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Abstract. The large displacements of functionally graded sandwich (FGSW) beams in
thermal environment are studied using a finite element formulation. The beams are com-
posed of three layers, a homogeneous core and two functionally graded face sheets with
volume fraction of constituents following a power gradation law. The material proper-
ties of the beams are considered to be temperature-dependent. Based on Antman beam
model and the total Lagrange formulation, a two-node nonlinear beam element taking the
effect of temperature rise into account is formulated and employed in the study. The ele-
ment with explicit expressions for the internal force vector and tangent stiffness matrix is
derived using linear interpolations and reduced integration technique to avoid the shear
locking. Newton-Raphson based iterative algorithm is employed in combination with
the arc-length control method to compute the large displacement response of a cantilever
FGSW beam subjected to end forces. The accuracy of the formulated element is confirmed
through a comparison study. The effects of the material inhomogeneity, temperature rise
and layer thickness ratio on the large deflection response of the beam are examined and
highlighted.
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1. INTRODUCTION28

Large displacement analysis of structures has drawn much attention from researchers29

since the recent invention of new materials allows structures to undergo large deforma-30

tion during their service. The finite element method, a powerful tool in solving nonlinear31

problems, is a preferable choice in dealing with this problem. In the context of finite32

element analysis, two types of nonlinear formulation for analyzing beams undergoing33
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large displacement, namely the co-rotational formulation [1, 2] and the total Lagrange34

one [3, 4], are the most often used. The main difference between these two formulations35

is the choice of reference frames, which leads to different expressions of the element for-36

mulation.37

Functionally graded materials (FGMs), a new type of composites initiated by Japan-38

ese scientists in mid-1980 [5], are increasing used to fabricate structural elements for use39

in severe environment. Investigations on nonlinear behaviour of FGM beam structure40

have been extensively reported in the last two decades. In this line of works, Kang and41

Li [6, 7] derived the large displacement solutions for cantilever FGM beams subjected to42

a transverse tip load or a tip moment. The position of the neutral axis has been taken into43

account in the derivation, which eliminates the axial deformation and bending coupling44

effect. Kocatürk et al. [8] formulated a total Lagrange formulation for studying large45

displacement behaviour of FGM beams due to distributed load. Also using the total La-46

grange formulation, Almeida et al. [9] investigated geometrically nonlinear behaviour of47

FGM beams under mechanical loads. Levyakov [10, 11] adopted the neutral surface as48

reference plane to derive the elastic solutions for FGM beams under the thermal loading.49

Based on the third-order shear deformation beam theory, Zhang [12] derived the consti-50

tutive equations for studying the nonlinear bending of FGM beams. Nguyen et al. [13–17]51

derived the co-rotational beam elements for large displacement analysis of FGM beams52

and frames. The effect of plastic deformation on buckling and nonlinear bending of FGM53

beams is considered using the finite element method [18,19]. A geometrically exact beam54

model with fully intrinsic formulation is employed by Masjedi et al. [20] to study the55

large deflection behaviour of functionally graded beams under conservative and non-56

conservative loading.57

With the development of advanced manufacturing methods [21], FGMs can now be58

incorporated into sandwich construction to improve the performance of structures. Func-59

tionally graded sandwich (FGSW) structures can be designed to have a smooth variation60

of material properties, and this helps to avoid the interface delaminating problem as often61

seen in the conventional sandwich structures. Several investigations, mainly the vibra-62

tion and buckling analyses of FGSW beams, have been reported in recent years [22, 23].63

Nguyen and Tran [24] are the authors who made the first effort in formulating a co-64

rotational beam element for large displacement analysis of FGSW beams and frames.65

The element using the solution of homogeneous nonlinear equilibrium equations to in-66

terpolate displacements is accurate and fast convergence.67

In the present work, the large displacement behaviour of FGSW beams in thermal68

environment is studied by a finite element formulation. The beams considered herein69

consist of three layers, a homogeneous core and two FGM skin layers. The material prop-70

erties are assumed to be temperature dependent, and they are graded in the thickness71

direction by a power gradation law. Based on Antman beam model, a nonlinear beam72

element using linear interpolation is formulated in the context of the total Lagrange for-73

mulation. In order to avoid the shear locking, reduced integration technique is employed74

to evaluate the strain energy. Numerical investigations are carried to show the accuracy75

of the formulated element and highlight the influence of the material inhomogeneity,76
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Large displacements of FGSW beams in thermal environment using a finite element formulation 3

temperature rise and layer thickness ratio on the large displacement behaviour of the77

beams.78

2. FGSW BEAM79

An FGSW beam with length L, rectangular cross section (b× h) in a Cartesian coor-80

dinate system (x, z) as depicted in Fig. 1 is considered. The beam consists of three layers,81

a homogeneous isotropic core and two FGM skin layers. The system (x, z) is chosen such82

that the x-axis is on the mid-plane, while the z-axis directs upward. Denoting z0, z1, z283

and z3 are, respectively, the vertical coordinates of the bottom surface, two interfaces84

between the layers, and the top surface.85

Fig. 1. Geometry and coordinates of an FGSW beam

The beam is assumed forming from two constituent materials, M1 and M2, in which86

the volume fraction V(k)
2 (k = 1, . . . , 3) of M2 in the kth layer varies in the thickness direc-87

tion according to88 

V(1)
2 =

(
z1 − z
z1 − z0

)n

, for z ∈ [z0, z1]

V(2)
2 = 0, for z ∈ [z1, z2]

V(3)
2 =

(
z2 − z
z2 − z3

)n

, for z ∈ [z2, z3]

(1)

and V(k)
1 = 1−V(k)

2 is the volume fraction of M1, and n is a non-negative material grading89

index.90

The beam is considered in thermal environment, where significant change in me-91

chanical properties of the constituents is expected. A typical material property (P) de-92

pends on the environmental temperature according to [25]93

P = P0

(
P−1T−1 + 1 + P1T + P2T2 + P3T3

)
, (2)

where P0, P−1, P1, P2 and P3 are the coefficients of temperature T (K), and they are unique94

to the constituent materials.95

The effective material properties P(k)
f , like Young’s modulus E f , thermal expansion96

coefficient α f , and thermal conductivity κ f , of the kth layer evaluated by Voigt’s model97

are of the form98

P(k)
f = P1V(k)

1 + P2V(k)
2 , (3)
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where P1 and P2 represent the temperature-dependent properties of the M1 and M2, re-99

spectively.100

From Eqs. (1) and (3), the effective Young’s modulus, thermal expansion coefficient101

and thermal conductivity can be written in the forms102

E(k)
f (z, T) = [E1(T)− E2(T)]V(k)

1 + E2(T),

α
(k)
f (z, T) =

[
α
(
1T)− α2(T)

]
V(k)

1 + α2(T),

κ
(k)
f (z, T) = [κ1(T)− κ2(T)]V(k)

1 + κ2(T),

(4)

Noting that Poisson’s ratio is hardly changed with temperature, and its effective property103

is simply estimated from values of the constituents by Voigt’s model.104

3. FINITE ELEMENT FORMULATION105

A simple two-node beam element for large deflection analysis of FGSW beams in106

thermal environment is derived in the context the total Lagrange formulation in this sec-107

tion. The element vector of degrees of freedom (d) contains six components as108

d = {u1 w1 θ1 u2 w2 θ2}T, (5)

where ui, wi and θi (i = 1, 2) are, respectively, the axial, transverse displacements and ro-109

tation at node i; the superscript ‘T’ in Eq. (5) and hereafter, is used to denote the transpose110

of a vector or a matrix.111

The beam element based on Antman beam model [26], originally derived by Pacoste112

and Eriksson [27], has been employed by Nguyen [4], Almeida et al. [9] in nonlinear113

analysis of beams. Fig. 2 shows the initial and deformed configurations of a two-node114

beam element with length of l in a Cartesian coordinate system (x, z). The deformation115

at a point with initial abscissa x, measured from the left node, can be defined by mean116

of the angle θ(x) - the rotation of the cross section S associated with the point, and the117

position vector r(x) defined as [28]118

r(x) = [x + u(x)]i + w(x)j, (6)

where i and j are, respectively, the base unit vectors of the x- and z-axes; 0 ≤ x ≤ l is119

measured on the initial configuration; u(x) and w(x) are the axial and transverse dis-120

placements of the point on the x-axis.121

The cross section S associated with the point, as depicted in Fig. 2, may undergo large122

displacement and rotation according to displacements u(x), w(x) and rotation θ(x). The123

vector r′(x) tangent to the deformed beam can be expressed in terms of strain measures124

as125

r′(x) =
∂r(x)

∂x
= [1 + ε(x)]e1 + γ(x)e2 , κ(x) =

∂θ(x)
∂x

, (7)

where126

e1 = cos θi + sin θj , e2 = − sin θi + cos θj , (8)
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Large displacements of FGSW beams in thermal environment using a finite element formulation 5

are, respectively, the unit vectors, orthogonal and parallel to the current cross section;127

ε(x) and γ(x) are, respectively, the axial and shear strains, which with the help of Eqs. (6)–128

(8) can be written in the forms129

ε(x) =
(

1 +
∂u
∂x

)
cos θ +

∂w
∂x

sin θ − 1,

γ(x) =
∂w
∂x

cos θ −
(

1 +
∂u
∂x

)
sin θ.

(9)

Noting that the above axial strain ε(x), shear strain γ(x) and curvature κ(x), as empha-130

sized in [27], although parameterized for convenience by the reference abscissa x ∈ [0, l]131

take the values on the current deformed configuration.132

Fig. 2. Configurations and kinematics of beam element

The strain energy for the shear deformable beam element is of the form133

UB =
1
2

l∫
0

[
A11ε(x)2 + 2A12ε(x)κ(x) + A22κ(x)2 + ψA33γ(x)2] dx, (10)

where ψ is the shear correction factor, chosen by 5/6 for the rectangular cross section;134

A11, A12, A22 and A33 are, respectively, the axial, axial-bending coupling, bending and135

shear rigidities, which are defined as136

(A11, A12, A22) =
∫
A

E(k)
f (1, z, z2) =

3

∑
k=1

zk∫
zk−1

bE(k)
f (1, z, z2)dz,

A33 =
∫
A

G(k)
f =

3

∑
k=1

zk∫
zk−1

bG(k)
f dz,

(11)
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with A is the cross-sectional area. Noting that both E(k)
f and G(k)

f in Eq. (11) are the137

temperature-dependent effective moduli.138

Suppose the beam is initially stress free at temperature T0. The beam is initially139

stressed by the temperature rise. The initial stress due to temperature rise is140

σ
(k)
xT = −E(k)

f (z, T)α(k)
f (z, T)∆T, (12)

where the effective Young’s modulus E(k)
f (z, T) and thermal expansion coefficient α

(k)
f (z, T)141

are given by Eq. (4); ∆T = T − T0 is the temperature rise, assume to be uniform for the142

present work.143

The strain energy resulted from the temperature rise is of the form [29]144

UT =
1
2

l∫
0

NT

(
∂w(x)

∂x

)2

dx, (13)

with NT is the axial force caused by the elevated temperature, defined as145

NT =
∫
A

σ
(k)
xT dA = −

3

∑
k=1

b
zk∫

zk−1

E(k)
f (z, T)α(k)

f (z, T)∆Tdz. (14)

As the shear deformation is taken into account, the transverse displacement w(x) is in-146

dependent of the rotation θ(x), and linear functions can be employed to interpolate the147

displacements and rotation as148

u =
l − x

l
u1 +

x
l

u2 , w =
l − x

l
w1 +

x
l

w2 , θ =
l − x

l
θ1 +

x
l

θ2. (15)

The beam element based on the above linear interpolation functions, however en-149

counters the shear locking problem [30]. To overcome this problem, one-point Gauss150

quadrature is used herewith to evaluate the strain energy of the beam element. In this151

regards and using Eq. (15), one can write the strain energy due to the beam deformation,152

Eq. (10), in the form153

UB =
l
2
(

A11 ε̄2 + 2A12 ε̄κ̄ + A22κ̄2 + ψA33γ̄2) , (16)

and also the strain energy (13) due to the temperature rise as154

UT =
l
2

NT

(
w2 − w1

l

)2

. (17)

In Eq. (16), ε̄, γ̄ and κ̄ are given by155 

ε̄ =

(
1 +

u2 − u1

l

)
cos θ̄ +

w2 − w1

l
sin θ̄ − 1

γ̄ = −
(

1 +
u2 − u1

l

)
sin θ̄ +

w2 − w1

l
cos θ̄

κ̄ =
θ2 − θ1

l
, with θ̄ =

θ1 + θ2

2

(18)
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Large displacements of FGSW beams in thermal environment using a finite element formulation 7

The internal force vector fin and tangent stiffness matrix kt for the element are obtained156

by one and twice differentiating the total strain energy, U = UB + UT, resulted from the157

beam deformation and the temperature rise with respect to the nodal degrees of freedom158

as159

fin =
∂U
∂d

= fa + fc + fb + fs + fT,

kt =
∂2U
∂d2 = ka + kc + kb + ks + kT,

(19)

where the subscripts a, c, b, s, T denote the terms stemming from the axial stretching,160

axial-bending coupling, bending, shear deformation of the beam and the temperature161

rise, respectively.162

Noting that for the nonlinear analysis considered herein, both the internal force vec-163

tor fin and the tangent stiffness matrix kt depend on the current nodal displacements164

d. The detailed expressions for the internal force vector and tangent stiffness matrix in165

Eq. (19) are given by Eqs. (23)–(29) in the Appendix.166

4. EQUILIBRIUM EQUATION167

The equilibrium equation for large deflection analysis of the beam can be written in168

the form [31]169

g (p, λ) = qin (p)− λfex = 0, (20)
where the residual force vector g is a function of the current structural nodal displace-170

ments p and the load level parameter λ; qin is the structural nodal force vector, assembled171

from the formulated vector fin; fex is the fixed external loading vector.172

The system of Eq. (20) can be solved by an incremental/iterative procedure. The173

procedure results in a predictor-corrector algorithm, in which a new solution is firstly174

predicted from a previous converged solution, and then successive corrections are added175

until a chosen convergence criterion is satisfied. A convergence criterion based on Eu-176

clidean norm of the residual force vector is used herein as177

‖g‖ =< ε‖λfex‖, (21)

where ε is the tolerance, chosen by 10−4 for all numerical examples reported in Section 5.178

Newton–Raphson based method is used in combination with the spherical arc-length179

control technique herein to solve Eq. (20). Detail implementation of the spherical arc-180

length control method is given in [31].181

5. NUMERICAL INVESTIGATION182

Numerical investigation is carried out in this section to show the accuracy of the183

derived beam formulation and to illustrate the effects of the beam parameters and tem-184

perature rise on the large displacement behaviour of the FGSW beam. To this end, a185

cantilever beam made of stainless steel (SUS304 - M1) and Silicon Nitride (Si3N4 - M2)186

with the core is pure M1, under a tip load P and a tip moment M is considered. The187

temperature-dependent coefficients for the constituent materials of the beam are listed in188

Tab. 1. A Poison’s ratio ν = 0.3 is chosen for both the constituent materials. Otherwise189
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8 Bui Thi Thu Hoai, Nguyen Dinh Kien, Tran Thi Thu Huong, Le Thi Ngoc Anh

stated, an aspect ratio L/h = 10 is chosen for the analysis. Three numbers in the brackets190

are used to denote the layer thickness ratio, e.g. (2-1-1) means that the thickness ratios191

of the bottom layer, the core and the top layer is (2:1:1). The following dimensionless192

parameters are introduced for the external loads and displacements193

P∗ =
PL2

Es I
, M∗ =

ML
Es I

, u∗ =
uL

L
, w∗ =

wL

L
, (22)

where I is the inertia moment of the cross section; Es is Young’s modulus of steel; uL and194

wL are the tip axial and transverse displacements, respectively.195

Table 1. Temperature-dependent coefficients for constituent materials [32]

Material Property P0 P−1 P1 P2 P3

E (Pa) 348.43× 109 0.0 −3.07× 10−4 2.16× 10−7 −8.946× 10−11

Si3N4 α (1/K) 5.8723× 10−6 0.0 9.095× 10−4 0.0 0.0
κ (W/mK) 13.723 0.0 −1.032× 10−3 5.466× 10−7 −7.876× 10−11

E (Pa) 201.04× 109 0.0 3.079× 10−4 −6.534× 10−7 0.0
SUS304 α (1/K) 12.33× 10−6 0.0 8.086× 10−4 0.0 0.0

κ (W/mK) 15.379 0.0 −1.264× 10−3 2.092× 10−6 −7.223× 10−10

5.1. Accuracy and convergence studies196

Firstly , the accuracy and convergence of the derived beam element are necessary to197

verify. To this end, Fig. 3 compares the tip response of a cantilever FGSW beam under a198

transverse tip load of the present work with the result of Ref. [24] using a co-rotational199

formulation. The result in Fig. 3 is obtained for the beam formed from Aluminum and200
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Fig. 3. Comparison of tip response of cantilever FGSW beam under a transverse tip load
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Zirconia with the material and geometric data given in [24]. Very good agreement be-201

tween the result of the present work and that of Ref. [24] is noted from Fig. 3, regardless202

of the material grading index and the layer thickness ratio.203

The convergence of the element is shown in Tab. 2, where the dimensionless de-204

flections of the (2-1-2) and (2-2-1) cantilever beams under a tip transverse load P∗ = 10205

obtained by different number of the elements are given for ∆T = 40 K and various values206

of the grading index. As seen from Tab. 2, the convergence of the element can be achieved207

by using twenty elements, regardless of the material grading indexes and the thickness208

ratio. In this regard, a mesh of twenty elements is used in all the computations reported209

below.210

Table 2. Convergence of the element in evaluating dimensionless deflection w∗ of cantilever
FMSW beam under a tip transverse load (P∗ = 10, ∆T = 40 K)

nELE
(2-1-2) (2-2-1)

n = 0.3 n = 0.5 n = 1 n = 5 n = 0.3 n = 0.5 n = 1 n = 5

6 0.7805 0.7841 0.7911 0.8115 0.7892 0.7928 0.7993 0.8162
8 0.7810 0.7846 0.7916 0.8121 0.7897 0.7933 0.7998 0.8167

10 0.7812 0.7849 0.7918 0.8123 0.7899 0.7935 0.8000 0.8170
12 0.7813 0.7850 0.7919 0.8124 0.7901 0.7937 0.8001 0.8171
14 0.7814 0.7851 0.7920 0.8125 0.7901 0.7938 0.8002 0.8172
16 0.7815 0.7851 0.7921 0.8126 0.7902 0.7938 0.8003 0.8173
18 0.7815 0.7852 0.7921 0.8126 0.7902 0.7938 0.8003 0.8173
20 0.7815 0.7852 0.7921 0.8126 0.7902 0.7938 0.8003 0.8173

5.2. Cantilever FGSW beam under a transverse tip load211

A cantilever FGSW beam in thermal environment under a transverse tip load P is212

considered in this subsection. The dimensionless tip deflections of the beam correspond-213

ing to a transverse tip load P∗ = 10 are listed in Tab. 3 for different values of the index214

n, the layer thickness ratio and the temperature rise. The effect of the material distribu-215

tion and the temperature rise is clearly seen from Tab. 3, where the deflection is seen to216

be increased by the increase of the grading index and the temperature rise, regardless of217

the layer thickness ratio. The increase of the deflection by increasing the index n can be218

explained by the higher content of SUS304 for the beam associated with a higher index n,219

as seen from Eq. (1). Since Young’s modulus of SUS304 is lower than that of Si3N4, and220

thus the rigidities of the beam with a higher index n are lower, and this leads to a higher221

deflection. The increase of the deflection for the beam subjected to the higher temper-222

ature rise is resulted from the decrease of the Young’s modulus and the increase of the223

axial force NT. The effect of the force NT is similar to that of an axial compressive force,224

which causes the decrease of the bending rigidity. The influence of the layer thickness225
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10 Bui Thi Thu Hoai, Nguyen Dinh Kien, Tran Thi Thu Huong, Le Thi Ngoc Anh

ratio on the tip deflection in Tab. 3 can also be explained by the change in the rigidities of226

the beam.227

Table 3. Tip deflection w∗ of cantilever beam in thermal environment corresponding to
a tip load P∗ = 10

∆T (K) n (1-0-1) (2-1-2) (2-1-1) (2-2-1) (1-3-1) (1-8-1)

0

0.3 0.7708 0.7732 0.7780 0.7821 0.7868 0.8013
0.5 0.7739 0.7769 0.7816 0.7867 0.7906 0.8039
1 0.7802 0.7823 0.7965 0.7923 0.7973 0.8084
5 0.8018 0.8051 0.8074 0.8100 0.8132 0.8181

30

0.3 0.7769 0.7795 0.7842 0.7882 0.7930 0.8070
0.5 0.7801 0.7813 0.7878 0.7919 0.7967 0.8096
1 0.7864 0.7901 0.7944 0.7984 0.8032 0.8139
5 0.8076 0.8108 0.8130 0.8155 0.8186 0.8233

50

0.3 0.7809 0.7835 0.7882 0.7922 0.7969 0.8108
0.5 0.7841 0.7872 0.7918 0.7958 0.8006 0.8133
1 0.7904 0.7941 0.7984 0.8023 0.8070 0.8175
5 0.8114 0.8145 0.8167 0.8191 0.8221 0.8267

90

0.3 0.7885 0.7913 0.7959 0.7999 0.8046 0.8181
0.5 0.7918 0.7950 0.7995 0.8035 0.8082 0.8205
1 0.7982 0.8019 0.8061 0.8099 0.8144 0.8246
5 0.8186 0.8217 0.8238 0.8262 0.8290 0.8334

The effect of the temperature rise and the layer thickness ratio on the large displace-228

ment response of the FGSW beam can also be seen from Figs. 4 and 5, where the load-229

displacement curves of the FGSW beam are shown for various values of the temperature230

rise and the layer thickness ratio. At a given value of the applied load, the tip displace-231

ments increase as the temperature rise ∆T increases. The tip displacements of the beam,232

as seen from Fig. 5, are also increased by the increase of the core thickness, regardless of233

the load level and the temperature rise. The increase of the displacements, as explained234

above, is resulted from the lower rigidities of the beam associated with a larger core thick-235

ness. The deformed configurations of the beam corresponding to an applied transverse236

tip load P∗ = 5 as depicted in Fig. 6 also confirm the effects of the temperature rise and237

the layer thickness ratio on the large displacement response of the FGSW beam.238

In Figs. 7 and 8, the thickness distribution of the axial stress on the clamped end239

section of the FGSW cantilever beam under the transverse tip load is depicted for a trans-240

verse load P∗ = 3 and various values of the temperature rise and the layer thickness ratio.241

Different from homogeneous and functionally graded beams, the curves for stress distri-242

bution of the FGSW beam consist of three distinct parts, in which the stress distribution243
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in the two functionally graded layers is not linear due to the power-law variation of the244

effective modulus. The temperature rise, as seen from Fig. 7, alters the axial stress, and245

the maximum stress increases by the increase of the temperature rise. The influence of the246

core thickness to the axial stress, as seen from Fig. 8 is similar to that of the temperature247

rise, and the maximum stress is higher for the beam with a larger core thickness.248
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5.3. Roll-up of cantilever beam due to a tip moment249

The roll-up of a cantilever FGSW beam subjected to a tip moment M is studied in this250

sub-section. In Figs. 9 and 10, the equilibrium paths of the beam are respectively depicted251

for different values of the temperature rise and the layer thickness ratio. The temperature252

rise and the layer thickness ratio, as seen from the figures, play an important role on the253

large displacement behaviour of the beam. The effect of the layer thickness ratio on the254

response of the beam is more significant in the large displacement region than that of255
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Fig. 11. Deformed configurations of FGSW beam subjected to a tip moment

the temperature rise. The significant influence of the layer thickness ratio on the large256

displacement behaviour of the FGSW beam can be seen more clearly from Fig. 11, where257

the deformed configurations of the beam are displayed for M∗ = 7 and different values258

of the temperature rise and layer thickness ratio. At the applied moment M∗ = 7, the259

(1-8-1) beam has already rolled up to a circle while the (1-0-1) beam has not yet. Noting260

that due to the snap-back of the equilibrium paths, the arc-length control method must261

be employed to trace the paths in Figs. 9 and 10.262
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6. CONCLUSIONS263

The large displacement behaviour of FGSW beams in thermal environment has been264

investigated by a finite element formulation. The beams are considered to be composed265

of three layers, a homogeneous core and two functionally graded skin layers with the266

temperature-dependent material properties. Based on the Antman beam model, a first-267

order shear deformable nonlinear beam element taking the effect of temperature rise into268

account was formulated in the context of the total Lagrange formulation. The element269

with explicit expressions for the internal force vector and tangent stiffness matrix has270

been derived using the reduced integration technique to avoid the shear locking. Using271

the derived beam element, the large displacement response of a cantilever FGSW beam272

under the end forces has been computed, and the effects of the material inhomogeneity,273

temperature rise and layer thickness ratio have been examined. The obtained numerical274

results reveal that, in addition to the material inhomogeneity, the temperature rise and275

the layer thickness ratio also play an important role on the large displacement behaviour276

of the beam. It has been shown that the effect of the layer thickness ratio on the behaviour277

of the FGSW beams in the large displacement region is more significant than that of the278

temperature rise. It is necessary to note that though the numerical investigation in the279

present paper has been carried out for the cantilever beam only, the element formulation280

formulated herein can be used to analyze the FGSW beams with other boundary con-281

ditions as well. Additionally, the present beam formulation is simple, and its extension282

to the large displacement analysis of beams made of other materials, e.g., functionally283

graded carbon nanotube reinforced composite beams, is straightforward.284
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APPENDIX384

This Appendix presents detail expressions for the nodal forces and the tangent stiff-385

ness matrices in Eq. (19). The following notations are used386

s = sin θ̄ , c = cos θ̄,

a1 = (sε̄− cγ̄) , a2 = (cε̄ + sγ̄) , a3 = γ̄2 − ε̄ (1 + ε̄) ,

a4 = cγ̄− s (1 + ε̄) , a5 = sγ̄ + c (1 + ε̄) , a6 = (1 + ε̄)2 − γ̄2.

(23)

The internal force vector387

fa = A11 ε̄

{
−c − s

l
2

γ̄ c s
l
2

γ̄

}T

, fb = A22κ̄{0 0 1 0 0 − 1}T,

fc = A12 ε̄{0 0 1 0 0 − 1}T + A12κ̄

{
−c − s

l
2

γ̄ c s
l
2

γ̄

}T

,

fs = ψA33γ̄

{
s − c − l

2
(1 + ε̄) − s c − l

2
(1 + ε̄)

}T

,

fT =

{
0 − (w2 − w1)

l
NT 0 0

(w2 − w1)

l
NT 0

}T

,

(24)

ka =
1
l

A11



c2

sc s2 sym.
l
2

a1 − l
2

a2
l2

4
a3

−c2 −sc − l
2

a1 c2

−sc −s2 l
2

a5 sc s2

l
2

a1 − l
2

a2
l2

4
a3 − l

2
a1

l
2

a2
l2

4
a3


, (25)

kb =
1
l

A22



0
0 0 sym.
0 0 1

0 0 0 0
0 0 0 0 0
0 0 −1 0 0 1


, (26)
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kc = A12κ̄



0 0 s 0 0 s
0 0 −c 0 0 −c
s
2
− c

2
− l

2
(1 + ε̄) − s

2
c
2

l
2
(1 + ε̄)

0 0 −s 0 0 −s

0 0 c 0 0 c
1
2

s −1
2

c − l
2
(1 + ε̄) −1

2
s

1
2

c
l
2
(1 + ε̄)


+

2
l

A12



0 0 −c 0 0 c
0 0 −s 0 0 s

0 0
l
2

γ̄ 0 0 − l
2

γ̄

0 0 c 0 0 −c

0 0 s 0 0 −s

0 0
l
2

γ̄ 0 0 − l
2

γ̄


,

(27)

ks =
ψ

l
A33



s2

−sc c2 sym.
l
2

a4
l
2

a5
l2

4
a6

−s2 sc − l
2

a4 s2

sc −c2 − l
2

a5 −sc c2

l
2

a4
l
2

a5
l2

4
a6 − l

2
a4 −

l
2

a5
l2

4
a6


, (28)

kT =
NT

l



0
0 1 sym.
0 0 0

0 0 0 0

0 −1 0 0 1
0 0 0 0 0 0


. (29)
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