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Abstract. Buckling is a subject that has been discussed for a long time, however, it’s still being 

studied and developed due to its practicality. The following article introduces two methods that 

are used to solve the problems involving buckling of the beam, shell and solid with an I shape 

cross-section having different cases of boundary load. The theory used in this article is Euler's 

formula and Eurocode 3 standard. The analytical results by ANSYS commercial software are 

compared with the theoretical results and results from Eurocode 3 standard. The authors based 

on the reliability of the calculation results to simulate buckling of the industrial factory model 

with different cases of load conditions. The simulation results show a general view of buckling 

cases. 
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1. INTRODUCTION 

History of overall beam stability theory has been developed for more than 100 years. The 

first authors were probably Prandtl and Michell with studies published in 1899 about the overall 

stability problem of simple beams with narrow rectangular sections and pure bending [1]. Next, 

Timoshenko set up and solved the stability problem of simple I-section beams subjected to pure 

bending in 1905 [2]. Timoshenko continued to develop the beam stability theory, the results 

gathered in the monograph were supplement and reprint many times. In the 1930s, Wagner 

formulated the stability theory of section I beams with a symmetry axis and formulated a 

parametric formula to show the degree of asymmetry of the section [3]. In 1940, Vlasov 

formulated the general theory of thin wall calculation including the general stability theory of 

flat horizontal bending beams [4]. Vlasov was the first author to introduce the concept of 

restraint twisting, the fan coordinates and the fan inertia moment of the thin-wall section. Bleich 

used an energy method in which the total potential of the beam is subjected to a load equal to the 

sum of the linear and external elastic deformation potential generated by the load on the 

displacements when the beam is unstable [5]. Timoshenko and Gere established stable equations 

when considering the equilibrium of an infinitesimal element combining the equilibrium of a 

beam [2]. In the present paper, two methods that are used to solve the problems involving 
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buckling of the beam, shell and solid with an I shape cross-section having different cases of 

boundary load. 

 The two buckling models for I-beam structure subjected to bending and compression will 

be analyzed with the use of different types of elements, one-dimensional beam elements, shell 

element and three-dimensional element. The purpose is to evaluate the advantages and 

disadvantages when using these types of elements in modeling bending and torsional instability 

problems. Simultaneously, the simulation results will be compared with analytical solutions 

referenced from Eurocodes standards and errors will be assessed carefully. Through the 

verification of the reliability of the simulation results of the beams and compressive instability 

beams, the industrial workshop instability model will be analyzed with different load cases. This 

helps to increase the safety in designing industrial buildings. 

2. THEORY OF BUCKLING [1] 

Buckling is a behavior of structure or when a structural system suddenly is deformed and is 

shifted out of the planeload set. This occurs even when stress inside is less than the critical stress 

of the material. When increasing load in structures such as beam, column, etc. enough to make 

the structural components become unstable, that is defined as buckling. Buckling is therefore an 

instability that leads to structural failure. 

2.1. Buckling of a radial compressed bar  

Consider the case as follows: a long thin bar with a constant cross-section having one head 

fixed and the other head is free and being under an axial force. 

According to [2], when the  ⃗⃗  impacting on the vertical axis of the bar is still not 

significant, apply an  ⃗⃗  force impact on the horizontal axis of the bar, the result in the shifting of 

the bar out of the equilibrium position. The bar will shift back to the equilibrium position when 

it is no longer impacted by the  ⃗⃗  force. This is the bucking of the bar. 

Increasing  ⃗⃗  to the critical value    ⃗⃗ ⃗⃗ ⃗⃗  , the structure will be different. When the  ⃗⃗  force is 

not applied, the bar is only compressed and still balanced with force    ⃗⃗ ⃗⃗ ⃗⃗  . When the  ⃗⃗  force is 

applied, the bar will deviate from the equilibrium position and when the  ⃗⃗  force is removed, the 

bar does not return to its original position. The bar is still not destroyed because of      . 

However, the bar is at an unstable state and can be destroyed if we continue to apply force to the 

bar as described in Figure 1.  

 

Figure 1. The states of radial compression bars. 
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2.2. Bending Buckling   

Bending Buckling includes transposition of u and v of the shaft system, and includes both 

flexural stiffness components is     and    . According to [3], bending buckling is caused by 

bending moment due to the force applied multiplied by transposition u or v. Bending Buckling 

may occur for a beam element, a beam system or a frame as described in Figure 2. 

 

Figure 2. The compression bar model in the Euler problem. 

3. THEORETICAL APPROACHES TO SOLVE COMPRESSION AND BENDING 

INSTABILITY PROBLEMS 

3.1. Compression instability  

Considering a double-jointed straight bar, subjected to compression by the critical force 

   . According to [2], when there is noise, the bar will be bent and we have a general fomula 

(Euler's critical load) for critical load for radial compressed beam with different boudary 

conditions: 

      (1) 

3.2. Bending instability  

The standard system EUROCODES [6, 7] is a set of standards for construction structures 

prepared by the Technical Committee CEN / TC250 and issued by the European Standardization 

Committee (CEN) for general application to European Union countries. By the mid-1980s, the 

first standards of structural construction under the standard system Eurocodes were introduced. 

So far these standards have evolved   into a system consisting of 10 main standards and divided 

into 4 groups. 

The general formula for determining critical moment according to EUROCODE 3 is: 

  (2) 
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where: : the factors depending on the type of load and the condition of linking the two 

beam heads (with a picture attached), Different types of bending stability are shown in Figure 3. 

: the calculated length factors of beams when bending around the z-axis and when 

twisted. 

The quantities are determined as: 

  (3) 

     (4) 

The quantity is determined by the following formula: 

     (5) 

: The inertial moment of the compressive wing against the vertical axis of the section;                

: The inertial moment of the tensile wing against the vertical axis of the section; : Distance 

between the cut center of the tensile wing and the compressive wing. 

 

Figure 3. Quantities C1, C2, C3. 

4. CALCULATION OF THE CRITICAL LOAD OF  THE STRUCTURE 

4.1. Compressive structure 
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The parameter of material is given in Table 1 with length of 8 m. 

Table 1. The parameter of the material. 

Material  Cross section (cm) 

             a b c t1 t2 t3 

      20 30 20 2 1 2 

 

Figure 4. Model of a compressive I shape beam. 

Using Euler's critical load in theory to calculate critical load with different boundary 

conditions. Numerical results are showed in Table 2 and the percentage of error are listed in 

Table 3. Two buckling mode shapes of compressive problem are shown in Figure 5. 

Table 2. Comparison between analytical and numerical solution of buckling problem when using               

different types of element (unit N). 

Boundary 

condition 

FIXED – 

FREE ENDS 

PIN – PIN 

ENDS  

FIXED – PIN 

ENDS 

FIXED – 

FIXED ENDS 

 2 1 0.7 0.5 

Euler 2.058e+05 8.231e+05 1.680e+06 3.293e+06 

Solid Element 2.058e+05 8.213e+05 1.678e+06 3.277e+06 

Beam Element 2.057e+05 8.219e+05 1.678e+06 3.272e+06 

Shell Element 2.058e+05 8.210e+05 1.674e+06 3.290e+06 

Table 3. The percentage of error between numerical and analytical solutions. 

Boundary 

condition 

FIXED – 

FREE ENDS 

PIN – PIN 

ENDS  

FIXED – PIN 

ENDS 

FIXED – 

FIXED ENDS 

Solid Element 0.009 0.224 0.116 0.483 

Beam Element 0.035 0.152 0.104 0.61 

Shell Element 0.024 0.316 0.33 0.197 

μ
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4.2. Bending structure 

The parameter of material is used as problem 4.1. 

Table 4. Comparison between analytical and numerical solution of buckling problem when using                  

different types of element. 

 

Problem 1  Problem 2 

Eurocode 3 2.77e+06 (N) 610.827 (N.mm) 

Shell Element 2.79e+06 (N) 595,010 (N.mm) 

Solid Element 2.82e+06 (N) 598,240 (N.mm) 

Beam Element 2.75e+06 (N) 616,510 (N.mm) 

Table 5. The percentage of error between numerical and analytical solutions. 

 
Problem 1  Problem 2 

Shell Element 0.77 2.59 

Solid Element 1.95 2.06 

Beam Element 0.61 0.92 

Figure 5. Two types of buckling mode shape when using shell element.  

Figure 6. Two types of buckling mode shape for the bending structure. 
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Problem 1: Model I shape with length 5 m, concentrated force in the middle with both ends 

fixed. 

Problem 2: Model I shape with length 5 m, uniformly distributed pressure with both ends 

fixed. 

Numerical results are showed in Table 4 and the percentage of error are listed in Table 5. 

Two buckling mode shapes of bending problem are shown in Figure 6 

5. CALCULATION AND SIMULATION OF BUCKLING OF INDUSTRIAL FACTORY 

The industrial factory has dimensions: length 37 m, width 20 m, height 14 m. Overhead 

crane using in the industrial factory is designed to crane of a maximum weight of 5 tons. The 

model of the factory is built based on 2 types of elements: column and rafter is shell element, the 

purlin is beam element. 

Using the shell element instead of using solid element in the model help save time and 

resources of the computer in the calculating process. In addition, simulating the examples as 

above results in shell element error better than solid element. 

Table 6. Critical load results in 6 simulations. 

Crane’s 

positions 
Case Load’s position 

Critical load 

(N) 
Strain Stress (MPa) 

Crane at 

the middle 

of the 

house 

space 

1 

Concentrate force at the 

position of the trolley moving 

at the front of the crane 

1.2102e6 2.311e-04 45.667 

2 

Concentrate force at the 

position of the trolley moving 

at the middle  of the crane 

1.4925e6 1.856e-04 36.764 

Crane at 

the front of 

the house 

space 

3 

Concentrate force at the 

position of the trolley moving 

at the front of the crane 

1.1165e6 2.216e-04 44.248 

4 

Concentrate force at the 

position of the trolley moving 

at the middle  of the crane 

1.4891e6 1.494e-04 29.852 

Crane at ¼ 

of the 

house 

space 

5 

Concentrate force at the 

position of the trolley moving 

at the front of the crane 

1.272e6 1.33e-5 2.66 

6 

Concentrate force at the 

position of the trolley moving 

at the middle  of the crane 

8.0641e5 3.3254e-6 0.17918 

This study takes a simulation of 6 cases of load-put to define the influence of the position 

to the critical load value of the industrial factory. 
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The results of the simulation of 6 cases of the load are shown in Table 6 and two buckling 

mode shapes of industrial factory frame are shown in Figures 7 and 8. 

Comment: 

– The position of the crane with a high possibility of causing buckling for the factory is 

the front of the factory. 

– The force concentrates at the location of the trolley moving in the middle of the crane in 

the cases cause buckling on two side beams of both sides of the factory, especially around the 

position of the bearing crane. 

– The case in which the force concentrates at the location of the trolley moving at the front 

of the crane where the crane at 1/4 of the house space causes buckling at the location of the 

column close to the force's position. 

– The force concentrates at the location of the trolley moving at the front of the crane at 

the front and middle of the house space, causing buckling on a side of the beam bearing the load. 

– According to the analysis results for both cases, mode shape 1 only has compressive 

buckling, from the mode of phase 2, there is a phenomenon of twisting buckling. 

6. THE NATURAL FREQUENCY PROBLEM 

The natural frequency is an important dynamic characteristic of the construction structure, 

which is closely related to the rigidity, mass, and damping capacity of the building. Determining 

the natural frequency of the system is one of the most important steps to identify structural 

dynamical characteristics to ensure stable operating conditions of the structure under the effects 

of loads.  

In fact, the natural frequency of the structure when simulated is larger than reality cases 

because: 

– The simplification of the model to reduce the number of calculations and simulations. 

– The link between the factory and the ground actually is not mounting link, because the 

ground also has deformation. 

Figure 8. The simulation result of the 

industrial factory case 5. 

Figure 7. The simulation result of the 

industrial factory case 2. 
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The author solves the natural frequency problem with 3 types of deformation of factory 

structure corresponding to 5 modes in ANSYS software. The natural frequency results are listed 

in Table 7. 

Table 7. Natural frequency calculation values. 

Natural Frequency Case 2 Case 4 Case 6 

Mode 1 0.51588 0.51585 0.51585 

Mode 2 1.0279 0.98245 1.0198 

Mode 3 1.1223 1.1218 1.1219 

Mode 4 1.1553 1.1524 1.1847 

Mode 5 1.4614 1.4158 1.5767 

7. TRANSIENT PROBLEM 

Use the structural natural frequency simulation results to calculate the time-division step 

for trasient  problems. In a natural frequency problem, using a mode that gives results with 

deformation for each case of unstable structure.  

When the crane carries objects with mass moving in the factory, to ensure stability and 

normal operating conditions, the car will be moved to the middle and bring the object to the 

desired location. Therefore, only the transient problem for 3 cases: case 2, case 4 and case 6 is 

solved and the chosen time steps are listed in Table 8.  

Solving the transient problem with boundary conditions that are at the base of the columns. 

The load of the problem is set as follows: 

– From 0 to 4 seconds crane started lifting. 

– From 4 to 8 seconds, the crane holds the object and moves at the constant speed v = 50 

mm/s. 

– From 8 to 10s of cranes drop the object gradually. 

In the Figures 9 and 10, von Mises stress and deformation results vs time in the transient 

for case 2 are shown and the maximum stress and deformation displacement results are listed in 

Table 9. 

Table 8. The chosen time steps for cases 2,4 and 6. 

 Initial time 

step 

Minimum 

time step 

Maximum time step 

Case 2 0.034 0.0034 0.34 

Case 4 0.035 0.0035 0.35 

Case 6 0.049 0.0049 0.49 
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Figure 9. The von Mises stress graph in the transient problem of the case 2. 

 

Figure 10. The total deformation graph in the transient problem of the case 2. 

Table 9. The result of the maximum stress and deformation displacement. 

 Maximum 

displacement 
Maximum stress 

Maximum 

deformation 

Case 2 500 66.329 3.56e-04 

Case 4 500 70.337 3.52e-04 

Case 6 500 66.168 3.33e-04 

8. CONCLUSION 

With different time division steps, the displacement results for all 3 cases give the 

maximum displacement value when t = 10 s in the middle of the crane. The diagram of 

displacement increases linearly over time.  

The maximum von Mises stress of case 2 is the largest in all 3 cases. The stress graph 

continuously changes in time from 0 to 10 s. The maximum stress in all 3 cases does not exceed 

the permissible stress value of the structure. So,the stable condition is satisfied. 
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The maximum deformation of  case 2 is largest in all 3 cases. The strain graph is similar in 

shape to the stress graph. The deformation value does not exceed the allowable strain value of 

the structure. So, the rigidity condition is satisfied. 

The critical force value is calculated in the case when buckling in the operating condition 

of the structure is greater than the designed load value of the crane.  

The transition problem uses the largest load of the designed crane. The calculation results 

of displacement  and stress  show that the structure is stable under working conditions under the 

designed load. 

When using a crane, users can use it to lift objects with loads greater than 5 tons. However, 

for a crane to operate with a load greater than 5 tons for a long time, it will cause wear down and 

tear down and may cause danger to people.  

It should be regularly maintained and take appropriate measures so that the crane can 

always operate in the best conditions and the structure is always stable to ensure the safest for 

people. 
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