessment 

methods.  

 

1.1 Numerical Wind Flow Models 

These methods estimate the wind resource by solving some of the equations that govern the motion of air in the 

atmosphere. Numerical wind flow models can be divided by level of sophistication or complexity [5] and partly also 

according to the scale at which they operate. In wind resource assessment we generally refer to three main scales 

of operation: macro-scale (known as synoptic scale with a resolution in the order of 2’000 kilometres or larger), meso-

scale (few kilometres to thousands kilometres) and micro-scale (hundreds of meters to few kilometres). Synoptic 

scale models study large-scale phenomena, such as large depression fronts, which are mostly driven by Coriolis 

force and pressure gradient. These methods will not be treated in this review.  

The first level of sophistication is occupied by mass-consistent models, such as NOABL (Numerical Objective 

Analysis Boundary Layer), developed in the ‘70s in the US [6, 7]. These methods solve only the equation of 

conservation of mass, which when applied to the atmosphere states that if a wind mass is forced over a slope it must 

accelerate so that the same volume of air passes in any given region [5]. Mass-consistent methods are still widely 

used for generating both meso-scale and micro-scale wind speed maps. Of particular interest is the work carried out 

in the UK by the UK Energy Technology Support Unit (ETSU) for the creation of a long-term wind speed database 



[8]. They started from overlapping grids of 100 km of resolution, with data collected from 56 stations for a time period 

of 10 years, from 1975 to 1984. They then applied NOABL to downscale the map at 1 km of resolution at three 

heights: 10 m, 25 m and 45 m. To the best of our knowledge nowhere in literature there is a mention of the 

computational time needed to create the wind map mentioned above. However, since these long-term databases are 

updated very infrequently, the time needed to create them is somewhat not influential in the planning process for new 

wind farms. For micro-scaling these data would be used as look-up tables and their estimates would just be further 

downscaled, thus minimizing computational time. Regarding its accuracy, the technical report from Best et al. [9], 

created for the MET Office (UK Meteorological Office), shows a plot of wind estimations against weather observations 

from which the overall deviation of the estimates seems to be around 2 - 5 m/s. Moreover, another report from the 

MET Office [10] mentioned the bias of the estimates (i.e. the mean of the residuals’ distribution) from this method as 

equal to 1 m/s. 

The second level of sophistication is occupied by models, developed in the ‘80s and ‘90s, to include not only mass-

conservation, but also momentum-conservation. These models are based on the theory advanced by Jackson and 

Hunt [11] and work by solving a linearized form of the Navier-Stokes equation governing fluid flows. Because of this 

characteristic these models are often referred to as linear wind flow models. Probably the most famous linear model 

is WaSP (Wind Atlas Analysis and Application Program [12]), developed by Risoe National Laboratory of Denmark 

and used to create the European Wind Atlas in 1989 [13]. The Jackson-Hunt theory assumes that topography causes 

small perturbations in an otherwise constant wind flow, this allows the equations to be solved efficiently [5]. WaSP 

incorporates techniques to account for obstacles and roughness changes, even though it is not equipped to handle 

complex terrains [5]. Despite its known limitations, WaSP has been and remains very popular in the industry and has 

been used to generate various wind speed maps globally [14 – 17]. Regarding the scale of analysis, WaSP can be 

used for both meso- and micro-scale modelling. In the late ‘90s for example, it was coupled with the Karlsruhe 

Atmospheric Mesoscale Model (KAMM) [18], to account for topography and create the first example of meso-micro 

scale model of the wind resource [19]. 

In alternative to linear models, the next level of sophistication consists of methods able to solve the full spectrum of 

equations of computational fluid dynamics (CFD) applied to air flows. These models take into account mass and 

momentum conservation, plus the effect of turbulence created by the interaction between wind and complex terrains. 

Examples of these model are based on Reynolds Average Navier Stokes (RANS) turbulence models [20, 21], and 

the Large-Eddy-Simulation (LES) model [22 – 25]. Additional information are provided in the comprehensive review 

of these models applied to fine-scale computation of wind flows carried out by Ayotte [26]. 



The final level of sophistication is occupied by Mesoscale Numerical Weather Prediction (NWP) Models [5]. These 

methods have been developed for weather forecasting; they include the full sets CFD equations, but they also include 

schemes to take into account: solar and infrared radiations, a soil model, clouds microphysics and convection.  

Examples of such models are: the Regional Atmospheric Modeling System (RAMS, 

http://rams.atmos.colostate.edu/rams-description.html), Skiron (http://forecast.uoa.gr/index.php), Weather Research 

and Forecasting (WRF, http://www.wrf-model.org/index.php), MM5 

(http://www2.mmm.ucar.edu/mm5/overview.html), Consortium for Small scale Modeling COSMO (http://cosmo-

model.cscs.ch/). These methods were developed to forecast weather patterns, based on the current situation. They 

are applied at the local and global scale, starting from direct weather observations from stations, radiosondes or 

satellite data. Due to enormous amount of equations to solve simultaneously these methods require substantial 

amount of computational resources to be used successfully, and cannot be used for micro-scale modelling with the 

current generation of supercomputers. For this reason, numerical approximations is often applied. NWP divide the 

atmosphere in 3D volumes (generally cubes) whose centres are used to define a three-dimensional grid. At each 

point the NWP solves weather parameter equations. For global models a resolution of 40 km and 40 vertical layers 

is often applied [27, 28]. For micro-scale modelling, on the contrary, these methods are generally coupled with other, 

faster to execute, algorithms. Examples include AWS Truepower’s MesoMap and SiteWind systems [29], 3TIER’s 

FullView system (http://www.vaisala.com/), the Risø National Laboratory’s KAMM–WAsP system [19], and 

Environment Canada’s AnemoScope system [30]. Al-Yahyai et al. [31] present a review of the use of NWP data for 

wind energy resource assessment, with particular attention on the accuracy of the methods. The wind data derived 

from NWP models are biased and in most of the studies considered, they underestimate about 5% the wind speed, 

in particular close to the surface. Moreover, according to their review, NWP models still present limitations due to: 

the simplifications in physics, the uncertainties in the initial state, in the lateral boundary conditions and in the surface 

characteristics. The study concluded that the overall wind speed bias ranged between 0.25 m/s and 2.5 m/s as 

function of the terrain’s complexity.  

These models have been used to simulate the wind field in a specific location in Spain and their performance 

compared in order to generate a benchmarking of wind flow models [32]. The conclusion of the study is that the 

downscaling at fine resolution of the global meteorological and topographical datasets is possible but the 

computational cost remains very high for engineering applications. The challenge is to find the trade-off between the 

physical downscaling at a specific resolution sufficient to capture the most relevant aspects of the local wind. The 

author suggests the linearization of the model to a finer grid to take into account the local spatial elements of the 

topography (such as hills generating the speedup effect). For this purpose, the study points out that CFD model can 



help in taking into account spatial elements such as hills or tree canopies for a more complete wind resource 

assessment including the wind direction’s rose, wind speed and atmospheric stability. The impact of stability and 

forest canopies on complex terrain flows was demonstrated with the Alaiz test case used to benchmark the models 

described in the study. An important final outcome of the study is that “advance models require systematic model 

evaluation processes in order to assess their impact on the chain of uncertainties of the wind resource assessment 

process. There is a lack of high fidelity experiments due to the difficulties of meeting the required spatial and temporal 

coverage of the relevant physical scales of the modelling system at a reasonable cost” [32]. 

 

1.1.1 Evaluation of Uncertainty in Numerical Wind Flow Models 

The methods mentioned above have been proven over the years to be able to estimate the wind resource with a 

relatively high accuracy. However, weather stations, which provide the input data for wind resource assessment, are 

often sparsely located and do not offer a complete data coverage. This adds an unavoidable amount of uncertainty 

to the estimations, which physical methods are not always able to describe in details, as pointed out by Rodrigo et 

al. [32]. The error can be measured by comparing values estimated from the model, with real values observed at 

weather stations or in areas where we have a measuring mast specifically positioned for this analysis. This is the 

methods used for example in Gasset et al. [33] to test the methods used in the Canadian Wind Energy Atlas, based 

on NWP models. They compared their estimations with 10 measuring masts. They reported RMSEs (Root Mean 

Square Error) of 0.74 and 0.82, depending on the resolution of the land cover data they used (higher resolution 

equals better results). They also did not provide a clear indication of the computational time required for the two 

analyses. 

Beaucage et al. [34] compared several types of physical methods on four different relatively small sites (maximum 

size 17x17 km) at a resolution of 50 m. They started from a minimum of four to a maximum of nine measuring towers. 

They achieved the following averaged RMSE 0.74 for CFD, 0.62 for WAsP, and 0.44 for NWP. However, the authors 

report that to estimate wind speed in these relatively small sites, they had to run the model for a minimum of 2.5 

hours (for CFD) to a maximum of 864 hours (for NWP). Janjai et al. [35] used an atmospheric mesoscale model, 

mapping wind speed in Thailand. They validated their model by comparing their estimates with the weather 

observations, and computed RMSE value between a minimum 0.61 to a maximum of 1.34 m/s.  

A more accurate representation of the uncertainty is provided by Weekes and Tomlin [36], who investigated the 

accuracy of a weather forecasting model in UK. They presented a method to calculate the uncertainty that arises 

from errors in the input parameters, not due to the model assumptions and simplifications. To achieve this, they 

employed a method based on quasi-random sampling and simulation. They basically simulated numerous outcomes 



of the model based on different combinations of input parameters and they report a range of uncertainty of around 

35%. In another example [37], the same authors demonstrated that the error distribution is highly dependent upon 

the local terrain features of the estimation site. For example, for rural areas they can obtain the best accuracy with a 

minimum error of 0.44 m/s, while for more challenging environment, such as coastal areas, they report errors around 

1 m/s. Their process is also a step forward in terms of computational time. They started their investigation using wind 

estimates produced on a 1 Km resolution using the NOABL models adapted to the UK by the MET Office (describe 

in section 1.1). From this they employed a downscaling technique based on terrain complexity and land-use, which 

is fast and can decrease the error in the NOABL data down to levels around 0.5 m/s.  

Another method to assess the uncertainty of wind flow model due to the speedup effect related to the topography 

has been proposed by Clerc et al. [38]. The wind flow model used in the study is a combination of the well-established 

orography model MS3DJH/3R [39] and an empirical roughness and obstacle models [40, 41]. The model has been 

applied to two wind farms with different layouts. It couples the measurements of the masts and the speedup effect to 

adjust the estimate of the AEP (Annual Energy Production) of the WTs of the wind farms. The empirical functions 

provide robust estimates of uncertainty and correlation of errors both for sites with flat terrain and with forested and 

highly complex terrain. Nevertheless, the model is relative to the region of the wind farm and can be considered as 

an alternative to micro siting rather than to a mesoscale model. The uncertainties of the latter are the input reference 

wind speed, the regional and local aerodynamic parameters, the blending height and the Weibull shape factor 

required to construct a distribution of wind speeds.  

 

1.2 Statistical Methods 

Statistical methods have also been used for wind resource assessment [42, 43, 44, 45, 46, 47, 48, 49]. In this case 

the wind resource is generally estimated based on the spatial correlation between measured data and environmental 

predictors, e.g. topography and land-use. The first attempt in this direction was the study by Lorenc [42], which 

presented a three dimensional interpolation for multivariate geo-potential height, thickness and wind speed. Three 

different optimum interpolation techniques have been selected in the study to pre-process the observations, to check 

the data and to produce the grid-point values. The radiosonde and surface observations spread worldwide have been 

collected in order to extrapolate the wind speed at different elevations using physical relationship. In this study the 

authors report validation errors generally above 2 m/s. 

In Luo et al. [43] seven spatial interpolation techniques such as trend surface analysis (TSA), inverse distance 

weighting (IDW), local polynomial (LP), thin plate spline (TPS), ordinary kriging, universal kriging and ordinary co-

kriging were applied to generate daily mean wind speed surfaces of the UK. A set of wind speed observations 



between 1998 and 2002 of 189 weather stations collecting hourly values has been used. The predicted mean wind 

speed surface for a specific day has been generated on a regular grid of 5km resolution across the England and 

Wales land surface area. A leave-one-out cross-validation process was used in this study to assess the uncertainty 

of the map. This validation loops through the data and at each iteration excludes one weather observation from the 

dataset used to train the algorithm. Then the excluded observation is compared to what the algorithm estimates for 

the same location, and the error is measured in terms of residual. By applying this process, the authors report a 

RSME of 1.47m/s and a Mean Error (ME) of –0.01m/s using the co-kriging method, which was the best performer. 

The other methods show a RMSE higher than 1.61m/s and a ME comprised between –0.09m/s and 0.01m/s. 

The MET Office also used geostatistical interpolation (i.e. “inverse-distance weighted interpolation of residuals from 

a multiple regression model”) to produce a long-term wind database (Met Office UK small and medium wind 

database) in the UK [44]. Here they gathered data from 230 weather stations belonging to the National Climate 

Information Centre (NCIC), for a time period ranging from 1981 to 2010 (for the latest version of the database dated 

2013). Then they created a detailed wind speed database at 1 km of horizontal resolution, for heights ranging from 

10 m to 45 m above ground. According to a recent MET Office report [10] the bias of this database is 0.4 m/s, 

calculated excluding 10% of the observations from the weather stations and re-predicting them (i.e. a 10-fold cross 

validation). This makes this database better than the one created with NOABL, which is why the MET Office suggests 

using this one instead. 

Another example of kriging interpolation applied to wind resource assessment is provided by Cellura et al. [45]. In 

this work they created a wind map of Sicily using two different interpolation methods: inverse distance weighting 

(IDW) and universal Kriging. The measurements at 10m agl of hourly mean and maximum wind speed and direction 

of 29 weather stations in Sicily over a period of 3 years have been used as input data. Their validation showed that 

the universal kriging method is not adequate for the wind mapping as only 24% of the observations was well 

estimated. 

These results were then used for comparison with a new method they developed called network residual kriging 

(NNRK) [46]. In this method a multi-layer perceptron is first used to estimate the wind resource correlating it with 

environmental predictors. The second step is a kriging interpolation of the residuals to further increase the accuracy 

of the predictions. The wind map generated at 10m agl (above ground level) was extrapolated to 50m agl using the 

CORINE land cover map. The extrapolated map has been compared to the Italian wind atlas generated with a mass-

consistent model. The comparison shows that, although the spatial trend is similar, the NNRK underestimates the 

wind speed. 



The wind field over the alpine region of Switzerland has been generated using a multiple kernel learning regression 

model [47]. This model finds correlation patterns between the wind resource and the environmental predictors, and 

then uses these patterns to estimate the wind resource in regions were only spatial data of the predictors are 

available.   

The mean wind speed data at 10m agl of 148 weather stations over a 20 years period have been used. The wind 

speed has been extrapolated to 50m agl with a logarithmic profile using the roughness values according to the land 

cover category. The model shows test errors varying from 0.98m /s to 1.27m/s of the mean wind speed. A similar 

approach has been also presented by Douak et al. [48] used a statistical learning approach named Kernel ridge 

regression to estimate wind speed starting from 100 training samples, and obtained a minimum error of 1.4 m/s. 

 

1.3 Comparison between numerical wind flow models and statistical methods 

With the reviewed research we can draw some general conclusions by comparing the two type of methodologies: 

namely numerical wind flow models and statistical methods. Since we did not find any benchmarking experiment that 

specifically compare these two methods on the same dataset and with the same validation techniques, the only way 

we have to obtain information about their general accuracy is comparing the validation results presented in literature. 

However, we need to point out that validation results from different studies, performed in different areas and starting 

from different data, are difficult to be compared directly. This is because the type of data used, the topography of the 

terrain and the land-cover of the study areas have a great impact on the performances of every wind resource 

assessment model. Moreover, most of the studies we reviewed are not consistent in providing the measure of 

uncertainty of their work. In some cases, the validation results are not presented, and if they are presented there are 

studies in which the error is presented in percentage. These discrepancies do not allow us to properly compare our 

results with them and therefore we do not cite these studies. Moreover, the validation results are generally presented 

using the Root Mean Squared Error (RMSE), calculated as the square root of the average squared residuals. This 

index is particularly problematic as suggested by Willmott and Matsuura [50] and Fekete [51], who suggest that 

RMSE should be avoided. However, for the purpose of this study we are only interested in knowing average values 

of RMSE for different methods to see if our results are comparable with literature studies. For this reason, even 

though RMSE is not the best choice, it may still provide us with a way to compare our results with previous studies. 

From an accuracy perspective, we can say that numerical wind flow models seem to provide better prediction for 

increasing level of sophistication. From our review NWP reported average errors around 0.5 m/s, while lower level of 

sophistication had accuracies around 0.6 – 0.7 m/s. These results cannot be generalized, as suggested by Brower 

[5], but in reviews that used several methods in parallel these values seem to hold. Regarding statistical methods, 



the studies we reviewed always report RMSE around or above 1 m/s. Therefore, it appears that numerical wind flow 

models are in fact more accurate in estimating the wind resource. One possible drawback is that the level of 

sophistication is directly proportional to the time and amount of resources needed to complete the estimation process. 

For this reason, an accuracy level of around 0.5 m/s, for large areas, could translate in months of analysis carried 

out on supercomputers.  Beaucage et al. [34] for example in their study report that to achieve a RMSE of 0.44 m/s, 

the NWP model had to run for a total of 864 hours (for an area of 17 x 17 Km, at 50 m of resolution). A way to solve 

this issue is to use long-term databases and downscaling techniques. Weekes and Tomlin [37] developed a method 

to downscale meso-scale estimates from a mass-consistent model. The authors suggest this method is relatively 

quick and efficient to run, because this method was based on the statistical downscaling of long-term average wind 

speed data. Even though a time figure is not provided, we can assume that it would probably be similar to the time 

needed for statistical wind resource assessment.  

Statistical methods are certainly more time and computationally efficient, compared to numerical wind flow models, 

but from literature we can conclude that they are generally less accurate. Moreover, while numerical wind flow models 

can estimate the wind resource calibrating the model with very few weather stations, Gasset et al. [33] for example 

used 10 masts; statistical and geostatistical methods, since are based on correlating wind data with environmental 

predictors, require large amount of data. For example, ordinary kriging needs at least 100 observations to compute 

the variogram with the method of moments [52]. Moreover, if the dataset does not cover all the types of terrain present 

in the study area, chances are the statistical method would not perform well. For example, a known limitation of 

random forest is that it cannot estimate values of the variable outside the range of the training data. For this reason, 

if we do not have samples in a particular type of terrain, the estimates there would have high uncertainties. 

Another important different between numerical wind flow models and statistical algorithms is the ability of the latter 

to assess their own accuracy. A classic example is the ability of ordinary kriging of providing an estimate of the 

variable of interest plus a measure of the variance of the estimates. This variance is calculated from the variogram 

according to the location of the nearest data point and provide the user with a local measure of the reliability of the 

map. This is something that numerical wind flow models cannot provide directly. Weekes and Tomlin [36] in their 

study talk about site-specific uncertainty since they provide an assessment of the accuracy of their methodology for 

various land-use type over the study region. For achieving this the authors compared the estimates provided by their 

model with direct observations of wind speed for each of these locations. They report that for rural areas they can 

obtain the best accuracy with a minimum error of 0.44 m/s, while for more challenging environments, such as coastal 

areas, they report errors around 1 m/s. However, we think that these results are difficult to generalize for the entire 

study area. In other words, we think it is difficult to argue that the range of uncertainty obtained for rural areas 



represents the full range of uncertainty for each area in the country with the same land-use. That is probably one of 

the reasons why a map of the spatial pattern of the uncertainty is never presented in literature, to the best of our 

knowledge. This is where statistical methods may have an advantage over numerical wind flow models. These 

algorithms can assess their own accuracy directly, without the need for any additional operation. For this reason, we 

can present the user with a detailed map of the local reliability of the estimates we are presenting. This is what we 

are referring to when we talk about local uncertainty in this article. 

The main purpose of this research is to demonstrate empirically that with the advancements in remote sensing that 

provide us with free access to numerous environmental raster data, we can potentially increase the accuracy of 

statistical methods. Moreover, there are now algorithms that can take advantage of all these environmental data to 

create models that can potentially be very accurate for wind resource assessments. These algorithms belong to the 

class referred to as statistical learning, in which the algorithm is trained based on correlation between the variable 

and environmental raster data. This way we can achieve results comparable with physical methods in terms of 

accuracy, while reducing the computational time to a minimum and having access to a precise local uncertainty 

estimation. To demonstrate this we created a framework to support planners during the feasibility study in order to 

identify locations suitable for wind energy projects, without the need of additional time-consuming wind 

measurements campaigns. Additionally, we created a map that, alongside the wind speed and direction distributions, 

shows the spatial distribution of the uncertainties of the prediction. This would provide planners with more detailed 

information to refine the estimate of the future energy production of selected sites and to rank them as a function of 

their economic risk related to their uncertainties. In general, the delivered map would provide a tool for a detailed 

spatial evaluation of the investment risk related to the exploitable wind resource.  

2. Materials and Methods  

2.1 Study Area and Dataset 

This research was conducted in the United Kingdom over a total area of 244,119 km2 at 1 km resolution. Wind data 

were obtained from 188 stations across the United Kingdom. The data are part of the MIDAS (Met Office Integrated 

Data Archive System) Wind Data Archive and are freely available for research purposes from their Website [53]. The 

locations of the 188 weather stations are referred to as training locations and visualised as red points in Fig. 1. This 

dataset is composed of long-term wind speed measurements for a time period between 2009 and 2013, taken at 

hourly intervals.   

As Luo et al. [43] pointed out, MIDAS stations do not record the same amount of data every day. The total number 

of stations we downloaded from the MET office contained 580 weather stations; of these, the large majority records 

only one value each day. Others record few data during the course of the day and cannot be considered valuable for 



our research. If we consider only stations with at least 20 hours per day we obtain a total of 212 stations. However, 

in many cases these recording are unusable since they contain numerous NAs. So we needed to add an additional 

filtering step to check the reliability of the data and remove stations where too many NAs were clustered in particular 

time frames or seasons. We did that by checking the time series data for any significant gaps and remove the stations 

in which the sampling frequency was unacceptable for prolonged periods of time. Of the 212 remaining stations, only 

the 188 we finally used matched these criteria. 

Several covariates, or predictors, were used to perform the estimation. In particular, the Aster DEM (30 m resolution) 

provided by NASA [54] was used for elevation data and to create DEM derivatives, such as slope, aspect, and 

roughness, computed in SAGA GIS [55]. The land-use raster data (100 m resolution) were provided by the CORINE 

project [56]. In addition, we used raster maps at 5 km resolution from the MET office [57] with meteorological data: 

mean annual temperature, maximum and minimum temperature, mean wind speed, mean atmospheric pressure, air 

frost, cloud cover, rainfall, and relative humidity. 

 

2.2 Wind Speed and Direction 

Wind speed is usually measured by meteorological stations and towers, which belong to national meteorological 

services, and are placed at airports or in proximity of wind farms. The wind speed characteristics are usually (but not 

only) measured at 10 m above ground level. In order to assess whether the wind speed at a given location is 

economically viable, statistical analyses of wind data are carried out to quantify its probability distribution. The 

probability distribution describes the likelihood that a given value will occur, therefore the longer the data collection 

the more reliable the probability distribution. For wind speed this distribution is generally described by the Weibull 

distribution. This is not always the case, and sometimes the Weibull is not a good approximation of the wind speed 

distribution, even though in a majority of cases this approximation holds. The Weibull distribution, which is a special 

case of the generalised gamma distribution [58], is a two-parameter continuous probability distribution [59] that is 

defined by the following density function: 

; ;
⁄ , 0

0, 0
 (1) 

where x is the wind speed (in m/s), k is the shape parameter and C is the scale parameter. In this equation the 

parameter x refers to long term wind speed measurements. In fact, we need at least five years of data to accurately 

fit a Weibull distribution. 



Fig. 2a and 2b present the influence of C and k on the density function, while Fig. 2c shows an example of a typical 

wind distribution with the fitted Weibull density function. These plots were creating using computer generated data, 

just to show readers how a Weibull distribution looks like and its sensitivity to changes in the two parameters, shape 

and scale. Generally speaking, a variation of the C parameter, keeping k constant, directly affects the mean wind 

speed that increases proportionally with C. In contrast, a variation of k, keeping C constant, produces a decrement 

in the dispersion of the measurements around their mean. These two parameters uniquely identify a Weibull 

distribution, and therefore were used to estimate the wind speed spatially as a function of the environmental 

predictors. Basically for each location in our training set we fitted a Weibull to the wind distribution and calculated the 

two parameters. These would become our variables of interest for estimating the wind speed distribution in locations 

where no observations are available. 

For wind direction the approach followed with speed is not possible. We tested the use of circular distributions to 

describe the wind directions observed at weather stations. However, the parameters of circular distributions were not 

as correlated with the environmental predictors as the parameters of the Weibull distribution. If this correlation is 

lacking, statistical methods will provide poor mapping accuracy. For this reason, wind direction was mapped using 

the frequencies of occurrence of selected direction intervals. Basically, for each training location we estimated the 

histogram of the wind direction, using 18 bins (meaning intervals of 20°). For each bin we recorded the frequency of 

occurrence and then we used the 18 frequencies as variables for the mapping algorithm. This way we estimated in 

space each of the 18 frequencies as a function of the environmental predictors.  

 

2.3 Statistical Learning Approach 

Statistical learning is a branch of statistics aimed at modelling and understanding complex datasets [60]. Generally 

speaking, statistical learning aims at estimating a target variable, based on a set of inputs, or predictors. In 

mathematical terms this can be expressed as follows: 

 (2) 

where Y denotes the target variable, X denotes the predictors (in this case environmental data available in raster 

format), and ε is a random error component, which depends on various factors such as measurements errors, and it 

is the irreducible part of the model [60]. In this research Eq.2 was solved for a total of 20 times, each with different 

variables but with the same set of predictors. First we solved it using as variables shape and scale, and then using 

the 18 frequency values of the histogram bins. The local wind speed distribution is influenced by many environmental 

data, such as topography [61] and land-use [62, 63]. Since we assume a correlation between the variable and the 



predictors, we can try to estimate our target variables as a function of the environmental predictors. The problem with 

working with many variables, as we do in this work, is that they present different levels of correlation with the 

environmental predictors. This may lead to a decrease in the accuracy of the estimation, since there may be 

predictors that if included in the model may lead to erroneous estimates. Moreover, having too many predictors cause 

the model to not be easy to interpret, since it is difficult to identify the relative importance of each covariate [60]. For 

this reason, the first step we took involved the use of Lasso [64], a technique to filter the predictors and keep only 

the most important to our analysis. This method is based on a linear model. It was possible to use it because from a 

preliminary correlation analysis we determined that many predictors were linearly correlated with our variables. The 

Lasso works by fitting a linear model to solve Eq. 2, with the difference that it does not use the residual sum of 

squares (RSS) to calculate its coefficients. Instead, it multiplies the standard residual sum of squares by a penalty 

that shrinks the value of some coefficients toward zero, thus excluding them from the estimation. This allowed us to 

work only with the most correlated coefficients, hence speeding up the computations and making the results more 

interpretable.  

A crucial objective of this study was the estimation of the site-specific uncertainty. For this reason, for estimating wind 

speed we needed an algorithm capable of assessing its own accuracy. We selected Random Forest (RF; [65]) as 

our mapping tool, which is based on ensembles of regression trees. These types of algorithms create regression 

trees by testing different predictors in order to find the one split that minimises the RSS in the resulting subsets, or 

tree leafs [66]. A regression tree can be viewed as a series of “if-then” rules that are used to define classes of 

probabilities. The prediction in locations where no wind data are available is performed by running the predictors 

through the tree in order to define the most probable value for that particular location.  

Regression trees have the advantage of being very easy to explain and interpret. The regression tree can be 

graphically displayed and this is a great advantage compare to other methods. However, regression trees generally 

have a predictive power lower than other approaches [60]. RF solves this by using bagging and decorrelating the 

single trees. Random Forest instead of using the entire dataset to build one single regression tree, uses the bootstrap 

to build numerous trees, starting from the same training dataset. Bootstrapping is a statistical resampling method, 

which takes a dataset with n observations and resamples it randomly with replacements, meaning that an observation 

can occur more than once in bootstraping samples. This produces a series of samples, of length n, to which the 

algorithm can fit a regression tree. This way RF can fit numerous regression trees to the same dataset; this procedure, 

technically referred to as bagging, reduces the variance of the method and therefore increases its accuracy [60]. 

Random Forest has another advantage compared to pure bagging, it subsets the predictors at each split of the tree 

thus decorrelating the ensemble. This is a strong advantage that leads to higher accuracy, since it avoids problems 



with multicolinearity. The reason is simple, suppose we have one predictor that is strongly correlated with wind speed. 

If we allow the algorithm to choose among all predictors, most or all the trees will use this strong predictor. As a 

consequence all the trees will be highly correlated and this does not lead to a substantial reduction of variance [61]. 

Random forest overcomes these problems and reaches a higher estimation accuracy. 

Random Forest has been widely used in research for different purposes, such as digital soil mapping [67, 68], ecology 

[69], geomorphology [70], and remote sensing [71, 72]. Its popularity is due to the fact that it can generate reliable 

estimates and it is robust against noise in the predictors [67], which is a crucial aspect when dealing with 

environmental covariates. For these reasons, RF is the perfect tool for wind speed mapping. In each predicted 

location, RF produces a set of estimations, depending upon the size of the forest. All the predicted values can be 

used to determine the variance of the Weibull parameters, from which we can determine the local uncertainty of the 

wind distribution. 

We used the Mean Absolute Deviation (AD) to compute the spread of each estimated variable around the arithmetical 

average. AD is calculated according to the formula proposed by Hoaglin et al. [73]: 

	
1

| ̅| (3) 

where n is the number of wind mean speed values computed from each bootstrapping set, xi is the ith value of the 

wind mean speed in a set of values from 1 to n, and ̅ is the sample arithmetical average. This parameter is more 

robust compared to the standard deviation, particularly for long-tailed distributions [73]. The mean absolute deviation 

was also used to produce all the uncertainty maps shown in this manuscript. 

 

2.4 Uncertainty Estimation 

For wind speed mapping, as mentioned in section 2.3, RF produces a set of estimations of shape and scale for each 

predicted location. The mean values of the distributions of shape and scale can be used to create the Weibull 

distribution of the wind speed for each unknown location. We could simply calculate the deviation around the mean 

of the Weibull distribution to obtain a measure of the average fluctuations of the wind resource. However, standard 

deviation per se does not provide us with a measure of the local accuracy of the RF estimates. For shape and scale, 

measuring the deviation around the mean of their distributions, since they are directly estimated by RF, provides us 

with a measure of uncertainty. The higher the variance of these distributions, the higher is the local uncertainty. But 

if we just take the mean vales of these two parameters to fit a Weibull, we are not estimating how this uncertainty is 

propagated from the estimated parameters to the wind speed distribution. For doing so we need to rely once again 



on bootstrapping simulation. The bootstrap allows us to randomly simulate hundreds of distributions of shape and 

scale, with repetitions; for each new pair of distributions we can compute their means and use them to fit a new 

Weibull, which would be slightly different from the other. Each simulated Weibull would have a mean wind speed and 

the amount of differences between all the simulated wind mean speeds would be proportional to the amount of 

uncertainty we have in that particular location for the RF estimates. If we calculate the spread of all the wind mean 

speed values calculated after each simulation we obtain the standard error of the mean, which tells us how confident 

we are that the wind mean speed we present on the map is the real mean of the wind distribution. This is what is 

generally referred to as confidence interval, and allows us to provide a measure of the site-specific, or local, accuracy 

of the map. The smaller the error is the higher is our confidence that the mean we calculated is the real mean value 

of the dataset. With this method we are not only able to compute the confidence interval of the mean wind speed, 

but we are able to compute it for the entire wind speed distribution. This is a crucial information for planners, since it 

allows them to calculate the potential range of variation of the energy output based on the map uncertainty. This is a 

level of details we can reach only by assessing the error propagation from the RF estimates to the wind resource. 

For wind direction there was no need to use an additional simulation to determine its uncertainty, because we 

estimated the frequency of each bin of the direction’s histogram (with bins of 20°). Since RF produces a measure of 

its own uncertainty by providing us with a set of estimates, we can use it to determine the amount of error we have 

for each bin of the histogram. In this case there is no propagation to compute because what we obtain from RF is 

what we are presenting on the map, i.e. the wind rose of the bins estimated from RF. For this reason, as a measure 

of the map error, we present the average deviation of all the frequency bins estimated by RF. The bigger this number 

is, the less reliable are the RF estimates for wind direction in that particular location on the map.  

 

2.5 Validation 

A crucial part of every modelling experiment is the estimation of the overall error of the model. This process allows 

us to compare our model with real values, i.e. weather observation, and compute its accuracy. Statistical learning 

works by using the data we collected from the weather stations to create a function to solve Eq. 2. For wind speed 

for example, the algorithm correlates the Weibull parameters with the environmental predictors in order to define f(X) 

that estimates Y as closely as possible. This is referred to as the training process of the algorithm. The crucial aspect 

of every statistical learning exercise is trying to estimate the accuracy of f(X) when used to estimate locations where 

we do not have any information, i.e. locations that were not part of the training set. This is referred to as assessing 

the test error. We can compute the test error by using cross-validation, which is a process in which we split the 

training set and then we use part of it to estimate the remaining. To clarify, the training includes all the data we 



extracted from the 188 weather stations, such as shape, scale and the frequency of the direction histogram. In 

addition, the training set includes all the values of the environmental predictors extracted from the raster data in the 

location of the weather stations. In this study we performed a 5-folds cross-validation, in which this training dataset 

is divided into five parts (or folds). Four of these folds are used to train the statistical learning algorithm, while the 

remaining fold (around 20% of the dataset) is used to test its accuracy, i.e. calculate the test error. This same process 

is then repeated until each fold is used for testing. Because the folds are chosen at random, we decided to repeat 

the cross-validation process 100 times, in order to have a more reliable estimation of the test error. The comparison 

between observed and predicted values was performed using RMSE, since it is widely used in other papers to present 

the same result. 

For the wind speed we trained the Lasso and RF on four folds, then we predicted the shape and scale Weibull 

parameters in the remaining fold. For each test location we then used the two Weibull parameters to simulate a wind 

speed distribution and then compared the estimated mean speed with the observed values, calculating the RMSE. 

For the wind direction, the approach is similar, for each location in the test set we estimated the histogram’s 

frequencies. Subsequently we use the estimated distribution to calculate the mean wind direction and we compared 

it with the mean direction observed in the data, computing the RMSE. 

 

2.6 Software  

This experiment was performed entirely using the programming language R [74]. For fitting the Weibull distribution 

to the weather observations we used the package fitdistrplus [75], which uses maximum likelihood. For the Lasso we 

used the function glmnet, available in the package glmnet [76], which includes a cross-validation function that is used 

to optimize the variable selection process. For RF we used the function randomForest, available in the package 

randomForest [77]. This function has some settings that can be modified by the user to obtain more reliable estimates. 

The first is the number of trees to create. Since RF is based on bootstrapping, which is a random process, we need 

to fit numerous trees to obtain accurate estimates. According to Grimm et al. [67] fitting 1000 trees should be sufficient 

to achieve stable estimates, and this is what we did here. Another parameter that needs to be optimized is the number 

of predictors to exclude each time a regression tree is fitted. In this case the package randomForest present a 

function, tuneRF, which allows to select a range of values and test their accuracy using the internal out-of-bag 

validation available in RF [67].  

 



3. Results and Discussion 

As mentioned in the introduction, the proposed method performs the spatial prediction of the wind resource using a 

statistical learning approach that allows estimating both wind speed and direction distributions with the corresponding 

local uncertainty. For estimating the wind speed, we fitted a Weibull distribution to each weather station of our dataset, 

shown in Fig. 1. The mapping process was performed using the method described in section 2.3. The RF estimations 

of the scale factor C and the shape factor k are shown in Fig. 3A and 3B, while the uncertainties, as the AD of the 

set of estimations produced by RF for each location, are depicted in Figure 3C and 3D. It is interesting to notice that 

the Weibull parameters present almost opposite spatial patterns: where shape is low, scale present high values and 

vice versa. The uncertainty patterns follow the same rules: where shape presents low uncertainty, scale presents 

higher values.  

As mentioned, RF uses the bootstrap to resample the dataset and create a series of trees for each location in the 

prediction grid. These parameters and their related uncertainties were then used to fit a Weibull distribution for each 

location on a 1 Km grid. Once we have the full wind distribution we can compute its mean and AD to provide planners 

with the average wind speed and a measure of the fluctuation of the wind resource. These indexes are presented in 

Fig. 4A and 4C. For wind direction, RF estimated the frequency of bins of 20°. From the RF estimates we can create 

a circular distribution of the wind speed, and from it calculate the mean wind direction and its AD, which are presented 

in Fig. 4B and 4C.   

An advantage of statistical methods compared numerical wind flow models is that the former have ways to provide 

end users with a measure of the site-specific uncertainty of the estimated wind resource. As mentioned in section 

2.4, we developed an approach to provide practitioners with a measure of the local uncertainty of the map. This 

information is crucial because it allows us to pin point areas where the map is less reliable and therefore the estimates 

of wind speed and direction that we provide should be used carefully, and maybe more data would be required to 

increase the local accuracy. The error maps are presented in Fig. 5. The spatial pattern of the error is similar for both 

wind speed and direction. In general, the error is larger in areas where we have a relatively low data density, such 

as in Scotland and Wales. Statistical methods rely heavily on data coverage to increase the accuracy of the map. If 

the data we have do not cover the full spectrum of terrains that we are going to encounter in the mapping area, the 

accuracy of the method will be negatively affected. In this case, in mountainous areas of Scotland and Wales the 

data coverage is scarce, and this increases the uncertainty of our estimations. The advantage of this method though 

is that it can clearly identify these problematic locations so that planners can take this into consideration. The 

confidence interval of the wind mean speed is presented in Fig. 5A. Uncertainty values are generally very low, with 

a mean value of 0.07 m/s, and a maximum value of 0.20 m/s. These values may seem negligible but if we put them 



into context we realise that a 0.20 m/s error in just one site means that in that area we have an average error that is 

almost one third of the average cross-validation error. This is definitely a very informative value to have during a 

feasibility study, since it allows us to determine that in such areas the likelihood of the estimated wind speed to be 

accurate is low and therefore an additional investigation of the wind resource is necessary before planning wind 

facilities here. This is a crucial information that is not directly available when physical methods are used. For example, 

Weekes and Tomlin [36] in their research mentioned the fact that the average error they obtained was lower in rural 

areas, and substantially higher in coastal areas. However, in their case they did not have a way to define the spatial 

pattern of this error, therefore the only thing their results may suggest to planners was caution in coastal areas over 

the whole country. With a detailed uncertainty estimation we are able to identify the coastal areas where the 

estimation present lower accuracy values and distinguish those to coastal areas were, on the contrary, the accuracy 

is high. For example, from Fig. 5A we can easily see that in England no coastal area present uncertainties higher 

than 0.1 m/s, while in North Wales and Scotland we have areas that present values of uncertainty in the highest 

range.  

The approach described in section 2.5 was used to provide a measure of validation for the mapping process. The 

results indicate that for wind speed the method used in this research has a RMSE of 0.70 m/s, a Mean Absolute Error 

(MSE) of 0.5 m/s, and a bias of -0.01 m/s. This is the overall error of the map in comparison to real weather 

observations. This value can be compared to previous works that employed both physical and statistical methods to 

map the wind resource. Even though we cannot directly correlate the results achieved in literature with ours, because 

of different settings and because RMSE is not the best index for comparisons [50, 51], we can still compare our 

findings with the literature in order to assess where our work fits into the state of the art of wind resource assessment. 

According to the review of previous research we presented in section 1, the value of RMSE we obtained is, to the 

best of our knowledge, lower than any other previous test involving statistical or geostatistical algorithms. The lowest 

value recorded in literature was the 0.98 m/s, achieved by Foresti et al. [47] in Switzerland, which is probably more 

challenging to map than Britain because of the different topography. However, Luo et al. [43] used the same identical 

dataset to compare several geostatistical algorithms and reported a minimum RMSE value of 1.47 m/s, double what 

we obtained here. Moreover, our results can also be directly compared to the accuracy of the Met Office UK small 

and medium wind database, which report a bias of 0.4 m/s [10]. We were able to achieve an accuracy much lower 

than theirs, and with a validation process that excluded 20% of the observations. This means that the long-term wind 

map we generated can potentially replace the one in use today. 

This improvement is certainly due to the amount of environmental covariates we used in this research. Nowadays, 

remotely sensed covariates are publicly available and characterized by a very good spatial resolution. This revolution 



in open data has the potential of increasing the reliability of estimation methods based on geostatistics, statistical 

learning and machine learning. However, these class of algorithms will always be as good as the dataset used for 

training. If the training dataset does not properly cover all the characteristics of the area under study, the results will 

always have higher margins of error for certain zones, which is exactly what happens here for the Scottish Highlands. 

Physical methods can potentially overcome these limitations, since they require relatively few sampling stations to 

perform the wind resource assessment. These methods are the industry standard because they are thought to be 

the best way to assess the wind resource over large regions. However generally speaking, numerical wind flow 

models requires a substantially higher amount of computing resources and time, compared to statistical algorithms, 

to produce a wind speed map at national scale. In this research, the training process of the statistical model and the 

estimation, at 1km of resolution, over an area of 244’119 Km2 took 1.81 minutes. The uncertainty estimation took 

longer (around 1 day), because the bootstrap needs to be run for a sufficient number of times to obtain meaningful 

results (in this case 500 times), but the whole process took in total just a small fraction of the time reported in literature 

for wind mapping with deterministic methods.  

Regarding wind direction, the same cross-validation approach was adopted to test the accuracy of the RF 

estimations. For each test location we estimated the full direction histogram and then compared the observed and 

the estimated mean wind direction. The result is a RMSE of 9.5°.  We did not find any mention to an accuracy 

estimation for wind direction estimates in our review of previous research, therefore we do not have ways to compare 

our results with literature. However, for this parameter we used the same robust validation methods we employed for 

wind speed and the results indicate that the error is below the threshold of 20° we used to divide the direction 

histogram. These information allows us to have a relatively high level of confidence regarding the reliability of the 

wind direction map. 

In Fig. 5, we present two maps to provide a quick way of visualizing the spatial pattern of the wind speed and direction 

uncertainties. However, since we estimated the full distribution of both wind speed and direction, showing one single 

index for each location is extremely simplistic, compared to the amount of information that we can generate from 

each predicted location in the wind map. In fact, with the approach described in section 2.4 we can determine 

precisely the propagation of the estimation error to the full distribution of both wind speed and direction. An example 

of the kind of output we can produce for each single location at 1 Km of resolution is presented in Fig. 6. One of the 

main issues when selecting a site for a wind energy project is a spatial assessment over large regions with regard to 

the investment risk, which includes the wind resources available, the financial risk, and the uncertainties related to 

construction and operations [78]. If one excludes the risks related to financial aspects, in addition to construction and 

maintenance failures, which are not addressed in this work, then an optimal pre-feasibility assessment of wind 



resources is critical and fundamental because it is subject to various uncertainties and can thus significantly impact 

the success of a project [79]. At small scale, the estimate of the uncertainties of the wind characteristics can be 

integrated into a GIS based model when quantifying the uncertainties in wind energy production and the impact of 

wake effect within a wind farms [80]. These uncertainties can be directly plugged into equations to estimate the 

potential energy output of wind farms located in these areas. This would allow planners to precisely estimate the 

amount of electricity available to produce plus the confidence intervals of their results.  

4. Conclusions 

In this work we presented an approach based on statistical learning to spatially estimate wind speed and direction 

distributions. The validation results demonstrate that this method produces better results compared to any previous 

example of statistical methods applied to wind resource assessment, and comparable with studies that used 

numerical wind flow models. Moreover, since this method is capable of assessing its own accuracy, we were able to 

create a map of the local estimation uncertainty, which is something that only statistical methods are able to provide. 

However, this aspect is crucial for planning wind farms, because in areas not properly covered by wind speed 

measurements the site-specific accuracy of the map may well be relatively low and this means that the wind 

distribution may be subject to more fluctuations than reported on the map. With this method we are able to pin point 

these problematic locations and consequently warn planners that more data are required for obtaining an accurate 

assessment. Moreover, the map uncertainty allows planners to precisely propagate the wind resource error to the 

power output for a potential site in order to understand its impact on future revenues. We did not cover this aspect in 

this paper because we do not have access to power output data from existing wind farms, which would be required 

to validate our results. However, this is something we are planning to explore in the future. 

The availability of numerous remotely sensed environmental covariates allowed statistical methods to reach a point 

in which their accuracy level is comparable with much more sophisticated weather forecasting algorithms. However, 

statistical methods present several advantages compared to physical estimators. They are faster and computationally 

more efficient, and they can also assess precisely the site-specific uncertainty in each estimated location of the map. 

Moreover, statistical methods have clear advantages over CFD algorithms, since they require less computer power 

and time to execute. Based on the promising results of this study, we will explore new ways of combining both 

physical and statistical methods into hybrid algorithms in the future.  
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List of Captions 

Fig. 1 Location of the MIDAS weather stations. In red are indicated the locations of the weather stations we used 

for our study. 

Fig. 2 a) Weibull distributions as a function of C (constant k, source: [43]); b) Weibull distributions as a function of k 

(constant C, source: [43]); c) Example of Weibull distribution (red line) interpolating the histograms (blue bars) 

describing the wind speed distribution with bins of 1m/s. 

This function is generally used in the literature to describe wind distributions [44; 45; 46], and it can be described by 

only relying on two parameters: shape and scale. Thus, if continuous spatial estimates of k and C are available, the 

probability distribution of wind speed in any given location can be predicted. 

Fig. 3 A) Spatial distribution of the shape factor C; B) spatial distribution of the scale factor k; C) Uncertainty in terms 

of AD of the shape factor; D) Uncertainty in terms of AD of the scale factor. 

Fig. 4 A) Map of the mean wind speed over the investigated time frame in m/s; B) map of the men wind direction in 

degrees; C) Wind speed deviation measured as mean absolute deviation (AD); D) Wind direction deviation as AD. 

Fig. 5 Map of the reliability of the estimation methods. A) Wind speed standard error in m/s; B) Wind direction 

uncertainty. 

Fig. 6 Site-specific wind speed and distribution uncertainty. By computing the full distributions of wind speed and 

direction, plus the site-specific uncertainty, we are able to create plots similar to these for each estimated point of the 

map. These plots represent the frequency distributions of wind speed and direction. 


	Fabio Veronesi Statistical learning front sheet
	Fabio Veronesi Statistical learning

