Phylogenetic clustering of wingbeat frequency and flight-associated morphometrics across insect orders

by Tercel, M.P.T.G., Veronesi, F. and Pope, T.W.

Copyright, Publisher and Additional Information: This is the author accepted manuscript. The final published version (version of record) is available online via Wiley. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.

Please refer to any applicable terms of use of the publisher.

DOI: https://doi.org/10.1111/phen. 12240

Harper Adams University

Title

Phylogenetic clustering of wingbeat frequency and flight-associated morphometrics across insect orders

Running title

Flight strategies between insect orders

Authors

Maximillian P. T. G. Tercel*, Fabio Veronesi and Tom W. Pope

Affiliation

Department of Crop and Environment Science, Harper Adams University, Newport, Shropshire, TF10 8NB, UK.
*Author for correspondence (max.tercel@hotmail.com)

KEY WORDS: Comparative morphology, wing loading, body mass, flight strategy, insect evolution, high-speed filming.

Summary statement

Insect flight strategy varies between orders but is generally well conserved within orders, this has important evolutionary and ecological implications at high taxonomic levels.

Abstract

Wingbeat frequency in insects is an important variable in aerodynamic and energetic analyses of insect flight and has been studied previously on a family- or species-level basis. Meta-analyses of these studies have found order-level patterns that suggests flight strategy is moderately well conserved phylogenetically. Studies incorporated into these metaanalyses, however, use variable methodologies across different temperatures that may confound results and phylogenetic patterns. Here, a high-speed camera was used to measure wingbeat frequency in a wide variety of species $(\mathrm{n}=102)$ in controlled conditions to determine the validity of previous meta-analyses that show phylogenetic clustering of flight strategy and to identify new evolutionary patterns between wingbeat frequency, body mass, wing area, wing length, and wing loading at the order level. All flight-associated morphometrics significantly affected wingbeat frequency. Linear models show that wing area explained the most amount of variation in wingbeat frequency ($R^{2}=0.59, p=<0.001$), whilst body mass explained the least ($R^{2}=0.09, \mathrm{p}=<0.01$). A multiple regression model incorporating both body mass and wing area was the best overall predictor of wingbeat frequency ($R^{2}=0.84, p=<0.001$). Order-level phylogenetic patterns across relationships were consistent with previous studies. Thus, the present study provides experimental validation of previous meta-analyses and provides new insights into phylogenetically conserved flight strategies across insect orders.

INTRODUCTION

Wingbeat frequency in insects varies with body mass and wing area within and between species (Byrne et al., 1988; Dudley, 2000), from 5.5 Hz in the helicopter damselfly Megaloprepus caerulatus (Rüppell and Fincke, 1989) to over 1000 Hz in a ceratopogonid Forcipomyia sp. midge (Sotavalta, 1953). How frequently an insect beats its wings is an important variable when considering the biomechanics and physiology of insect flight (Ellington, 1984a-f; Dudley, 2000; Alexander, 2002; Vogel, 2013). For any given body mass, variables such as wing length, wing area, wing loading (body mass/wing area), wingbeat frequency and stroke amplitude can differ substantially and affect the energetics and biomechanics of insect flight, which is usually linked to evolutionary history (Byrne et al., 1988). Stroke amplitude, the angle between the points of wing reversal, has been shown to vary between taxa, from 66° in syrphids (Ellington, 1984c) to 180° in beetles (Atkins, 1960) and moths (Wilkins, 1991) and may vary significantly during a single flight as shown in dragonflies (Alexander, 1986), orchid bees (Dudley, 1995; Dillon and Dudley, 2004), and fruit flies (Lehmann and Dickinson, 1998; Fry et al., 2003). Though undeniably important to understanding insect flight strategy and aerodynamics, stroke amplitude was not measured in the current study. This is because although both wingbeat frequency and stroke amplitude change during a single flight, wingbeat frequency is kept relatively constant because of the high energetic cost of deviating from the resonant frequency of the flight apparatus (Dudley, 2000). Conversely, stroke amplitude may be altered extremely rapidly to change direction (Fry et al., 2003) or flight mode e.g. from hovering to forward flight (Dillon and Dudley, 2004). Because of this variability, stroke amplitude is likely to be a slightly less reliable indicator of flight strategy than wingbeat frequency.

The variables that influence the energetic and biomechanical aspects of flight could be used to broadly characterize flight strategies between different orders of insects. Typically, higher wingbeat frequencies are associated with insects of smaller size, to overcome the increasingly viscous forces of the air present at small spatial scales, represented by low Reynolds numbers

Re in the order of 10-100 in the smallest insects (Ellington, 1999; Wang, 2005), and to better control their direction in a windswept world (Vogel, 2013). Furthermore, frequencies of >100 Hz are facilitated by asynchronous, or myogenic, flight muscle present in endopterygote (Coleoptera, Diptera, Hymenoptera) and exopterygote (Thysanoptera and Hemiptera) groups (Dudley, 2000) where one nerve impulse can initiate several wingbeats through stretchactivation caused by mechanical loading on the wing (Pringle, 1967). Thus, the highest wingbeat frequencies are found in smaller members of these groups (Byrne et al., 1988). Members from other orders possess large wings that they beat at lower frequencies relative to other insects of comparable body mass e.g. Lepidoptera and Neuroptera (Dudley, 2000) and Orthoptera (Snelling et al., 2012, 2017). Larger wings can produce more force per beat than smaller wings, and therefore fewer beats are needed per unit time. Moreover, larger wings afford lower wing loadings for insects of the same body mass, so wingbeat frequency may be reduced further. It is possible then that flight-associated morphometrics, such as wing area, can be used to predict wingbeat frequency and characterize flight for different groups of insect using the same stroke strategy (i.e. conventional wingbeat or clap-fling).

Flight morphology and wingbeat frequency are dependent on the aerodynamic needs of the insect according to their ecological niche and oxygen consumption increases with wingbeat frequency (Bartholomew and Casey, 1978). Species with similar wing loadings may have different wingbeat frequencies based on the flight velocity required to fulfil their ecological role. Substantial variation in wingbeat frequency and flight morphology as a product of ecological needs also exists within orders, such as the differences between Sphingidae and Nymphalidae (Lepidoptera), where sphingids have small wings, rapid beat frequencies and very fast flight, whilst nymphalids have much larger wings and lower wingbeat frequencies, usually flying at overall slower speeds (Dudley, 2000). Such variation could conceal relationships between flight-associated morphometrics and wingbeat frequency across higher taxonomic levels, decreasing the overall level of phylogenetic grouping of flight strategy.

Order-level taxonomic relationships to these flight-associated morphometrics have been studied before (see Byrne et al., 1988; Dudley, 2000) but meta-analyses suffer from differences in both ambient conditions and methods of measuring wingbeat frequency between studies that may confuse relationships. For example, acoustic methods, stroboscopes, and high-speed cameras were used across studies incorporated into Dudley (2000) and Byrne et al.'s (1988) meta-analyses. Chadwick (1939) suggested stroboscopic methods are difficult to use effectively to glean kinematic data in insects because of the slight variations in wingbeat frequency and movements of the specimen during testing, making visualisation of the wing at the frequency of the strobe light challenging and Unwin and Ellington (1979) suggested picking up acoustic signals of smaller species difficult even with highly sensitive microphones. Both stroboscopic (e.g. Chen et al., 2014) and acoustic (e.g. Raman et al., 2007) methods have, however, been used successfully to measure wingbeat frequency in insects since advancement in the quality of measurement instruments (i,e, optical tachometers and microphones). Nevertheless, stroboscopic/optical and acoustic methods are not absolute measures of wingbeat frequency. High-speed cameras, in contrast, allow the recording of a temporally magnified visual depiction of the motion of insect wings. The reliability of the methods used in studies incorporated into important meta-analyses varies because of the problems faced when the technology was less well developed. Furthermore, temperatures vary from $7-25^{\circ} \mathrm{C}$ between studies used in previous meta-analyses. Insect wingbeat frequency has been shown to increase with higher temperatures (Unwin and Corbet, 1984; Oertli, 1989) and, therefore, meta-analyses of the relationships between measured characteristics may be confounded. An experimental approach using high-speed cameras in controlled conditions recording flight in species across several orders has not previously been done. Using common UK species of insect, relationships between body mass, wing length, wing area, wing loading and wingbeat frequency were investigated to determine if flight strategies could be broadly characterized between different orders of insect.

MATERIALS AND METHODS

Study specimens

Adult insects were caught using either sweep net (EFE \& GB Nets, Totnes, Devon, UK handle length $=0.3 \mathrm{~m}$; net diameter $=0.5 \mathrm{~m}$; net depth $=0.7 \mathrm{~m}$), pooter (NHBS, Totnes, Devon, UK - barrel diameter $=30 \mathrm{~mm}$, length $=55 \mathrm{~mm}$, suction tube diameter $=5 \mathrm{~mm}$), or hand collected into small sampling pots (varying sizes) within a 20 km radius of Harper Adams University, Shropshire, UK (latitude $\sim 52.772^{\circ} \mathrm{N}$, longitude $\sim 2.411^{\circ} \mathrm{W}$) over the course of June and July, 2017. In total, 112 specimens across 102 species in 10 orders were used in the analysis.

Filming area and conditions

Filming took place inside a Fitotron® Standard Growth Room unit (Weiss Technik, Ebbw Vale, UK) set to a constant $20^{\circ} \mathrm{C}$ and 60% relative humidity. This temperature was selected to film flight behaviour of insects in standardised conditions and is unlikely to represent an extreme for tested species, which were all collected during summer days and therefore active within $\sim \pm 5^{\circ} \mathrm{C}$ of the ambient temperature used. Ambient lighting intensity was $280 \mu \mathrm{~mol} \mathrm{~m} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$ inside the Fitotron® unit and no other external light source was used. A flight box made of 6 transparent Perspex® panels, measuring $30 \times 30 \times 30 \mathrm{~cm}$ once constructed, was used to contain flights of the specimens whilst filming. Study specimens were introduced to the flight box either via a 2.5 cm diameter aperture made in the centre of one of the panels by offering up an open test tube containing a specimen, or, for larger specimens, the entire panel could be removed and the specimen introduced.

Filming procedure

Each specimen was filmed 2-5 times using an FPS1000HD monochromatic high-speed camera (The Slow Motion Camera Company, London, UK). Specimens were filmed each time during free flight. For each flight recorded, the camera was handheld in order to track insects in free flight. This helped increase total length of each video and thus more reliably count wingbeats. Across videos, insects were filmed from various angles, but this did not affect video analysis. Sufficient video footage was gathered in <10 minutes for each specimen.

Morphological measurements

Specimens were killed in a killing jar (a jar with a base of plaster of Paris to which ethyl acetate was intermittently added when needed) after the last video was recorded and immediately weighed using a precision balance (Cahn C-33 Microbalance, Cerritos, California, USA). The functional wing (in insects with only one pair of functional wings e.g. Diptera and Coleoptera) or wing couple on the right side (i.e. the fore- and hindwing on the right side of the insect viewed dorsally) was removed by dissection under a stereo microscope and forewing length (henceforth wing length) was measured using a pair of digital calipers (0.01 mm precision), measured from the base of the forewing to the most distal tip. A photo was taken of the dissected wing couple using a microscope camera making sure the wings were perpendicular to the camera lens. Wing area was measured in ImageJ version 1.49 (Schindelin et al., 2012) by using the photo and following the ImageJ process for measuring leaf area (Reinking, 2007) as in previous studies on insect wings (e.g. Outomuro et al., 2013); the wing area value was multiplied by 2 to quantify total wing area assuming symmetry. Wing loading was determined by dividing body mass by total wing area.

Video analysis

Videos were first converted into a viewable format using ImageJ, where video frames-persecond (FPS) was then altered to allow individual wingbeats to be clearly visible. A wingbeat
was judged to be both a full downstroke and full upstroke, terminating at pronation before the next wingbeat (Fig. 1), and in all groups except for Odonata, fore- and hindwings beat at the same time. For odonates, forewing and hindwing pairs were measured separately then the mean was calculated; the difference between the wing pairs did not exceed 2 beats in any of the odonate specimens. Sections of videos were carefully selected to represent free-flight, omitting wingbeats immediately after take-off until a more regular rhythm was observed, which was usually more rapid. The number of wingbeats n_{v} during free-flight was counted for each video. Equation 1 was used to determine the wingbeat frequency $n(\mathrm{~Hz})$ from each video where t_{v} is the length of the video in seconds, and f_{m} is the multiplication factor (the factor that describes by how much time is magnified in each video), which is calculated by dividing filming FPS by video playback FPS. All species were filmed at 1000 FPS except for 6 species of nematoceran Diptera, which were filmed at 2000 FPS.

Statistical Analysis

Statistical analysis was conducted using R version 3.4.1. "Single Candle" (R Core Team, 2017) with packages MASS (Venebles and Ripley, 2002), ggplot2 (Wickham, 2009), caret (Kuhn, 2017), hydroGOF (Zambrano-Bigiarini, 2014), relaimpo (Grömping, 2006), and gridExtra (Auguie, 2016) used. Both simple and multiple linear regression analyses were conducted to determine the relationships between morphological variables and wingbeat frequency. Data were log-transformed to reduce skew and allow analysis by linear regression. To better measure the level of phylogenetic clustering of flight strategy, a principal component analysis (PCA) was conducted.

RESULTS

Table 1 compiles the range and mean statistics for morphological measurements and wingbeat frequency in each sampled order. Across all 112 specimens, wingbeat frequency covered a range between 12.468 to $557.351 \mathrm{~Hz}(\bar{x}=121.588$, $\mathrm{sd}=92.679$, $\mathrm{se}=8.767)$, body mass a range of 0.0003 to $2.245 \mathrm{~g}(\bar{x}=0.097$, $\mathrm{sd}=0.256$, $\mathrm{se}=0.024)$, wing length a range of 0.172 to $5.214 \mathrm{~cm}(\bar{x}=1.184, \mathrm{sd}=0.919, \mathrm{se}=0.087)$, wing area a range of 0.022 to 23.362 $\mathrm{cm}^{2}(\bar{x}=2.022, \mathrm{sd}=4.088, \mathrm{se}=0.386)$, and wing loading a range of 0.0028 to $0.245 \mathrm{~g} / \mathrm{cm}^{2}$ $(\bar{x}=0.061, \mathrm{sd}=0.059$, se $=0.006)$.

These values show that some orders were better sampled than others and in some cases this is reflected in the ranges of different variables recorded. Average values, however, are generally in agreement with expected values for UK insects. Synchronous fliers (Ephemeroptera, Lepidoptera, Mecoptera, Neuroptera, Odonata, Trichoptera) were overall less well sampled than asynchronous fliers (Coleoptera, Diptera, Hemiptera, Hymenoptera) and should be similarly taken into account when considering ranges of variables.

Relationships between morphometrics and wingbeat frequency

Figure 2 shows the relevant linear relationships between the $\log _{10}$ transformed morphometric data. Of these, wing area $\left(\mathrm{cm}^{2}\right)$ was the best predictor of wingbeat frequency $\left(R^{2}=0.59, p=\right.$ <0.001). The strongest overall linear relationship between all morphometric measurements was between wing length (cm) and wing area $\left(R^{2}=0.93, \mathrm{p}=<0.001\right)$. Body mass explained only 9% of the variation in wingbeat frequency across specimens ($R^{2}=0.09, p=<0.01$) and represented the poorest predictor of wingbeat frequency across the measured morphometrics. Taxonomic distribution on the graphs (Fig. 2, especially A-D) sees a diffuse but identifiable clustering of the orders most intensively sampled, suggesting that orders may broadly adhere to a specific strategy and some new phylogenetic clustering between wingbeat frequency, wing area, wing length, and wing loading have been revealed where previous meta-analyses
focussed solely on taxonomic grouping in relation to wingbeat frequency and body mass. For example, looking at Figure 2D, Hymenoptera are quite closely clustered at the higher end of the wing loading range and the upper-middle range of wingbeat frequency, denoting that most hymenopterans sampled have small wings relative to their body mass, which they beat at above average frequencies compared to other orders.

A multiple regression model using $\log _{10}$ values of wing area ($\beta=-0.034, p=<0.001$) and body mass ($\beta=0.001, \mathrm{p}=<0.001$), with a fit of $R^{2}=0.84$ was the best overall model predicting wingbeat frequency in insects: wingbeat frequency $=($ wing area * -0.77$)+($ body mass * 0.37 $)$ +5.56 .

A dominance analysis (Azen and Budescu, 2003; Grömping, 2006) was conducted to determine the relative importance of the explanatory variables to the response variable in the model and showed that body mass and wing area explained 17.3% and 67.2% of the change in wingbeat frequency, respectively.

Phylogenetic clustering of flight strategy

Wingbeat frequency and morphometric variables for all specimens were reduced to a dataset summarising the variance and covariance between each using a Principle Component Analysis (PCA). Initial eigenvalues indicated the first two principle components explained 64.039% and 33.291% of the data, respectively (97.331% cumulatively). Dimension 1 is mainly loaded towards wing area (30.417\%), wing length (30.073\%), body mass (22.882\%), and wing loading (16.388%), whereas Dimension 2 is mainly loaded towards wing loading (58.325\%), wingbeat frequency (24.979\%), and body mass (15.821%). Having determined the loadings, a PCA biplot was produced to view the relationship between variables and whether
insect orders were clustered on the graph. Figure 3 reveals that most insect specimens are in close proximity to their associated centroid (the mean value of the x and y coordinates for each order), shown by the ellipses, which represent one standard deviation along each axis and is rotated toward the direction of maximum spread of the point cloud. This strongly suggests that flight strategy is well conserved at the order level.

DISCUSSION

Phylogenetic clustering apparent in this study broadly agrees with results from previous metaanalyses (Byrne et al., 1988; Dudley, 2000). Past research looking at differences in wingbeat frequency and flight-associated morphometrics are, therefore, experimentally validated by the present study through the use of high-speed filming. However, although all measured characteristics significantly affected wingbeat frequency, body mass did not show as clear a relationship to it as in previous meta-analysis (Dudley, 2000). This is likely because of the lack of specimen variation in the present study, compared to the very high number of different specimens across a much broader body mass range in the meta-analysis (Dudley, 2000). Indeed, previous meta-analyses included species from a much wider geographical range, incorporating studies from many different countries and ecosystems, including those from tropical forests.

Wing length and wing area are both able to predict wingbeat frequency moderately accurately, explaining 42% and 59% of its variation, respectively. Wing length may affect wingbeat frequency as a product of increasing body mass, where larger insects have slightly longer wings to offset the lower wingbeat frequency and maintain good advance ratios (Vogel, 2013), though this is also connected to wing area (Fig. 2E). Area of the wing generally increases with body mass to accommodate the greater level of lift generation required and longer wings tend to have a greater area than shorter ones. Thus, an increased area means fewer beats are
necessary per unit time to generate the same amount of lift. This is supported by the positive relationship between wing loading and wingbeat frequency, where heavily loaded wings are generally beaten more rapidly to generate enough lift. Relatively heavily loaded wings must keep a weight aloft with a reduced area and are associated with larger insects (Fig. 2F) because wing area, proportional to the square of body length, cannot keep pace with body mass, proportional to the cube of body length, as insect size increases (Bartholomew and Heinrich, 1973; Byrne et al., 1988; Ennos, 1989; Dudley, 2000; Vogel, 2013). Despite this, heavier insects tended to also have lower wingbeat frequencies (Fig. 2C). Whilst initially paradoxical that heavier insects with greater wing loading beat their wings relatively less frequently, this is because smaller insects must overcome the increasingly viscous forces of air at small scales, greater relative drag, and the greater effect of the wind on their direction by beating their wings comparatively faster (Dudley, 2000; Alexander, 2002; Vogel, 2013) and because the oscillatory frequency of the thorax is inversely dependent on its size, which directly influences wingbeat frequency in asynchronous fliers (Pringle, 1949, 1967; Dickinson and Tu, 1997; Dudley, 2000).

The best overall model explaining the variation in wingbeat frequency incorporated body mass and wing area, the relative importances of which were 17.3% and 67.2%, respectively. This suggests that despite the weak linear relationship between body mass and wingbeat frequency, together with wing area the variables can explain 84% of the variation in wingbeat frequency. These findings support previous agreement (Jensen, 1956; Ellington, 1984b-c, 1999; Dudley, 1990, 2000; Alexander, 2002) that wingbeat frequency is in large part dependent on wing area and body mass.

Palaeopterous insects using direct flight muscles and neopterous insects using synchronous flight muscles show generally lower wingbeat frequencies than insects with asynchronous
flight muscles (Figure 2) and these two groups are further clustered in Figure 3 (Neuroptera, Lepidoptera, Odonata - bottom right; asynchronous fliers - middle/top left). The weak relationship between wingbeat frequency and body mass in the present study as well as past meta-analyses may arise because of the differences in scaling between these groups. Insects with indirect synchronous flight muscles conduct wingbeats by single nerve impulses to the tergosternal (wing depressor) and dorsal-longitudinal (wing elevator) muscles. Thus, the wingbeat frequency of insects with synchronous musculature is determined by the frequency of nervous stimulation to the muscles. In contrast, insects that possess asynchronous muscles have essentially random nervous stimulation relative to the wingbeat frequency (Dickinson and Tu, 1997). Wingbeat frequency in asynchronous fliers is determined primarily by the resonant features of the pterothoracic apparatus to maximise efficiency of energy expenditure (Pringle, 1949; Dickinson and Tu, 1997), as well as behavioural changes during rapid manoeuvring (Nachtigall and Wilson, 1967). Asynchronous muscles are stretch-activated (Pringle, 1949, 1967) by their antagonistic pair within the pterothorax and are therefore dependent on mechanical loading. The inertial load of the whole thorax-wing system must increase with body mass and wingbeat frequency has been shown to vary inversely with wing inertia (Sotavalta, 1952). For asynchronous fliers, scaling of the resonant flight apparatus is therefore especially important, as the oscillatory frequency of the pterothorax is inversely dependent on its size, which directly influences wingbeat frequency (Pringle, 1949, 1967; Dickinson and Tu, 1997; Dudley, 2000). In synchronous fliers, wing amputation experiments to lower wing inertia results in only a relatively small increase in wingbeat frequency in Periplaneta cockroaches and Agrontia moths compared to asynchronous fliers (Roeder, 1951), suggesting wingbeat frequency in synchronous fliers is independent of mechanical load. Thus, asynchronous fliers are more likely to show a stronger scaling relationship between wingbeat frequency and body mass than other insects. No strong inferences relating to scaling differences between synchronous and asynchronous fliers can be made in the present study because Lepidoptera encompassed the only well sampled synchronous fliers.

Orders are shown to be clustered when wingbeat frequency is viewed as a function of one of the other measured morphometrics (Fig. 2A-C), supporting the idea that flight strategy can be generally characterized based on evolutionary history. This may be because of a combination of several factors: 1) species inherit a flight apparatus that can only be changed to a certain extent in a given time to fit a new role/niche e.g. Coleoptera inherit heavy elytra, one pair of functional wings, asynchronous flight muscles, and low flight muscle mass ratio relative to body mass (Marden, 1987; Dudley, 2000) making it unlikely for them to be able to fill the role of an aerial predator but well adapted to infrequent spells of sustained flight; 2) species may need to fly in the same way even though they have different ecological niches, which may increase the level of intra-order clustering because the existing flight apparatus can be used to fulfil the same aerodynamic needs despite interacting with different organisms e.g. Syrphidae and Tabanidae need to fly in similar ways - visiting flowers vs. visiting vertebrate hosts (female tabanids), ability to hover above resources, ability to change direction rapidly to regularly escape predators or swatting etc.; and 3) a specific goal may be achieved in more than one way e.g. Diptera: Asilidae and Odonata are both aerial predators with a high proportion of relative flight muscle mass (Marden, 1987), but likely utilise completely different flight strategies because of their very different inherited flight apparatuses. Combined, these factors suggest that although an inherited flight apparatus is predisposed to certain flight strategies and precludes others, it can be somewhat modified in some instances to fit new ecological niches or maintained if aerodynamic needs do not change with differing ecological interactions. Ultimately, this may improve levels of flight strategy conservation at the order level.

Order-level flight strategies may have interesting energetic, ecological, and evolutionary implications though intra-order exceptions exist where some groups fly in unconventional ways. For example, flies are very light to medium weight with high wingbeat frequencies,
medium to low wing area and wing length, and medium to high wing loading (Fig. 2A-D). These attributes afford flies the ability to fly quickly, perform complex aerobatic manoeuvres and to hover, conferring obvious ecological advantages to certain groups. Mosquitos and chironomids, however, possess wingbeat frequencies that are unusually high, and wing loadings that are unusually low relative to other Diptera (Table S1, Supplementary Information) that likely increases energetic costs of flight substantially, and may be used for acoustic communication during swarming and mating (Neems et al., 1992; Takken et al., 2006; Bomphrey et al., 2017). One potential explanation of this presumably highly energetically expensive trait uncharacteristic of most other members of the order may be related to sexual selection, where males and females "duet" by reaching a common harmonic tone based on their usually different wingbeat frequencies (Cator et al., 2009; Robert, 2009; Bomphrey et al., 2017).

The variation between different clades within orders suggests broad categorization is possible, with infrequent exceptions. For most orders, however, relationships between wingbeat frequency and flight-associated morphometrics show moderately well conserved patterns across the graphs. These align with previous meta-analyses (Byrne et al., 1988; Dudley, 2000) looking at wingbeat frequency in relation to body mass, with the same orders covering the same areas on the graphs (see Fig. 3.3B in Dudley, 2000). The present study therefore provides strong experimental evidence that flight strategy is broadly conserved at the order level, as specimens are generally clustered phylogenetically, and this validates previous metaanalyses investigating wingbeat frequency and flight-associated morphometrics, although there is evidence that some flight strategies show similarity between certain groups. The PCA analysis could though be improved by incorporating other variables, such as relative flight muscle mass, which is shown to be important when considering the ecology of different orders (Marden, 1987; Dudley, 2000).

Energetic and ecological costs and benefits of differing flight behaviours are still poorly known in most insect groups, though some have received attention e.g. Hymenoptera: Apidae: Euglossini (see Casey et al., 1985; Dudley, 1995; Dillon and Dudley, 2004), Lepidoptera: Sphingidae and Saturniidae (Bartholomew and Casey, 1978), Orthoptera: Acrididae (Snelling et al., 2012), and Hymenoptera: Apidae: Bombini (Ellington et al., 1990). Elucidation of the ecological pressures leading to adaptation of specific flight strategies and the energetic costs associated may help illuminate evolutionary trade-offs. These trade-offs are likely to explain the phylogenetic clustering found across flight-associated morphometrics and wingbeat frequency in the present study. Studies that combine quantitative evaluation of insect flight energetics with additional qualitative comparisons between orders can go some way in revealing why different groups utilise different flight strategies (e.g. between bees, moths, and locusts in Snelling et al., 2012). Further work to reveal ecological pressures and energetic costs of broad flight strategies in different orders is therefore required to infer why insect groups fly the way they do.

ACKNOWLEDGEMENTS

The authors would like to thank Danielle Klassen, George Hicks, and Todd Jenkins for technical assistance during flight filming and field work and Aidan Thomas, Joe Roberts, and Todd Jenkins for providing some of the specimens. George Hicks and Todd Jenkins for their assistance with species taxonomy.

COMPETING INTERESTS

The authors declare no competing or financial interests.

REFERENCES

Alexander, D. E. (1986) Wind tunnel studies of turns by flying dragonflies. Journal of Experimental Biology, 122, 81-98.

Alexander, D. E. (2002) Nature's Flyers : Birds, Insects, and the Biomechanics of Flight. The John Hopkins University Press, Baltimore, Maryland, USA.

Atkins, M.D. (1960). A study of the flight of the douglas-fir beetle Dendroctonus pseudotsugae Hopk. (Coleoptera: Scolytidae): II. Flight movements. The Canadian Entomologist, 92(12), pp.941-954.

Auguie, B. (2016) gridExtra: Miscellaneous Functions for "Grid" Graphics. R package version

2.2.1. https://CRAN.R-project.org/package=gridExtra

Azen, R. and Budescu, D. V. (2003) The dominance analysis approach for comparing predictors in multiple regression. Psychological Methods, 8(2), 129-148.

Bartholomew, G. A. and Casey, T. M. (1978) Oxygen consumption of moths during rest, preflight warm-up, and flight in relation to body size and wing morphology. Journal of Experimental Biology, 76, 11-25.

Bartholomew, G. A. and Heinrich, B. (1973) A field study of flight temperatures in moths in relation to body weight and wing loading. Journal of Experimental Biology, 58, 123-135.

Bomphrey, R. J., Nakata, T., Phillips, N., and Walker, S. M. (2017) Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight. Nature. 544(7648), 92-95.

Byrne, D. N., Buchmann, S. L., and Spangler, H. G. (1988) Relationship between wing loading, wingbeat frequency and body mass in homopterous insects. Journal of Experimental Biology, 135, 9-23.

Casey, T. M. and May, M. L. (1985) Flight energetics of euglossine bees in relation to morphology and wing stroke frequency. Journal of Experimental Biology, 116, 271-289.

Cator, L. J., Arthur, B. J., Harrington, L. C. and Hoy, R. R. (2009) Harmonic convergence in the love songs of the dengue vector mosquito. Science. 323(5917), 1077-1079.

Chadwick, L. E. (1939) A simple stroboscopic method for the study of insect flight. Psyche. 46(1), 1-8.

Dickinson, M. H. and Tu, M. S. (1997) The function of dipteran flight muscle. Comparative Biochemistry and Physiology, 116(3), 223-238.

Dillon, M. E. and Dudley, R. (2004) Allometry of maximum vertical force production during hovering flight of neotropical orchid bees (Apidae: Euglossini). Journal of Experimental Biology, 207, 417-425.

Dudley, R. (1990) Biomechanics of flight in neotropical butterflies: morphometrics and kinematics. Journal of Experimental Biology, 150, 37-53.

Dudley, R. (1995) Extraordinary flight performance of orchid bees (Apidae: Euglossini) hovering in heliox ($80 \% \mathrm{He} / 20 \%$ O2). Journal of Experimental Biology, 198, 1065-1070.

Dudley, R. (2000) The Biomechanics of Insect Flight: Form, Function, Evolution. Princeton University Press, Princeton, New Jersey, USA.

Ellington, C. P., Machin, K. E. and Casey, T. M. (1990) Oxygen consumption of bumblebees in forward flight. Nature. 347, 472-473.

Ellington, C. P. (1984a) The aerodynamics of hovering insect flight. I. The quasi-steady analysis Philosophical Transactions of the Royal Society B, 305, 1-15.

Ellington, C. P. (1984b) The aerodynamics of hovering insect flight. II. Morphological parameters. Philosophical Transactions of the Royal Society B, 305, 17-40.

Ellington, C. P. (1984c) The aerodynamics of hovering insect flight. III. Kinematics. Philosophical Transactions of the Royal Society B, 305, 41-78.

Ellington, C. P. (1984d) The aerodynamics of hovering insect flight. IV. Aerodynamic mechanisms. Philosophical Transactions of the Royal Society B, 305, 79-113.

Ellington, C. P. (1984e) The aerodynamics of hovering insect flight. V. A vortex theory. Philosophical Transactions of the Royal Society B, 305, 115-144.

Ellington, C. P. (1984f) The aerodynamics of hovering insect flight. VI. Lift and power requirements. Philosophical Transactions of the Royal Society B, 305, 145-181.

Ellington, C. P. (1999) The novel aerodynamics of insect flight: applications to micro-air vehicles. Journal of Experimental Biology, 202, 3439-3448.

Ennos, A. R. (1989) Inertial and aerodynamic torques on the wings of Diptera in flight. Journal of Experimental Biology, 142, 87-95.

Fry, S. N., Sayaman, R. and Dickinson, M. H. (2003) The aerodynamics of free-flight maneuvers in Drosophila. Science, 300, 495-498.

Gilbert, F. S. (1984) Thermoregulation and the structure of swarms in Syrphus ribesii (Syrphidae). Oikos. 42, 249-255.

Grömping, U. (2006) Relative importance for linear regression in R: the package relaimpo. Journal of Statistical Software, 17(1), 1-27.

Jensen, M. (1956) Biology and physics of locust flight III. The aerodynamics of locust flight. Philosophical Transactions of the Royal Society B, 239, 511-552.

Kuhn, M. (2017) caret: Classification and Regression Training. R package version 6.0-76. https://CRAN.R-project.org/package=caret

Lehmann, F. and Dickinson, M. H. (1998) The control of wing kinematics and flight forces in fruit flies (Drosophila spp.). Journal of Experimental Biology, 201, 385-401.

Marden, J. H. (1987) Maximum lift production during takeoff in flying animals. Journal of Experimental Biology, 130, 235-258.

Nachtigall, W. and Wilson, D. M. (1967) Neuro-muscular control of dipteran flight. Journal of Experimental Biology, 47, 77-97.

Neems, R. M., Lazarus, J. and Mclachlan, A. J. (1992) Swarming behaviour in male chironomid midges: a cost-benefit analysis. Behavioural Ecology, 3(4), 285-290.

Oertli, J. J. (1989) Relationship of wing beat frequency and temperature during take-off flight in temperate-zone butterflies. Journal of Experimental Biology, 145, 321-338.

Outomuro, D., Adams, D. C. and Johansson, F. (2013) Wing shape allometry and aerodynamics in calopterygid damselflies: a comparative approach. BMC Evolutionary Biology, 13(118).

Pringle, J. W. S. (1949) The excitation and contraction of the flight muscles of insects. Journal of Physiology, 108, 226-232.

Pringle, J. W. S. (1967) The contractile mechanism of insect fibrillar muscle. Progress in Biophysics and Molecular Biology, 17, 1-12.

R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Reinking, L. (2007) Examples of image analysis using ImageJ. Online:
https://imagej.nih.gov/ij/docs/pdfs/examples.pdf

Robert, D. (2009) Insect bioacoustics: mosquitoes make an effort to listen to each other. Current Biology, 19(11), 446-449.

Roeder, K. D. (1951) Movements of the thorax and potential chanfes in the thoracic muscles of insects during flight. Biological Bulletin, 100(2), 95-106.

Rüppell, G. and Fincke, O. M. (1989) Megaloprepus coerulatus (Pseudostigmatidae) Flug-und Fortpflanzungsverhalten. Flying and reproductive behaviour. Publikationen fur den Wissenschaftlichen Film, Gottingen, ser. 20, no. 10/E 2976, 1-20.

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T. et al., and Tinevez, J. Y. (2012) Fiji: an open-source platform for biological-image analysis. Nature Methods, 9(7), 676-682.

Snelling, E. P., Seymour, R. S., Matthews, P. G. D. and White, C. R. (2012) Maximum metabolic rate, relative lift, wingbeat frequency and stroke amplitude during tethered flight in the adult locust Locusta migratoria. Journal of Experimental Biology, 215, 3317-3323.

Snelling, E. P., Duncker, R., Jones, K. K., Fagan-Jeffries, E. P. and Seymour, R. S. (2017) Flight metabolic rate of Locusta migratoria in relation to oxygen partial pressure in atmosphere of varying diffusivity and density. Journal of Experimental Biology, 220, 4432-4439.

Sotavalta, O. (1953) Recordings of high wing-stroke and thoracic vibration frequency in some midges. Biological Bulletin 104(3), 439-444.

Takken, W., Costantini, C., Dolo, G., Hassanali, A., Sagnon, N. F. and Osir, E. (2006) Mosquito mating behaviour. In: Bridging laboratory and field research for genetic control of disease vectors. Eds. B. G. J. Knots. and C. Louis. Dordrecht: Springer, 183-188.

Unwin, D. M. and Corbet, S. A. (1984) Wingbeat frequency, temperature and body size in bees and flies. Physiological Entomology 9, 115-121.

Unwin, D. M. and Ellington, C. P. (1979) An optical tachometer for measurement of the wingbeat frequency of free-flying insects. Journal of Experimental Biology, 82, 377-378.

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth Edition. Springer, New York. ISBN 0-387-95457-0.

Vogel, S. (2013) Comparative Biomechanics: Life's Physical World. Princeton University Press, Princeton, New Jersey, USA.

Wang, Z. J. (2005) Dissecting insect flight. Annual Review of Fluid Mechanics. 27, 183-210.

Wickham, H. (2009) ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York.

Wilkin, P.J. (1991) Instantaneous aerodynamic forces developed by an indian moon moth, Actias selene, in near-hovering flight. Physiological Zoology, 64(1), pp.193-211.

Zambrano-Bigiarini, M. (2014) hydroGOF: Goodness-of-fit functions for comparison of simulated and observed hydrological time series. R package version 0.3-8. https://CRAN.Rproject.org/package=hydroGOF

Figure 1. Images a-k show a complete wingbeat in the beetle Rutpela maculata (Coleoptera: Cerambycidae); t is time in milliseconds from the start of the wingbeat. a. the end of pronation; b-e. downstroke translation; e-g. supination; h-j. upstroke translation; j-k. pronation.

Figure 2. Relationships between $\log _{10}$ transformed morphometric variables. a, wingbeat frequency (Hz) as a function of wing length (cm) : wingbeat frequency $=-0.764$ * wing length + 4.479, $R^{2}=0.42, \mathrm{p}=<0.001 ; \mathbf{b}$, wingbeat frequency as a function of wing area $\left(\mathrm{cm}^{2}\right)$: wingbeat frequency $=-0.413 *$ wing area $+4.345, R^{2}=0.59, p=<0.001 ; \mathbf{c}$, wingbeat frequency as a function of body mass (g) : wingbeat frequency $=-0.129$ * body mass $+4.04, R^{2}=0.09, \mathrm{p}=$ <0.01; d, wingbeat frequency as a function of wing loading $\left(\mathrm{g} / \mathrm{cm}^{2}\right)$: wingbeat frequency $=$ 0.385 * wing loading $+5.799, R^{2}=0.29, p=<0.001 ; \mathbf{e}$, wing area as a function of wing length: wing area $=2.105^{*}$ wing length $-0.307, R^{2}=0.93, p=<0.001 ; f$ wing loading as a function of body mass: wing loading $=0.356$ * body mass $-1.977, R^{2}=0.34, p=<0.001 ; \mathbf{g}$, wing area as a function of body mass: wing area $=0.644$ * body mass $+1.977, R^{2}=0.63, p=<0.001$.

Figure 3. Principle component data for Dimensions 1 and 2, categorised into different insect orders by symbol shape and colour. Small translucent symbols represent specimens and large opaque symbols represent the centroids for each order. The ellipses around each centroid represent one standard deviation along each axis of the associated order and are rotated in the direction of maximum spread. Trichoptera, Ephemeroptera, and Mecoptera lack ellipses because of an insufficient sample size. The Dimension scores show a moderate-high level of clustering of orders in relation to measured variables, as specimens are generally in close proximity to their associated centroid. The black point in the top-right quarter of the graph is the mean direction of the arrows and suggests the variables are on average positively correlated with dimensions 1 and 2 .

Table 1. Range and mean of wingbeat frequency and associated morphological measurements in each sampled order. Number of species are denoted in parentheses beside sample size in the right-most column.

Supplementary Information

Table S1. Wingbeat frequency and morphological measurements of all specimens. Lists specimens by body mass in ascending order. Cells with a "-" denote the specimen failed to be identified to the associated taxonomic rank.

Figure 1.

664

665

666

667

668

669

670

671

672

673

674

697 Table 1.

,	Wingbeat frequency (mean $\mathrm{Hz})$		Bodymass (g)		Wing length (cm)		Wing area (cm^{2})		Wing loading ($\mathrm{g} / \mathrm{cm}^{2}$)		Number of specimens
	range	mean									
Coleoptera	79-123.396	97.512	0.0061-0.117	0.0539	0.521-1.188	0.898	0.19-0.982	0.545	0.0321-0.141	0.085	10(10)
Diptera	59.567-557.351	208.244	0.0005-0.162	0.0268	0.172-1.739	0.729	0.022-1.17	0.327	0.0119-0.168	0.0554	28(28)
Ephemeroptera	n/a	75.0454	n/a	0.0027	n/a	0.634	n/a	0.306	n/a	0.00882	1(1)
Hemiptera	90.222-152.247	116.39	0.0011-0.14	0.0226	0.345-1.185	0.624	0.112-1.186	0.445	0.009-0.118	0.034	11(11)
Hymenoptera	87.129-230.987	163.89	0.0024-0.223	0.103	0.356-1.48	1.006	0.038-1.234	0.64	0.022-0.245	0.136	24(15)
Lepidoptera	12.468-64.566	39.606	0.0044-2.24	0.203	0.646-5.214	1.792	0.318-23.362	5.031	0.004-0.096	0.025	22(22)
Mecoptera	n / a	48.885	n/a	0.0398	n/a	1.387	n/a	1.492	n/a	0.027	1(1)
Neuroptera	25-923-94.413	52.801	0.0003-0.0065	0.0035	0.352-1.393	0.757	0.106-1.972	0.701	0.003-0.007	0.005	6(6)
Odonata	17.847-40.665	32.331	0.0278-1.23	0.27	1.795-5.158	3.002	1.964-22.784	8.768	0.0112-0.054	0.022	$8(6)$
Trichoptera	n / a	27.515	n / a	0.159	n / a	2.267	n / a	4.738	n / a	0.0336	1(1)

698

699

700

701

702

703

704

705

706

707

708

709

710

Supplementary Table.

Species	Genus	Family	Order	Wingbeat frequency (mean Hz)	Bodymass (g)	Wing length (cm)	Wing area $\left(\mathrm{cm}^{2}\right)$	Wing loading $\left(\mathrm{g} / \mathrm{cm}^{2}\right)$
-	Micromus	Hemerobiidae	Neuroptera	94.413	0.0003	0.352	0.106	0.003
-	Syrphus.	Syrphidae	Diptera	190.860	0.0005	0.172	0.022	0.023
-	-	Psychodidae	Diptera	144.611	0.0006	0.267	0.048	0.013
-	-	-	Diptera	204.355	0.0009	0.252	0.050	0.018
-	-	Chironomidae	Diptera	557.351	0.0011	0.406	0.064	0.017
-	-	Miridae	Hemiptera	127.872	0.0011	0.345	0.122	0.009
Thaumatomyia notata	Thaumatomyia	Chloropidae	Diptera	269.741	0.0014	0.234	0.038	0.037
-	-	-	Hemiptera	152.247	0.0014	0.358	0.114	0.012
Uroleucon cirsii	Uroleucon	Aphididae	Hemiptera	99.603	0.0015	0.353	0.112	0.013
-	-	Chironomidae	Diptera	544.494	0.0018	0.423	0.070	0.026
-	-	Tipulidae	Diptera	94.606	0.0020	0.687	0.168	0.012
Hemerobius humulinus	Hemerobius	Hemerobiidae	Neuroptera	46.583	0.0021	0.586	0.336	0.006
-	Torymus	Torymidae	Hymenoptera	160.011	0.0024	0.360	0.098	0.024
Wesmaelius subnebulosis	Wesmaelius	Hemerobiidae	Neuroptera	45.304	0.0026	0.640	0.416	0.006
Centroptilum luteolum	Centroptilum	Baetidae	Ephemeroptera	75.045	0.0027	0.634	0.306	0.009
-	-	Braconidae	Hymenoptera	136.261	0.0029	0.438	0.134	0.022
-	-	Chloropidae	Diptera	180.050	0.0030	0.342	0.070	0.043
-	-	Braconidae	Hymenoptera	164.443	0.0030	0.356	0.038	0.079
-	Wesmaelius	Hemerobiidae	Neuroptera	54.583	0.0033	0.666	0.444	0.007
-	-	-	Diptera	195.996	0.0039	0.354	0.098	0.040

-	-	Syrphidae	Diptera	198.890	0.0044	0.403	0.124	0.035
Pseudargyrotoza conwagana	Pseudargyrotoza	Tortricidae	Lepidoptera	64.246	0.0044	0.653	0.318	0.014
-	-	Miridae	Hemiptera	120.832	0.0048	0.530	0.250	0.019
Culex pipiens	Culex	Culicidae	Diptera	334.037	0.0049	0.578	0.158	0.031
-	-	Tortricidae	Lepidoptera	52.214	0.0055	0.785	0.612	0.009
-	-	Crambidae	Lepidoptera	57.948	0.0059	0.799	0.562	0.010
Micromus angulatus	Micromus	Hemerobiidae	Neuroptera	50.000	0.0059	0.904	0.932	0.006
Oulema melanopus	Oulema	Chrysomelidae	Coleoptera	123.398	0.0061	0.521	0.190	0.032
Chrysoperla carnea	Chrysoperla	Chrysopidae	Neuroptera	25.923	0.0065	1.393	1.972	0.003
Aedes cantans	Aedes	Culicidae	Diptera	286.949	0.0066	0.627	0.182	0.036
Culiseta annulata	Culiseta	Culicidae	Diptera	344.160	0.0070	0.572	0.150	0.047
Macrolophus sp.	Macrolophus	Miridae	Hemiptera	139.717	0.0076	0.515	0.244	0.031
Lobesia abscisana	Lobesia	Tortricidae	Lepidoptera	64.566	0.0076	0.646	0.526	0.014
Culiseta annulata	Culiseta	Culicidae	Diptera	331.157	0.0077	0.602	0.174	0.044
-	-	-	Hemiptera	116.865	0.0104	0.619	0.490	0.021
Propylea 14-punctata	Propylea	Coccinellidae	Coleoptera	102.427	0.0105	0.589	0.210	0.050
Pasiphila rectangulata	Pasiphila	Geometridae	Lepidoptera	41.358	0.0107	0.938	1.132	0.009
Pterophorus pentadactyla	Pterophorus	Pterophoridae	Lepidoptera	32.333	0.0114	1.192	1.120	0.010
Nephrotoma flavescens	Nephrotoma	Tipulidae	Diptera	79.470	0.0118	1.015	0.402	0.029
-	-	Miridae	Hemiptera	108.171	0.0119	0.710	0.402	0.030
Pandemis cerasana	Pandemis	Tortricidae	Lepidoptera	54.184	0.0124	0.835	0.890	0.014
Athalia scuttelariae	Athalia	Tenthredinidae	Hymenoptera	87.129	0.0132	0.826	0.352	0.038
Xanthorhoe montanata	Xanthorhoe	Geometridae	Lepidoptera	29.243	0.0133	1.561	2.980	0.004
Lygus rugulipennis	Lygus	Miridae	Hemiptera	115.183	0.0140	0.574	0.298	0.047

Nephrotoma quadrifaria	Nephrotoma	Tipulidae	Diptera	67.360	0.0181	1.084	0.464	0.039
Rhagonycha fulva	Rhagonycha	Catharidae	Coleoptera	79.712	0.0183	0.653	0.380	0.048
Chloromyia formosa	Chloromyia	Stratiomyidae	Diptera	156.043	0.0183	0.736	0.312	0.059
Haematopota pluvialis	Haematopota	Tabanidae	Diptera	151.568	0.0183	0.779	0.302	0.061
-	-	-	Hemiptera	112.917	0.0184	0.682	0.518	0.036
-	-	Vespidae: Eumeninae	Hymenoptera	135.597	0.0184	0.703	0.292	0.063
-	-	Empididae	Diptera	151.321	0.0193	0.759	0.288	0.067
Oedemera nobilis	Oedemera	Oedemeridae	Coleoptera	112.656	0.0210	0.698	0.232	0.091
Scathophaga stercoraria	Scathophaga	Scathophagidae	Diptera	104.015	0.0224	0.854	0.366	0.061
-	-	Ichneumonidae	Hymenoptera	110.116	0.0233	0.942	0.546	0.043
Manulea lurideola	Manulea	Erebidae	Lepidoptera	33.095	0.0258	1.470	2.542	0.010
Syrphus ribesii	Syrphus	Syrphidae	Diptera	177.908	0.0273	0.994	0.512	0.053
Coenagrion puella	Coenagrion	Coenagrionidae	Odonata	37.495	0.0277	1.795	1.964	0.014
Harmonia axyridis	Harmonia	Coccinellidae	Coleoptera	79.000	0.0283	0.993	0.644	0.044
Anania hortulata	Anania	Crambidae	Lepidoptera	40.996	0.0293	1.448	2.410	0.012
Episyrphus balteatus	Episyrphus	Syrphidae	Diptera	166.057	0.0294	1.025	0.488	0.060
Idaea aversata	Idaea	Geometridae	Lepidoptera	32.088	0.0303	1.471	2.420	0.013
Coenagrion puella	Coenagrion	Coenagrionidae	Odonata	36.691	0.0316	1.984	2.072	0.015
-	Aphodius	Scarabaeidae	Coleoptera	93.054	0.0327	0.987	0.560	0.058
Aphantopus hyperantus	Aphantopus	Nymphalidae	Lepidoptera	16.014	0.0373	2.168	7.262	0.005
Coenagrion puella	Coenagrion	Coenagrionidae	Odonata	36.839	0.0374	1.902	2.190	0.017
-	Andrena	Apidae	Hymenoptera	213.815	0.0376	0.703	0.352	0.107
-	-	-	Hemiptera	90.222	0.0383	0.989	1.164	0.033
-	-	Syrphidae	Diptera	208.540	0.0385	0.872	0.340	0.113

Panorpa communis	Panorpa	Panorpidae	Mecoptera	48.885	0.0398	1.387	1.492	0.027
-	Andrena	Apidae	Hymenoptera	172.581	0.0453	0.690	0.346	0.131
-	Sarcophaga	Sarcophagidae	Diptera	149.643	0.0540	0.995	0.526	0.103
Calliphora vomitoria	Calliphora	Calliforidae	Diptera	214.835	0.0549	0.874	0.460	0.119
Hypena proboscidalis	Hypena	Noctuidae	Lepidoptera	30.587	0.0565	1.137	4.496	0.013
-	Tipula	Tipulidae	Diptera	59.567	0.0676	1.739	1.170	0.058
Pieris brassicae	Pieris	Pieridae	Lepidoptera	12.468	0.0691	2.593	10.992	0.006
Vespula germanica	Vespula	Vespidae	Hymenoptera	145.156	0.0769	1.126	0.628	0.122
Ectemnius cavifrons	Ectemnius	Crabronidae	Hymenoptera	210.688	0.0800	1.037	0.542	0.148
-	Zygaena	Zygaenidae	Lepidoptera	60.595	0.0804	1.669	2.640	0.030
Vespula germanica	Vespula	Vespidae	Hymenoptera	152.006	0.0818	1.061	0.610	0.134
Vespula germanica	Vespula	Vespidae	Hymenoptera	146.908	0.0833	0.530	0.536	0.155
Vespula vulgaris	Vespula	Vespidae	Hymenoptera	173.277	0.0874	1.081	0.598	0.146
Apis mellifera	Apis	Apidae	Hymenoptera	230.987	0.0886	0.995	0.588	0.151
-	Aphodius	Scarabaeidae	Coleoptera	103.159	0.0929	1.018	0.658	0.141
Rutpela maculata	Rutpela	Cerambicidae	Coleoptera	86.840	0.1026	1.188	0.768	0.134
Geometra papilionaria	Geometra	Geometridae	Lepidoptera	22.023	0.1071	2.632	10.194	0.011
Chrysoteuchia culmella	Chrysoteuchia	Crambidae	Lepidoptera	40.626	0.1090	1.041	1.330	0.082
Calopteryx splendens	Calopteryx	Calopterygidae	Odonata	19.318	0.1092	3.054	9.760	0.011
-	Aphodius	Scarabaeidae	Coleoptera	101.111	0.1095	1.161	0.822	0.133
Polygonia c-album	Polygonia	Nymphalidae	Lepidoptera	27.501	0.1145	2.298	7.696	0.015
Bombus pascuorum	Bombus	Apidae	Hymenoptera	198.274	0.1166	1.074	0.614	0.190
Leptura quadrifasciata	Leptura	Cerambicidae	Coleoptera	93.768	0.1173	1.173	0.982	0.119
Orthosia gothica	Orthosia	Noctuidae	Lepidoptera	47.053	0.1253	1.753	3.260	0.038

Pentatoma rufipes	Pentatoma	Pentatomidae	Hemiptera	96.667	0.1397	1.185	1.186	0.118
Calopteryx virgo	Calopteryx	Calopterygidae	Odonata	17.847	0.1457	3.287	10.466	0.014
Bombus terrestris \uparrow	Bombus	Apidae	Hymenoptera	183.029	0.1504	1.171	0.818	0.184
Bombus lapidarius	Bombus	Apidae	Hymenoptera	199.547	0.1536	1.114	0.626	0.245
Phryganea grandis	Phryganea	Phryganeidae	Trichoptera	27.515	0.1590	2.267	4.738	0.034
Sympetrum striolatum	Sympetrum	Libellulidae	Odonata	40.665	0.1595	2.894	6.944	0.023
Volucella pellucens	Volucella	Syrphidae	Diptera	134.179	0.1613	1.418	1.152	0.140
Volucella bombylans	Volucella	Syrphidae	Diptera	133.078	0.1624	1.337	0.966	0.168
Bombus terrestris \uparrow	Bombus	Apidae	Hymenoptera	186.521	0.1641	1.229	0.864	0.190
Bombus terrestris 아	Bombus	Apidae	Hymenoptera	152.625	0.1854	1.436	1.048	0.177
Bombus terrestris \uparrow	Bombus	Apidae	Hymenoptera	153.182	0.1972	1.422	1.128	0.175
Bombus terrestris \uparrow	Bombus	Apidae	Hymenoptera	144.712	0.2081	1.454	1.134	0.184
Bombus terrestris \uparrow	Bombus	Apidae	Hymenoptera	161.815	0.2125	1.425	1.086	0.196
Bombus terrestris $\widehat{\text { ® }}$	Bombus	Apidae	Hymenoptera	165.085	0.2154	1.480	1.152	0.187
Bombus terrestris ${ }^{\text {® }}$	Bombus	Apidae	Hymenoptera	149.597	0.2227	1.480	1.234	0.180
Orthetrum cancellatum	Orthetrum	Libellulidae	Odonata	38.577	0.4176	3.944	13.960	0.030
Deilephila elpenor	Deilephila	Sphingidae	Lepidoptera	53.715	0.5281	3.026	6.792	0.078
Laothoe populi	Laothoe	Sphingidae	Lepidoptera	29.330	0.8449	4.085	17.152	0.049
Aeshna grandis	Aeshna	Aeshnidae	Odonata	31.214	1.2296	5.158	22.784	0.054
Acherontia atropos	Acherontia	Sphingidae	Lepidoptera	29.160	2.2403	5.214	23.362	0.096

712

713

715 Equation 1.

$$
\text { Equation } 1 \quad n=n_{v} \frac{1}{\left(t_{v} / f_{m}\right)}
$$

