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Abstract. Vibration of functionally graded sandwich (FGSW) beams under nonuniform motion 

of a moving load is studied using a third-order shear deformation finite element formulation. The 

beams consists of three layers, a homogeneous ceramic core and two functionally graded faces. 

Instead of the rotation, the finite element formulation is derived by using the transverse shear 

rotation as an unknown. Newmark method is used to compute the dynamic response of the 

beams. Numerical result reveals that the derived formulation is efficient, and it is capable to give 

accurate vibration characteristics by a small number of the elements. A parametric study is 

carried out to illustrate the effects of the material distribution, layer thickness ratio and moving 

load speed on the dynamic behavior of the beams. The influence of acceleration and deceleration 

of the moving load on the vibration of the beams is also examined and discussed. 

Keywords: FGSW beam, moving load, third-order shear deformation theory, transverse shear 

rotation, vibration.      

Classification numbers: 2.9.4, 5.4.2, 5.4.3.  

1. INTRODUCTION 

Functionally graded material (FGM) has widely employed to fabricate structural elements 

for using in industries. With the development in the manufacturing methods [1], FGMs can be 

incorporated in the sandwich construction to improve performance of the structural components. 

Investigations on mechanical vibration of functionally graded sandwich (FGSW) beams, the 

topic discussed in this paper, have been extensively reported in recent years. In this line of 

works, Pradhan and Murmu [2] employed the modified differential quadrature method to 

compute the natural frequencies of FGSW beams formed from an Alporas foam core and two 

FGM skin layer. Amirani et al. [3] studied free vibration of FGSW beam with a functionally 

graded core with the aid of the element free Galerkin method. Based on Reddy-Birkford shear 

deformation theory, Vo et al. [4] presented a finite element model for free vibration and 

buckling analyses of FGSW beams. The thickness stretching effect is then included into the 
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theory by the authors in the analysis of FGSW beams [5].  A hyperbolic shear deformation beam 

theory was used by Bennai et al. [6] to study free vibration and buckling of FGSW beams. Trinh 

et al. [7] evaluated the fundamental frequencies of FGSW beams by using the state space 

approach. The modified Fourier series method was adopted by Su et al. [8] to study free 

vibration of FGSW beams resting on a Pasternak foundation. A finite element formulation based 

on hierarchical displacement field was derived by Mashat et al. [9] for evaluating natural 

frequencies of laminated and sandwich beams. The accuracy and efficiency of the formulation 

were shown through the numerical investigation.  

Vibration of structures excited by moving has wide application in engineering. With the 

invention of FGMs, the vibration of FGM beams due to moving loads has drawn attention from 

researchers recently. Şimşek and his co-workers [10, 11] approximated the displacement field by 

polynomials to compute dynamic response of FGM beams under a moving load. Lagrange 

multiplayer method has been employed to handle the boundary conditions. The method is then 

extended to study vibration of FGSW beams subjected to two moving harmonic loads [12]. 

Rayleigh-Ritz method was used by Khalili et al. [13] to study dynamic behavior of FGM Euler-

Bernoulli beams under moving load. Vibration of an FGM Euler-Bernoulli beam due to a 

moving oscillator was investigated in [14] by the Runge-Kutta method. Finite element method 

has been also used to study vibration of FGM beams excited by moving loads [15, 16]. 

It is clear from the above literature review that only Ref. [12] deals with vibration of FGSW 

Timoshenko beams under two moving harmonic loads. This topic is explored some more further 

in this paper by using the finite element method. The beams considered herein consists of three 

layers, a homogeneous ceramic core and two functionally graded faces. A third-order shear 

deformable finite element formulation in which the transverse shear rotation rather than the 

rotation is employed as an independent unknown is derived and used in combination with 

Newmark method to compute the dynamic response of the beams. The effects of material 

distribution, moving load speed and layer thickness ratio the beams on vibration characteristics 

are examined. The influence of acceleration and deceleration of the moving load on the dynamic 

behavior of the beams is also examined and highlighted.   

2. FGSW BEAMS AND MATHEMATICAL MODEL 

2.1.  FGSW Beam 

A simply supported FGSW beam with length L, rectangular cross section, under a load 
0Q , 

moving from left to right as shown in Figure 1 is considered. In addition to the constant speed, 

acceleration and deceleration of the moving load is also considered herein.  

 

Figure 1. FGSW beam under a moving load. 
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The beam is assumed to consist three layers, namely a homogeneous ceramic core and two 

ceramic-metal FGM layers. Denoting 
0 1 2 3, , ,z z z z , in which 

0 3/ 2, / 2z h z h   , are the 

vertical coordinates of the bottom surface, interfaces and top face, respectively. The volume 

fraction of ceramic and metal are varied in the thickness according to [4, 5] 
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and      

1m cV V  ,     (2) 

with Vc and Vm, respectively, are the volume fraction of ceramic and metal; n is the material 

index, defining the variation of the constituents in the thickness direction.  

The effective property P(z), evaluated by Voigt’s model, is of the form  
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where,
cP and 

mP are the properties of the ceramic and metal, respectively. 

2.2. Mathematical model 

The displacements in the x- and z-directions based on the third-order shear deformation 

proposed recently by Shi [17] are given by  

      3

0 0, 0, 02

1 5
( , , ) ( , ) 5 , ( , , ) ( , )

4 3
x xu x z t u x t z w z w w x z t w x t

h
          (4) 

where  0 0, , ( , )u x t w x t are, respectively, the axial and transverse displacements of a point on the 

x- axis; t is the time variable, and  is the cross-sectional rotation.  

Using a notation for a transverse shear rotation 
0 , defined as 

0 0,xw   ,     (5) 

Equation (4) can be rewritten in the following form 

3

0 0 0, 0 02

5 5
( , , ) ( , ) , ( , ) ( , )

4 3
xu x z t u x t z w z w x t w x t

h
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The axial strain and shear strain resulted from equation (6) are 
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              (7) 

Based on the Hooke’s law, the axial and shear stresses, andxx xz  , are of the form 

( ) , ( )xx xx xz xzE z G z          (8) 

The strain energy ( )U and the kinetic energy  T of the FGSW beam are then given by 

           2 2

0 0

1 1
, ( )

2 2

L L

xx xx zx xz

A V

U dAdx T z u w dAdx                          (9) 

where A bh is the cross-sectional area, and ( )z is the mass density. 

From Eqs. (7) and (8), the strain energy can be written as  
2
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and the kinetic energy resulted from Eq. (6) is as follow 
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In Eq. (10), ijA and ijB  ( , 1, 2, 3, 4, 5, 6)i j   are the beam rigidities, defined as 

        2 6

11 12 22 34 44 66( , , , , , ) (1, , )k 3 4

A
A A A A A A E (z) z z ,z ,z ,z dA     (12) 

       11 22 44( , , ) )k 2 4

A
B B B G (z)(1,z ,z dA       (13) 

and ijI  in Eq (11) are the mass moments, defined as 

       11 12 22 34 44 66(I , , , , , ) ( )(1, )k 2 3 4 6

A
I I I I I z z,z ,z ,z ,z dA    (14) 

        In the above equations, ( ), ( ),k kE z G z and  are, respectively, the elastic modulus, shear 

modulus and mass density of the k
th
 layer. 

The potential energy of the moving load ( )k z  is simply given by 

                                   
0 ( , ) ( ( ))V Q w x t x s t        (15) 

where (.)  is the Dirac delta function, and ( )s t is the function expressing the motion of the load 

0Q , and it can be expressed through speed at left end 
0( )v and acceleration a of the load 

0Q  as 

                                                   
2

0

1
( ) ,

2
s t v t at                         (16) 

The acceleration a is assumed to be constant in the present study. With 0, 0a a   and 0a  , 

the motion is uniform, accelerated and decelerated, respectively. 
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3. FINITE ELEMENT FORMULATION 

Assuming the beam is being divided into nELE elements with length of l. The vector of 

nodal displacements for a standard two-node beam element, (i,  j), herein is given by 

                                     
T

i i xi j j xj ji
u w w u w w d  (17) 

where , ,i i xiu w w  and 
i are the values of 0 0 0,, , xu w w and 

0 at the node i; , ,j j xju w w and j are the 

corresponding values of these quantities at the node  j. The superscript “T’ in Eq. (17) and 

hereafter is used to indicate the transpose of a vector or a matrix. 

The displacements 
0 ( , )u x t ,

0( , )w x t and the shear deformation 
0 ( , )x t are interpolated as  

                                       0 0 0, , ,T T T

u wu w   N d N d N d   (18) 

with ,u wN N , and N are the matrices of interpolating functions. Linear functions are employed 

for the 
0 0,u  , while cubic Hermite polynomials are employed for 

0w  herein. Based on Eq. (18), 

one can write the strain and kinetic energies in Eqs. (10) and (11) in the forms  
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1 1
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  d k d d m d  (19) 

with the element stiffness and mass matrices k and m can be written in the forms   
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The equations of motion for the beam in the discrete form is as follows 

                                                         ex
MD + KD = F   (24) 

where ,D M and K are, respectively, the structural displacement vector, mass and stiffness 
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matrices; the ex
F is the external nodal load vector which can be easily obtained from the 

potential energy (15) and the interpolation for w0.  

4. NUMERICAL RESULTS 

A simply supported FGSW beam with (bxh)= (0.5m x 1m), formed from  Alumina (Al2O3) 

and stainless steel (SUS304) is adopted in this section. The material data of the constituents are: 

Ec= 390MPa, ρc=3960 kg/m
3
, νc=0.3 for Al2O3 ; Em=210MPa, ρm=7800 kg/m

3
, νm=0.3 for 

SUS304. Three numbers in the brackets introduced in Ref. [4, 5] are used herein to denote the 

layer thickness ratio. For example, (2-1-1) means that 
1 2 3( : : )h h h = (2-1-1). The amplitude of the 

moving load is taken as
0 100Q  kN.  

It is assumed that for the acceleration the load enters the beam with a speed of zero, and it 

exits the beam with a speed of v, while these values are, respectively, v and 0 for the 

deceleration. Eq. (16) gives a total time ∆T necessary for the load to across the beam is L/v for 

the uniform motion, where this value is 2L/v for the accelerated and decelerated motions. A total 

of 500 time steps are used for the Newmark method. 

The dynamic deflection factor fD is introduced as  

                                                  
 

0

/ 2,
maxD

w L t
f

w

 
  

 
 (25) 

where 3

0 0 / 48 mw Q L E I is the maximum static deflection of the uniform steel beam.  

4.1. Formulation verification  

Table 1 compares the non-dimensional frequencies of the FGSW beam with L/h=20 

obtained in the present work with that of Ref. [4] for various values of the layer thickness ratio. 

Very good agreements between the result of the present work with that of Ref. [4] is noted form 

Table 1. The non-dimensional frequency in Table 1 is defined according to [4]  

                                   
2

m

m

L

h E


   (26) 

where   is the fundamental frequency of the beam. It is noted that the frequencies Table 1 have  

converged by using just 20 elements, and this number of the element is used below. 

Table 1. Comparison the non-dimensional fundamental frequency of FGSW beam (L/h = 20). 

 

(2-1-2) (2-1-1) (1-1-1) (2-2-1) 

n Present Ref. [4] Present Ref. [4] Present Ref. [4] Present Ref. [4] 

0.5 4.4315 4.4290 4.4990 4.4970 4.5345 4.5324 4.6187 4.6170 

1 3.8785 3.8768 3.9789 3.9774 4.0343 4.0328 4.1614 4.1602 

2 3.3476 3.3465 3.4765 3.4754 3.5398 3.5389 3.7058 3.7049 

5 2.9315 2.9310 3.0781 3.0773 3.1115 3.1111 3.3034 3.3028 
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        Table 2 lists the maximum dynamic deflection at the mid-span of the FGM beam under a 

constant moving load, where the result obtained by Şimşek and Kocatürk [10] is also given. The 

maximum deflections the present work are in good agreement with that of Ref. [10] is noted 

from Table 2. Noting that the result is Table 2 has been obtained with the data of Ref. [10]. 

Table 2. Comparison of maximum mid-span deflection of FGM beam under uniform motion. 

n 0.2 0.5 1 2 SUS304 Al2O3 

Present 1.0407 1.1508 1.2570 1.3449 1.7329 0.9382 

Ref. [10] 1.0344 1.1444 1.2503 1.3376 1.7326 0.9382 

4.2. Effect of layer thickness ratio 

Tables 3 and  4 list values of the dynamic deflection factor  fD  for the beam under different 

types of motion for L/h = 5 and L/h = 20, respectively. The tables show a significant influence 

of the layer thickness ratio and the grading index on the factor fD, and fD increases with an 

increase in the index n. By comparing the tables, one can see that the increase of fD by increasing 

n is more significant for the beam with a lower aspect ratio, irrespective of the layer thickness 

ratio.      

Table 3. Dynamic deflection factor 
Df  of FGSW beam under different motion type (L/h=5). 

 n (1-0-1) (2-1-2) (1-1-1) (2-2-1) (1-2-1) 

 

 

a = 0 

0.5 0.8391 0.8020 0.7902 0.7788 0.7670 

1 0.9895 0.9351 0.8873 0.8499 0.8218 

2 1.1018 1.057 1.0058 0.9579 0.9147 

5 1.1561 1.1364 1.0975 1.0472 1.0068 

 

 

a = 250 

0.5 0.8582 0.8170 0.8052 0.7915 0.7678 

1 0.9707 0.9448 0.9075 0.8666 0.8360 

2 1.1025 1.0328 0.9921 0.9652 0.9352 

5 1.1708 1.1058 1.0838 1.0233 0.9996 

 

 

a = - 250 

0.5 0.8257 0.7998 0.7769 0.7626 0.7475 

1 0.9460 0.9033 0.8675 0.8416 0.8171 

2 1.0598 1.0027 0.9634 0.9238 0.8919 

5 1.1403 1.097 1.0463 0.9980 0.9662 

         The increase of the factor fD is, however influenced by the motion type, and as can be seen 

from the tables, the factor fD increases more significantly in the uniform and decelerated motions  

than it does in the accelerated motion. The influence of the index n and the layer thickness ratio 

on the factor 
Df  can also be seen from Figure 2, where the relation between the factor 

Df and  

the moving load speed v is depicted for the beam with an aspect ratio L/h = 20 under uniform 

motion of the moving load and for different values of the index n and the layer thickness ratio. 



 
 

Le Thi Ngoc Anh, Nguyen Dinh Kien 
 

 

58 

Regardless of the moving load speed, the parameter 
Df  increases with an increase of the index n 

and it decreases with the increase of the core thickness. 

Table 4. Dynamic deflection factor 
Df  of FGSW beam under different motion type (L/h = 20). 

 n (1-0-1) (2-1-2) (1-1-1) (2-2-1) (1-2-1) 

 0.5 1.0116 0.9551 0.9114 0.8804 0.8497 

a = 0 1 1.241 1.1554 1.0848 1.032 0.9828 

 2 1.4568 1.3586 1.2682 1.1918 1.1268 

 5 1.6042 1.5259 1.4344 1.3387 1.2699 

 0.5 0.7406 0.7093 0.6938 0.6835 0.6758 

 1 0.8973 0.8408 0.7923 0.7556 0.8219 

a = 250 2 1.0237 0.9718 0.9177 0.8663 0.8217 

 5 1.0045 1.0651 1.0183 0.9613 0.920 

 0.5 0.9521 0.8984 0.8568 0.8272 0.7977 

 1 1.1742 1.090 1.0215 0.971 0.9243 

a = - 250 2 1.3882 1.2882 1.199 1.1248 1.0617 

 5 1.5401 1.4562 1.3629 1.2682 1.2002 

Figure 2. Relation between 
Df  and speed v of FGSW beam with L/h = 20 under uniform motion;                  

Left: (2-1-1) beam with n variable, Right: beam with n = 1 and layer thickness variable. 

4.3. Effect of acceleration and deceleration  

The effect of the accelerated and decelerated motions is shown in Figure 3, where the 

relation between the dynamic deflection factor fD and moving speed v is shown for the beam 

with L/h = 20 and n = 1 under different types of the motion. For the most values of the moving 

load speed, the factor fD of the beam under the accelerated motion of the moving load is much 

lower than that of the beam under the other motions. Interestingly, the deceleration leads to the 

highest value of the factor fD. The motion type does not only change the amplitude of the 

dynamic deflection factor fD, but it also alters the speed at which the dynamic deflection factor 
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attains the peak value. The peak value of the factor fD in the decelerated motion is much higher 

that that in the uniform and accelerated motion, and it attains at a much higher moving load 

speed.   

 

Figure 3. Relation between dynamic deflection factor and moving speed of FGSW beam under different 

motion types of moving load. 

5. CONCLUSIONS 

The vibration of a FGSW beam under nonuniform motion of a moving load has been 

investigated by using a third-order shear deformation finite element formulation. The transverse 

shear rotation rather than the cross-sectional rotation was used as a unknown in the derivation of 

the finite element formulation. Numerical result has confirmed the accuracy and the fast 

convergence of the derived formulation. The effects of the material distribution, layer thickness 

ratio and moving load speed on the dynamic behavior of the FGSW beam have been examined 

and highlighted. The obtained numerical results reveal that the dynamic response of the beams is 

governed by the moving speed, and also by the material and geometric parameter of the beam. 

The acceleration and deceleration of the moving load play an important role on the dynamic 

behavior of the beam, and the dynamic deflection factor obtained in the decelerated motion of 

the moving load is always higher than that obtained in the accelerated motion. 
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