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Abstract. Free vibration of tapered functionally graded carbon nanotube-reinforced composite 

(FG-CNTRC) beams is investigated. The beams with four types of carbon nanotube distribution 

in the thickness, namely the uniform (UD-CNT), X-type (FGX-CNT), A-type (FGA-CNT) and 

O-type (FGO-CNT), are assumed to be linearly tapered in longitudinal direction by three 

different taper cases. Based on the first-order shear deformation theory, equations of motion with 

variable coefficients are derived from Hamilton’s principle. Using hierarchical functions to 

interpolate the displacement field, a two-node beam element with nine degrees of freedom is 

formulated and employed to compute frequencies of the beams. The accuracy of the derived 

formulation is confirmed by comparing frequencies obtained in the present work with the 

published data. The effects of the total CNT volume fraction, CNT distribution type, taper cases, 

taper ratio, aspect ratio, boundary conditions, etc., on the vibration characteristics of the beams 

are examined and discussed.  

Keywords: Tapered FG-CNTRC beam, first-order shear deformation theory, hierarchical 

interpolation, beam element, free vibration 

Classification numbers: 2.9.4, 5.4.2, 5.4.3.  

1. INTRODUCTION 

The remarkable mechanical properties of carbon nanotubes (CNTs) such as extremely high 

elastic modulus and low density make them an excellent material for reinforcement of advanced 

composites. Experimental and theoretical results show that CNTs are one of the strongest 

materials known to humans [1, 2]. It has been shown that CNT reinforced composites have 

better structural functionality than convention al structural elements in terms of high strength-

weight ratio, high stiffness-weight ratio, ductility and damping mechanisms [3, 4]. The research 

confirms that the existence of CNTs in the matrix can induce the frictional sliding damping 

mechanism, which increases the energy dissipation and suppress the vibration of the composite 

[5, 6], meanwhile, introduction of CNTs into some thermoplastics can enhance stiffness without 

sacrificing ductility [7]. The microcracks of structural components usually start from surface 

defects, which would penetrate through the thickness direction, and then open an 

oxygen/chemistry path to the internal portion of the structure. As a result, degradation of 
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structure occurs and causes premature failure. It is anticipated that by using the functionally 

graded carbon nanotube distribution, the surface of the structure can be armored by a relatively 

high fraction of CNTs, which can be used to prevent the microcracks from taken place, and a 

medium fraction of CNTs can provide certain stiffness and strength enhancement. 

Some recent researches on mechanical behavior of functionally graded carbon nanotube 

reinforced composite (FG-CNTRC) beams, the structure considered in the present work, can be 

mentioned herewith. Ke et al. [8] studied nonlinear free vibration of FG-CNTRC Timoshenko 

beams using the Ritz method and direct iterative technique. They found that both linear and 

nonlinear frequencies of nanotube composite beams with symmetrical distribution of CNTs are 

higher than those of beams with uniform or unsymmetrical distribution of CNTs. Using the 

generalized differential quadrature method, Yas and Samadi [9] investigated free vibration and 

buckling of FG-CNTRC Timoshenko beams resting on an elastic foundation. It has been shown 

by the authors that the fundamental frequency and critical load of the beams with X-type 

distribution of CNTs are higher than that of the beam with the other types of CNT distributions. 

Large amplitude vibration, nonlinear bending and thermal post-buckling of FGCNTRC beams 

on elastic foundation under different thermal conditions were investigated by Shen and Xiang 

[10]. It has been shown by the authors that a CNTRC beam with an intermediate CNT volume 

fraction does not necessarily have intermediate nonlinear frequencies, buckling temperatures and 

thermal post-buckling strengths, and also the thermal post-buckling path of unsymmetrical FG-

CNTRC beams is no longer the bifurcation type. Adopting a variational approach, Lin and 

Xiang [11] derived the eigenvalue equations for free vibration analysis of the first- and third-

order shear deformation FG-CNTRC beams. The obtained eigenvalue equations were then 

solved by the p-Ritz method, and a comparison study has been carried out to highlight the 

differences in vibration frequencies based on the two theories. Based on different shear 

deformation theories, Wattanasakulpong and Ungbhakorn [12] derived analytical solutions for 

bending, buckling and vibration problems of FGCRNRC beams resting on a Pasternak elastic 

foundation. Nejati et al. [13] employed the two dimensional elasticity theory and Hamilton’s 

principle to derive stability and motion equations of FG-CNTRC beams, and then used the 

generalized differential quadrature method to obtain the critical loads and natural frequencies of 

the beams. Wu et al. [14] adopted the von Kármán geometric nonlinearity to study the 

imperfection sensitivity of post-buckling behavior of a first-order shear deformable FG-CNTRC 

beam under axial compression. Numerical results obtained by in the work showed that the post-

buckling behavior is highly sensitive to the imperfection amplitude, the imperfection mode, and 

its half-wave number also moderately affect the imperfection sensitivity of the post-buckling 

response. The same authors, Wu et al. [15] considered the imperfection sensitivity of thermal 

post-buckling behavior of FG-CNTRC beams subjected to in-plane temperature. The differential 

quadrature method has been used in combination with modified Newton–Raphson technique to 

trace the thermal post-buckling equilibrium paths. The effects of geometric imperfections on free 

vibration of FG-CNTRC beams subjected to uniform temperature rise was recently considered 

by a generic imperfection function [16]. 

Studies on mechanical behavior of functionally graded (FG) beams with variable cross-

section have drawn much attention from researchers in recent years. Shahba et al. [17], Gan et 

al. [18] derived stiffness and mass matrices for buckling and vibration analyses of tapered 

Timoshenko beams with material properties vary in longitudinal direction by a power 

distribution. Nguyen [19, 20], Nguyen and Gan [21] derived the finite element formulations for 

large displacement analysis of tapered FGM beams under mechanical loads. Newton-Raphson 

method was employed in combination with arc-length control technique to compute the large 

displacement paths of the beams. Recently, Nguyen and Tran [22] studied free vibration of 
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tapered FGM beams using a finite element formulation. The beams in the work are considered to 

be formed from four materials with the properties varying in both the thickness and length 

directions by power graduation laws. 

In this article, the free vibration of tapered CNT-RC beams is studied by the finite element 

method. Four types of carbon nanotube distribution in the thickness direction, namely the 

uniform distribution (UD-CNT), X-type distribution (FGX-CNT), A-type distribution (FGA-

CNT) and O-type distribution (FGO-CNT), are considered. A finite element formulation based 

on Timoshenko beam theory is derived by using hierarchical functions to interpolate the 

displacement field is formulated and employed in the analysis. The accuracy of the derived 

element is confirmed by comparing the frequencies obtained in the present work with the 

published data. The influence of various factors, including taper cases of the beam, taper ratio, 

CNT distribution type, total CNT volume fraction, beam aspect ratio and boundary conditions on 

the natural frequencies of the beams are examined in detail and discussed.   

2. TAPERED FG-CNTRC BEAM 

A tapered FG-CNTRC beam with length L, rectangular cross-section (b x h) in a Cartesian 

coordinate system (x, y, z) as depicted in Fig. 1 is considered. In the figure, the x-axis is chosen 

on the mid-plane and the z-axis directs along the thickness direction. The beam is assumed to be 

longitudinally tapered in three following taper cases 
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where A(x) and I(x) are, respectively, the area and inertia moment of cross section; A0 and I0 

respectively denote the cross-sectional area and moment of inertia of cross-section at the left end 

(at x = 0); 0 ≤ α < 1 is the taper ratio. The beam becomes uniform when α = 0. 

 
  Figure 1. Geometry of FG-CNTRC beams with three taper cases. 

(a) Case A 

 

(b) Case B 

 

(c) Case C 
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Four types of CNT distribution in the beam cross section, namely the uniformly distributed 

(UD-CNT), functionally graded type A (FGA-CNT), functionally graded type X (FGX-CNT) 

and functionally graded type O (FGO-CNT), as depicted in Fig. 2 are considered. The 

mathematical functions used for describing the distribution of material constituents are as 

follows [9] 
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 (5) 

where 
tcntV  is the total CNT volume fraction, and it is assumed to be the same for the four types 

of the CNT distribution. 

 

  Figure 2. Cross-sections of four different types of FG-CNTRC beam. 

The effective material properties of the FG-CNTRC beam can be estimated using the rule 

of mixture. The expressions of the effective Young’s modulus, shear modulus, Poisson’s ratios 

and mass densities of the beam are of the following forms [11] 
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where 11 22 12, , , ,cnt cnt cnt m mE E G E G  are Young’s modulus and shear modulus of CNT and matrix, 

respectively; 
1 2 3, ,    are efficiency parameters; ( )CNTV z  and ( )mV z  are, respectively, the 

volume fractions of CNT and matrix; 12

cnt  and 
m  are Poisson’s ratios; 

cnt  and 
m  are mass 

densities of CNT and matrix, respectively 

3. MATHEMATICAL MODEL  

Based on the firs-order shear deformation theory, the axial displacement u(x,z,t) and 

transverse displacement w(x,z,t) at any point of the beam are of the forms 

0

0

( , , ) ( , ) ( , )
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u x z t u x t z x t

w x z t w x t
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where z is the distance from the mid-plane to the considering point; u0(x,t) and w0(x,t) are, 

respectively, axial and transverse displacements of the corresponding point on the mid-plane, 

and θ(x,t) is the rotation of the cross section. 

The axial strain (
xx ) and the shear strain (

xz ) are resulted from Eq. (7) are 

0, , 0,,xx x x xz xu z w        

where and hereafter, a subscript comma is used to indicate the derivative of the variable with 

respect to the spatial coordinate x. 

Assuming elastic behavior, the constitutive equation of the FG-CNTRC beam can be 

written in the form 
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where 
xx  and 

xz  are, respectively, the axial and shear stresses; ( )E z  and ( )G z  are the 

effective Young’s modulus and shear modulus, respectively. These effective moduli for the FG-

CNTRC beam are given by [11] 
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The elastic strain energy for a beam (U) is of the form  
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where   is the shear correction factor, chosen by 5/6 for the beams with rectangular cross-

section considered herein; A11, A12, A22 and A33 are, respectively, the axial, axial-bending 

coupling, bending and shear rigidities, defined as 

2
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A A A E z z z dA A G z dA    

The kinetic energy for the beam ( ) resulted from Eq. (7) is of the form 
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in which an over dot is used to indicate the differentiation with respect to time variable t, and 

11 12 22, ,I I I  are the mass moments, defined as 
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Equations of motion for the tapered FG-CNTRC beam can be obtained by applying 

Hamilton’s principle to Eqs. (11) and (13), and they have the following forms 
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Different essential boundary conditions (B.C.) of the beams, namely hinged-hinged (H-H), 

clamped-hinged (C-H), clamped-clamped (C-C), clamped-free (C-F) are considered herein. 

These conditions are described through the displacement components as 

       Clamped (C): 
0 0 0u w     

(16)      Hinged (H): 
0 0 0u w   

Free (F): There is no binding 

4. FINITE ELEMENT FORMULATION 

The coefficients of the equation of motion (15), as seen from Eqs. (12) and (14), are 

functions of coordinate x, a closed-form solution for Eq. (15) is hardly obtained. A finite beam 

element is derived in this section for solving the equation of motion of the tapered FG-CNTRC 

beam. Consider a two-node beam element of length l with the axial displacement 
0u , the 

rotation θ and transverse displacement 
0w  are interpolated by using the hierarchical functions as 
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where 
1 2 1 2 3 1 4, , , , , ,...,u u w w    are nine unknown values of the variables. Noting that θ3, w3 

and w4 are not values of the variables at the nodes.  In Eq. (17), N1 and N2 are linear functions, 

while N3 and N4 are, respectively, quadratic and cubic polynomials.  The functions N3 and N4 can 

be generated from N1 and N2 by adding a higher-order term and choosing a point between the 

two nodes. By selecting a value at mid-point element for θ, two values at quarter and three-

quarter of the element for w, one can obtain the following the hierarchical shape functions [23]  
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3 4
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with 2 1
x

l
    is the natural coordinate. The above four functions in Eq. (18) are illustrated in 

Fig. 3(a). It is necessary to note that the used of the above hierarchical interpolation can avoid to 

redetermination of interpolation functions in mesh refinement as in case of the standard 

polynomials [24]. In addition, the hierarchical functions can also prevent the formulated beam 

element from the shear locking, the problem occurs in the first-order shear deformable beam 

element using linear interpolation [25]. 

 

  Figure 3. Hierarchical functions (a), and detail of degrees of freedom for the beam element (b). 

The element vector of nodal displacements for a generic beam element has nine unknown as 

follows 

 1 1 1 3 3 4 2 2 2

T
u w w w u w  d  

where ui, wi and θi (i = 1, 2) are, respectively, the displacements and rotations at the nodes 1 and 

2, and w3 , w4 , θ3 are the values of the transverse displacement and rotation between the two 

nodes. The detail of the degrees of freedom for the present element is depicted in Fig. 3(b). 

In a matrix form, one can write the interpolation (17) and (18) as follows 
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0 0, ,u wu w  N d N d N d  

in which 

1 2

1 3 2

1 3 4 2

[ 0 0 0 0 0 0 0 ]

[ 0 0 0 0 0 0 ]

[ 0 0 0 0 N 0 ]

u

w

N N

N N N

N N N









N

N

N

 

are the matrices of interpolation functions for u0, θ and w0, respectively. 

Substituting 
0 0, ,u w   from (20) into the strain energy expression, Eq. (11), one gets 
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where ne is total number of the elements; k is stiffness matrix of the element beam. Noting that 
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Similarly, the kinetic energy (13) can be written in the form 
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are the mass matrices of the element beam. 

Using the derived stiffness and mass matrices, the discretized equation of motion for the 

free vibration analysis of the tapered FG-CNTRC beam can be written in the form 

  MD KD 0  (26) 

where 1 1,ne ne

i i i i  D d M m  and 1

ne

i iK k  are the global nodal displacement vector, mass 

matrix and stiffness matrix, obtained by assembling the corresponding element vector and 

matrices over the total elements, respectively. For the free vibration analysis, the global nodal 

displacement vector D is assumed to be harmonic in time with circular frequency  , and Eq. 

(26) becomes 

 2( ) K M D 0  (27) 

with D  is the vector of nodal displacement amplitudes of vibration. Eq. (27) is the eigenvalue 

problem, which can be solved by the standard method. 

(20) 
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(24) 
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5. NUMERICAL RESULTS AND DISCUSSION 

Numerical investigations are presented in this section to show the accuracy of the derived 

beam element and to highlight the influence of various factors on the natural frequency 

parameters of tapered FG-CNTRC beams. 

5.1. Accuracy studies 

Firstly, the accuracy of the finite element model is confirmed by comparing the first 

frequency parameter of the FG-CNTRC beam with the results of Yas and Samadi [9], Lin and 

Xiang [11], respectively. To this end, two sets of the material data employed in the cited 

references are adopted herein as: 11 600 GPacntE  , 22 10 GPacntE  , 12 17.2 GPacntG  , 

2.5 GPamE  , 12 0.19cnt  , 0.3m  , 
31400 kg/mcnt  , 

31190 kg/mm   [9]; 

11 5646.6 GPacntE  , 22 7080 GPacntE  , 12 1944.5 GPacntG  , 2.5 GPamE  , 12 0.175cnt  , 0.3m 

, 
32100 kg/mcnt  , 

31190 kg/mm   [11]. In addition, the CNT/matrix efficiency parameters 

used in the references are given in Table 1. 

Table 1. CNT/matrix efficiency parameters of the FG-CNTRC beam. 

tcntV  
Yas and Samadi [9]  Lin and Xiang [11] 

1  
2  

3  
1  

2  
3  

0.12 1.2833 1.0556 1.0556 0.137 1.022 0.715 

0.17 1.3414 1.7101 1.7101 0.142 1.626 1.138 

0.28 1.3238 1.7380 1.7380 0.141 1.585 1.109 

Table 2 compares the fundamental frequency parameter of uniform cross-section FG-

CNTRC beam of the present paper with the result of Yas and Samadi [9] for an aspect ratio L/h0 

= 15, three different values of CNT volume fraction Vtcnt = 0.12, 0.17, 0.28, and two different 

boundary conditions, namely H-H and C-H. The frequency parameter μ in Table 2 is defined 

according to [9] as 

 
110 110/L I A   (28) 

with ω is the fundamental frequency of the beam and A110, I110 is the values of A11, I11 of a 

homogeneous beam made of pure matrix material, respectively. The frequency parameter for the 

beam obtained herein is also in good agreement with that of [9], using the generalized 

differential quadrature method, regardless of values of CNT volume fraction and the type of 

CNT distribution. 

The comparison of the fundamental frequency parameter of the uniform cross-section FG-

CNTRC beam obtained in the present work with that of Lin and Xiang [11] is given in Table 3 

for an aspect ratio L/h0 = 10, a total CNT volume fraction 0.17tcntV   and two different 

boundary conditions, namely H-H and C-C. The fundamental frequency parameter   in Table 3 

is defined as follows 
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0

/m

m

L
E

h
    (29) 

where ω, as above, is the fundamental frequency of the beam. Excellent agreement between the 

result of the present work with that of [11] can be seen from Table 3. Noting that the first-order 

shear deformation theory and Ritz method have been employed in [11]. 

Table 2. Comparison of the fundamental frequency parameter μ of uniform FG-CNTRC beam with                    

Yas and Samadi [9]. 

B.C. Type Source 
Vtcnt 

0.12 0.17 0.28 

H-H 

UD-CNT 
Present 0.9739 1.1977 1.4348 

Ref. [9] 0.9753 1.1999 1.4401 

FGA-CNT 
Present 0.9452 1.1604 1.3980 

Ref. [9] 0.9453 1.1609 1.4027 

FGO-CNT 
Present 0.7521 0.9145 1.1176 

Ref. [9] 0.7527 0.9155 1.1202 

FGX-CNT 
Present 1.1129 1.3795 1.6409 

Ref. [9] 1.1150 1.3830 1.6493 

C-H 

UD-CNT 
Present 1.2412 1.5548 1.7922 

Ref. [9] 1.2444 1.5602 1.8040 

FGA-CNT 
Present 1.1527 1.4334 1.6836 

Ref. [9] 1.1529 1.4344 1.6933 

FGO-CNT 
Present 1.0312 1.2738 1.5153 

Ref. [9] 1.0331 1.2769 1.5229 

FGX-CNT 
Present 1.3533 1.7112 1.9649 

Ref. [9] 1.3577 1.7188 1.9813 

Table 3. Comparison of frequency parameter ω of uniform FG-CNTRC beam with Lin and Xiang [11]. 

CNT distribution B.C. Present Ref. [11] 

FGA-CNT 
H-H 13.7208 13.7208 

C-C 17.4783 17.4782 

FGX-CNT 
H-H 15.3246 15.3246 

C-C 18.6043 18.6042 

UD-CNT 
H-H 13.9704 13.9703 

C-C 18.0081 18.0081 

5.2. Effect of CNT distribution and total CNT volume fraction 

The material data and the fundamental frequency parameter for all numerical calculations 

from this part onwards are defined according to Yas and Samadi [9] as given above. Tables 4-7 

respectively list the fundamental frequency parameter μ of the H-H, C-C, C-H and C-F beams 

for L/h0 = 20, and various values of total CNT volume fraction Vtcnt = 0.12, 0.17 and 0.28. Beams 
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considered herewith include uniform beam (α = 0) and tapered beams with a taper ratio α = 0.5, 

and all the four types of the CNT distribution, namely FGX-CNT, UD-CNT, FGA-CNT, FGO-

CNT. 

Table 4. Frequency parameter of H-H beam. 

Type tcntV  Uniform (α = 0) Case A (α = 0.5) Case B (α = 0.5) Case C (α = 0.5) 

FGX-CNT 

0.12 0.9113 0.8941 0.6633 0.6212 

0.17 1.1190 1.0979 0.8075 0.7562 

0.28 1.3542 1.3286 0.9928 0.9300 

UD-CNT 

0.12 0.7805 0.7659 0.5575 0.5220 

0.17 0.9527 0.9348 0.6762 0.6331 

0.28 1.1601 1.1383 0.8349 0.7818 

FGA-CNT 

0.12 0.7533 0.7400 0.5384 0.5062 

0.17 0.9177 0.9016 0.6520 0.6130 

0.28 1.1217 1.1020 0.8058 0.7577 

FGO-CNT 

0.12 0.5863 0.5753 0.4095 0.3832 

0.17 0.7092 0.6959 0.4934 0.4617 

0.28 0.8746 0.8582 0.6127 0.5735 

Table 5. Frequency parameter of C-C beam. 

Type tcntV  Uniform (α = 0) Case A (α = 0.5) Case B (α = 0.5) Case C (α = 0.5) 

FGX-CNT 

0.12 1.4586 1.4308 1.2077 1.1346 

0.17 1.8467 1.8116 1.5065 1.4148 

0.28 2.1153 2.0750 1.7716 1.6649 

UD-CNT 

0.12 1.3415 1.3160 1.0722 1.0065 

0.17 1.6819 1.6500 1.3256 1.2440 

0.28 1.9349 1.8981 1.5702 1.4745 

FGA-CNT 

0.12 1.2181 1.1990 0.9551 0.9083 

0.17 1.5142 1.4908 1.1719 1.1151 

0.28 1.7811 1.7529 1.4096 1.3407 

FGO-CNT 

0.12 1.1180 1.0969 0.8447 0.7920 

0.17 1.3818 1.3558 1.0312 0.9666 

0.28 1.6422 1.6112 1.2516 1.1737 
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Table 6. Frequency parameter of C-H beam. 

Type tcntV  Uniform (α = 0) Case A (α = 0.5) Case B (α = 0.5) Case C (α = 0.5) 

FGX-CNT 

0.12 1.1872 1.1675 0.9366 0.8801 

0.17 1.4845 1.4601 1.1556 1.0856 

0.28 1.7384 1.7094 1.3861 1.3028 

UD-CNT 

0.12 1.0601 1.0428 0.8110 0.7616 

0.17 1.3137 1.2925 0.9937 0.9329 

0.28 1.5487 1.5232 1.2001 1.1272 

FGA-CNT 

0.12 0.9591 0.9457 0.7239 0.6880 

0.17 1.1795 1.1633 0.8815 0.8381 

0.28 1.4141 1.3942 1.0752 1.0219 

FGO-CNT 

0.12 0.8428 0.8295 0.6175 0.5794 

0.17 1.0309 1.0147 0.7489 0.7026 

0.28 1.2471 1.2273 0.9195 0.8629 

Table 7. Frequency parameter of C-F beam. 

Type tcntV  Uniform (α = 0) Case A (α = 0.5) Case B (α = 0.5) Case C (α = 0.5) 

FGX-CNT 

0.12 0.3480 0.3438 0.2484 0.2337 

0.17 0.4237 0.4186 0.3009 0.2831 

0.28 0.5209 0.5146 0.3734 0.3513 

UD-CNT 

0.12 0.2925 0.2890 0.2065 0.1943 

0.17 0.3547 0.3506 0.2497 0.2348 

0.28 0.4380 0.4328 0.3106 0.2909 

FGA-CNT 

0.12 0.2456 0.2438 0.1752 0.1678 

0.17 0.2962 0.2941 0.2108 0.2020 

0.28 0.3668 0.3642 0.2622 0.2513 

FGO-CNT 

0.12 0.2148 0.2123 0.1499 0.1410 

0.17 0.2588 0.2558 0.1802 0.1695 

0.28 0.3214 0.3177 0.2246 0.2113 

It is observed from the results in Tables 4 to 7 that the frequency parameter of the beam 

increases with increasing the total CNT volume fraction Vtcnt, regardless of the taper case, the 
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type of CNT distribution and the boundary condition. Among the four types of the CNT 

distribution, the FGX-CNT beam has the highest frequency parameters while the FGO-CNT 

beam has the lowest one, and sequential order of the frequency parameter is as follow: 

FGX-CNT UD-CNT FGA-CNT FGO-CNT      . Additionally, the effect of the four boundary 

conditions on the fundamental frequency parameter is also seen as such that the highest 

frequencies are obtained for the C-C beams, followed by C-H and H-H beams, and the C-F beam 

has the lowest fundamental frequency parameter at every total CNT volume fraction and CNT 

distribution type, 
C-C C-H H-H C-F      . Comparing the uniform beam, the tapered beams, 

as seen from the tables, have lower frequencies, and among the three taper cases, the case C 

beam has the lowest frequencies, regardless of the boundary condition. 

The effect of the total CNT volume fraction on the frequency parameter is shown in Table 

8, where the changes on the frequency parameter by increasing the total CNT volume fraction 

are given for the C-C beam. The data in Table 8 are obtained based on the frequency parameters 

of Table 5, and they are calculated, for example, when Vtcnt increases from 0.12 to 0.17 as 

0.12 0.17 0
0

0.12

100
 




. It can be seen from Table 8 that the increase of the frequency parameter by 

increasing the total CNT volume fraction is almost the same for the uniform beam and the case 

A tapered beam, regardless of the CNT distribution type. The effect of the total CNTs volume 

fraction on the frequency parameter of the tapered beams with case B and case C is less 

significant than that of the uniform beam and the case A tapered beam when Vtcnt increases from 

0.12 to 0.17. On the other hand, this influence of the case B and case C tapered beams is more 

significantly compares to that of the uniform and case A tapered beams when Vtcnt increases from 

0.17 to 0.28. In other words, the effect of the total CNT volume fraction on the fundamental 

frequency depends on the taper case of the tapered FG-CNTRC beams. 

 Table 8. The change on frequency parameter by increasing total CNT volume fraction Vtcnt  of                                 

C-C beams. 

Type tcntV  increase Uniform (%) Case A (%) Case B (%) Case C (%) 

FGX-CNT 
0.12 0.17  26.61 26.61 24.74 24.70 

0.17 0.28  14.54 14.54 17.60 17.68 

UD-CNT 
0.12 0.17  25.37 25.38 23.63 23.60 

0.17 0.28  15.04 15.04 18.45 18.53 

FGA-CNT 
0.12 0.17  24.31 24.34 22.70 22.77 

0.17 0.28  17.63 17.58 20.28 20.23 

FGO-CNT 
0.12 0.17  23.60 23.60 22.08 22.05 

0.17 0.28  18.84 18.84 21.37 21.43 

5.3. Effect of taper ratio and aspect ratio 

The taper ratio α versus frequency parameter μ of the FG-CNTRC beam with three 

boundary condition, H-H, C-C and C-F is shown in Figs. 4-6, respectively. The figures are 

illustrated for the beam with an aspect ratio L/h0 = 20, a total CNT volume fraction Vtcnt = 0.28. 
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  Figure 4. Taper ratio versus frequency parameter of H-H beam with Vtcnt = 0.28, L/h0 = 20 and different 

types of CNT distribution.  

 

Figure 5. Taper ratio versus frequency parameter of C-C beam with Vtcnt = 0.28, L/h0 = 20 and different 

types of CNT distribution. 
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  Figure 6. Taper ratio versus frequency parameter of C-F beam with Vtcnt = 0.28, L/h0 = 20 and different 

types of CNT distribution.  

One can see from the figures that the variation of the frequency parameter with the taper 

ratio much depends on the taper case, regardless of the boundary condition. For all the three 

boundary conditions, the frequency parameter decreases by the increase of the taper ratio, 

irrespective of the CNT distribution type. The decrease of the frequency by increasing the taper 

ratio, as seen from the figures, is the most significant for the type C tapered beam, while that is 

the least for the type A tapered beam. The type of CNT distribution also plays an important role 

in the variation of the frequency parameter with the taper ratio, and the variation rate of the 

parameter μ with taper ratio α of the UD-CNT and FGX-CNT beams is more significant than 

that of the FGA-CNT and FGO-CNT beams. 

The frequency parameters of the H-H beams with a total CNT fraction Vtcnt = 0.17 and 

different values of the aspect ratio L/h0 are given in Tables 9 and 10 for two types of CNT 

distribution, namely UD-CNT and FGX-CNT, respectively. The effects of the aspect ratio on the 

frequency parameter are clearly seen from the tables. The frequency parameter of the FG-

CNTRC beam steadily deceases when increasing the aspect ratio, and this tendency is correct for 

both the uniform and tapered beams. Besides, the decrease of the frequency parameter of the 

tapered beam is more significant compares to that of the uniform beam, and this tendency is 

correct for both the two types of the CNT distribution considered herewith. By comparing the 
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frequency parameter in Table 9 and 10 one can see that the influence of the aspect ratio on the 

frequency parameter of the UD-CNT beam is more significant on that of the FGX-CNT beam. 

Table 9. Frequency parameter of UD-CNT beam with different aspect ratios L/h0. 

L/h0 Uniform (α = 0) Case A (α = 0.5) Case B (α = 0.5) Case C (α = 0.5) 

5 2.0677 2.0281 1.7995 1.6925 

10 1.5659 1.5362 1.2082 1.1330 

15 1.1977 1.1752 0.8734 0.8181 

20 0.9527 0.9348 0.6762 0.6331 

25 0.7852 0.7705 0.5494 0.5142 

30 0.6656 0.6531 0.4618 0.4321 

35 0.5765 0.5657 0.3979 0.3723 

40 0.5080 0.4985 0.3494 0.3269 

Table 10. Frequency parameter of FGX-CNT beam with different aspect ratios L/h0. 

L/h0 Uniform (α = 0) Case A (α = 0.5) Case B (α = 0.5) Case C (α = 0.5) 

5 2.1681 2.1265 1.9410 1.8271 

10 1.7404 1.7073 1.3875 1.3021 

15 1.3795 1.3535 1.0303 0.9655 

20 1.1190 1.0979 0.8075 0.7562 

25 0.9326 0.9151 0.6603 0.6181 

30 0.7958 0.7809 0.5570 0.5213 

35 0.6924 0.6794 0.4810 0.4502 

40 0.6118 0.6004 0.4230 0.3958 

6. CONCLUSIONS 

In this paper, the free vibration of tapered FG-CNTRC beams has been studied by a finite 

element model. The beams with four types of CNT distribution are considered to be linearly 

tapered in longitudinal direction by three different cases. Based on the first-order shear 

deformation theory, equations of motion with variable coefficients of the beams are derived 

from Hamilton principle. A two-node beam element using hierarchical functions to interpolate 

the displacement field was formulated and employed to compute the frequency of the beams. 

The numerical results reveal that CNT distribution and the taper ratio play an important role on 

the vibration frequencies. Among the four types of the CNT distribution considered herein, the 

FGX-CNT gives the highest frequencies, while the FGO-CNT results in the lowest ones. It has 

been shown that the taper case plays an important role on the influence of the total CNT volume 
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fraction on the frequencies of the beams, and the dependence of the frequency parameter upon 

the aspect ratio of the FG-CNTRC tapered beam is also influenced by the tapered case. A 

parametric study has been carried out to illustrate the effects of other factors, including the total 

CNT volume fraction, the taper ratio, taper case and the aspect ratio on the frequency parameter 

of the beams are also examined and highlighted. 
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