provided by Vietnam Academy of Science and Technology: Journals Online

Vietnam Journal of Mechanics, Vietnam Academy of Science and Technology DOI: <https://doi.org/10.15625/0866-7136/14851>

AMPLIFICATION OF USEFUL VIBRATION USING ON-OFF DAMPING

La Duc Viet^{1,2,∗} *Institute of Mechanics, VAST, 18 Hoang Quoc Viet, Hanoi, Vietnam Graduate University of Science and Technology, VAST, 18 Hoang Quoc Viet, Hanoi, Vietnam* E-mail: ldviet@imech.vast.vn

Received 22 December 2019 / Published online: 17 March 2020

Abstract. This paper points out how much useful vibration can be extracted from a baseexcited oscillator, which is controlled by the on-off electrical damping. We studies the class of on-off electrical damping controller, which switches the damping level from high to low and back at fixed times every quarter of period. The problem reduces to the maximization of a single-variable function. This result can open the new direction to amplify the useful vibration using controllable dampings.

Keywords: vibration energy harvesting, frequency response, analytical optimization, on-off damping, optimal bound.

1. INTRODUCTION

 A base-excited oscillator is a well-known model to extract useful vibration [1]. The optimization of electrical damping to extract maximum useful vibration has been exten- sively investigated in [1] and many references therein. If the damping is too large, the useful vibration is suppressed. Conversely, the too small electrical damping can make large vibration due to the resonance effect but this large vibration is useless. Those are the reason why the damping should be optimized to maximize the useful vibration. AMPLIFICATION OF USEFUL VIBRATION USING

2. Conclude (Machinites (1857; 18 Howev² (2002 Viet, Honor, Vietnam

2. Institute of Machinites, UST; 18 Howng Quoe Viet, Honor, Vietnam

2. ¹Institute University of Science an

 To suppress the useless vibration, it is well-known that the performance of constant passive damping can be enhanced by the semi-active damping [2, 3]. However, to am- plify the useful vibration, semi-active damping is still not considered much. The switch- ing technique applied to a piezoelectric harvester has been studied in some papers [4–6]. Some theoretical analyses of semi-active damping in energy harvesting have been pre-sented in [7, 8].

 In the field of vibration control, some papers pointed out how much useless vibration can be suppressed by a general controller of on-off damping [\[9–](#page-7-7)[12\]](#page-7-8). In this paper, in the converse way, we derive clearly how much useful vibration can be extracted using on-off electrical damping. In literature, there is still no optimal solution (of constant

c 2020 Vietnam Academy of Science and Technology

 damping) for the transient response. Therefore, for comparison, in this paper, only the steady responses are considered. Energy extraction from transient response by on-off damping is indeed an interesting topic for the future studies. The found solution also gives a good direction to design the future practical on-off electrical damping controllers.

³⁷ **2. PROBLEM STATEMENT**

³⁸ Let us consider a base-excited SDOF oscillator with electromagnetic transduction as ³⁹ shown in Fig. 1.

Fig. 1. SDOF base-excited oscillator

 $T_{\rm eff}$ motion equation equation of the system has form $T_{\rm eff}$ 40 The motion equation of the system has form [1]

$$
m\ddot{x} + (c_m + c_e)(\dot{x} - \dot{r}) + k(x - r) = 0,
$$
 (1)

in which *m*, *k* and *cm* respectively as the mass, the stiffness and the mechanical damping of 41 in which m , k and c_m respectively as the mass, the stiffness and the mechanical damping 142 of spring-mass-damper system, c_e is the electrical damping provided by the electromo-43 tive force f_e . It is noted that the useful vibration mostly depends on the electrical damp-44 ing. Denote r and x as the absolute displacements of the foundation and the oscillator's ⁴⁵ mass, respectively. The non-dimensional form of (1) is **Example 5 is indeed an interesting, by the future studies. [T](#page-7-0)he found solution also

2. PROBLEM STATEMENT

2. P**

$$
\ddot{x} + 2\left(\zeta_m + \zeta_e\right)\omega_n\left(\dot{x} - \dot{r}\right) + \omega_n^2\left(x - r\right) = 0,\tag{2}
$$

46 where $\omega_n=\sqrt{k/m}$ is the natural frequency, $\zeta_m=c/(2m\omega_n)$ and $\zeta_e=c_e/(2m\omega_n)$ respec-47 tively are the mechanical and electrical damping ratios.

⁴⁸ The actual useful vibration is expressed by the average power extracted by the elec-
⁴⁹ trical load 0 0 ⁴⁹ trical load

$$
P = \frac{1}{T} \int_{0}^{T} f_e(x - \dot{r}) dt = \frac{2m\omega_n}{T} \int_{0}^{T} \zeta_e(x - \dot{r})^2 dt,
$$
 (3)

⁵⁰ where *T* is a certain simulation time. Under harmonic base excitation with flat accel-

⁵¹ where *T* is a certain simulation time. Shace narmone suse exertation with that accert eration spectrum, consider the harmonic response at steady state, the optimal electrical

The existence of the optimal z*^e* is explained as follows. If z*^e* is too large, the relative velocity is ⁵² damping ratio *ζ^e* has been derived as [\[1\]](#page-7-0)

$$
\zeta_e^{opt} = \zeta_m. \tag{4}
$$

The existence of the optimal ζ_e is explained as follows. If ζ_e is too large, the rela-tive velocity is suppressed that reduces the value of [\(3\)](#page-1-2). Conversely, ζ_e is too small, the ⁵⁵ vibration can be large but the useful vibration in (3) once again is reduced.

⁵⁶ In this paper, we consider the on-off electrical damping in the form

$$
\zeta_e = \gamma \zeta_e^{opt},
$$
\n
$$
\gamma = \begin{bmatrix} \gamma_h & \text{certain condition} \\ \gamma_l & \text{otherwise} \end{bmatrix}
$$

 $_5$ 7 $\,$ in which γ_h and γ_l , respectively, are the on-value and off-value of gain of on-off electrical 58 damping. If $\gamma_h = \gamma_l = 1$, we return to the constant passive damping.

⁵⁹ **3. MAXIMIZATION OF USEFUL VIBRATION**

⁶⁰ Let us consider a class of on-off damping controller, which switches the damping ⁶¹ level from high to low and back at fixed times every half period of each given frequency 62 [9]. This controller is quite general that can be use not only to suppress useless vibration 63 but also to amplify useful vibration. Fig. 2 illustrates the switching law of mentioned 64 controller, where t_1 is the switching time from the high to low, t_2 is the back switching $\frac{1}{\sqrt{2}}$ time and Ω is the excitation frequency. For all permissible switching times, the controller 66 can be optimized to maximize the useful vibration. Fig. 2 illustrates the switching law of mentioned controller, where *t*¹ is the switching time from the

normalized centre of damping peak, *t*0. Both are illustrated in Fig.2 and nondimensional. All ϵ ₅₇ To simplify the solution, the paper [9] introduced the normalized damping width \bar{t} 68 and the normalized centre of damping peak, *t*₀. Both are illustrated in Fig. 2 and nondi- $\frac{69}{100}$ mensional. All permissible switching times can be described by these two parameters. 70 As mentioned in [1], the acceleration spectrum of vibration sources commonly available $\sum_{i=1}^{n}$ in the form 72 displacement in the form 71 in daily lives is relatively flat with frequency. Therefore, we consider the foundation

$$
r = \frac{\Delta}{\Omega^2} \sin \Omega t,\tag{6}
$$

(5)

⁷³ in which ∆ is the acceleration constant amplitude. Let the relative displacement be writ-⁷⁴ ten in the approximated form

$$
x - r \approx a_1 \cos \Omega t + b_1 \sin \Omega t. \tag{7}
$$

⁷⁵ The solution in [9] gives

76

$$
a_1 = \frac{-2\Delta\omega_n \Omega \left(\zeta_t + \zeta_s \cos 2t_0\right)}{4\omega_n^2 \Omega^2 \left(\zeta_t^2 - \zeta_s^2\right) + \left(\omega_n^2 - \Omega^2\right)^2},
$$

\n
$$
b_1 = \frac{\Delta \left(\omega_n^2 - \Omega^2 - 2\omega_n \Omega \zeta_s \sin 2t_0\right)}{4\omega_n^2 \Omega^2 \left(\zeta_t^2 - \zeta_s^2\right) + \left(\omega_n^2 - \Omega^2\right)^2},
$$
\n(9)

⁷⁷ in which, we denote

$$
\zeta_t = \left(\frac{\gamma_h - \gamma_l}{\pi} \bar{t} + \gamma_l\right) \zeta_e^{opt} + \zeta_m, \quad \zeta_s = \frac{\gamma_h - \gamma_l}{\pi} \zeta_e^{opt} \sin \bar{t}.\tag{10}
$$

78 Over one vibration period, substitute $T = 2\pi/\Omega$ into (3) give the useful vibration in ⁷⁹ form

$$
P = \frac{m\omega_n \Omega}{\pi} \int\limits_0^{2\pi/\Omega} \zeta_e (\dot{x} - \dot{r})^2 dt \tag{11}
$$

80 From the motion equation (2), we have

$$
-\omega_n \zeta_e(\dot{x} - \dot{r}) = \ddot{x} + 2\zeta_m \omega_n(\dot{x} - \dot{r}) + \omega_n^2(x - r)
$$
\n(12)

⁸¹ which changes (11) to

$$
P = \frac{-m\Omega}{2\pi} \int\limits_{0}^{2\pi/\Omega} \left(\ddot{x} \left(\dot{x} - \dot{r} \right) + \omega_n^2 \left(x - r \right) \left(\dot{x} - \dot{r} \right) + 2\zeta_m \omega_n \left(\dot{x} - \dot{r} \right)^2 \right) dt \tag{13}
$$

⁸² Substituting the harmonic forms (6) and (7) into (13) and simplifying give

$$
P = \frac{-m\Omega}{2} \left(\Delta a_1 + 2\Omega \zeta_m \omega_n \left(a_1^2 + b_1^2 \right) \right) \tag{14}
$$

83 Substituting
$$
(8)
$$
 and (9) into (14) , some manipulations yields

74 **1** the in the approximate form
\n
$$
x-r \approx a_1 \cos \Omega t + b_1 \sin \Omega t.
$$
 (7)
\n75 The solution in [9] gives
\n
$$
a_1 = \frac{-2\Delta \omega_n \Omega (\zeta_t + \zeta_s \cos 2t_0)}{4\omega_n^2 \Omega^2 (\zeta_t^2 - \zeta_s^2) + (\omega_n^2 - \Omega^2)^2},
$$
\n
$$
b_1 = \frac{\Delta (\omega_n^2 - \Omega^2 - 2\omega_n \Omega \zeta_s \sin 2t_0)}{4\omega_n^2 \Omega^2 (\zeta_t^2 - \zeta_s^2) + (\omega_n^2 - \Omega^2)^2},
$$
\n77 in which, we denote
\n
$$
\zeta_t = \left(\frac{\gamma_h - \gamma_l}{\pi} t + \gamma_l\right) \zeta_r^{opt} + \zeta_m, \quad \zeta_s = \frac{\gamma_h - \gamma_l}{\pi} \zeta_r^{opt} \sin t.
$$
 (10)
\n78 Over one vibration period, substitute $T = 2\pi/\Omega$ into (3) give the useful vibration in
\n79 form
\n
$$
P = \frac{m\omega_n \Omega}{\pi} \int_0^{2\pi/\Omega} \zeta_e (\dot{x} - \dot{r})^2 dt
$$
 (11)
\n80 From the motion equation (2), we have
\n
$$
-\omega_n \zeta_e (\dot{x} - \dot{r}) = \ddot{x} + 2\zeta_m \omega_n (\dot{x} - \dot{r}) + \omega_n^2 (\dot{x} - \dot{r})
$$
 (12)
\n81 which changes (11) to
\n
$$
P = \frac{-m\Omega}{2\pi} \int_0^{2\pi/\Omega} (\dot{x} (\dot{x} - \dot{r}) + \omega_n^2 (\dot{x} - \dot{r}) + 2\zeta_m \omega_n (\dot{x} - \dot{r})^2) dt
$$
 (13)
\n82 Substituting the harmonic forms (6) and (7) into (13) and simplifying give
\n
$$
P = \frac{-m\Omega}{\omega_n (\omega_n^2 (\zeta_n^2 - \zeta_s^2) + (1 - \alpha^2)^2)} \times
$$

\n
$$
\zeta_t - \zeta_m \frac{\omega_n \zeta_a^2}{(\zeta_n^2 - \zeta_s^2) + (1 - \alpha^2)^2} = 8a^2 \zeta_t \zeta
$$

⁸⁴ in which, the normalized frequency is introduced

$$
\alpha = \frac{\Omega}{\omega_n}.\tag{16}
$$

85 It is important to noted that, in the passive case, we have

$$
\gamma_h = \gamma_l = 1, \quad \zeta_s = 0,\tag{17}
$$

⁸⁶ which turns the solution [\(15\)](#page-3-6) to the one presented in [\[1\]](#page-7-0). Otherwise, in the on-off electrical

 α damping case, the problem now is to maximize *P*, which is a function of two variables \bar{t} 88 and t_0 . By using the Cauchy–Schwarz inequality, it is not difficult to check that

$$
P\left(\bar{t},t_{0}\right) \le P_{0}\left(\bar{t}\right) = \frac{m\Delta^{2}\alpha^{2}}{\omega_{n}\left(4\alpha^{2}\left(\zeta_{t}^{2} - \zeta_{s}^{2}\right) + \left(1 - \alpha^{2}\right)^{2}\right)} \times \left(\zeta_{t} - \zeta_{m} - \zeta_{s} \frac{8\zeta_{m}\zeta_{s}\alpha^{2} - \sqrt{\left(4\alpha^{2}\left(\zeta_{t}^{2} - \zeta_{s}^{2}\right) + \left(1 - \alpha^{2}\right)^{2} - 8\alpha^{2}\zeta_{t}\zeta_{m}\right)^{2} + 4\zeta_{m}^{2}\alpha^{2}\left(1 - \alpha^{2}\right)^{2}}}{4\alpha^{2}\left(\zeta_{t}^{2} - \zeta_{s}^{2}\right) + \left(1 - \alpha^{2}\right)^{2}}\right).
$$
\n(18)

⁸⁹ The equality holds when

$$
\cos 2t_{0,opt} = \frac{4\alpha^2 (\zeta_t^2 - \zeta_s^2) + (1 - \alpha^2)^2 - 8\alpha^2 \zeta_t \zeta_m}{\sqrt{\left(4\alpha^2 (\zeta_t^2 - \zeta_s^2) + (1 - \alpha^2)^2 - 8\alpha^2 \zeta_t \zeta_m\right)^2 + 4\zeta_m^2 \alpha^2 (1 - \alpha^2)^2}},
$$
\n
$$
\sin 2t_{0,opt} = \frac{2\zeta_m \alpha (1 - \alpha^2)}{\sqrt{\left(4\alpha^2 (\zeta_t^2 - \zeta_s^2) + (1 - \alpha^2)^2 - 8\alpha^2 \zeta_t \zeta_m\right)^2 + 4\zeta_m^2 \alpha^2 (1 - \alpha^2)^2}},
$$
\n(19)

where $t_{0,opt}$ is the optimal value of t_0 . The problem now is to find the maximum of a single-variable function *P*₀ in a fixed interval (0 ≤ *t* ≤ *π*)

$$
P_M = \max_{0 \le \bar{t} \le \pi} P_0(\bar{t}) \tag{20}
$$

92 where P_M is the maximum useful vibration can be extracted by on-off electrical damping. ⁹³ It is noted that maximizing a single-variable function in a bound interval can be done by ⁹⁴ many efficient algorithms.

⁹⁵ **4. COMPARISONS BETWEEN ON-OFF DAMPING AND PASSIVE DAMPING**

Fig. 3 shows some plots of the normalized useful vibration $P\omega_n/m/\Delta^2$ in the frequency domain for varying values of higher gain *γ^h* and lower gain *γ^l* ⁹⁷ . It is seen that the ⁹⁸ useful vibration can be amplified remarkable by the on-off electrical damping in com-⁹⁹ parison with the optimal passive electrical damping. The peak of useful vibration can ¹⁰⁰ not be heightened. This conclusion can be drawn from (18) as follows. The peak useful 101 vibration of the passive case is obtained when $\alpha = 1$ [1]. Substitute $\alpha = 1$ into (18) we ¹⁰² have are the proposition is to maximize t , whence $\ln a$ ($t_0 \ge 0$, $\ln a$) $\ln a$ ($t_0 \ge 0$, $\ln a$) $\ln a$ ($t_0 \ge 0$, $\ln a$) $\ln a$ ($t_0 \ge 0$, $\ln a$) $\ln a$ ($t_0 \ge 0$, $\ln a$) $\ln a$ ($t_0 \ge 0$, $\ln a$) $\ln a$ ($t_0 \ge 0$, $\ln a$)

$$
P_0(\bar{t})|_{\alpha=1} = \frac{m\Delta^2}{4\omega_n\left(\zeta_t^2 - \zeta_s^2\right)} \left(\zeta_t - \zeta_m - \zeta_s \frac{2\zeta_m\zeta_s - |\zeta_t^2 - \zeta_s^2 - 2\zeta_t\zeta_m|}{\zeta_t^2 - \zeta_s^2}\right). \tag{21}
$$

Fig. 3. Normalized useful vibration versus normalized frequency \int for varying gains and for $\zeta_m=0.1$ for varying gains and for $\zeta_m = 0.1$

heightened. This conclusion can be drawn from (18) as follows. The peak useful vibration of the 103 After some manipulations, we simplify (21) as

$$
\frac{\omega_n P_0(\bar{t})}{m\Delta^2}\Big|_{\alpha=1} = \begin{cases}\n\frac{(\zeta_t - \zeta_s) - \zeta_m}{4(\zeta_t - \zeta_s)^2} & \zeta_t^2 - \zeta_s^2 - 2\zeta_t \zeta_m \ge 0 \\
\frac{(\zeta_t + \zeta_s) - \zeta_m}{4(\zeta_t + \zeta_s)^2} & \zeta_t^2 - \zeta_s^2 - 2\zeta_t \zeta_m < 0\n\end{cases} \tag{22}
$$

104 It is noted that for any *u* we have

The equality holds when

u we have
\n
$$
\frac{u - \zeta_m}{u^2} \le \frac{1}{4\zeta_m}.
$$
\n(23)

105 The equality holds when

$$
u = 2\zeta_m. \tag{24}
$$

$$
106 \qquad \text{In (22), if we substitute } u \text{ by } \zeta_t - \zeta_s \text{ or } \zeta_t + \zeta_s \text{, we have}
$$

$$
\left. \frac{\omega_n P_0\left(\bar{t}\right)}{m\Delta^2} \right|_{\alpha=1} \le \frac{1}{16\zeta_m}.\tag{25}
$$

 107 Because the value $1/16/\zeta_m$ is the peak of normalized useful vibration in the passive ¹⁰⁸ case, the formula (24) implies that the on-off damping can not heighten the peak of useful ¹⁰⁹ vibration as shown in Fig. 3.

 $\mathcal{L} = \mathcal{L}$

110 However, it is also seen in Fig. 3, the width of the curve can be increased, which 111 implies the useful vibration can be amplified in a wider frequency range. The effects of ¹¹² gains are simple: the on-value should be as large as possible while the off-value should ¹¹³ be as small as possible.

¹¹⁴ To see the effect of on-off damping in the limit case, let us consider the zero value of 115 off-gain ($\gamma_l = 0$) and the very large value of on-gain, i.e γ_h increases to a very large value.

Figure 4. Normalized useful vibration versus normalized frequency for *ζm*=0.1, ^g*l*=0 and ^g*^h* tends to *Fig. 4.* Normalized useful vibration versus normalized frequency $\sum_{i=1}^{n}$ is seen that the maximum one of the passive case in a wider range of the passive case in a wider for $\zeta_m = 0.1$, $\gamma_l = 0$ and γ_h tends to infinity

frequency. The same proof can be done as above when we observe (10) and (18). From (10), when ¹¹⁸ It is seen that the useful vibration tends to the maximum one of the passive case in $\Lambda \zeta_l = 0$ and ζ_h tends to infinity, two terms ζ_t and ζ_s also
18) reduces to 119 a wider range of frequency. The same proof can be done as above when we observe (10) $\frac{1}{21}$ infinity. The expression (18) reduces to a which range of requestly. The same proof can be done as above when we observe (10)
120 and (18). From (10), when $\zeta_1 = 0$ and ζ_h tends to infinity, two terms ζ_t and ζ_s also tend to
121 infinity. The expres

$$
\lim_{\substack{\zeta_h \to \infty \\ \zeta_l = 0}} P_0(\bar{t}) = \frac{m\Delta^2}{4\omega_n \left(\zeta_t^2 - \zeta_s^2\right)} \left(\zeta_t - \zeta_m - \zeta_s \frac{2\zeta_m \zeta_s - \left|\zeta_t^2 - \zeta_s^2 - 2\zeta_t \zeta_m\right|}{\zeta_t^2 - \zeta_s^2}\right).
$$
 (26)

¹²² The expression (26) completely coincides with (21). From (24) we also have

$$
\lim_{\substack{\zeta_h \to \infty \\ \zeta_l = 0}} \frac{\omega_n P_0(\bar{t})}{m\Delta^2} \le \frac{1}{16\zeta_m}.
$$
\n(27)

123 The value $1/16/\zeta_m$ is indeed the peak of useful vibration in the passive case in seen ¹²⁴ in Figs. 3 and 4. The difference between (25) and (27) is that (27) holds for all frequencies.

¹²⁵ **5. CONCLUSIONS**

 This paper considers the problem of amplifying useful vibration from a base-excited oscillator with on-off electrical damping. We derive the theoretical solution of the max- imum available useful vibration can be extracted. The on-off damping can not heighten the peak of useful vibration in the frequency domain in comparison with optimal pas- sive damping. However the larger on-damping and smaller off-damping can widen the useful vibration curve in the frequency domain. Moreover, in the theoretical limit case,

 if the on-damping tends to infinity and off-damping is zero, the simple solution shows that, the peak of useful vibration in the passive case can be extracted in all frequency by the on-off damping. This conclusion opens the opportunities to find the future practical on-off damping controller to extract remarkable useful vibration.

ACKNOWLEDGMENT

 This paper is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number "08/2018/TN".

REFERENCES

- [1] W.-C. Tai and L. Zuo. On optimization of energy harvesting from base-excited vibration. *Journal of Sound and Vibration*, **411**, (2017), pp. 47–59. https://doi.org/10.1016/j.jsv.2017.08.032.
- [2] F. Casciati, G. Magonette, and F. Marazzi. *Technology of semiactive devices and applications in vibration mitigation*. John Wiley & Sons, (2006).
- [3] S. M. Savaresi, C. Poussot-Vassal, C. Spelta, O. Sename, and L. Dugard. *Semi-active suspension control design for vehicles*. Butterworth-Heinemann (UK), (2010).
- [4] E. Lefeuvre, A. Badel, C. Richard, and D. Guyomar. Piezoelectric energy harvesting device optimization by synchronous electric charge extraction. *Journal of Intelligent Material Systems and Structures*, **16**, (10), (2005), pp. 865–876. https://doi.org/10.1177/1045389X05056859.
- [5] D. Guyomar, A. Badel, E. Lefeuvre, and C. Richard. Toward energy harvesting us- ing active materials and conversion improvement by nonlinear processing. *IEEE Trans- actions on Ultrasonics, Ferroelectrics, and Frequency Control*, **52**, (4), (2005), pp. 584–595. https://doi.org/10.1109/tuffc.2005.1428041. 131 line peak on section of the peak of each control in the peak of each of each of the peak of the peak of the street can be one of damping . This conclusion opens the opportunities to find the latture practical

213 on
	- [6] H. Ji, J. Qiu, P. Xia, and D. Inman. Analysis of energy conversion in switched-voltage control with arbitrary switching frequency. *Sensors and Actuators A: Physical*, **174**, (2012), pp. 162–172. https://doi.org/10.1016/j.sna.2011.11.004.
	- [7] F. Di Monaco, M. G. Tehrani, S. J. Elliott, E. Bonisoli, and S. Tornincasa. Energy harvest- ing using semi-active control. *Journal of Sound and Vibration*, **332**, (23), (2013), pp. 6033–6043. https://doi.org/10.1016/j.jsv.2013.06.005.
	- [8] G. Caruso, S. Galeani, and L. Menini. Semi-active damping and energy harvesting using an electromagnetic transducer. *Journal of Vibration and Control*, **24**, (12), (2018), pp. 2542–2561. https://doi.org/10.1177/1077546316688993.
	- [9] J. N. Potter, S. A. Neild, and D. J. Wagg. Generalisation and optimisation of semi-active, on– off switching controllers for single degree-of-freedom systems. *Journal of Sound and Vibration*, **329**, (13), (2010), pp. 2450–2462. https://doi.org/10.1016/j.jsv.2009.12.011.
	- [10] L. D. Viet and P. T. T. My. Theoretical upper and lower bounds of the performance of an on-off damping dynamic vibration absorber attached to a multi-degree-of-freedom system. *Journal of Vibration and Acoustics*, **141**, (3), (2019). https://doi.org/10.1115/1.4042278.
	- [11] L. D. Viet and P. T. T. My. Lower bound of performance index of an on–off damper in a state-space system. *Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science*, **233**, (12), (2019), pp. 4288–4298. [https://doi.org/10.1177/0954406218819028.](https://doi.org/10.1177/0954406218819028)
	- [12] L. D. Viet and N. T. Kien. Lower bound of performance index of anti-sway control of a pendu-lum using on-off damping radial spring-damper. *Vietnam Journal of Mechanics*, **41**, (2), (2019),
	- pp. 193–201. [https://doi.org/10.15625/0866-7136/13625.](https://doi.org/10.15625/0866-7136/13625)

Amplification of useful vibration using on-off damping 9

UNCORRECTED PROOF